(54) 发明名称
用于功能受限装置的波束成形训练

(57) 摘要
一种用来配置用于选择与其它装置相对应的定向通信信号的天线系统的系统。作为在发起装置和响应方装置之间协调的波束成形训练操作的结果，可以选择定向通信信号。可通过例如可以是功能受限的发起装置来请求特定模式和 / 或特征。当形成用于发射到发起方的波束成形训练集合时，响应方可以考虑这些被请求的模式和 / 或特征。
1. 一种方法，其包括：
激活波束成形训练支持操作；
选择用于发射一个或多个前向方向波束成形训练帧的预定方向，其中，每个前向方向
波束成形训练帧包括前向波束/扇区方向标识符；
在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少
一个前向方向波束成形训练帧；
从所述预定方向之一接收至少一个反向方向波束成形训练帧，其包括所述前向波束/扇区方向标识符之一；以及
发射包括反向波束/扇区方向标识符的至少一个响应帧，所述反向波束/扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
2. 根据权利要求1所述的方法，其中，一个或多个反向方向波束成形训练帧以及所述
一个或多个前向方向波束成形训练帧中的每一个进一步包括：关于要被发射的扇区扫描帧
的剩余数量的指示。
3. 根据权利要求1所述的方法，其中，在所述至少一个响应帧中发射的反向波束/扇区
方向标识符对应于被确定具有最佳信号质量的所述至少一个反向方向波束成形训练帧。
4. 根据权利要求1所述的方法，其中，所述响应帧进一步包括对确认的请求。
5. 根据权利要求1所述的方法，其进一步包括：从与在所述响应帧中发射的反向波束/扇区方向标识符相对应的方向接收确认帧。
6. 一种方法，其包括：
激活波束成形训练支持操作；
发射至少包括用于配置波束成形训练操作的支持信息的波束成形训练请求，所述信息标识
了至少一个训练模式，其中，所述信息标识了以下中的至少一个：前向方向波束成形训练模式、反向方向波束成形训练模式或双向波束成形训练模式；
接收响应于所述波束成形训练请求的至少一个波束成形训练响应帧；以及
基于所述至少一个训练模式以及在所述响应帧中所述所述至少一个训练模式的支持的
指示，激活波束成形训练操作。
7. 根据权利要求6所述的方法，其中，所述波束成形训练请求进一步包括关于在前向
或反向方向波束成形训练期间要利用的扇区的经减少的数目的指示，所述扇区的经减少的
数目是根据在已扫描模式期间所接收到的波束成形训练帧或管理帧导出的。
8. 根据权利要求6所述的方法，其中，所述波束成形训练请求进一步指示了关于首先
执行所述前向波束成形训练模式或所述反向波束成形训练模式的顺序。
9. 根据权利要求6所述的方法，其中，所述波束成形训练请求经由私有基本服务集合
控制点而被发射到其它装置。
10. 根据权利要求6所述的方法，其中，所述波束成形训练请求被直接发射到对等装
置，其中正在请求来自所述对等装置的波束成形训练。
11. 根据权利要求6所述的方法，其中，激活所述波束成形训练操作进一步包括：
接收至少一个反向方向波束成形训练帧，其中，每个反向方向波束成形训练帧包括可选的所求指的训练段；
确定在所述波束成形训练帧期间从预定接收方向接收到的每个训练分段的信号质量；
12. 根据权利要求 11 所述的方法，其中，所述响应帧进一步包括对确认的请求。
13. 一种包括在计算机可读介质上记录的计算机可执行程序代码的计算机程序产品，其包括：
 被配置成激活波束成形训练支持操作的计算机程序代码；
 被配置成选择用于发射一个或多个前向方向波束成形训练帧的预定方向的计算机程序代码，其中，每个前向方向波束成形训练帧包括前向波束 / 扇区方向标识符；
 被配置成在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧的计算机程序代码；
 被配置成从所述预定方向之一接收至少一个反向方向波束成形训练帧的计算机程序代码，所述至少一个反向方向波束成形训练帧包括所述前向波束 / 扇区方向标识符之一；以及
 被配置成发射包括反向波束 / 扇区方向标识符的至少一个响应帧的计算机程序代码，所述反向波束 / 扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
14. 一种包括在计算机可读介质上记录的计算机可执行程序代码的计算机程序产品，其包括：
 被配置成激活波束成形训练支持操作的计算机程序代码；
 被配置成发射至少包括用于配置波束成形训练操作的信息的波束成形训练请求的计算机程序代码，所述信息标识了至少一个训练模式，其中，所述信息标识了以下中的至少一个：前向方向波束成形训练模式、反向方向波束成形训练模式或双向波束成形训练模式；
 被配置成接收响应于所述波束成形训练请求的至少一个波束成形训练响应帧的计算机程序代码；以及
 被配置成基于所述至少一个训练模式以及在所述响应帧中对所述至少一个训练模式的支持的指示来激活波束成形训练操作的计算机程序代码。
15. 一种装置，其包括：
 处理器，所述处理器被配置以便：
 激活波束成形训练支持操作；
 选择用于发射一个或多个前向方向波束成形训练帧的预定方向，
 其中，每个前向方向波束成形训练帧包括前向波束 / 扇区方向标识符；
 在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧；
 从所述预定方向之一接收至少一个反向方向波束成形训练帧，其包括所述前向波束 / 扇区方向标识符之一；以及
 发射包括反向波束 / 扇区方向标识符的至少一个响应帧，所述反向波束 / 扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
16. 根据权利要求 15 所述的装置，其中，一个或多个反向方向波束成形训练帧以及所述一个或多个前向方向波束成形训练帧中的每一个进一步包括：关于要被发射的扇区扫描
权利要求书

17. 根据权利要求 15 所述的装置，其中，在所述至少一个响应帧中发射的所述至少一个反向波束/扇区方向标识符对应于被确定具有最佳信号质量的所述至少一个反向方向波束成形训练帧。

18. 根据权利要求 15 所述的装置，其中，所述响应帧进一步包括对确认的请求。

19. 根据权利要求 15 所述的装置，其进一步包括：从与在所述响应帧中发射的反向波束/扇区方向标识符相对应的方向接收到确认帧。

20. 一种装置，其包括：
 处理器，所述处理器被配置以便：
 激活波束成形训练支持操作；
 发射至少包括用于配置波束成形训练操作的信息的波束成形训练请求，所述信息标识了至少一个训练模式，其中，所述信息标识了至少一个：前向方向波束成形训练模式、反向方向波束成形训练模式或双向波束成形训练模式；
 接收响应于所述波束成形训练请求的至少一个波束成形训练响应帧；以及
 基于所述至少一个训练模式以及在所述响应帧中对所述至少一个训练模式的支持的指示来激活波束成形训练操作。

21. 根据权利要求 20 所述的装置，其中，所述波束成形训练请求进一步包括关于在前向或反向方向波束成形训练期间要利用的扇区的经减少的数目的指示，所述扇区的经减少的数目是从在被动扫描模式期间所接收到的波束成形训练帧或管理帧中得出的。

22. 根据权利要求 20 所述的装置，其中，所述波束成形训练请求进一步指示了关于首先执行所述前向波束成形训练模式或所述反向波束成形训练模式的顺序。

23. 根据权利要求 20 所述的装置，其中，所述波束成形训练请求经由私有基本服务集合控制点而发射到其它装置。

24. 根据权利要求 20 所述的装置，其中，所述波束成形训练请求被直接发射到对等装置，其中正在请求来自所述对等装置的波束成形训练。

25. 根据权利要求 20 所述的装置，其中，激活所述波束成形训练操作进一步包括：
 接收至少一个反向方向波束成形训练帧，其中，每个反向方向波束成形训练帧包括可选的所请求数目的训练分段；
 确定在所述波束成形训练帧期间从预定接收方向接收到的每个训练分段的信号质量；以及
 发射包括反向波束/扇区方向标识符的至少一个响应帧，所述反向波束/扇区方向标识符被确定成在对所述至少一个反向方向波束成形训练帧的接收期间具有最佳信号质量。

26. 根据权利要求 25 所述的装置，其中，所述响应帧进一步包括对确认的请求。

27. 一种装置，其包括：
 用于激活波束成形训练支持操作的装置；
 用于选择用于从一个或多个前向方向波束成形训练帧的预定方向的装置，其中，每个前向方向波束成形训练帧包括前向波束/扇区方向标识符；
 用于在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧的装置；
用于从所述预定方向之一接收至少一个反向方向波束形成训练帧的装置，所述至少一个反向方向波束形成训练帧包括所述前向波束/扇区方向标识符之一；以及

用于发射包括反向波束/扇区方向标识符的至少一个响应帧的装置，所述反向波束/扇区方向标识符是在所述至少一个反向方向波束形成训练帧中接收到的。
用于功能受限装置的波束成形训练

技术领域

本发明的各种示例实施例涉及无线通信的配置，并且特别地，涉及使用波束成形训练处理（其确定和选择了发射和接收方向）的定向通信的配置。

背景技术

新兴的宽带应用（诸如无线高清晰多媒体接口（HDMI）、无线游戏接口、无线高速回程和内容分发服务等）已经驱使了在用于短距离无线通信的超高速无线网络中的技术进步。鉴于在60GHz毫米频带（毫米波）中充溢的未经许可频谱的全球可用性，设计者已经以该频带为目标来实现高速和/或高容量无线网络。在至少一种情形下，当前发展中的超高吞吐量（VHT）无线局域网（WLAN）的标准正在瞄准在1Gbps数据速率上的超高吞吐量目标。

然而，在毫米波（mmWave）频带中实现无线通信架构呈现了很多挑战。例如，潜在的新无线电设计将基本上受到链路预算约束的影响。特别地，当与较低频段系统相比较时，会对该频谱（毫米波频段）内操作的通信载波产生影响的非常高的自由空间传播损耗、较高的透射、反射和散射损耗以及大气氧吸收（atmospheric oxygen absorption）严重限制了在毫米波频带中的覆盖范围。

在毫米波频带中已经变得明显的对环境影响的增加的敏感性可能影响通信的整个操作效率。由于例如不稳定的连接而造成无线信号质量可能受损，并且对丢失分组的重传可能显著地影响通信性能，以及依赖于这些频段的其它系统。结果，可通过对在60GHz频带中操作而实现的任何容量增益处可能因此在某种程度上由于差的通信性能而失效。

发明内容

按照各种实施例，本发明的示例实现可以至少针对一种处理、计算机程序、装置和系统，用于促进对于与期望与之进行无线通信的装置相对应的定向通信信号的选择。按照本发明的至少一个示例实施例，训练处理可以包括：在前向和/或反向方向上的发射扇区扫描（transmit sector sweeps）（TxSS），之后接着是波束精化处理（beam-refinement process）。该TxSS步骤可涉及：从发射机发射一系列发射扇区（它们之间具有已知的时间间隔）上进行操纵（steer）的波束成形训练帧（BFT）。

在从发射机发射TxSS帧期间，接收机可以处于准全向接收模式（quasi-omni receive mode），在此期间，来自发射端的波束成形增益得到利用，而在接收侧没有增益。然而，可能存在以下情形：装置仅支持固定波束增益，或者具有有限的定向发射和/或接收能力。此外，应当可基于进行请求的站台的偏好来配置或定制波束成形训练，这可以根据活动应用的要求、功率消耗和信道互惠条件或者天线配置限制而变化。

前述总结包括了并不旨在是限制性的本发明的示例实施例。以上实施例仅用于解释在本发明的实现中可以利用的所选方面或步骤。然而，容易显而易见的是，可以将涉及一示例实施例的一个或多个方面或步骤与其它实施例的一个或多个方面或步骤进行组合，以
便产生仍然在本发明的范围之内的新实施例。因此，本领域普通技术人员将理解，本发明的各种实施例可以合并来自其它实施例的方面，或者可以结合其它实施例来实现。

附图说明

[0008] 根据结合附图进行的下面的详细描述和示例实现，可以理解本发明的各种示例实施例，在附图中：

[0009] 图 1A 公开了根据本发明至少一个实施例的经由无线通信进行交互的装置的例子。

[0010] 图 1B 公开了与先前图 1A 中所描述的装置相对应的功能布局的例子。

[0011] 图 2 公开了根据本发明至少一个实施例的通过调整天线系统的相位的波束成形的例子。

[0012] 图 3 公开了根据本发明至少一个实施例的包括可调整的天线系统的装置的示例交互。

[0013] 图 4 公开了根据本发明至少一个实施例的私有基本服务集合 (a private basic service set) (PBSS) 和 PBSS 中的信标间隔结构的例子。

[0014] 图 5 公开了根据本发明至少一个实施例的扇区级训练的双向缺省模式的例子。

[0015] 图 6 公开了根据本发明的至少一个实施例的可使用的 BFT 通信帧和字段参数的例子。

[0016] 图 7 公开了根据本发明至少一个实施例的可使用的 BFT 反馈通信帧和字段参数的例子。

[0017] 图 8 公开了根据本发明至少一个实施例的非对称扇区训练的例子。

[0018] 图 9 公开了根据本发明至少一个实施例的当要针对基于竞争的时段 (CBP) 期间 BFT 训练时波束成形训练设定处理的例子。

[0019] 图 10 公开了根据本发明至少一个实施例的双向扇区训练的例子。

[0020] 图 11 公开了根据本发明至少一个实施例的可使用的扩展型 BFT 帧的例子。

[0021] 图 12 公开了根据本发明至少一个实施例的可使用的请求帧结构和字段参数的例子。

[0022] 图 13 公开了根据本发明至少一个实施例的朝向 (在固定方向接收情况下的) 固定波束装置的定位的私有基本服务集合控制点 (PCP) 发射的例子。

[0023] 图 14A 公开了根据本发明至少一个实施例的示例处理的流程图。

[0024] 图 14B 公开了根据本发明至少一个实施例的另一示例处理的流程图。

具体实施方式

[0025] 尽管下面已经针对一个或多个实现例子描述了本申请，但是在本发明的范围之内，可以在其中进行各种更改。

[0026] 为了克服当实现例如 60GHz 无线电架构时可能经历的潜在巨大的路径损耗，用于调整在发射和接收两侧的多单元天线系统的波束成形技术可能变得很重要。在很多信号环境中，在多径操作中缺乏显著的散射或丰富性可能减少了致力于增加频谱效率的常规多输入多输出 (MIMO) 空间复用方案的适用性。结果，需要以朝着最佳波束方向的发射和接收为
目的以便使单个空间数据流的信噪比(SNR)最大化的简单波束成形技术。在该频带中给定的小得多的波长(例如，对于60GHz是5mm)，可以在相对小的区域内构造大量的天线单元，它们可以进一步与RF前端中的其它RF组件集成。为了扩展覆盖的范围，这些天线系统可以配备有束操纵能力，以便集中于发射和接收的最佳方向。天线系统可以进一步包括在期望的扇区方向上具有扇区切换能力的多个扇区化天线。

[0027] 图1A公开了包括在此将利用的两个装置的例子，以便解释本发明的各种示例实现。尽管图1A中示出了包括第一站台(STA-A)和第二站台(STA-B)的两个设备，但是本发明的不同实施例并不具体地限于该配置，而可以应用于多个设备交互的情形。例如，装置之一可以担当私有基本服务集合中的控制点(PBSS中的PCP)。此外，还可能存在装置之一仅临时担当PCP的情况，例如，在参与装置的角色不断发生改变的ad-hoc(特定)联网环境中。另外，STA-A 110和STA-B 100被示为分别耦合到外部天线系统112和102。尽管这些天线系统已经被示作与每个装置分离的实体，但是这种表示仅用于促进对本发明的各种实施例的公开。如以上所阐述的，用于在例如60GHz频带中使用的天线系统还可以在合并于每个装置内的更紧凑的配置中实现(例如，作为集成电路或芯片集的一部分)。

[0028] 每个天线系统可以包括多个天线(例如，在114和104处所示)。天线系统中天线的数目可以取决于装置的特性。例如，在装置大小、功率、处理等上的限制可以指示在装置中可以支持的天线的数目。天线系统112和102中的一些或所有天线114和104在任何给定时间可以是活动的，这可能导致例如在图1A的116处表示的通信信号。在图1A中公开的示例配置中，信号116以多方向模式操作。还可能存在以下情形：天线系统可以包括例如定向固定波束天线的切换集合。

[0029] 现在参照图1B，公开了根据本发明的至少一个实施例的示例设备配置。例如，在图1B中公开的基本布局可以应用于图1A中公开的示例装置中的一个或两个。处理部件120可以包括一个或多个数据处理组件，诸如微处理器、微控制器、分立逻辑电路、现场可编程门阵列(FPGA)等。处理部件120可以被配置以便在装置中实现各种活动，包括以下操作：利用输入数据、产生输出数据、在装置中触发动作，等等。这些操作可以包括但不限于：算术操纵、转换、编码、解码等。在这些活动中使用的信号和由这些活动创建的信息可以被存储在存储器130中，其可以经有线或无线通信总线与处理部件120进行通信。

[0030] 存储部件130可以合并不同类型的静态或动态存储器。例如，只读存储器(ROM)和随机访问存储器(RAM)可以由来自一系列可用技术的组件构成，诸如磁、光和电存储介质。存储组件可以进一步被固定在装置中，或者可以从设备中移除，以便支持数据存储、加载、转移、备份等。可在存储器130中存储的信息的类型至少可以包括数据132和可执行体134。在数据132中的信息的类型可以包括数据库、文本、音频和/或视频(例如，多媒体)等。处理部件120可以利用用于实现装置中的各种活动的可执行信息134，包括使用数据132的管理。例如，操作系统136可以包括被配置以便为装置提供基线操作的至少一个可执行程序。

[0031] 在至少一个示例实现中，当与通信部件140交互时，处理部件120可以访问存储器130中存储的信息，通信部件140可以至少包括无线支持144和设备内支持150。无线支持140可以包括与可访问物理层(PHY)144中的资源的一个或多个无线传输142相对应的资源，诸如天线或天线系统以及相应的支持硬件，以便与其它装置无线地进行通信。设备内
支持 150 可以包括用于在装置的不同部件之间传递数据的有线和 / 或无线资源。通信 140 可以视情况包括与其它形式的通信相对应的资源，诸如有线通信支持 148。有线支持 148 可以包括例如耦合到有线通信介质所需要的任何硬件和 / 或软件。

根据特定装置的配置，对装置预计的用途等等，可与本发明的各种具体实施例一起使用。装置可以进一步包括用户接口功能 160，以及其它支持资源和部件 170。例如，STA-A 110 不一定是需要广泛使用的用户接口功能，而可能是包括诸如电池备份、安全性特征等的特征。另一方面，便携式无线设备可能需要更广泛的用户接口（例如，包括显示器、键盘、扬声器、指点设备、扩音器等）以及与所期望的用户功能性相关的其它资源。

在诸如毫米波通信的示例实现中，多个站台可以利用波束成形来扩展其范围。相对于本发明的各个方面所描述的方法可以提供针对各种装置的训练需要（例如基于对其天线配置的限制或对其应用的链路要求）的有效解决方案。这样的波束成形训练机制要求灵活性和模块化，从而使具有功能限制的装置可以按选定性能实现它的期望的训练过程。

根据本发明的至少一个示例实施例，来自控制点（诸如 PCP）的波束成形训练的发射可以促进在具有波束成形能力的站台中的定向波束操控和选择。为了增加覆盖的范围，60GHz WLAN AP 110 和 STA 将都可能配备有具有波束操控控制机制的双单元天线系统，图 2 中示出了其例子。在两端的高定向天线增益可以用于克服常在毫米波频带中实际存在的路径损耗。由于波长较小（60GHz 中为 5mm），可以在集成到 RF 前端的较小区域中，以线性或平面阵列配置来集成大量天线单元。如图 2所示，天线系统的多个或多个天线可以被调整以便在这些天线射出的信号之间造成相长干涉（constructive interference）。相长干可能由于定向在特定方向上具有原始包的组合幅度的新波形（例如，如图 2 的 116 处所示），其在该方向上形成波束“波束”。在利用多个扇区天线配置的装置中，可以简单地通过以下方式来实现波束成形，切换到对于在波束成形训练操作期间被确定为最佳的方向上的天线扇区。

图 3 中公开了用于配置通信波束的系统的例子。在 STA-A 110 中的数字信息可以在数模转换器（D/A）300 中被转换成模拟信号信息。来自 D/A300 的模拟信号信息可以在求和元件 302 中被组合成信号模拟信号用于传输。在阵列波束成形中，在发射机处使用预定义的权重向量 w（如在 304 所示）以及在接收机处使用 v（如在 352 所示）来控制对于多个天线单元的馈送输入信号的相位。相位控制 306 和 360 可以调整增益向量 304 和 206，以便使朝着发射和接收的期望方向的天线增益最大化。

然后，可以将模拟信号从天线单元 319 发送到天线单元 350。如图 3 所示，本发明的各种实施例可以使用波束训练或波束成形训练来在特定方向上引导信号 116 和 318，以便使信号的质量最大化。然后，可以由 STA 100 中的元件 354 和 356 来求和并组合信号信息，所得到的模拟信息被模数转换器（A/D）352 转换回用于由 STA 100 使用的数字信号。发射能量可以集中于视线或较强的反射路径，而其它多径得到衰减。所使用的波束成形向量集合取决于阵列几何（诸如线性、圆形或平面阵列）以及所期望的波束方向。对于实际实现，在毫米波频带中可以使用通过集成射频（RF）移相器进行的波束切换。例如，相控阵列（phased array）可以被设计成包括波束成形控制资源，该波束成形控制资源被配置以便操纵来自一组多个固定波束的波束。这样的开环方案由于其简单性和低成本而对于
60GHz WLAN 系统中的实现来说是有吸引力的。由于不会需要来自接收机的信道信息的反馈，因此可以实现这些益处。

[0037] 在诸如 STA-A 110 和 STA-B 100 的两个装置可以开始根据定向通信波束来发射数据之前，必须在初始训练相位期间估计最高质量发射和接收波束或扇区方向。下面描述了按照本发明的至少一个实施例的一个示例配置。其它例子可以包括例如：在两个站台之间、在站台与充当 PCP 的另一站台之间等发生的通信。

[0038] 私有基本服务集合 (PBSS) 网络结构（诸如在图4中公开的例子 400 中）是当前正在实现的架构。在该示例结构中，一个站台 (STA) 可以假设成 PBSS 控制点 (PCP) 的角色。PCP 可以经由信标和公告帧来提供用于 PBSS 网络的基本定时。另外，PCP 可以管理 PBSS 网络的服务质量 (QoS), 波束成形、空间重用、功率管理以及接入控制特征。通过类似 TDM 超帧结构（具有对信标时间、波束成形训练时间、管理帧公告时间、数据服务时段以及基于竞争的信道接入时段的分配），可以促进信道接入。图4中公开了可以以这种方式使用的示例超帧 402。

[0039] 波束成形协议以及促进对这些协议的使用的相应帧格式可能不支持所有的设备能力。本发明的各种示例实施例可以在诸如对于在毫米波 WLAN 系统中建立的 PBSS 网络的那些区域中提供波束成形训练支持。尽管已经并且将在此排他性地讨论 WLAN，但是当描述本发明的各种示例实施例时，该焦点仅出于解释的目的。因而，在这些例子中使用 WLAN、VHTWLAN 或 PBSS 并不意在限制这些实施例的范围。

[0040] 现有方法基于单个协议流，其包括执行仪来自发射 (TX) 侧的粗略扇区训练，这后面是接收 (RX) 侧和发射侧天线权重向量 (AWV) 的持续精化 (refinement)。在完成了用于波束成化的迭代时，从检测到精化的结束的站台发射最后的波束成形完成帧。然后假设接收站已经将其天线配置设置成在粗略扇区训练期间进行全向接收。然而，电池供电的设备可能具有射频 (RF) 硬件限制。例如，电池供电的装置通常仅在有限的定向 (例如，扇区) 覆盖上具有固定波束接收能力。在扇区化天线设备中出现的另一限制是可能并不应用全向接收假设。

[0041] 此外，常规的波束成形系统利用了将TX 扇区级训练耦合到波束精化处理的单个协议流。因此，即使在训练开始之前，站台也必须估计将如何完成特定方面波束精化处理。后者的处理通常取决于在粗略训练结束处所获得的链路信噪比 (SNR) 的质量，以及站台的数据速率要求。可以通过将扇区级粗略级与精细的波束精化处理相分离来模块化地设计波束成形协议，这可能允许更简单的实现以及在不同装置之间更好的互操作性测试。基于所假设的接收机配置而仅指定一个协议可能是有问题的，因为随后可能从波束成形的益处中排除具有有限资源、能力、功能性等的设备。在波束成形处理的两侧上的预期动作顺序在现有系统中可能非常严格，这妨碍了在功能受限的装置中可能常见的对功率消耗效率、处理需要和天线配置的有益采用。

[0042] 根据本发明的至少一个实施例，粗略扇区级训练可以按照从已知的第一站台开始且其它站台跟随的固定顺序而双向的。在完成了从反向方的扇区级训练之后，在前向方向上提供反馈响应，且具有对确认帧的请求。结果，粗略扇区级训练现在可以从波束精化处理中脱离。此外，来自第一站台的一个或多个反馈响应可以允许基于其选择而灵活地控制来自其它站台的发射扇区扫描帧。训练帧和消息的交换可以允许对信道互惠的有益采
用，并且可以进一步降低粗略训练更快地完成，然后，粗略训练可以移动到精化级训练，或者替代地，在没有任何精化处理的情况下发起数据传输。

[0043] 还可以提供对于可能不能进行全向 RX 模式训练的接收机天线配置的新模式扇区级训练，以及在两个对等站台之间必要的初始训练设定交换。还可以提供用于设定相位的方法，在此期间，牵引到 PCP 用于促进训练设定。如果基于竞争的信道接入时段被用于训练，则 PCP 可以提供介质预留 (medium reservation)。当使用其它信道时间分配策略来实现时，PCP 可以转发设定请求/响应帧，并且可以进一步分配用于训练的服务时段。基于从发起方站台接收到的请求以及从响应方接收到的基于其选择和/或能力的响应，可以允许不同的模式用于训练。扩展的波束成形训练帧设计可以用于实现实现侧扇区扫描或 AVW 选择。诸如下所描述的过程可以支持对于具有不同天线配置和偏好的站台的训练。

[0044] 本发明的各种示例实现还可以提供这样的机制，即，对于具有固定波束接收配置或仅 Rx 方向操纵的设备的站台，所述机制对相对于 PCP 的前向扇区方向的离线跟踪进行辅助。该功能性可能在 PHY 头部中需要用于特定管理和/或训练帧的字段，可以使用控制 PHY 来从 PCP 发射所述特定管理和/或训练帧，其中，附加字段可以含有针对用来发送该帧的当前 PCP 扇区的前向扇区标识 (SECID) 信息。然后，可以通过在宏中对被扫描提供扇区标识 (SECID) 信息来缩短训练帧交换。例如，站台中的算法可能能够通过利用被扫描先发性地 (preemptively) 获得信息来加快波束成形处理。可以在毫米波 WLAN 系统中实现低数据速率控制 PHY 物理层协议数据单元 (PPDU) 格式。在没有任何波束成形增益的情况下，在站台可以使用波束成形化链路开始之前，需要某个通信链路来建立关联和/或波束成形训练。控制 PHY 可以提供稳定的低速率承载，用于交换管理和控制帧 (例如：信标、关联请求/响应、公告帧) 和用于在站台之间的波束成形训练之前以及在此其间交换信息。为初始粗略训练所交换的帧可以利用这样的控制 PHY 承载。

[0045] 波束成形可涉及在扇区级处的初始粗略训练以及精细的精化训练 (以 Awv 为例)。在此公开的本发明的各种示例实施例集中于粗略训练步骤。与致力于解决所有波束成形训练需要的单个协议流不同，初始粗略训练步骤可以脱离于后续的精化训练步骤。

[0046] 基于本发明的各种示例实施例，双向发射扇区扫描步骤可以被认为是当尚未利用在先请求来设定训练机制时会使用的缺省或常用训练模式。如上所述，该方法脱离于后面的波束成化，并且还可以被修改成允许对于站台的附加控制和灵活性。该操作模式可能不需要对站台能力的任何先验知识，并且可以用于提供在 PCP 与 PBSS 中的其它站台之间的波束成形训练，从而使得所有站台可以与 PCP 同步。打算将扇区训练的缺省模式用于在 402 处和在图 5 的例子中所示出的信标间隔 (BI) 的波束训练 (BT) 和关联波束成形训练 (A-BFT) 间隙。

[0047] 初始粗略训练的至少一个目的是在站台之间发起或重新建立控制 PHY 链路。利用可允许模块化设计的所添加的灵活性，在该阶段考虑经修改的双向扇区扫描，其中，站台可能能够控制训练并且促进协议互操作性。扇区级训练的示例缺省模式包括诸如图 9 中 900 处所示出的流程。已知的发起扇区训练的站台 (例如，图 9 中的 STA-A) 可以使用发射扇区扫描 (TxSS) 来开始传输波束成形训练 (BFT) 帧。在无需计算和交换涉及波束精化步骤的参数的情况下，可以修改 BFT 帧而具有仅对执行扇区级训练是必要的字段 (例如，如图 10 中所公开的示例字段参数 1002 中所示)。发起方可以发射覆盖不同扇区方向的一个或多个
在结束了所有预选或指示的 TXSS BFT 帧之后，响应方站台（例如，图 5 中的 STA-B）可以开始发送至少一个 BFT 帧。所述至少一个帧可以含有反馈字段，诸如在扇区扫描（SS）控制字段中的 BS-FBCK 子字段（例如，参见图 10 中的帧 1000），其通知了响应方站台已经从发起方（STA-A）接收到的最佳扇区（例 260 如 BS_{k->φ} 帧的标识符。在结束了来自 STA-B 的预期（或指示）的 BFT 帧之后，发起方站台发送“BT 反馈帧”，其包括与发起方站台在来自 STA-B 的反馈中已接收到的最佳信道号相对应的扇区方向（例如，通过 BS_{k->φ} 发射）。在 BT 反馈帧之后，STA-A 可以请求来自 STA-B 的即时确认。在这样的实例中，可以从 STA-B 根据其最佳扇区（BS_{k->φ}）来发射确认帧，其然后可以允许 STA-A 测试接收质量，这可以在稍后（例如，在决定精化训练是否是必要的时）使用。

响应方站台可以利用来自发起方站台（例如，PCP）的预期的“BT 反馈帧”，以便其在信道互惠下可以灵活采用。可能有两种选择，包括：在反向模式下实现规则的 TXSS 发射，直到已经发射了所有帧（也就是，例如，如果 STA-B 表达对缩短 RX 训练没有偏好的话）。STA-B 可以在反向模式下发射一个或多个 TXSS BFT 帧，在此期间，用于所述帧的计数器被设置在 SS 控制字段的子字段内（例如，在 1002 处示出的 SEC-CDOWN）。STA-B 可以等待，直到其从 STA-A 接收到反馈。如果在时间限制（例如，预定的时间限制）内没有接收到反馈，则其可以继续伴随 TXSS 训练在附加的扇区方向上发射反馈。STA-B 还可以利用其接收到的有关 STA-A 的任何被动扫描知识，以便减少 TXSS 训练的持续时间。在 STA-B 中的互惠配置可以允许其快速地进行向 STA-A 发送 RX 波束精化训练请求，从而使得其可以完成更精确的对最佳 RX 方向（这也将是最佳 TX 方向）的确定。

对于发起方（STA-A）来说，可以请求来自 STA-B 的即时确认（例如，基于在发起方中设置的偏好），BT 反馈帧（例如图 7 中在 700 处示出）可以用于此目的。请求确认可以用于完成 / 测试链路，或者如果发起方具有互惠配置，则其可以用于测试作为在先波束训练处理的结果而确定的最佳 RX 方向。

图 6 的例子中所示，在扇区级训练的缺省模式期间使用正常的 BFT 帧。在 600 处示出了帧的一般结构的例子。由于在波束训练（BT）时间期间还由信标帧提供了 TX 扇区扫描，因此基于在 BT 期间或 BT 之外是否可使用该帧，按照需要，媒体接入控制（MAC）帧有效载荷含有调度和其它信息元素。在规则的 A-BFT 或 BFTT 时间期间发射的 BFT 帧将具有更短的 MAC 有效载荷。SS 控制扩展字段构成了用于 SS 控制的附加参数，其可以用于提供更多的信息，诸如针对备用（第二最佳扇区）链路。

在图 6 中 600 处示出的 SECID 字段的使用可以用于帧的扇区标识。在图 6 中 602 处示出了可在 PHY 头部中实现的 SS 控制字段参数的例子。在 SS 控制字段中可以包括下面的示例参数字段：

- B0 可以定义前向（FWD）或反向（REV）方向。
- B1-B2 可以定义 BFT 帧的类型，诸如 TXSS、扩展型 BFT 或 BT 反馈。
- B3-B8 可以为将要尾随的那些扇区扫描帧定义倒计数值。其对于每个扇区帧可以是倒计数的。
B9-B14 可以定义由 SECID 所标识的所选最佳扇区。
B15 可以定义确认的请求。

[0058] 在初始扇区级训练期间，还可以使用控制 PHY 来发射 BT 反馈帧，具有在图 7 中 700 处示出的结构。PHY 头部可以如在其它 BFT 帧中那样含有用于最佳扇区的反馈（BS-FBCK）。如在图 7 中 700 处所示，通过在 BT 反馈帧的 MAC 帧有效载荷内携带的 BT 反馈信息元素（IE），可以提供用于提供详细反馈信息（诸如最佳扇区的 SNR 级别，次佳扇区 id 及其 SNR 级别）所需要的附加字段。基于站台的偏好或要求，对 BT 反馈 IE 的使用可以是可选的。

[0059] 上述缺省模式操作可以提供一种机制，用于当接收机天线配置在两侧都支持全向接收模式时建立粗略波束成形化链路。然而，其可能不支持具有无法进行全向接收模式的天线配置（包括固定波束 / 扇区设备）的站台。根据本发明的至少一个示例实施例，基于请求的方法（其中不同的训练模式）可以允许对相互偏好和能力知识的有益采用。当使用缺省模式的训练没有完成时，还可以实现从站台到 PCP 的基于请求的方法。

[0060] 当与 PCP 进行交互以便完成波束成形训练时，基于请求的训练机制可以允许站台使用替代的训练方法。训练方法可以进一步基于所参与的站台的相互偏好（例如，当设定可能要求 PCP 的特定角色是支持者）。

[0061] 在仅定向接收的设备的情况下（例如，能够进行扇区切换或能够进行波束操纵，但是没有配备有全向天线），由于硬件天线配置（扇区化天线或由不灵活的波束控制电路）而可能不进行信号的全向接收。结果，训练方法可能需要支持接收方向跟踪和 / 或接收扇区扫描。装置的功率消耗效率也可以是训练期间的关注点。如果站台处于互惠配置中，则接收侧训练可以提供用于发射方向的足够的分辨率，因此可以不进行适当的反向方向训练模式。另一方面，如果站台处于全互惠配置，则可以不消除但是可以减少前向方向训练。

[0062] 在开始波束成形训练之前，在所参与的站台之间需要训练设定处理。该处理可涉及基本设定消息的交换，其包括如图 9 中 900 处示出的对至少一个训练模式的选择。训练过程可以涉及一系列步骤。当示例情况下，站台可以在信标间隔期间的某个点处发起与对等站台的波束成形训练协商，例如，在基于竞争的时段（CBP）期间、在未使用的时段从 PCP 接收到的轮询帧期间，或者由 PCP 所分派的服务时段（SP）。当站台不是 PCP 时，设定可以包括交换粗略级训练请求消息。所述消息请求该站台充当训练信号源或目的地。

[0063] PCP 的角色 / 责任取决于信道接入时间。在 CBP 接入期间，可以通过发送“清除发送 (CTS)” 帧来管理对于从 STA-A 接收到的“请求发送 (RTS)”帧的处理以及在所请求的时段中被发射到其它站台（包括 STA-B）的 NAV 预留（例如，STA-A 可以按照 BFT 训练的需要来请求 TXOP）。在接收到具有 STA-B 的目的地地址的 CTS 之后，STA-B 将进入接收模式。在图 10 中的 1000 处公开了可能对网络 PCP 来说所要求的最小角色。当发起方站台将 BT 设定请求直接发射到另一站台时，BT 设定请求帧可能需要在不同扇区方向上重复，直到接收
到响应帧。除了在 CBP 期间用于训练的介质预留之外，可能的是：在 CBP 接入期间用于训练的设定交换还可能涉及来自 PCP 的附加辅助。例如，STA-A 可以首先利用 PCP 获得 TXOP 以便交换对目的地 STA-B 的 BT 设定请求。PCP 然后可以接入信道并且将 BT 设定请求帧转发到 STA-B，并且可以进一步接收 BT 设定响应帧。还可能存在以下情况：在 BT 设定阶段中根本不会涉及 PCP。

[0064] 对于其它信道接入（用于动态 SP 或规则 SP）时间，PCP 可以将 BT 设定请求帧转发到其它站台。PCP 可以进一步从 STA-B 接收 BT 设定响应帧，并且可以进一步通过插入用于 BFT 训练（动态或规则 SP）的所分配的 SP 调度来将 BT 设定响应帧发送回给发起方（例如，STA-A）。

[0065] 来自发起方站台的 BT 设定请求可以包含所请求的 BT 模式和用于训练的所期望的参数。可以在 BT 设定响应帧中携带涉及对等站台的能力的所接受的参数。PCP 可以对于训练提供必要的服务时段（SP）或发射机会（TXOP）限制信息。根据所图示的例子，当 STA-A 和 STA-B 已经建立了与 PCP 的波束成形化链路时，可以使用规则的高吞吐量 (HT) 数据 PHY 通过 PCP 来完成 BT 设定请求 / 响应帧。如果任何站台仅具有朝向 PCP 工作的控制 PHY 链路，则所述站台可以使用控制 PHY 数据速率来发送 / 接收这些帧。进行请求的站台可以基于不同训练目的或上述设备限制来使用 BT 模式控制参数。

[0066] 可以在两个对等站台之间实现训练帧发射的不同顺序或序列。例如，在图 8 中公开的非对称训练模式 800 可涉及发射侧和接收侧操作。在训练的已知开始时间处，响应方站台（例如，STA-B）可以使用覆盖不同扇区方向的发射侧扇区扫描来开始发射 BFT 帧。可以在每个方向上发射“扩展型 BFT 帧”（在图 11 的 1100 处公开的例子），其后面可以是在已知的 BIFS（波束形成间空间）间隔之后的下一方。每个扩展型 BFT 帧可以包括在同一定向上发射的前导和 PHY 头部重复，以便允许在 STA-A 中按其接收模式进行在 N_RxDIR 方向上的扇区扫描或波束操作。在图 11 中的 1102 处公开了 PHY 头部重复的例子。对于 BFT 帧的每个分段的时差来说，当接收到的信号在特定时延之上时，进行接收的站台可以确定在相应波束或扇区方向上的其接收信号质量。进行接收的站台可以仅接收从一个或几个发射扇区方向发射的帧。

[0067] 接收机站台可以跟踪帧的信号质量以及何时其可以成功地接收至少一个或多个 BFT 帧（具有相应的 SEC-CDOWN 和 SECID）。在反馈和测试阶段期间，在预期的结束时间之后或者在接收到最后一个 BFT（例如，具有 SEC-CDOWN = 0 的帧）之后，接收机站台可以用指示了最佳扇区（BSB → A）的 BT 反馈帧来做出响应。在 BT 反馈帧之后，STA-A 可以进一步要求来自 STA-B 的立即确认，在该情况下，STA-A 可以根据所接收到的确认 (ACK) 帧来测试反向 (REV) 链路信号质量。

[0068] 在图 10 的 1000 处示出了基于请求的扇区训练的另一例子。在扇区级训练结束之后示出了接收侧波束成形步骤的例子以便图示可能的选择。首先从对等站台请求 TxSS BFT 帧的目的可以是：在 REV TX 侧扇区选择的情况下建立 REV 链路，之后在前向 (FWD) 方向上发送几个帧，直到接收到反馈，从而使得更快地完成粗略训练。然后，如图所示，STA-A 可以具有以下选项：仅单独请求来自 STA-B 的 RX 波束成形训练。

[0069] 对于用于基于请求的训练的帧格式和关联字段来说，可能的结构可以包括：正常 BFT 帧和具有用于在一个方向上的粗略 TxSS 的仅一个前导的控制 PHY 帧格式；扩展型 BFT
帧：具有用于允许接收机的粗略 RxSS/AWV 选择的不止一个前导和头部的控制 PHY 帧格式；
BT 反馈帧：仅含有最佳扇区反馈，可选的 SNR 反馈，可选的扇区反馈以及备用链路（目标扇区）的 SNR 反馈；BT 设定请求帧：关于所期望的模式和参数的信息，以及 BT 设定响应帧：所支持的参数和模式。

[0070] 为了支持粗略的接收方向扇区扫描或 AWV 选择，可以采用扩展型 BFT 帧。考虑了
d 扩展型 BFT 帧的两种变体，对此的选择可以取决于在接收机中所支持的实现复杂度。第一
变体（其示例结构如图 11 中的 1100 处所示）对 Ext-BFT 帧的所有分段使用相同的前导。
由于在所分派的时隙中扩展型 BFT 的流程发生在两个已知扇区之间，因此可以移除用于地
址的 MAC 有效载荷。MIFS 代表了要用来允许 RxSS 时间的最小帧间空隙。持续时间取决于
实现，在最佳情况下其可以被设置成“0”。

[0071] 扩展型 BFT 帧格式的另一变体对短训练字段使用了逐渐减少的长度，如在 1102 处
所示。给定了控制 PHY 短训练字段（STF），其含有长度 128 的互补 Golay 序列 Gal28 的 Nc
个重复。然而，下一个前导可被缩短 12，并且下一个被缩短 13，等等。STF 的数目不一定
小于用于正常的 IT PHY 帧的 Gal28 的 Nc 个重复。在每个前导中逐渐缩短的 STF 可以利用
来自在先前格式的部分检测和 CFO 估计知识来允许接收机在每个后续的 RX 方向上同步。
为了缓和在接收机处的同步，可以在一个或多个初始分段处使用更长的前导。

[0072] 在图 12 的 1200 处示出了 BT 设定请求帧帧的一种变体结构。BFT 请求信息元（IE）字
段 1202 可以包括 BT 模式控制，其包括训练的顺序，哪些方向用于训练，每个 BFT 帧的所请
求的或所支持的发送扇区方向或接收方向的数目（在 1204 处提供了其配置的例子）。例如，
当进行请求的 STA 是具有向 RX 能力并且会愿意使用全向 RX 模式时，其可以将其“RENV
RxDIR”值设置成 0（以便指示一个 RxDIR）。FWD RxDIR Limit（限制）子字段可以指示进行
请求的 STA 是支持对扩展型 BFT 帧的发射（在 FWD RxDIR Limit 所设置的最大度的情况下）
还是否支持对扩展型 BFT 帧的发射（FWD RxDIR Limit = 0）。还可以包括可选的扇区
训练映射（扇区 id 的列表，例如，最大值可被设置成 8）。当有 PCP 分派源 SP 并且用于 BT
模式控制字段的所支持的参数将被使用时，BT 设定响应帧结构类似于具有用于调度信息的
附加 IE 的 BT 设定请求帧的结构。

[0073] 可以基于来自发起方站的 BT 设定请求（其被用于不同模式的训练和顺序）来
确定扇区在不同 BT 模式的请求上的内部偏好。该请求还可以用于缺省的双向模式，以便通过
具有完全的全向 RX 能力的站台在 FWD 和 REV 两种链路中进行训练，或者仅对一个方向进
行训练（例如，仅方向或仅反向）。还可以涉及首先发射 TxSS 帧，且具有对所支持扇区的最
大数目的指示。然后，STA-B 将发送 RxSS 帧。STA-A 发送具有可能的 ACK 请求的反馈。对
对其它训练模式的请求可以包括训练的目的，以便建立/改进 REV 链路，或者支持仅 DIR-RX
的配置，或者用于在 FWD 方向上采用信道互惠。

[0074] 在 BT 设定请求帧中的 BT 模式控制字段可以用于请求 STA-B 在所有的或所选择的
扇区上发送扩展型 BFT 帧，以便允许 RxSS（例如，如在 800 处所示）。如果发起方仅具有一个
天线（例如，全向 TX 和 RX），则其可能仅需要用于 TxSS 的来自 REV 方向的训练。如果需要
的话，接下来可以是从 STA-A 发送用于 STA-B 的 RX 细调的训练序列。便携式或手持设备可
以例如更偏好从等站台接收训练帧从而节省电力，而不是从自己侧发射 BFT 帧。

[0075] 互惠指的是以下情况：相同的 RF 链被用于发射和接收操作。在有利的信道条件
下（例如，接近视线传播），这样的配置可导致最优的接收方向也是最优的发射方向，并且
反之亦然。当存在互惠条件时，可以减少波束成形训练。其还可以允许使用根据从另一侧
接收到的训练的 RxSS/AWV 选择，而不是从自己一侧提供完全的 TxSS。在接收模式期间处理
的训练可以节省便携式或手持设备中的资源。如果装置仅部分互惠并且首先完成了 TxSS，
则在处理扩展型 BFT 帧时，站台可以利用仅使用朝向最佳 TX 扇区方向而成簇（clustered）
的 RX 方向的更小子集，从而最小化用于 RxSS/AWV 选择的训练。相反，如果 RxSS 首先得到
完成，则可以利用在最佳 RX 扇区周围成簇的 TX 方向，通过发送减少了数目的 BFT 帧，从而
最小化TxSS/AWV 选择。通过允许进一步利用信道互惠，上述不同的扇区训练模式可以提供
进一步的灵活性。

[0076] 根据本发明的至少一个示例实施例，在各种训练帧和特定管理帧中可以使用
SECID 字段，其可以是 PHY 头部的一部分。如图 6 中的帧 600 中、图 7 中的 700 中以及图
11 中的 1100 所示，SECID 字段指示了在使用控制 PHY 从 PCP 发射的帧的扇区方向。通过委
任（mandating）PCP 在内部维持其粗略发射扇区 ID 的固定分派并且宣告被定向发射的帧
的 SECID，可以允许特定设备类别受益于对用于波束成形训练的这样的帧的被动扫描。将
“SECID”字节包括在由 PCP 所使用的帧的 PHY 头部从而发送波束成形训练帧及特定管理
和控制帧的原因可以包括；在 PBSS 中为站台提供关于朝向 PCP 方向的定向认知。特别地，
固定波束设备或仅 DIR-RX 的设备（当其当前的 RX-DIR 指向（pointing）可以检测到这
样的帧时）可以被动地扫描这些帧，以便标识来自 PCP 的帧的 FWD 链路扇区 ID。这样的站
台可以被动地跟踪它们朝向 PCP 的接收方向采集（directional acquisition）。该原理还可
以被扩展用于其它非 PCP 站台以便相互认知（mutual awareness），其可以有助于空间重
用、干扰避免等。

[0077] 在 BFT 帧中 PHY 头部的 SS 控制字段中的 SEC-CDOWN 字段（如在图 6 中的 600,602，
图 7 中的 700, 图 11 中的 1100 以及图 12 中的 1204 处所公开的）可以提供被发射用于扇区
扫描训练的帧的数量的倒计数。然而，SEC-CDOWN 字段可以仅由在训练中涉及的站台来正
确地解释。PCP 可以在一个信标间隔期间利用 TxSS 帧的子集，并且在另一信标间隔中使用
扇区的另一子集。因此，对帧的 SEC-CDOWN 计数器的指示是不够的。对于在 AT（公告请求
和响应帧）中使用的其它管理帧，在 CBP 期间用于介质预留的由 PCP 使用的 CTS 帧，不仅
使用 SEC-CDOWN 字段，对此，SECID 字段将提供这样的优点。在 PHY 头部中的“SECID”字节将
提供针对由仅 DIR-RX 的设备进行的被动定向认知和跟踪所需要的辅助。在图 13 中的 1300
处示出了例子，其中，固定波束设备可以检测 FWD SEC-P1 中的帧，以便用于其与 PCP 的波束
训练。

[0078] 被动扫描算法可以用于仅 DIR-RX 或固定波束设备从而进行 BFT 训练支持。例如，
为了 BFT 训练和关联而正在尝试搜索 PCP 的那些设备可以通过解码在 BFT 的 PHY 头部中的
“SECID”字段来扫描来自 PCP 的帧，以及在信标 A-BFT、AT、CBP 和 BFTT 时段期间的其它管
理或扩展帧。基于接收质量，这些设备可以在其 Rx-DIR 上进行扫描并且为来自 PCP 的不同
FWD 扇区 id 计算信号质量。被动扫描还可以提供来自 PCP 的 FWDSECID 的列表（具有可接
收到的相对信号质量）。

[0079] 对于仅 DIR-RX 的 STA，通过被动扫描获得的信息可以提供关于其可从 PCP 最佳地
接收到帧的 RX 方向的通知。基于被动扫描结果，其可以更有效地发起 BFT 训练和关联。特
别说，在 A-BFT 时隙期间，装置可以向 PCP 发送反馈和所要求的 BF 训练模式，以及关于在一个扇区上的训练的指示（通过使用例如在 1406 处示出的“扇区训练映射”，以及在 BT 设定请求帧中的 FWD 扇区方向的列表）。装置可以进一步向 PCP 发射“BT 设定请求”帧，用于在以下情况下发起 BFT：伴随关于在所有扇区上的训练的可能指示而在竞争时段，当站台具有互惠配置或部分互惠条件时，在训练时间期间从自己一侧（例如，对于 TxSS，装置可以发起在减少的扇区方向集合上簇的 TxSS BFT 帧的发射，在所述减少的扇区方向集合上，其能够在自己的被动扫描或跟踪周期内接收到来自 PCP 的帧）；或者如果基于现有扫描知识仅可以在有限的 Rx 方向上进行 RxSS 或 AWV 选择的话，则用于接收来自 PCP 的扩展型 BFT 帧。

[0080] 根据本发明的至少一个示例实施例，图 14A 中公开了从响应方装置的视角来看的处理的流程图。在步骤 1400 中，响应方装置可以从另一装置接收对波束成形的请求。不一定要定义响应方装置是端台还是 PCP，因为两者都可以相对于所公开的处理而类似地起作用。然后，可以在步骤 1402 中启动波束成形处理。然后在步骤 1404 中确定关于所接收到的请求是否指定了经更改的训练序列。例如，当处于被动模式中时，则进行请求的站台可能已经接收到控制和/或管理帧，这允许其缩小可能用于与响应方进行通信来说是最佳的可能方向的扇区。然后，该信息可以用于在请求消息中提供经调整的参数，所述经调整的参数减少了必须在其上发送训练帧的定向分区的数目，从而减少了训练帧的总数，等等。进一步地，该请求消息可以指定由发起方所请求的特定操作模式。例如，由于装置的条件（例如，功率级别）而可以请求特定模式。如果在所接收到的请求消息中的信息指示应当更改训练集合，那么在步骤 1406 中，根据请求消息中阐明的参数，可以选择波束方向集合。替代地，在步骤 1408 中，可以选择标准波束方向集合。

[0081] 不管是实现更改的还是标准的波束方向集合，该处理都可以进行到步骤 1410，在该步骤中，发射波束训练帧集合。例如，可以在所选择的波束训练方向中的每一个上发射至少一个波束训练帧。另外，每个波束训练帧可以含有至少一个独特的标识符。然后，在步骤 1412 中，响应方装置（例如，站台或 PCP）可以等待响应（例如，接收到反向波束训练帧）。如上所述，可能存在以下情形，通过由发起方所提供的参数，可以更改该处理。例如，发起方可以指示：由于例如关于消耗发射功率的问题而不会发送反向波束训练帧。

[0082] 假定对反向帧有所期望，并且随后接收到反向帧，则该处理可以进行到步骤 1414，其中，可以从响应方向发起方发射响应消息。响应消息可以至少标识最佳信号方向（例如，可以包括由与最高质量接收信号相对应的一个或多反向帧所提供的标识信息）。该响应消息可以进一步请求发起方将确认发送回给响应方。在需要确认的情况下，可以实现可选步骤 1416。在步骤 1416 中，该处理可以继续，以便发射响应并等待确认，直到接收到确认。然后，该处理可以返回步骤 1400，以便等待进一步的波束训练请求。

[0083] 进一步针对以上内容，现在在图 14B 中公开了根据本发明的实施例可使用的另一处理的流程图。然而，图 14B 中的处理取自示例发起方装置的视角。在步骤 1420 中，可以在发起方装置中激活波束训练处理。波束训练处理可以触发对于发射到响应方装置的波束训练请求的形成。波束训练请求可以包括例如在定制波束训练处理中响应方装置可使用的信道。在波束训练中可包括的信息可以包括但不限于：特定波束训练模式、波束训练帧的数目、减少的波束训练方向集合，等等。波束训练模式的例子包括：自向波束训练模式、反
向波束训练模式或单向波束训练模式。根据关于其它装置操作在递减模式下的知识，根据与发起方相对应的诸如当前装置条件等的其它准则，可以通过当装置在被动模式下操作时所接收到的控制或管理帧来提供或指示该信息。在步骤 1422 中发射波束训练请求可以取决于无线网络的拓扑。例如，ad-hoc（诸如 PBSS）网络可以包括 PCP，并且因此，可以通过 PCP 来路由所有请求，而与请求来自哪个特定站台的波束训练无关。在含有其它中央控制器（如接入点）的无线网络中可以存在相同的协议。

【0084】在步骤 1424 中，发起方可以等待对训练集合的接收。该步骤可以包括等待特定的持续时间以及重传请求消息等。对波束训练集合的接收（例如，从一个或多个波束方向接收到的一个或多个波束训练帧）可以允许发起方在步骤 1426 中实施波束训练。如果在步骤 1428 中波束训练成功，则可以在步骤 1430 中发射响应。成功的波束训练可以包括例如成功接收到一个或多个波束训练帧，其中，所接收到的波束训练帧相对应的质量级别低于预定门限级别（例如，最小可接受级别）。然后，该处理可以返回步骤 1400，以便等待针对波束训练的下一个要求。替代地，如果在步骤 1428 中波束训练处理不成功，那么该处理可以返回步骤 1422，以便发射新的波束训练请求。

【0085】因此，对相关领域技术人员将显而易见的是，在不背离本发明的精神和范围的情况下，可以在其中进行各种形式上和细节上的改变。本发明的宽度和范围不应当由上述示例实施例中的任何一个来限制，而是应当仅根据下面的权利要求及其等同物来限定。
图 1B
图 4
图5
正常的 BFT 帧结构

SS 控制字段的内容

<table>
<thead>
<tr>
<th>DIR</th>
<th>帧类型</th>
<th>SEC-CDOWN</th>
<th>BS-FBCK</th>
<th>ACK请求 / 预留</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>B1-B2</td>
<td>B3-B8</td>
<td>B9-14</td>
<td>B15</td>
</tr>
<tr>
<td>详情</td>
<td>0 - FWD</td>
<td>00 - BFT TxSS</td>
<td>SS 帧的倒计数</td>
<td>如果类型 = 10:</td>
</tr>
<tr>
<td></td>
<td>1 - REV</td>
<td>01 - Ext BFT</td>
<td>数值可变</td>
<td>0 - ACK被请求,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 - BT 反馈</td>
<td></td>
<td>1 - 没有 ACK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 - 预留</td>
<td></td>
<td>对于其它类型:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>预留</td>
</tr>
</tbody>
</table>
BT设定请求帧结构

<table>
<thead>
<tr>
<th>1200</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>5-11</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>框控制</td>
<td>持续时间</td>
<td>RA</td>
<td>TA</td>
<td>BFT请求IE字段</td>
<td>FCS</td>
</tr>
</tbody>
</table>

BFT请求IE字段结构

<table>
<thead>
<tr>
<th>1202</th>
<th>1</th>
<th>3</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>元素ID</td>
<td>长度</td>
<td>BT模式控制字段</td>
<td>可选的扇区训练映射（为REV训练所请求的扇区id的列表）</td>
<td></td>
</tr>
<tr>
<td>八位字节:</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

在BFT请求IE字段中的BT模式控制字段

<table>
<thead>
<tr>
<th>1204</th>
<th>训练顺序</th>
<th>FWD/ REV训练</th>
<th>FWD N_TxDIR</th>
<th>FWD RxDIR Limit</th>
<th>REV TxDIR Limit</th>
<th>REV N_RxDIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>比特:</td>
<td>B0</td>
<td>B1</td>
<td>B2-B7</td>
<td>B8-B12</td>
<td>B13-B18</td>
<td>B19-B23</td>
</tr>
<tr>
<td>详情</td>
<td>0 - 首先FWD</td>
<td>0 - 首先REV</td>
<td>0 - 两者</td>
<td>1 - 仅FWD</td>
<td>所请求的值</td>
<td>限制支持 Tx</td>
</tr>
</tbody>
</table>