PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/01599
G06 Al

F 11/14 (43) International Publication Date: 12 January 1995 (12.01.95)

(21) International Application Number: PCT/US94/07561 | (81) Designated States: AU, CA, JP, European patent (AT, BE,

(22) International Filing Date: 1 July 1994 (01.07.94)
(30) Priority Data:
08/085,596 1 July 1993 (01.07.93) Us

(71) Applicant: LEGENT CORPORATION [US/US]; 2000 Park
Lane, Pittsburgh, PA 15275 (US).

(72) Inventors: WOODHILL, James, R.; 1960 Haddon Avenue,
Houston, TX 77019 (US). WOODHILL, Louis, R.; 2114
Pecan Trail Drive, Richmond, TX 77469 (US). MORE,
William, Russell, Jr.; 786 Thicket, Houston, TX 77079 (US).
BERLIN, Jay, Harris; 9111 Landdowne Drive, Houston, TX
77096 (US).

(74) Agents: PENCOSKE, Edward, L. et al.; Kirkpatrick & Lock-
hart, 1500 Oliver Building, Pittsburgh, PA 15222 (US).

CH, DE, DK, ES, FR, GB, GR, EE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.

(54) Title: SYSTEM AND METHOD FOR DISTRIBUTED STORAGE MANAGEMENT ON NETWORKED COMPUTER SYSTEMS

(57) Abstract

The present invention is directed to a system and method
for the distributed management of the storage space and data
on a networked computer system (10) wherein the networked
computer system (10) includes at least two storage devices (19)
for storing data files comprised of one or more binary objects.
The distributed storage management system (24) includes means
for selectively copying (206) the binary objects stored on one
of the storage devices to another of the storage devices and
means for calculating (138) a current value for a binary object
identifier (74) for selected binary objects stored on the storage
devices wherein the calculation of the binary objet identifier (74)
is based upon the actual data contents of the associated binary
object. The distributed storage management system (24) further
includes means for storing (140) the current value of the binary
| object identifier as a previous value of the binary object identifier,
means for comparing (140) the current value of the binary object
identifier associated with a particular binary object to one or more
previous values of the binary object identifier associated with that
particular binary object and means for commanding (200) the
means for selectively copying (206) binary objects in reponse to
the means for comparing (140).

[Buid
Backup 100
Queue
Database
T

Delete I
Backup

]
i Queue

| Record |

122

138

Create
> Binary Object
{denufication

Records

LT i
Record
=
Creay |
Backuy,

e .
p | Data N 1dentify
130 Instance Steam > Binary
IMB Objects for
i Backup l
v \140
ﬁgpame] I Segment Data
File Into i S‘{wwln lrlﬂo Tos ”9
132 Data i ultiple | 0 Step
—‘ Streams 136/-l Binary Objects N——

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgxia

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CcG Congo

CH Switzerland
CI Cbte d'Ivoire
M Cameroon

CN China

Cs Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

8988

EEEE8<ERFRE RER9ARE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

1

SYSTEM AND METHOD FOR DISTRIBUTED STORAGE
MANAGEMENT ON NETWORKED COMPUTER SYSTEMS
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention is directed generally to a

system and method for distributed storage management on
a networked computer system and, more specifically, to
a system and method for distributed storage management
on a networked computer system including a remote
backup file server and one or more local area networks
in communication with the remote backup file server.

Description of the Background of the Invention
Backup copies of information stored on a computer

system must be made so that if a failure occurs which
causes the original copies of the data to be lost, the
lost data can be recovered as it existed at the time
when the last backup copy was made. Backup/restore
systems have a long history on all types of computer
systems from mainframes to minicomputers, local area
network file servers and desktop workstations.
Historically, backup systems have operated by
making copies of a computer system’s files on a special
backup input/output device such as a magnetic tape
drive, floppy diskette drive, or optical disk drive.
Most systems allow full backup, partial backup (e.g.,
specified drives, directories, or files), or
incremental backups based on files changed after a
certain date or time. Copies of files made during a
backup procedure are stored on these special backup
devices and are then later retrieved during a restore
operation either under file names derived from the
original file, from the date/time of the backup
operation or from a serially-incremented number. The
backup procedure is typically accomplished on an
individual computer/file server basis, rather than

'SUBSTITUTE SHEET (RULE 26)

WO 95/01599 - PCT/US94/07561

10

15

20

25

30

2

through a single coordinated approach encompassing
multiple systems. That is, the computer resources of
two computers at most (the one processing the files to
be backed up and the one with the backup device
attached) are employed to effect the backup process,
regardless of the actual number of computers networked
together.

Today, the absolute numbers of computers networked
together by organizations are increasing rapidly as is
the number of different types of computers and
operating systems in use. At the same time, the number
of storage devices and the capacities incorporated into
each of these units is growing even more rapidly. 1In
this environment, the backup/restore approaches which
have been traditionally used have become less reliable,
more expensive, and more consumptive of human time and
attention.

Thus, the need exists for a system designed to
overcome the limitations of the existing backup/restore
systems that have the following characteristics: (1) is
capable of operating on a networked computer system
incorporating various types of computers and operating
systems; (2) is capable of accommodating a large array
of large capacity storage devices; (3) is reliable; (4)
is capable of operating with a minimum amount of human

intervention; and (5) is relatively inexpensive.

SUMMARY OF THE INVENTION
The present invention is directed to a system for
the distributed management of the storage space and
data on a networked computer system wherein the
networked computer system includes at least two storage
devices for storing data files comprised of one or more
binary objects. The distributed storage management

system includes means for selectively copying the

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

3

binary objects stored on one of the storage devices to
another of the storage devices and means for
calculating a current value for a binary object
identifier for selected binary objects stored on the
storage devices wherein the calculation of the binary
object identifier is based upon the actual data
contents of the associated binary object. The
distributed storage management system further includes
means for storing the current value of the binary
object identifier as a previous value of the binary
object identifier, means for comparing the current
value of the binary object identifier associated with a
particular binary object to one or more previous values
of the binary object identifier associated with that
particular binary object and means for commanding the
means for selectively copying binary objects in
response to the means for comparing.

The present invention is further directed to a
method for the management of the storage space and data
on a computer system wherein the computer system
includes at least two storage area for storing data
files comprised of one or more binary objects. The

. storage space management method includes the following

steps: (1) selectively copying the binary objects
stored in one of the storage areas to another of the
storage areas; (2) calculating a current value for a
binary object identifier for selected binary objects
stored in the storage areas wherein the calculation of
the binary object identifier is based upon the actual
data contents of the associated binary object; (3)
storing the current value of the binary object
identifier as a previous value of the binary object
identifier; (4) comparing the current value of the
binary object identifier associated with a particular

binary object to one or more previous values of the

WO 95/01599 ' PCT/US94/07561

10

15

20

25

30

4

binary object identifier associated with that
particular binary object; and (5) controlling the step
for selectively copying binary objects in response to
the step for comparing.

The system and method of the present invention for
the management of the storage space on a computer
system provide a backup/restore system that is capable
of operating on a networked computer system
incorporating various types of computers and operating
systems, is capable of accommodating a large array of
large capacity storage devices, is reliable, is capable
of operating with a minimum amount of human
intervention and is relatively inexpensive. These and
other advantages and benefits of the present invention
will become apparent from the description of a
preferred embodiment hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention to be clearly understood
and readily practiced, a preferred embodiment will now
be described, by way of example only, with reference to
the accompanying figures wherein:

FIG. 1 illustrates a simplified representation of
a networked computer system in which the system and
method of the present invention may be employed;

FIG. 2 illustrates the manner in which the
Distributed Storage Manager program of the present
invention allocates the storage space on each of the
storage devices illustrated in FIG. 1;

FIG. 3 illustrates the File Database utilized by
the Distributed Storage Manager program of the present
invention;

FIG. 4 illustrates the Backup Queue Database
utilized by the Distributed Storage Manager program of

the present invention; and

WO 95/01599 PCT/US94/07561

10

15

20

25

30

5

FIGS. 5a - 51 illustrate flow charts explaining
the operation of the Distributed Storage Manager

program of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 illustrates a simplified representation of

a typical networked computer system 10 in which the
system and method of the present invention for
distributed storage management on networked computer
systems may be employed. A remote backup file server
12 is in communication, via data path 13, with a wiae
area network 14. The wide area network 14 is, in turn,
in communication with a plurality of local area
networks 16 via data paths 15. Those of ordinary skill
in the art will recognize that any number of wide area
networks 14 may be in communication with remote backup
file server 12 and that any number of local area
networks 16 (from 1 to more than 100) may be in
communication with each wide area network 14. Those-of
ordinary skill in the art will also recognize that the
means for communication between remote backup file
server 12, wide area network 14 and local area networks
16 over data paths 13 and 15 is well known.

Each local area network 16 includes multiple user
workstations 18 and local computers 20 each in
communication with their respective local area network
16 via data paths 17. Again, those of ordinary skill
in the art will recognize that the means for
communication between user workstations 18, local
computers 20 and local area networks 16 via data paths
17 is well known. The storage space on each disk drive
19 on each local computer 20 in the networked computer
system 10 is allocated as follows and as is shown in
FIG. 2: (1) operating system files 22; (2) a
Distributed Storage Manager program 24 which embodies

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

6

the system and method of the present invention (the
operation of which is described in detail hereinbelow) ;
(3) a File Database 25 (the structure of which is
described in detail hereinbelow); (4) a Backup Queue
Database 26 (the structure of which is described in
detail hereinbelow); (5) local computer data files 28;
(6) free disk space 30 and (7) compressed storage files
32 (created by the Distributed Storage Manager program
24 of the present invention as is explained more fully
hereinbelow) .

The Distributed Storage Manager program 24 of the
present invention builds and maintains the File
Database 25 on one of the disk drives 19 on each local
computer 20 in the networked computer system 10
according to the structure illustrated in FIG. 3. The
File Database 25 stores information relating to each
file that has been backed up by the Distributed Storage
Manager program 24 since the initialization of that
program on each local computer 20. The File Database
25 is comprised of three levels of records organized
according to a predefined'hierarchy. The top level
record, File Identification Record 34, includes
identification information for each file that has been
backed up by Distributed Storage Manager program 24.
File Identification Record 34 contains the following
elements: (1) Record Type 36 (identifies the file as
either a directory file or a regular file); (2) File
Location 38 (name of the directory in which the file
resides); (3) File Name 40 (name of the file); (4)
Migration Status 41 (explained more fully hereinbelow) ;
and (5) Management Class 43 (explained more fully
hereinbelow) .

For each File Identification Record 34 in File
Database 25, one or more Backup Instance Records 42 are

created that contain information about the file

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

7

(identified by File Identification Record 34) at the
time that the file is backed up. Each time that a file
is backed up, a Backup Instance Record 42 is created
for that file. Each Backup Instance Record 42 consists
of the following elements: (1) Link to File
Identification Record 44; (2) Backup Cycle Identifier
46 (identifies the particular backup cycle during which
the Backup Instance Record 42 is created); (3) File
Size 48; (4) Last Modified Date/Time 50; (5) Last
Access Date/Time 52; (6) File Attributes 54 (e.g.,
read-only, system, hidden); (7) Delete Date 56 (date on
which the file was deleted); and (8) Insert Date 57
(date on which the Backup Instance Record 42 was
created) .

Associated with each Backup Instance Record 42 is
one or more Binary Object Identification Records 58.
The Distributed Storage Manager program 24 views a file
as a collection of data streams. A data stream is
defined as a distinct collection of data within the
file that may be changed independently from other
distinct collections of data within the file. For
example, a file may contain its normal data and may
also contain extended attribute data. A user may
change the extended attribute data without modifying
any of the normal data or vice versa. The Distributed
Storage Manager program 24 further divides each data
stream into one or more binary objects. If the size of
the data stream is equal to or less than a previously
defined convenient maximum binary object size
(currently one (1) megabyte), then a single binary
object represents the data stream. If the data stream
is larger than the maximum binary object size, then the
Distributed Storage Manager program 24 divides the data
stream into multiple binary objects, all but the last

of which are equal in size to the maximum binary object

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

8

size. A Binary Object Identification Record 58 is
created for each binary object that comprises the file
which was backed up during the backup cycle identified
by the Backup Cycle Identifier 46 of a particular
Backup Instance Record 42. Each Binary Object
Identification Record 58 includes the following
components: (1) Link to Backup Instance Record 60; (2)
Binary Object Stream Type 62 (e.g., data, extended
attributes, security); (3) Binary Object Size 64; (4)
Binary Object CRC32 66 (explained more fully
hereinbelow); (5) Binary Object LRC 68 (explained more
fully hereinbelow); (6) Binary Object Hash 70
(explained more fully hereinbelow); and (7) Binary
Object Offset 72 (explained more fully hereinbelow) .
The Binary Object Size 64, Binary Object CRC32 66,
Binary Object LRC 68 and Binary Object Hash 70 comprise
the Binary Object Identifier 74 which is a unique
identifier for each binary object to be backed up and
is discussed in more detail below. |
The Distributed Storage Manager program 24 also
builds and maintains the Backup Queue Database 26 on
one of the disk drives 19 on each local computer 20 in
the networked computer system 10 according to the
structure illustrated in FIG. 4. Each entry (Backup
Queue Record 75) in the Backup Queue Database 26 is
comprised of the following components: (1) Record Type
76 (identifies the file as either a directory file or a
regular file); (2) File Location 78 (name of the
directory in which the file resides); (3) File Name 80
(name of the file); (4) File Status 82 ("new",
"modified" or "deleted"); (5) File Size 84; (6) Last
Modified Date/Time 86; (7) Last Access Date/Time 88;
(8) File Attributes 90 (e.g., read-only, systenm,
hidden); and (9) File Priority 92 (explained more fully

hereinbelow) .

WO 95/01599 | ~ PCT/US94/07561

10

15

20

25

30

9

The operation of the Distributed Storage Manager
program 24 may be illustrated by way of the flow charts
depicted in FIGS. 5a through 51. For explanation
purposes, the Distributed Storage Manager program 24 is
divided into several distinct functions which will be
discussed in turn. Those of ordinary skill in the art
will recognize, however, that each of the distinct
functions operates in cooperation with the other
functions to form a unitary computer program. Those of
ordinary skill in the art will also recognize that the
following discussion illustrates the operation of the
Distributed Storage Manager program 24 on a single
local computer 20, although it should be understood
that the Distributed Storage Manager program 24
operates in the same fashion on each local computer 20
on the networked computer system 10. The Distributed
Storage Manager program 24 can either be executed on
user demand or can be set to execute periodically on a
user-defined schedule.

1. Identification of Binary Objects to be Backed Up
In the flow chart of FIG. 5a, execution of the

Distributed Storage Manager program 24 begins at step
100 where the Backup Queue Database 26 is built by
creating a Backup Queue Record 75 for each File
Identification Record 34 found in File Database 25. In
this way, a list of files that were backed up during
the previous backup cycle is established so that it can
be determined which files need to be backed up during
the current backup cycle. To create each Backup Queue
Record 75, the Backup Instance Record 42 representing
the most recent backup of the file represented by each
File Identification Record 34 is located. This
determination is made by examining the Backup Cycle
Identifier 46 in each Backup Instance Record 42. The

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

10

Backup Cycle Identifier 46 may represent either a date
(month/day/year) or numerical value assigned to a
particular backup cycle. The Backup Queue Record 75 is
comprised of certain of the data fields of both the
File Identification Record 34 and the Backup Instance
Record 42. During the process of creating each Backup
Queue Record 75, the File Status field 82 is set to
"DELETED". However, if the Delete Date field 56 of the
most recent Backup Instance Record 42 associated with
the File Identification Record 34 currently being
processed is non-zero, indicating that the file has
been previously deleted, then no Backup Queue Record 75
is created for that File Identification Record 34. If
the backup that is currently being processed for the
local computer 20 is not a full backup (i.e., all files
on all disk drives 19 on the local computer 20), then
the Distributed Storage Manager program 24 will only
create Backup Queue Records 75 for those files that
match the backup specifications. For example, if only
those files that have a file extension of ".EXE" are to
be backed up, then only File Identification Records 34
that correspond to ".EXE" files will be processed.
Program control then continues with step 102 where
the Distributed Storage Manager program 24 of the
present invention scans all disk drives 19 on the local
computer 20 that are to be backed up. This operation
consists of scanning the directory hierarchy on each
disk drive 19 on the local computer 20 and returning to
the Distributed Storage Manager program 24 certain file
block information for each of the directory files and
regular files that are stored on the disk drives 19 to
be backed up. A typical computer operating system
maintains a file block for each file stored on the
system which includes information such as file
location, file type, user-assigned file name, file

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

11

size, creation date and time, modify date and time,
access date and time and file attributes. This
operation may be controlled by some parameters that
indicate which drives, directories and files are to be
backed up during a backup operation. However, the
default operation is to back up all files on all disk
drives 19 on the local computer 20. Program control
then continues with step 103 where the Distributed
Storage Manager program 24 determines whether the file
block information for an additional file has been
located on the disk drives 19. If an additional file
has been located, program control continues with step
104. 1If an additional file has not been located,
program control continues with step 116.

In step 104, the Distributed Storage Manager
program 24 determines whether a Backup Queue Record 75
exists for the located file by comparing the file’s
file block information to the information stored in
Backup Queue Database 26. If such a Backup Queue
Record 75 does not exist (i.e., this is the first time
this file will be backed up), program control continues
with step 106 where a Backup Queue Record 75 for the
file is created using the information contained within
the file’s file block. The File Status field 82 for
the newly created Backup Qﬁeue Record 75 is set to
"NEW". Program control then continues with step 108
where a user-defined priority is assigned to the file
and stored in the File Priority field 92 of the Backup
Queue Record 75. This user-defined priority may be
assigned to the file by methods that are well-known to
those of ordinary skill in the art. The use of the
File Priority field 92 by the Distributed Storage
Manager program 24 is discussed in more detail
hereinbelow. Program control is then returned to step
102.

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

12

If the Distributed Storage Manager program 24
determines, in step 104, that a Backup Queue Record 75
exists in the Backup Queue Database 26 for the located
file, program control continues with step 110 where it
is determined whether any change has been made to the
file. This determination is made by comparing the
information in the file’s file block with the
information stored in the file’s Backup Queue Record
75. If any of the values have changed, program control
continues with step 112 where File Status field 82 is
set to "MODIFIED" and the fields in the Backup Queue
Record 75 are updated from the file’s file block
information. Program control then continues with step
108 where a user-defined priority is assigned to the
file and stored in File Priority field 92; program
control is then returned to step 102. If the
determination is made in step 110 that no change has
been made to the file, then, in step 114, the Backup
Queue Record 75 is deleted from the Backup Queue
Database 26 since the file does not need to be backed
up. Following step 114, program control is returned to
step 102.

If the Distributed Storage Manager program 24
determines, in step 103, that an additional file has
not been located, program control continues with step
116. In step 116, the Distributed Storage Manager
program 24 reads each Backup Queue Record 75 in Backup
Queue Database 26, one at a time. The Backup Queue
Records 75 in Backup Queue Database 26 represent all of
the files that must be backed up by the Distributed
Storage Manager program 24 during the present backup
cycle. Program control continues with step 117 where
the Distributed Storage Manager program 24 determines
whether a next Backup Queue Record 75 has been located
in Backup Queue Database 26. If a next Backup Queue

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

13

Record 75 has been located, program control continues
with step 118; otherwise, program control continues
with step 119, where the routine illustrated by the
flow chart of FIG. 5a is terminated. 1In step 118, the
Distributed Storage Manager program 24 determines
whether the File Status field 82 in the Backup Queue
Record 75 currently being processed is set to
"DELETED". If the File Status field 82 is set to
"DELETED", program control continues with step 120
where the Delete Date field 56 in the most recent
Backup Instance Record 42 associated with the file
identified by the Backup Queue Record 75 currently
being processed is set to the current date. A list of
all Binary Object Identification Records 58 associated
with the Backup Instance Record 42 for the file
identified by the Backup Queue Record 75 currently
being processed is placed in a delete queue (not shown)
that will be used by Distributed Storage Manager
program 24 to delete all Binary Object Identification
Records 58 for binary objects that have been deleted
from the disk drives 19 of local computer 20. Program
control then continues with step 122 where the Backup
Queue Record 75 currently being processed is deleted
from the Backup Queue Database 26. Program control is
then returned to step 116.

‘ If the Distributed Storage Manager program 24
determines, in step 118, that the File Status field 82
of the Backup Queue Record 75 currently being processed
is not set to "DELETED", program control continues with
step 124 where the Distributed Storage Manager program
24 determines whether the File Status field 82 of the
Backup Queue Record 75 currently being processed is set
to "NEW". If the File Status field 82 is set to "NEW",
program control continues with step 126 where a File
Identification Record 34 is created in File Database 25

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

14

using the information stored in the Backup Queue Record
75 currently being processed. Program control then
continues with step 130. If the Distributed Storage
Manager program 24 determines, in step 124, that the
File Status field 82 of the Backup Queue Record 75
currently being processed is not set to "NEW" (i.e.,
the file has been modified since the last backup
cycle), program control continues with step 128 where
the File Identification Record 34 associated with the
file identified by the Backup Queue Record 75 currently
being processed is located in the File Database 25.
Program control then continues with step 130. 1In step
130, the Distributed Storage Manager program 24 creates
a new Backup Instance Record 42 in the File Database 25
for the file identified by the Backup Queue Record 75
currently being processed. The Backup Instance Record
42 is created using information stored in the
associated File Identification Record 34 and the Backup
Queue Record 75 currently béing processed. The Backup
Cycle Identifier 46 is set to indicate that the file is
to be backed up during the current backup cycle. The
Delete Date field 56 is initialized to "zero". The
Insert Date field 57 is set to the current date.

Program control then continues with step 132 where
the Distributed Storage Manager program 24 separates
the file identified by the Backup Queue Record 75
currently being processed into its component data
streams. Each data stream is then processed
individually. Those of ordinary skill in the art will
recognize that these data streams may represent regular
data, extended attribute data, access control list
data, etc. Program control continues with step 134
where the Distributed Storage Manager program 24
determines whether each of the data streams currently
being processed is larger than the maximum binary

WO 95/01599 PCT/US94/07561

10

15

20

25

30

35

15

object size (currently one (1) megabyte). If the data
stream is larger than one (1) megabyte, program control
continues with step 136 where the data stream currently
being processed is segmented into multiple binary
objects smaller in size than one (1) megabyte. Either
following step 136 or, if the determination is made in
step 134 that the data stream currently being processed
is not larger than one (1) megabyte (and, thus, the
data stream is represented by a single binary object),
program control continues with step 138.

In step 138, a Binary Object Identification Record
58 is created in File Database 25 for each of the
binary objects currently being processed. Each of
these Binary Object Identification Records 58 are
associated with the Backup Instance Record 42 created
in step 130. The Binary Object Identifier 74 portion
of each Binary Object Identification Record 58 is
comprised of the Binary Object Size field 64, the
Binary Object CRC32 field 66, the Binary Object LRC
field 68 and the Binary Object Hash field 70. Each of
the fields of the Binary Object Identifier 74 may be
four (4) bytes in length and is calculated from the
contents of each binary object. The Binary Object Size
field 64 may be set equal to the byte-size of the
binary object. The Binary Object CRC32 field 66 may be
set equal to the standard 32-bit Cyclical Redundancy
Check number calculated against the contents of the
binary object taken one (1) byte (8 bits) at a time.
Those of ordinary skill in the art will readily
recognize the manner in which the Cyclical Redundancy
Check number is calculated. The Binary Object LRC
field 68 may be set equal to the standard Longitudinal
Redundancy Check number calculated against the contents
of the binary object taken four (4) bytes (32 bits) at
a time using the following algorithm:

WO 95/01599 PCT/US94/07561

10

15

20

25

30

16

BINARY OBJECT LRC = (initialized value)
for each double word (32 bits) of the binary object
data:

LRC = LRC (XOR) double word of binary object data
end loop
The Binary Object Hash field 70 is calculated against
the contents of the binary object taken one (1) word

(16 bits) at a time using the following algorithm:

HASH = (initialized wvalue)
for each word (16 bits) of the binary object:
rotate current HASH value by 5 bits
HASH = HASH + 1
HASH = HASH + (current word (16 bits) of binary
object)
end loop

Since the Binary Object Identifier 74 is used to
uniquely identify a particular binary object, it is
important that the possibility of two different binary
objects being assigned the same Binary Object
Identifier 74 be very small. This is the reason for
implementing the Binary Object Identifier 74 using 128
bits and four separate calculations. Although a Binary
Object Identifier 74 may be calculated in various ways,
the key notion is that the Binary Object Identifier is
calculated from the contents of the data instead of
from an external and arbitrary source. By
incorporating the Binary Object Size field 64 within
the Binary Object Identifier.74, only binary objects
that are exactly the same size can generate duplicate

Binary Object Identifiers 74. Further, the

WO 95/01599 PCT/US94/07561

10

15

20

25

17

calculations used to determine the Binary Object CRC32
field 66, the Binary Object LRC field 68 and the Binary
Object Hash field 70 are relatively independent of each
other. Using the calculations set forth above, the
probability that the Distributed Storage Manager
program 24 will generate the same Binary Object
Identifier 74 for two different binary objects is
extremely low. Those of ordinary skill in the art will
recognize that there exist many different ways of
establishing the Binary Object Identifier 74 (e.g.,
establishing a Binary Object Identifier 74 of a
different length or utilizing different calculations)
and that the procedure set forth above is only one way
of establishing the Binary Object Identifier 74. The
critical feature to be recognized in creating a Binary
Object Identifier 74 is that the identifier should be
based on the contents of the binary object so that the
Binary Object Identifier 74 changes when the contents
of the binary object changes. 1In this way, duplicate
binary objects, even if resident on different types of
computers in a heterogeneous network, can be recognized
from their identical Binary Object Identifiers 74.

Program control then continues with step 140 where
the Distributed Storage Manager program 24 identifies
which binary objects must be backed up during the
current backup cycle. If the File Status field 82 of

the Backup Queue Record 75 currently being processed is’

WO 95/01599 PCT/US94/07561

10

15

20

25

18
set to "NEW", then all binary objects associated with
the file identified by the Backup Queue Record 75
currently being processed must be backed up during the
current backup cycle. If the File Status field 82 is
set to "MODIFIED", then only those binary objects
associated with the file that have changed must be
backed up. Those binary objects that have changed are
identified by comparing the Binary Object Identifiers
74 calculated in step 138 with the corresponding Binary
Object Identifiers 74 associated with the next most
recent Backup Instance Record 42 for the file
identified by the Backup Queue Record 75 currently
being processed. The Binary Object Identifiers 74
calculated in step 138 are compared against their
counterparts in the File Database 25 (e.g., the Binary
Object Identifier 74 (as calculated in step 138) that
identifies the first binary object in the file (as
determined by the Binary Object Stream Type field 62
and the Binary Object Offset field 72) is compared to
the Binary Object Identifier 74 (associated with the
next most recent Backup Instance Record 42) for the
first binary object in the file). This procedure
allows the Distributed Storage Manager program 24 to
determine which parts of a file have changed and only
back up the changed data instead of backing up all of

the data associated with a file when only a small

WO 95/01599 PCT/US94/07561

10

15

20

25

19
portion of the file has been modified. Program control

is then returned to step 116.

2. Concurrent Onsite/Offsite Backup

The Distributed Storage Manager program 24
performs two concurrent backup operations. In most
cases, the Distributed Storage Manager program 24
stores a compressed copy of every binary object it
would need to restore every disk drive 19 on every
local computer 20 somewhere on the local area netwérk
16 other than on the local computer 20 on which it
normally resides. At the same time, the Distributed
Storage Manager program 24 transmits every new or
changed binary object to the remote backup file server
12. Binary objects that are available in compressed
form on the local area network 16 can be restored very
quickly while the much greater storage capacity on the
remote backup file server 12 ensures that at least one
copy of every binary object is stored and that a
disaster that destroys an entire site would not destroy
all copies of that site’s data.

The Concurrent Onsite/Offsite Backup routine
begins at step 200 of the flow chart illustrated in
FIG. 5b where the Distributed Storage Manager program
24 compiles a list of those binary objects that are to
be backed up during the current backup cycle. Those

binary objects which must be backed up during the

WO 95/01599 PCT/US94/07561

10

15

20

25

20
current backup cycle are identified in step 140 of the
flow chart of FIG. 5a. Those of ordinary skill in the
art will recognize, however, that the Concurrent
Onsite/Offsite Backup routine may be performed
independently of the routine illustrated in FIG. 5a.
Program control then continues with step 202 where the
Distributed Storage Manager program 24 identifies
whether there are any additional binary objects to be
processed. If no additional binary objects are to be
processed, program control is transferred to step 204
where the Concurrent Onsite/Offsite Backup routine is
terminated. Otherwise, program control continues with
step 206 where the binary object currently being
processed is compressed and stored in a compressed
storage file 32 (FIG. 2) on one of the disk drives 19
on a local computer 20 on the local area network 16
other than the local computer 20 on which the binary
object is currently stored. The compressed storage
file 32 is used to allow the Distributed Storage
Manager program 24 to pack several smaller compressed
binary objects into a larger unit for storage. This is
required to reduce the number of files that the
Distributed Storage Manager program 24 must manage and
to ensure that the Distributed Storage Manager program
24 does not create many "small" files since most file
systems allocate some minimum amount of space to store

a file even if the actual file contains less data than

WO 95/01599 PCT/US94/07561

10

15

20

25

21

the allocated .space. The purpose behind storing the
backup copy of a binary object on a disk drive 19 on a
different local computer 20 is to ensure that if the
first disk drive 19 or local computer 20 fails, the
backup copies of the binary objects are not lost along
with the original copies of the binary objects.

Program control then continues with step 208 where
each compressed storage file 32, when it reaches a .
maximum manageable size (e.g., two (2) megabytes), is
transmitted to the remote backup file server 12 (FIG.
1) over wide area network 14 for long-term storage and
retrieval. Upon arrival of the compressed storage file
32 at the remote backup file server 12, software
resident on the remote backup file server 12 routes the
compressed storage file 32 for ultimate storage to
magnetic tape or other low cost storage media. The
backup copy of a binary object which is maintained in
the compressed storage file 32 on one of the disk
drives 19 on one of the local computers 20 is only the
most recent version of each binary object that is
backed up while the backup copy of the binary object
stored on the remote backup file server 12 is kept
until it is no longer needed. Since most restores of
files on a local area network 16 consist of requests to
restore the most recent backup version of a file, the
local copies of binary objects serve to handle very

fast restores for most restore requests that occur on

WO 95/01599 | PCT/US94/07561

10

15

20

25

22
the local area network 16. If the local backup copy of
a file does not exist or a prior version of a file is
required, it must be restored from the remote backup
file server 12. Program control then continues with
step 210 where the Distributed Storage Manager program
24 determines whether sufficient space is available in
the space allocated for compressed storage files 32 on
the disk drives 19 on local computers 20 for storage of
the binary object currently being processed. If
sufficient space is available, program control is
returned to step 200. Otherwise, the binary object
currently being processed is deleted from the' disk
drive 19 on which it was stored after transmission to
the remote backup file server 12 has been completed.

Program control is then returned to step 200.

3. File Prioritization

The file prioritization process performed by the
Distributed Manager Storage program 24 is handled by
four interrelated routines of that program: (1)
Backup/Restore Routine; (2) Compression Routine; (3)
Local Storage Routine; and (4) Resource Allocation
Routine. Each routine will be described in turn. 1In
the following discussion, when one of the four routines
is discussed, it should be understood that it is the
Distributed Storage Manager program 24 that is

executing the functions of that routine. The

WO 95/01599 PCT/US94/07561

10

15

20

25

23
Backup/Restore Routine, the Local Storage Routine and
the Compression Routine may be executed on each of the
local computers 20 on the networked computer system 10
while the Resource Allocation Routine is executed on
only one of the local computers 20 on the networked
computer system 10. This execution scheme permits the
resources of any available local computer 20 on any of
the local area networks 16 to be utilized according to
its availability. Furthermore, more than one local
computer 20 may be utilized ﬁo complete any high-
priority tasks required to be completed within a
specified time frame. An advantage of the process of
prioritization of files is that it allows the
Distributed Storage Manager program 24 to effectively
deal with a situation where local storage and wide area
network transmission resources are limited. The
Distributed Storage Manager program 24 is also able to
keep track of data which is not stored locally or
transmitted to the remote backup file server 12 in any
given backup cycle and then attempt to resume these
processes during the next backup cycle.

The Backup/Restore Routine is illustrated in the
flow chart shown in FIG. 5¢. In stép 300, the
Distributed Storage Manager program 24 initiates the
Backup/Restore Routine by locating the highest priority
binary object scheduled for backup on the local

computer 20 on which the Backup/Restore Routine is

WO 95/01599 PCT/US94/07561

24

executing. The identities of the binary objects to be
backed up and their respective priorities were
determined by the Distributed Storage Manager program
24 in the flow chart of FIG. 5a. Those of ordinary

5 skill in the art will recognize, however, that the file
prioritization routines of the Distributed Storage
Manager program 24 may be utilized independently of the
process illustrated in the flow chart of FIG. 5a.
Program control then continues with step 302 where the

10 Backup/Restore Routine of the Distributed Storage
Manager program 24 determines whether a binary object
to be backed up has been located. If not, program
control continues with step 304 where the
Backup/Restore Routine is terminated. Otherwise,

15 program control continues with step 306 where the
Backup/Restore Routine of the Distributed Storage
Manager program 24 sends a message to the Resource
Allocation Routine indicating the priority of the
highest priority binary object that the Backup/Restore

20 Routine has located. Program control then continues
with step 308 where the Backup/Restore Routine waits
for a message from the Resource Allocation Routine
indicating which Compression Routine is available to
compress and store the highest priority binary object

25 1located by the Backup/Restore Routine. In this way,
the Distributed Storage Manager program 24 is able to

perform not only local computer 20 based file

WO 95/01599 PCT/US94/07561

10

15

20

25

25
prioritization but also networked computer system 10
based file prioritization. This is accomplished by
having the Resource Allocation Routine examine the
priority of the highest priority binary object located
by each Backup/Restore Routine and then allocating
compression resources to the Backup/Restore Routine
which has the highest priority binary object to
compress.

Program control continues with step 310 where the
Backup/Restore Routine receives a message from the
Resource Allocation Routine indicating that a
Compression Routine is available for binary object
compression. The Backup/Restore Routine then sends a
list of up to forty (40) binary objects or up to one
(1) megabyte of uncompressed binary objects to the
Compression Routine starting with the highest priority
binary object that the Backup/Restore routine has
identified for backup. The reason to limit the number
or size of binary objects that are sent to a
Compression Routine is to allow the Compression Routine
to work for a limited amount of time on the binary
objects for one Backup/Restore Routine before becoming
available to work on another Backup/Restore Routine’s
binary objects.

The Compression Routine performed by the
Distributed Storage Manager program 24 is illustrated

in the flow chart depicted in FIG. 5d. Program control

WO 95/01599 PCT/US94/07561

10

15

20

25

26
begins at step 312 where the Compression Routine of the
Distributed Storage Manager program 24 sends a message
to the Resource Allocation routine indicating that the
Compression Routine is available to compress binary
objects. Program control then continues with step 314
where the Compression Routine waits for a compress
message from a Backup/Restore Routine indicating which
binary objects are to be compressed. The compress
message includes the File Name 40 from Identification
Record 34, the Binary Object Stream Type field 62 from
the Binary Object Identification Record 58 and the
Binary Object Offset field 72 from the Binary Object
Identification Record 58 for each binary object to be
compressed. The binary objects are placed in a
compression queue (not shown) for processing by the
Compression Routine. Program control then continues
with step 316 where the Compression Routine sends a
message to the Resource Allocation Routine to determine
which Local Storage Routine has space available for
storage of compressed binary objects. Program control
then continues with step 318 where the Compression
Routine requests allocation of a compressed storage
file 32 from the Local Storage Routine that has
indicated availability of storage space. Program
control continues with step 320 where the binary object
is compressed and stored in the allocated compressed

storage file 32. Program control then continues with

WO 95/01599 PCT/US94/07561

10

15

20

25

27
step 322 where the Compression Routine determines
whether there are more binary objects in the compress
queue. If there are no more binary objects present in
the compress queue, program control returns to step
312. If more binary objects are present, program
control continues with step 324 where the Compression
Routine determines whether the allocated compressed
storage file 32 is full. 1If not, program control is
returned to step 320. Otherwise, program control is
returned to step 316 where the Compression Routine
sends a message to the Resource Allocation Routine to
determine which Local Storage Routine has space
available for storage of compressed binary objects.

The Local Storage Routine executed by the
Distributed Storage Manager program 24 is illustrated
in the flow chart depicted in FIG. 5e. The Local
Storage Routine is responsible for managing storage
file space on a particular local computer 20. Program
control beings at step 326 where the Local Storage
Routine of Distributed Storage Manager program 24 sends
a message to the Resource Allocation Routine indicating
the amount of storage space it has available for
allocation of compressed storage files 32. The Local
Storage Routine determines the amount of space it has
available for allocation of compressed storage files 32
by determining the total amount of free space on its

disk drives 19 and then determining how must space must

WO 95/01599 PCT/US94/07561

28
be left as "free space". The amount of required "free
space" is user-specified. Program control continues
with step 328 where the Local Storage Routine waits for
a request from a Compression Routine for allocation of
5 a compressed storage file 32. Upon receipt of such a
request, program control continues with step 330 where
the requested compressed storage file 32 (e.g., two (2)
megabytes in size) is allocated. The Local Storage
Routine then returns a message to the requesting
10 Compression Routine indicating the name and location of
the compressed storage file 32 that has been allocated.
Program control is then returned to step 326.
The Resource Allocation Routine performed by the
Distributed Storage Manager program 24 of the present
15 invention is depicted in the flow chart of FIG. 5f.
The Resource Allocation Routine is a process that
responds to messages from other routines of the
Distributed Storage Manager program 24 and allocates
resources between resource requesters and resource
20 providers. Program control begins with step 332 where
the Resource Allocation Routine executed by the
Distributed Storage Manager program 24 waits for a
message from a Distributed Storage Manager program 24
routine. When a message is received, program control
25 continues with step 334 where the Resource Allocation
Routine determines whether the message is from a

Backup/Restore Routine transmitting information

WO 95/01599 PCT/US94/07561

10

15

20

25

29 '

relating to its highest priority binary object for
compression. If such a message is received, program
control continues with step 336 where the Resource
Allocation Routine stores this information in an
internal table containing Backup/Restore Routine status
information. The Resource Allocation Routine then
scans this status information table to ascertain which
Backup/Restore Routine has the highest p:iority binary
object for storage. Program control then continues
with step 338 where the Resource Allocation Routine
determines whether any Compression Routine is available
to process the highest priority binary object. If no
Compression Routine is available for processing,
program control is returned to step 332. If an
available Compression Routine is located, program
control continues with step 340 where the Resource
Allocation Routine transmits a message to the
requesting Backup/Restore Routine indicating which
Compression Routine is available to compress the binary
object. In addition, the Resource Allocation Routine
marks the Compression Routine as "working" in an
internal table containing Compression Routine
information. Program control is then returned to step
332.

If the Resource Allocation Routine determines, in
step 334, that the received message is not from a

Backup/Restore Routine, program control continues with

WO 95/01599 PCT/US94/07561

10

15

20

25

30
step 342 where the Resource Allocation Routine
determines whether the received message is from a
Compression Routine indicating that the transmitting
Compression Routine is available for processing. If
the received message is from a Compression Routine,
program control continues with step 344 where the
Resource Allocation Routine marks the transmitting
Compression Routine as "available" in its internal
table containing Compression Routine information.
Program control then continues with step 336.

If the Resource Allocation Routine determines, in
step 342, that the received message has not been
transmitted from a Compression Routine indicating its
availability for processing, program control continues
with step 346 where the Resource Allocation Routine
determines whether the received message ‘is from a Local
Storage Routine indicating the amount of storage space
that the Local Storage Routine has available. If the
received message is from a Local Storage Routine,
Program control continues with step 348 where the
Resource Allocation Routine locates the transmitting
Local Storage Routine in an internal table containing
Local Storage Routine information and saves the storage
space information transmitted by the Local Storage
Routine. Program control then continues with step 354.
If the Resource Allocation Routine determines, in step

346, that the received message is not from a Local

WO 95/01599 PCT/US94/07561

10

15

20

25

31
Storage Routine, program control continues with step
350 where the Resource Allocation Routine determines
whether the received message is from a Compression
Routine requesting a compressed storage file 32. 1If
the Resource Allocation Routine determines that such a
message was received, program control continues with
step 352 where the identity of the requesting
Compression Routine is added to a "space request list".
Program control then continues with step 354. If the
Resource Allocation Routine determines, in step 350,
that the received méssage is not from a Compression
Routine requesting a compressed storage file 32,
program control is returned to step 332.

In step 354, the Resource Allocation Routine
determines whether any Compression Routines are waiting
for allocation of a compressed storage file 32 by
examining the "space request list". If no such
Compression Routines are in the "space request list",
program control is returned to step 332. If the
identity of such a Compression Routine is found in the
"space request list", program control continues with
step 356 where the Resource Allocation Routine
determines whether any of the Local Storage Processors
has any available space by examining the information in
its internal table containing Local Storage Routine
information. When a Compression Routine requests a

compressed storage file 32, the Compression Routine

WO 95/01599 PCT/US94/07561

10

15

20

25

32
identifies the name of the local computer 20 on which
the Backup/Restore Routine is executing and on whose
behalf it is compressing binary objects. This allows
the Compression Routine to request a compressed storage
file 32 on a local computer 20 other than the local
computer 20 on which the binary object to be stored
resides. Otherwise, the backup copy of the binary
object may be stored on the same local computer 20 as
the original binary object whereby a disk drive failure
would result in losing both the original and backup
copies. The Resource Allocation Routine uses the
information supplied by the Compression Routine to
ensure that the requested compressed storage file 32 is
allocated on a local computer 20 other than the local
computer 20 from which the binary object originated.
If available storage space is located, program control
continues with step 358 where the Resource Allocation
Routine transmits a message to the next Compression
Routine in the "space request list" indicating which
Local Storage Routine has allocated an available
compressed storage file 32. Program control is then
returned to step 354.

If the Resource Allocation Routine determines, in
step 356, that no storage space is available, program
control continues with step 360 where the Resource
Allocation Routine determines whether there are any

compressed storage files 32 that are maintained by any

WO 95/01599 PCT/US94/07561

10

15

20

25

33
of the Local Storage Routines which have a lower
priority that the binary object currently being
processed. If so, program control continues with step
362 where a message is transmitted to the Local Storage
Routines instructing the Local Storage Routines to
delete some of the low-priority compressed storage
files 32 to make room for higher priority binary
objects. After these lower-priority compressed storage
files 32 are deleted by the Local Storage Routines, the
Locél Storage Routines will transmit new status
messages to the Resource Allocation Routine. Program
control is then returned to step 332. If no lower-
priority compressed storage files 32 are located in
step 360, program control continues with step 364 where
the Resource Allocation Routine transmits a message to
the Local Storage Routines with instructions that from
that time forward, any allocated compressed storage
files 32 are to be deleted after the contents of the
compressed storage files 32 have been successfully
transmitted to the remote backup file server 12 for
long-term storage. Program control is then returned to

step 332.

4., Granularization of Files
The most important class of "large" files on
computer systems such as networked computer system 10

is databases. Typically, on a given day, only a small

WO 95/01599 PCT/US94/07561

10

15

20

25

34

percentage of the data in a large database is changed
by the users of that database. However, it is likely
that some data will be changed in each one of the (1)
megabyte binary object segments that are created in
step 136 of the flow chart depicted in FIG. 5a. As a
result, in most cases, the entire "large" database file
would have to be backed up to the remote backup file
server 12. However, the Distributed Storage Manager
program 24 of the present invention utilizes a
technique of subdividing large database files into
"granules" and then tracks changes from the previous
backup copy at the "granule" level. The "granule" size
utilized by the Distributed Storage Manager program 24
may be one (1) kilobyte although those of ordinary
skill in the art will recognize that any "granule" size
that produces the most efficient results (in terms of
processing time and amount of data that must be backed
up) may be utilized. This technique of subdividing
files into "granules" is only used to reduce the amount
of data that must be transmitted to the remote backup
file server 12 and is not utilized in making backup
copies of binary objects for storage on local computers
20.

The operation of the Distributed Storage Manager
program 24 in subdividing files into "granules" is
illustrated in the flow chart depicted in FIG. 5g.

This "granularization" procedure is performed for

WO 95/01599 | PCT/US94/07561

10

15

20

25

35
"large" files following step 136 of the flow chart of
FIG. 5a. Program control begins at step 400 where the
Distributed Storage Manager program 24 identifies
whether the binary object currently being processed is
a segment of a "large" database-like file. Program
control then continues with step 402 where the
Distributed Storage Manager program 24 determines
whether this is the first time that the binary object
currently being processed is being backed up using the
"granularization" technique. If so, program control
continues with step 404 where the Distributed Storage
Manager program 24 creates a "shadow file" which
contains a "contents identifier" for each "granule" in
the binary object currently being processed. Each
"contents identifier" is composed of a standard 32-bit
Cyclical Redundancy Check number which is calculated
against the contents of the "granule" and a 32-bit hash
number which is calculated against the contents of the
"granule" in the same manner described in relation to
step 138 of the flow chart depicted in FIG. 5a. Those
of ordinary skill in the art will readily recognize the
manner in which the Cyclical Redundancy Check number is
calculated. Each time that the binary object is to be
backed up, the Distributed Storage Manager program 24
can calculate the "contents identifier" for each
"granule" in the binary object and then compare it to

the "contents identifier" of the "granule" the last

WO 95/01599 PCT/US94/07561

10

15

20

25

36
time the binary object was backed up and determine if
the "granule" has changed. This allows the Distributed
Storage Manager program 24 to determine what data
within a binary object has changed and only back up the
changed data instead of the entire binary object.
Program control then continues with step 406 where the
Distributed Storage Manager program 24 calculates a
"change identifier" for each "granule" of the binary
object and stores it in the "shadow file" for that
binary object. Program control then continues with
step 408 where the binary object is compressed into a
compressed storage file 32 which becomes the most
recent complete copy of the binary object for later
reconstitution of the binary object as is discussed
more fully hereinbelow. The contents of the compressed
storage file 32 is then transmitted to the remote
backup file server 12 for long-term storage and
retrieval. Program control is then returned to step
400.

If the Distributed Storage Manager program 24
determines, in step 402, that this is not the first
time that the binary object currently being processed
is being backed up using the "granularization"
technique, program control continues with step 410
where the Distributed Storage Manager program 24
calculates the "contents identifier" for each

"granule". Program control continues with step 412

WO 95/01599 ~ PCT/US94/07561

10

15

20

25

37
where each newly-calculated "contents identifier" is
compared to the corresponding "contents identifier" for:
the "granule" in the "shadow file". If the two values
are equal, program control continues with step 414
where the Distributed Storage Manager program 24
determines whether the last "granule" of the binary
object has been processed. If so, program control is
returned to step 400; otherwise, program control
continues at step 410. If the "contents identifiers"
are not found to be equal in step 412, the "granulé"
has changed and program control continues with step 416
where the "shadow file" is updated with the newly-
calculated "contents identifier" for the "granule".
Program control then continues with step 418 where the
changed "granule" is compressed into a compressed
storage file 32 using a special format that identifies
the "granule". All changed "granules" for the "data
stream" currently being processed are packed together
in the same compressed storage file 32. The contents
of the compressed storage file 32 is then transmitted
to the remote backup file server 12 for long-term
storage and retrieval. 1If the Distributed Storage
Manager program 24 determines that a large percentage
of the "granules" in the binary object have changed
(e.g., 80%), then the entire binary object is backed up

to the remote backup file server 12.

WO 95/01599 PCT/US94/07561

10

15

20

25

38

The operation of the Distributed Storage Manager
program 24 in reconstituting, on a local computer 20, a
binary object that has been transmitted to the remote
backup file server 12 using the "granularization"
technique illustrated in FIG. 5g is illustrated in the
flow chart depicted in FIG. 5h. Program control begins
at step 420 where the Distributed Storage Manager
program 24 creates a work area on the remote backup
file server 12 that is equal in size to the total
uncompressed size of the binary object that is to be
reconstituted. Program control continues with step 422
where the most recent complete copy of the binary
object to be reconstituted is located on the remote
backup file server 12 and is decompressed into the work
area. Program control then continues with step 424
where the Distributed Storage Manager program 24
creates a bitmap with one bit representing each granule
of the binary object to be reconstituted. Initially,
all bits in this bitmap are set to zero (0). Each bit
in the bitmap is used to indicate whether the granule
associated with that bit has been restored to the most
recent complete copy of the binary object. Program
control then continues with step 426 where the
Distributed Storage Manager program 24 locates the most
recent "granularized" copy of the binary object that
was stored on the remote backup file server 12. Each

time that step 426 is executed, the next most recent

WO 95/01599 PCT/US94/07561

10

15

20

25

39
"granularized" copy of the binary object is located.
This process continues until all bits in the bitmap are
set to one (1) or until there are no more
"granularized" copies of the binary object that are
newer than the most recent complete copy of the binary
object. At that point, the binary object will have
been reconstituted and will be ready to be restored to
the local computer 20. Following step 426, program
control continues with step 428 where the Distributed
Storage Manager program 24 determines whether another
"granularized" copy of the binary object has been
located. 1If so, program control continues with step
430 where the Distributed Storage Manager program 24
obtains the list of "granules" in the "granularized"
copy of the binary object just located. If another
"granularized" copy of the binary object is not located
in step 428, program control continues with step 438
where the reconstituted binary object is restored to
the local computer 20. Following step 430, program
control continues with step 432 where, starting with
the first "granule" in the "granularized" copy of the
binary object, the Distributed Storage Manager program
24 determines whether the bit for this "granule" in the
bit map is set to zero (0). If the bit is set to one
(1), a more recent copy of the "granule" has already
been decompressed and copied into the work érea. If

the bit is set to zero (0), program control continues

WO 95/01599 " PCT/US94/07561

40
with step 434 where the "granule" is decompressed and
copied into the work area at the correct location for
that "granule". After copying the "granule" to the
work area, the Distributed Storage Manager program 24
5 sets the bit within the bitmap for the "granule" to one
(1) . If the Distributed Storage Manager program 24
determines, in step 432, that the bit is not set to
zero (0), program control continues with step 440 where
the Distributed Storage Manager program 24 determines
10 whether there are any more '"granules" to be proceésed
in the current set of "granules". If so, program
control is returned to step 432; otherwise, program
control is transferred to step 426. Following step
434, program control continues with step 436 where the
15 Distributed Storage Manager program 24 determines
whether ‘'all bits in the bitmap are now set to one (1).
If so, program control continues with step 438 where
the reconstituted binary object is restored to the
local computer 20. If the Distributed Storage Manager
20 program 24 determines, in step 436, that all bits in
the bitmap are not set to one (1), program control
continues with step 440.
The technique of "granularizing" "large" files
also becomes useful when a current version of a file
25 (comprised of current versions of binary objects) must
be restored to a previous version of that file

(comprised of previous versions of binary objects);

WO 95/01599 PCT/US94/07561

10

15

20

25

41
Each binary object comprising the current version of
the file can be restored to the binary object
comprising the previous version of the file by
restoring and updating only those "granules" of the
current version of the binary objects that are
different between the current and previous versions of
the binary objects. This technique is illustrated in
the flow chart depicted in FIG. 5i. Program control
begins at step 442 where the Distributed Storage
Manager program 24 obtains from the user the identities
of the current and previous versions of the file
(comprised of binary objects) which needs to be
restored. Program control continues with step 443
where the Distributed Storage Manager program 24
compiles a list of all binary objects comprising the
current version of the user-specified file. This
information is obtained from File Database 25. Program
control then continues with step 444 where the
Distributed Storage Manager program 24 calculates
"contents identifiers" for each "granule" within the
current version of each binary object as it exists on
the local computer 20. Program control then continues
with step 446 where the Distributed/Storage Manager
program 448 transmits an "update request" to the remote
backup file server 12 which includes the Binary Object
Identification Record 58 for the previous version of

each binary object as well as the list of "contents

WO 95/01599 PCT/US94/07561

10

15

20

25

42
identifiers" calculated in step 444. Program control
continues with step 448 where the Distributed Storage
Manager program 24 reconstitutes each previous version
of the binary objects according to the technique
illustrated in the flow chart depicted in FIG. 5h.
Program control then continues with step 450 where the
Distributed Storage Manager program 24, for each binary
object, compares the "contents identifier" of the next
"granule" in the work area of remote backup file server
12 against the corresponding "contents identifier"
calculated in step 444. Program control continues with
step 452 where the Distributed Storage Manager program
24 determines whether the "contents identifiers" match.
If so, program éontrol is returned to step 450 since
this "granule" is the same on the local computer 20 and
on the remote backup file server 12. If the
Distributed Storage Manager program 24 determines, in
step 452, that the "contents identifiers" do not match,
program control continues with step 454 where the
Distributed Storage Manager program 24 transmits the
"granule" to the local computer 20. Program control
then continues with step 456 where the "granule"
received by the local computer 20 is written directly
to the current version of the binary object at the
appropriate location. Program control then continues
with step 458 where the Distributed Storage Manager

program 24 determines whether there are any more

WO 95/01599 PCT/US94/07561

10

15

20

25

43
"granules" to be examined for the binary object
currently being processed. If so, program control is
returned to step 450; otherwise the file restore
routine is terminated at step 460. After all
"granules" are received from the remote backup file
server 12, the binary object has been restored to the

state of the previous version.

5. Auditing and Reporting

The Distributed Storage Manager program 24 is able
to perform self-audits on a periodic basis to ensure
that the binary objects that have been backed up can be
restored. To perform an audit, the Distributed Storage
Manager program 24 executes the steps illustrated in
the flow chart of FIG. 5j. Program control begins at
step 500 where the Distributed Storage Manager program
24 initiates a restore of a randomly selected binary
object identified by a Binary Object Identification
Record 58 stored in File Database 25. Program control
continues with step 502 where the selected binary
object is restored from either a compressed storage
file 32 residing on one of the disk drives 19 of one of
the local computers 20 or from the remote backup file
server 12. Program control then continues with step
504 where, as the binary object is being restored, a
Binary Object Identifier 74 is calculated from the

binary object instead of writing the binary object to

WO 95/01599 PCT/US94/07561

10

15

20

25

44
one of the disk drives 19 of one of the local computers
20. Program control then continues with step 506 where
the Distributed Storage Manager program 24 compares the
Binary Object Identifier 74 calculated in step 504 to
the original Binary Object Identifier 74 stored as part
of the randomly selected Binary Object Identification
Record 58. If the values are equal, program control
continues with step 508 where the Distributed Storage
Manager program 24 logs a successful audit restore.‘ If
the values are not equal, program control continues
with step 510 where the Distributed Storage Manager
program 24 generates an event indicating an audit

failure.

6. Virtual Restore

The disk drives 19 associated with local computers
20 may have a very large storage capacity and may
require a significant amount of time to be restored,
especially if most or all of the data must be
transmitted from the remote backup file server 12. To
reduce the amount of time that a local computer 20 is
"offline" during a full disk drive 19 restore, the
Distributed Storage Manager program 24 employs a
technique which allows a disk drive 19 associated with
a local computer 20 to be only partially restored
before being put back "online" for access by local

computer 20. The user specifies to the Distributed

WO 95/01599 PCT/US94/07561

10

15

20

25

45
Storage Manager program 24 that only those files that
have been accessed in the last <n> days, <n> weeks or
<n> months should be restored to the disk drive 19
before the disk drive 19 is returned to the "online"
state. Alternately, the user may specify that only
files that are stored "locally" in compressed storage
files 32 should be restored and that no files stored on
the remote backup file server 12 should be restored
before the disk drive 19 is returned to the "online"
state. The overall result is a minimization of restore
time in the event of disk drive 19 faiiure. This
"virtual restore" technique generally works quite well
since users who will begin accessing data on a
particular disk drive 19 after it is put back "online"
will most likely only be accessing data that had been
"recently" accessed before failure of the disk drive
19.

The "virtual restore" process is illustrated in
the flow chart depicted in FIG. 5k. Program control
begins at step 600 where the Distributed Storage
Manager program 24 obtains, from the user, the last

access date that defines which files must be restored

, before the disk drive 19 can be returned to the

"online" condition. Any files that were last accessed
on or after this date will be restored before the disk
drive 19 is placed "online". The specification of this

date may be accomplished in any of the following ways:

WO 95/01599 PCT/US94/07561

10

15

20

25

46
(1) actual date; (2) "within the last <n> days"; (3)
"within the last <n> weeks"; or (4) "within the last
<n> months". Alternately, the user may specify that
only files that are currently backed up in compressed
storage files 32 are to be restored as opposed to files
stored on remote backup file server 12. Program
control continues with step 602 where the Distributed
Storage Manager Program 24 locates the most recent
version of the File Database 25 for the disk drive 19
to be restored if the File Database 25 does not already
exist on the disk drive 19. Program control then
continues with step 604 where the next File
Identification Record 34 in File Database 25 is read.
Program control continues with step 606 where the
Distributed Storage Manager program 24 determines
whether an additional File Identification Record 34 to
be processed has been located in File Database 25. If
not, program control continues with step 608 where the
Distributed Storage Manager program 24 notifies the
local computer 20 that the restored disk drive 19 may
be placed "online" and terminates the virtual restore
process. If another File Identification Record 34 has
been located for processing, program control continues
with step 610 where the Distributed Storage Manager
program 24 locates the most recent Backup Instance
Record 42 associated with the File Identification

Record 34 currently being processed. 1In step 612, the

WO 95/01599 ~ PCT/US94/07561

10

15

20

25

47
Distributed Storage Manager program 24 determines
whether the Last Access Date/Time field 52 in the
Backup Instance Record 52 indicates that the file has
been accessed since the user-specified last access date
(step 600). If the file has been accessed on or since
the user-specified last access date, program control
continues with step 614 where the Distributed Storage
Manager program 24 initiates the restoration of this
file and sets the Migration Status field 41 in the File
Identification Record 34 currently being processed.to
"NORMAL". Program control is then returned to step
604. If the Distributed Storage Manager program 24
determines, in step 612, that the file has not been
accessed on or since the user-specified last access
date, program control continues with step 616 where the
Distributed Storage Manager program 24 sets the
Migration Status field 41 in the File Identification
Record 34 currently being processed to "MIGRATED". 1In
this case, the file does not need to be restored.
Program control is then returned to step 604.

Another feature of the virtual restore process is
the ability to utilize the Migration Status field 41 in
File Identification Record 34 for the performance of
space management. If a particular file has not been
accessed on or since a user-specified last access date,
the file can be backed up to the remote backup file

server 12 and then deleted from the disk drives 19

WO 95/01599

10

15

20

25

PCT/US94/07561

48

associated with local computers 20. The Migration

Status field 41 is then set to fMIGRATED". If a

migrated file

is later needed by a user, the file can

be restored from the remote backup file server 12.

7. Backup File Retention
The Distributed Storage Manager program 24

implements a backup file retention scheme wherein a

retention pattern is maintained for each individual

file that indicates which backup versions of a file are

to be saved.

as:

keep the last
keep the last
keep the last
keep the last
AND

keep the last

By specifying
backup copies
the backup of

backed up for

A retention pattern for a file is defined

"d" daily backup copies of the file AND
"w" weekly backup copies of the file AND
"m" monthly backup copies of the file AND
"g" quarterly backup copies of the file

"y" yearly backup copies of the file.

the retention pattern in this way, all
of a file that are needed to represent
the file as it existed at the time it was

the last "d" days, the last "w" weeks,

the last "m" months, the last "g" quarters and the last

"y" years are

may mean that

saved. However, by way of example, this

only one backup copy of the file is saved

to represent all "d" days (in the case where the file

has not changed in the last "d" days), or this may mean

WO 95/01599 PCT/US94/07561

10

15

20

25

49
that the last "d" daily backup copies of the file must
be saved to represent the file as it existed for the
last "d" daily backup cycles. The same principle is
utilized for weekly, monthly, quarterly and yearly
copies.

The backup file retention scheme utilized by the
Distributed Storage Manager program 24 provides several
unique benefits. First, this technique prevents
undetected virus or application program damage to a
file from destroying all good backup copies of a file.
If a file is damaged and this condition is not noticed
for several days, then a scheme which only maintains
the last "n" versions of a file may result in the
situation where an "undamaged" backup copy of the file
is not available. The backup file retention scheme of
the present invention allows backup copies of files to
be kept that represent the file as it existed at
various times during the past several days, weeks,
months or even years. Second, the file retention
scheme utilized by the Distributed Storage Manager
program 24 eliminates the need for most archives. Most
archives are designed to take a snapshot of a group of
files as of a certain date, such as at the end of each
month. The Distributed Storage Manager program’s use
of retention patterns eliminates the need for users to

take periodic snapshots of their data using a special

WO 95/01599 PCT/US94/07561

10

15

20

25

50
archive, since the Distributed Storage Manager program
24 handles this automatically.

In order for the Distributed Storage Manager
program 24 to implement the backup file retention
scheme, each file stored on the local computers 20 must
be associated with a specific retention pattern. The
Management Class field 43 in the File Identification
Record 34 of File Database 25 specifies a management
class for each file. 1In turn, each management class is
associated with a specific file retention pattern. In
this way, a specific retention pattern is associated
with each file. Those of ordinary skill in the art
will recognize that other methods of assigning a
specific file retention pattern to a file may also be
utilized.

The operation of the backup file retention scheme
utilized by the Distributed Storage Manager program 24
is illustrated in the flow chart of FIG. 51. Program
control begins at step 700 where the Distributed
Storage Manager program 24 locates each File
Identification Record 34 in the File Database 25.
Program control continues at step 702 where the
Distributed Storage Manager program 24 determines the
required file retention pattern by examining the
Management Class field 43 in the File Identification
Record 34 currently being processed and then creates a

"retention working list". The "retention working list"

WO 95/01599 PCT/US94/07561

10

15

20

25

51
is a list of entries that specify the starting and
ending dates for each backup copy that should be
retained based upon the specified retention pattern.
For example, if the user has specified that the last
"d" daily backup copies must be retained, then the
"retention working list" will contain "d" entries with
the "start date" equal to the "end date" for each entry
and the dates for the first entries set equal to the
current date, the dates for the second entries set
equal to the previous day’s date, etc. For weekly
entries, the "retention working list" will contain
entries (one per weekly backup copy to be retained)
with the "start date" set to the date that specifies
the beginning of the prior week (based on the current
date) and the "end date" set to the date that specifies
the end of the prior week (based on the current date).
If "w" weeks are to be retained, then "w" weekly
"retention working list" entries will be created. At —
the end of this process, the "retention working list"
will contain a list of "windows" which indicates the
date ranges that a file must fall within in order to be
retained.

Program control continues with‘step 704 where the
Distributed Storage Manager program 24 locates the most
recent Backup Instance Record 42 associated with the
File Identification Record 34 currently being

processed. Program control continues with étep 706

WO 95/01599 PCT/US94/07561

10

15

20

25

52
where the Distributed Storage Manager program 24
compares the date stored in the Insert Date field 57 of
the Backup Instance Record 42 currently being processed
with any "unused" date ranges set forth in the
"retention working list" (if any of the "retention
working list" entries have already been satisfied, they
will be marked as "used" as is discussed more fully
below in relation to step 708). If the date stored in
the Insert Date field 57 does not fall within any of
the "unused" "retention working list" date ranges, then
program control continues with step 712 where the
Backup Instance Record 42 is deleted. Otherwise,
program control continues with step 708 where all
"retention working list" entries satisfied by the date
stored in the Insert Date Field 57 are marked as "used"
to indicate that a Backup Instance Record 42 has been
used to satisfy this entry. This ensures that an older
Backup Instance Record 42 is not used to satisfy a
retention pattern specification when a newer entry also
satisfies the condition. The Distributed Storage
Manager program 24 also checks to ensure that the file
associated with the Backup Instance Record 42 has not
been deleted prior to the "end date" of the window
satisfied by the date stored in Insert Date field 57.
This condition is satisfied by ensuring that the date
stored in the Delete Date field 56 of‘the Backup

Instance Record 42 currently being processed is after

WO 95/01599 PCT/US94/07561

10

15

20

53
the "end date" of the window satisfied by the date
stored in Insert Date field 57. If the file was
deleted prior to the "end date" of the window, then the
file cannot be used to satisfy the "retention working
list" entry since that file did not exist on the "end
date". Following either step 708 or step 712, program
control continues with step 710 where the Distributed
Storage Manager program 24 determines whether there are
any additional Backup Instance Records 42 associated
with the File Identification Record 34 currently being
processed. If so, program control is returned to step
704; otherwise, program control is returned to step
700.

While the present invention has been described in
connection with an exemplary embodiment thereof, it
will be understood that many modifications and
variations will be readily apparent to those of
ordinary skill in the art. This disclosure and the
following claims are intended to cover all such

modifications and variations.

WO 95/01599 PCT/US94/07561

10

15

20

25

54

We claim:

1. A system for distributed management of
the storage space and data on a networked computer
system wherein the networked computer system includes
at least two storage devices for storing data files
comprised of one or more binary objects, said
distributed storage management system comprising:

means for selectively copying the binary
objects stored on one of the storage devices to another
of the storage devices;

means for calculating a current value for a
binary object identifier for selected binary objects
stored on the storage devices wherein said calculation
of said binary object identifier is based upon the
actual data contents of the associated binary object;

means for storing said current value of said
binary object identifier as a previous value of said
binary object identifier;

means for comparing said current value of
said binary object identifier associated with a
particular binary object to one or more previous values
of said binary object identifier associated with that
particular binary object; and

means for commanding said means for
selectively copying binary objects in response to said

means for comparing.

WO 95/01599 PCT/US94/07561

10

15

20

55
2. The distributed storage management system
of claim 1 wherein said means for calculating said
current value for said binary object identifier
includes means for calculating a current value for a
binary object identifier comprised of at least two

independently determined values.

3. The distributed storage management system
of claim 1 wherein said means for calculating said
current value for said binary object identifier
includes means for calculating a 128-bit binary value

comprised of four 32-bit fields.

4. The distributed storage management system
of claim 3 wherein said four 32-bit fields include a
binary object identifier size field, a Cyclical
Redundancy Check number field calculated against the
contents of the binary object associated with said
current value of said binary object identifier, a
Longitudinal Redundancy Check number field calculated
against the contents of the binary object associated
with said current value of said binary object
identifier, and a binary object hash number field
calculated against the contents of the binary object
associated with said current value of said binary

object identifier.

WO 95/01599 PCT/US94/07561

10

15

20

56
5. The distributed storage management system
of claim 1 wherein the networked computer systemr
further includes at least two local computers each of
which is in communication with at least one of the
storage devices and wherein said distributed storage
management system is cooperatively executable on at

least two of the local computers.

6. The distributed storage management system.
of claim 1 wherein the networked computer system
further includes a remote backup file server and
wherein said means for selectively copying binary
objects selectively copies binary objects stored on one
of the storage devices to another of the storage
devices and to the remote backup file server unless
sufficient storage space is not available on another of
the storage devices in which case the binary objects

are copied only to the remote backup file server.

7. The distributed storage management system
of claim 1 further including means for auditing the
performance of said distributed storage management
system, said means for auditing including:

second means for commanding said means for
selectively copying binary objects to recopy a

previously copied binary object;

WO 95/01599 PCT/US94/07561

10

15

20

57 .

means for recalculating said binary object
identifier for the recopied binary object;

means for comparing said recalculated binary
object identifier to a previous value of said binary
object identifier for the recopied binary object; and

means for reporting a failure if said
recalculated binary object identifier is not identical
to said previous value of said binary object

identifier.

8. The distributed storage management system
of claim 1 wherein said means for commanding said means
for selectively copying includes means for commanding
said means for selectively copying to copy a particular
binary object only if said current value of said binary
object identifier for that particular binary object is
not identical to a previous value of said binary object
identifier for that particular binary object in

response to said means for comparing.

9. A system for distributed management of
the storage space and data on a networked computer
system wherein the networked computer system includes
at least two storage devices for storing data files
comprised of one or more binary objects, said

distributed storage management system comprising:

WO 95/01599 ~ PCT/US94/07561

10

15

20

25

58

means for segmenting the binary objects into
granules of data;

means for selectively copying said granules
stored on one of the storage devices to another of the
storage devices;

means for calculating a current value for a
granule identifier for selected granules stored on the
storage devices wherein said calculation of said
granule identifier is based upon the actual data
contents of said associated granule;

means for storing said current value of said
granule identifier as a previous value of said granule
identifier;

means for comparing said current value of
said granule identifier associated with a particular
granule to one or more previous values of said granule
identifier associated with said particular granule; and

means for commanding said means for
selectively copying granules in response to said means

for comparing.

10. The distributed storage management
system of claim 9 further including means for
reconstructing a binary object from a most recent
complete copy of the binary object, said means for

reconstructing including:

WO 95/01599 PCT/US94/07561

10

15

20

25

59
means for copying said granules copied by
said means for selectively copying granules to said
most recent complete copy of the binary object in order
from most-recently copied granule to least-recently
copied granule; and
means for generating a bitmap for controlling

said means for copying said copied granules.

11. The distributed storage management
system of claim 10 wherein said means for calculating
said current value for said granule identifier includgs
means for calculating a 32-bit Cyclical Redundancy
Check number calculated against the contents of said
granule associated with said present value of said
granule identifier and means for calculating a 32-bit
binary object hash number calculated against the
contents of said granule associated with said present

value of said granule identifier.

12. The distributed storage management
system of claim 10 further including means for
restoring a current version of a binary object to a
previous version of that binary object, said means for
restoring including:

means for calculating said granule identifier
for each of said granules in the current version of the

binary object;

WO 95/01599 ’ PCT/US94/07561

10

15

20

25

60

means for comparing said calculated granule
identifier to a previous value of said granule
identifier for each of said granules in the current
version of the binary object; and

means, responsive to said means for comparing
said granule identifiers, for replacing those granules
in the current version of the binary object for which

said granule identifiers are not identical.

13. A system for distributed management of
the storage space and data on a networked computer
system wherein the networked computer system includes
at least two storage devices for storing data files
comprised of one or more binary objects and at least
two local computers each of which is in communication
with at least one of the storage devices, said
distributed storage management system comprising:

means for selectively copying binary objects
stored on one of the storage devices to another of the
storage devices;

means for indicating which of said copied
binary objects must be copied to a particular storage
device in the event of a failure of that storage device
before that storage device is considered to be operable
by the local computer with which that storage device is

in communication; and

WO 95/01599 PCT/US94/07561

10

15

20

61
means for commanding said means for
selectively copying binary objects in response to said

means for indicating.

14. The distributed storage management
system of claim 13 wherein said means for indicating
includes means for specifying a last access date such
that only binary objects that have been accessed by the
networked computer system on or after said last access
date must be copied to a particular storage device
before that storage device is considered to be

operable.

15. A system for distributed management of
the storage space and data on a networked computer
systém wherein the networked computer system includes
at least two storage devices for storing data files
comprised of one or more binary objects, said
distributed storage management system comprising:

means for selectively copying the binary
objects stored on one of the storage devices to another
of the storage devices;

means for maintaining a file retention list
wherein said file retention list includes a file
retention pattern for each binary object copied by said

means for selectively copying binary objects;

WO 95/01599 PCT/US94/07561

62
means for determining which of the binary
objects copied by said means for selectively copying
binary objects match each of said file retention
patterns; and
5 means for deleting the binary objects from
the storage devices in response to said means for

determining.

16. The distributed storage management
system of claim 15 wherein said file retention pattern
10 includes daily, weekly, monthly, quarterly and yearly

retention patterns.

17. A system for distributed management of
the storage space and data on a networked computer
system wherein the networked computer system includes a

15 remote backup file server and at least two storage
devices for storing data files comprised of one or more
binary objects, said distributed storage management
system comprising:

means for selectively copying the binary

20 objects stored on one of the storage devices to another
of the storage devices or to the remote backup file
server; and

means for employing user-defined priorities
to determine which binary objects are to be copied to

25 another storage device and to determine a queuing

WO 95/01599 PCT/US94/07561

10

15

20

25

63
sequence for copying binary objects to the remote

backup file server.

18. A method for management of the storage
space and data on a computer system wherein the
computer system includes at least two storage areas for
storing data files comprised of one or more binary
objects, said method comprising the steps of:

gselectively copying the binary objects stored
in one of the storage areas to another of the storage
areas;

calculating a current value for a binary
object identifier for selected binary objects stored in
the storage areas wherein said calculation of said
binary object identifier is based upon the actual data
contents of the associated binary object;

storing said current value of said binary
object identifier as a previous value of said binary
object identifier;

comparing said current value of said binary
object identifier associated with a particular binary
object to one or more previous values of said binary
object identifier associated with that particular
binary object; and

controlling said step for selectively copying

binary objects in response to said step for comparing.

WO 95/01599 PCT/US94/07561

10

15

20

64
19. The method of claim 18 wherein said step
for calculating said current value for said binary
object identifier includes the step for calculating a
current value for a binary object identifier comprised

of at least two independently determined values.

20. The method of claim 18 wherein said step
for calculating said current value for said binary
object identifier includes the step for calculating a
current value for a binary object identifier utilizing
a 128-bit binary value comprised of four 32-bit fields
and wherein said four 32-bit fields include a binary
object identifier size field, a Cyclical Redundancy
Check number field calculated against the contents of
the binary object associated with said binary object
identifier, a Longitudinal Redundancy Check number
field calculated against the contents of the binary
object associated with said binary object identifier,
and a binary object hash number field calculated
against the contents of the binary object associated

with said binary object identifier.

WO 95/01599 PCT/US94/07561

| 1/14 |
18
User User 18
Work Station Work Station
17
10
17
Local 15
Compute /
20
/19 Wide
Disk Area Disk
Network
19
13
4

Remote 12
Backup

Fileserver

FIG. 1

SUBSTITUTE SHEET (RULE 25)

WO 95/01599 - PCT/US94/07561

2/14

32

Compressed Storage Files 30
Free Disk Space 28
19 Local Computer Data Files 26
Backup Queue Database 25
File Datab
Distributed Storage

Management Program — 22

Operating System Files

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 95/01599 PCT/US94/07561
3/14
25
Record Type 36
File File Location 38
Ident. File Name —40
Record Migration Status 41
34 Management Class ——43
Link To File Identification Record |——44
Backup Cycle Identifier 46
File Size —— 48
ﬁ%fakr?& Last Modified Date/Time | 50
Record Last Access Date/Time —352
42 File Attributes 54
Delete Date 56
Insert Date 57
Binary .
Object . ,

Ident. Link To Backup Instance Record |——60
Record Binary Object Stream Type 62
58 Binary Object Size —64

\ Binary Object CRC 32 66
Binary Object LRC —68
74 B@nary Obj:ect Hash 70
Binary Binary Object Of.fset —72
Object .
Identifier
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 95/01599 PCT/US94/07561

4/14

K Record Type L 0
File Location / 8
File Name / 80
%atfg?ep File Status 82
R?;‘;SOTd File Size v 8
Last Modified Date/Time / 8
26 Last Acess Date/Time / %
File Attributes / %0
9 File Priority 2

.

o

o

FIG. 4

SUBSTITUTE SHEET (RuLg 26)

WO 95/01599

Build
Backup
Queue
Database

Scan
Disk

PCT/US94/07561
/ 108
Create Assign
Backup User-
Queue Defined
Record Priority
/ 112

Update
Backup
Queue
Record
/1 14
Delete
Backup %
Read Queue
Backup Record
Queue)
Record Update Delete
Delete Backup
Queue
Queue Record
Create 122
File |—126
Identification
\ Record
Locate 124
128— File /138
Identification
Record . Create
Binary Object
Identification
Records
Create
Backup Identi
130 — Instance Bifl:ulyfy
Record Objects for
Backup
| Separate Segment Data , 140
File Into Stream Into
132—| Data / _ Multiple To Step 116
Streams Binary Objects

136

SUBSTITUTE SHEET (RULE 26y

WO 95/01599 PCT/US94/07561

Comopile list
Of Binary
Objects To
Be Backed U
e Backed Up ~00
206
Store /
Binary
Object
Y 212\
Transmit Delete Binary
Storage File Object From
To Remote Local
Backup Storage

Locate Highest
Priority Binary
Object
For Backup

— 300

Send Message

To Resource
Alloca_tion
Routine

306

FIG. 5C

310 308
/

Send List Of Wait For
Binary Message From
Objects Elelsou{_ce
ocation
For Backup Routine

SUBSTITUTE SHEET (RULE 25)

WO 95/01599

Send Message
To Resource

7/14

PCT/US94/07561

Allocation Routine

312

314

Wait For Compress /
Message From Backup/

Restore Routine

316

Send Message

To Resource
Allocation Routine

‘Request Allocation
Of Compressed
Storage File

\318

Filled

Allocated
Storage

\ 326

SUBSTITUTE SHEET (uie %)

Store
) <
Binary
320

Send Message Wait For Allocate
To Resource Allocation Compressed

Allocation St Fil
Routine Request e

\328
FIG. 5E

\330

WO 95/01599

Wait For
Message From
Prioritization

3/14

PCT/US94/07561

Routine

Mess-
age From Back-
up Restore

~ 332

Mess-
age From
Local Storage
Routine

age From
Compression
Routing

Compression
Routine
Available

Trasmit Mess-
age To Backup/
Restore
Routine

To
Compression
Routine

Save Storage ,Add Compres-
Y 348 :on Routi
Space sion Routine
. To Space
Information Request Li
Mark
C = . 344 35
omp.ressmn 354
Routine As
Available N_~"Compression
Routines
Waiting
Detrmine
Higest Prority, 358
Binary /
Object Send Message

362
/

Send Message
To Delete
Lower Priority
Storage Files

SUBSTITUTE SHEET (RULE 26)

Send Message
To Delete

Storage Files
After Transfer

WO 95/01599 PCT/US94/07561

Identity Whether / 400 9 /1 4
Binary Object Is
Segment Of
Database File
/404 /406 403\
Create Calculate Store
Shadow Contents Binary
File Identifiers Object

Calcualte
Contents
Identifiers
/416 /418
412
Contents Update Store
Identifiers Shadow
Equal File Granule
414
Last :
Granule
Processed _

SUBSTITUTE SHEET (RuLt 2%)

WO 95/01599

426

Create Work
Area On
Remote File
Server

N
420

Locate Most
Recent Complete
Copy Of
Binary Object

422

Create

Bitmap

Locate Most

Recent

(A—>{ Granularized

Copy Of

Binary Object

424

10/14

PCT/US94/07561

430

/

Obtain
List
of
Granules

Restore

Reconstituted

Binary
Object

SUBSTITUTE SHEET (RULE 26)

WO 95/01599

Obtain
Identity
Of File

/42

}

Compile List Of
Binary ObjectsIn |/
Previous Version

Of File

443

Calculate

Contents
Identifiers

/44

!

Transmit
Update
Request

/46

J

Binary
Object

Reconstitute

8 FIG. 51

452

Compare

Identifiers

Contents |

450
L/

Do
Contents
Identifiers
Match

11/14

}54

Transmit
Granules
To Local
Computer

PCT/US94/07561

E To Binary

/56
Write

Granule

Object

More
Granules

SUBSTITUTE SHEET (RULE 26)

WO 95/01599 PCT/US94/07561

12/14

/502 /500

Rost Initiate Restore
B?s ore Of Randomly
O:lan; Selected
yec Binary Object
Calculate /504
Binary Object
Identifier
510
506
Binary Generate
Object Identifiers>N Audit
Ideny Failure
Y
A FIG. 5]
% | 508
Successful /
Audit
Restore

SUBSTITUTE SHEET (RULE 26)

WO 95/01599

Obtain
Last Access
Date

Restore File
Database if

Necessary

Read File
Identification
Record

600

602
/

/604

13/14

FIG. 5K

Locate Most
Recent Backup
Instance Record

N

Set Migration|
Status To

616

Put
Disk Drive
Online

08

Initiate Restoration
Of File; Set

Migration Status
To "Normal"

614

"Migrated"

SUBSTITUTE SHEET (RULE 25)

PCT/US94/07561

WO 95/01599

Locate Each
File
Identification
Record

14/14

PCT/US94/07561

700

Create
Retention
Working
List

702

Y

Locate Most

Recent Backup |

Instance
Record

——704

FIG. 5L

708

Additional
Backup Instance

Records

Unused Date
Ranges

Mark Retention
Working List
Entries As
Used

71

(

Delete
Backup

Instance
Record

SUBSTITUTE SHEET (RULE 28)

INTERNATIONAL SEARCH REPORT

Intes .onal Application No

PCT/US 94/07561

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F11/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document, with indication, where appropriate, of the relevant passages

pages 471 - 479

copies'

472, left column, line 10

X THE 8TH INTERNATIONAL CONFERENCE ON 1
DISTRIBUTED COMPUTING SYSTEMS, 13 June 9,
1988, SAN JOSE, CALIFORNIA

DANIEL BARBARA ET AL. 'Exploiting
symmetries for low-cost comparison of file

see page 471, right column, line 29 - page

/-

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

® Special categories of cited documents :

"A° document defining the general state of the art which is not
considered to be of particular relevance

E" earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or

“T" later document published after the international filing date
or priority date and not in conflict with the ication but
cited to understand the principle or theory underlying the
invention

“X“ document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

other means ments, such combination being obvious to a person skilled
°P* document published prior to the international filing date but in the art.
later than the priority date claimed ‘&" document member of the same patent family

Date of the actual completion of the international search

12 October 1994

Date of mailing of the international search report

191094

Name and mailing address of the ISA
Buropean Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Corremans, G

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inte. .onal Application No

PCT/US 94/07561

C{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

COMPUTER TECHNOLOGY REVIEW,

vol.12, no.10, August 1992, LOS ANGELES US
pages 55 - 60

DANIEL MASTERS 'Distributed Network
Processing Speeds Up Network Backup'

see page 60, left column, line 18 - line

US,A,5 133 065 (PERSONAL COMPUTER
PERIPHERALS CORPORATION) 21 July 1992
see column 1, line 45 - line 54; claim 4

10

13-17

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inte .onal Application No

PCT/US 94/07561

Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-5133065 21-07-92 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

