FLOOR PANEL WITH A MOISTURE SEALED EDGE REGION AND METHOD FOR MANUFACTURING THE FLOOR PANELS

Abstract: Floor panel of the type comprising a single- or multi- part substrate (15) and a top layer (16) and having, at least at two opposite sides (2-3), profiled edge regions (6), said regions comprising at least coupling parts (7), wherein said substrate (15) consists at least partially of wood or wood-based material, characterized in that at least a portion of the surface (22-A) of said profiled edge regions (6), more particularly a portion that is formed of said wood or wood-based material, is provided with an active agent (23) with moisture-repellent effect, wherein said active agent (23) comprises a fluorinated polymer or copolymer.
This invention relates to floor panels, and the invention also relates to a method for manufacturing floor panels.

More particularly, the invention relates to floor panels of the type which comprises a single- or multi-part substrate consisting at least partially of wood-based material, in particular of MDF or HDF (Medium Density Fiberboard or High Density Fiberboard), and which floor panels have a top layer, such as prefabricated parquet or veneer parquet with a top layer usually being made on the basis of wood, or such as laminate floor panels usually having a top layer on the basis of synthetic material.

It is known that such floor panels can be applied for forming a floating floor covering. Herein, these floor panels during installation are coupled at their edges, either by means of a classical tongue and groove connection, wherein these latter possibly are glued into each other, or by means of mechanical coupling parts providing for a mutual locking of the floor panels, for example, in horizontal as well as in vertical direction, as described, for example, in the International Patent Application WO 97/47834.

Floor panels of the above-mentioned type show the disadvantage that they easily take up moisture, which as such may lead to a variety of undesired effects, such as upstanding edges or premature wear.

The present invention relates to an improved floor panel of the above type. To this end, the invention, according
to its first aspect, relates to a floor panel of the
type comprising a single- or multi-part substrate and a
top layer and having, at least at two opposite sides,
profiled edge regions, said regions comprising at least
coupling parts, wherein said substrate consists at least
partially of wood or wood-based material, with the
characteristic that at least a portion of the surface of
said profiled edge regions is provided with an active
agent with moisture-repellent effect, wherein said
active agent comprises a fluorinated polymer or
copolymer. Preferably, said portion relates to a portion
formed of said wood or wood-based material. Still
better, said coupling parts are made in one piece with
said substrate and therefore at least these coupling
parts consist of said wood or wood-based material.

By wood-based material, in the above, for example,
materials are intended consisting of wood flakes, wood
chips or wood fibers, which are connected by a binding
agent. More particular, materials are intended which are
selected from the group of OSB (Oriented Strand Board),
particle board and fiber board, such as, for example,
MDF or HDF (Medium or High Density Fiberboard).

The inventors have found that by means of such active
agents a good moisture-repellent effect can be obtained
at the surface of the profiled edge regions. In
particular, they have found that this effect can also be
obtained on wood or wood-based material. Even with
porous materials, such as MDF or HDF, which are known
for their water- or moisture-absorbing features, a
proper moisture-repellent effect may be obtained.

For said active agent, use can be made of a fluorinated
polymer, or copolymer, of methacrylate. Thus, for
example, in a preferred embodiment good results may be
achieved with perfluoroalkyl methacrylic copolymer.

Said active agent preferably is present at the surface as a layer or a film, the thickness of which preferably is 0.1 to 100 micrometer and still better 0.1 to 10 micrometer, and which either has or has not penetrated up into the material of the substrate. Depending on the desired function of the film, also layers with a thickness between 10 and 100 micrometer can be applied.

The active agent preferably covers at least 80 percent, and preferably 95 percent, and still better the entire surface of the respective profiled edge regions. It is clear that preferably all sides of the floor panel, or in other words the entire periphery of the floor panel, are provided with said active agent, with the intention of making them waterproof or water-tight, although it is not excluded that only the aforementioned two opposite sides are provided with such active agent. At the other sides of the floor panel then, in view of obtaining waterproofness or water-tightness of these sides, other measures may be performed, such as, for example, those known from WO 2004/016422, or such as the application of a separate sealing strip, such as known from WO 03/087497.

In general, it is noted that said surface of the profiled edge regions preferably is provided with such an amount of active agent that a complete sealing against water and moisture is obtained at this surface. Such floor panels may be installed in humid rooms, such as bathrooms.

The invention is particularly useful with laminate floor panels. Such floor panels may have various constructions.
Laminate floor panels comprise at least a substrate, a printed decor, as well as a top layer, wherein the top layer preferably is made on the basis of synthetic material. For example, the top layer may consist of a number of carrier sheets, for example, of paper, which are provided with resin, for example, a melamine resin, such as melamine formaldehyde. In such case, the laminate preferably is made as a so-called "DPL" (Direct Pressure Laminate), wherein the top layer is pressed directly on the core, or so-called "HPL" (High Pressure Laminate), wherein the top layer as such is obtained by means of a press treatment before the top layer as a whole is provided on the core. Also, other possibilities for forming such top layer are possible, for example, by using foils, by providing a substance to be hardened or solidified, such as a varnish or the like, or in any other manner. The decor can be formed by a pattern which either is printed directly on the core, with the possible intermediary of a primer, or is printed on one or more of said carrier sheets or on said foil.

By applying said top layers, and in particular said top layers on the basis of synthetic material, a certain waterproofness or water-tightness can be obtained already at the upper side or decorative side of laminate floor panels. However, at the edges where such floor panels can be coupled together, there is a zone where moisture possibly could penetrate into the substrate via the profiled edge regions. Such penetration of moisture may lead to swelling of the substrate and a resulting formation of upstanding edges at the top layer. With the floor panel of the invention, a completely moisture-tight or water-tight panel may be obtained and thus the risk of the formation of such upstanding edges is minimized. It is noted that the formation of upstanding
edges, whether or not as a result of the penetration of moisture into the substrate, can also be minimized in other floor panels than laminate floor panels by means of said active agents. For example, these agents may also be applied in floor panels consisting of so-called "engineered wood". In such floor panels, the top layer may be provided with a layer of varnish or lacquer, which as such already has a sealing effect. By providing, by means of the active agents of the invention, a moisture-repellent effect at the edges as well, a totally encapsulated and moisture-tight panel is obtained.

It is clear that, as aforementioned, the coupling of laminate floor panels or other floor panels may be performed either by means of a classical tongue and groove connection, wherein these possibly are glued into each other, or by means of mechanical coupling parts providing in a mutual locking of the floor panels in horizontal as well as in vertical direction, for example, as described in the International Patent Application WO 97/47834. A treatment is of interest in particular for such mechanical coupling parts, as, when installing such floor panels, no glue, which as such may have a sealing effect, must be applied for effecting the coupling.

Further, it is noted that according to the invention it is possible that the floor panels comprise a substrate consisting of MDF or HDF and that these floor panels, by means of said sealing effect of the active agent, can be provided with waterproof edge regions independently from the amount of binding agent applied in the production of the respective MDF/HDF substrate. For example, a floor panel with a substrate which as such is of a lesser quality, such as MDF/HDF with a high swelling rate, for
example, a swelling rate of more than 20% (as measured according to the EN13329 Annex G standard), still may have waterproof edge regions.

Said active agent may be a solid product which is obtained from a mixture, more particularly a dispersion or an emulsion, wherein this mixture contains at least water and said active agent, wherein the active agent is a residue obtained by vaporization or drying of said mixture at the surface of the profiled edge regions. An example of a possible mixture is a mixture comprising at least the product commercially available under the name of Zonyl 7840 of Dupont. This commercial product as such is a water-based dispersion of perfluoroalkyl methacrylic copolymer, wherein this dispersion comprises approximately 30 weight percent of solid matter of the copolymer and 70 weight percent of water. Other commercially available products are Zonyl 9361, Zonyl 9338, Zonyl 9027, Zonyl 210, Zonyl 225, Zonyl 321, Zonyl 329 and TE3887, all from Dupont. The inventors have performed tests with various of said commercial products and found that all products offered good results. Zonyl 7840 led to the most satisfactory results and had a very high degree of water-tightness even on a MDF or HDF substrate. Even when this commercial product was further thinned with water, good results were obtained.

According to a second independent aspect, the invention relates to a method for manufacturing a floor panel, wherein this floor panel is of the type comprising at least a single- or multi-part substrate and a top layer and having, at least at two opposite sides, profiled edge regions, said regions comprising at least coupling parts, wherein said substrate consists at least partially of wood or wood-based material, and wherein at least a portion of the surface of said profiled edge
regions is provided with an active agent with moisture-repellent features, with the characteristic that said active agent is provided on the respective surface in the form of an emulsion or dispersion formed at least by water and the active agent provided therein. Due to the fact that the active agent is provided in an emulsion or dispersion, many possibilities in respect to ways of application of this emulsion or dispersion are opened. Also, it is obtained that certain active agents, for example, agents having a high viscosity or possibly as such being solid materials at room temperature, still can be provided on said surface in a liquid form.

For an optimum effect of the active agent, preferably at least the entire respective profiled edge region is treated with said emulsion or dispersion, and possibly a portion of said top layer.

It is also possible to select an organic emulsion or dispersion, for example, an emulsion or dispersion comprising isopropyl alcohol, instead of a water-based emulsion or dispersion. Preferably, however, due to health aspects, an emulsion or dispersion is applied which is free from volatile organic components (VOCs), as may be the case with said water-based emulsion or dispersion. Said emulsion preferably has a solid matter content of at least 15%, and still better at least 20%. An optimum value for the solid matter content is at least 30%. Preferably, such emulsion or dispersion consists for at least 60% of water.

Preferably, said emulsion or dispersion comprises at least a chemically modified acrylate or methacrylate as an active agent, wherein the modification preferably increases the hydrophobicity of the active agent. Such modified agents result in a good moisture-repellent
effect on the profiled edge regions already with low concentrations in the dispersion or emulsion. Thus, for example, already with a dry matter content in the dispersion or emulsion of less than 45 weight percent, a very good result can be achieved. Moreover, a dispersion or emulsion in low concentrations is simple to apply in different manners. An example of a modified acrylate or methacrylate is a fluorinated or fluorochemical copolymer of acrylate or methacrylate.

Other possible emulsions or dispersions comprise, for example, at least an UV lacquer, preferably a monomer-free UV lacquer. Still another possibility is to use a water-based copolymer of ethylene acrylic acid. This kind of products may form a very stable hydrophobic layer on the profiled edge regions. These water-based copolymers preferably comprise dry matter contents of 20% or more, for example, of 30%. An example of such products is the commercially available MichemPrime 5930.

According to the second aspect, the emulsion or dispersion may have any pH value, lower than, equal to or higher than 7. Preferably, an emulsion or dispersion in an acidic medium is applied.

It is clear that the method of the second aspect can be applied for manufacturing floor panels with the characteristics of the first aspect, in other words, that therein an agent is used for the active agent as described herein above by means of the first aspect.

The method of the second aspect preferably also comprises the step of performing a forced drying of the profiled edge regions treated with the emulsion or dispersion, wherein this drying preferably substantially will take place directly after providing said emulsion.
or dispersion, more particularly within the first minute following the application thereof. Such fast, forced drying prevents that the water from the emulsion or dispersion gets the chance to penetrate into the aforementioned substrate and in this manner possibly already might create upstanding edges.

Said emulsion or dispersion preferably is provided on said surface in at least two layers, wherein the layer provided first either is dried, whether or not at least partially, before providing the second layer. Of course, a drying, more particularly a forced drying can be performed after providing each layer.

The above-mentioned monomer-free UV lacquers have the advantageous feature that they are simpler to cure than UV lacquers comprising monomers and that they penetrate less deeply into porous materials, such as MDF and HDF. Floor panels which are treated with such lacquers show particular advantages. According to a third independent aspect, the invention thus also relates to a floor panel of the type comprising a single- or multi-part substrate and a top layer and having, at least at two opposite sides, profiled edge regions, said regions comprising at least coupling parts, wherein said substrate consists at least partially of wood or wood-based material, with the characteristic that at least a portion of the surface of said profiled edge regions, more particularly a portion formed of said wood or wood-based material, is provided with a hardened monomer-free UV lacquer.

According to a first preferred embodiment of the third aspect, the respective profiled edge regions comprise at least a surface which is made as a chamfer, more particularly as a bevel, wherein this chamfer is provided with a decorative and/or transparent coating.
formed by means of said hardened monomer-free UV lacquer. By means of such UV lacquer, a better decorative coating can be obtained. For example, a better covering of said surface may be obtained.

According to a second preferred embodiment, said monomer-free UV lacquer is at least partially provided on the surface of the coupling parts in order to form a moisture-repellent coating. Due to the fact that the UV lacquer is monomer-free and therefore penetrates less deeply into the respective surface, it is obtained that the risk of obtaining upstanding edges already during the manufacture of the floor panels is minimized.

Said UV lacquer preferably is a water-base lacquer or water-based lacquer, which is hardened.

As an alternative for the agents with a moisture-repellent effect mentioned above in the first and third aspects, also hot melt adhesives, whether or not solidified, can be applied. In English, such hot melt adhesive is known better under the denomination of "hot melt glue" and can be applied on a portion of the profiled edge regions in a simple manner. Thus, the invention according to its fourth independent aspect relates to a floor panel of the type comprising at least a single- or multi-part substrate and a top layer and having, at least at two opposite sides, profiled edge regions, said regions comprising at least coupling parts, wherein said substrate consists at least partially of wood or wood-based material, with the characteristic that at least a portion of the surface of said profiled edge regions, more particularly a portion formed of said wood or wood-based material, is provided with a preferably solidified hot melt glue.
Such hot melt glues may concern chemical compositions which are free of solvents. These "hot melt" glues may form very strong connections, and may do so very fast after the glue has cooled. Moreover, they are easy to handle and/or to provide, as a consequence of which a smooth and efficient manufacture of the floor panels of the invention can be achieved in a simple manner. According to the invention, for example, polypropylene (PP), polysulfone, polyurethane (PUR), polyetherimide and/or polyolefine can be applied as hot melt glue.

The inventors have found that by means of a hot melt glue, such as the aforementioned type, a water-tight material layer can be formed at least on a portion of the profiled edge regions. In this application, in particular the polyurethane hot melt glues are of interest, as in particular these hot melt glues can be composed such that they show a short opening time. By the term "opening time", in the terminology the time is indicated which is necessary for the respective glue to crystallize again from the molten condition in which it has been applied, or in other words, to solidify. Thus, for example, opening times can be reached amounting to 30 minutes or less. They may also amount to less than 10 minutes and even less than 5 minutes. Of course, this opening time depends on the amount of glue which has been provided, and possibly on the method by which the glue has been provided. In a preferred embodiment, the amount of glue which has been provided, the temperature and the method by which the glue has been provided on the profiled edge regions have been chosen such that the opening time of the glue amounts to less than 10 minutes, and still better to less than 5 minutes. It is not excluded that short opening times are also achieved with other hot melt glues than polyurethane glues. The utilization of hot melt glues with low opening times is
particularly interesting when a fast production must be obtained.

Another interesting, however, also not required, feature for hot melt glues which can be applied to the floor panel of the fourth aspect, is that the hot melt glue at its application temperature, preferably between 150°C and 200°C, depending on the glue, has a low viscosity. Thus, for example, this viscosity may be lower than 250 Pas or 100 Pas. Preferably, hot melt glues are used having a viscosity of less than 10 Pas and still better less than 1 Pas at their application temperature. These low viscosities also increase the efficiency and/or the possibilities by which the hot melt glue can be applied. Moreover, the inventors have found that with such hot melt glues a good adherence with wood or wood-based material and in particular with MDF or HDF can be obtained.

According to a first possibility, said hot melt glue is at least partially applied on the surface of the coupling parts in order to thereby form a moisture-repellent coating.

According to a second possibility, said solidified hot melt glue is present at least over part of the length of one or more of the respective profiled edge regions as a strip underneath the upper edge of the floor panel. Such strip may minimize the risk of the occurrence of standing-up edges as a result of the penetration of moisture into the profiled edge regions.

Possibly, the hot melt glue of the fourth aspect may also be selected such that it has a certain elasticity in solidified condition. Thus, for example, a hot melt glue, such as a polyurethane glue, can be chosen
allowing for a stretching of more than 500 percent. It
is even possible to achieve a stretching of more than
1000 percent. A hot melt glue which can show this high
stretching, may be utilized, amongst others, in an
embodiment according to said second possibility as a
physical sealing of the joint between two floor panels.
Such sealing preferably is under permanent tension or
preferably is always compressed, such that with a
possible drifting-apart of the floor panels, a reliable
sealing will be maintained.

An example of a possible hot melt glue is the
commercially available Irostic M 8304 from the Huntsman
Company. According to manufacturer's data, this
polyurethane hot melt glue has a viscosity of 14 to 20
Pas at 190°C and a short opening time.

With the intention of better showing the characteristics
of the invention, hereafter, as an example without any
limitative character, several preferred embodiments are
described, with reference to the accompanying drawings,
wherein:

Figure 1 represents a floor panel according to the
invention;
Figure 2 represents this floor panel in a cross-
section according to the line H-II represented in
figure 1;
Figure 3, for a variant, represents the region
indicated by F3 in figure 2 at a larger scale;
Figure 4, in a similar view, represents a variant;
Figure 5 schematically represents a method
according to the invention;
Figure 6 represents a cross-section according to
the line VI-VI represented in figure 5.
Figure 1 shows an oblong rectangular floor panel 1, which is provided with two pairs of opposite sides, 2-3 and 4-5, with profiled edge regions 6 comprising mechanical coupling parts 7.

Figure 2 illustrates that the applied coupling parts 7 allow a mutual locking of two of such floor panels 1 in a horizontal direction H as well as in a vertical direction V. For the locking in vertical direction V, i.e., in a direction perpendicular to the upper side 8 of the floor panel 1, the coupling parts 7 represented here substantially are made in the form of a tongue 9 and a groove 10. The locking in horizontal direction H, i.e., in a direction perpendicular to said vertical direction V and in the plane of figure 2, in this case is obtained by providing locking elements in the form of a protrusion 11 at the underside of the tongue 9 and a recess 12 in the lower lip of the groove 10. When coupling two of such floor panels 1, the locking elements 11-12 cooperate and prevent that the floor panels 1 move away from each other. This is illustrated by means of the floor panel 1 represented by dashed line 13, wherein it is clearly visible that an overlap 14 may exist between the not-coupled contours of the groove 10 and the tongue 9, more particularly between the contours of the respective locking elements 11-12. By means of such overlap 14, when coupling two floor panels, a so-called pretension may be effected. The concept of pretension is known as such from WO 97/47834.

Preferably, the applied mechanical coupling parts 7 result in a locking free from play of two of such floor panels in said horizontal direction H and vertical direction V, and still better the coupling parts 7 result in a locking free from play in all directions in the plane defined by said directions V and H.
It is clear that the floor panels 1 of the invention may have any shape, such as a rectangular, square, hexagonal shape or the like, and may be provided with any coupling parts 7 as well.

The floor panel 1 represented in figures 1 and 2 relates to a laminate floor panel 1 comprising a substrate 15, wherein this substrate 13 entirely consists of a wood-based material, such as MDF or HDF. Moreover, said coupling parts 7 are made in one piece with this substrate 15. The floor panel 1 also comprises a top layer 16 on the basis of synthetic material. In this case, the top layer 16 relates to a so-called "DPL" layer, which, in this example, consists of a decorative layer 17 with a printed pattern 18 and a wear-resistant layer 19 provided thereon, such as a so-called overlay. The decorative layer 17 as well as the overlay 19 comprise a paper layer soaked in resin. Herein, the overlay further also comprises wear-resistant particles, such as corundum. At its bottom side 20, the floor panel 1 has a backing 21, which also comprises a paper layer soaked in resin.

The particularity of the floor panel from figures 1 and 2 consists in that at least a portion of the surface 22 of the profiled edge regions 6 is provided with an active agent 23 rendering a moisture-repellent effect. According to the invention, the active agent 23 herein concerns a polymer or copolymer or a hardened monomer-free UV lacquer. The active agent 23 may also relate to a copolymer of ethylene acrylic acid. According to the fourth aspect of the invention, the agent 23 may also relate to a hot melt glue, whether or not solidified. Viewed in the cross-section of figure 2, the active agent 23 herein covers the entire profiled edge region 6.
In figure 2 it is shown that the active agent 23 herein forms a layer or film with a certain thickness T. In this figure as well as in the figures 3 and 4 discussed in the following, this layer is illustrated schematically as a layer lying on top of the surface 22 of the profiled edge regions β. It is clear that this layer in reality can have penetrated more or less or even completely into the surface 22 of the respective edge region 6. It is clear that preferably provisions will be made for restricting the amount of active agent 23 lying on top of the surface 22 to a minimum thickness T, for example, by applying an appropriate dilution, due to which the active agent 23 becomes better absorbed into the substrate 15. In this manner, it does not form an unduly hindrance when coupling the respective edges 2-3 to a similar floor panel 1. It is noted that the thickness T of the film is represented in an exaggerated manner. In reality, the thickness T may be in the micron range.

Figure 3 shows a variant in which the active agent 23 covers the transition between the substrate 15 and the top layer 16, as well as a limited strip underneath the upper edge of the floor panel 1. In particular when applying said active agents 23, more particularly fluorinated polymers or copolymers or monomer-free UV lacquers, which, as aforementioned, are particularly efficient for forming a water-tight surface, the utilization of such active agents in the form of a strip is also very useful for classical laminate floor panels or other floor panels which are not specifically intended for being applied in humid rooms. In classical laminate floor panels, there is the disadvantage that, when cleaning them with a moist cloth, moisture is taken up into the substrate, as a result of which this latter
swells and the laminate top layer permanently is pushed upward next to the edges of the floor panels. As now by means of said active agents a particularly efficient sealing can be realized, it is impossible for moisture to penetrate into the substrate directly underneath the laminate top layer, by which said effect is precluded or at least minimized.

In dashed line s, it is also shown in figure 3 that the active agent 23 also may continue up onto the upper surface 8 of the floor panel 1. In general, one will strive to have the active agent 23 or monomer-free UV lacquer cover at least the transition between the substrate 15 and the top layer 16.

Figure 4 shows a variant, wherein the profiled edge regions 6 comprise at least a surface 22A which is realized as a chamfer 24, in this case, a bevel. As illustrated, the active agent 23 also can be provided on the surface 22A of this bevel 24. Possibly, the active agent 23 substantially can be provided solely on this surface 22A. In case that the agent 23 relates to a hardened monomer-free UV lacquer, this agent 23 also can be applied for forming a decorative and/or transparent coating on said surface 22A. However, it is not excluded that this surface is provided with another decorative layer extending above or underneath said active agent, however, this is not represented here.

Figure 5 schematically shows a method according to the invention, by which the floor panel 1 from figures 1 to 4 can be manufactured. Herein, said active agent 23 is applied on the surface 22-22A of the profiled edge regions 6 in the form of an emulsion or dispersion 25, which is at least formed by water and the active agent 23 provided therein. This may be performed, such as
here, by means of a sprinkling or spraying technique by means of a continuous vacuum application device, which will be described herein below. However, it is clear that any other technique may be applied, such as, for example, spraying on by means of a spray nozzle, application by means of rollers, spreading on, pouring on and the like.

In the example of figure 5, said emulsion or dispersion 26 is provided at least in two layers on the surface of the edge regions 6, wherein the first applied layer 26 is dried by means of a drying device 27 before the second layer 28 is applied. After completion of the application of the active agent 23, also a forced drying of the profiled edge regions 6 treated with the emulsion or dispersion 25 is performed by means of a drying device 29. Such drying may be performed, for example, as shown here by means of radiation, such as infrared or ultraviolet radiation. However, use can also be made of any other technique, such as by means of drying ovens or the technique of supplying warm air.

It is noted that the represented method relates to a continuous treatment, wherein the floor panel 1 is guided along spray heads 30 and the drying devices 27-29. Such treatment is easy to integrate in present-day manufacturing systems for floor panels.

Figure 6 schematically shows one of the spray heads 30 applied in the example. Herein, this relates to so-called "Schiele applicator heads", which, for example, are of the type known as such from DE 92 02 976 U1. Usually, such spraying heads 30 are applied for providing substances at the edges of panels in a continuous manner. To this aim, such spraying heads 30 have a so-called passage gap 31 adjoining closely,
practically without play, to the profiled edge region 6 to be treated. The substance 23-25 to be applied is supplied via flexible tubes 32 into the immediate proximity of the respective profiled edge regions 6, and potential excessive substance is directly suctioned off again by a suction conduit 33, such that the risk that the substance contaminates the decorative side or upper side 8 of the floor panel 1 is minimal. Due to the connection with flexible tubes 32 and 33, such spraying head 30 is easy to adjust or to position in respect to the edge 6 to be treated of the floor panel 1. It is noted that it is not excluded that the floor panel 1 is passed through the passage gap 31 of such spraying head 30 with its decorative side 8 directed downward.

It is clear that the method from figure 5 and the applicator head from figure 6 may also be applied for providing the water-based copolymer of ethylene acrylic acid mentioned in the introduction. However, this product preferably is applied at an increased temperature, for example, at more than 50°C or even at more than 80°C; possibly, after the application a post-heating can be performed in any manner, such as, for example, by infrared radiation. This post-heating may promote the distribution of the copolymer, such that possibly a layer may be formed on the entire surface or on part of the surface of the profiled edge regions. After forming this layer, possibly a forced cooling or drying can be applied.

Further, it is noted that the methods as represented in figures 5 and 6 primarily are of interest for manufacturing floor panels with the characteristics of the first or the third aspect. For providing hot melt glue, such as in a method for manufacturing floor panels with the characteristics of the fourth aspect,
preferably use is made of applicator heads designed in
particular for this purpose. Applicator heads for hot
melt glue are known as such and are applied, for
example, when finishing edges of coated panels.

Preferably, the devices are applied which are known from
EP 1 205 275. However, it is clear that for the
efficiency of the manufacturing process, also in case
the moisture-repellent agent relates to hot melt glue,
the profiled edge regions, or at least the respective
portion of the profiled edge regions, are treated with
this hot melt glue in a continuous process. Further, it
is clear that a hot melt glue preferably is applied
pure, in other words, is not applied as a suspension or
emulsion.

Finally, in connection with the application in a
continuous process, it is also noted that herein
throughput speeds can be obtained which are higher than
80 m/min and/or even may amount to 150 m/min or more.

It is clear that in the examples of figures 2 to 4 and 6
the not-represented groove side 3-5 of the floor panel 1
preferably has undergone a similar treatment and that
still better all sides 2-3-4-5 of the floor panel 1 are
provided with an active agent 23 and/or a monomer-free
UV lacquer in any manner.

Possibly, indication means can be incorporated in the
active agent in order to control whether this agent is
applied in a covering manner on the desired surface.
Such indication means may consist of a colorant or a
material which, for example, will light up when radiated
with light or the like.

It is clear that the invention also relates to floor
panels obtained by means of a method according to the
second aspect. In particular, it is clear that the invention according to a particular aspect also relates to a floor panel of the type comprising at least a single- or multi-part substrate and a top layer and having, at least at two opposite sides, profiled edge regions, said regions comprising at least coupling parts, wherein said substrate consists at least partially of wood or wood-based material, with the characteristic that at least a portion of the surface of said profiled edge regions, more particularly a portion formed of said wood or wood-based material, is provided with a copolymer of ethylene acrylic acid. Namely, the inventors have found that this agent may also accomplish a particularly effective hydrophobic effect on the profiled edge regions of such floor panel.

It is noted that the invention according to all its aspects, where it relates to floor panels as well as where it relates to methods, also can be applied for floor panels of which said substrate, instead of consisting at least partially of wood or wood-based material, consists at least partially of another water- or moisture-absorbing material. As mentioned in the introduction, the active agents surprisingly have a good moisture-repellent effect even with porous materials absorbing water or moisture to a high extent. Examples of another water- or moisture-absorbing material are plaster board or other chalk-based boards.

The present invention is in no way limited to the embodiments described as example and represented in the figures, on the contrary may such methods and floor panels be realized according to various variants, without leaving the scope of the invention.
Claims.

1. Floor panel of the type comprising a single- or multi-part substrate (15) and a top layer (16) and having, at least at two opposite sides (2-3), profiled edge regions (6), said regions comprising at least coupling parts (7), wherein said substrate (15) consists at least partially of wood or wood-based material, characterized in that at least a portion of the surface (22-22A) of said profiled edge regions (6), more particularly a portion that is formed of said wood or wood-based material, is provided with an active agent (23) with moisture-repellent effect, wherein said active agent (23) comprises a fluorinated polymer or copolymer.

2. Floor panel according to claim 1, characterized in that said active agent (23) relates to a fluorinated polymer, or copolymer, of methacrylate.

3. Floor panel according to claim 2, characterized in that said fluorinated copolymer of methacrylate relates to a perfluoroalkyl methacrylic copolymer.

4. Floor panel according to any of the preceding claims, characterized in that said active agent (23) covers at least 80%, and preferably at least 95%, and still better the entire surface (22) of the respective profiled edge regions (6).

5. Floor panel according to any of the preceding claims, characterized in that said active agent (23) is present on all edge regions (6) of the floor panel (1).

6. Floor panel according to any of the preceding claims, characterized in that the active agent (23) is a solid product obtained from a mixture, more particularly
a dispersion (25), wherein this mixture or this dispersion (25) contains at least water and said active agent (23), wherein the active agent (23) is a residue obtained by vaporization or drying of said mixture at the surface (22-22A) of the profiled edge regions (6).

7. Floor panel according to claims 3 and 5, characterized in that said mixture comprises at least the product commercially available under the name of Zonyl 7840 from Dupont.

8. Floor panel according to any of the preceding claims, characterized in that said surface (22-22A) of the profiled edge regions (6) is provided with such an amount of active agent (23) that a complete sealing against water and moisture is obtained at this surface (22-22A).

9. Method for manufacturing a floor panel, wherein this floor panel (1) is of the type comprising at least a single- or multi-part substrate (15) and a top layer (16) and having, at least at two opposite sides (2-3), profiled edge regions (6), said regions comprising at least coupling parts (7), wherein said substrate (15) consists at least partially of wood or wood-based material, and wherein at least a portion of the surface (22-22A) of said profiled edge regions (6) is provided with an active agent (23) with moisture-repellent features, characterized in that said active agent (23) is provided on the respective surface (22-22A) in the form of an emulsion or dispersion (25) formed by water and the active agent (23) provided therein.

10. Method according to claim 9, characterized in that said emulsion or dispersion (25) comprises at least a chemically modified acrylate or methacrylate as the
active agent (23), wherein the modification preferably increases the hydrophobicity of the active agent (23).

11. Method according to claim 10, characterized in that a fluorinated or fluorochemical copolymer of acrylate or methacrylate is applied as a modified acrylate or methacrylate.

12. Method according to any of the claims 9 to 11, characterized in that use is made of an emulsion or dispersion (23) in an acidic medium.

13. Method according to any of the claims 9 to 11, characterized in that it is applied for manufacturing a floor panel (1) according to any of the claims 1 to 8, in other words, that therein an agent, as defined in these claims 1 to 8, is used as the active agent (23).

14. Method according to any of the claims 9 to 13, characterized in that said emulsion or dispersion (25) comprises at least an UV lacquer, preferably comprises a monomer-free UV lacquer.

15. Method according to any of the claims 9 to 14, characterized in that the method also comprises the step of performing a forced drying of the profiled edge regions (6) treated with the emulsion or dispersion (25), wherein this drying preferably is performed substantially directly after the application of said emulsion or dispersion (25), more particularly within the first minute following the application thereof.

16. Method according to any of the claims 9 to 15, characterized in that said emulsion or dispersion (25) is provided on said surface (22-22A) in at least two layers (26-28), wherein the first-provided layer (26) is
dried, whether or not completely, before the second layer (28) is provided.

17. Floor panel of the type comprising at least a single- or multi-part substrate (15) and a top layer (16) and having, at least at two opposite sides (2-3), profiled edge regions (6), said regions comprising at least coupling parts (7), wherein said substrate (15) consists at least partially of wood or wood-based material, characterized in that at least a portion of the surface (22-22A) of said profiled edge regions (6), more particularly a portion formed of said wood or wood-based material, is provided with a hardened monomer-free UV lacquer (23).

18. Floor panel according to claim 17, characterized in that the respective profiled edge regions (6) comprise at least a surface (22A) made as a chamfer (24), more particularly a bevel, wherein this chamfer (24) is provided with a decorative and/or transparent coating formed by means of said hardened monomer-free UV lacquer (23).

19. Floor panel according to claim 17 or 18, characterized in that said hardened monomer-free UV lacquer (23) is provided at least partially on the surface (22) of the coupling parts (7) in order to thereby form a moisture-repellent coating.

20. Floor panel according to any of the claims 17 to 19, characterized in that said UV lacquer is a water-based lacquer or water-base lacquer, which is hardened.

21. Floor panel of the type comprising at least a single- or multi-part substrate (15) and a top layer (16) and having, at least at two opposite sides (2-3),
26

 profiled edge regions (6), said regions comprising at least coupling parts (7), wherein said substrate (15) consists at least partially of wood or wood-based material, characterized in that at least a portion of the surface (22-22A) of said profiled edge regions, more particularly a portion formed of said wood or wood-based material, is provided with a solidified hot melt glue.

22. Floor panel according to claim 21, characterized in that said solidified hot melt glue is provided at least partially on the surface (22) of the coupling parts in order to thereby form a moisture-repellent coating.

23. Floor panel according to claim 21 or 22, characterized in that said solidified hot melt glue is present at least over part of the length of one or more of the respective profiled edge regions as a strip underneath the upper edge of the floor panel.

24. Floor panel according to any of the claims 21 to 23, characterized in that said hot melt glue relates to a polyurethane hot melt glue preferably having an opening time of less than 5 seconds.

25. Floor panel according to any of the claims 1 to 8 or 17 to 24, characterized in that said substrate (15), instead of consisting at least partially of wood or wood-based material, consists at least partially of another water- or moisture-absorbing material.

26. Method according to any of the claims 9 to 16, characterized in that, instead of being applied for manufacturing floor panels (1) with a substrate (15) consisting at least partially of wood or wood-based material, it is applied for manufacturing floor panels (1) with a substrate (15) consisting at least partially
of another water- or moisture-absorbing material.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C09D5/00 C09D127/12 E04F15/02 F16B5/00 E04F15/04

According to International Patent Classification (IPC) or to both national classification and IPC.

B. RELOS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C09D E04F F16B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2004/016422 A (SHAW IND GROUP INC [US])</td>
<td>1-6, 8-13, 15</td>
</tr>
<tr>
<td></td>
<td>26 February 2004 (2004-02-26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 1, line 20 - line 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, line 13 - line 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 9, line 7 - line 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 10, line 12 - line 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 12, line 17 - page 13, line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 14, line 15 - line 17</td>
<td>7, 14, 16-26</td>
</tr>
<tr>
<td></td>
<td>page 16, line 6 - line 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 14, 18, 19; figures 2, 3</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 10256501 A1 (KRONOTEC AG LUZERN [CH])</td>
<td>9, 14, 15, 17-20</td>
</tr>
<tr>
<td></td>
<td>paragraph [0005]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0010]</td>
<td>16, 25, 26</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

18 April 2008

Date of mailing of the international search report

06/05/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Matthij Ësen, J-J
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>paragraph [0024]</td>
<td>1-8, 10-22</td>
</tr>
<tr>
<td>P, X</td>
<td>WO 2007/113676 A (FLOORING IND LTD [IE]; SEGAERT MARTIN [BE]) 11 October 2007 (2007-10-11) page 14, line 26 - page 15, line 4 page 32, line 8 - line 24 figures 6, 14 claims 1, 8, 9, 15-18, 23</td>
<td>1, 4-6, 9, 21-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2004016422</td>
<td>26-02-2004</td>
<td>CN 1684824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004031225 A</td>
</tr>
<tr>
<td>DE 10256501</td>
<td>15-07-2004</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2005016107</td>
<td>27-01-2005</td>
<td>CA 2471548 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA04007056 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 50100214 D</td>
</tr>
<tr>
<td>DE 202005000887</td>
<td>29-06-2006</td>
<td>CA 2595231 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1841932 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006076994 A</td>
</tr>
<tr>
<td>US 2003026954</td>
<td>06-02-2003</td>
<td>NONE</td>
</tr>
<tr>
<td>IAI 2007113676</td>
<td>11-10-2007</td>
<td>BE 1017049 A</td>
</tr>
</tbody>
</table>