: PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/21086

29 April 1999 (29.04.99)

(21) International Application Number: PCT/US98/22416

(22) International Filing Date: 22 October 1998 (22.10.98)

(30) Priority Data:

60/063,005 23 October 1997 (23.10.97) US

(71) Applicant: ALCATEL USA SOURCING, L.P. [US/US]; 1000
Coit Road, Plano, TX 75075 (US).

(72) Inventors: HURD, Donald, M., II; 1418 Abilene, Allen, TX
75013 (US). WELDON, Richard, S., Jr.; 5700 Caroline
Court, Plano, TX 75093 (US).

(74) Agent: FISH, Charles, S.; Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S], SK, SL, TJ,
™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND SYSTEM FOR MODELING EVENTS IN A SOFTWARE PROGRAM

(57) Abstract

The present invention comprises a method and sys-
tem for modeling events in a software program. The system
accepts input information associated with a slice of time in
an object—oriented software program in a first format. The
system then separates the information into a first set of ob-
ject information that determines the defined objects used
in the software program, and a second set of interaction
information that specifies the interactions between defined
objects. After successfully accepting and separating the in-
put information, the system formats the object information
and the interaction information into a second format com-
prising a graphical representation of the slice of time in the
object—oriented software program. The graphical represen-
tation of the slice of time in the object-oriented software
program is then displayed.

wir T
x| INFORMATION
ACCEPT INPUT
8~ iomarion
69
SEPARATE
INFORMATION
DETERMINE DETERMINE
12~ “oerNeD ORECT 74
OBJECTS INTERACTIONS
Y
7(B errors?
CREATE
i e o 1
CREATE CRAPHICAL
1 REPRESENTATION [-78
OUTRUT ,—{ ISPLAY OUTPUT FIE gy

¢

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI
cM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
VA4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/21086 PCT/US98/22416

METHOD AND SYSTEM FOR MODELING
EVENTS IN A SOFTWARE PROGRAM

NOTICE

“"Copyright 1997 DSC Corporation.” A portion of the
disclosure of this patent document contains material which
is subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records,

but otherwise reserves all copyright rights whatever.

TECHNICAL FIELD OF THE TINVENTION

This invention relates generally to the field of
computer software and more particularly to a method and

system for modeling events in a software program.

BACKGROUND OF THE INVENTION

Computer systems in general are well known. A typical
system comprises a computer, keyboard, mouse, and a
monitor. Further, the computer might comprise a CPU, and
RAM and allows various software programs to be used.
Software programs are well known and will not be described
in detail. Briefly, a software program allows a computer
to be customized to perform functions and services that a
user demands. Software programs are created using various
programing tools which might include, a programing
language, editors, debuggers, and other tools to assist the

programmer. Software has Dbecome so advanced, that

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

programmers need a visual representation of their program
to help them develop and finalize the software. This is
especially true with object-oriented programming.

Object-oriented programs utilize multiple objects.
Each object is a “black box” that receives and sends
messages. Each object is capable of a specific task, and
by programming software to send various messages to the
objects, a user can have the objects perform various
functions. The user is not concerned with how the object
works, but rather is only concerned with what the object
does. Accordingly, programming in an object-oriented
language 1involves sending messages to and from various
objects.

To simplify the task of programming in an object-
oriented language, it is often desirable to visualize what
objects are being used and how they interact. A use case
is a mechanism for modeling the sequence of events and
objects used in a software program.

Use case modeling is an analysis technique for
eliciting, understanding, and defining (functional) system
requirements. Use cases helps you focus on the usability
of a system, that is what the users want the system to do
for them. A use case model (together with business obiject
definitions) is therefore the best foundation we know of,
for writing a contract between customers and developers.

The use case model defines system requirements but
does not deal with internal system structure. In theory
this means that, based on a use case model, any sound
design method -- structured or object oriented -- can be
utilized to construct the system, as long as the product
can perform all the use cases well (correct, flexible, good
UIl, etc.).

Object orientation represents the best practice for
building high quality systems efficiently. The purpose of

this paper is therefore to show how the use case model can

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

be mapped to an object model. We do this without assuming
any particular method for the object design process, though
we will use the notation of OOSE since we are most familiar
with that. When there is no risk for confusion we use the
term object when speaking of instances as well as of
classes.

Graphical use case programs are known in the art. One
such program is Software Through Pictures®. To build a
successful application its important to have a clear
understanding of your business. You need development tools
with the flexibility, scalability, and openness to change
directions as fast and as often as your business needs
change. Software Through Pictures® provides you this
capability by providing an integrated multi-user
environment sharing a common architecture and central
repository. You choose the modeling method which provides
your organization the best understanding of your business
needs. Current graphical use case programs help a user
develop software by displaying software in a graphic
environment. Nevertheless, currently these programs are
generally incapable of wusing other input and output
formats, e.g., tabular. The graphical environment is
difficult to operate and therefore greatly hinders the
ability of programmers to visualize what is occurring in
the software program. Additionally, many programmers would
better visualize software programs if they had
representations of the program in multiple formats.

Moreover, current graphical use case programs are
difficult to edit and may not be capable of displaying
looping, timing sequences, conditional messages, or
repeated messages. The looping feature allows software
programs to iterate through certain sequences of code in
order to complete a task. For the timing sequence feature,
software relies on interaction from other software

components in a specific sequence. If the service or data

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

is not provided in a certain amount of time, the user
presumes the transaction failed and takes steps to recover.
Conditional messages are messages that may or may not be
sent or may be sent in different formats depending on
certain conditions, including but not limited to states of
hardware elements (including active, out of service, etc.)
or states of software (including start up, shutting down,
etc.). Repeated messages are messages between software
that may need to be repeated, such as when the receiving
software did not acknowledge receipt of the message. Also,
when a user wishes to make a minor change, the entire graph
has to be edited. Therefore, a procedure for making edits
and changes to the input without having to recreate the
input is desirable. Further, features such as looping,
timing sequences, conditional messages and repeated
messages are widely wused 1in software programs and
programmers would greatly benefit from having these
features displayed. Moreover, high and low-level designers
of computer software need use cases that can easily be
edited and can display these needed features in a compact

and informative manner.

SUMMARY QOF THE INVENTION

Therefore, a need has arisen for a new method and
system for modeling events in a software program that
overcomes the disadvantages and deficiencies of the prior
art.

According to an embodiment of the present invention,
there is provided a method of developing a graphical
representation of a slice of time in an object-oriented
software program that includes accepting information
associated with the software program in a first format.
The information is separated into a first set of object
information defining a number of objects used in the

software program and a second set of interaction

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

information specifying interactions between the defined
objects. The object information and the interaction
information are formatted into a second format comprising
graphical representation of the slice of time in the.
object-oriented software program. The graphical
representation of the slice of time in the object-oriented
software program is then displayed.

The preferred embodiments of the present invention
provide various technical advantages. For examples, the
present invention enables the information content of a use
case to be displayed in multiples formats. That 1is,
information can be input into the use case through an ASCII
file, a tabular input, a Framemaker file, or using the
source code of an object-orientated software program. The
system and method of the present invention will generate a
graphical use case from the input.

Other features and aspects of the present invention
will be apparent from the drawings and detailed description

of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention and the advantages thereof, reference is now made
to the following description taken in conjunction with the
accompanying drawings, wherein 1like reference numerals
represent like parts, in which:

Figure 1 1is an overview of one embodiment of the
present invention.

Figure 2 is a flow chart illustrating the steps of a
method for developing a graphical representation of a slice
of time in an object-oriented software program according to
one embodiment of the present invention.

Figure 3a shows an example of a tabular input for a
use case according to one embodiment of the present

invention.

10

15

20

25

30

WO 99/21086 PCT/US98/22416

Figure 3b shows an example of an ASCII input for a use
case according to one embodiment of the present invention.

Figure 3c shows an example of a Framemaker input for
a use case according to one embodiment of the present
invention.

Figure 4a shows an example of the first page of an
error file created when errors are encountered in the
execution of the present invention.

Figure 4b shows an example of the second page of an
error file created when errors are encountered in the
execution of the present invention.

Figure 5 shows an example of the graphical output for
the input from Figure 3a according to one embodiment of the
present invention.

Figure ©6a shows an example of a tabular input
containing conditional messages, repeated messages, and
looped messages for a use case according to one embodiment
of the present invention.

Figure 6b shows an example of the first page of the
graphical output containing conditional messages, repeated
messages, and looped messages for the input from Figure 4a
according to one embodiment of the present invention.

Figure 6c shows an example of the second page of the
graphical output containing conditional messages, repeated
messages, and looped messages for the input from Figure 4a

according to one embodiment of the present invention.

DETAILED DESCRIPTION QOF THE INVENTION

The preferred embodiments of the present invention
provide a method and system for developing a graphical
representation of a slice of time in an object-oriented
software program. According to a preferred embodiment,
this is accomplished by providing a tabular interface for

a user to input information on a software program.

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

Additionally, the system is capable of accepting other
input formats. For example, an ASCII format can be used.
Further, a Framemaker input format can be used. Framemaker
is a documentation tool on UNIX. It provides similar
capabilities that are in Microsoft Word. Its use is to
create tabularized information consisting of rows that
identify the objects/actors and rows indicating messages
passed between objects/actors.

Figure 1 schematically depicts a computer system
within which a method and system according to one preferred
embodiment of the present invention can operate. Figure 1
shows a development network 10 comprising n developers, and
n file servers connected via network NET1 which is, for
example, a wide area network (WAN) or local area network
(LAN) . The development network, NET1, is connected to a

system network comprising inter alia n clients and n

servers connected through NET2 which is, for example, a WAN
or LAN. Development network 10 is used, for example, to
develcp software systems. System network 12 is the network
upon which the software systems developed on development
network 10 operate. Development network 10 and system
network 12 communicate, for instance, via a third network,
NET3. NET3, may also comprise, for instance, a wide area
or local area network.

The system and method of the present invention
typically operate within development network 10. In one
embodiment, the system and method of the present invention
reside on development file server n so that its inventive
features are easily accessible by component developers 1-n.
Systems and methods according to preferred embodiments of
the present invention are not limited in their operation to
computer systems as shown in Figure 1, but may operate on
any suitable computer system. For example, in another
embodiment, the system and method of the present invention

reside in RAM of a stand alone computer so that its

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

inventive features are accessible to all authorized users
of the stand alone computer.

Figure 2 depicts a flow chart demonstrating how the
operation of the present invention occurs according to one
embodiment of the present invention. The system accepts
input information 70 at step 68. The system then separates
the information at step 69 into a first set of object
information, determining the defined objects used in the
software program at step 72, and a second set of
interaction information that specify the interactions
between defined objects at step 74. After accepting and
separating the information associated with the software
program, the system determines if there were any errors
that occurred during operation of the system, at step 76.
If there were errors, the system creates an error
indicator, at step 77, allows the error to be corrected and
waits for the system to be run again. If there were no
errors, the object information and the interaction
information is formatted into a graphical representation of
the slice of time in the object-orientated software, at
step 78. The graphical representation of the slice of time
in the object-orientated software program is then displayed
in step 80 in the form of an output 82. Each of these
steps will now be explained in more detail in conjunction
with Figures 3-5.

At step 68, information associated with a particular
slice of time in an object oriented software program is
accepted as input. The input 70 can take almost any form.
For example, input 70 can include a tabular input file, an
ASCII file, a Framemaker file, or even software program
source code. Figure 3a shows an example of a tabular input
20 according to a preferred embodiment of the present
invention. Definition section 41 defines the framework of
the software program to be displayed and includes a title

row 21, blank row 23, note rows 27, and class row 24.

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

Title row 21 contains the title field 22 for the graphical
representation of the use case. Blank row 23 is used to
divide the title from the rest of the data. Note rows 27
are optional rows to display notes in the graphical output. .
Note fields 28 contain the notes that are to be displayed.
Class rows 24 define the objects used in the use case of
interest. The class fields 25 of the class rows 24 contain
the names of the objects. The order of class rows 24
defines the order the objects are displayed in the
graphical output.

Definition section 42 is used to define the messages
occurring between the defined objects at the slice of time
of interest and includes message header rows 26, a
plurality of message rows 29, and label rows 40. Message
header rows 26 are the headers for messages contained in
the use case between objects. Data 1s not included in
message header rows 26, but rather message header rows 26
are used to indicate that the data that follows will be
messages. Message rows 29 contain data indicating the
messages to be displayed. Message fields 32 are the actual
messages to be displayed. “From fields” 33 contain the
starting points for the messages and “to fields” 34 contain
the ending points for the messages. Label rows 40 are used
to create labels to be displayed before the message that
follows the label row. The contents of the label are
contained in the data stored in label field 41. In any
field, except from fields 33 or to fields 34, a backslash
(M\”) is used to force text onto multiple lines.

According to another embodiment of the present
invention, an ASCII file is used as input 70. ASCII file
150, shown in Figure 3b, contains the same input
information as tabular input 20 but in ASCII code. Some
aspects of tabular input 20 that are used for structure,
however, are not required in ASCII file 150. For example,

the blank row 23 and the message header row 26 are not

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416
10

required in the ASCII file 150. An additional feature of
using an ASCII file input is that the system can output a
graphical output as in Figure 5, a tabular output (looking
exactly like the tabular input from Figure 3a), or both
outputs.

According to another embodiment, a Framemaker file is
used as input 70. A Framemaker file input is configured to
contain the same information as tabular input 20 and ASCII
file 150. Similar to ASCII file 150, the Framemaker file
input does not contain the structured information used in
tabular input 20. Figure 3c shows an example of a
Framemaker input for a use case according to one embodiment
of the present invention.

According to another embodiment the actual source code
for the object oriented software program is used as input
70. That 1is, instead of reformatting the information of
the software program into another format, the source code
of the object-orientated software program could be used as
input 70.

After accepting the information associated with the
software program, in step 68, the system parses through the
software program. In step 69, the system separates the
information into object information that defines the
objects used in the slice of time of the object-orientated
software program, and interaction information that
specifies the interactions between defined objects.

In step 72, the defined objects in the input
information are determined. The defined objects are the
objects that form the skeletal structure of the software
program being displayed. Reference to the skeletal
structure is wused to indicate the background of the
program, for example the title, the notes, and the objects.
In Figure 3a, the information in title row 21, note rows 27
and class rows 24 form the skeletal structure. The list of

defined objects, however, can include any number of

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416
11

different types of objects that form the skeletal structure
of the software program being displayed. The defined
objects can be determined in a number of ways. For
example, according to a preferred embodiment, the defined
objects are determined from the structure of input 70. For
example, when tabular input 20 is used, the defined objects
are determined as the content of class fields 25 of class
rows 24, That is, the "CLASS" indication in class rows 24
serves as a "tag" to facilitate determination of defined
objects. A similar technique is used in conjunction with
ASCII file input 150 shown in Figure 3b and a Framemaker
file input. If source code is used as input 70, the method
of Figure 2 determines the defined objects using the class
definitions from the source code.

In step 74, the object interactions are determined.
The object interactions describe how different objects in
the software program interact, enabling a user to visualize
what is occurring in the software program at a given slice
of time. For example, in Figure 3a, the object interaction
information includes the information in message rows 29 and
label rows 40. The list of object information, however,
can include any number of different types of information
that demonstrate how the objects in the software program
interact at any given slice of time. The object
interactions are determined in any of a number of ways. In
a preferred embodiment, similar to that described above,
the object interactions are determined from the structure
of the input file. For example, when tabular input 20 is
used, the object interactions are determined from the
content following message header row 26. A similar
technique is used in conjunction with other input formats.

After determining the defined objects and object
interactions, the method determines if there are any errors
in the information. If there are errors in the input

information, an error indicator is created. One example of

10

20

25

30

35

WO 99/21086 PCT/US98/22416
12

an error indicator is a use case error file 400 shown in
Figures 4a-b. Figure 4b is the second page of the error
file 400. The error file 400 is useful for identifying
what errors had occurred. Error file 400 is especially
useful for indicating errors in the input 70. Error file
400 is output in ASCII format. The error file 400 contains
all of the information in input 70, but with error comments
402 and 404 added. 1In error message “receiver class does
not exist” 402, the user entered as an option to field 207
“to class” 401. The class “to class” had not been
previously defined in any of the class rows 24. Therefore
the error message “receiver class does not exist” 402 was
output in the error file 400. In error message “sender
class does not exist” 404, the option from field 206 “from
class” 403 had been entered. The class “from class” had
not been previously defined in any of the class rows 24.
Therefore the error message “sender class does not exist”
404 was output in the error file 400. After outputting the
error file 400, the system allows the input to be corrected
and run again. Although the error file 400 is shown in
Figure 4, the error indicator can include any means for
signifying that an error has occurred. For example, the
error indicator could be a visual display or an audible
sound.

If no errors are found at step 76, the system formats
the object information and the interaction information into
a graphical representation of the slice of time in the
object-orientated software program at step 78. The output
82 demonstrate what objects in the software program are
being used and how the objects are interacting.

After formatting the information at step 78, output 82
demonstrating the graphical representation of the slice of
time in the object-orientated software program is displayed
at step 80. Output 82 can also be saved as a permanent

file either on a hard disk or a floppy diskette. Figure 5

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416
13

shows an example of a graphical output 100 created from
tabular input 20 and displayed during step 80. The
graphical output 100 displays graphically what each object
in the software program is and how each objects interacts.
with other objects at a fixed time during the software
program.

The defined objects form the skeletal structure of the
software program at a given slice of time being displayed.
Title 101 is displayed at the bottom of the graphical
output and contains the same information found in title
field 22. If the user has wused any note rows 27,
information in note fields 28 are placed on the top of the
graphical output. Dashed lines 104 of the graphical output
indicate objects 103 in the program. The objects 103 are
derived from the information found in the class fields 25
on the class rows 24. Each of objects 103 form a column in
the graphical output. The objects 103 are displayed from
left to right in the order in which the class row 24
appears in the input 70. That is, the object 103 appearing
on the far left of the display was derived from the first
class row 24 listed in the input 70. The object 103
appearing to the immediate right of the first object 103
was derived from the second class row 24 listed in the
input 70. This ordering continues such that the object 103
displayed on the far right of the display was derived from
the last class row listed in the input 70. This structure
allows a user to easily visualize all of the objects being
used at a fixed time, and in a fixed order. This forms the
skeletal structure of the software program at a given slice
of time being displayed.

The object interactions indicate how different objects
in the software program interact, enabling a user to
visualize what 1is occurring in the software program at a
given slice of time. Messages 105 demonstrate how the

objects interact with each other. An arrow 106 is placed

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416
14

between the two objects interacting; the arrow starts at
the object identified from field 33 in the message row 29
and ends at the object identification to field 34 in the
message row 29. The message 105 is placed between the
objects above and below the arrow 106. A label 107 is
placed before any message 105 contained in a message row 29
that was proceeded by a label row 40 in the input 70. The
contents of label 107 is the information from the label
field 41 in the label row 40.

The system and method of the present invention are
capable of producing and displaying many non-standard
features that are useful in visualizing what is occurring
in a software program at a given slice of time. Some of
these features are demonstrated in Figures 6a-c. Figure 6a
shows another example of a tabular input 200 according to
a preferred embodiment of the present invention. Only
features not explained in conjunction with Figures 1-5 will
be explained in conjunction with Figures 6a-c. The first
non-standard feature is a repeat message. Repeat row 201
is used to denote that a message or set of messages are to
be indicated as being repeated for a specified number of
times. The repeated row 203 indicates the end of the
messages or set of messages to be repeated. Accordingly,
only the messages between the repeat row 201 and the
repeatend row 203 will be repeated. Repeat field 202
indicates the number of times the message or set of
messages are to be repeated. In this example, the message
are to be repeated “For XX” times. Repeats can be nested
as shown using a nested repeat row 218. Nested repeats are
used to depict a repeat within a first repeat. A nested
repeat 1s formed when a nested repeat row 218 is placed
after a first repeat row 201 but before the repeatend row
203 for that first repeat row 201. Nested repeat field 220
indicates the number of times the message or set of

messages are to be repeated, for example “For X” times.

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

15

The second non-standard feature is an option. An
option can be used to denote that a message or set of
messages are performed conditionally. All messages between
the option row 205 and an optionend row 208 are indicated
as being performed conditionally. The option from field
206 indicates where the starting object is and the option
to field 207 indicates the location of the ending object.
Option fields can also be nested to depict an option within
another option, such as with nested option row 216. Nested
option row 216 is an option that is placed after a first
option row 205, but before the optionend row 208 for that
first option row 205.

A third non-standard feature that can be demonstrated
using the method and system of the present invention is
looping. Looping is demonstrated in the message row 29 by
using a class row 29 having the same from field 33 and to
field 34.

A fourth non-standard feature that can be demonstrated
using the method and system of the present invention is the
display of timing sequences. Timing sequences are for
actions that are required to occur in a specified amount of
time. For example, 1f a software component does not
acknowledge a message sent in 10 nanoseconds, the sender
can make some assertions as to the state of the component
to which communication was attempted. The diagram
generated shows the timing constraints (for example, 10
nanoseconds) and describes actions to take should the
timing constraints be violated.

Other features that can be illustrated using the
method and system of the present invention are spaces and
page breaks. Space row 204 is optional and for esthetic
purposes only. Space row 204 creates a white space between
messages to make them easier to read. Additionally, a page
break can be inserted in the graphical output by using a

break row (not shown).

10

25

30

35

WO 99/21086 PCT/US98/22416

16

Figures 6b and 6c show the graphical output 300
developed from the tabular input shown in Figure 6a.
Repeat message 301 1is a repeated message and is created
from the information between the repeat row 201 and
repeatend row 203. “For XX,” indicated by numeral 302 and
written above messages 301 and 311, indicates that messages
301 and 311 are repeated “XX” times. Nested repeat
messages 306 is a repeat message within a first repeat
message and is created from the information between nested
repeat row 218 and nested repeatend row 219. “For X,”
indicated by numeral 207 and written above messages 308 and
312, indicates that messages 308 and 312 are repeated “X”
times.

Options are depicted with a shaded area 303. The
first option is displayed with shaded area 304 and is
created by an option row 205. The shaded area 304 is bound
by the option from field 206 and the option to field 207.
The shaded area 304 contains all the messages between
option row 205 and optionend row 208. Nested option 306 is
displayed using a lighter shaded area 305 and contains all
the messages between nested option row 216 and nested
optionend row 217.

A looping arrow 310 denotes looping and is created by
a message 209 with the same from field 33 and to field 34.
Note that the output 300 is broken into a first page
(Figure 6b) and a second page (Figure 6c). This occurs
because of the length of the output. The output could also
be intentionally split using a break row (not shown).

A system for representing objects and how objects
interact in a software program has been described, and
specific embodiments thereof have been presented with
reference to a UNIX ® environment. Nevertheless, the
embodiments presented are exemplary, and the invention is
not limited to the embodiments presented or to operation in

the UNIX® environment. For example, other types of

10

15

WO 99/21086 PCT/US98/22416

17

environments, for instance, a DOS® environment, could be
established using procedures similar to those explained
above and could be given analogous functionality to the
invention. Additionally, for purposes of simplifying the .
detailed description of the invention, the preferred
embodiments of the present invention are explained with
reference to specific inputs with specific characteristics,
such as a tabular input with three rows. The invention is
not, however, limited in operation by any of the specific
characteristics of the inputs used in the embodiments.
Further, the method and system according to preferred
embodiments of the present invention are not limited to
operation within computers and software programs as the
examples listed with Figures 1 to 6. Other variations of
the present invention are possible and are within the scope

of the invention defined by the following claims.

10

15

20

25

30

35

WO 99/21086 PCT/US98/22416

18

WHAT IS CLAIMED IS:

1. A system for developing a graphical
representation of a slice of time in an object-oriented
software program comprising:

input means for accepting information associated with
the software program in a first format;

means for separating the information into a first set
of object information defining a number of objects used in
the software program and a second set of interaction
information specifying interactions between the defined
objects;

means for formatting the object information and the
interaction information into a second format comprising
graphical representation of the slice of time in the
object-oriented software program; and,

means for displaying the graphical representation of

the slice of time in the object-oriented software program.

2. The system of claim 1 wherein the first format

comprises a tabular format.

3. The system of claim 1 wherein the first format

comprises a Framemaker format.

4, The system of claim 1 wherein the first format

comprises an ASCII format.

5. The system of claim 1 wherein the first format
comprises source code of the object-orientated software

program.

6. The system of claim 1 wherein the graphical
presentation comprises a graphical display that

demonstrates how the objects operate and interact.

WO 99/21086 PCT/US98/22416
19

7. The system of claim 1 further comprising means
for displaying errors in the object information and the

interaction information.

5 8. The system of claim 1 wherein the graphical

representation comprises information on looping.

9. The system of claim 1 wherein the graphical
representation comprises information on conditional

10 messages.

10. The system of claim 1 wherein the graphical

representation comprises information on repeated messages.

15 11. The system of claim 1 wherein the graphical

representation comprises information on timing seguences.

12. The system of claim 1 wherein the second format
comprises a graphical format.
20
13. The system of claim 1 wherein the second format

comprises a tabular format.

16

15

20

25

30

WO 99/21086 PCT/US98/22416

20

14. A method for developing a graphical
representation of a slice of time in an object-oriented
software program:

inputting information associated with the software
program in a first format;

separating the information into object information
defining a number of objects used in the software program
and interaction information specifying interactions between
the defined objects;

formatting the object information and the interaction
information into a second format comprising a graphical
representation of the slice of time in the object-oriented
software program; and,

displaying the graphical representation of the slice

of time in the object-oriented software program.

15. The method of claim 14 wherein the first format

comprises a tabular format.

16. The method of claim 14 wherein the first format

comprises a Framemaker format.

17. The method of claim 14 wherein the first format

comprises an ASCII format.

18. The method of claim 14 wherein the first format
comprises source code of the object-orientated software

progran.

19. The method of claim 14 wherein the graphical
representation comprises a graphical display that

demonstrates how the objects operate and interact.

WO 99/21086 PCT/US98/22416
21

20. The method of claim 14 further comprising
displaying errors in the object information and the

interaction information.

5 21l. The method of claim 14 wherein the graphical

representation comprises information on looping.

22. The method of claim 14 wherein the graphical
representation comprises information on conditional

10 messages.

23. The method of claim 14 wherein the graphical

representation comprises information on repeated messages.

15 24. The method of claim 14 wherein the graphical

representation comprises information on timing sequences.

25. The method of claim 14 wherein the second format
comprises a graphical format.
20
26. The method of claim 14 wherein the second format

comprises a tabular format.

PCT/US98/22416

NET 3

WO 99/21086
1,/10

itk b Rk TP A

I |

| { DEVELOPER 1) [DEVELOPER 2) o o o (DEVELOPER n) 1|
10\:(I]L I NET1(D !
! ! I I ;

| [FILE SERVER [| FILE SERVER | « o o [FILE SERVER | |

—— i —— —— - —— o~ ——— e ——— o
r=========- T T T T T T T T T e - A

| I

|| FILE SERVER | | FILE SERVER | o o o | FILE SERVER | |

! —1 I NET 2 — 7 |

19 1 ! I ! ;
L (_ouent 1) (CcenT 2) oo« (CLENT 1 I

b e e e -

FIG. 1
(SRt)
- INPUT 70
: INFORMATION

68~/ ACCEPT INPUT
INFORMATION

SEPARATE
INFORMATION

DETERMINE DETERMINE
72~ "DEFINED OBJECT |74
OBJECTS INTERACTIONS

77

N
CREATE
AN ERROR
INDICATOR

CREATE GRAPHICAL
REPRESENTATION [™-78

Y

OLFJTPEUTK— DISPLAY OUTPUT FILE [~_gg
IL

o @D

FIG. 2

20~
21~
23~

27~

24

26~ 1

40~
26~

29~

40~
26~

294 32

WO 99/21086 PCT/US98/22416
2/10
FIG. 3a /22
TITLE Main Change NP3
Device Use Case
space line
NOTE A: See MainNp3 or UcNp3
Device Provision table for| og
attributes.\Note that a <
Main, Uc or Main ond Uc
database update is possible,
depending on the attribute.
CLASS | /NP3 > 41
CLASS MainF abricMgr
CLASS MainFabric\ EqmtMgr
CLASS MainFabric\\ DeviceMqr
CLASS 259 | MainNp3
CLASS MainNp3\ ProvDB
CLASS UcNp3\ProvDB
CLASS MainNp3\ StateDB
CLASS | UcFabric\Mgr
- [MSG FROM 0
postTransaction\ (device,dev-
EID,\origID,change,\devProv | /NP3 MainFabricMgr
KeyList,\ devProwValueList)
change:(devEID,\devProv— |, . _ . e
KeyList,\ devProwalueList) MainFabricMgr MainFabricEgmtMgr
> 34
change:(devEID,\ devProv- . . . o
Kengt,{de\:/Pro>Vol selist) MainFabricEqmtMgr 33 | MainFabricDeviceMgr
$allocate:(devEID) MainF abricDeviceMgr MainNp3
SZSS?:V\(/?;:E[S;(eylist\ MainFabricDeviceMgr MainNp3
etls00S:(TID MainNpJ3 MainNpJ3StateDB
J 42
LABEL A
MSG FROM 10
set<MnProvKey>:\ . :
(TID.mnProwalue) MainNpJ3 “~33 |MainNp3ProvDB s
LABEL A:
MSG FROM 10
set<UcProvKey>:\ :
(TID,ucProwalue) MainNp3 UcNp3ProvDB
postTransaction) (device,dev- 34
EID,\origID,change,\ucProv | MainNp3 >33 |UcFabricMgr
KeyList,\ucProValueList)
§release:(aMainNp3) MainFabricDeviceMgr | MainNp3

SUBSTITUTE SHEET (RULE 26)

415

424

WO 99/21086 PCT/US98/22416

150 3/10

¢ 20~ TTLE: :Main Change NP3 Device Use Case < 22

ottributes.\\Note that o Main, Uc or Main ond

Uc database update is possible, depending on the attribute.
[CLASS: : /NP3]
CLASS: : MainFabricMgr
CLASS: : MainFabric\\ EqmtMgr
CLASS: : MainFabric\\ DeviceMgr
244 CLASS: :MainNp3 >25
CLASS: :MainNp3\\ ProvDB
CLASS: :UcNp3\\ ProvDB
CLASS: :MainNp3\\ StateDB
. CLASS: : UcFabric\\ Mgr

97— NOTE::A: See MainNp3 or UcNp3 Device Provision table for }
28

[32~ MSG: :postTransaction\\ (device,devEID,\\ origID,change,\\

devProvKeyList,\ \ devProvValueList)

34~ 70: : Mainf abricMgr

33~ FROM: : /NP3

:'533\ MSG: :change: (devEID,\\devProvKeyList,\\ devProvValueList)

= T0: : MainFabricEqmtMgr

33~ FROM: :MainFabricMgr _

32~ yse: :change: (devEID,\\devProvKeyList,\\devProwValueList)

34~ 10 :MainFabricDeviceMgr ’

33~ FRoM: :MainFabricEqmtMgr

32~ 5G: :$allocate: (devEID)

34~ 10 :MainNp3

33~ FROM: : MainF abricDeviceMgr

32~ ysg: :change:: {devProvProvKeyList,\\ devProwalueList)

34~ 10: :MainNp3

33~ FROM: : MainF abricDeviceMgr

32~ \SG: : getls00S:(TID)

34~ 10. :MoinNp3StateDB

33~ FROM: : MainNP3

40~ 1BEL: :A: <41

32~ yisc: :set<MnProvKey\ >:\ \ (TID,mnProwoalue)

34\ TO: : MainNp3ProvDB

33~ FROM: : MainNP3

40~ 1ABEL: 1A: <41

32~ yisG: :set<UcProvKey\ >:\\ (TID,ucProvValue)

34~ 10: :UcNp3ProvDB

33~ FROM: :MainNP3

32~ yisg: :postTransaction\\ (device,devEID,\\ origID,change,\\
ucProvKeyList,\ \ ucProvwValueList)

A~ 10 : UcFabricMgr

33~ FROM: :MainNp3

32~ ysg: :$release: (aMainNp3)

34~ 10: : MainNp3 FIG. 8b

| 33~ FROM: : MainF abricDeviceMgr

PCT/US98/22416

WO 99/21086
4/10
TITLE Create OTM UC
space line
NOTE
CLASS System Level Mgt [/F
CLASS System Level Config Mg.r
CLASS System Level Slot MO
CLASS System Level OTM Class
CLASS System Level OTM MO
CLASS System Level POM
MSG FROM 10

<Create OTM

System Level Mgt [/F

System Level Config Mgr

Volidate & Create>

System Level Config Mgr

System Level Slot MO

Validate & Cregte

System Level Slot MO

System Level OTM Class

OK

System Level OTM Class

System Level Slot MO

Instantiate

System Level Slot MO

System Level OTM MO

Write Persistent Dato

~ System Level OTM MO

System Level POM

OK

System Level POM

System Level OTM MO

OK

System Level OTM MO

System Level Slot MO

OK

System Level Slot MO

System Level Config Mgr

OK

System Level Config Mgr

System Level Config Mgr

¢

System Level Config Mgr

System Level Mgt I/F

FIG. 8c

WO 99/21086 PCT/US98/22416

244

5/10
400

TITLE : : UcQueryDeviceClock Use Case (BB)
NOTE: :assume call has clockType=BB

[CLASS: : MainDevice

CLASS: : UcFabric\ \Mgr
CLASS: : UcFabric\\ EqmtMqr
CLASS: :UcTp8

CLASS: : UcNps1

CLASS: :UcMi

CLASS: :UcSq

CLASS: :Sts1plLfi

CLASS: :MmtgLfi

L CLASS: : /Dip

MSG: : postTransaction\\ (device,destID,\\ crigID,queryClock,\\
commondResult,\\clockType.devElD.\\deviceCIock.lockStotus)
T0: : UcFabricMgr

FROM: : MainDevice

MSG: : postTransaction\\ (device,destld,\ \ origld,queryClock,\\
commandResult,\\clockType.devElD.\\deviceCIock.lockStotus)
T0: : UcFabricMgr :

FROM: : MainDevice :

MSG: : queryClock\\(devElD,cIockType,\\deviceCIock,\\IockStotus)
T0: : UcFabricEgmtMgr

FROM: : UcFabricMgr

OPTION: :

T0:: /Dip

FROM: : UcFabricEqmtMgr

COMMENT: :if device type is Tp8

T0: :UcNps1

FROM: : UcFabricEqmtMgr

MSG: : queryClock\\ (clockType,deviceClock,lockStatus)
T0::UcTp8

FROM: : UcFabricEqmtMgr

MSG: : queryClock

10: :Sts1pLfi

FROM: : UcTp8

MSG: : sendWithWait:LCPMemoryReod

T0: : /Dip

FROM: :UcTp8

OPTIONEND: :

OPTION: :

401~ T0::to class

402" ERROR: Receiver Class does not exist!
403—" FROM: :from class

FIG. 4a

WO 99/21086 PCT/US98/22416

6/10
404~ ERROR: Sender Class does not exist!
COMMENT: :if device
T0: :UcNps1
FROM: : UcFabricEqmtMgr
MSG: : queryClock\ \ (clockType,deviceClock,lockStatus)
TO: :UcNps1
FROM: : UcFabricEqmtMgr
MSG: : queryClock
TO: :MmtgLfi
400~ FROM: : UcNps1
MSG: : sendWithWait: LCPMemoryRead
T0: : /Dip
FROM: :UcNps1
OPTIONEND: :
SPACE: :
SPACE: :
OPTION: :
10::/Dip
FROM: : UcFabricEqmtMgr
COMMENT: :if device type is Mi
T0: :UcNps1
FROM: : UcFabricEqmtMgr
MSG: : queryClock\\(clockType,deviceClock,lockStatus)
T0: :UcMi ‘
FROM: : UcFabricEqmtMgr
MSG: :isMaster
T0: :UcMi
FROM: : UcMi
MSG: : queryClock
T0: :MmtgLfi
FROM: :UcMi
MSG: : sendWithWait\ \ : LCPMemoryRead
T0: : /Dip
FROM: : UcMi
OPTIONEND: :
401~ OPTION::
T0::to closs
402~ ERROR: Receiver Class does not exist!
403" FROM: :from class
o~ ERROR: Sender Class does not exist!
4047 COMMENT: :if device type is SG
T0: :UcNps1
FROM: : UcFabricEqmtMgr
MSG: : queryClock\ \ (clockType,deviceClock,lockStatus)
::UcSq
FROM: : UcFabricEqmtMgr
MSG: : queryClock
T0: :MmtgLfi
FROM: : UcSq
FIG. 4b ;ch / gﬁ)ndWithWoit:LCPMemoryReod
FROM: :UcSg
OPTIONEND: :

PCT/US98/22416

WO 99/21086

7/10

G 9Id o
asn) asf) 3daQ CgN obuoyy uopy <«

vo/_ x,w_ 3/_ ﬂ vﬁ_ %01 w\o_ w\o_ w\o_ vo_
“ “ “ | I <\ i “ | |
| r] | |

¢dNuiopo)
| (lsronopoigon | b | Posor (01) 1 | | |
| ‘1srhayaoigon | I 90! _ _ | [_ [
_ ‘abuoyd ‘gibuo 1 901 ! /< ! ! / | ! | |
| Opapeakon) oo). S | | _
O | chappoiganies | 901 v L0 | “ ! !
A U H e
| GOl _ C xg_;,e%e M} 00 | 9oL o ! _
| ! I g0l foypoiqup>iesizy < Tg, /o L0 |
_ [_ \v (1) I _ \ _ _
! e _ GOl “ <\ _N_m_._oz_o>>oi>% _ <\ “
_ “ \ | (01L):S00sN136 “ ‘Is1ikayA0igaap _Nﬁ.._os_o>>o¢>% I
I I | on | _Num_._o:_o>>oi>vv | ‘a13nop um_.._xmv_>oh&>o_u _Num_._o:_o>>8¢>ov
_ | 901 _ 11S1148)A0IGAIP)I 5600 Wc | 'gi3mep) 1SIAaYAOIGNIP |
I I I \ I I :3buoyd () ! A I :abupyd WNV I ‘abuoyo*q|buo I
“ | O At N aryepana)
“ “ “ " | GOl »~ ! soL | mfo_ _ __o_scm,_w%a |
« |

I I I ! Q]3r9p | I I i
| | | | molnamg__a v:i | | wc_ |

16 803101S 8anosd gaAosd stoz 1badiag sbpwb3 46O uIop Ez\

uqo 4N cdNuioy gdNon gdNuiop 91140 JUiDN Qo JuIop £01

"#InqupD ay) uo buipuadap ‘ajqissod si ajopdn asDQOJOP O PUD UIDK JO 3N ‘UIDH O JoY) Sozs\mo_
"$9INQUJ0 JOJ 3|qD} UOISIOIY 9913 CANON 20 CANUIDK 23S : ef./ooP

WO 99/21086 PCT/US98/22416
810 FIGC. 6a
TITLE Create OTM UC - Nested Repeats
space line

NOTE

CLASS System Level/Mgt |/F

CLASS System Level/Config Mgr

CLASS System Level/Siot MO

CLASS System Level/OTM Class

CLASS System Level/0TM MO

CLASS System Level /POM

MSG FROM T0

Create OTM System Level Mgt I/F System Level Config Mgr
Validate & Create System Level Config Mgr System Level Slot MO
Validate & Create System Level Slot MO System Level OTM Class
0K System Level OTM Class System Level Slot MO
Instantiate System Level Siot MO System Level OTM MO
Write Persistent Data System Level OTM MO System Level POM
OK<this is o test> System Level POM System Level OTM MO
REPEAT For XX <202

OK(parm1,parm2,parm3, | System Level OTM MO System Level Siot MO
parm4,parm5)

THIS IS A TEST System Level OTM MO System Level Slot MO
REPEATEND

OK(parm's) System Level Slot MO System Level Config Mqr
0K System Level Config Mqr System Level Config Mgr
SPACE

OPTION System Level Mat |/F -—206! System Level POM <4207
COMMENT FROM 10

This is o test of System Level Mgt I/F System Level Slot MO
OPTION processing.

REPEAT For XX <202

MSG FROM T0

Test System Level Mgt 1/F System Level Config Mqr
Test System Level Config Mgr System Level POM
LABEL A

OPTION System Level Mgt I/F~——206| System Level Slot MO<4~207
COMMENT FROM T0

This is second OPTION block. | System Level Mgt 1/F System Level Slot MO
REPEAT- For X <220

MSG FROM : 10

This is test 2 System Level Mgt I/F System Level Slot MO
Testing the parser System Level Mgt 1/F System Level Slot MO
REPEATEND

OPTIONEND

Trying to get o second page | System Level Slot MO System Level POM
REPEATEND

OPTIONEND

This should be on System Level POM System Level POM R
the second page ~—33 ~1 34
What's up Doc System Level Mgt 1/F System Level OTM MO
it's a Bird System Level OTM MO System Level OTM Class

PCT/US98/22416

WO 99/21086

Sjoaday pajsaN - 9N WLO 930as)

Q9 914

90¢

1/

¢

cle

\ ssiod ay) bunsa) (g1)1

D

.—-—:;"— "_

| I

[I

[|

— — i \-

! [I Z 1s9) st siy) :.:

I _ _~» X 104 wom

| n ! L0800 NOILO “

I I I puodss si siy| I
" | L (£1) -/ _ L |
" ! ! XX 404 “ ! 19 (z1) !
| | | i i “buissasoud NOII4O |
_ _ _ | | J0 1S3} D s sy |
[[I [I / i
I [[[I [
I [(I ¥0¢ I

2 ! “ “ Y — “
[

M _ _ _ LIS ; 0 (1) _
| " ,_F . Ewnd) 50 (o) | |
! 3 1531V S SiHL (6)] | “
I I ?,,qu pwiod‘cw.od /1 o | I
F »l ‘ [[[I
F <1S3) O SI SWI>HO A v _ NEMOQ x_.—x».tmvamvxo va “ —/Oﬂ “ “ |
| Djog jua)sisalq Non\ _ _ i “
[p m —i I [
_ M (9) _ ajonuojsuf (G) | ! _
I _ > I I
| _ | X0 (¥) | | _
_ ! “ 3)031) % 2)0pIoA (£) '« ! “
I | | i 81031) R 3JOPIOA (Z) te- -
[_ [| WO #0313 (1)
I I | _ I A I

NOd ON R10 SSDI9 W10 ON 10IS 16w byuog /1 1N
[9A97 wa)sAs [oA37] wa)sAg [9A97 wa)shg [oA3] wa)sAg [9A97 wa)shg [9A37] Wwa)s

D
o
M

-£0¢

A5 \-00¢8

PCT/US98/22416

WO 99/21086

10/10

oLg
R

]

abod puodas ay) uo
3q pnoys st (/1)

29 9IA

Sjpaday pajsaN - In WO 8108s)

I
|
|
|
|
|
|
|
|
|
I
i
|
i
o

pug o s (61)

|~ e e

A

/

|

KOd
[9A97 wa)shs

abod puodas o }3b

g

I

|

|

|

|

i

|

|

|

I

]

|

o} bukiy (g1)
)
[

—n e —] o —— — —- t——- — o—

ON W10 SSOI) WiO
[9A97 wa)sAg [oA7 wd)shg

/

XX 104

ON 101S
[9A97 wd)sAs

20Q dn s,joym (81)

I
|
|
|
|
|
i
|
!
|
|
I
]
|
|
|
|
|
l
|
i
l
|
|
i
|
i
|
|
|

l.
16y byuoy
[9A97 wa)sAg

3/1 16N
[9A97 wa)sAg

/

00¢

INTERNATIONAL SEARCH REPORT

rnational Application No

PCT/US 98/22416

A.
IPC

CLASSIFICATION OF SUBJECT MATTER

G06F9/44

According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

VISUALIZATION SYSTEMS"

COMPUTER,

vol. 26, no. 12, 1 December 1993, pages
11-24, XP002002622

see the whole document

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No,
A EP 0 503 944 A (IBM) 16 September 1992 1-26
see page 2, line 35 - page 3, line 9
A EP 0 727 740 A (NCR INT INC) 1-26
21 August 1996
see column 1, Tine 37 - column 2, line 16
see column 12, line 31 - line 46
A US 5 638 539 A (GOTI JUAN C) 10 June 1997 1-26
see column 1, 1ine 45 - column 2, line 13
see column 3, line 40 - column 4, line 19
A ROMAN G -C ET AL: "A TAXONOMY OF PROGRAM 1-26

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

"A" document defining the general state of the art which is not
considerad to be of particular relevance

“E" earlier document but published on or after the international “X" document of particular relevance; the claimed invention
filing date :

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the pubtication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
© other means

° Special categories of cited documents :

"T" later documant published after the intemational filing date

invention

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

cannot be considered novel or cannot be considered to

invoive an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

“P" document published prior to the intemational filing date but in the ar.]
later than the priority date claimed "&" document member of the same patent family
Date of the actuat completion of the international search Date of mailing of the international search report
10 March 1999 17/03/1999

Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2

TNII_ - 2280 HV Rijswijk

el. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Brandt, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

:rnational Application No

PCT/US 98/22416

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0503944 A 16-09-1992 JP 2022752 C 26-02-1996
JP 6195189 A 15-07-1994
JP 7060374 B 28-06-1995

EP 0727740 A 21-08-1996 JP 8314704 A 29-11-1996
us 5644728 A 01-07-1997

US 5638539 A 10-06-1997 us 5875330 A 23-02-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

