wo 2012/112748 A1 I} 1] 001 0000 OO 0O A

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2012/112748 A1l

23 August 2012 (23.08.2012) WIPOIPCT
(51) International Patent Classification: (74) Agents: HENNESSEY, Gilbert H. et al.; Fish & Richard-
GO6F 11/14 (2006.01) GOGF 9/48 (2006.01) son P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-
(21) International Application Number: 1022 (US).
PCT/US2012/025388 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Aéj, BA, BB, BG, B}{, BR, BW, BY, BZ.
16 February 2012 (16.02.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/030,998 18 February 2011 (18.02.2011) Us OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(71) Applicant (for all designated States except US): AB INI- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
TIO TECHNOLOGY LLC [US/US]; 201 Spring Street, . L
Lexington, Massachusetts 02421 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(75) Inventors/Applicants (for US ornly): DOUROS, Bryan UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,

Phil [US/US]; 92 Lakeview Road, Framingham, Mas-
sachusetts 10701 (US). WHOLEY, Joseph Skeffington
III [US/US]; 11 Hillerest Road, Belmont, Massachusetts
02478 (US).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: RESTARTING PROCESSES

214
210 v
 _ e - %
A I S . / /200
III III ,II
/ / 202
[ri ’
I- """"""""" 7’ """""""" } 7! """""" 7{ """""" K """"""""
L -206 /208 ;212 /216 220
e v [e e -
| READ VALIDATE CHECK UPDATE CREATE
i ATM ACCOUNT BALANCE > BALANCE > ANSWER s
!
!
]
]
]
]
]

(57) Abstract: Techniques are disclosed that include a computer-implemented method, including storing information related to an
initial state (402) of a process upon being initialized, wherein execution of the process includes executing at least one execution
phase and upon completion of the executing of the execution phase storing information representative of an end state (404) of the
execution phase; aborting execution (506) of the process in response to a predetermined event; and resuming execution of the pro -
cess from one of the saved initial and end states (512) without needing to shut down the process.

WO 2012/112748 A1 WK 00T 0 T OO

Published:
— with international search report (Art. 21(3))

WO 2012/112748 PCT/US2012/025388

RESTARTING PROCESSES

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Application Serial No. 13/030,998, filed
on February 18, 2011, entitled “Restarting Processes”, the entire contents of which are

hereby incorporated by reference.

BACKGROUND

This description relates to restarting processes.

Computational speeds provided by single processor computers have advanced
tremendously over the past decades. However, many applications executed by such
processors may need computational capacities that exceed even the fastest single
processor computer. For example, in a transactional system, e.g., an airline reservation
system, multiple users may concurrently access computer resources. These users
typically expect low response times. A single process computer may not be able to keep
up with such demand. A variety of architectures such as parallel processing systems have
been developed to handle such applications to improve performance. In general, parallel
processing systems use multiple processors that may be located at a single site or
remotely distributed. Due to their processing capabilities, such parallel processing
systems have become relied upon for applications that process large volumes of data,
which in some cases can include essentially continuous and near real-time processing.
Such processing capabilities are expected to be robust and resistant to system failures,
1.e., fault tolerant. These capabilities are useful for all kinds and sizes of computer
networks ranging from large-scale Internet-based data processing to private networks and

communication systems (e.g., internal corporate “intranets”, etc.).
Y >)

SUMMARY
In one aspect, in general, a computer-implemented method includes storing
information related to an initial state of a process upon being initialized, wherein
execution of the process includes executing at least one execution phase and upon

completion of the executing of the execution phase storing information representative of

WO 2012/112748 PCT/US2012/025388

an end state of the execution phase; aborting execution of the process in response to a
predetermined event; and resuming execution of the process from one of the saved initial
and end states without needing to shut down the process.

Aspects can include one or more of the following.

The predetermined event can represent loss of connection to an external device.
The predetermined event represents an error with an external device. The execution of
the process can be resumed when the connection to the external device has been restored.
The execution of the process can be resumed when the error with the external device has
been cleared. The execution of the process can be resumed from an end state that is
stored prior to an execution phase in which the predetermined event occurred. The
execution of the process can be resumed from the initial state if the predetermined event
occurs during an execution phase substantially immediately after startup of the process.
The execution of an execution phase can include performing one or more processing
actions on a received stream of data to produce output data corresponding to the
execution phase.

The method can further include storing the output data corresponding to one or
more execution phases, and reproducing the output data when execution of the process is
resumed. The process may be part of a process stage and in communication through a
data path to a second, different process in the process stage. The method can further
include passing a checkpoint command message through each process in the process
stage; and at each process, saving new information related to an initial or end state upon
receiving the checkpoint command message, where the saving includes suspending
operation of the process and saving the new information to a storage areca. The computer-
implemented method can further include overwriting an old saved initial or end state with
the new initial or end state.

Each process may be in communication with a data queue for receiving and
queuing data for the process. The method can further include generating the checkpoint
command message in response to detecting a trigger event. The trigger event can include
information about a network event. The method can further include periodically

generating the checkpoint command message.

WO 2012/112748 PCT/US2012/025388

The method can further include generating the checkpoint command message in
response to an occurrence of selected data values within or derived from incoming data
records being processed. The method can further include generating an abort command
message in response to the predetermined event; passing the abort command message
through each process in the process stage; and on receiving the abort command message
at each process, aborting execution of the process and passing the abort command
message to a next process. The method can further include resuming execution of the
process from a selected one of the saved initial or end states based in part on information
contained in a resume processing message. The method can further include receiving the
abort command message during a first execution phase substantially immediately after
the process is initialized and information related to the initial state of the process has been
saved; and resuming execution of the process from the saved initial state without need to
shut down and restart the process.

In another aspect, in general, a computer-readable storage medium storing a
computer program includes instructions for causing a computing system to store
information related to an initial state of a process upon being initialized, wherein
execution of the process includes executing at least one execution phase and upon
completion of the executing of the execution phase storing information representative of
an end state of the execution phase; abort execution of the process in response to a
predetermined event; and resume execution of the process from one of the saved initial
and end states without needing to shut down the process.

In another aspect, in general, a computing system includes an input device or port
configured to receive and store information related to an initial state of a process upon
being initialized, wherein execution of the process includes executing at least one
execution phase and upon completion of the executing of the execution phase storing
information representative of an end state of the execution phase; and at least one
processor configured to: abort execution of the process in response to a predetermined
event, and resume execution of the process from one of the saved initial and end states
without needing to shut down the process.

In another aspect, a computing system includes means for storing information

related to an initial state of a process upon being initialized, wherein execution of the

WO 2012/112748 PCT/US2012/025388

process includes executing at least one execution phase and upon completion of the
executing of the execution phase storing information representative of an end state of the
execution phase; means for controlling execution of the process, the controlling including
causing the aborting of execution of the process in response to a predetermined event,
and resuming execution of the process from one of the saved initial and end states
without needing to shut down the process.

Aspects can include one or more of the following advantages.

Processes in multi-process processing systems can be executed in distinct
execution phases. In the event of a system failure, terminating and restarting a processing
system from the most recently complete checkpoint can consume an undue amount of
processing time and resources. After a processing system has terminated its activity in
response to the exception condition, the processing system may need to be manually
reinitialized by an information technology specialist experienced with such systems. This
can result in significant system downtime. In some examples, a separate process may
also be needed to detect the system failure and inform a specialist. As such, to improve
efficiency and reduce processing resource consumption, processes within the processing
system may be executed from their last recorded checkpoints instead of restarting the
entire system upon a failed connection to a process being restored. In one
implementation, rather than terminating and restarting the entire system, the individual
processes in the system may be informed to suspend processing until the failed
connection is restored.

Other features and advantages of the invention will become apparent from the
following description, and from the claims.

DESCRIPTION
FIG. 1 is a block diagram of a multi-process data processing system.
FIGS. 2 and 3 illustrate exemplary multi-process data processing systems.
FIG. 4 is flowchart illustrating an exemplary checkpointing process.
FIGS. 5 and 6 are flowcharts of exemplary recovery mechanisms.

Referring to FIG. 1, a data processing system 100 provides multiple processes

arranged in a streamlined manner for processing data. Within the exemplary system 100,

WO 2012/112748 PCT/US2012/025388

data is received from a data source 102 (e.g., an application being executed on a server
104 that functions as a Web server) and communicated to a multi-process data processing
module 106 being executed on a computer system 108 or executed in a distributed
manner (e.g., with two or more networked computer terminals). The data processing
module 106 monitors, controls, and performs the data processing aspects of the system
100. To provide such processing, the data processing module 106 includes one or more
queues 110, 112, 114 capable of storing data to be processed by one or more processes
116, 118. In this instance, as shown, data received from the data source 102 is stored in
an initial data queue 110 and periodically provided to the initial process 116. The process
116 processes the data (e.g., transforms, filters, confirms content, etc.) and provides the
processed data to one or more downstream data queues 112, 112". Subsequent processes
118, 118" may be provided data from the queues 112, 112° and perform other (or similar)
processing before in turn delivering results to other downstream data queues 114, 114",
The illustrated queue and process layout of data processing module 106 is one of many
possible processing schemes that may be utilized. For example, the data processing
module 106 may include additional processes (e.g., for parallel or serial execution) that
may be located upstream, downstream or independent of the shown processes. In some
examples, data from the last set of queues (e.g., queues 114 and 114”) may be output to a
destination application 120 (or multiple applications), such as a relational database
management system (RDBMS).

The processes included in the data processing module 106 may be in
communication with external devices and/or other processing systems (¢.g., a computer
system 122). For example, the processes may be in communication with a Java Message
Service (JMS) queue that provides messages to the processes from other systems. In
some cases, the processes in the data processing module 106 may be in communication
with one or more databases (e.g., located in the external system 122). For example, the
module 106 may perform updates to customers’ financial accounts in a bank database
based on information received from corresponding customer sessions at one or more
automated teller machines (ATM).

By way of example, FIG. 2 illustrates a processing system 200 having a remotely

executed processing module 202 (executed by an ATM 204) being used to provide data

WO 2012/112748 PCT/US2012/025388

for processing at a central location. In the illustrated example, an initial process, e.g., a
read ATM process 206 is capable of receiving customer account data (e.g., associated
with a transaction) from an ATM and passing the data to a validate account process 208
for authenticating the account details. In this instance, the validate account process 208
can verify a personal identification number (PIN) entered by the customer against a PIN
database 210. Once the customer’s identity has been authenticated, further data records
may be communicated downstream to a check balance process 212, which may
communicate with a second, different database 214, e.g., for checking the balance of the
identified customer account. After further transactions are completed, additional data
may be sent downstream to an update balance process 216 which may communicate with
a third database 218, e.g., for updating the balance information associated with the
customer account. A create answer process 220 may prepare an output summary of the
transactions, which may be provided to an output display process 222 (e.g., for displaying
on the ATM 204 to the customer). For system-level monitoring (e.g., system quality
assurance) or other applications, the databases 210, 214, and 218 may be in
communication with a master data server 224. In some implementations, the databases
may be executed, for example, by a standalone computer system 226.

Processes in such multi-process processing systems may be executed in distinct
execution phases. Execution of processes can includes execution of one or more tasks
within the processes in distinct execution phases. By segmenting execution into such
phases, the distinct execution phases may be terminated, ¢.g., by multiple logical
endpoints or breakpoints in data processing. Each execution phase may have one or more
processing actions to achieve the objectives of that execution phase. As an example, the
validate account process 208 may be executed in distinct execution phases in one or more
manners. For example, as a first execution phase, the validate account process 208 may
initially receive personal identification number (PIN) information from a customer. The
various processing actions in receiving the PIN information from the customer can
include, for example, displaying a prompt on the ATM display and running a routine to
verify data entry of the PIN information. In a next execution phase, the process 208 may
establish a connection to the database 210 and use the PIN information as a key to

identify the customer’s record. Once the process 208 has completed its transaction with

WO 2012/112748 PCT/US2012/025388

the customer’s record, the connection to the database 210 may be terminated. In a final
execution phase, the process 208 may generate results based on the foregoing
transactions. As such, each of these execution phases include distinct logical endpoints
(or processing breakpoint) at which the validate account process 208 may be temporarily
suspended and/or resumed.

In some situations, one or more events may occur that tend to affect the course of
normal system operation. Such events may be exceptions or errors raised by either
hardware or software modules included in the processing system. For example, hardware
exceptions or errors may include resets, interrupts or other signals from one or more
hardware units. Exceptions may also be generated by an arithmetic logic unit for
numerical errors such as divide by zero, overflow, instruction decoding errors, undefined
instructions, etc. Based upon the occurrence of one or more such events, it may be
necessary to temporarily halt operations of one or more of the databases for taking
corrective action (e.g., maintenance, switching-over to secondary system, etc.).

Other events that may call for halting of operations and corrective action may
include detecting the failure of one or more of the databases 210-224. Such failures can
occur for a variety of reasons. For example, there may be an error in memory allocation
or a conflict in writing to a memory space. There may also be an error in an underlying
data operation such as when a process attempts to withdraw funds from a depleted
account. In addition to events where there are temporary failures, there may also be
events that are triggered by operator intervention. In some implementations, the operator
may correct the situation that caused the failure or the system may, in time, correct the
situation. Examples of events can include, without limitation, a failure of one or more
devices connected to a network, a shut down of one or more devices or software services
for maintenance, a failure and switch over of a device or software service, an exhaustion
of resources such as storage space, an overload of processing units, a time-out of one or
more software services.

To detect and address such events, data processing systems may use one or more
techniques often referred to as checkpointing techniques to ensure minimum system
downtime in the event of a failure or when the system is taken offline for maintenance or

switch-over. A checkpointing technique generally involves storing details of a current

WO 2012/112748 PCT/US2012/025388

state of a process as a checkpoint record such that the process may use the stored
information to be later restarted from that state. For example, the validate account
process 204 may save its current state in a checkpoint record upon the completion of each
execution phases (prior to starting execution of the next execution phase or other
processing).

A checkpoint record may include various types of information such as process
values, information about successfully processed records and other details relevant to the
current execution phase of the process. For example, a checkpoint record can include
information about a current position in a data queue (e.g., data queue 112 of FIG. 1) from
which data is being processed. As such, after halting operations, processing may be
resumed from this queue position. Along these lines, after recovery from a system
failure, the process is able to restart from the stored intermediate checkpoint state rather
restart from an initial state.

As an example, if the PIN database 210 fails, the validate account process 208
may raise an exception to cause the entire processing system to terminate. Upon restart,
the processes (or a portion of the processes) in the processing system may continue
processing from their last checkpoint states. In this example, since the failure and restart
occurs at a point in time after the customer provided his PIN information, the PIN
information is restored to the process and does not need to be recollected from the
customer. As such, there may be no need to once again prompt the customer to provide
his PIN information.

In the event of a system failure, terminating and restarting a processing system
from the most recently complete checkpoint can consume an undue amount of processing
time and resources. After a processing system has terminated its activity in response to
the exception condition, the processing system may need to be manually reinitialized by
an information technology specialist experienced with such systems. This can result in
significant system downtime. In some examples, a separate process may need to be
designed to detect the system failure and inform a specialist. Examples of checkpointing
systems are described in U.S. Pat. No. 6,584,581 entitled “Continuous Flow
Checkpointing Data Processing”, U.S. Pat. No. 5,819,021, entitled “Overpartitioning

system and method for increasing checkpoints in component-based parallel applications,”

WO 2012/112748 PCT/US2012/025388

and U.S. Pat. No. 5,712,971, entitled "Methods and Systems for Reconstructing the State
of a Computation”, of which the contents of each are incorporated herein in their entirety.

To improve efficiency and reduce processing resource consumption, processes
within the processing system are executed from their last recorded checkpoints instead of
restarting the entire system upon a failed connection to a process being restored. In one
implementation, rather than terminating and restarting the entire system, the individual
processes in the system may be informed to suspend processing until the failed
connection is restored.

FIG. 3 shows a block diagram of a multi process system 300 that includes a data
source process 302, processes 304a-n, a data sink process 306, and a fault-tolerance
manager 308, which is in communication with each of the other processes (processes
302, 204a-n). In some implementations, the fault-tolerance manager 308 may be
executed as another process within the multi process system 300. In some situations, the
fault-tolerance manager 302 may be an application running on a separate computer
system (not shown) or implemented in a dedicated processor, such as the checkpoint
processor described in, for example, U.S. Pat. No. 6,584,581 entitled “Continuous Flow
Checkpointing Data Processing”, the contents of which are incorporated herein in their
entirety.

One or more techniques may be implemented to establish communication among
the processes 302-306 and the fault-tolerance manager 308. For example, individual
exception channels 310a-n may be used for communicating information about exception
conditions that may occur in the processes 302-306. The channels 310a-n can be part of
a wired, wireless or combination wired and wireless network system. The channels 310a-
n may be used by the processes 302-306 to communicate error information about the
processes 302-306 to the fault-tolerance manager 308. For example, if an external device
in communication with the process 304a should fail, the process 304a can immediately
raise an error flag and communicate the error to the fault-tolerance manager 308 over the
exception channel 310b.

In addition to exception channels 310a-n, the fault-tolerance manager 308 may
send command messages (¢.g., checkpoint command messages) to the processes 302-306

through the corresponding communication channels 312a-e. The communication

WO 2012/112748 PCT/US2012/025388

channels 312a-¢ are arranged to transmit command messages from the fault-tolerance
manager 308 sequentially to each of the processes 302-306. For example, a message
from the fault-tolerance manager 308 may be first communicated to the data source
process 302 and then serially passed through each of the processes 304a-n and the data
sink process 306 through the channels 312b-d. The data sink process 306 may use the
channel 312¢ to communicate command messages to the fault-tolerance manager 308.

To store respective checkpoint data associated with each of the processes 302,
304a-n, 306, a storage area (e.g., memory) may be assigned to each process. Each
process periodically suspends its current operation at the end of a distinct execution phase
and stores its checkpoint data in the associated storage area. For example, the data source
process 302 may periodically suspends its current operation at the end of distinct
execution phases in processing (such as logical breakpoints in the stream of incoming
data) and stores checkpoint information in the storage arca 312. In this manner, as cach
of the processes 302, 304-a-n, 306 are executed, corresponding storage areas 312, 314a-n,
and 316 periodically saves checkpoint data. The storage areas 312-316 may be
implemented with various types of storage techniques such as on non-volatile storage,
e.g., magnetic media, such as a hard disk drive. In some examples, a single storage arca
may be shared by two or more processes. The checkpoint data may include information
about current states and/or data associated with the processes 302-306 to allow for
reconstruction of those states at a later time.

In some examples, the data storage arcas 312-316 may also store the data queues
associated with the processes (e.g., queues 110, 112, and 114 of FIG. 1). For example,
the storage area 316 may include a queue for receiving processed data from process 304n
and from which data can be output or published (e.g., printed, or displayed).

The fault-tolerance manager 308 manages the checkpointing operation by
generating and sequentially passing checkpoint command messages through the
communication channels 312a-e to each process 302-306. The checkpoint command
messages pass through each process 302-306 so that the process may checkpoint its
current state upon receiving the message. As such, the checkpoint command message
travels to the data source process 302 and then sequentially passes through each process

304a-n and data sink process 306 before being returned to the fault-tolerance manager

-10-

WO 2012/112748 PCT/US2012/025388

308. This checkpointing operation may be automatically initiated at regular intervals.
For example, the fault-tolerance manager 308 may initiate checkpoint command
messages at a predetermined periodic rate, e.g., every five minutes. The periodic rate
may be set to a default value, or adjusted by a user.

One or more techniques may be implemented for initiating operations for storing
the checkpoint for processes included in system. For example, one or more external
triggers may initiate operations for storing checkpoint information. In one instance, a
network message may inform the fault-tolerant manager 308 of an impending network
shutdown and thus trigger a checkpointing operation. In some implementations, the
checkpointing operation may be triggered in response to values within or derived from
the data records being processed. For example, the processed data records may include
timestamps or breakpoint values that can be considered as logical points at which
checkpointing may occur.

Along with storing checkpoint information during periods in which data is being
processed by the system, information may be stored prior to processing data. In one
implementation, an initial checkpointing operation may be triggered upon the multi-
process system 300 being first initialized, e.g., during start-up. The fault-tolerance
manager 308 may pass an initial checkpoint command message through each of the
processes 302-306. In the example shown in FIG. 3, the initial checkpoint message is
first communicated to the data source process 302. The data source process 302
immediately checkpoints, ¢.g., stores data that represents its initial state to the associated
data storage space 312 and passes the initial checkpoint message downstream to the next
process 304a. This initial checkpoint state is referred to as checkpoint state zero.

Similarly, in a serial manner, each of the processes 304-306 may correspondingly
stores its initial state and associated data values to the appropriate storage arca as
checkpoint state zero. In examples, the initial state and associated data values can
include initial values of global variables, reference data information, and auditing
variables including initial values of counters.

After each of the processes 302-306 have stored their initial states, the initial
checkpoint command message is returned to the fault-tolerance manager 308 through the

channel 312¢. Based upon the message being returned to the fault-tolerance manager 308

-11-

WO 2012/112748 PCT/US2012/025388

after its round trip through the processes 302, 304a-n, 306, the fault-tolerance manager is
alerted that the processes 302-306 have completed checkpoint state zero. In some
implementations, while the downstream processes are saving their current states, the
source and other upstream processes may continue to receive data and perform other
functions without waiting for all processes to save their states.

Similarly, additional checkpointing may be performed for each distinct execution
phase of the processes 302-306. As such, along with storing data that represents the
initial checkpoint information, the fault-tolerance manager 308 may initiate the storage of
additional information, for example, which represents information associated with
subsequent checkpoint cycles (e.g., checkpoint states 1, 2, 3, ... n). To initiate storage of
subsequent checkpoint information, techniques such as propagating further checkpoint
command messages through the processes 302, 304a-n, 306 may be utilized. Upon
receipt of a checkpoint command message, the process 304a may either complete any
ongoing tasks or suspend any outstanding tasks. In some examples, the process 304a
may delete previously created checkpoint records stored in the data storage 314 and
reclaim the storage space. The process 304 can then create a new checkpoint record for
its current state and associated data. In some scenarios, earlier checkpoint records are
persistently stored in memory and not overwritten by new checkpoint records. Further
examples of information stored in checkpointing records are provided in U.S. Patent No.
6,584,581, the contents of which are incorporated herein in its entirety.

In some implementations, the process 304a may be in further communication with
an external database 318 (executed on computer system 320). Sometimes, the connection
to the database 318 may fail or the database 318 may be taken offline for maintenance.
The failure could be a hardware failure of the computer system 320 executing the
database 318. In such situations, the process 304a may raise an error flag over the
exception channel 310a to notify the fault-tolerance manager 308 of a loss of connection.

Upon receiving notification of the error, the fault-tolerance manager 308 may
generate and propagate an abort command message through the processes 302-306. The
abort command message is typically first communicated to the data source process 302
by the channel 312a, then through each of the processes 302-306 by channels 312b-d, and
finally back to the fault-tolerance manager 308 by channel 312¢. Upon receiving the

- 12-

WO 2012/112748 PCT/US2012/025388

abort command message, each of the processes 302-306 aborted its current activity with a
relatively small delay (if any) and flushes/discards any outstanding tasks or records that
may have been processed since the last checkpoint state. After a process has aborted
activity, it may pass the abort command message to the next downstream process. In this
manner, the abort command message propagates through to the sink process 306 before
being returned to the fault-tolerance manager 308. The fault-tolerance manager 308
waits until it receives the abort command message from the sink process 306, which
establishes that all of the processes 302-306 have aborted current processing tasks (e.g.,
are in a quiescent state).

In the scenario in which the database 318 has failed due to a hardware failure in
the computer system 320, the processes 302-306 are directed to abort their processing. In
some implementations, after the system has fully aborted its processing, the process 302
may wait for a specifiable amount of time, a time that should reflect the average amount
of time that it takes to correct the failure, and once again begin processing from the last
saved checkpoint state. In some implementations, the process 304a may periodically poll
the database 318 to check for its status (i.e., to check whether the database 312 is
operational). In some examples, the computer system 320 may be configured to
automatically notify the process 304a when the database 318 is restored to operational
state. When the connection with the database 318 is restored, the processing system 300
may once again begin processing from the last saved checkpoint state.

In this regard, the process 304a notifies the fault-tolerance manager 308 that the
connection has been restored. The fault-tolerance manager 308 determines the last
successfully completed checkpoint state for each of the processes 302-306, and sends a
resume processing message to each of the processes 302-306. As with the other
command messages, the resume processing message is propagated over the
communication channels 312a-¢ sequentially through each of the processes 302-306. The
resume processing message specifies the checkpoint state from which the processes 302-
306 are to resume processing.

In some instants, the fault-tolerance manager 308 may initiate additional
checkpointing operations while prior checkpointing operations are currently being

executed. For example, while process 304n is processing an arbitrary checkpoint state

- 13-

WO 2012/112748 PCT/US2012/025388

(e.g., checkpoint state N corresponding to checkpoint command message N), the fault-
tolerance manager 308 may begin a subsequent checkpoint state (e.g., checkpoint state
N+1) by generating and transmitting a subsequent checkpoint command message N+1 to
the source process 302. Along these lines, it is possible that as checkpoint command
message N is still traveling through the processes 302-306, a new subsequent checkpoint
command message N+1 is generated and passed through the processes 302-306. In this
manner, the fault-tolerance manager 308 can cause more frequent checkpointing of
process states without having to wait until previous checkpointing states are completed.

In some situations, it is possible that a system failure may occur while one or
more checkpoint command messages are in transit through the processes 302, 304a-n,
306. For example, consider a scenario in which the fault-tolerance manager 308 has
initiated checkpoint state N by generating checkpoint command message N. While the
checkpoint command message N is being processed by the processes 302-306, the
connection between one of the processes (e.g., process 304a) and an external system
(e.g., database 312) may fail. Upon being alerted to the situation, the fault-tolerance
manager 308 may respond by passing an abort command message through the processes
302-306. The abort command message may reach a process (e.g., process 304n) that is
still processing checkpoint state N (e.g., storing checkpoint information associated with
the checkpoint N). Based upon receipt of the abort command, the process 304n may take
one or more actions. For example, the process 304n may complete checkpoint state N
and abort all further processing. In another scenario, the process 304n may immediately
discard results associated with the current and subsequent states since a previous
checkpoint state N-1 and abort further processing. As a result, when the system 300
achieves quiescence, each of the processes 302-306 may be at different checkpoint states.
For example, all processes that are upstream from process 304n (e.g., the data sink
process 306) may have completed checkpoint state N, while all processes downstream
(e.g., process 304a and the data source process 302) from process 304n may have
completed only checkpoint state N-1.

When the system 300 is ready to resume processing, the fault-tolerance manager
308 transmits one or more resume processing message to each process over the

communication channels 312a-e. The resume processing message indicates to the

- 14-

WO 2012/112748 PCT/US2012/025388

processes the earliest, fully committed (or completed) checkpointed state (e.g.,
checkpoint state N-1) from which they are to execute. In examples, processes that may
have already completed checkpoint state N may simply reproduce the results from
checkpoint state N-1 to checkpoint state N. In this manner, the processes 302-306 may
avoid duplicating their earlier efforts. In examples, replaying the results from checkpoint
state N-1 to checkpoint state N involves reproducing the results of the earlier processing
actions that may have occurred between the two checkpoint states.

In examples, a system failure can occur substantially immediately after start-up.
In such situations, many of the processes 302-306 may have only completed checkpoint
state zero. These processes 302-306 can resume processing from checkpoint state zero
based on initialization data and start-up values stored in the corresponding checkpoint
records.

FIG. 4 is a flowchart depicting exemplary execution of a process (e.g., process
302 of FIG. 3) within a multi-process system. At start-up, the process immediately stores
its initial state to data storage as checkpoint state zero (Step 402). The process may then
be executed in distinct execution phases (e.g., execution phase 1, 2, ... N-1). At the
conclusion of each execution phase, the process may save its end state to data storage, for
example, the end state may be saved as a checkpoint state. For example, after a first
execution phase, the process may save the end state of the first execution phase as
checkpoint state 1 (Step 404). Similarly, after subsequent execution phases, the process
may save the end states of the execution phases as checkpoint states 2, ... N-1, and N
(Steps 406-410).

FIG. 5 is a flowchart depicting example steps executed in the event an external
system fails or is taken offline for maintenance. For example, the external system may be
a database (e.g., database 312 of FIG. 3) in communication with a process in a processing
system. When the external system is taken offline for maintenance, or fails, an error flag
may be raised by, for example, a process in communication with the failed external
system (Step 502). An abort command message may be generated and propagated
through the processes in response to the error flag (Step 504). The current activity of
cach of the processes is aborted when the process receives the abort command message

(Step 506). Also, any transactions performed since the last checkpoint state may be

- 15-

WO 2012/112748 PCT/US2012/025388

discarded by the processes. Further action is then aborted until the failed connection to
the external system is restored (Step 508). When the connection is restored, a resume
processing message is transmitted to each of the processes (Step 510). The resume
processing message indicates the checkpoint state from where the processes are to resume
processing. As such, each of the processes retrieves the relevant information regarding
the checkpoint state from their associate storage areas (Step 512).

FIG. 6 is a flowchart depicting example steps executed in storing and resuming
from checkpoints while executing a process. For example, upon initializing the process,
information relating to an initial state of the process is stored in an associated storage arca
(Step 602). The process is then executed in distinct execution phases. As such, at the
end of each execution phase, the process stores information representative of an end state
of the execution phase (Step 604). When a predetermined event occurs, ¢.g., loss of
connection to an external device (Step 608), execution of the process is aborted (Step
606). In the meantime, the process checks to see if the event that triggered the abortion
has cleared (e.g., restoration of connection to the external device). During this time, the
process is not shut down, but processing is aborted until the event is deemed cleared.
Execution of the process is resumed from the last saved initial or end state (Step 610).

The techniques described above can be implemented using software for execution
on a computer. For instance, the software forms procedures in one or more computer
programs that execute on one or more programmed or programmable computer systems
(which may be of various architectures such as distributed, client/server, or grid) each
including at least one processor, at least one data storage system (including volatile and
non-volatile memory and/or storage elements), at least one input device or port, and at
least one output device or port. The software may form one or more modules of a larger
program, for example, that provides other services related to the design and configuration
of dataflow graphs. The nodes and elements of the graph can be implemented as data
structures stored in a computer readable medium or other organized data conforming to a
data model stored in a data repository.

The software may be provided on a storage medium, such as a CD-ROM,
readable by a general or special purpose programmable computer or delivered (encoded

in a propagated signal) over a communication medium of a network to the computer

-16-

WO 2012/112748 PCT/US2012/025388

where it is executed. All of the functions may be performed on a special purpose
computer, or using special-purpose hardware, such as coprocessors. The software may
be implemented in a distributed manner in which different parts of the computation
specified by the software are performed by different computers. Each such computer
program is preferably stored on or downloaded to a storage media or device (e.g., solid
state memory or media, or magnetic or optical media) readable by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage media or device is read by the computer system to perform the procedures
described herein. The inventive system may also be considered to be implemented as a
computer-readable storage medium, configured with a computer program, where the
storage medium so configured causes a computer system to operate in a specific and
predefined manner to perform the functions described herein.

A number of embodiments of the invention have been described. Nevertheless, it
will be understood that various modifications may be made without departing from the
spirit and scope of the invention. For example, some of the steps described above may be
order independent, and thus can be performed in an order different from that described.

It is to be understood that the foregoing description is intended to illustrate and
not to limit the scope of the invention, which is defined by the scope of the appended
claims. For example, a number of the function steps described above may be performed
in a different order without substantially affecting overall processing. Other

embodiments are within the scope of the following claims.

-17-

WO 2012/112748 PCT/US2012/025388

CLAIMS

1. A computer-implemented method, including:

storing information related to an initial state of a process upon being initialized,
wherein execution of the process includes executing at least one execution phase and
upon completion of the executing of the execution phase storing information
representative of an end state of the execution phase;

aborting execution of the process in response to a predetermined event; and

resuming execution of the process from one of the saved initial and end states

without needing to shut down the process.

2. The computer-implemented method of claim 1 wherein the predetermined

event represents loss of connection to an external device.

3. The computer-implemented method of claim 1 wherein the predetermined

event represents an error with an external device.

4. The computer-implemented method of claim 2 wherein the execution of

the process is resumed when the connection to the external device has been restored.

5. The computer-implemented method of claim 3 wherein the execution of

the process is resumed when the error with the external device has been cleared.

6. The computer-implemented method of claim 1 wherein the execution of
the process is resumed from an end state that is stored prior to an execution phase in

which the predetermined event occurred.
7. The computer-implemented method of claim 1 wherein the execution of

the process is resumed from the initial state if the predetermined event occurs during an

execution phase substantially immediately after startup of the process.

- 18-

WO 2012/112748 PCT/US2012/025388

8. The computer-implemented method of claim 1 wherein execution of an
execution phase includes performing one or more processing actions on a received stream

of data to produce output data corresponding to the execution phase.

9. The computer-implemented method of claim 8, further including:
storing the output data corresponding to one or more execution phases, and

reproducing the output data when execution of the process is resumed.

10. The computer-implemented method of claim 1 wherein the process is part
of a process stage and in communication through a data path to a second, different

process in the process stage.

I1. The computer-implemented method of claim 10, further including:

passing a checkpoint command message through each process in the process
stage; and

at each process, saving new information related to an initial or end state upon
receiving the checkpoint command message, wherein the saving includes suspending

operation of the process and saving the new information to a storage area.

12. The computer-implemented method of claim 11, further including:

overwriting an old saved initial or end state with the new initial or end state.

13. The computer-implemented method of claim 11, wherein each process is

in communication with a data queue for receiving and queuing data for the process.
14. The computer-implemented method of claim 11, further including:

generating the checkpoint command message in response to detecting a trigger

cvent.

15. The computer-implemented method of claim 14 wherein the trigger event

includes information about a network event.

-19-

WO 2012/112748 PCT/US2012/025388

16. The computer-implemented method of claim 11, further including:

periodically generating the checkpoint command message.

17. The computer-implemented method of claim 11, further including:
generating the checkpoint command message in response to an occurrence of

selected data values within or derived from incoming data records being processed.

18. The computer-implemented method of claim 11 further including:

generating an abort command message in response to the predetermined event;

passing the abort command message through each process in the process stage;
and

on receiving the abort command message at each process, aborting execution of

the process and passing the abort command message to a next process.

19. The computer-implemented method of claim 1 further including:
resuming execution of the process from a selected one of the saved initial or end

states based in part on information contained in a resume processing message.

20. The computer-implemented method of claim 17 further including:

receiving the abort command message during a first execution phase substantially
immediately after the process is initialized and information related to the initial state of
the process has been saved; and

resuming execution of the process from the saved initial state without need to shut

down and restart the process.

21. A computer-readable storage medium storing a computer program
including instructions for causing a computing system to:
store information related to an initial state of a process upon being initialized,

wherein execution of the process includes executing at least one execution phase and

-20-

WO 2012/112748 PCT/US2012/025388

upon completion of the executing of the execution phase storing information
representative of an end state of the execution phase;
abort execution of the process in response to a predetermined event; and
resume execution of the process from one of the saved initial and end states

without needing to shut down the process.

22. A computing system, including:
an input device or port configured to receive and store information related to an
initial state of a process upon being initialized, wherein execution of the process includes
executing at least one execution phase and upon completion of the executing of the
execution phase storing information representative of an end state of the execution phase;
and
at least one processor configured to:
abort execution of the process in response to a predetermined event, and
resume execution of the process from one of the saved initial and end

states without needing to shut down the process.

23. A computing system, including:
means for storing information related to an initial state of a process upon being
initialized, wherein execution of the process includes executing at least one execution
phase and upon completion of the executing of the execution phase storing information
representative of an end state of the execution phase; and
means for controlling execution of the process, the controlling including:
aborting of execution of the process in response to a predetermined event,
and
resuming execution of the process from one of the saved initial and end

states without needing to shut down the process.

-21-

PCT/US2012/025388
1/6

WO 2012/112748

0cl
anano
NOILYDIddY $$300%d
NOILVNILS3A TVILINI TYLLINI

A
o:\

9Ll

N
&

i
I
I
I
I
I
I
I
I
I
I
I
I
I
v.ivd |
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AN _
W3LSAS N
e TYNYA1X3 /\/ \%@ 304N0S
00L g \/@ Aﬂ v1va -
44" ‘_ TIRNN

AN

PCT/US2012/025388
2/6

WO 2012/112748

¢ Ol

AV1dSId

dIMSNY
J1v3dO

JONV1Ivd
J1vddn

MO3HO

1NNOOJV
31LVAlvA

PCT/US2012/025388
3/6

WO 2012/112748

\\\wrm

uyle

~

9

0

€

uy0€

STAR
POLE

ocLe

80¢

_
Tl

d3OVNVYIN
JONVH3IT0L
-11Nv4

8l¢E

SS300dd
304dN0S
vivda

c0¢

ecle

dSvavlivda

WO 2012/112748

4/6

PCT/US2012/025388

PROCESS STARTUP
CHECKPOINT STATE
0 (ZERO)

402

l

EXECUTION
404 PHASE 1
CHECKPOINT STATE /
1
l EXECUTION
406 PHASE 2
CHECKPOINT STATE |/
2
[]
®
[J
\
408
CHECKPOINT STATE |/
N-1
l EXECUTION
PHASE N-1

CHECKPOINT STATE
N

410

/

FIG. 4

WO 2012/112748

5/6

PCT/US2012/025388

502

RAISE ERROR FLAG TO
INDICATE LOSS OF
CONNECTION

/

'

504

GENERATE AND
PROPAGATE ABORT
COMMAND MESSAGE

_/

l

506

TERMINATE ACTIVITY
OF EACH PROCESS

'

_/

WAIT UNTIL
CONNECTION IS
RESTORED

l

508

510

TRANSMIT RESUME
PROCESSING MESSAGE |

l

512

RETRIEVE STATE
INFORMATION FROM
STORAGE

FIG. 5

WO 2012/112748

6/6

602
STORE INFORMATION /

RELATED TO INITIAL
STATE OF PROCESS

l‘

STORE INFORMATION 604
RELATED TO END STATE |/
FOR EACH EXECUTION
PHASE OF PROCESS

606

NO

PREDETERMINED

EVENT OCCURRED?,

608

SUSPEND EXECUTION ‘/
OF THE PROCESS

l 610

RESUME EXECUTION /
OF THE PROCESS

FIG. 6

PCT/US2012/025388

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/025388

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOGFL1/14
ADD. GOGF9/48

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X R. BALDONI ET AL: "Characterization of
consistent global checkpoints in
large-scale distributed systems",
PROCEEDINGS OF THE FIFTH IEEE COMPUTER
SOCIETY WORKSHOP ON FUTURE TRENDS OF
DISTRIBUTED COMPUTING SYSTEMS,

1 January 1995 (1995-01-01), pages
314-323, XP55026754,

DOI: 10.1109/FTDCS.1995.525000

ISBN: 978-0-81-867125-8

page 314, right-hand column, line 21 -
page 318, right-hand column, line 22;

1-23

figures 1, 2

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 May 2012

Date of mailing of the international search report

22/05/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Michel, Thierry

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/025388

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

HIGAKI H ET AL: "Checkpoint and rollback
in asynchronous distributed systems",
INFOCOM '97. SIXTEENTH ANNUAL JOINT
CONFERENCE OF THE IEEE COMPUTER AN D
COMMUNICATIONS SOCIETIES. DRIVING THE
INFORMATION REVOLUTION., PROCE EDINGS IEEE
KOBE, JAPAN 7-11 APRIL 1997, LOS ALAMITOS,
CA, USA,IEEE COMPUT. SOC, US,

vol. 3, 7 April 1997 (1997-04-07), pages
998-1005, XP010251940,

DOI: 10.1109/INFCOM.1997.631114

ISBN: 978-0-8186-7780-9

page 999, right-hand column, line 1 - page
1002, Teft-hand column, line 25

YUQUN CHEN ET AL: "CLIP: A Checkpointing
Tool for Message Passing Parallel
Programs",

PROCEEDINGS OF THE 2ND ACM WORKSHOP ON
ROLE-BASED ACCESS CONTROL. RBAC '97.
FAIRFAX, VA, NOV. 6 - 7, 1997; [ACM
ROLE-BASED ACCESS CONTROL WORKSHOP], NEW
YORK, NY : ACM, US,

15 November 1997 (1997-11-15), pages
33-33, XP010893034,

ISBN: 978-0-89791-985-2

page 35, left-hand column, Tine 5 - page
39, right-hand column, line 24

Ferda Tartanoglu: "Using the B Method for
the Formalization of Coordinated Atomic
Actions",

CS-TR-865, Technical Report Series,

1 October 2004 (2004-10-01), pages 1-18,
XP55026374,

University of Newcastle upon Tyne, UK
Retrieved from the Internet:
URL:http://citeseerx.ist.psu.edu/viewdoc/d
ownload?doi=10.1.1.65.86238&rep=repl&type=p
df

[retrieved on 2012-05-07]

page 8, line 1 - page 10, line 17

US 5 819 021 A (STANFILL CRAIG [US] ET AL)
6 October 1998 (1998-10-06)

cited in the application

the whole document

1-23

1,11,
14-18,
21-23

1,10,11,
18,21-23

1-23

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/025388
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5819021 A 06-10-1998 AT 350551 T 15-05-2007
AU 1286197 A 17-07-1997
CA 2240286 Al 03-07-1997
DE 69637020 T2 16-08-2007
DK 0954781 T3 06-08-2007
EP 0954781 Al 10-11-1999
ES 2283008 T3 16-10-2007
JP 3207438 B2 10-09-2001
JP H11514116 A 30-11-1999
PT 954781 E 31-05-2007
us 5819021 A 06-10-1998
WO 9723826 Al 03-07-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

