发明名称
印张处理机

摘要
用于处理印张的机器包括收纸器和用于使两个输送装置中的一个相对于另一个与印张规格有关地进行调整的调节装置，该收纸器具有用于在前运行的印张端部的第一输送装置和用于在后运行的印张端部的第二输送装置。调节装置包括一个叠加传动装置。
1. 用于处理印张（2）的机器（1），包括收纸器（4），该收纸器具有用于在前运行的印张端部（21）的第一输送装置（6）和用于在后运行的印张端部（22）的第二输送装置（7）和用于使这两个输送装置（6、7）中的一个相对于另一个与印张规格有关地进行调节的调节装置，其特征在于：该调节装置包括叠加传动装置（119）。

2. 按权利要求1所述的机器，其特征在于：两个输送装置（6、7）中的一个具有空心轴（23）并且两个输送装置的另一个具有设置在该空心轴（23）内的内部轴（24）；这两个轴（23、24）通过所述叠加传动装置（119）彼此联接。

3. 按权利要求2所述的机器，其特征在于：用于驱动两个输送装置（6、7）的驱动马达（31）及用于使这两个输送装置（6、7）中的一个相对于另一个与印张规格有关地进行调节的伺服马达（30）与所述叠加传动装置（119）连接。

4. 按权利要求3所述的机器，其特征在于：该叠加传动装置（119）构成总传动装置（121）的第一分传动装置，该总传动装置具有第二分传动装置（120）；在伺服马达（30）停止时该传动装置（121）具有1：1的传动比。

5. 按权利要求4所述的机器，其特征在于：该叠加传动装置（119）和第二分传动装置（120）是具有太阳轮（108’、108’’）的行星齿轮传动装置，所述太阳轮构成一个与这两个轴（23、24）同轴心的双联齿轮（108）。

6. 按权利要求4所述的机器，其特征在于：该总传动装置（121）包括一壳体（101）和一双联齿轮（108），该双联齿轮与这两个轴（23、24）偏心地并且位置固定地支承在该壳体（101）内。
7. 按权利要求 4 至 6 任一项所述的机器，其特征在于：这两个轴（23、24）通过总传动装置（121）彼此这样联接，使得在伺服马达（30）停止时这两个轴（23、24）可由驱动马达（31）彼此同步地旋转。

8. 按权利要求 4 至 7 任一项所述的机器，其特征在于：这两个轴（23、24）通过总传动装置（121）彼此这样联接，使得在驱动马达（31）运行时这两个轴（23、24）中的一个可由伺服马达（30）相对于另一个旋转。

9. 按权利要求 2 至 8 任一项所述的机器，其特征在于：这两个输送装置（6、7）中的一个具有第一对链轮（11、12），所述链轮无相对转动地装配在空心轴（23）上并且由第一对链（9、10）缠绕，并且这两个输送装置（6、7）的另一个具有一个第二对链轮（17、18），所述链轮无相对转动地装配在内部轴（24）上并且由第二对链（15、16）缠绕。

10. 按权利要求 9 所述的机器，其特征在于：在一对链（9、10）上设置有用于抓持印张（2）的在前运行的印张端部（21）的保持横梁（14）并且在另一对链（15、16）上设置有用于抓持印张（2）的在后运行的印张端部（22）的保持横梁（20）。

11. 按权利要求 1 至 10 任一项所述的机器，其特征在于：所述叠加传动装置（119）是周转轮传动装置。

12. 按权利要求 1 至 11 任一项所述的机器，其特征在于：所述叠加传动装置（119）是行星齿轮传动装置。
印张处理机

技术领域

本发明涉及一种用于处理印张的机器，包括收纸器，该收纸器具有用于在前运行的印张端部的第一输送装置和用于在后运行的印张端部的第二输送装置和用于使两个输送装置中的一个相对于另一个与印张规格有关地进行调整的调节装置。

背景技术

在这种机器中，每个承印页张在其输送期间借助于第一输送装置抓持在其在前运行的印张端部上并且同时借助于第二输送装置抓持在其在后运行的印张端部上。输送装置例如可以是具有叼纸牙桥的链式输送机。

在 DE 10 2004 018 415 A1 中描述了一种以这种方式构成的印刷机。该印刷机的收纸器包括一对连续的链，在其上固定一个印张后缘叼纸牙桥组。这些链之间设置另一对连续的链，在其上固定一个印张前缘叼纸牙桥组。其中一个链对由一个固定在空心轴上的链轮对导向。另外的链对由固定在内部轴上的另一链对引导，该内部轴设置在所述空心轴内。为了能够将用于抓持印张后缘的叼纸牙桥调整到与前缘叼纸牙桥的不同距离上，存在一个电动的伺服马达。在其马达轴上配合一个小齿轮，该小齿轮可移动地与固定在内部轴上的齿轮啮合。如果小齿轮与该齿轮啮合，那么伺服马达可以使内部轴相对于空心轴旋转，使得一个链轮对相对于另外的链轮对旋转，因此其中一个链对相对于另外的链对移动并且因此最后在链环绕方向上其中一个叼纸牙桥组相对于另外一组与期望的印张规格相应地调整。但是伺服
马达为了使内部轴相对于空心轴旋转，必须在该旋转之前松开离合器，该离合器在印刷运行时是闭合的并且内部轴与空心轴无相对转动地连接，使得确保链式输送机的同步运行。

在所述公开文件中已经指出，规格调整优选在机器停止时进行，其中空心轴不旋转。实际上，在该结构系统中机器停止甚至是对于规格调整的前提条件，如这在事后所证实的那样。

但是出于下面解释的原因，在机器运行期间能够进行规格调整是值得期望的。在调整后缘叼纸牙桥相对于前缘叼纸牙桥的距离的情况下必须保证后缘叼纸牙桥相对于压印滚筒的抓持印张后缘的装置的正确的相位，该压印滚筒是设置在收纸器前面的印刷装置的组成部分。在印张被压印滚筒转交到链式输送机上的情况下，当时的后缘叼纸牙桥必须处于相对于压印滚筒的后缘抓持装置的转角位置的精确的转角位置上，从而可以使印张后缘无干扰地由压印滚筒转交到后缘叼纸牙桥上。无干扰传递的控制和为了消除可能的干扰必要时对承载后缘叼纸牙桥的链式输送机采取的需要的精调最好能在机器运行期间进行，即在设定机器时的试运行期间。

发明内容

所以本发明的目的是，在开头所述类型的机器中允许在机器运行时使两个运输装置中的一个相对另一个进行调整。

根据本发明，提出了一种用于处理印张的机器，包括收纸器，该收纸器具有用于在前运行的印张端部的第一输送装置和用于在后运行的印张端部的第二输送装置和用于使两个输送装置中的一个相对于另一个与印张规格有关地进行调整的调节装置，其中，该调节装置包括叠加传动装置。

叠加传动装置允许，环绕驱动运动叠加规格调整运动。例如在印张运输期间抓持印张后缘的第二输送装置借助于叠加传动装置在不
中断的机器运行的情况下调整到相对于保持印张前缘的第一输送装置的与等待的印张订单的印张规格有关的相位中。在第二输送装置的该与印张规格有关的调整中可以由操作者视觉上监控并且必要时再调整所述输送装置的相对于设置在收纸器前面的印刷装置的压印滚筒的相位。

按本发明的机器的附加优点在于其降低的磨损。在现有技术（DE 10 2004 018 415 A1）所述的调节装置中可啮合和脱离啮合的离合器半部以及齿轮和小齿轮经受显著的磨损，该小齿轮可与所述齿轮啮合及脱离啮合。磨损的问题也存在现有技术中，当采用另一离合器取代齿轮和小齿轮时，所述离合器的一个离合器半部在联接时才必须借助于所谓的搜索找到相对另一外的离合器半部的对于卡入所需的位置。与此对应地，在本发明机器的叠加传动装置中，这种可啮合和脱离啮合的元件不是必需的。叠加传动装置既不需要离合器也不需要可彼此移动以啮合和脱离啮合的齿轮。用于找到正确的联接位置或卡入位置的搜索不是必需的。取而代之的是，叠加传动装置的齿轮彼此处于永久的啮合，使得避免齿轮的磨损特别强烈的卡入和脱开。

在本发明的机器中由叠加传动装置的存在得出的另外的附加优点在于传感的同步运行监控方面的降低的要求，必要时甚至可以完全放弃该同步运行监控。在所述现有技术（DE 10 2004 018 415 A1）中存在这样的危险，即在印刷运行期间将空心轴与内部轴连接的摩擦锁定离合器打滑，因此可能使同步运行具有危险。为了避免由同步运行偏差导致的机器错误功能，提早识别离合器打滑和在事故情况下立刻中断机器运行，需要相对耗费的传感机构，该传感机构包括不同的信号发送器。因为在本发明的机器中已经所述的那样不需要这种摩擦锁定离合器，因此可以简化传感机构或者可以完全放弃该传感机构。

在其它描述中给出本发明机器的有利的进一步方案。
在一个进一步方案中，两个输送装置中的一个具有空心轴并且两个输送装置中的另一个具有内部轴，该内部轴设置在空心轴内。在此空心轴和内部轴通过叠加传动装置彼此联接。优选抓持印张的前运行的印张端部的第一输送装置具有空心轴，而抓持印张的后运行的印张端部的第二输送装置具有内部轴。

在一个另外的进一步方案中，用于驱动两个输送装置的驱动马达及用于使两个输送装置中的一个相对于另一个与印张规格有关地进行调节的伺服马达与所述叠加传动装置连接。驱动马达在机器运行期间驱动两个输送装置的环绕运动。驱动马达和伺服马达优选是电动马达。

在一个另外的进一步方案中，总传动装置包括第一分传动装置和第二分传动装置。所述叠加传动装置构成所述第一分传动装置。在伺服马达的停止的情况下总传动装置具有1：1的传动比。

在一个另外的进一步方案中，叠加传动装置和第二分传动装置是具有太阳轮的行星齿轮传动装置，所述太阳轮构成一个与两个轴同轴心的双联齿轮。因此叠加传动装置包括一个第一太阳轮并且第二分传动装置包括一个第二太阳轮并且这两个太阳轮或者彼此固定地连接或者共同地由一个工件制成。在两种情况中两个太阳轮构成一个所谓的双联齿轮，该双联齿轮与空心轴和内部轴同轴心地设置。

在一个另外的进一步方案中，总传动装置包括一壳体和一双联齿轮，该双联齿轮与两个轴偏心地并且位置固定地支承在壳体内。因此双联齿轮的几何的旋转轴线平行于内部轴和空心轴的几何的旋转轴线地延伸。

在一个另外的进一步方案中，两个轴通过总传动装置彼此这样联接，使得在伺服马达停止时两个轴可由驱动马达彼此同步地旋转。即当伺服马达不旋转时，内部轴和空心轴以同样的转数旋转。在这种运
行情况中叠加传动装置不引起两个马达的驱动运动的叠加并且两个轴仅通过驱动马达驱动。

在一个另外的进一步方案中，两个轴通过总传动装置彼此这样联接，使得在驱动马达运行时两个轴中一个可由伺服马达相对于另一个旋转。因此在机器运行期间进行两个输送装置中的一个相对于另一个的与印张规格有关的调整，其中该调整通过两个轴中一个相对于另一个的由伺服马达驱动的旋转导致。

在一个另外的进一步方案中，两个输送装置中的一个具有第一对链轮并且两个输送装置的另一个具有第二对链轮。第一链轮对的两个链轮无相对转动地装配在空心轴上并且由第一对链缠绕。此外，在这种进一步方案中两个输送装置中的另外一个具有第二对链轮，所述链轮无相对转动地装配在内部轴上并且由第二对链缠绕。因此第一输送装置是第一链式输送机并且第二输送装置是第二链式输送机，其中这些链式输送机分别包括至少两个链轮和两个连续的链，所述链由链轮导向。

在一个另外的进一步方案中，在一对链上设置有用于抓持印张的在前运行的印张端部的保持横梁并且在另一对链上设置有用于抓持印张的在后运行的印张端部的保持横梁。这些保持横梁例如可以是具有成排设置的叼纸牙的叼纸牙桥，它们夹紧印张，以便固定所述印张。

根据一个另外的进一步方案，叠加传动装置是一个周转轮传动装置，优选是一个行星齿轮传动装置。

附图说明

由下面两个实施例的说明和附图得到另外的结构上的和功能上有利的进一步方案。

其中：

图1示出收纸器，它具有用于在前运行的和在后运行的印张端部
的输送装置，

图 2 示出图 1 的收纸器的规格调整装置的第一实施例，
图 3 示出图 1 的收纸器的规格调整装置的第二实施例。

具体实施方式

在图 1-3 中，彼此相应的元件及构件用相同的参考标号表示。

图 1 部分地示出用于处理印张 2 的机器 1。机器 1 是一个印刷机并且包括至少一个具有压印滚筒 5（参见图 2 和 3）的印刷装置 3，该印刷装置可以是胶版印刷装置或者例如用于上光的苯胺印刷装置。收纸器 4 包括第一输送装置 6 和第二输送装置 7。输送装置 6、7 是链式输送机并且沿环绕方向 8 环绕运行。

第一输送机构 6 包括连续的链 9、10，用于驱动和转向所述链 9、10 的链轮 11、12 和一个固定在链 9、10 上的保持横梁组 13。保持横梁组 13 由多个保持横梁构成，所述保持横梁沿链 9、10 均匀分布地设置，但是为了清楚起见仅示出一个唯一的保持横梁 14。下面，链 9、10 和保持横梁组 13 的总体也被称为前缘抓持系统。第二输送装置 7 包括连续的链 15、16，用于驱动和转向所述链 15、16 的链轮 17、18 和一个固定在链 15、16 上的保持横梁组 19。保持横梁组 19 由多个保持横梁构成，所述保持横梁沿链 15、16 均匀分布地设置，但是为了清楚起见仅示出一个唯一的保持横梁 20。下面，链 15、16 和保持横梁组 19 一起也被称为后缘抓持系统。

第一输送装置 6 的保持横梁与第二输送装置 7 的保持横梁一起构成保持横梁对，其中每个保持横梁对分别抓持印张 2 的沿环绕方向 8 在前运行的印张端部 21 并且同时抓持其在后运行的印张端部 22。在图 1 中在由保持横梁 14、20 构成的保持横梁对的例子中用虚线示出被抓持的印张端部 21、22。
第一输送装置 6 的保持横梁是叼纸牙桥并且通过夹紧力抓持印张 2。第二输送装置 7 的保持横梁也是叼纸牙桥，印张 2 借助于所述叼纸牙桥被夹紧地抓持。

一个第一轴 23——所谓的前缘轴 23——承载第一输送装置 6（该输送装置抓持印张前缘）的固定在该轴上的链轮 11、12 并且构成为空心轴。一个第二轴 24——所谓的后缘轴 24——承载第二输送装置 7 的固定在该轴上的链轮 17、18 并且穿过空心的第一轴 23 延伸，该输送装置抓持印张后缘。第一轴 23 和其链轮 11、12 与第二轴 24 和其链轮 17、18 同轴心地设置。轴 23、24 可旋转地支承在侧壁 25、26 上。

每个链轮 17、18 由设置在第一轴 23 外部的齿环构成，该齿环设有处于直径的相反端上的支持轮辐 27、28。支持轮辐 27、28 穿过开设在第一轴 23 内的缝槽伸入到第一轴 23 内。各齿环通过支持轮辐 27、28 固定在内部的第二轴 24 上。在为了后面还要详细说明的规格调整的目的而使第二轴 24 并且从而链轮 17、18 相对于第一轴 23 并且从而链轮 11、12 旋转的情况下，支持轮辐 27、28 沿所述缝槽滑动，所述缝槽的沿第一轴 23 的圆周方向延伸的缝槽长度与在印张 2 的一个可能的最小的与可能的最大的规格长度之间存在的规格差有关地进行测量。

在规格调整时，第二轴 24 通过电动的第一马达 30 旋转地驱动。第一马达 30 是一个伺服驱动装置，该伺服驱动装置不同于电动的第二马达 31，该第二马达是机器 1 的主驱动装置并且该第二马达在印刷运行时不仅驱动印刷装置 3 及其压印滚筒 5 的旋转，而且驱动输送装置 6、7 或其沿环绕方向 8 进行的运动。为了使第二轴 24 相对于第一轴 23 旋转并且在此使链 15、16 相对于链 9、10 调整，第二输送装置 7 相对于第一输送装置 6 的环绕相位可改变。通过该旋转和该链调整，
第二输送装置 7 的保持横梁视第二轴 24 的旋转方向而定，调节到相对于第一输送装置 6 的保持横梁的较近或较远的与印张规格有关的距离 49 上。

图 2 和 3 分别示出，第一马达 30 将其用于规格调整所需的旋转运动通过一个自锁地构成的传动装置传递到驱动轴 112 上。自锁地构成的传动装置在示出的实施例中是一个蜗杆传动装置，它包括一个固定地装配在第一马达 30 的马达轴 115 上的蜗杆和一个固定地装配在驱动轴 112 上的蜗轮 113。

驱动轴 112 可旋转地支撑在总传动装置 121 的壳体 101 上。壳体 101 在其背离链轮 11、12、17、18 的一侧固定在侧壁 26 上。总传动装置 121 包括一个叠加传动装置（Überlagerungsgetriebe）119 形式的第一分传动装置和一个第二分传动装置 120。第二马达 31 的驱动运动通过一个与压印滚筒 5 相对转动地连接的齿轮 102 传递到总传动装置 121 的二分传动的齿轮 103 上。


在印刷运行期间，第一马达 30 停止，仅第二马达 31 工作。由蜗轮 113 和蜗杆 114 构成的自锁的传动装置的自锁防止第二马达 31 的驱动运动传递到第一马达 30 上并且确保其停止状态，因此不需要用
于第一马达 30 的马达制动器。第二分传动装置 120 的传动比与叠加传动装置 119 的固定传动比（Standübersetzung）相关地这样设计，使得在前缘轴 23 与后缘轴 24 之间形成同步运行或同步旋转并且从而保证距离 49（参见图 1）的恒定。该第二分传动装置由装配在前缘轴 23 上的齿轮 103、双联齿轮 108 和齿轮 109 的外齿结构 109’构成。

叠加传动装置 119 的固定传动比是负的商值，该商通过内齿结构 109’的齿数除以太阳轮 111 的齿数形成。有利的是，叠加传动装置 119 的固定传动比被选择得小于 -5，因此反作用到驱动轴 112 上的转矩仅为后缘抓持系统的作用在后缘轴 24 上的转矩的分数。由此以有利的方式限制齿结构在自锁的传动装置（蜗杆 114、蜗轮 113）中的应力和由第一马达 30 在机器运行时进行的规格调整期间施加的马达力矩。该固定传动比直观地可解释为在所述接片或者行星架固定的情况下各齿圈轴与各太阳轮轴的传动比，该固定传动比的值优选小于 -5。该固定传动比在旋转方向相反时为负值并且在量值上始终大于 1。

在机器运行期间进行的规格调整中，所需的调整运动由第一马达 30 引导到驱动轴 112 上，该调整运动与齿圈 109 的运动叠加并且传递到后缘轴 24 上。在此，齿圈 109 的所述运动通过齿轮 102、103 和双联齿轮 108 由第二马达 31 驱动。

当然，规格即距离 49 也可以在机器停止时调节。在此齿轮 102 停止并且通过机器 1 的图中未示出的制动器来确保该停止。因此前缘轴 23 也停止，如果由第一马达 30 将调整运动导入到叠加传动装置 119 中的话，该调整运动传动地传递到后缘轴 24 上并且在此使前缘抓持系统与后缘抓持系统之间的相对距离改变。

调节过程可以借助于转角度测量系统监控，该转角度测量系统设置在后缘轴 24 或马达轴 115 上并且测量其转角。因此为了监控调节过程仅需要一个唯一的角度测量系统。为了监控不必使用两个不同的
角度测量系统，以便用其测量两个不同的转角及由这两个转角计算出转角差。

在图 3 中示出的第二实施例中，一个具有内齿结构 117’的齿圈 117 装配在驱动轴 112 上，该内齿结构与叠加传动装置 119 的行星轮 110 咬合。行星轮 110 通过一个接片或行星架与后缘轴 24 连接，行星轮 110 可旋转地支承在该接片或行星架上。装配在前缘轴 23 上的齿轮 103 具有一个偏心的销（Zapfen），一个另外的行星轮 118 可旋转地装配在该销上，使得齿轮 103 构成行星轮 118 的接片或行星架。行星轮 118 与双联齿轮 108 的第一齿结构 108’啮合，该双联齿轮具有第二齿结构 108”，该第二齿结构与另一行星轮 110 啮合。在图 3 所示的实施例中，第二分传动装置 120 同样是一个周转轮传动装置（Umlaufrädergetriebe）。齿结构 108”构成叠加传动装置 119 的太阳轮并且齿结构 108’构成另外的叠加传动装置，即分传动装置 120 的太阳轮。双联齿轮 108 可旋转地装配在后缘轴 24 上。此外，行星轮 118 还与壳体 101 的固定在壳体上的内齿结构 101’啮合，该内齿结构构成一个齿圈。

总传动装置 121 的两个分传动装置 119、120 在其传动比方面相同地构成，即行星轮 110 的齿数正好与行星轮 118 的齿数一样，齿结构 108”’的齿数等于齿结构 108’的齿数并且齿圈 117 的内齿结构 117’具有与壳体 101 的内齿结构 101’一样的齿数。通过两个分传动装置 119、120 的对称，在前缘轴 23 与后缘轴 24 之间存在同步运行并且从而存在距离 49（参见图 1）的恒定，如果在印刷运行时第一马达 30 停止并且仅第二马达 31 工作的话。

当在两个印刷订单之间要进行规格调整并且从而改变距离 49 时，那么为此所需的调整运动由第一马达 30 导入到总传动装置 121 中，使得其调整运动传动地传递到后缘轴 24 上并且从而改变距离 49。该
规格调整可以在机器停止时进行，其中第二马达 31 并且从而齿轮 102 停止，该停止可以通过图中未示出的制动器来确保。

但是规格调整也在机器运行期间进行，其中在这种情况下在规格调节期间两个马达 30、31 工作。在此用于规格调整所需的调整运动由第一马达 30 通过驱动轴 112 导入到总传动装置 121 中，在该总传动装置中调整运动与由第二马达 31 通过齿轮 103 和起太阳轮作用的双联齿轮 108 导入的驱动运动叠加，其中由该叠加导致的差运动由行星轮 110 传递到后缘轴 24 上。

在图 3 所示的实施例中，规格调整可以借助于角度测量系统监控和控制，该角度测量系统结合图 2 所示的实施例已经描述过。结合图 2 所示的实施例对于固定传动比的叙述在传递的意义上也适用于图 3 中所示的实施例。

在图 2 中所示的实施例相对于在图 3 中所示的具有这样的优点，即反作用到驱动轴 112 上的转矩可以保持较小。

参考标号表

1 机器
2 印张
3 印刷装置
4 收纸器
5 压印滚筒
6 输送装置（第一）
7 输送装置（第二）
8 环绕方向
9 链
10 链
11 链轮
12 链轮
13 保持横梁组
14 保持横梁
15 链
16 链
17 链轮
18 链轮
19 保持横梁组
20 保持横梁
21 印张端部（在前运行的）
22 印张端部（在后运行的）
23 轴（前缘轴、空心的、第一）
24 轴（后缘轴、内部的、第二）
25 侧壁
26 侧壁
27 支持轮辐
28 支持轮辐
29 /. 
30 马达（第一）
31 马达（第二）
32-48 /. 
49 距离
50-100 /. 
101 壳体
101’ 内齿结构
102 齿轮
103 齿轮
104-107 /
108 双联齿轮
108' 齿结构（第一）
108'' 齿结构（第二）
109 齿圈
109' 外齿结构
109'' 内齿结构
110 行星轮
111 太阳轮
112 驱动轴
113 蜗轮
114 蜗杆
115 马达轴
116 /
117 齿圈
117' 内齿结构
118 行星轮
119 叠加传动装置
120 分传动装置
121 总传动装置。