(43) International Publication Date

15 March 2012 (15.03.2012)

(51)	International Patent Classification:	
	C07D 401/04 (2006.01)	C07D 413/06 (2006.01)
	C07D 401/14 (2006.01)	C07D 413/14 (2006.01)
	C07D 403/06 (2006.01)	C07D 417/04 (2006.01)
	C07D 403/12 (2006.01)	C07D 417/14 (2006.01)
	C07D 403/14 (2006.01)	C07D 471/04 (2006.01)
	C07D 405/04 (2006.01)	C07D 487/04 (2006.01)
	C07D 405/06 (2006.01)	C07D 498/04 (2006.01)
	C07D 405/12 (2006.01)	A01N 43/54 (2006.01)
	C07D 405/14 (2006.01)	A01N 43/72 (2006.01)
	C07D 409/04 (2006.01)	A01N 43/76 (2006.01)
	C07D 409/06 (2006.01)	A01N 43/78 (2006.01)

(21) International Application Number:

PCT/US2011/027737

(22) International Filing Date:

C07D 409/14 (2006.01)

C07D 413/04 (2006.01)

9 March 2011 (09.03.2011)

A01N 43/84 (2006.01)

English (25) Filing Language:

English

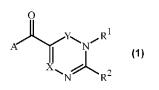
(26) Publication Language:

(30) Priority Data:

PCT/US1000/047944

7 September 2010 (07.09.2010) US P20100103305 9 September 2010 (09.09.2010) AR (71) Applicant (for all designated States except US): E. I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, Delaware 19898 (US).

(72) Inventors; and

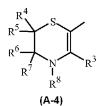

(75) Inventors/Applicants (for US only): PATEL, Kanu, Maganbhai [US/US]; 149 Fairhill Drive, Wilmington, Delaware 19808 (US). SELBY, Thomas, Paul [US/US]; 820 Benge Road, Hockessin, Delaware 19707 (US). SMITH, Brenton, Todd [US/US]; 914 Grandview Drive, Exton, Pennsylvania 19341 (US). TAGGI, Andrew, Edmund [US/US]; 21 Tremont Court, Newark, Delaware 19711 (US). KOVACS, Patrick, Ryan [US/US]; 129 Highland Boulevard, Apartment G, New Castle, Delaware 19720 (US). PURI, Atul [IN/US]; 1111 Stonegate Blvd., Elkton, Maryland 21921 (US). PATZOLDT, William Louis [US/US]; 7 Congress Drive, Bear, Delaware 19702 (US).

(74) Agent: REHBERG, Edward, F.; E. I. du Pont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, Delaware 19805 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

[Continued on next page]

(54) Title: HERBICIDAL BIS-NITROGEN-CONTAINING OXO AND SULFONO HETEROCYCLES



(A-6)

$$\mathbb{R}^{13}$$

(57) Abstract: Disclosed are compounds of Formula (1), including all stereoisomers, N-oxides, and salts thereof, (Formula (1)), X is CH or N; Y is C(O) or S(O)₂; provided that when Y is S(O)2, then X is CH: A is a radical selected from the group consisting of Formulae (A-1), (A-2), (A-3), (A-4), (A-5), (A-6) and (A-7); and B¹, B², B³, T, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (1) and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report (Rule 48.2(g))

TITLE

HERBICIDAL BIS-NITROGEN-CONTAINING OXO AND SULFONO HETEROCYCLES

FIELD OF THE INVENTION

This invention relates to certain bis-nitrogen heterocycles, their salts and compositions, and methods of their use for controlling undesirable vegetation. This invention also relates to certain intermediates and a method useful for prepaing these bis-nitrogen heterocycles and their salts. This invention als relates to certain bis-nitrogen oxo or sulfono heterocycles, their salts and compositions, and methods of their use for controlling undesirable vegetation.

10

15

20

25

30

5

BACKGROUND OF THE INVENTION

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, maize, potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.

International patent application publication WO 2007/088876 discloses pyridone compounds of Formula i

$$A \xrightarrow{O} \bigcap_{\substack{N \\ R_3}} R_1$$

wherein *inter alia* R_1 is C_1 – C_6 alkyl; R_2 and R_3 are each independently hydrogen, cyano, or nitro; and A is a A-1 through A-5 as defined therein as herbicides.

The bis-nitrogen containing oxo and sulfono heterocycles of the present invention are not disclosed in this publication.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula 1 (including all stereoisomers), *N*-oxides, and salts thereof, agricultural compositions containing them and their use as herbicides:

wherein

X is CH;

Y is C(O);

5 A is a radical selected from the group consisting of

$$R^{3}$$
 R^{3}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{10}
 R^{10}
 R^{9}
 R^{9}
 R^{9}
 R^{12}
 R^{9}
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13

B¹ and B³ are each independently a radical selected from the group consisting of

$$R^{14}$$
 R^{15}
and
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

B² is a radical selected from the group consisting of

$$R^{18}$$
 R^{19}
 R^{20}
 R

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂,

-SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ haloalkyl, C₂-C₁₀ haloalkenyl, C₂-C₁₂ haloalkynyl, C₃-C₁₂ cycloalkyl, C₃-C₁₂ halocycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ cycloalkylalkyl, C₆-C₁₈ cycloalkylcycloalkyl, C₄-C₁₄ halocycloalkylalkyl, 5 C₅-C₁₆ alkylcycloalkylalkyl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ halocycloalkenyl, $\mathrm{C}_2\text{-}\mathrm{C}_{12}$ alkoxyalk
yl, $\mathrm{C}_3\text{-}\mathrm{C}_{12}$ alkoxyalkenyl, $\mathrm{C}_4\text{-}\mathrm{C}_{14}$ alkyl
cycloalkyl, $\mathrm{C}_4\text{-}\mathrm{C}_{14}$ alkoxycycloalkyl, C₄-C₁₄ cycloalkoxyalkyl, C₅-C₁₄ cycloalkoxyalkoxyalkyl, C₃-C₁₄ alkoxyalkoxyalkyl, C₂-C₁₂ alkylthioalkyl, C₂-C₁₂ alkylsulfinylalkyl, C2-C12 alkylsulfonylalkyl, C2-C12 alkylaminoalkyl, C3-C14 dialkylaminoalkyl, 10 C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂ alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂ alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl, C₂-C₁₂ alkylaminocarbonyl, C₃-C₁₄ dialkylaminocarbonyl, C₄-C₁₄ cycloalkylaminocarbonyl, C₂-C₉ cyanoalkyl, C₁-C₁₀ hydroxyalkyl, C₄-C₁₄ 15 cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂ haloalkoxyhaloalkyl, C₄-C₁₄ halocycloalkoxyalkyl, C₄-C₁₄ cycloalkenyloxyalkyl, C₄-C₁₄ halocycloalkenyloxyalkyl, C₃-C₁₄ dialkoxyalkyl, C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl, C₂-C₁₂ haloalkoxycarbonyl, C₁-C₁₀ alkoxy, C₁-C₁₀ haloalkoxy, C₃-C₁₂ cycloalkoxy, 20 C₃-C₁₂ halocycloalkoxy, C₄-C₁₄ cycloalkylalkoxy, C₂-C₁₀ alkenyloxy, C₂-C₁₀ haloalkenyloxy, C₂-C₁₀ alkynyloxy, C₃-C₁₀ haloalkynyloxy, C₂-C₁₂ alkoxyalkoxy, C₂-C₁₂ alkylcarbonyloxy, C₂-C₁₂ haloalkylcarbonyloxy, C₄-C₁₄ cycloalkylcarbonyloxy, C₃-C₁₄ alkylcarbonylalkoxy, C₁-C₁₀ alkylthio, C₁-C₁₀ haloalkylthio, C₃-C₁₂ cycloalkylthio, C₁-C₁₀ alkylsulfinyl, C₁-C₁₀ 25 haloalkylsulfinyl, C₁-C₁₀ alkylsulfonyl, C₁-C₁₀ haloalkylsulfonyl, C₃-C₁₂ cycloalkylsulfonyl, C₂-C₁₂ alkylcarbonylthio, C₂-C₁₂ alkyl(thiocarbonyl)thio, C₃-C₁₂ cycloalkylsulfinyl, C₁-C₁₀ alkylaminosulfonyl, C₂-C₁₂ dialkylaminosulfonyl, C₁-C₁₀ alkylamino, C₂-C₁₂ dialkylamino, C₁-C₁₀ haloalkylamino, C₂-C₁₂ halodialkylamino, C₃-C₁₂ cycloalkylamino, C₂-C₁₂ 30 alkylcarbonylamino, C₂-C₁₂ haloalkylcarbonylamino, C₁-C₁₀ alkylsulfonylamino, C₁-C₁₀ haloalkylsulfonylamino or C₄-C₁₄ cycloalkyl(alkyl)amino;

W¹ is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene; W² is C_1 - C_6 alkylene;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W⁴G; or H, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -SF₅, -NHCHO,

-NHNH₂, -NHOH, -NHCN, -NHC(=O)NH₂, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, 5 C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, $\rm C_2\text{-}C_8$ alkoxyalkyl, $\rm C_3\text{-}C_{10}$ alkoxyalkenyl, $\rm C_4\text{-}C_{10}$ cycloalkoxyalkyl, $\rm C_3\text{-}C_{10}$ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₈ haloalkylaminoalkyl, C₄-C₁₀ cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ 10 haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C2-C5 cyanoalkyl, C1-C6 hydroxyalkyl, C4-C10 cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ 15 haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl, C₂-C₈ haloalkoxycarbonyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ 20 haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ 25 cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C2-C8 haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C2-C8 alkylcarbonylthio, C2-C8 alkyl(thiocarbonyl)thio, C₃-C₈ cycloalkylsulfinyl, C₁-C₆ alkylaminosulfonyl, C₂-C₈ dialkylaminosulfonyl, C_3 - C_{10} halotrialkylsilyl, C_1 - C_6 alkylamino, C_2 - C_8 30 dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino, C₃-C₈ cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino, C₁-C₆ haloalkylsulfonylamino or C₄-C₁₀ cycloalkyl(alkyl)amino; or

R¹ and R² are taken together along with the atoms to which they are attached to make a 5-, 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted

30

on carbon atom ring members selected from halogen, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl and C_2 - C_8 alkoxyalkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy; and optionally substituted on nitrogen ring members selected from H and C_1 - C_6 alkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;

 W^4 is C_1 - C_6 alkylene;

R³ is H, halogen, cyano, hydroxy, -O⁻M⁺, amino, nitro, -CHO, -C(=O)OH, 10 $-C(=O)NH_2$, $-C(=S)NH_2$, -SH, $-SO_2NH_2$, $-SO_2NHCN$, $-SO_2NHOH$, -OCN, -SCN, -SF₅, -NHNH₂, -NHOH, -N=C=O, -N=C=S, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C2-C6 alkynyloxy, $C_3\text{-}C_6 \text{ haloalkynyloxy, } C_2\text{-}C_8 \text{ alkoxyalkoxy, } C_2\text{-}C_8 \text{ alkylcarbonyloxy, } C_2\text{-}C_8$ 15 haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ 20 alkylsulfonyloxy, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C_2 - C_8 halodialkylamino, C_3 - C_8 cycloalkylamino, C_2 - C_8 alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino or C₁-C₆ haloalkylsulfonylamino; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy, benzylsulfonyloxy, phenylthio, 25 benzylthio, phenylsulfinyl, benzylsulfinyl, phenylsulfonyl or benzylsulfonyl, each optionally substituted on ring members with up to five substituents selected from R^{21} ;

M⁺ is an alkali metal cation or an ammonium cation;

- R^4 , R^5 , R^6 and R^7 are each independently H, halogen, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_8 cycloalkoxy or C_3 - C_8 halocycloalkoxy; or phenyl or benzyl, each optionally substituted on ring members with up to five substituents selected from R^{21} :
- R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆
 haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl or C₃-C₈ halocycloalkyl; or benzyl optionally substituted on ring members with up to five substituents selected from R²¹;

10

15

20

25

- $\rm R^9$ is H, C $_1$ -C $_6$ alkyl, C $_2$ -C $_6$ alkenyl, C $_2$ -C $_6$ alkynyl, C $_1$ -C $_6$ haloalkyl, C $_2$ -C $_6$ haloalkynyl, C $_3$ -C $_8$ cycloalkyl, C $_3$ -C $_8$ halocycloalkyl, C $_4$ -C $_{10}$ alkylcycloalkyl, C $_4$ -C $_{10}$ cycloalkylalkyl, C $_6$ -C $_{14}$ cycloalkylcycloalkyl, C $_4$ -C $_{10}$ halocycloalkylalkyl, C $_5$ -C $_{12}$ alkylcycloalkylalkyl, C $_3$ -C $_8$ cycloalkenyl, C $_3$ -C $_8$ halocycloalkenyl, C $_2$ -C $_8$ alkoxyalkyl, C $_4$ -C $_{10}$ cycloalkoxyalkyl, C $_3$ -C $_{10}$ alkoxyalkoxyalkyl or C $_2$ -C $_8$ alkylthioalkyl;
- R¹⁰ is H, halogen, cyano, hydroxy, amino, nitro, SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, -NHCHO, -NHNH₂, -N₃, -NHOH, -NHCN, -NHC(=O)NH₂, -N=C=O, -N=C=S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl or C₂-C₈ alkylthioalkyl;
- R¹¹ is H, halogen, cyano, hydroxy, amino, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl; or phenyl optionally substituted with up to five substituents selected from R²¹;
 - R^{12} is H, halogen, cyano, hydroxy, amino, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ haloalkyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ haloalkynyl, $C_3\text{-}C_8$ cycloalkyl, $C_4\text{-}C_{10}$ alkylcycloalkyl, $C_4\text{-}C_{10}$ cycloalkylalkyl, $C_6\text{-}C_{14}$ cycloalkylcycloalkyl, $C_4\text{-}C_{10}$ halocycloalkylalkyl, $C_5\text{-}C_{12}$ alkylcycloalkylalkyl, $C_3\text{-}C_8$ cycloalkenyl, $C_3\text{-}C_8$ halocycloalkenyl or $C_2\text{-}C_8$ alkoxycarbonylamino;
 - R^{13} is H, halogen, cyano, hydroxy, amino, nitro or C_2 - C_8 alkoxycarbonyl; n is 0, 1, or 2;
- each R^{14} , R^{15} , R^{18} and R^{19} is independently H, halogen, cyano, hydroxy or C_1 - C_6 alkyl; or
 - a pair of R^{14} and R^{18} is taken together as C_2 - C_6 alkylene or C_2 - C_6 alkenylene;
 - R^{20} is H, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_8 cycloalkoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_8 cycloalkyl;
- T is C_1 - C_6 alkylene or C_2 - C_6 alkenylene;
 - each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally

substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C3-C8 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C3-C8 cycloalkenyl, C3-C8 halocycloalkenyl, C2-C8 alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkoxyhaloalkyl, C2-C5 cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C2-C6 haloalkenyloxy, C2-C8 alkoxyalkoxy, C2-C8 alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino or C₃-C₈ cycloalkylamino; and

5

10

15

20

25

30

each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.

More particularly, this invention pertains to a compound of Formula 1 (including all stereoisomers), an *N*-oxide, or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein)

This invention also relates to a herbicidal mixture of (a) a compound of Formula 1 and (b) at least one additional active ingredient.

This invention is also directed to an intermediate compound of Formula **1Q** (including all stereoisomers), *N*-oxides, and salts thereof:

wherein A' is a radical selected from the group consisting of

$$B^1$$
 B^2 B^3 $A'-1$ $A'-2$ $A'-3$ $A'-5$ R^{10} R^{10}

R¹, R², B¹, B², B³, T, R⁹ and R¹⁰ are as defined above for a compound of Formula 1 which is useful for preparing a compound of Formula 1.

This invention is also directed to a method of using a compound of Formula 1S as a herbicide safener.

This invention is also directed to a compound of Formula **1R** (including all stereoisomers), *N*-oxides, and salts thereof:

HO
$$R^1$$
 R^2
 R^2

wherein

5

20

25

R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl;

W¹ is C₁-C₆ alkylene, C₂-C₆ alkenylene or C₂-C₆ alkynylene;

 W^2 is C_1 - C_6 alkylene;

 R^2 is phenyl or -W³(phenyl), each substituted on ring members with up to two substituents selected from R^{21} ; or -G; or C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;

each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂,

-SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₁-C₆ haloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkylamino, C₁-C₆ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ haloalkylamino, C₂-C₈ cycloalkylamino, C₂-C₈ cycloalkyla

each R²² is independently C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl or C₂-C₈ alkoxyalkyl which is useful for preparing a compound of Formula 1.

This invention is also directed to a method of using a compound of Formula 1R as a herbicide safener.

This invention is also directed to a compound of Formula **1S** (including all stereoisomers), *N*-oxides, and salts thereof:

wherein

5

10

15

25

30

R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ cycloalkenyl, C₃-C₆ halocycloalkenyl, C₂-C₆ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ alkoxycycloalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl or C₂-C₆ alkylsulfonylalkyl; W¹ is C₁-C₆ alkylene, C₂-C₆ alkenylene or C₂-C₆ alkynylene; W² is C₁-C₆ alkylene;

10

15

20

25

30

 R^2 is phenyl or -W³(phenyl), each substituted on ring members with up to two substituents selected from R^{21} ; or -G; or C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;

each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, $-C(=O)NH_2$, $-C(=S)NH_2$, -C(=O)NHCN, -C(=O)NHOH, -SH, $-SO_2NH_2$, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C3-C8 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkoxyhaloalkyl, C2-C5 cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C2-C6 haloalkenyloxy, C2-C8 alkoxyalkoxy, C2-C8 alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino or C₃-C₈ cycloalkylamino;

each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl; and

R²³ is an optionally substituted carbon moiety which is useful for preparing a compound of Formula 1.

This invention is also directed to a method of using a compound of Formula 1S as a herbicide safener.

This invention is also directed to a process for preparing a compound of Formula 1 from a compound of formula 1Q in the presence of cesium floride:

wherein A' is a radical selected from A'-1, A'-2, A'-3 and A'-5 as defined above for a compound of Formula 1Q; and A is radical selected from A-1, A-2, A-3 and A-5 as defined above for a compound of Formula 1; and R¹ and R² are as defined above for a compound of Formula 1 which is useful for preparing a compound of Formula 1.

This invention is also directed to compounds of Formula **1P** (including all stereoisomers), *N*-oxides, and salts thereof, agricultural compositions containing them and their use as herbicides:

wherein

5

15

10 X is CH or N;

Y is C(O) or $S(O)_2$; provided that when Y is $S(O)_2$, then X is CH;

A is a radical selected from the group consisting of

$$R^{3}$$
 R^{3}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{10}
 R

B¹ and B³ are each independently a radical selected from the group consisting of

$$R^{14}$$
 R^{15}
and
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

B² is a radical selected from the group consisting of

$$R^{18}$$
 R^{19}
 $C-3$
 $C-4$
 $C-5$
 $C-6$
 R^{20}
 R^{20}

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or 5 cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, 10 C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₅-C₁₀ cycloalkoxyalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₈ haloalkylaminoalkyl, C₄-C₁₀ cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, 15 C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₄-C₁₀ cycloalkenylalkyl, C2-C8 haloalkoxyalkyl, C2-C8 alkoxyhaloalkyl, C2-C8 20 haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl, C₂-C₈ haloalkoxycarbonyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, 25 C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ 30 cycloalkylsulfonyl, C₂-C₈ alkylcarbonylthio, C₂-C₈ alkyl(thiocarbonyl)thio, C₃-C₈ cycloalkylsulfinyl, C₁-C₆ alkylaminosulfonyl, C₂-C₈ dialkylaminosulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino, C₃-C₈ cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino, C₁-C₆ haloalkylsulfonylamino or C₄-C₁₀ cycloalkyl(alkyl)amino; 35

 W^1 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkylene; W^2 is C_1 - C_6 alkylene;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W⁴G; or H, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, 5 -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -SF₅, -NHCHO, -NHNH₂, -NHOH, -NHCN, -NHC(=0)NH₂, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ 10 cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} cycloalkoxyalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₈ haloalkylaminoalkyl, C₄-C₁₀ 15 cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ 20 alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl, C₂-C₈ haloalkoxycarbonyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, $\rm C_3\text{-}C_8$ halocycloalkoxy, $\rm C_4\text{-}C_{10}$ cycloalkylalkoxy, $\rm C_2\text{-}C_6$ alkenyloxy, $\rm C_2\text{-}C_6$ 25 haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ 30 cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C2-C8 haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C2-C8 alkylcarbonylthio, C2-C8 alkyl(thiocarbonyl)thio, C₃-C₈ cycloalkylsulfinyl, C₁-C₆ alkylaminosulfonyl, C₂-C₈ dialkylaminosulfonyl, C₃-C₁₀ halotrialkylsilyl, C₁-C₆ alkylamino, C₂-C₈ 35 dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino, C₃-C₈

cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino,

14

 C_1 - C_6 alkylsulfonylamino, C_1 - C_6 haloalkylsulfonylamino or C_4 - C_{10} cycloalkyl(alkyl)amino;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;

 W^4 is C_1 - C_6 alkylene;

25

30

R³ is H, halogen, cyano, hydroxy, -O⁻M⁺, amino, nitro, -CHO, -C(=O)OH, 5 $-C(=O)NH_2$, $-C(=S)NH_2$, -SH, $-SO_2NH_2$, $-SO_2NHCN$, $-SO_2NHOH$, -OCN, -SCN, -SF₅, -NHNH₂, -NHOH, -N=C=O, -N=C=S, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C2-C6 alkynyloxy, 10 C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ 15 alkylsulfonyloxy, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino, C₃-C₈ cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino or C₁-C₆ haloalkylsulfonylamino; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy, benzylsulfonyloxy, phenylthio, 20 benzylthio, phenylsulfinyl, benzylsulfinyl, phenylsulfonyl or benzylsulfonyl, each optionally substituted on ring members with up to five substituents selected from R^{21} ;

M⁺ is an alkali metal cation or an ammonium cation;

R⁴, R⁵, R⁶ and R⁷ are each independently H, halogen, hydroxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy or C₃-C₈ halocycloalkoxy; or phenyl or benzyl, each optionally substituted on ring members with up to five substituents selected from R²¹;

- R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl or C₃-C₈ halocycloalkyl; or benzyl optionally substituted on ring members with up to five substituents selected from R²¹;
- R⁹ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆
 haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl,

 C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl,

 C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl,

 C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀

 alkoxyalkoxyalkyl or C₂-C₈ alkylthioalkyl;

10

15

20

25

30

- $R^{10} \text{ is H, halogen, cyano, hydroxy, amino, nitro, SH, -SO}_{2}\text{NH}_{2}, -\text{SO}_{2}\text{NHCN,} \\ -\text{SO}_{2}\text{NHOH, -OCN, -SCN, -SF}_{5}, -\text{NHCHO, -NHNH}_{2}, -\text{N}_{3}, -\text{NHOH, -NHCN,} \\ -\text{NHC}(=\text{O})\text{NH}_{2}, -\text{N}=\text{C}=\text{O}, -\text{N}=\text{C}=\text{S}, \text{C}_{1}\text{-C}_{6} \text{ alkyl, C}_{2}\text{-C}_{6} \text{ alkenyl, C}_{2}\text{-C}_{6} \text{ alkynyl,} \\ \text{C}_{1}\text{-C}_{6} \text{ haloalkyl, C}_{2}\text{-C}_{6} \text{ haloalkenyl, C}_{2}\text{-C}_{6} \text{ haloalkynyl, C}_{3}\text{-C}_{8} \text{ cycloalkyl,} \\ \text{C}_{3}\text{-C}_{8} \text{ halocycloalkyl, C}_{4}\text{-C}_{10} \text{ alkylcycloalkyl, C}_{4}\text{-C}_{10} \text{ cycloalkylalkyl, C}_{5}\text{-C}_{12} \text{ alkylcycloalkylalkyl,} \\ \text{C}_{3}\text{-C}_{8} \text{ cycloalkenyl, C}_{3}\text{-C}_{8} \text{ halocycloalkenyl, C}_{2}\text{-C}_{8} \text{ alkoxyalkyl, C}_{4}\text{-C}_{10} \\ \text{cycloalkoxyalkyl, C}_{3}\text{-C}_{10} \text{ alkoxyalkoxyalkyl or C}_{2}\text{-C}_{8} \text{ alkylthioalkyl;} \\ \end{array}$
- R¹¹ is H, halogen, cyano, hydroxy, amino, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl; or phenyl optionally substituted with up to five substituents selected from R²¹;
- R¹² is H, halogen, cyano, hydroxy, amino, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl or C₂-C₈ alkoxycarbonylamino; R¹³ is H, halogen, cyano, hydroxy, amino, nitro or C₂-C₈ alkoxycarbonyl; n is 0, 1, or 2;
- each $\rm R^{14}, R^{15}, R^{18}$ and $\rm R^{19}$ is independently H, halogen, cyano, hydroxy or $\rm C_1\text{-}C_6$ alkyl; or
- a pair of R¹⁴ and R¹⁸ is taken together as C₂-C₆ alkylene or C₂-C₆ alkenylene; R²⁰ is H, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₈ cycloalkyl; T is C₁-C₆ alkylene or C₂-C₆ alkenylene;
- each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;
- each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀

10

15

20

25

30

35

16

PCT/US2011/027737

cycloalkylalkyl, C_3 - C_8 cycloalkenyl, C_3 - C_8 halocycloalkenyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} cycloalkoxyalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl, C_2 - C_8 alkylsulfinylalkyl, C_2 - C_8 alkoxyhaloalkyl, C_2 - C_5 cyanoalkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_8 cycloalkoxy, C_3 - C_8 halocycloalkoxy, C_4 - C_{10} cycloalkylalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_8 alkoxyalkoxy, C_2 - C_8 alkylcarbonyloxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 alkylamino, C_2 - C_8 dialkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 cycloalkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 dialkylamino; and

each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.

More particularly, this invention pertains to a compound of Formula **1P** (including all stereoisomers), an *N*-oxide, or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein).

This invention also includes a herbicidal mixture of (a) a compound of Formula **1P** and (b) an active ingredient selected from a photosystem II inhibitor.

DETAILS OF THE INVENTION

As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains", "containing," "characterized by" or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process or method.

The transitional phrase "consisting of" excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of" appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.

The transitional phrase "consisting essentially of" is used to define a composition or method that includes materials, steps, features, components, or elements, in addition to those

17

literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of" occupies a middle ground between "comprising" and "consisting of".

Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising," it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of" or "consisting of."

5

10

15

20

25

30

35

Further, unless expressly stated to the contrary, "or" refers to an inclusive "or" and not to an exclusive "or". For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

As referred to herein, the term "seedling", used either alone or in a combination of words means a young plant developing from the embryo of a seed.

As referred to herein, the term "broadleaf" used either alone or in words such as "broadleaf weed" means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons.

As used herein, the term "alkylating agent" refers to a chemical compound in which a carbon-containing radical is bound through a carbon atom to a leaving group such as halide or sulfonate, which is displaceable by bonding of a nucleophile to said carbon atom. Unless otherwise indicated, the term "alkylating" does not limit the carbon-containing radical to alkyl; the carbon-containing radicals in alkylating agents include the variety of carbon-bound substituent radicals specified for R¹, R² and R³.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, *n*-propyl, *i*-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkylene" denotes a straight-chain or branched alkanediyl. Examples of "alkylene" include CH₂, CH₂CH₂, CH(CH₃), CH₂CH₂CH₂, CH₂CH(CH₃) and the different

18

butylene isomers. "Alkenylene" denotes a straight-chain or branched alkenediyl containing one olefinic bond. Examples of "alkenylene" include CH=CH, CH₂CH=CH, CH=C(CH₃) and the different butenylene isomers. "Alkynylene" denotes a straight-chain or branched alkynediyl containing one triple bond. Examples of "alkynylene" include C=C, CH₂C=C, C=CCH₂ and the different butynylene isomers.

5

10

15

20

25

30

35

"Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH_3OCH_2 , $CH_3OCH_2CH_2$, $CH_3CH_2OCH_2$, "Alkoxyalkoxy" denotes alkoxy CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. substitution on alkoxy. "Alkenyloxy" includes straight-chain or branched alkenyloxy Examples of "alkenyloxy" include H₂C=CHCH₂O, (CH₃)₂C=CHCH₂O, (CH₃)CH=CHCH₂O, (CH₃)CH=C(CH₃)CH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include $HC = CCH_2O$, $CH_3C = CCH_2O$ and $CH_3C = CCH_2CH_2O$. "Alkoxyalkenyl" includes straight-chain or branched alkenyl substituted by an alkoxy group. Examples of "alkoxyalkenyl" include CH₃OCH=CH, CH₃C(OCH₃)=CH and CH₃CH₂OCH=CHCH₂. "Alkoxyalkoxyalkyl" denotes alkoxyalkoxy substitution on alkyl. Examples of "alkoxyalkoxyalkyl" include CH₃OCH₂OCH₂, CH₃OCH₂OC and CH₃OCH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O)-, CH₃CH₂S(O)-, CH₃CH₂CH₂S(O)-, (CH₃)₂CHS(O)- and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂-, CH₃CH₂S(O)₂-, CH₃CH₂CH₂S(O)₂-, (CH₃)₂CHS(O)₂-, and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. The terms "cycloalkylsulfinyl" and "cycloalkylsulfonyl are defined analogously to the terms "alkylsulfinyl" and "alkylsulfonyl" above.

"Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" CH_3SCH_2 , CH₃SCH₂CH₂, CH₃CH₂SCH₂, CH₃CH₂CH₂CH₂SCH₂ include CH₃CH₂SCH₂CH₂; "alkylsulfinylalkyl" and "alkylsulfonylalkyl" include the corresponding sulfoxides and sulfones, respectively. "Alkylamino" includes an NH radical substituted with straight-chain or branched alkyl. Examples of "alkylamino" include CH₃CH₂NH, CH₃CH₂CH₂NH, and (CH₃)₂CHCH₂NH. Examples of "dialkylamino" include (CH₃)₂N, $(CH_3CH_2CH_2)_2N$ and $CH_3CH_2(CH_3)N$. "Alkylaminoalkyl" denotes alkylamino alkyl. substitution on Examples of "alkylaminoalkyl" include CH₃NHCH₂, CH₃NHCH₂CH₂, CH₃CH₂NHCH₂, CH₃CH₂CH₂CH₂NHCH₂ and CH₃CH₂NHCH₂CH₂. Examples of "dialkylaminoalkyl" include ((CH₃)₂CH)₂NCH₂, (CH₃CH₂CH₂)₂NCH₂ and CH₃CH₂(CH₃)NCH₂CH₂. The term "alkylcarbonylamino" denotes alkyl bonded to a

19

C(=O)NH moiety. Examples of "alkylcarbonylamino" include $CH_3CH_2C(=O)NH$ and $CH_3CH_2CH_2C(=O)NH$.

"Alkylcarbonylthio" denotes a straight-chain or branched alkylcarbonyl attached to and linked through a sulfur atom. Examples of "alkylcarbonylthio" include $CH_3C(=O)S$, $CH_3CH_2CH_2C(=O)S$ and $(CH_3)_2CHC(=O)S$. The term "alkyl(thiocarbonyl)oxy" refers to an alkylsulfinyl moiety group bonded to an oxygen atom. Examples of "alkyl(thiocarbonyl)oxy", include $CH_3CH_2OS(O)$ and $CH_3CH_2CH_2OS(O)$. The term "alkyl(thiocarbonyl)thio" refers to an alkylsulfinyl moiety bonded to a sulfur atom. Examples "alkyl(thiocarbonyl)thio" include $CH_3CH_2S(O)S$.

5

10

15

20

25

30

35

"Trialkylsilyl" includes 3 branched and/or straight-chain alkyl radicals attached to and linked through a silicon atom, such as trimethylsilyl, triethylsilyl and *tert*-butyldimethylsilyl. Examples of "halotrialkylsilyl" include $CF_3(CH_3)_2Si$ -, $(CF_3)_3Si$ -, and $CH_2Cl(CH_3)_2Si$ -. "Hydroxyalkyl" denotes an alkyl group substituted with one hydroxy group. Examples of "hydroxyalkyl" include $HOCH_2CH_2$, $CH_3CH_2(OH)CH$ and $HOCH_2CH_2CH_2$. "Cyanoalkyl" denotes an alkyl group substituted with one cyano group. Examples of "cyanoalkyl" include $NCCH_2$, $NCCH_2CH_2$ and $CH_3CH(CN)CH_2$.

"Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "alkylcycloalkyl" denotes alkyl substitution on a cycloalkyl moiety and includes, for example, ethylcyclopropyl, i-propylcyclobutyl, 3-methylcyclopentyl and 4-methylcyclohexyl. The term "cycloalkylalkyl" denotes cycloalkyl substitution on an alkyl moiety. Examples of "cycloalkylalkyl" include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups. The term "cycloalkoxy" denotes cycloalkyl linked through an oxygen atom such as cyclopentyloxy and cyclohexyloxy. The term "alkylcycloalkyl" denotes alkyl substitution on a cycloalkyl moiety. Examples of "alkylcycloalkyl" include methylcyclopropyl, ethylcyclopentyl, and other straight-chain or branched alkyl groups bonded to cycloalkyl moiety. The term "alkoxycycloalkyl" denotes alkoxy substitution on a cycloalkyl moiety. Examples of "alkoxycycloalkyl" include methoxycyclopropyl, ethoxycyclopentyl, and other straight-chain or branched alkoxy groups bonded to a cycloalkyl moiety. "Cycloalkylalkoxy" denotes cycloalkylalkyl linked through an oxygen atom attached to the chain. Examples of "cycloalkylalkoxy" include alkyl cyclopropylmethoxy, cyclopentylethoxy, and other cycloalkyl moieties bonded to straight-chain or branched Examples of "cyanocycloalkyl" include 4-cyanocyclohexyl and alkoxy groups. "Cycloalkenyl" includes groups such as cyclopentenyl 3-cyanocyclopentyl. and cyclohexenyl as well as groups with more than one double bond such as 1,3- and 1,4-cyclohexadienyl.

The term "halogen", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" includes fluorine, chlorine,

10

15

20

25

30

35

bromine or iodine. Further, when used in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" or "alkyl substituted with halogen" include F₃C-, ClCH₂-, CF₃CH₂- and CF₃CCl₂-. The terms "halocycloalkyl", "haloalkoxy", "haloalkylthio", haloalkylsulfinyl, "haloalkenyloxy", "haloalkynyloxy" "haloalkenyl", "haloalkynyl", haloalkylsulfonyl, "haloalkoxyalkyl", "haloalkoxyalkoxy" "haloalkoxyhaloalkoxy", "haloalkoxyhaloalkyl", "haloalkylaminoalkyl" "halocycloalkoxy", "halocycloalkoxyalkyl", "haloalkylamino", "halocycloalkylalkyl", "halocycloalkenyl", "halocycloalkenyloxy", "halocycloalkenyloxy", "halocycloalkenyloxyalkyl", "alkoxyhaloalkoxy", alkoxyhaloalkyl, haloalkylcarbonyloxy, and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkoxy" include CF₃O-, CCl₃CH₂O-, HCF₂CH₂CH₂O- and CF₃CH₂O-. Examples of "haloalkylthio" include CCl₃S-, CF₃S-, CCl₃CH₂S- and ClCH₂CH₂CH₂S-. Examples of "haloalkylsulfinyl" include CF₃S(O)-, CCl₃S(O)-, CF₃CH₂S(O)- and CF₃CF₂S(O)-. Examples of "haloalkylsulfonyl" include CF₃S(O)₂-, CCl₃S(O)₂-, CF₃CH₂S(O)₂- and Examples of "haloalkenyl" include $(C1)_2C=CHCH_2 CF_3CF_2S(O)_2$ -. CF₃CH₂CH=CHCH₂-. Examples of "haloalkynyl" include HC=CCHCl-, CF₃C=C-, CCl₃C≡C- and FCH₂C≡CCH₂-. Examples of "haloalkoxyalkoxy" include CF₃OCH₂O-, ClCH₂CH₂OCH₂CH₂O-, Cl₃CCH₂OCH₂O- as well as branched alkyl derivatives. Examples of "haloalkylamino" include CF₃(CH₃)CHNH, (CF₃)₂CHNH and CH₂ClCH₂NH. The term "halodialkyl", either alone or in compound words such as "halodialkylamino", means at least one of the two alkyl groups is substituted with at least one halogen atom, and independently each halogenated alkyl group may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "halodialkylamino" include (BrCH₂CH₂)₂N and BrCH₂CH₂(ClCH₂CH₂)N.

"Alkylcarbonyl" denotes a straight-chain or branched alkyl moieties bonded to a C(=O) moiety. Examples of "alkylcarbonyl" include CH₃C(=O)-, CH₃CH₂CH₂C(=O)- and (CH₃)₂CHC(=O)-. Examples of "alkoxycarbonyl" include CH₃OC(=O)-, CH₃CH₂OC(=O)-, CH₃CH₂OC(=O)- and the different butoxy- or pentoxycarbonyl isomers. The terms "haloalkylcarbonyl" "haloalkoxycarbonyl", "alkoxyalkylcarbonyl", "cycloalkylarbonyl", "cycloalkylarbonyl" are defined analogously.

The term "alkoxycarbonylamino" denotes a straight-chain or branched alkoxy moieties bonded to a C(=O) moiety of carbonylamino group. Examples of "alkoxycarbonylamino" include CH₃OC(=O)NH- and CH₃CH₂OC(=O)NH-. Examples of "alkylaminocarbonyl" include CH₃NHC(=O), CH₃CH₂NHC(=O), CH₃CH₂NHC(=O), (CH₃)₂CHNHC(=O) and the different butylamino- or pentylaminocarbonyl isomers. Examples of "dialkylaminocarbonyl" include (CH₃)₂NC(=O), (CH₃CH₂)₂NC(=O),

21

CH₃CH₂(CH₃)NC(=O), (CH₃)₂CH(CH₃)NC(=O) and CH₃CH₂CH₂(CH₃)NC(=O). The term "alkylcarbonyloxy" denotes straight-chain or branched alkyl bonded to a C(=O)O moiety. Examples of "alkylcarbonyloxy" include CH₃CH₂C(=O)O and (CH₃)₂CHC(=O)O. The term "alkylcarbonylalkoxy" denotes alkylcarbonyl bonded to an alkoxy moiety. Examples of "alkylcarbonylalkoxy" include CH₃C(=O)CH₂CH₂O and CH₃CH₂C(=O)CH₂O. Examples of "alkoxycarbonyloxy" include CH₃CH₂CH₂OC(=O)O and (CH₃)₂CHOC(=O)O. The term "cycloalkylcarbonyloxy" denotes a cycloalkylcarbonyl group bonded to oxygen. Examples of "cycloalkylcarbonyloxy" include *c*-Pr-C(O)O- and *c*-hexyl-C(O)O-.

5

10

15

20

25

30

35

"Alkylsulfonylamino" denotes an NH radical substituted with alkylsulfonyl. Examples of "alkylsulfonylamino" include $CH_3CH_2S(=O)_2NH$ - and $(CH_3)_2CHS(=O)_2NH$ -. The term "alkylsulfonyloxy" denotes an alkylsulfonyl group bonded to an oxygen atom. Examples of "alkylsulfonyloxy" include $CH_3S(=O)_2O$ -, $CH_3CH_2S(=O)_2O$ -, $CH_3CH_2CH_2S(=O)_2O$ -, $CH_3CH_2CH_2S(=O)_2O$ -, and the different butylsulfonyloxy, pentylsulfonyloxy and hexylsulfonyloxy isomers.

The term "cycloalkoxyalkyl" denotes cycloalkoxy substitution on an alkyl moiety. Examples of "cycloalkoxyalkyl" include cyclopropyloxymethyl, cyclopentyloxyethyl, and other cycloalkoxy moieties bonded to straight-chain or branched alkyl groups. The term "cycloalkylthio" denotes cycloalkyl attached to and linked through a sulfur atom such as cyclopropylthio and cyclopentylthio; "cycloalkylsulfonyl" includes the corresponding sulfones. "Alkylcycloalkylalkyl" denotes an alkyl group substituted with alkylcycloalkyl. Examples of "alkylcycloalkylalkyl" include 1-, 2-, 3- or 4-methyl or -ethyl The term "cycloalkoxyalkoxyalkyl" denotes a cycloalkoxy moiety cyclohexylmethyl. attached to an alkoxyalkyl group. Examples of the term "cycloalkoxyalkoxyalkyl" include (tetrahydrofuran-2-yl)CH₂OCH₂-, (tetrahydrofuran-3-yl)CH₂CH₂OCH₂-(oxiran-2-yl)CH₂OCH₂CH₂-. The term "cycloalkylcycloalkyl" denotes cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members. Examples of cycloalkylcycloalkyl include cyclopropylcyclopropyl (such 1,1'-bicyclopropyl-1-yl, 1,1'-bicyclopropyl-2-yl), as cyclohexylcyclopentyl (such as 4-cyclopentylcyclohexyl) and cyclohexylcyclohexyl (such as 1,1'-bicyclohexyl-1-yl), and the different cis- and trans-cycloalkylcycloalkyl isomers, (such as (1R,2S)-1,1'-bicyclopropyl-2-yl and (1R,2R)-1,1'-bicyclopropyl-2-yl).

"Dialkoxyalkyl" denotes two independent alkoxy groups substituted on same carbon of the alkyl group. Examples of "dialkoxyalkyl" include $(CH_3O)_2CH$ - and $CH_3CH_2O(CH_3O)CH$ -. "Cycloalkylamino" denotes an NH radical substituted with cycloalkyl. Examples of "cycloalkylamino" include cyclopropylamino and cyclohexylamino. "Cycloalkyl(alkyl)amino" means a cycloalkylamino group where the hydrogen atom is replaced by an alkyl radical. Examples of "cycloalkyl(alkyl)amino"

22

include cyclopropyl(methyl)amino, such as cyclobutyl(butyl)amino, groups cyclopentyl(propyl)amino, cyclohexyl(methyl)amino and the like. The term "cycloalkylaminoalkyl" denotes cycloalkylamino substitution on an alkyl group. Examples of "cycloalkylaminoalkyl" include cyclopropylaminomethyl, cyclopentylaminoethyl, and other cycloalkylamino moieties bonded to straight-chain or branched alkyl groups.

5

10

15

20

25

30

35

"Cycloalkylcarbonyl" denotes cycloalkyl bonded to a C(=O) group including, for example, cyclopropylcarbonyl and cyclopentylcarbonyl. The term "cycloalkoxycarbonyl" means cycloalkoxy bonded to a C(=O) group, for example, cyclopropyloxycarbonyl and cyclopentyloxycarbonyl. "Cycloalkylaminocarbonyl" denotes cycloalkylamino bonded to a C(=O) group, for example, cyclopentylaminocarbonyl and cyclohexylaminocarbonyl. "Cycloalkylalkoxycarbonyl" denotes cycloalkylalkoxy bonded to a C(=O) group. Examples of "cycloalkylalkoxycarbonyl" include cyclopropylethoxycarbonyl and cyclopentylmethoxycarbonyl. "Cycloalkylcarbonyloxy" denotes cycloalkylcarbonyl attached to and linked through an oxygen atom. Examples of "cycloalkylcarbonyloxy" include cyclohexylcarbonyloxy and cyclopentylcarbonyloxy.

The term "cycloalkenylalkyl" denotes cycloalkenyl substitution on an alkyl moiety. Examples of "cycloalkenylalkyl" include cyclobutenylmethyl, cyclopentenylethyl, and other cycloalkenyl moieties bonded to straight-chain or branched alkyl groups. The term "cycloalkenyloxy" denotes cycloalkenyl linked through an oxygen atom such as cyclopentenyloxy and cyclohexenyloxy. The term "cycloalkenyloxyalkyl" denotes cycloalkenyloxy substitution on an alkyl moiety. Examples of "cycloalkenyloxyalkyl" include cyclobutenyloxymethyl, cyclopentenyloxyethyl, and other cycloalkenyloxy moieties bonded to straight-chain or branched alkyl groups.

The term "alkylaminosulfonyl" denotes a straight-chain or branched alkylamino moiety bonded to a sulfonyl group. Examples of an "alkylaminosulfonyl" group include $CH_3NHS(O)_2$ - or $CH_3CH_2CH_2NHS(O)_2$ -. The term "dialkylaminosulfonyl" denotes a straight-chain or branched dialkylamino moiety bonded to a sulfonyl group. Examples of a "dialkylaminosulfonyl" group include $(CH_3)_2NS(O)_2$ - or $(CH_3CH_2CH_2)_2NS(O)_2$ -.

The total number of carbon atoms in a substituent group is indicated by the " C_i - C_j " prefix where i and j are numbers from 1 to 14. For example, C_1 - C_4 alkylsulfonyl designates methylsulfonyl through butylsulfonyl; C_2 alkoxyalkyl designates CH_3OCH_2 -; C_3 alkoxyalkyl designates, for example, $CH_3CH(OCH_3)$ -, $CH_3OCH_2CH_2$ - or $CH_3CH_2OCH_2$ -; and C_4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including $CH_3CH_2CH_2OCH_2$ - and $CH_3CH_2OCH_2CH_2$ -.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents, e.g., $(R^v)_r$, r is 1, 2, 3, 4 or 5

23

in U-1 of Exhibit 2. When a group contains a substituent which can be hydrogen, for example R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{18} , R^{19} or R^{20} , then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a variable group is shown to be optionally attached to a position, for example $(R^v)_r$ in Q-29 of Exhibit 1 then hydrogen may be at the position even if not recited in the variable group definition. When one or more positions on a group are said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up any free valency.

5

10

15

20

25

30

35

Unless otherwise indicated, a "ring" or "ring system" as a component of Formula 1 (e.g., substituent G) is carbocyclic or heterocyclic. The term "ring system" denotes two or more fused rings. The terms "bicyclic ring system" and "fused bicyclic ring system" denote a ring system consisting of two fused rings, in which either ring can be saturated, partially unsaturated, or fully unsaturated unless otherwise indicated. The term "ring member" refers to an atom or other moiety (e.g., C(=O), C(=S), S(O) or $S(O)_2$) forming the backbone of a ring or ring system.

The terms "carbocyclic ring", "carbocycle" or "carbocyclic ring system" denote a ring or ring system wherein the atoms forming the ring backbone are selected only from carbon. Unless otherwise indicated, a carbocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated carbocyclic ring satisfies Hückel's rule, then said ring is also called an "aromatic ring". "Saturated carbocyclic" refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms.

The terms "heterocyclic ring", "heterocycle" or "heterocyclic ring system" denote a ring or ring system in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur. Typically a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated heterocyclic ring satisfies Hückel's rule, then said ring is also called a "heteroaromatic ring" or "aromatic heterocyclic ring". Unless otherwise indicated, heterocyclic rings and ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

"Aromatic" indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and that $(4n + 2) \pi$ electrons, where n is a positive integer, are associated with the ring to comply with Hückel's rule. The term "aromatic ring system" denotes a carbocyclic or heterocyclic ring system in which at least one ring of the ring system is aromatic. The term "aromatic carbocyclic ring system" denotes a carbocyclic ring system in which at least one ring of the ring system is aromatic. The term "aromatic heterocyclic ring system" denotes a heterocyclic ring system in which at

10

15

20

25

least one ring of the ring system is aromatic. The term "nonaromatic ring system" denotes a carbocyclic or heterocyclic ring system that may be fully saturated, as well as partially or fully unsaturated, provided that none of the rings in the ring system are aromatic. The term "nonaromatic carbocyclic ring system" denotes a carbocyclic ring system in which no ring in the ring system is aromatic. The term "nonaromatic heterocyclic ring system" denotes a heterocyclic ring system in which no ring in the ring system is aromatic.

As used herein, the following definitions shall apply unless otherwise indicated. The term "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" or with the term "(un)substituted." Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.

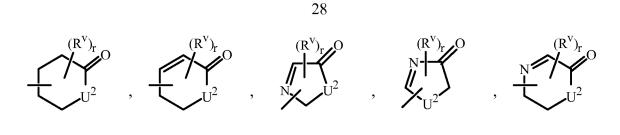
When G is a 5- or 6-membered nitrogen-containing heterocyclic ring, it may be attached to the remainder of Formula 1 through any available carbon or nitrogen ring atom, unless otherwise described. When G is (among others) a 5- or 6-membered heterocyclic ring it may be saturated or unsaturated, optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. Examples of a 5- or 6-membered unsaturated aromatic heterocyclic ring optionally substituted with from one or more substituents include the rings Q-1 through Q-60 illustrated in Exhibit 1 wherein R^v is any substituent as defined in the Summary of the Invention for R²¹ on carbon ring members or R²² on nitrogen ring members, and r is an integer from 0 to 4, limited by the number of available positions on each Q group. As Q-29, Q-30, Q-36, Q-37, Q-38, Q-39, Q-40, Q-41, Q-42 and Q-43 have only one available position, for these Q groups r is limited to the integers 0 or 1, and r being 0 means that the Q group is unsubstituted and a hydrogen is present at the position indicated by (R^v)_r.

Note that when G is a 5- or 6-membered saturated or unsaturated non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group of substituents as defined in the Summary of the Invention for R²¹ one or two carbon ring members of the heterocycle can optionally be in the oxidized form of a carbonyl moiety.

5

10

15


Examples of a 5- or 6-membered saturated or non-aromatic unsaturated heterocyclic ring include the rings U-1 through U-36 as illustrated in Exhibit 2. Note that when the attachment point on the U group is illustrated as floating, the U group can be attached to the remainder of Formula 1 through any available carbon or nitrogen of the U group by replacement of a hydrogen atom. The optional substituents corresponding to R^v can be attached to any available carbon or nitrogen by replacing a hydrogen atom. For these U rings, r is typically an integer from 0 to 4, limited by the number of available positions on each U group.

Note that when G comprises a ring selected from U-29 through U-36, U^2 is selected from O, S or N. Note that when U^2 is N, the nitrogen atom can complete its valence by substitution with either H or the substituents corresponding to R^v as defined in the Summary of the Invention for U (i.e. R^{22}).

$$(R^{V})_{r}$$
, $(R^{V})_{r}$, $(R^{$

$$(R^{v})_{r}$$
, $(R^{v})_{r}$, $(R^{$

$$V_{N}^{(R^{V})_{r}}$$
, $V_{N}^{(R^{V})_{r}}$

U-33

U-34

U-35

and
$$U^{2} \longrightarrow U^{R^{V}}_{r} O$$

$$U^{-36}$$

U-32

U-31

5

As noted above, G can be (among others) an 8-, 9- or 10-membered fused bicyclic ring system optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention (i.e. R²¹). Examples of 8-, 9- or 10-membered fused bicyclic ring system optionally substituted with from one or more substituents include the rings Q-81 through Q-123 illustrated in Exhibit 3 wherein R^v is any substituent as defined in the Summary of the Invention for G (i.e. R²¹ or R²²), and r is typically an integer from 0 to 4.

29

$$Q-97 (R^{V})_{r} , Q-98 (R^{V})_{r} , Q-99 (R^{V})_{r} , Q-100 (R^{V})_{r} , Q-100 (R^{V})_{r} , Q-101 (R^{V})_{r} , Q-102 (R^{V})_{r} , Q-103 (R^{V})_{r} , Q-104 (R^{V})_{r} , Q-104 (R^{V})_{r} , Q-105 (R^{V})_{r} , Q-107 (R^{V})_{r} , Q-108 (R^{V})_{r} , Q-108 (R^{V})_{r} , Q-109 (R^{V})_{r} , Q-111 (R^{V})_{r} , Q-112 (R^{V})_{r} , Q-112 (R^{V})_{r} , Q-120 (R^{V})_{r} , Q-120 (R^{V})_{r} , Q-121 ($$

Although R^v groups are shown in the structures Q-1 through Q-60 and Q-81 through Q-123, it is noted that they do not need to be present since they are optional substituents. The nitrogen atoms that require substitution to fill their valence are substituted with H or R^v . Note that when the attachment point between $(R^v)_r$ and the Q group is illustrated as floating, $(R^v)_r$ can be attached to any available carbon atom or nitrogen atom of the Q group. Note that when the attachment point on the Q group is illustrated as floating, the Q group can be attached to the remainder of Formula 1 through any available carbon or nitrogen of the Q group by replacement of a hydrogen atom. Note that some Q groups can only be substituted

5

30

with less than 4 R^v groups (e.g., Q-1 through Q-5, Q-7 through Q-48, and Q-52 through Q-60).

5

10

15

20

25

30

35

As noted in the Summary of the Invention, R¹ and R² are taken together along with the atoms to which they are attached to make a 5-, 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups. Besides the possibility of R¹ and R² being separate substituents, they may also be connected to form a ring fused to the ring to which they are attached. The fused ring can be a 5-, 6- or 7-membered ring including as ring members the two atoms shared with the ring to which the substituents are attached. The other 3, 4 or 5 ring members of the fused ring are provided by R¹ and R² substituents taken together. These other ring members can include up to 5 carbon atoms (as allowed by the ring size) and optionally up to 3 heteroatoms selected from up to 2 O, up to 2 S and up to 3 N. The fused ring is optionally substituted with up to 3 substituents as noted in the Summary of the Invention. Exhibit 4 provides, as illustrative examples, rings formed by R¹ and R² taken together. As these rings are fused with a ring of Formula 1, a portion of the Formula 1 ring is shown and the truncated lines represent the ring bonds of the Formula 1 ring. The rings depicted are fused to the two adjacent atoms of a ring as shown in Formula 1. The optional substituents (R^v)_r, are independently selected from the group consisting of halogen, cyano, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl and C₂-C₈ alkoxyalkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy and C₁-C₆ haloalkoxy; on carbon atom ring members. The optional substituents $(R^{v})_{r}$, are independently selected from the group consisting of H and C₁-C₆ alkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy and C₁-C₆ haloalkoxy; on nitrogen ring members. Substituents are limited by the number of available positions on each T-ring. When the attachment point between (R^v)_r and the T-ring is illustrated as floating, R^v may be bonded to any available T-ring carbon or nitrogen atom (as applicable). One skilled in the art recognizes that while r is nominally an integer from 0 to 3, some of the rings shown in Exhibit 4 have less than 3 available positions, and for these groups r is limited to the number of available positions. When "r" is 0 this means the ring is unsubstituted and hydrogen atoms are present at all available positions. If r is 0 and (R^v)_r is shown attached to a particular atom, then hydrogen is attached to that atom. The nitrogen atoms that require substitution to fill their valence are substituted with H or R^v. Furthermore, one skilled in the art recognizes that some of the rings shown in Exhibit 4 can form tautomers, and the particular tautomer depicted is representative of all the possible tautomers.

Exhibit 4

32

A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of *Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of *Comprehensive Heterocyclic Chemistry II*, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

5

33

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form.

5

10

15

20

25

30

35

One skilled in the art will recognize that when A is A-1, A-2 or A-3, and the R³ variable is hydroxy or O⁻M⁺, then the resulting compound of Formula 1 can exist in either the "triketone" tautomer or the "di-keto enol" tautomer. Likewise, when A is A-1, A-2 or A-3, and the R³ variable is –SH, the resulting compound of Formula 1 can exist in either the "di-keto thioketo" tautomer or the "di-keto thioenol" tautomer. In any of these cases and for the purposes of this invention both tautomeric combinations represent fully functional species of the present invention. For example, named species using the phrase "2-(1,3-cyclohexanedione)" is synonomous with the term "3-oxo-1-cyclohexen-1-yl".

Compounds of Formula 1 typically exist in more than one form, and Formula 1 thus include all crystalline and non-crystalline forms of the compounds they represent. Noncrystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph" refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due the presence or absence of cocrystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound of Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound of Formula 1. Preparation and isolation of a particular polymorph of a compound of Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures.

One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form *N*-oxides since the nitrogen requires an available lone pair for oxidation to the oxide;

10

15

20

25

30

35

one skilled in the art will recognize those nitrogen-containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149–161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390–392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of a compound of Formula 1 are useful for control of undesired vegetation (i.e. are agriculturally suitable). The salts of a compound of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as a carboxylic acid or phenol, salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, *N*-oxides and agriculturally suitable salts thereof.

Embodiments of the present invention as described in the Summary of the Invention also include (where Formula 1 as used in the following Embodiments includes *N*-oxides and salts thereof):

Embodiment 1. A compound of Formula 1 wherein A is A-1, A-3, A-4, A-5 or A-6.

Embodiment 2. A compound of Embodiment 1 wherein A is A-1, A-3, A-5 or A-6.

Embodiment 3. A compound of Embodiment 2 wherein A is A-1, A-3 or A-5.

Embodiment 4. A compound of Embodiment 3 wherein A is A-1 or A-3.

Embodiment 5. A compound of Embodiment 4 wherein A is A-1.

Embodiment 6. A compound of Embodiment 4 wherein A is A-3.

25

30

35

- Embodiment 7. A compound of Formula 1 or any one of Embodiments 1 through 5 wherein A is other than A-1.
- Embodiment 8. A compound of Formula 1 or any one of Embodiments 1 through 7 wherein B¹ is C-1.
- 5 Embodiment 9. A compound of Formula 1 or any one of Embodiments 1 through 7 wherein B¹ is C-2.
 - Embodiment 10. A compound of Formula 1 or any one of Embodiments 1 through 9 wherein B² is C-3.
 - Embodiment 11. A compound of Formula 1 or any one of Embodiments 1 through 9 wherein B² is C-4.
 - Embodiment 12. A compound of Formula 1 or any one of Embodiments 1 through 11 wherein B³ is C-1.
 - Embodiment 13. A compound of Formula 1 or any one of Embodiments 1 through 11 wherein B³ is C-2.
- Embodiment 14. A compound of Formula 1 or any one of Embodiments 1 through 13 wherein R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G
- -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl,

 $\rm C_2\text{-}C_{10}$ alkynyl, $\rm C_1\text{-}C_{10}$ halo
alkyl, $\rm C_2\text{-}C_{10}$ haloalkenyl, $\rm C_2\text{-}C_{12}$ haloalkynyl,

or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH,

 $C_3-C_{12} \text{ cycloalkyl}, C_3-C_{12} \text{ halocycloalkyl}, C_4-C_{14} \text{ alkylcycloalkyl}, C_4-C_{14}$

cycloalkyl
alkyl, C_6 - C_{18} cycloalkylcycloalkyl, C_4 - C_{14} halocycloalkyl
alkyl,

 $C_5\text{-}C_{16} \text{ alkylcycloalkylalkyl}, C_3\text{-}C_{12} \text{ cycloalkenyl}, C_3\text{-}C_{12} \text{ halocycloalkenyl},$

 $\rm C_2\text{-}C_{12}$ alkoxyalk
yl, $\rm C_3\text{-}C_{12}$ alkoxyalkenyl, $\rm C_4\text{-}C_{14}$ alkyl
cycloalkyl, $\rm C_4\text{-}C_{14}$

alkoxycycloalkyl, C_4 - C_{14} cycloalkoxyalkyl, C_5 - C_{14} cycloalkoxyalkoxyalkyl, C_3 - C_{14} alkoxyalkoxyalkyl, C_2 - C_{12} alkylthioalkyl, C_2 - C_{12} alkylsulfinylalkyl,

C₂-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₄ dialkylaminoalkyl,

C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂

alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂

alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl,

 C_2 - C_{12} alkylaminocarbonyl, C_3 - C_{14} dialkylaminocarbonyl, C_4 - C_{14}

cycloalkylaminocarbonyl, $\mathrm{C}_2\text{-}\mathrm{C}_9$ cyanoalkyl, $\mathrm{C}_1\text{-}\mathrm{C}_{10}$ hydroxyalkyl, $\mathrm{C}_4\text{-}\mathrm{C}_{14}$

cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂

haloalkoxyhaloalkyl, C_4 - C_{14} halocycloalkoxyalkyl, C_4 - C_{14}

cycloalkenyloxyalkyl, C_4 - C_{14} halocycloalkenyloxyalkyl, C_3 - C_{14} dialkoxyalkyl,

C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl or C₂-C₁₂

haloalkoxycarbonyl.

10

15

20

25

30

35

Embodiment 15. A compound of Formula 1 or any one of Embodiments 1 through 14 wherein R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, $-SO_2NH_2, -SO_2NHCN, -SO_2NHOH, -NHCHO, C_1-C_6 \ alkyl, \ C_2-C_6 \ alkenyl,$ C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkyla
lkyl, C_6 - C_{14} cycloalkylcycloalkyl, C_4 - C_{10} halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ alkoxycycloalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 alkylaminoalkyl, C_3 - C_{10} dialkylaminoalkyl, C_2 - C_8 haloalkylaminoalkyl, C_4 - C_{10} cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C_4 - C_{10} cycloalkylaminocarbonyl, C_2 - C_5 cyanoalkyl, C₁-C₆ hydroxyalkyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl or C₂-C₈ haloalkoxycarbonyl.

Embodiment 16. A compound of Embodiment 15 wherein R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W²(SO₂-phenyl), -W²(SO₂-CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ cycloalkenyl, C₃-C₆ halocycloalkenyl, C₂-C₆ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₃-C₆ alkylcycloalkyl, C₄-C₁₀ alkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkylthioalkyl or C₂-C₆ alkylsulfonylalkyl.

Embodiment 17. A compound of Embodiment 16 wherein R¹ is phenyl or -W¹(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈

10

25

30

halocycloalkenyl, C_2 - C_8 alkoxyalkyl C_3 - C_{10} alkoxyalkenyl, C_4 - C_{10} alkoxycycloalkyl.

- Embodiment 18. A compound of Embodiment 17 wherein R¹ is phenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl,
 - 4-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl,
 - 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl,
 - 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or
 - 5-chloro-2-methylphenyl.
- Embodiment 19. A compound of Embodiment 18 wherein R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl,
 - 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.
- Embodiment 20. A compound of Embodiment 19 wherein R¹ is phenyl, 3,4-dimethoxyphenyl or 5-chloro-2-methylphenyl.
- Embodiment 21. A compound of Embodiment 20 wherein R¹ is phenyl.
- Embodiment 22. A compound of Embodiment 19 wherein R¹ is 3,4-dimethoxyphenyl.
 - Embodiment 23. A compound of Embodiment 19 wherein R¹ is 5-chloro-2-methylphenyl.
 - Embodiment 24. A compound of Formula 1 or any one of Embodiments 1 through 21 wherein R¹ is other than phenyl.
- Embodiment 25. A compound of Embodiment 17 wherein R¹ is -G or -W²G; C₁-C₆ alkyl, C₃-C₈ cycloalkyl, or C₂-C₈ alkoxyalkyl.
 - Embodiment 26. A compound of Embodiment 25 wherein R¹ is -G or -W²G.
 - Embodiment 27. A compound of Embodiment 26 wherein R^1 is C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, or C_2 - C_8 alkoxyalkyl.
 - Embodiment 28. A compound of Embodiment 27 wherein R¹ is *n*-Pr, *i*-Pr, *n*-Bu, *c*-hexyl, *c*-heptyl, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃ or -CH₂CH₂OCH₂CH₃.
 - Embodiment 29. A compound of Embodiment 28 wherein R¹ is *n*-Pr, *c*-hexyl, -CH₂CH₂OCH₃ or -CH₂CH₂CH₂OCH₃.
 - Embodiment 29a. A compound of Embodiment 29 wherein R^1 is n-Pr or $-CH_2CH_2OCH_3$.
 - Embodiment 29b. A compound of Embodiment 29 wherein R¹ is *c*-hexyl.
 - Embodiment 30. A compound of Formula 1 or any one of Embodiments 1 through 17 wherein W^1 is C_1 - C_6 alkylene.
 - Embodiment 31. A compound of Embodiment 30 wherein W1 is -CH2-.
- Embodiment 32. A compound of Formula 1 or any one of Embodiments 1 through 17, 25 or 26 wherein W² is -CH₂-.
 - Embodiment 33. A compound of Formula 1 or any one of Embodiments 1 through 32 wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring

10

15

20

25

30

35

members with up to five substituents selected from R^{21} ; or -G; C_1 - C_6 alkyl, C_2 -C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ cycloalkoxyalkyl, C₄-C₁₀ cycloalkoxylalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylcarbonyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C2-C8 haloalkoxyhaloalkyl, C4-C10 halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, $\mathrm{C}_2\text{-}\mathrm{C}_8$ alkylcarbonyloxy, $\mathrm{C}_2\text{-}\mathrm{C}_8$ haloalkylcarbonyloxy, $\mathrm{C}_4\text{-}\mathrm{C}_{10}$ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C2-C8 haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxy
haloalkoxy, $\mathrm{C}_3\text{-}\mathrm{C}_{10}$ alkoxy
carbonylalkoxy, $\mathrm{C}_2\text{-}\mathrm{C}_8$ alkyl(thiocarbonyl)oxy, C₃-C₈ cycloalkylsulfinyl or C₃-C₁₀ halotrialkylsilyl.

Embodiment 34. A compound of Embodiment 33 wherein R^2 is phenyl or $-W^3$ (phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or -G or; or C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl.

Embodiment 35. A compound of Embodiment 34 wherein R^2 is phenyl optionally substituted on ring members with up to two substituents selected from R^{21} ; or -G; or C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl.

Embodiment 36. A compound of Embodiment 35 wherein R² is phenyl, 2-methylphenyl, 3-methylphenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl.

Embodiment 36a. A compound of Embodiment 35 wherein R² is phenyl, 3-bromophenyl, 3-chlorophenyl, or 2-methylphenyl.

Embodiment 37. A compound of Embodiment 35 wherein R² is phenyl.

Embodiment 38. A compound of Formula 1 or any one of Embodiments 1 through 36 wherein R² is other than phenyl.

Embodiment 39. A compound of Embodiment 35 wherein R² is 3-thienyl or 2-thienyl.

10

15

20

25

30

35

Embodiment 40. A compound of Embodiment 35 wherein R² is *n*-propyl, *n*-butyl, or cyclopropyl.

Embodiment 41. A compound of Formula 1 or any one of Embodiments 1 through 13 wherein R¹ and R² are taken together along with the atoms to which they are attached to make a 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted on carbon atom ring members selected from halogen, cyano, C¹-C6 alkyl, C²-C6 alkenyl, C²-C6 alkynyl, C¹-C6 haloalkyl, C³-C8 cycloalkyl and C²-C8 alkoxyalkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C¹-C6 alkyl, C¹-C6 alkoxy and C¹-C6 haloalkoxy; and optionally substituted on nitrogen ring members selected from H and C¹-C6 alkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C¹-C6 alkyl, C¹-C6 alkoxy and C¹-C6 haloalkoxy.

Embodiment 42. A compound of Embodiment 41 wherein R¹ and R² are taken together along with the atoms to which they are attached to make a 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 1 oxygen atoms, 1 nitrogen atoms or 1 sulfur atoms or up to one -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted on carbon atom ring members selected from halogen, cyano, C¹-C6 alkyl, C²-C6 alkenyl, C²-C6 alkynyl, C¹-C6 haloalkyl, C³-C8 cycloalkyl and C²-C8 alkoxyalkyl; and optionally substituted on nitrogen ring members selected from H and C¹-C6 alkyl.

Embodiment 43. A compound of Embodiment 42 wherein R¹ and R² are taken together along with the atoms to which they are attached to make a 7-membered partially unsaturated ring optionally substituted with halogen, cyano, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl or C₂-C₈ alkoxyalkyl on carbon atom ring members.

- Embodiment 44. A compound of Embodiment 43 wherein R¹ and R² are taken together along with the atoms to which they are attached to make an unsubstituted 7-membered partially unsaturated ring.
- Embodiment 45. A compound of Formula 1 or any one of Embodiments 1 through 34 wherein W³ is -CH₂-.
- Embodiment 46. A compound of Formula 1 or any one of Embodiments 1 through 32 wherein W⁴ is -CH₂-.
- Embodiment 47. A compound of Formula 1 or any one of Embodiments 1 through 46 wherein R³ is hydroxy, -O⁻M⁺, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy or C₃-C₁₀

10

15

20

25

30

- alkylcarbonylalkoxy; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy or benzylsulfonyloxy, each optionally substituted on ring members with up to two substituents selected from R²¹.
- Embodiment 48. A compound of Embodiment 47 wherein R^3 is hydroxy, $-O^-M^+$ or C_2 - C_8 alkylcarbonyloxy; or phenylsulfonyloxy optionally substituted with up to two substituents selected from R^{21} .
- Embodiment 49. A compound of Embodiment 48 wherein M⁺ is a sodium or potassium metal cation.
- Embodiment 50. A compound of Embodiment 49 wherein R³ is hydroxy or C₂-C₈ alkylcarbonyloxy.
- Embodiment 51. A compound of Embodiment 50 wherein R³ is hydroxy or -OC(=O)CH₂CH(CH₃)₂.
- Embodiment 52. A compound of Formula 1 or any one of Embodiments 1, 7 and 14 through 51 wherein R^4 , R^5 , R^6 and R^7 are each independently H, or C_1 - C_6 alkyl.
- Embodiment 53. A compound of Formula 1 or any one of Embodiments 1, 7 and 14 through 52 wherein \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_6 alkyl or \mathbb{C}_3 - \mathbb{C}_8 cycloalkyl.
- Embodiment 54. A compound of Embodiment 53 wherein R⁸ is CH₃, CH₂CH₃ or cyclopropyl.
- Embodiment 55. A compound of Formula 1 or any one of Embodiments 1 through 3, 7 and 14 through 51 wherein R^9 is C_1 - C_6 alkyl.
- Embodiment 56. A compound of Embodiment 55 wherein R⁹ is CH₂CH₃.
- Embodiment 57. A compound of Formula 1 or any one of Embodiments 1 through 3, 7 and 14 through 51 wherein R^{10} is H, halogen or C_1 - C_6 alkyl.
- Embodiment 58. A compound of Embodiment 57 wherein R¹⁰ is H or CH₃.
- Embodiment 59. A compound of Formula 1 or any one of Embodiments 1, 2, 8, 10 and 12 through 51 wherein R^{11} is H or C_1 - C_6 alkyl.
 - Embodiment 60. A compound of Embodiment 59 wherein R¹¹ is H.
 - Embodiment 61. A compound of Formula 1 or any one of Embodiments 1, 2, 8, 10 and 12 through 51 wherein R^{12} is H, halogen, cyano, hydroxy, amino or C_1 - C_6 alkyl.
 - Embodiment 62. A compound of Embodiment 61 wherein R^{12} is H, halogen, cyano, C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl.
 - Embodiment 63. A compound of Embodiment 62 wherein R¹² is CH₃, CH₂CH₃ or cyclopropyl.
 - Embodiment 64. A compound of Formula 1 or any one of Embodiments 7 and 15 through 51 wherein R¹³ is H, halogen, cyano or nitro.
 - Embodiment 65. A compound of Embodiment 64 wherein R¹³ is cyano or nitro.
 - Embodiment 66. A compound of Formula 1 or any one of Embodiments 1 through 65 wherein when instances of R^{14} and R^{18} are taken alone (i.e. R^{14} and R^{18} are not

10

15

20

25

- taken together as alkylene or alkenylene), then independently said instances of R^{14} and R^{18} are H or C_1 - C_6 alkyl.
- Embodiment 67. A compound of Embodiment 66 wherein when instances of R¹⁴ and R¹⁸ are taken alone, then independently said instances of R¹⁴ and R¹⁸ are H or CH₃.
- Embodiment 68. A compound of Embodiment 68 wherein when instances of R^{14} and R^{18} are taken alone, then independently said instances of R^{14} and R^{18} are H.
- Embodiment 69. A compound of Formula 1 or any one of Embodiments 1 through 68 wherein when instances of R¹⁴ and R¹⁸ are taken together, then said instances of R¹⁴ and R¹⁸ are taken together as -CH₂CH₂CH₂- or -CH=CHCH₂-.
- Embodiment 70. A compound of Formula 1 or any one of Embodiments 1 through 68 wherein all instances of R¹⁴ and R¹⁸ are taken alone.
- Embodiment 71. A compound of Formula 1 or any one of Embodiments 1 through 70 wherein independently each R^{15} and R^{19} is H or C_1 - C_6 alkyl.
- Embodiment 72. A compound of Embodiment 71 wherein independently each R¹⁵ and R¹⁹ is H or CH₃.
 - Embodiment 73. A compound of Embodiment 72 wherein independently each R^{15} and R^{19} is H.
 - Embodiment 73a. A compound of Embodiments 67 and 72 wherein each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H or CH₃.
 - Embodiment 73b. A compound of Embodiment 73 wherein each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H.
 - Embodiment 74. A compound of Formula 1 or any one of Embodiments 1 through 73 wherein R^{20} is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_3 - C_8 cycloalkyl.
- Embodiment 75. A compound of Embodiment 74 wherein R²⁰ is H or CH₃.
 - Embodiment 76. A compound of Formula 1 or any one of Embodiments 1 through 4, 6, 10, 11 and 14 through 51 wherein T is -CH₂CH₂- or -CH=CH-.
 - Embodiment 77. A compound of Embodiment 76 wherein T is -CH₂CH₂-.
 - Embodiment 78. A compound of Formula 1 or any one of Embodiments 1 through 17 wherein each G is independently a 5- or 6-membered heterocyclic ring optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members.
 - Embodiment 79. A compound of Embodiment 78 wherein G is

r is 0, 1, 2 or 3.

5

10

15

Embodiment 80. A compound of Embodiment 79 wherein G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20.

Embodiment 81. A compound of Embodiment 79 wherein when R¹ is G, then G is G-18, G-19 or G-20.

Embodiment 82. A compound of Embodiment 81 wherein when R¹ is G, then G is G-19 or G-20.

Embodiment 83. A compound of Embodiment 82 wherein when R¹ is G, then G is G-20.

Embodiment 84. A compound of Embodiment 82 wherein when R¹ is G, then G is G-19.

Embodiment 85. A compound of Embodiment 79 wherein when R² is G, then G is G-2, G-3 or G-15.

Embodiment 86. A compound of Embodiment 84 wherein when R² is G, then G is G-2 or G-3.

25

30

- Embodiment 87. A compound of Embodiment 84 wherein when R² is G, then G is G-2.
- Embodiment 88. A compound of Embodiment 84 wherein when R² is G, then G is G-3.
- 5 Embodiment 89. A compound of Formula 1 or any one of Embodiments 1 through 88 wherein each R²¹ is independently halogen, cyano, hydroxy, nitro, -CHO, -SH, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C2-C6 haloalkynyl, C3-C8 cycloalkyl, C3-C8 halocycloalkyl, C4-C10 alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ 10 halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C2-C8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkoxyhaloalkyl, C2-C5 cyanoalkyl, C1-C6 hydroxyalkyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, 15 C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl or C₃-C₈ cycloalkylsulfonyl.
 - Embodiment 90. A compound of Embodiment 91 wherein each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.
 - Embodiment 91. A compound of Embodiment 92 wherein each R²¹ is independently fluorine, chlorine, bromine, CH₃, CF₃, OCH₃, OCF₃ or SCH₃.
 - Embodiment 92. A compound of Formula 1 or any one of Embodiments 1 through 91 wherein each R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.
 - Embodiment 93. A compound of Embodiment 92 wherein each R²² is independently CH₃ or CH₂CF₃.
 - Embodiment 94A. A compound of Formula 1 or any one of Embodiments 1 through 14 wherein R¹ is phenyl optionally substituted with up to five substituents selected from R²¹; or -G or -W²G; C_4 - C_{10} alkylcycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl, C_2 - C_8 alkylthioalkyl, C_2 - C_8 alkylsulfinylalkyl, C_2 - C_8 alkylsulfonylalkyl, C_2 - C_8 haloalkoxyalkyl, C_3 - C_{10} dialkoxyalkyl or C_3 - C_{10} alkoxycarbonylalkyl or C_2 - C_8 haloalkoxycarbonyl.
 - Embodiment 95A. A compound of Embodiment 94A wherein R¹ is phenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl or 3,4-diethoxyphenyl.
 - Embodiment 96A. A compound of Embodiment 95A wherein R¹ is 4-methoxyphenyl. Embodiment 97A. A compound of Embodiment 95A wherein R¹ is 3,4-dimethoxyphenyl.

10

15

20

25

30

35

44 Embodiment 98A. A compound of Embodiment 95^a wherein R¹ is other than phenyl. Embodiment 99A. A compound of Embodiment 95A wherein R¹ is 3,4-diethoxyphenyl. Embodiment 100A. A compound of Embodiment 94A wherein R¹ is -G or -W²G. Embodiment 101A. A compound of Embodiment 100A wherein R¹ is -W²G. Embodiment 102A. A compound of Embodiment 100A or 101A wherein G is G-9 or G-15. Embodiment 103A. A compound of Embodiment 102A wherein W2 is -CH2- and G is tetrahydrofuran-2-yl. Embodiment 104A. A compound of Embodiment 103A wherein R¹ is -CH₂(tetrahydrofuran-2-yl). Embodiment 105A. A compound of Embodiment 94A wherein R¹ is 3,5-dimethylcyclohexyl, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₂CH₃, 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl, 3-ethoxycyclohexyl, -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃, -CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂ Embodiment 106A. A compound of Embodiment 105A wherein R¹ is 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl or 3-ethoxycyclohexyl Embodiment 107A. A compound of Embodiment 106A wherein R¹ is cis-4-methoxycyclohexane or trans-4-methoxycyclohexane. Embodiment 108A. A compound of Embodiment 106A wherein R¹ is trans-4-methoxycyclohexane. Embodiment 109A. A compound of Embodiment 106A wherein R¹ is cis-4-methoxycyclohexane. Embodiment 110A. A compound of Embodiment 106A wherein R¹ is of cis-4-methoxycyclohexane and trans-4-methoxycyclohexane. Embodiment 111A. A compound of Embodiment 105A wherein R¹ is -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃, -CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂ Embodiment 112A. A compound of Embodiment 111A wherein R¹ is -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,

-CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃ or -CH₂CH₂CH₂SO₂CH₃.

-CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.

Embodiment 113A. A compound of Embodiment 112A wherein R¹ is

Embodiment 114A. A compound of Embodiment 29 wherein R¹ is *n*-Pr.

Embodiment 115A. A compound of Embodiment 29 wherein R¹ is -CH₂CH₂OCH₃.

Embodiment 116A. A compound of Embodiment 34 wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G.

Embodiment 117A. A compound of Embodiment 116A wherein R² is -G.

5

10

15

20

25

30

35

Embodiment 118A. A compound of Embodiment 117A wherein R² is 3-thienyl, 2-thienyl or 3-pyridinyl.

Embodiment 119A. A compound of Embodiment 118A wherein R² is 3-pyridinyl.

Embodiment 120A. A compound of Embodiment 94A wherein R^1 is phenyl substituted with up to two substituents selected from C_1 - C_6 alkoxy; or - W^2G ; or C_1 - C_6 alkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl or C_3 - C_{10} alkoxyalkoxyalkyl.

This invention also includes a herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) AHAS inhibitors, (b3) ACCase inhibitors, (b4) auxin mimics and (b5) EPSP inhibitors. This invention also includes a herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b6) photosystem I electron diverters, (b7) PPO (protoporphyrinogen oxidase) inhibitors, (b8) GS (glutamine synthetase) inhibitors, (b9) VLCFA (very long chain fatty acid) elongase inhibitors, (b10) auxin transport inhibitors, (b11) PDS (phytoene desaturase) (b12) HPPD inhibitors, (4-hydroxyphenyl-pyruvate-dioxygnase) inhibitors, (b13)**HST** (homogentisate solenesyltransfererase) inhibitors, (b14) other herbicides including mitotic disruptors, organic arsenicals, asulam, difenzoquat, bromobutide, flurenol, cinmethylin, cumyluron, dazomet, dymron, methyldymron, etobenzanid, fosamine, fosamine-ammonium, metam, oxaziclomefone, oleic acid, pelargonic acid and pyributicarb, and (b15) herbicide safeners; and salts of compounds of (b1) through (b15).

Embodiment 94. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b1), (b2) and (b3).

Embodiment 95. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b1).

Embodiment 96. A herbicidal mixture of Embodiment 95 comprising (a) a compound of Formula 1 and (b) one additional active ingredient selected from the group consisting of ametryn, amicarbazone, atrazine, bentazon, bromacil, bromoxynil, chlorotoluron, dimethametryn, diuron, hexazinone, isoproturon, metribuzin, pyridate, simazine and terbutryn.

Embodiment 97. A herbicidal mixture of Embodiment 95 comprising (a) a compound of Formula 1; and (b) bromoxynil.

WO 2012/033548 PCT/US2011/027737

46

- Embodiment 98. A herbicidal mixture of Embodiment 95 comprising (a) a compound of Formula 1; and (b) dimethametryn.
- Embodiment 99. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) diuron and hexazinone.

5

10

15

20

25

30

- Embodiment 100B. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b1), (b2), (b3), (b13) and (b15).
- Embodiment 101B. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b13) HST (homogentisate solenesyltransfererase) inhibitors and (b15) herbicide safeners.
- Embodiment 102B. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b13) HST (homogentisate solenesyltransfererase) inhibitors.
- Embodiment 103B. A herbicidal mixture of Embodiment 102B comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from haloxydine.
- Embodiment 104B. A herbicidal mixture of Embodiment 101B comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b15) herbicide safeners.
- Embodiment 105B. A herbicidal mixture of Embodiment 104B comprising (a) a compound of Formula 1; and (b) at least one additional active ingredient selected from allichlor, benoxacor, 1–bromo–4–[(chloromethyl)sulfonyl]benzene, cloquintocet–mexyl, cumyluron, cyometrinil, cyprosulfamide, diamuron, dichlormid, dicyclonon, 4–(dichloroacetyl)–1–oxa–4–azospiro[4.5]decane (MON 4660), 2–(dichloromethyl)–2–methyl–1,3–dioxolane (MG 191), dimepiperate, fenchlorazole–ethyl, fenclorim, flurazole, fluxofenim, furilazole, H–31868, isoxadifen–ethyl, LAB 147886, M–32988, mefenpyr–diethyl, mephenate, methoxyphenone, naphthalic anhydride and oxabetrinil.
- Embodiment 106B. A herbicidal mixture of Embodiment 105B comprising (a) a compound of Formula 1; and (b) at least one additional active ingredient selected from benoxacor, cloquintocet—mexyl, cyprosulfamide, diamuron, fenchlorazole—ethyl, mefenpyr—diethyl, mephenate and oxabetrinil.
- Embodiment 107B. A herbicidal mixture of Embodiment 106B comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from cloquintocet—mexyl, mefenpyr—diethyl and oxabetrinil.
- Embodiment 108B. A herbicidal mixture or Embodiment 107B comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from cloquintocet—mexyl and mefenpyr-diethyl.

10

15

20

25

30

35

- Embodiment 109B. A herbicidal mixture of Embodiment 108B wherein the one additional active ingredient is mefenpyr-diethyl.
- Embodiment 110B. A herbicidal mixture of Embodiment 108B wherein the at least one additional active ingredient is cloquintocet-mexyl.
- Embodiment 111B. A herbicidal mixture of Embodiment 94 or 100B comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b2) AHAS inhibitors.
- Embodiment 112B. A herbicidal mixture of Embodiment 111B wherein the at least one additional active ingredient is selected from amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flupyrsulfuron-methyl (including sodium salt), foramsulfuron, halosulfuronmethyl, imazosulfuron, iodosulfuron-methyl (including sodium salt), mesosulfuron-methyl, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron-methyl, propyrisulfuron, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, trifloxysulfuron (including sodium salt), triflusulfuron-methyl, tritosulfuron, imazapic, imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazethapyr, cloransulam-methyl, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac-sodium, pyribenzoxim, pyriftalid, pyrithiobac-sodium, pyriminobac-methyl, thiencarbazone, flucarbazone-sodium and propoxycarbazone-sodium.
- Embodiment 113B. A herbicidal mixture of Embodiment 112B wherein the at least one additional active ingredient is selected from azimsulfuron, bensulfuronmethyl, chlorimuron-ethyl, chlorsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron and thifensulfuron-methyl.
- Embodiment 114B. A herbicidal mixture of Embodiment 113B wherein the at least one additional active ingredient is selected from azimsulfuron and bensulfuronmethyl.

Combinations of Embodiments 1–93 and 94A–120A are illustrated by:

Embodiment A. A compound of Formula 1 wherein

A is A-1, A-3, A-4, A-5 or A-6;

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀

10

15

alkynyl, C₁-C₁₀ haloalkyl, C₂-C₁₀ haloalkenyl, C₂-C₁₂ haloalkynyl, C₃-C₁₂ cycloalkyl, C₃-C₁₂ halocycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ cycloalkylalkyl, C₆-C₁₈ cycloalkylcycloalkyl, C₄-C₁₄ halocycloalkylalkyl, C₅-C₁₆ alkylcycloalkylalkyl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ halocycloalkenyl, C₂-C₁₂ alkoxyalkyl, C₃-C₁₂ alkoxyalkenyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ alkoxycycloalkyl, C₄-C₁₄ cycloalkoxyalkyl, C₅-C₁₄ cycloalkoxyalkoxyalkyl, C₃-C₁₄ alkoxyalkoxyalkyl, C₂-C₁₂ alkylthioalkyl, C₂-C₁₂ alkylsulfinylalkyl, C₂-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₄ dialkylaminoalkyl, C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂ alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂ alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl, C₂-C₁₂ alkylaminocarbonyl, C₃-C₁₄ dialkylaminocarbonyl, C₄-C₁₄ cycloalkylaminocarbonyl, C2-C9 cyanoalkyl, C1-C10 hydroxyalkyl, C4-C14 cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂ haloalkoxyhaloalkyl, C₄-C₁₄ halocycloalkoxyalkyl, C₄-C₁₄ cycloalkenyloxyalkyl, C₄-C₁₄ halocycloalkenyloxyalkyl, C₃-C₁₄ dialkoxyalkyl, C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl or C₂-C₁₂ haloalkoxycarbonyl;

 W^1 is C_1 - C_6 alkylene;

 W^2 is -CH₂-;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G; C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ 25 cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ cycloalkoxyalkyl, C₄-C₁₀ cycloalkoxylalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylcarbonyl, C₄-C₁₀ 30 cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ 35 alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C_3 - C_{10} alkylcarbonylalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_8 cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆

alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_3 - C_8 trialkylsilyl, C_3 - C_8 cycloalkenyloxy, C_3 - C_8 halocycloalkenyloxy, C_2 - C_8 haloalkoxyalkoxy, C_2 - C_8 alkoxyhaloalkoxy, C_2 - C_8 haloalkoxyhaloalkoxy, C_3 - C_{10} alkoxycarbonylalkoxy, C_2 - C_8 alkyl(thiocarbonyl)oxy, C_3 - C_8 cycloalkylsulfinyl or C_3 - C_{10} halotrialkylsilyl;

 W^3 is -CH₂-;

5

10

15

20

 W^4 is -CH₂-;

R¹ and R² are taken together along with the atoms to which they are attached to make a 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted on carbon atom ring members selected from halogen, cyano, C₁-C6 alkyl, C₂-C6 alkenyl, C₂-C6 alkynyl, C₁-C6 haloalkyl, C₃-C8 cycloalkyl and C₂-C8 alkoxyalkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C₁-C6 alkyl, C₁-C6 alkoxy and C₁-C6 haloalkoxy; and optionally substituted on nitrogen ring members selected from H and C₁-C6 alkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C₁-C6 alkyl, C₁-C6 alkoxy and C₁-C6 haloalkoxy;

R³ is hydroxy, -O-M+, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy or C₃-C₁₀ alkylcarbonylalkoxy; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy or benzylsulfonyloxy, each optionally substituted on ring members with up to two substituents selected from R²¹;

M⁺ is a sodium or potassium metal cation;

25 R^9 is C_1 - C_6 alkyl;

 R^{10} is H, halogen or C_1 - C_6 alkyl;

 R^{11} is H or C_1 - C_6 alkyl;

 R^{12} is H, halogen, cyano, hydroxy, amino or C_1 - C_6 alkyl;

R¹³ is cyano or nitro;

and R^{14} , R^{15} , R^{18} and R^{19} is H or CH_3 ;

 R^{14} and R^{18} are taken together as -CH₂CH₂CH₂- or -CH=CHCH₂-;

 R^{20} is H or CH_3 ;

T is -CH₂CH₂- or -CH=CH-;

each G is G-1 through G-20 (as depicted in Embodiment 79);

35 r is 0, 1, 2 or 3;

each R^{21} is independently halogen, cyano, hydroxy, nitro, -CHO, -SH, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, C_4 - C_{10} alkylcycloalkyl,

10

C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl; and

each R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.

Embodiment B. A compound of Embodiment A wherein

X is CH;

A is A-3 or A-5;

B² is C-3;

- R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylsulfonylalkyl;
 - R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio or C_1 - C_6 alkylsulfonyl;
- 25 R³ is hydroxy or -O⁻M⁺; or phenylsulfonyloxy optionally substituted on ring members with up to two substituents selected from R²¹;

 R^9 is CH_2CH_3 ;

 R^{10} is H or CH_3 ;

 W^1 is -CH₂-;

30 W^3 is -CH₂-;

G is G-13, G-14, G-15, G-16 or G-17; and

each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

Embodiment C. A compound of Embodiment A wherein

35 A is A-1, A-3 or A-5;

B¹ is C-1;

B² is C-3;

 B^3 is C-1;

10

25

30

35

 R^1 is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO_2-phenyl), -W²(SO_2CH_2-phenyl) or -W²(SCH_2-phenyl), each optionally substituted on ring members with up to five substituents selected from $R^{21};$ or -G or -W²G; or $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ haloalkyl, $C_2\text{-}C_6$ haloalkenyl, $C_3\text{-}C_8$ cycloalkyl, $C_4\text{-}C_{10}$ cycloalkylalkyl, $C_5\text{-}C_{12}$ alkylcycloalkylalkyl, $C_3\text{-}C_8$ cycloalkenyl, $C_3\text{-}C_8$ halocycloalkenyl, $C_2\text{-}C_8$ alkoxyalkyl, $C_3\text{-}C_{10}$ alkoxyalkenyl, $C_4\text{-}C_{10}$ alkylcycloalkyl, $C_4\text{-}C_{10}$ alkoxycycloalkyl, $C_3\text{-}C_{10}$ alkoxyalkoxyalkyl, $C_2\text{-}C_8$ alkylthioalkyl, $C_2\text{-}C_1$ alkylsulfinylalkyl or $C_2\text{-}C_8$ alkylsulfonylalkyl;

 W^1 is -CH₂-;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl;

R¹ and R² are taken together along with the atoms to which they are attached to make an unsubstituted 7-membered partially unsaturated ring;

 R^3 is hydroxy or C_2 - C_8 alkylcarbonyloxy;

15 R^9 is CH_2CH_3 ;

 R^{10} is H or CH_3 ;

G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20; and

 R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

20 Embodiment D. A compound of Embodiment C wherein

A is A-1 or A-3;

R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl;

R² is phenyl, 2-methylphenyl, 3-methylphenyl, 3-bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl;

 R^3 is hydroxy or $-OC(=O)CH_2CH(CH_3)_2$;

each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H or CH₃; and

T is -CH₂CH₂-.

Embodiment E. A compound of Embodiment D wherein

A is A-1;

R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl;

R² is phenyl, 3-chlorophenyl, or 2-methylphenyl;

 R^3 is hydroxy or $-OC(=O)CH_2CH(CH_3)_2$; and

each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Embodiment F. A compound of Embodiment C wherein A is A-3; R^1 is n-Pr or -CH₂CH₂OCH₃; 5 R² is phenyl, 2-methylphenyl, 3-methylphenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5difluorophenyl; R³ is hydroxy; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Embodiment G. A compound of Embodiment C wherein 10 A is A-1; R^1 is -G or -W²G; C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, or C_2 - C_8 alkoxyalkyl; G is G-19 or G-20; R² is phenyl, 2-methylphenyl, 3-methylphenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5difluorophenyl; R³ is hydroxy; and 15 each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Embodiment H. A compound of Embodiment C wherein A is A-1; R¹ is *n*-Pr, *c*-hexyl, -CH₂CH₂OCH₃ or -CH₂CH₂CH₂OCH₃; R² is 3-thienyl or 2-thienyl; 20 R³ is hydroxy; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Specific embodiments include a compound of Formula 1 selected from: 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2,3-diphenyl-4(3H)-pyrimidinone 25 (Compound 2), 5-[(2-hydroxy-6-oxo-1-cyclohexane-1-yl)carbonyl]-3-(3-methoxypropyl)-2-(3methylphenyl)-4(3H)-pyrimidinone (Compound 118), 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3H)-pyrimidinone (Compound 97), 30 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(4-methoxyphenyl)-2-phenyl-4(3H)pyrimidinone (Compound 4), 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(3-methoxypropyl)-2-phenyl-4(3*H*)pyrimidinone (Compound 81) and 3-cyclohexyl-5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3H)-35 pyrimidinone (Compound 128). Specific embodiments also include a compound of Formula 1 selected from:

3-(3,4-diethoxyphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl)-4(3H)-pyrimidinone (Compound 304),

20

30

- 3-(3,4-diethoxyphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-(3-methylphenyl)-4(3*H*)-pyrimidinone (Compound 305),
- 3-(3,4-dimethoxyphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 218)
- 5 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(2-methoxyethoxy)ethyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 91)
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-(3-methoxyphenyl)-3-(3-methoxypropyl)-4(3*H*)-pyrimidinone (Compound 496),
 - 3-(2,3-diethoxypropyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 464)
 - 3-(3,4-diethoxyphenyl)-2-(3,5-difluorophenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-4(3*H*)-pyrimidinone (Compound 497),
 - 2-(3-fluorophenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(3-methoxypropyl)-4(3*H*)-pyrimidinone (Compound 126),
- 3-(3-ethoxypropyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 334),
 - 2-(3,5-dimethylphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(3-methoxypropyl)-4(3*H*)-pyrimidinone (Compound 417),
 - 2-(4-fluorophenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-4(3*H*)-pyrimidinone (Compound 414),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-propyl-4(3*H*)-pyrimidinone (Compound 50),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-[(tetrahydro-2-furanyl)methyl]-4(3*H*)-pyrimidinone (Compound 59),
- 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-propyl-2-(3-pyridinyl)-4(3*H*)-pyrimidinone (Compound 298),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*cis*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 518),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*trans*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 344) and
 - 5-[(2-hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-yl)carbonyl]-3-(2-methoxyethyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 264).
 - Of note is a compound of Formula 1 selected from:
 - 3-(3,4-diethoxyphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl)-4(3*H*)-pyrimidinone (Compound 304),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-propyl-4(3*H*)-pyrimidinone (Compound 50),

15

25

- 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-[(tetrahydro-2-furanyl)methyl]-4(3*H*)-pyrimidinone (Compound 59),
- 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3*H*)-pyrimidinone (Compound 97),
- 5 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-propyl-2-(3-pyridinyl)-4(3*H*)-pyrimidinone (Compound 298),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*cis*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 518),
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*trans*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 344) and
 - 5-[(2-hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-yl)carbonyl]-3-(2-methoxyethyl)-2-phenyl-4(3*H*)-pyrimidinone (Compound 264).

Embodiments of the present invention as described in the Summary of the Invention also include (where Formula **1Q** from the Summary of the Invention as used in the following Embodiments includes *N*-oxides and salts thereof):

- Embodiment 1Q. A compound of Formula 1Q wherein A' is A'-1, A'-3 or A'-5.
- Embodiment 2Q. A compound of Embodiment 2Q wherein A' is A'-1 or A'-3.
- Embodiment 3Q. A compound of Embodiment 3Q wherein A' is A'-1.
- Embodiment 4Q. A compound of Embodiment 4Q wherein A' is A'-3.
- Embodiment 5Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 4Q wherein B¹ is C-1.
 - Embodiment 6Q. A compound of Formula 1Q or any one of Embodiments 1Q through 4Q wherein B¹ is C-2.
 - Embodiment 7Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 6Q wherein B² is C-3.
 - Embodiment 8Q. A compound of Formula 1Q or any one of Embodiments 1Q through 9Q wherein B² is C-4.
 - Embodiment 9Q. A compound of Formula 1Q or any one of Embodiments 1Q through 8Q wherein B³ is C-1.
- Embodiment 10Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 8Q wherein B³ is C-2.
- Embodiment 11Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 10Q wherein R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈

10

15

20

25

30

35

alkoxyalkyl, C_3 - C_{10} alkoxyalkenyl, C_4 - C_{10} alkylcycloalkyl, C_4 - C_{10} alkoxycycloalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl, C_2 - C_{12} alkylsulfinylalkyl or C_2 - C_8 alkylsulfonylalkyl.

- Embodiment 12Q. A compound of Embodiment 11Q wherein R¹ is phenyl or -W¹(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or -W²G; or C₁-C6 alkyl, C₂-C6 alkenyl, C₂-C6 alkynyl, C₁-C6 haloalkyl, C₂-C6 haloalkenyl, C₃-C8 cycloalkyl, C₄-C¹0 cycloalkylalkyl, C₅-C¹2 alkylcycloalkylalkyl, C₃-C8 cycloalkenyl, C₃-C8 halocycloalkenyl, C₂-C8 alkoxyalkyl C₃-C¹0 alkoxyalkenyl, C₄-C¹0 alkylcycloalkyl or C₄-C¹0 alkoxycycloalkyl.
- Embodiment 13Q. A compound of Embodiment 12Q wherein R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.
- Embodiment 14Q. A compound of Embodiment 13Q wherein R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.
- Embodiment 15Q. A compound of Embodiment 14Q wherein R¹ is phenyl, 3,4-dimethoxyphenyl or 5-chloro-2-methylphenyl.
- Embodiment 16Q. A compound of Embodiment 15Q wherein R¹ is phenyl.
- Embodiment 17Q. A compound of Embodiment 14Q wherein R¹ is 3,4-dimethoxyphenyl.
- Embodiment 18Q. A compound of Embodiment 14Q wherein R¹ is 5-chloro-2-methylphenyl.
 - Embodiment 19Q. A compound of Formula **1Q** or any one of Embodiments 1 through 16Q wherein R¹ is other than phenyl.
 - Embodiment 20Q. A compound of Embodiment 11Q wherein R^1 is -G or -W²G; C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, or C_2 - C_8 alkoxyalkyl.
 - Embodiment 21Q. A compound of Embodiment 20Q wherein R¹ is -G or -W²G.
 - Embodiment 22Q. A compound of Embodiment 20Q wherein R^1 is C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.
 - Embodiment 23Q. A compound of Embodiment 22Q wherein R¹ is *n*-Pr, *i*-Pr, *n*-Bu, *c*-hexyl, -CH₂CH₂OCH₃, -CH₂CH₂OCH₃ or -CH₂CH₂OCH₂CH₃.
 - Embodiment 24Q. A compound of Embodiment 23Q wherein R¹ is *n*-Pr, *c*-hexyl, -CH₂CH₂OCH₃ or -CH₂CH₂OCH₃.

10

15

20

25

30

- Embodiment 25Q. A compound of Formula 1Q or any one of Embodiments 1Q through 12Q wherein W^1 is C_1 - C_6 alkylene.
- Embodiment 26Q. A compound of Embodiment 25Q wherein W1 is -CH₂-.
- Embodiment 27Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 12Q, 20Q or 21Q wherein W² is -CH₂-.
- Embodiment 28Q. A compound of Formula **1Q** or any one of Embodiments

 Embodiment 1Q through 27Q wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl.
- Embodiment 29Q. A compound of Embodiment 28Q wherein R² is phenyl optionally substituted on ring members with up to two substituents selected from R²¹; or -G; or C₁-C₆ alkyl, C₃-C₈ cycloalkyl.
- Embodiment 30Q. A compound of Embodiment 29Q wherein R² is phenyl, 2-methylphenyl, 3-methylphenyl, 3-bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl.
- Embodiment 31Q. A compound of Embodiment 30Q wherein R² is phenyl.
- Embodiment 32Q. A compound of Formula 1Q or any one of Embodiments 1Q through 30Q wherein R² is other than phenyl.
- Embodiment 33Q. A compound of Embodiment 32Q wherein R² is 3-thienyl or 2-thienyl.
- Embodiment 34Q. A compound of Embodiment 33Q wherein R² is *n*-propyl, *n*-butyl, or cyclopropyl.
- Embodiment 35Q. A compound of Formula 1Q or any one of Embodiments 1Q through 28Q wherein W³ is -CH₂-.
- Embodiment 36Q. A compound of Formula $\mathbf{1Q}$ or any one of Embodiments $\mathbf{1Q}$ through 3Q, 7Q and 14Q through 51Q wherein \mathbf{R}^9 is \mathbf{C}_1 - \mathbf{C}_6 alkyl.
- Embodiment 37Q. A compound of Formula **1Q** or any one of Embodiments 1Q or 11Q through 36Q wherein R⁹ is CH₂CH₃.
- Embodiment 38Q. A compound of Formula $\mathbf{1Q}$ or any one of Embodiments 1Q or 11Q through 36Q wherein R^{10} is H, halogen or C_1 - C_6 alkyl.
- Embodiment 39Q. A compound of Embodiment 38Q wherein R¹⁰ is H or CH₃.
- Embodiment 40Q. A compound of Formula 1Q or any one of Embodiments 1Q through 39Q wherein when instances of R^{14} and R^{18} are taken alone (i.e. R^{14} and R^{18} are not taken together as alkylene or alkenylene), then independently said instances of R^{14} and R^{18} are H or C_1 - C_6 alkyl.
- Embodiment 41Q. A compound of Embodiment 40Q wherein when instances of R^{14} and R^{18} are taken alone, then independently said instances of R^{14} and R^{18} are H or CH_3 .

10

15

20

25

30

- Embodiment 42Q. A compound of Embodiment 41Q wherein when instances of R¹⁴ and R¹⁸ are taken alone, then independently said instances of R¹⁴ and R¹⁸ are H.
- Embodiment 43Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 42Q wherein independently each R¹⁵ and R¹⁹ is is H or CH₃.
- Embodiment 44Q. A compound of Embodiment 43Q wherein independently each R¹⁵ and R¹⁹ is H.
- Embodiment 45Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 44Q wherein R²⁰ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl or C₃-C₈ cycloalkyl.
- Embodiment 46Q. A compound of Embodiment 45Q wherein R²⁰ is H or CH₃.
- Embodiment 47Q. A compound of Formula **1Q** or any one of Embodiments 1Q, 2Q, 4Q, 7Q, 8Q and 11Q through 46Q wherein T is -CH₂CH₂- or -CH=CH-.
 - Embodiment 48Q. A compound of Embodiment 47Q wherein T is -CH₂CH₂-.
- Embodiment 49Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 48Q wherein G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20 (as depicted in Embodiment 79).
- Embodiment 50Q. A compound of Embodiment 49Q wherein when R¹ is G, then G is G-19 or G-20.
- Embodiment 51Q. A compound of Embodiment 50Q wherein when R¹ is G, then G is G-19.
- Embodiment 52Q. A compound of Embodiment 50Q wherein when R¹ is G, then G is G-20.
 - Embodiment 53Q. A compound of Embodiment 49Q wherein when R² is G, then G is G-2, G-3 or G-15.
 - Embodiment 54Q. A compound of Embodiment 53Q wherein when R² is G, then G is G-2.
 - Embodiment 55Q. A compound of Embodiment 53Q wherein when R² is G, then G is G-3.
 - Embodiment 56Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 55Q wherein each R²¹ is independently halogen, nitro, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy or C₁-C₆ alkylthio.
 - Embodiment 57Q. A compound of Embodiment 56Q wherein each R²¹ is independently fluorine, chlorine, bromine, CH₃, CF₃, OCH₃, OCF₃ or SCH₃.
 - Embodiment 58Q. A compound of Formula **1Q** or any one of Embodiments 1Q through 57Q wherein each R²² is independently C₁-C₆ alkyl or C₁-C₆ haloalkyl.
- Embodiment 59Q. A compound of Embodiment 58Q wherein each R²² is independently CH₃ or CH₂CF₃.
 - Embodiment 60Q. A compound of Formula 1 or any one of Embodiments 1Q through 12Q wherein R¹ is phenyl optionally substituted with up to five substituents

10

15

30

35

selected from R²¹; or -G or -W²G; C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ haloalkoxyalkyl, C₃-C₁₀ dialkoxyalkyl or C₃-C₁₀ alkoxycarbonylalkyl or C₂-C₈ haloalkoxycarbonyl.

Embodiment 61Q. A compound of Embodiment 60Q wherein R¹ is phenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl or 3,4-diethoxyphenyl.

Embodiment 62Q. A compound of Embodiment 61Q wherein R¹ is 4-methoxyphenyl.

Embodiment 63Q. A compound of Embodiment 61Q wherein R¹ is 3,4-dimethoxyphenyl.

Embodiment 64Q. A compound of Embodiment 61Q wherein R¹ is 3,4-diethoxyphenyl.

Embodiment 65Q. A compound of Embodiment 60Q wherein R¹ is -G or -W²G.

Embodiment 66Q. A compound of Embodiment 65Q wherein R¹ is -W²G.

Embodiment 67Q. A compound of Embodiment 65Q or 66Q wherein G is G-9.

Embodiment 68Q. A compound of Embodiment 67Q wherein W² is -CH₂- and G is tetrahydrofuran-2-yl.

Embodiment 69Q. A compound of Embodiment 68Q wherein R¹ is -CH₂(tetrahydrofuran-2-yl).

Embodiment 71Q. A compound of Embodiment 70Q wherein R¹ is 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl or 3-ethoxycyclohexyl

Embodiment 72Q. A compound of Embodiment 71Q wherein R¹ is *cis*-4-methoxycyclohexane or *trans*-4-methoxycyclohexane.

Embodiment 73Q. A compound of Embodiment 72Q wherein R¹ is *trans*-4-methoxycyclohexane.

Embodiment 74Q. A compound of Embodiment 72Q wherein R¹ is *cis*-4-methoxycyclohexane.

Embodiment 75Q. A compound of Embodiment 72Q wherein R¹ is a mixture of *cis*-4-methoxycyclohexane and *trans*-4-methoxycyclohexane.

10

15

20

25

30

35

Embodiment 76Q. A compound of Embodiment 70Q wherein R¹ is -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,

-CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃,

-CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.

Embodiment 77Q. A compound of Embodiment 76Q wherein R¹ is -CH₂CH₂SCH₃,

-CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,

-CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃ or -CH₂CH₂CH₂SO₂CH₃.

Embodiment 78Q. A compound of Embodiment 77Q wherein R¹ is

-CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.

Embodiment 79Q. A compound of Embodiment 23Q wherein R¹ is *n*-Pr.

Embodiment 80Q. A compound of Embodiment 23Q wherein R¹ is -CH₂CH₂OCH₃.

Embodiment 81Q. A compound of Embodiment 28Q wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G.

Embodiment 82Q A compound of Embodiment 81Q wherein R² is -G.

Embodiment 83O. A compound of Embodiment 80O wherein R² is 3-thienyl, 2-thienyl or 3-pyridinyl.

Embodiment 84Q. A compound of Embodiment 83Q wherein R² is 3-pyridinyl.

Embodiment 85Q. A compound of Embodiment 81Q wherein R² is phenyl or 3-pyridinyl.

Embodiment 86Q. A compound of Embodiment 60Q whereinR¹ is phenyl substituted with up to two substituents selected from C₁-C₆ alkoxy; or -W²G; or C₁-C₆ alkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl or C₃-C₁₀ alkoxyalkoxyalkyl.

Embodiments of the present invention as described in the Summary of the Invention also include (where Formula 1R from the Summary of the Invention as used in the following Embodiments include *N*-oxides and salts thereof):

Embodiment 1R. A compound of Formula 1R wherein R¹ is phenyl, -W¹(phenyl), $-W^{1}(S-phenyl)$, $-W^{1}(SO_{2}-phenyl)$, $-W^{2}(SO_{2}CH_{2}-phenyl)$ or $-W^{2}(SCH_{2}-phenyl)$, each optionally substituted on ring members with up to five substituents selected from R^{21} ; or -G or -W²G; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ alkoxycycloalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₁₂ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl.

Embodiment 2R. A compound of Embodiment 1R wherein R¹ is phenyl or -W¹(phenyl), each optionally substituted on ring members with up to two

10

15

20

25

30

35

substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl or C₄-C₁₀ alkoxycycloalkyl.

Embodiment 3R. A compound of Embodiment 2R wherein R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.

Embodiment 4R. A compound of Embodiment 3R wherein R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.

Embodiment 5R. A compound of Embodiment 4R wherein R¹ is phenyl, 3,4-dimethoxyphenyl or 5-chloro-2-methylphenyl.

Embodiment 6R. A compound of Embodiment 5R wherein R¹ is phenyl.

Embodiment 7R. A compound of Embodiment 4R wherein R¹ is 3,4-dimethoxyphenyl.

Embodiment 8R. A compound of Embodiment 4R wherein R¹ is 5-chloro-2-methylphenyl.

Embodiment 9R. A compound of Formula **1R** or any one of Embodiments 1R through 8R wherein R¹ is other than phenyl.

Embodiment 10R. A compound of Formula 1R or any one of Embodiments 1R and 2R R wherein R^1 is -G or -W²G; C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, or C_2 - C_8 alkoxyalkyl.

Embodiment 11R. A compound of Embodiment 10R wherein R¹ is -G or -W²G.

Embodiment 12R. A compound of Embodiment 10R wherein R^1 is C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, or C_2 - C_8 alkoxyalkyl.

Embodiment 13R. A compound of Embodiment 12R wherein R¹ is *n*-Pr, *i*-Pr, *n*-Bu, *c*-hexyl, -CH₂CH₂OCH₃, -CH₂CH₂OCH₃ or -CH₂CH₂OCH₂CH₃.

Embodiment 14R. A compound of Embodiment 13R wherein R¹ is *n*-Pr, *c*-hexyl, -CH₂CH₂OCH₃ or -CH₂CH₂CH₂OCH₃.

Embodiment 15R. A compound of Formula 1R or any one of Embodiments 1R and 2R wherein W^1 is C_1 - C_6 alkylene.

Embodiment 16R. A compound of Embodiment 15R wherein W¹ is -CH₂-.

Embodiment 17R. A compound of Formula 1R or any one of Embodiments 1R, 2R 10R and 11R wherein W^2 is $-CH_2$ -.

15

- Embodiment 18R. A compound of Formula **1R** or any one of Embodiments

 Embodiment 1R through 17R wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl.
- Embodiment 19R. A compound of Embodiment 18R wherein R² is phenyl optionally substituted on ring members with up to two substituents selected from R²¹; or -G; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl.
 - Embodiment 20R. A compound of Embodiment 19R wherein R² is phenyl, 2-methylphenyl, 3-methylphenyl, 3-bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl.
 - Embodiment 21R. A compound of Embodiment 20R wherein R² is phenyl.
 - Embodiment 22R. A compound of Formula **1R** or any one of Embodiments 1R through 21R wherein R² is other than phenyl.
 - Embodiment 23R. A compound of Embodiment 22R wherein R² is 3-thienyl or 2-thienyl.
 - Embodiment 24R. A compound of Embodiment 23R wherein R² is *n*-propyl, *n*-butyl, or cyclopropyl.
 - Embodiment 25R. A compound of Formula **1R** or any one of Embodiments 1R through 18R wherein W³ is -CH₂-.
- Embodiment 26R. A compound of Formula **1R** or any one of Embodiments 1R through 25R wherein G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20 (as depicted in Embodiment 79).
 - Embodiment 27R. A compound of Embodiment 26R wherein when R¹ is G, then G is G-19 or G-20.
- Embodiment 28R. A compound of Embodiment 27R wherein when R¹ is G, then G is G-19.
 - Embodiment 29R. A compound of Embodiment 28R wherein when R¹ is G, then G is G-20.
 - Embodiment 30R. A compound of Embodiment 26R wherein when R² is G, then G is G-2, G-3 or G-15.
 - Embodiment 31R. A compound of Embodiment 30R wherein when R² is G, then G is G-2.
 - Embodiment 32R. A compound of Embodiment 31R wherein when R² is G, then G is G-3.
- Embodiment 33R. A compound of Formula **1R** or any one of Embodiments 1R through 32R wherein each R²¹ is independently halogen, nitro, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy or C₁-C₆ alkylthio.

10

30

35

- Embodiment 34R. A compound of Embodiment 33R wherein each R²¹ is independently fluorine, chlorine, bromine, CH₃, CF₃, OCH₃, OCF₃ or SCH₃.
- Embodiment 35R. A compound of Formula 1R or any one of Embodiments 1R through 32R wherein each R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.
- Embodiment 36R. A compound of Embodiment 35R wherein each R²² is independently CH₃ or CH₂CF₃.
- Embodiment 37R. A compound of Formula 1 or Embodiment 1R wherein R¹ is phenyl optionally substituted with up to five substituents selected from R²¹; or -G or -W²G; or C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ haloalkoxyalkyl, C₃-C₁₀ dialkoxyalkyl or C₃-C₁₀ alkoxycarbonylalkyl or C₂-C₈ haloalkoxycarbonyl.
- Embodiment 38R. A compound of Embodiment 37R wherein R¹ is phenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl or 3,4-diethoxyphenyl.
- Embodiment 39R. A compound of Embodiment 38R wherein R¹ is 4-methoxyphenyl. Embodiment 40R. A compound of Embodiment 38R wherein R¹ is

3,4-dimethoxyphenyl.

- Embodiment 41R. A compound of Embodiment 38R wherein R¹ is 3,4-diethoxyphenyl.
- 20 Embodiment 42R. A compound of Embodiment 37R wherein R¹ is -G or -W²G.

Embodiment 43R. A compound of Embodiment 42R wherein R¹ is -W²G.

Embodiment 44R. A compound of Embodiment 43R wherein G is G-9.

Embodiment 45R. A compound of Embodiment 43R wherein W² is -CH₂- and G is tetrahydrofuran-2-yl.

- Embodiment 46R. A compound of Embodiment 45R wherein R¹ is -CH₂(tetrahydrofuran-2-yl).
 - Embodiment 47R. A compound of Embodiment 37R wherein R¹ is

3,5-dimethylcyclohexyl, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃,

 $-CH_2CH_2CH_2CH_3, 4-methoxycyclohexyl, 3-methoxycyclohexyl, \\$

4-ethoxycyclohexyl, 3-ethoxycyclohexyl, -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃,

 $-\mathrm{CH}_2\mathrm{CH}_2\mathrm{SOCH}_3, -\mathrm{CH}_2\mathrm{CH}_2\mathrm{SOCH}_2\mathrm{CH}_3, -\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_3, -\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_3,$

-CH₂CH₂CH₂SO₂CH₃, -CH₂CH₂OCH₂CF₃,

 $-CH_2CH(OCH_2CH_3)CH_2OCH_2CH_3 \ or \ -CH(CH_2OCH_3)_2. \\$

Embodiment 48R. A compound of Embodiment 47R wherein R¹ is 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl or 3-ethoxycyclohexyl

Embodiment 49R. A compound of Embodiment 48R wherein \mathbb{R}^1 is cis -4-methoxycyclohexane or trans -4-methoxycyclohexane.

10

15

20

25

30

- Embodiment 50R. A compound of Embodiment 49R wherein R¹ is *trans*-4-methoxycyclohexane.
- Embodiment 51R. A compound of Embodiment 49R wherein R¹ is *cis*-4-methoxycyclohexane
- Embodiment 52R. A compound of Embodiment 48R wherein R¹ is a mixture of *cis*-4-methoxycyclohexane and *trans*-4-methoxycyclohexane.
 - Embodiment 53R. A compound of Embodiment 47R wherein R¹ is -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,
 - -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃,
 - $-CH_2CH_2OCH_2CF_3, -CH_2CH(OCH_2CH_3)CH_2OCH_2CH_3 \text{ or } -CH(CH_2OCH_3)_2.$
 - Embodiment 54R. A compound of Embodiment 53R wherein R¹ is -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,
 - -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃ or -CH₂CH₂CH₂SO₂CH₃.
 - Embodiment 55R. A compound of Embodiment 54R wherein R¹ is -CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.
 - Embodiment 56R. A compound of Embodiment 13R wherein R¹ is *n*-Pr.
 - Embodiment 57R. A compound of Embodiment 13R wherein R¹ is -CH₂CH₂OCH₃.
 - Embodiment 58R. A compound of Embodiment 18R wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G.
 - Embodiment 59R A compound of Embodiment 58R wherein R² is -G.
 - Embodiment 60R. A compound of Embodiment 48R wherein R² is 3-thienyl, 2-thienyl or 3-pyridinyl.
 - Embodiment 61R. A compound of Embodiment 60R wherein R² is 3-pyridinyl.
 - Embodiment 62R. A compound of Embodiment 61R wherein R² is phenyl or 3-pyridinyl.
 - Embodiment 63R. A compound of Embodiment 58R wherein R² is phenyl, 3-pyridyl, 3,5-dimethylphenyl, 3,5-difluorophenyl, 3-methylphenyl, 3-methoxyphenyl.
 - Embodiment 64R. A compound of Embodiment 2R wherein R¹ is phenyl optionally substituted with up to two substituents selected from R²¹; or -W²G; or C₁-C₆ alkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl.
 - Embodiment 65R. A compound of Embodiment 37R wherein R^1 is phenyl substituted with up to two substituents selected from C_1 - C_6 alkoxy; or - W^2G ; or C_1 - C_6 alkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl or C_3 - C_{10} alkoxyalkoxyalkyl.
 - Embodiment 66R. A compound of Embodiment 65R wherein R¹ is 3,4-dimethoxyphenyl, 3,4-diethoxyphenyl; or -CH₂(tetrahydro-2-furanyl); or

10

15

20

25

30

35

n-Pr, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃, *cis*-4-methoxycyclohexane or *trans*-4-methoxycyclohexane or -CH₂CH₂OCH₂CH₂CH₂OCH₃.

Embodiments of the present invention as described in the Summary of the Invention also include (where Formula **1S** from the Summary of the Invention as used in the following Embodiments includes *N*-oxides and salts thereof):

Embodiment 1S. A compound of Formula **1S** wherein R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂-CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₆ eycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ eycloalkenyl, C₃-C₆ halocycloalkenyl, C₂-C₆ alkoxyalkyl, C₃-C₆ alkoxyalkenyl, C₃-C₆ alkylcycloalkyl, C₄-C₁₀ alkoxyalkyl, C₄-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₁₂ alkylsulfinylalkyl or C₂-C₆ alkylsulfonylalkyl.

Embodiment 2S. A compound of Embodiment 1S wherein R¹ is phenyl or -W¹(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ cycloalkenyl, C₃-C₆ halocycloalkenyl, C₂-C₆ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ alkoxycycloalkyl.

Embodiment 3S. A compound of Embodiment 2S wherein R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.

Embodiment 4S. A compound of Embodiment 3S wherein R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl.

Embodiment 5S. A compound of Embodiment 4S wherein R¹ is phenyl, 3,4-dimethoxyphenyl or 5-chloro-2-methylphenyl.

Embodiment 6S. A compound of Embodiment 5S wherein R¹ is phenyl.

Embodiment 7S. A compound of Embodiment 4S wherein R¹ is 3,4-dimethoxyphenyl.

Embodiment 8S. A compound of Embodiment 4S wherein R¹ is 5-chloro-2-methylphenyl.

Embodiment 9S. A compound of Formula **1S** or any one of Embodiments 1S through 8S wherein R¹ is other than phenyl.

20

- Embodiment 10S. A compound of Formula **1S** or any one of Embodiments 1S and 2S wherein R¹ is -G or -W²G; C₁-C₆ alkyl, C₃-C₈ cycloalkyl, or C₂-C₈ alkoxyalkyl.
- Embodiment 11S. A compound of Embodiment 10S wherein R¹ is -G or -W²G.
- Embodiment 12S. A compound of Embodiment 10S wherein R¹ is C₁-C₆ alkyl, C₃-C₈ cycloalkyl, or C₂-C₈ alkoxyalkyl.
- Embodiment 13S. A compound of Embodiment 12S wherein R¹ is *n*-Pr, *i*-Pr, *n*-Bu, *c*-hexyl, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃ or -CH₂CH₂OCH₂CH₃.
- Embodiment 14S. A compound of Embodiment 13S wherein R¹ is *n*-Pr, *c*-hexyl, -CH₂CH₂OCH₃ or -CH₂CH₂OCH₃.
- Embodiment 15S. A compound of Formula **1S** or any one of Embodiments 1S and 2S wherein W^1 is C_1 - C_6 alkylene.
 - Embodiment 16S. A compound of Embodiment 15S wherein W¹ is -CH₂-.
 - Embodiment 17S. A compound of Formula **1S** or any one of Embodiments 1S, 2S 10S and 11S wherein W² is -CH₂-.
- Embodiment 18S. A compound of Formula **1S** or any one of Embodiments

 Embodiment 1S through 17S wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl.
 - Embodiment 19S. A compound of Embodiment 18S wherein R² is phenyl optionally substituted on ring members with up to two substituents selected from R²¹; or -G; or C₁-C₆ alkyl, C₃-C₈ cycloalkyl.
 - Embodiment 20S. A compound of Embodiment 19S wherein R² is phenyl, 2-methylphenyl, 3-methylphenyl, 3-bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl.
- Embodiment 21S. A compound of Embodiment 20S wherein R² is phenyl.
 - Embodiment 22S. A compound of Formula **1S** or any one of Embodiments 1S through 21S wherein R² is other than phenyl.
 - Embodiment 23S. A compound of Embodiment 22S wherein R² is 3-thienyl or 2-thienyl.
- Embodiment 24S. A compound of Embodiment 23S wherein R² is *n*-propyl, *n*-butyl, or cyclopropyl.
 - Embodiment 25S. A compound of Formula **1S** or any one of Embodiments 1S through 18S wherein W³ is -CH₂-.
 - Embodiment 26S. A compound of Formula **1S** or any one of Embodiments 1S through 25S wherein G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20 (as depicted in Embodiment 79).
 - Embodiment 27S. A compound of Embodiment 26S wherein when R¹ is G, then G is G-19 or G-20.

10

15

20

25

30

- Embodiment 28S. A compound of Embodiment 27S wherein when R¹ is G, then G is G-19.
- Embodiment 29S. A compound of Embodiment 28S wherein when R¹ is G, then G is G-20.
- Embodiment 30S. A compound of Embodiment 26S wherein when R² is G, then G is G-2, G-3 or G-15.
 - Embodiment 31S. A compound of Embodiment 30S wherein when R² is G, then G is G-2.
 - Embodiment 32S. A compound of Embodiment 31S wherein when R² is G, then G is G-3.
 - Embodiment 33S. A compound of Formula **1S** or any one of Embodiments 1S through 32S wherein each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.
 - Embodiment 34S. A compound of Embodiment 33S wherein each R²¹ is independently fluorine, chlorine, bromine, CH₃, CF₃, OCH₃, OCF₃ or SCH₃.
 - Embodiment 35S. A compound of Formula 1S or any one of Embodiments 1S through 32S wherein each R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.
 - Embodiment 36S. A compound of Embodiment 35S wherein each R^{22} is independently CH_3 or CH_2CF_3 .
 - Embodiment 37S. A compound of Formula **1S** or any on of Embodiments 1S through 36S wherein when R^{23} is an optionally substituted carbon moiety, R^{23} is C_1 - C_{16} alkyl; or phenyl or benzyl optionally substituted with halogen, nitro, cyano or hydroxy on ring members.
 - Embodiment 38S. A compound of Embodiment 37S wherein when R^{23} is an optionally substituted carbon moiety, R^{23} is C_1 - C_{10} alkyl; or phenyl or benzyl optionally substituted with halogen or nitro on ring members.
 - Embodiment 39S. A compound of Embodiment 38S wherein when R^{23} is an optionally substituted carbon moiety, R^{23} is C_1 - C_6 alkyl; or benzyl optionally substituted with halogen or nitro on ring members.
 - Embodiment 40S. A compound of Embodiment 39S wherein when R^{23} is an optionally substituted carbon moiety, R^{23} is C_1 - C_6 alkyl; or unsubstituted benzyl.
 - Embodiment 41S. A compound of Embodiment 40S wherein when R^{23} is an optionally substituted carbon moiety, R^{23} is C_1 - C_6 alkyl.
 - Embodiment 42S. A compound of Embodiment 41S wherein when R²³ is an optionally substituted carbon moiety, R²³ is unsubstituted benzyl.
 - Embodiment 43S. A compound of Embodiment 42S wherein when R²³ is an optionally substituted carbon moiety, R²³ is ethyl, *n*-propyl, *n*-butyl or *i*-propyl.

10

15

20

25

30

35

Embodiment 44S. A compound of Embodiment 43S wherein when R²³ is an optionally substituted carbon moiety, R²³ is ethyl, *n*-propyl or *i*-propyl.

Embodiment 45S. A compound of Embodiment 44S wherein when R²³ is an optionally substituted carbon moiety, R²³ is ethyl.

Embodiment 46S. A compound of Formula 1 or any one of Embodiments 1S or 2S wherein R¹ is phenyl optionally substituted with up to five substituents selected from R²¹; or -G or -W²G; C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ haloalkoxyalkyl, C₃-C₁₀ dialkoxyalkyl or C₃-C₁₀ alkoxycarbonylalkyl or C₂-C₈ haloalkoxycarbonyl.

Embodiment 47S. A compound of Embodiment 46S wherein R¹ is phenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl or 3,4-diethoxyphenyl.

Embodiment 48S. A compound of Embodiment 47S wherein R¹ is 4-methoxyphenyl.

Embodiment 49S. A compound of Embodiment 47S wherein R¹ is 3,4-dimethoxyphenyl.

Embodiment 50S. A compound of Embodiment 47S wherein R¹ is 3,4-diethoxyphenyl.

Embodiment 51S. A compound of Embodiment 46S wherein R¹ is -G or -W²G.

Embodiment 52S. A compound of Embodiment 51S wherein R¹ is -W²G.

Embodiment 53S. A compound of Embodiment 52S wherein G is G-9.

Embodiment 54S. A compound of Embodiment 53S wherein W² is -CH₂- and G is tetrahydrofuran-2-yl.

Embodiment 55S. A compound of any one of Embodiments 51S through 54S wherein R¹ is -CH₂(tetrahydrofuran-2-yl).

Embodiment 56S. A compound of Embodiment 46S wherein R¹ is 3,5-dimethylcyclohexyl, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₂CH₂CH₂CH₂CH₃, 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl, 3-ethoxycyclohexyl, -CH₂CH₂SCH₃, -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₃CH₃, -CH₂CH₃CH₃, -CH₂CH₃CH₃, -CH₂CH₃CH₃CH₃

-CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.

Embodiment 57S. A compound of Embodiment 56S wherein R¹ is 4-methoxycyclohexyl, 3-methoxycyclohexyl, 4-ethoxycyclohexyl or 3-ethoxycyclohexyl

Embodiment 58S. A compound of Embodiment 57S wherein R¹ is *cis*-4-methoxycyclohexane or *trans*-4-methoxycyclohexane.

Embodiment 59S. A compound of Embodiment 58S wherein R¹ is *trans*-4-methoxycyclohexane

- Embodiment 60S. A compound of Embodiment 59S wherein R¹ is cis-4-methoxycyclohexane.
- Embodiment 61S. A compound of Embodiment 57S wherein R¹ is a mixture of cis-4-methoxycyclohexane or trans-4-methoxycyclohexane.
- Embodiment 62S. A compound of Embodiment 56S wherein R¹ is -CH₂CH₂SCH₃, 5
 - -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,
 - -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃, -CH₂CH₂CH₂SO₂CH₃,
 - -CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.
 - Embodiment 63S. A compound of Embodiment 62S wherein R¹ is -CH₂CH₂SCH₃,
 - -CH₂CH₂SCH₂CH₃, -CH₂CH₂SOCH₃, -CH₂CH₂SOCH₂CH₃,
 - -CH₂CH₂SO₂CH₃, -CH₂CH₂SO₂CH₃ or -CH₂CH₂CH₂SO₂CH₃.
 - Embodiment 64S. A compound of Embodiment 63S wherein R¹ is
 - -CH₂CH₂OCH₂CF₃, -CH₂CH(OCH₂CH₃)CH₂OCH₂CH₃ or -CH(CH₂OCH₃)₂.
 - Embodiment 65S. A compound of Embodiment 13S wherein R¹ is *n*-Pr.
- Embodiment 66S. A compound of Embodiment 13S wherein R¹ is -CH₂CH₂OCH₃. 15
 - Embodiment 67S. A compound of Embodiment 18S wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G.
 - Embodiment 68S A compound of Embodiment 67S wherein R² is -G.
- Embodiment 69S. A compound of Embodiment 68S wherein R² is 3-thienyl, 2-thienyl 20 or 3-pyridinyl.
 - Embodiment 70S. A compound of Embodiment 69S wherein R² is 3-pyridinyl.
 - Embodiment 71S. A compound of Embodiment 67S wherein R² is phenyl or 3-pyridinyl.
- 25 Embodiment 72S. A compound of Embodiment 46S wherein R¹ is phenyl substituted with up to two substituents selected from C₁-C₆ alkoxy; or -W²G; or C₁-C₆ alkyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ alkoxycycloalkyl or C₃-C₁₀ alkoxyalkoxyalkyl.
- This invention is also directed to a method of using compounds of Formulae 1Q, 1R or 1S as a herbicide safener as described in the Summary of the Invention. Embodiments 30 include the following:
 - Embodiment SA1. The method of using a compound of Formulae 1Q, 1R or 1S as a herbicide safener as described in the Summary of the Invention.
 - Embodiment SA2. The method of Embodiment SA1 using a compound of Formula 1Q as a herbicide safener.
 - Embodiment SA3. The method of Embodiment SA2 using a compound of Formula **10** wherein A is A-1, B¹ is C-1, B² is C-3, B³ is C-1, each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H; R¹ is Ph(3,4-di-Me) and R² is Ph (i.e. Cmpd. 32Q); R¹ is Ph(2,4-di-

10

15

20

25

30

35

OMe) and R² is Ph (i.e. Cmpd. 256Q); R¹ is Ph(3-Me) and R² is Ph (i.e. Cmpd. 18Q); R¹ is CH₂CH₂CH₂OCH₃ and R² is Ph (i.e. Cmpd. 81Q); R¹ is *n*-pentyl and R² is Ph, (i.e. Cmpd. 89Q); R¹ is Ph(3,4-di-OMe) and R² is Ph(3-F) (i.e. Cmpd. 553Q); R¹ is CH₂CH(CH₃)CH₂CH₃ and R² is Ph (i.e. Cmpd. 163Q); R¹ is Ph(4-OMe, 2-Me) and R² is Ph (i.e. Cmpd. 503Q); R¹ is Ph(3,4-di-OMe) and R² is Ph(3,5-di-F) (i.e. Cmpd. 551Q), R¹ is Ph(3,4-di-OMe) and R² is Ph(3-Cl) (i.e. Cmpd. 550Q); R¹ is Ph(3,5-di-OMe) and R² is Ph (i.e. Cmpd. 552Q); R¹ is Ph(4-OMe, 3-Me) and R² is Ph, (i.e. Cmpd. 376Q); R¹ is *trans*-4-OMe-*c*-hex and R² is Ph, (i.e. Cmpd. 344Q); R¹ is c-hex(4-OMe) and R² is Ph(3-F) (i.e. Cmpd. 345Q); or R¹ is CH(CH₃)CH(CH₃)₂ and R² is Ph (i.e. Cmpd. 339Q); or using a compound of Formula **1Q** wherein A is A-5, R¹⁰ is H, R⁹ is CH₂CH₃, R¹ is CH₂Ph and R² is Ph.

Embodiment SA4. The method of Embodiment SA3 using a compound of Formula 1Q wherein R¹ is Ph(3,4-di-Me) and R² is Ph (i.e. Cmpd. 32Q).

Embodiment SA5. The method of Embodiment SA4 using a compound of Formula **1Q** that is 3-oxo-1-cyclohexen-l-yl 1-(3,4-dimethylphenyl)-l,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate.

Embodiment SA6. The method of Embodiment SA1 using a compound of Formula **1R** as a herbicide safener.

Embodiment SA7. The method of Embodiment SA6 using a compound of Formula **1R** wherein A is A-1, B¹ is C-1, B² is C-3, B³ is C-1, each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H; R¹ is Ph(2,5-di-Me) and R² is Ph (i.e. Cmpd. 29R), R¹ is Ph(2,6-di-Me) and R^2 is Ph (i.e. Cmpd. 31R); R^1 is Ph and R^2 is Ph(2-Cl) (i.e. Cmpd. 35R); R^1 is Ph(3,4-di-Me) and R^2 is Ph (i.e. Cmpd. 32R), R^1 is n-Bu and R^2 is Ph (i.e. Cmpd. 50R), R¹ is Ph(4-OMe) and R² is Ph(3,5-di-F) (i.e. Cmpd. 547R); R¹ is Ph(3-Me) and R² is n-Pr (i.e. Cmpd. 79R); R¹ is CH₂CH₂CH₂OCH₃ and R^2 is Ph (i.e. Cmpd. 81R); R^1 is *n*-pentyl and R^2 is Ph (i.e. Cmpd. 89R); R^1 is n-Bu and R² is Ph(3,5-di-F) (i.e. Cmpd. 121R); R¹ is n-Bu and R² is Ph(3-F) (i.e. Cmpd. 125R); R¹ is *n*-Bu and R² is Ph(3-Cl) (i.e. Cmpd. 146R); R¹ is Ph(4-Me) and R^2 is Ph(3,5-di-F) (i.e. Cmpd. 162R); R^1 is thien-2-yl and R^2 is c-hex (i.e. Cmpd. 189R); R^1 is Ph(3,4-di-F) and R^2 is c-hexyl (i.e. Cmpd. 198R); R^1 is c-Heptyl and R² is Ph (i.e. Cmpd. 130R); R¹ is Ph(3,4-di-MeO) and R² is Ph i.e. (Cmpd. 218R); R^1 is c-hex and R^2 is Ph(3-Cl) (i.e. Cmpd. 546R); R^1 is n-Bu and R² is Ph(3-F, 5-Me) (i.e. Cmpd. 271R); R¹ is CH₂CH₂CH₂OCH(CH₃)₂ and R² is Ph (i.e. Cmpd. 559R); R¹ is trans-4-OMe-c-hex and R² is Ph (i.e. Cmpd. 344R); R^1 is Bn and R^2 is c-Pr (i.e. Cmpd. 554R); R^1 is CH(CH₃)CH(CH₃)₂ and R^2 is Ph (i.e. Cmpd. 339R); R^1 is Ph(3,4-di-OMe) and R^2 is Ph(3-Cl) (i.e. Cmpd. 550R); R¹ is Ph(3,4-di-OMe) and R² is Ph(3,5-di-F) (i.e. Cmpd. 551R); R¹ is

WO 2012/033548

5

10

15

20

25

30

35

c-Hex(4-OMe) and R² is Ph(3-F) (i.e. Cmpd. 345R); R¹ is CH(CH₂CH₃)CH₂OCH₃ and R² is Ph (i.e. Cmpd. 336R); R¹ is CH₂CH₂OCH₂CF₃ and R² is Ph(3-F) (i.e. Cmpd. 341R); R¹ is *n*-hex and R² is Ph(3,5-di-F) (i.e. Cmpd. 377R); R¹ is -CH₂(tetrahydrofuran-2-yl) and R² is Ph(3,5-di-F) (i.e. Cmpd. 180R); or R¹ is Ph(4-OMe, 2-Me) and R² is Ph (i.e. Cmpd. 355R).

Embodiment SA8. The method of Embodiment SA1 using a compound of Formula **1S** as a herbicide safener.

Embodiment SA9. The method of Embodiment SA8 using a compound of Formula 1S wherein A is A-1, B^1 is C-1, B^2 is C-3, B^3 is C-1, each R^{14} , R^{15} , R^{18} and R^{19} is H; R¹ is Ph(4-OMe), R² is Ph(3-F) and R²³ is Me (i.e. Cmpd. 203S); R¹ is Ph(2-OMe), R² is Ph and R²³ is Et (i.e. Cmpd. 15S); R¹ is Ph(3-CF₃), R² is Ph and R²³ is Et (i.e. Cmpd. 545S); R¹ is Ph, R² is Ph(4-Cl) and R²³ is Et (i.e. Cmpd. 25S); R^1 is Ph, R^2 is Ph(2-Cl) and R^{23} is Et (i.e. Cmpd. 35S); R^1 is Ph, R^2 is c-Pr and R²³ is Et (i.e. Cmpd. 87S); R¹ is Ph, R² is Ph and R²³ is Et (i.e. Cmpd. 2S); R¹ is Ph(4-Cl), R² is Ph and R²³ is Et (i.e. Cmpd. 11S); R¹ is Ph(3-Cl), R² is Ph and R²³ is Et (i.e. Cmpd. 9S); R¹ is Ph, R² is Et and R²³ is Et (i.e. Cmpd. 7S); R¹ is CH₂-Ph, R^2 is Ph and R^{23} is Et (i.e. Cmpd. 17S); R^1 is n-Pr, R^2 is Ph(2-F) and R^{23} is Et (i.e. Cmpd. 101S); R^1 is c-hex, R^2 is Ph(3-Br) and R^{23} is Et (i.e. Cmpd. 206S); R^1 is Ph(4-OMe), R^2 is Ph(3-Me) and R^{23} is Me (i.e. Cmpd. 212S); R^1 is c-hex, R² is Ph(3-Cl) and R²³ is Et (i.e. Cmpd. 546S); R¹ is n-pentyl, R² is Ph and R^{23} is Et (i.e. Cmpd. 89S); R^1 is Bn, R^2 is n-Pr and R^{23} is Et (i.e. Cmpd. 103S); R^1 is *n*-hexyl, R^2 is Ph and R^{23} is Et (i.e. Cmpd. 94S); R^1 is CH(CH₃)CH₂OCH₃, R² is Ph and R²³ is Et (i.e. Cmpd. 107S); R¹ is c-heptyl, R² is Ph and R²³ is Et (i.e. Cmpd. 130S); R¹ is CH₂CH₂CF₃, R² is Ph and R²³ is Et (i.e. Cmpd. 207S); R¹ is Ph(2-Me), R² is Ph(3-Br) and R²³ is Me (i.e. Cmpd. 209S); R¹ is Ph(3,4-di-MeO), R² is Ph and R²³ is Me (i.e. Cmpd. 218S); R¹ is CH₂CH₂CH₂CF₃, R² is Ph and R²³ is Et (i.e. Cmpd. 548S); R¹ is Ph(4-OMe), R² is Ph(3,5-di-F) and R²³ is Me (i.e. Cmpd. 549S); R¹ is Ph(3-OMe, 4-F), R² is Ph and R²³ is Et (i.e. Cmpd. 470S); R¹ is -CH₂(tetrahydropyran-4-yl), R² is Ph and R²³ is Me (i.e. Cmpd. 356S); R¹ is Ph(3,4-di-OMe), R² is Ph(3-Cl) and R²³ is Me (i.e. Cmpd. 550S); R^1 is Ph(3,4-di-OMe), R^2 is Ph(3,5-di-F) and R^{23} is Me (i.e. Cmpd. 551S); R¹ is Ph(3,5-di-OMe), R² is Ph and R²³ is Me (i.e. Cmpd. 552S); R¹ is pyridin-3-yl(6-OMe), R² is Ph and R²³ is Me (i.e. Cmpd. 555S); R¹ is Ph(3,4,5-tri-OMe), R^2 is Ph(3-F) and R^{23} is Me (i.e. Cmpd. 338S); R^1 is nhex, R^2 is Ph(3-5-di-F) and R^{23} is Et (i.e. Cmpd. 377S); R^1 is $CH_2CH_2CH_3CH_3$, R^2 is $Ph(3,5-di-CF_3)$ and R^{23} is Me (i.e. Cmpd. 374S); R^1 is Ph(3,4-di-OMe), R² is Ph(3-Me) and R²³ is Me (i.e. Cmpd. 556S); R¹ is Ph(3,5-

15

20

25

30

35

di-OMe), R^2 is Ph(3-F) and R^{23} is Me (i.e. Cmpd. 557S); R^1 is $(CH_2)_3OCH_2CH_2CH_3$, R^2 is Ph and R^{23} is Et (i.e. Cmpd. 558S); R^1 is $CH_2CH(CH_3)_2$, R^2 is Ph and R^{23} is Et (i.e. Cmpd. 339S); R^1 is trans-4-OMe-trans-dependent of R^2 is R^2 is R

Embodiment SA10. The method of Embodiment SA9 using a compound of Formula **1S** wherein A is A-1, B¹ is C-1, B² is C-3, B³ is C-1, each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H; R¹ is Ph(2-OMe), R² is Ph and R²³ is Et (i.e. Cmpd. 15S).

Embodiment SA11. The method of Embodiment SA10 using a compound of Formula **1S** that is ethyl 1,6-dihydro-1-(2-methoxyphenyl)-6-oxo-2-phenyl-5-pyrimidinecarboxylate.

Embodiments of the present invention as described in the Summary of the Invention also include (where Formula **1P** as used in the following Embodiments includes *N*-oxides and salts thereof):

Embodiment P1. A compound of Formula 1P wherein X is N.

Embodiment P2. A compound of Formula 1P wherein X is CH.

Embodiment P3. A compound of Formula **1P** or any one of Embodiments P1 through P2 wherein Y is C(O).

Embodiment P4. A compound of Formula 1P or Embodiment P2 wherein Y is S(O)₂.

Embodiment P5. A compound of Formula **1P** or any one of Embodiments P1 through P4 wherein A is A-1, A-3, A-4, A-5 or A-6.

Embodiment P6. A compound of Embodiment P5 wherein A is A-1, A-3, A-5 or A-6.

Embodiment P7. A compound of Embodiment P6 wherein A is A-3 or A-5.

Embodiment P8. A compound of Embodiment P7 wherein A is A-3.

Embodiment P9. A compound of Embodiment P6 wherein A is A-1 or A-6.

Embodiment P10. A compound of Embodiment P9 wherein A is A-1.

Embodiment P11. A compound of Formula **1P** or any one of Embodiments P1 through P9 wherein A is other than A-1.

Embodiment P12. A compound of Formula **1P** or any one of Embodiments P1 through P11 wherein B¹ is C-1.

Embodiment P13. A compound of Formula **1P** or any one of Embodiments P1 through P11 wherein B¹ is C-2.

Embodiment P14. A compound of Formula **1P** or any one of Embodiments P1 through P13 wherein B² is C-3.

72

- Embodiment P15. A compound of Formula **1P** or any one of Embodiments P1 through P13 wherein B² is C-4.
- Embodiment P16. A compound of Formula **1P** or any one of Embodiments P1 through P13 wherein B² is C-6
- Embodiment P17. A compound of Formula **1P** or any one of Embodiments P1 through P13 wherein B² is C-7.

5

10

15

20

25

30

- Embodiment P18. A compound of Formula **1P** or any one of Embodiments P1 through P17 wherein B³ is C-1.
- Embodiment P19. A compound of Formula **1P** or any one of Embodiments P1 through P17 wherein B³ is C-2.
- Embodiment P20. A compound of Formula **1P** or any one of Embodiments P1 through P19 wherein R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ cycloalkenyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₆ alkoxyalkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆ alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₆ alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₆ alkylaminoalkyl, C₄-C₁₀
 - cycloalkylaminoalkyl, C_2 - C_8 alkylcarbonyl, C_2 - C_8 haloalkylcarbonyl, C_4 - C_{10} cycloalkylcarbonyl, C_2 - C_8 alkoxycarbonyl, C_4 - C_{10} cycloalkoxycarbonyl, C_5 - C_{12} cycloalkylalkoxycarbonyl, C_2 - C_8 alkylaminocarbonyl, C_3 - C_{10} dialkylaminocarbonyl, C_4 - C_{10} cycloalkylaminocarbonyl, C_2 - C_5 cyanoalkyl, C_1 - C_6 hydroxyalkyl, C_4 - C_{10} cycloalkenylalkyl, C_2 - C_8 haloalkoxyalkyl, C_2 - C_8 alkoxyhaloalkyl, C_2 - C_8 haloalkoxyhaloalkyl, C_4 - C_{10} halocycloalkoxyalkyl,
 - C_4 - C_{10} cycloalkenyloxyalkyl, C_4 - C_{10} halocycloalkenyloxyalkyl, C_3 - C_{10} dialkoxyalkyl, C_3 - C_{10} alkoxyalkylcarbonyl, C_3 - C_{10} alkoxycarbonylalkyl or C_2 - C_8 haloalkoxycarbonyl.
- Embodiment P21. A compound of Embodiment P20 wherein R¹ is phenyl, W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or
 -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl,
 C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈

10

halocycloalkenyl, C_2 - C_8 alkoxyalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl or C_2 - C_8 alkylsulfonylalkyl.

- Embodiment P22. A compound of Embodiment P21 wherein R^1 is phenyl or -W¹(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl or C_2 - C_6 alkenyl.
- Embodiment P23. A compound of Embodiment P22 wherein R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methylphenyl, 2-methylphenyl, 4-methoxyphenyl, 2,3-dimethylphenyl, CH₂(phenyl), CH₃ or CH₂CH₃.
- Embodiment P24. A compound of Embodiment P23 wherein R¹ is phenyl.

 Embodiment P25. A compound of Formula **1P** or any one of Embodiments P1 through P22 wherein W¹ is C₁-C₆ alkylene.
- Embodiment P26. A compound of Embodiment P25 wherein W1 is -CH₂-.
- Embodiment P27. A compound of Formula **1P** or any one of Embodiments P1 through P21 or P25 or P26 wherein W² is -CH₂-.
- 15 Embodiment P28. A compound of Formula 1P or any one of Embodiments P1 through P27 wherein R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, 20 C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₄-C₁₀ cycloalkoxylalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, 25 C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylcarbonyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ 30 cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈
- alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆

 alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C₂-C₈ haloalkoxyalkoxy, C₂-C₈ alkoxyhaloalkoxy, C₂-C₈ haloalkoxyhaloalkoxy,

10

15

20

25

30

- C_3 - C_{10} alkoxycarbonylalkoxy, C_2 - C_8 alkyl(thiocarbonyl)oxy, C_3 - C_8 cycloalkylsulfinyl or C_3 - C_{10} halotrialkylsilyl.
- Embodiment P29. A compound of Embodiment P28 wherein R² is phenyl or W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio or C₁-C₆ alkylsulfonyl.
- Embodiment P30. A compound of Embodiment P29 wherein R^2 is phenyl or CH_2 (phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl or C_1 - C_6 alkylthio.
- Embodiment P31. A compound of Embodiment P30 wherein R² is phenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, CH₂CH₃, cyclopropyl or SCH₃.
- Embodiment P32. A compound of Formula **1P** or any one of Embodiments P1 through P29 wherein W^3 is C_1 - C_6 alkylene.
- Embodiment P33. A compound of Embodiment P32 wherein W³ is -CH₂-.
- Embodiment P34. A compound of Formula **1P** or any one of Embodiments P1 through P27 or P32 or P33 wherein W⁴ is -CH₂-.
- Embodiment P35. A compound of Formula **1P** or any one of Embodiments P1 through P34 wherein R^3 is hydroxy, $-O^-M^+$, C_2-C_8 alkylcarbonyloxy, C_2-C_8 haloalkylcarbonyloxy, C_4-C_{10} cycloalkylcarbonyloxy or C_3-C_{10} alkylcarbonylalkoxy; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy or benzylsulfonyloxy, each optionally substituted on ring members with up to two substituents selected from R^{21} .
- Embodiment P36. A compound of Embodiment P35 wherein R³ is hydroxy or -O⁻M⁺; or phenylsulfonyloxy optionally substituted with up to two substituents selected from R²¹.
 - Embodiment P37. A compound of Embodiment P36 wherein R³ is hydroxy; or phenylsulfonyloxy substituted with CH₃ at the 4-position.
- Embodiment P38. A compound of Formula **1P** or any one of Embodiments P1 through P36 wherein M⁺ is a sodium or potassium metal cation.
 - Embodiment P39. A compound of Formula **1P** or any of Embodiments P1 through P7 and P12 through P38 wherein R⁴, R⁵, R⁶ and R⁷ are each independently H, or C₁-C₆ alkyl.
- Embodiment P40. A compound of Formula **1P** or any one of Embodiments P1 through P7 and 12 through 39 wherein R⁸ is C₁-C₆ alkyl or C₃-C₈ cycloalkyl.
 - Embodiment P41. A compound of Embodiment P40 wherein R⁸ is CH₃, CH₂CH₃ or cyclopropyl.

20

25

30

- Embodiment P42. A compound of Formula **1P** or any one of Embodiments P1 through P9 and 12 through 41 wherein R⁹ is C₁-C₆ alkyl.
- Embodiment P43. A compound of Embodiment P42 wherein R⁹ is CH₂CH₃.
- Embodiment P44. A compound of Formula **1P** or any one of Embodiments P1 through P9 and 12 through 41 wherein R¹⁰ is H, halogen or C₁-C₆ alkyl.
- Embodiment P45. A compound of Embodiment P44 wherein R¹⁰ is H or CH₃.
- Embodiment P46. A compound of Formula **1P** or any one of Embodiments P1 through P8, P10, and P12 through P45 wherein R¹¹ is H or C₁-C₆ alkyl.
- Embodiment P47. A compound of Embodiment P46 wherein R¹¹ is H.
- Embodiment P48. A compound of Formula **1P** or any one of Embodiments P1 through P8, P10, and P12 through P47 wherein R¹² is H, halogen, cyano, hydroxy, amino or C₁-C₆ alkyl.
 - Embodiment P49. A compound of Embodiment P48 wherein R^{12} is H, halogen, cyano, C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl.
- Embodiment P50. A compound of Embodiment P49 wherein R¹² is CH₃, CH₂CH₃ or cyclopropyl.
 - Embodiment P51. A compound of Formula **1P** or any one of Embodiments P1 through P6 and P12 through P50 wherein R¹³ is H, halogen, cyano or nitro.
 - Embodiment P52. A compound of Embodiment P51 wherein R¹³ is cyano or nitro.
 - Embodiment P53. A compound of Formula **1P** or any one of Embodiments P1 through P52 wherein when instances of R^{14} and R^{18} are taken alone (i.e. R^{14} and R^{18} are not taken together as alkylene or alkenylene), then independently said instances of R^{14} and R^{18} are H or C_1 - C_6 alkyl.
 - Embodiment P53a. A compound of Embodiment P53 wherein when instances of R¹⁴ and R¹⁸ are taken alone, then independently said instances of R¹⁴ and R¹⁸ are H or CH₃.
 - Embodiment P53b. A compound of Embodiment P53a wherein when instances of R^{14} and R^{18} are taken alone, then independently said instances of R^{14} and R^{18} are H.
 - Embodiment P53c. A compound of Formula **1P** or any one of Embodiments P1 through P53b wherein when instances of R¹⁴ and R¹⁸ are taken together, then said instances of R¹⁴ and R¹⁸ are taken together as -CH₂CH₂-CH₂- or -CH=CH-CH₂-.
 - Embodiment P53d. A compound of Formula **1P** or any one of Embodiments P1 through P53b wherein all instances of R¹⁴ and R¹⁸ are taken alone.
- Embodiment P54. A compound of Formula **1P** or any one of Embodiments P1 through P53d wherein independently each R^{15} and R^{19} is H or C_1 - C_6 alkyl.
 - Embodiment P54a. A compound of Embodiment P54 wherein independently each R¹⁵ and R¹⁹ is H or CH₃.

WO 2012/033548

5

10

Embodiment P55. A compound of Embodiment P54a wherein independently each R¹⁵ and R¹⁹ is H.

Embodiment P56. A compound of Formula **1P** or any one of Embodiments P1 through P55 wherein R^{20} is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_3 - C_8 cycloalkyl.

Embodiment P57. A compound of Embodiment P56 wherein R²⁰ is H or CH₃.

Embodiment P58. A compound of Formula **1P** or any one of Embodiments P1 through P57 wherein T is -CH₂CH₂- or -CH=CH-.

Embodiment P59. A compound of Formula **1P** or any one of Embodiments P1 through P58 wherein each G is independently a 5- or 6-membered heterocyclic ring optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members.

Embodiment P60. A compound of Embodiment P59 wherein G is selected from

r is 0, 1, 2 or 3.

10

15

20

25

30

35

- Embodiment P61. A compound of Embodiment P60 wherein G is G-13, G-14, G-15, G-16 or G-17.
- Embodiment P62. A compound of Formula **1P** or any one of Embodiments P1 through P61 wherein each R²¹ is independently halogen, cyano, hydroxy, nitro, -CHO, -SH, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl.
 - Embodiment P63. A compound of Embodiment P62 wherein each R²¹ is independently halogen, nitro, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy or C₁-C₆ alkylthio.
 - Embodiment P64. A compound of Embodiment P61 wherein each R²¹ is independently fluorine, chlorine, CH₃, CF₃, OCH₃, OCF₃ or SCH₃.
 - Embodiment P65. A compound of Formula **1P** or any one of Embodiments P1 through P64 wherein each R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.
 - Embodiment P66. A compound of Embodiment P1 through 65 wherein each R^{22} is independently CH_3 or CH_2CF_3 .
- This invention also includes a herbicidal mixture of (a) a compound of Formula **1P** and (b) an active ingredient selected from photosystem II inhibitors.
 - Embodiment P67. A herbicidal mixture comprising (a) a compound of Formula **1P** and (b) an additional herbicidal ingredient selected from photosystem II inhibitors.
 - Embodiment P68. A herbicidal mixture of Embodiment P67 comprising (a) a compound of Formula **1P** and (b) an additional herbicidal compound selected from the group consisting of ametryn, amicarbazone, atrazine, bentazon, bromacil, bromoxynil, chlorotoluron, diuron, hexazinone, isoproturon, metribuzin, pyridate, simazine and terbutryn.
 - Embodiment P69. A herbicidal mixture of Embodiment P68 comprising (a) a compound of Formula **1P**; and (b) bromoxynil.

Embodiments of this invention, including Embodiments P1–P69 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula **1P** but also to

the starting compounds and intermediate compounds useful for preparing the compounds of Formula **1P**. In addition, embodiments of this invention, including Embodiments 1–66 above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

5 Combinations of Embodiments 1–66 are illustrated by:

Embodiment PA. A compound of Formula 1P wherein

Y is C(O);

A is A-1, A-3, A-5 or A-6;

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), 10 -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ 15 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} cycloalkoxyalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 20 alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₈ haloalkylaminoalkyl, C₄-C₁₀ cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C₂-C₅ cyanoalkyl, 25 C₁-C₆ hydroxyalkyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl or C₂-C₈ haloalkoxycarbonyl;

30 W¹ is C_1 - C_6 alkylene W² is - CH_2 -;

35

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl,

C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylcarbonyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ 5 halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ 10 alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C₂-C₈ haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxyhaloalkoxy, 15 C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C₃-C₈ cycloalkylsulfinyl or C₃-C₁₀ halotrialkylsilyl;

 W^3 is C_1 - C_6 alkylene;

 W^4 is -CH₂-;

R³ is hydroxy, -O-M+, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy or C₃-C₁₀ alkylcarbonylalkoxy; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy or benzylsulfonyloxy, each optionally substituted on ring members with up to two substituents selected from R²¹;

M⁺ is a sodium or potassium metal cation;

25 R^9 is C_1 - C_6 alkyl;

20

 R^{10} is H, halogen or C_1 - C_6 alkyl;

 R^{11} is H or C_1 - C_6 alkyl;

 R^{12} is H, halogen, cyano, hydroxy, amino or C_1 - C_6 alkyl;

R¹³ is cyano or nitro;

each R^{14} , R^{15} , R^{18} and R^{19} is independently H or CH_3 ; or a pair of R^{14} and R^{18} is taken together as $-CH_2CH_2CH_2$ - or $-CH=CH-CH_2$ -; R^{20} is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_3 - C_8 cycloalkyl; T is $-CH_2CH_2$ - or -CH=CH-;

each G is selected from G-1 through G-23 (as depicted in Embodiment 79);

35 r is 0, 1, 2 or 3;

each R²¹ is independently halogen, cyano, hydroxy, nitro, -CHO, -SH, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl,

 $C_4\text{-}C_{10} \text{ cycloalkylalkyl, } C_3\text{-}C_8 \text{ cycloalkenyl, } C_3\text{-}C_8 \text{ halocycloalkenyl, } C_2\text{-}C_8 \\ \text{alkoxyalkyl, } C_4\text{-}C_{10} \text{ cycloalkoxyalkyl, } C_3\text{-}C_{10} \text{ alkoxyalkoxyalkyl, } C_2\text{-}C_8 \\ \text{alkylthioalkyl, } C_2\text{-}C_8 \text{ alkylsulfinylalkyl, } C_2\text{-}C_8 \text{ alkoxyhaloalkyl, } C_2\text{-}C_5 \\ \text{cyanoalkyl, } C_1\text{-}C_6 \text{ hydroxyalkyl, } C_1\text{-}C_6 \text{ alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } C_3\text{-}C_8 \\ \text{cycloalkoxy, } C_3\text{-}C_8 \text{ halocycloalkoxy, } C_4\text{-}C_{10} \text{ cycloalkylalkoxy, } C_2\text{-}C_6 \\ \text{alkenyloxy, } C_2\text{-}C_6 \text{ haloalkenyloxy, } C_2\text{-}C_8 \text{ alkoxyalkoxy, } C_2\text{-}C_8 \\ \text{alkylcarbonyloxy, } C_1\text{-}C_6 \text{ alkylthio, } C_1\text{-}C_6 \text{ haloalkylthio, } C_3\text{-}C_8 \text{ cycloalkylthio, } C_1\text{-}C_6 \\ \text{haloalkylsulfinyl, } C_1\text{-}C_6 \text{ haloalkylsulfinyl, } C_1\text{-}C_6 \\ \text{haloalkylsulfonyl or } C_3\text{-}C_8 \text{ cycloalkylsulfonyl; and} \\$

10 R^{22} is independently C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.

Embodiment PB. A compound of Embodiment PA wherein

X is CH;

A is A-3 or A-5;

 B^2 is C-3;

- R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylsulfonylalkyl;
 - R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio or C_1 - C_6 alkylsulfonyl;
- 25 R³ is hydroxy or -O⁻M⁺; or phenylsulfonyloxy optionally substituted on ring members with up to two substituents selected from R²¹;

 R^9 is CH_2CH_3 ;

 R^{10} is H or CH_3 ;

 W^1 is -CH₂-;

30 W^3 is -CH₂-;

G is G-13, G-14, G-15, G-16 or G-17; and

each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

Embodiment PC. A compound of Embodiment PA wherein:

35 X is CH;

A is A-1 or A-6;

 B^1 is C-1, B^2 is C-3 and B^3 is C-1;

10

20

25

30

35

 R^1 is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from $R^{21};$ or -G or -W²G; or $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ haloalkyl, $C_2\text{-}C_6$ haloalkenyl, $C_3\text{-}C_8$ cycloalkyl, $C_4\text{-}C_{10}$ cycloalkylalkyl, $C_5\text{-}C_{12}$ alkylcycloalkylalkyl, $C_3\text{-}C_8$ cycloalkenyl, $C_3\text{-}C_8$ halocycloalkenyl, $C_2\text{-}C_8$ alkylsylcycloalkyl, $C_3\text{-}C_{10}$ alkoxyalkoxyalkyl, $C_2\text{-}C_8$ alkylthioalkyl or $C_2\text{-}C_8$ alkylsulfonylalkyl;

 R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio or C_1 - C_6 alkylsulfonyl;

R³ is hydroxy or -O⁻M⁺; or phenylsulfonyloxy optionally substituted on ring members with up to two substituents selected from R²¹;

 R^{11} is H;

each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is independently H or CH₃;

15 R^{12} is H, halogen, cyano, C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl;

 W^1 is -CH₂-;

 W^3 is -CH₂-;

G is G-13, G-14, G-15, G-16 or G-17; and

each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

Embodiment PD. A compound of Embodiment PC wherein:

A is A-1;

 R^1 is phenyl or -W¹(phenyl) each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl or C_2 - C_6 alkenyl;

 R^2 is phenyl or CH_2 (phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl or C_1 - C_6 alkylthio;

 R^3 is hydroxy; or phenylsulfonyloxy substituted with CH_3 at the 4-position; and each R^{21} is independently fluorine, chlorine, CH_3 , CF_3 , OCH_3 , OCF_3 or SCH_3 .

Embodiment PE. A compound of Embodiment PD wherein:

R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-methylphenyl, 2- methylphenyl, 4-methylphenyl, 2-methylphenyl, 4-methoxyphenyl, 2,3-dimethylphenyl, CH₂(phenyl), CH₃ or CH₂CH₃;

R² is phenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, CH₂CH₃, c-Pr or SCH₃.

Specific embodiments include the compound of Formula **1P** which is: 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2,3-diphenyl-4(3*H*)-pyrimidinone.

82

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above.

This invention also includes herbicidal mixture comprising (a) a compound of Formula **1P** and (b) an additional herbicidal ingredient selected from a photosystem II inhibitor. Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

5

10

15

20

25

30

35

"Photosystem II inhibitors" (b1) are chemical compounds that bind to the D-1 protein at the Q_B-binding niche and thus block electron transport from Q_A to Q_B in the chloroplast thylakoid membranes. The electrons blocked from passing through photosystem II are transferred through a series of reactions to form toxic compounds that disrupt cell membranes and cause chloroplast swelling, membrane leakage, and ultimately cellular destruction. The Q_B-binding niche has three different binding sites: binding site A binds the triazines such as atrazine, triazinones such as hexazinone, and uracils such as bromacil, binding site B binds the phenylureas such as diuron, and binding site C binds benzothiadiazoles such as bentazon, nitriles such as bromoxynil and phenyl-pyridazines such as pyridate. Examples of photosystem II inhibitors include, but are not limited to ametryn, atrazine, cyanazine, desmetryne, dimethametryn, prometon, prometryne, propazine, simazine, simetryn, terbumeton, terbuthylazine, terbutryne, trietazine, hexazinone, metamitron, metribuzin, amicarbazone, bromacil, lenacil, terbacil, chloridazon, desmedipham, phenmedipham, chlorobromuron, chlorotoluron, chloroxuron, dimefuron, diuron, ethidimuron, fenuron, fluometuron, isoproturon, isouron, linuron, methabenzthiazuron, metobromuron, metoxuron, monolinuron, neburon, siduron, tebuthiuron, propanil, pentanochlor, bromofenoxim, bromoxynil, ioxynil, bentazon, pyridate and pyridafol.

"AHAS inhibitors" (b2) are chemical compounds that inhibit acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS), and thus kill plants by inhibiting the production of the branched-chain aliphatic amino acids such as valine, leucine and isoleucine, which are required for DNA synthesis and cell growth. Examples of AHAS inhibitors include but are not limited to amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flupyrsulfuron-methyl (including sodium salt), foramsulfuron, iodosulfuron-methyl halosulfuron-methyl, imazosulfuron, (including sodium salt), mesosulfuron-methyl, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron-methyl, propyrisulfuron, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, trifloxysulfuron (including sodium salt), triflusulfuron-methyl, tritosulfuron, imazapic,

83

imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazethapyr, cloransulam-methyl, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac-sodium, pyribenzoxim, pyriftalid, pyrithiobac-sodium, pyriminobac-methyl, thiencarbazone, flucarbazone-sodium and propoxycarbazone-sodium.

5

10

15

20

25

30

35

"ACCase inhibitors" (b3) are chemical compounds that inhibit the acetyl-CoA carboxylase enzyme, which is responsible for catalyzing an early step in lipid and fatty acid synthesis in plants. Lipids are essential components of cell membranes, and without them, new cells cannot be produced. The inhibition of acetyl CoA carboxylase and the subsequent lack of lipid production leads to losses in cell membrane integrity, especially in regions of active growth such as meristems. Eventually shoot and rhizome growth ceases, and shoot meristems and rhizome buds begin to die back. Examples of ACCase inhibitors include but are not limited to clodinafop, cyhalofop, diclofop, fenoxaprop, fluazifop, haloxyfop, propaquizafop, quizalofop, alloxydim, butroxydim, clethodim, cycloxydim, pinoxaden, profoxydim, sethoxydim, tepraloxydim and tralkoxydim, including resolved forms such as fenoxaprop-P, fluazifop-P, haloxyfop-P and quizalofop-P and ester forms such as clodinafop-propargyl, cyhalofop-butyl, diclofop-methyl and fenoxaprop-P-ethyl.

Auxin is a plant hormone that regulates growth in many plant tissues. "Auxin mimics" (b4) are chemical compounds mimicking the plant growth hormone auxin, thus causing uncontrolled and disorganized growth leading to plant death in susceptible species. Examples of auxin mimics include but are not limited to aminocyclopyrachlor, aminopyralid benazolin-ethyl, chloramben, clomeprop, clopyralid, dicamba, 2,4-D, 2,4-DB, dichlorprop, fluroxypyr, mecoprop, MCPA, MCPB, 2,3,6-TBA, picloram, triclopyr, quinclorac, quinmerac.

"EPSP (5-enol-pyruvylshikimate-3-phosphate) synthase inhibitors" (b5) are chemical compounds that inhibit the enzyme, 5-enol-pyruvylshikimate-3-phosphate synthase, which is involved in the synthesis of aromatic amino acids such as tyrosine, tryptophan and phenylalanine. EPSP inhibitor herbicides are readily absorbed through plant foliage and translocated in the phloem to the growing points. Glyphosate is a relatively nonselective postemergence herbicide that belongs to this group. Glyphosate includes esters and salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate).

"Photosystem I electron diverters" (b6) are chemical compounds that accept electrons from Photosystem I, and after several cycles, generate hydroxyl radicals. These radicals are extremely reactive and readily destroy unsaturated lipids, including membrane fatty acids and chlorophyll. This destroys cell membrane integrity, so that cells and organelles "leak", leading to rapid leaf wilting and desiccation, and eventually to plant death. Examples of this second type of photosynthesis inhibitor include but are not limited to paraquat and diquat.

84

"PPO inhibitors" (b7) are chemical compounds that inhibit the enzyme protoporphyrinogen oxidase, quickly resulting in formation of highly reactive compounds in plants that rupture cell membranes, causing cell fluids to leak out. Examples of PPO inhibitors include but are not limited to acifluorfen-sodium, bifenox, chlomethoxyfen, fluoroglycofen-ethyl, fomesafen, halosafen, lactofen, oxyfluorfen, fluazolate, pyraflufenethyl, cinidon-ethyl, flumioxazin, flumiclorac-pentyl, fluthiacet-methyl, thidiazimin, oxadiazon, oxadiargyl, saflufencil, azafenidin, carfentrazone carfentrazone-ethyl, sulfentrazone, pentoxazone, benzfendizone, butafenacil, pyraclonil, profluazol and flufenpyr-ethyl.

5

10

15

20

25

30

35

"GS (glutamine synthase) inhibitors" (b8) are chemical compounds that inhibit the activity of the glutamine synthetase enzyme, which plants use to convert ammonia into glutamine. Consequently, ammonia accumulates and glutamine levels decrease. Plant damage probably occurs due to the combined effects of ammonia toxicity and deficiency of amino acids required for other metabolic processes. The GS inhibitors include but are not limited to glufosinate and its esters and salts such as glufosinate-ammonium and other phosphinothricin derivatives, glufosinate-P and bilanaphos.

"VLCFA (very long chain fatty acids) elongase inhibitors" (b9) are herbicides having a wide variety of chemical structures, which inhibit the elongase. Elongase is one of the enzymes located in or near chloroplasts which are involved in biosynthesis of VLCFAs. In plants, very-long-chain fatty acids are the main constituents of hydrophobic polymers that prevent desiccation at the leaf surface and provide stability to pollen grains. Such herbicides include but are not limited to acetochlor, alachlor, butachlor, dimethachlor, dimethanamid, metazachlor, metolachlor, pethoxamid, pretilachlor, propachlor, propisochlor, pyroxasulfone, thenylchlor, diphenamid, napropamide, naproanilide, fenoxasulfone, flufenacet, indanofan, mefenacet, fentrazamide, anilofos, cafenstrole, piperophos including resolved forms such as S-metolachlor and chloroacetamides and oxyacetamides.

"Auxin transport inhibitors" (b10) are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Examples of auxin transport inhibitors include but are not limited to naptalam (also known as *N*-(1-naphthyl)phthalamic acid and 2-[(1-naphthalenylamino)carbonyl]benzoic acid) and diflufenzopyr.

"PDS (phytoene desaturase inhibitors) (b11) are chemical compounds that inhibit carotenoid biosynthesis pathway at the phytoene desaturase step. Examples of PDS inhibitors include norflurzon, diflufenican, picolinafen, beflubutamide, fluridone, flurochloridone and flurtamone.

"HPPD (4-hydroxyphenyl-pyruvate-dioxygnase) inhibitors" (b12) are chemical substances that inhibit the biosynthesis of synthesis of 4-hydroxyphenyl-pyruvate-dioxygenase. Examples of HPPD inbibitors include, but are not limited to mesotrione,

10

15

20

sulcotrione, topramezone, tembotrione, isoxachlortole, isoxaflutole, AVH-301, benzofenap, pyrasulfatole, pyrazolynate, pyrazoxyfen, bicyclopyrone and benzobicyclon.

HST (homogentisate solenesyltransfererase) inhibitors (b13) disrupt a plant's ability to convert homogentisate to 2-methyl-6-solanyl-1,4-benzoquinone, thereby disrupting carotenoid biosynthesis. Examples of an HST inhibitor is haloxydine and pyriclor. Other HST inhibitors include A, B or C below:

$$H_3C$$
 N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2CHF_2
 CH_3
 CH_2CHF_2

HST inhibitors include the D and E below:

wherein R^{d1} is H, Cl or CF_3 ; R^{d2} is H, Cl or Br; R^{d3} is H or Cl; R^{d4} is H, Cl or CF_3 ; R^{d5} is CH_3 , CH_2CH_3 or CH_2CHF_2 ; and R^{d6} is OH, or -OC(=O)-i-Pr; and R^{e1} is H, F, Cl, CH_3 or CH_2CH_3 ; R^{e2} is H or CF_3 ; R^{e3} is H, CH_3 or CH_2CH_3 ; R^{e4} is H, F or Br; R^{e5} is Cl, CH_3 , CF_3 , OCF_3 or CH_2CH_3 ; R^{e6} is H, CH_3 , CH_2CHF_2 or C=CH; R^{e7} is OH, -OC(=O)Et, -OC(=O)-i-Pr or -OC(=O)-t-Bu; and A^{e8} is N or CH.

Other herbicides (b14) include herbicides that act through a variety of different modes of action such as mitotic disruptors (e.g., flamprop-M-methyl and flamprop-M-isopropyl) organic arsenicals (e.g., DSMA, and MSMA), 7,8-dihydropteroate synthase inhibitors, chloroplast isoprenoid synthesis inhibitors and cell-wall biosynthesis inhibitors. Other herbicides include those herbicides having unknown modes of action or do not fall into a specific catefgory listed in (b1) through (b12) or act through a combination of modes of action listed above. Examples of other herbicides include aclonifen, asulam, amitrole, clomezone, fluometuron, difenzoquat, bromobutide, flurenol, cinmethylin, cumyluron,

86

dazomet, dymron, methyldymron, methiozolon, ipfencarbazone, etobenzanid, fosamine, fosamine-ammonium, metam, oxaziclomefone, oleic acid, pelargonic acid and pyributicarb.

"Herbicide safeners" (b15) are substances added to a herbicide formulation to eliminate or reduce phytotoxic effects of the herbicide to certain crops. These compounds protect crops from injury by herbicides but typically do not prevent the herbicide from controlling undesired vegetation. Examples of herbicide safeners include but are not limited to alliochlor, benoxacor, 1-bromo-4-[(chloromethyl)sulfonyl]benzene, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, diamuron, dichlormid, dicyclonon, 4-(dichloroacetyl)-1-oxa-4-azospiro[4.5]decane (MON 4660), 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, H-31868, isoxadifen-ethyl, LAB 147886, M-32988, mefenpyr-diethyl, mephenate, methoxyphenone, naphthalic anhydride and oxabetrinil.

5

10

15

20

25

30

35

One or more of the following methods and variations as described in Schemes 1–18 can be used to prepare the compounds of Formula 1. The definitions of A, B¹, B², B³, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹² and R¹³ in the compounds of Formulae 1–34 below are as defined above in the Summary of the Invention unless otherwise noted. Compounds of Formulae 1a–1h are various subsets of the compounds of Formula 1, and all substituents for Formulae 1a–1h are as defined above for Formula 1.

Compounds of Formula 1a, 1b or 1c (where R³ is hydroxy) can be prepared via the two-step process shown in Schemes 1a, 1b and 1c respectively. Intermediate 4a, 4b or 4c can be prepared by reacting dione 2 with intermediate 3 where G is a nucleophilic reaction leaving group (e.g., G¹ is a halogen, alkoxycarbonyl, haloalkylcarbonyloxy, haloalkoxycarbonyloxy, pyridinyl or imidazoyl group). Reaction of intermediate 4a, 4b or 4c with the appropriate cyano compound (e.g., acetone cyanohydrin, potassium cyanide, sodium cyanide) in the presence of a base such as triethylamine or pyridine leads to a compound of Formula 1a, 1b or 1c. Alternativly a fluoride anion source such as potassium fluoride or cesium fluoride and optionally in the presence of a phase transfer catalyst (e.g. tetrabutyl ammonium bromide, etc.) can be used in this transformation. A solvent such as dimethylsulfoxide, N,N-dimethylformamide, acetonitrile or dichloromethane at ambient temperature to the reflux temperature of the solvent can lead to a compound of Formula 1a, 1b or 1c. (Formula 1a is Formula 1 wherein A is A-1; Formula 1b is Formula 1 wherein A is A-2; Formula 1c is Formula 1 wherein A is A-3.) Alternatively, compounds of Formula 1a, 1b or 1c can be prepared by Process 2 (in Schemes 1a, 1b and 1c respectively) by reacting dione 2a, 2b or 2c with intermediate 3 in the presence of a cyano compound or a fluoride anion source along with a base. For additional reaction conditions for this general coupling methodology, see Edmunds, A. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.3 and references cited therein.

87

Scheme 1a

Scheme 1b

Scheme 1c

5

10

Compounds of Formula **1a**, **1b** or **1c** can also be prepared as shown in Scheme 2, by reacting dione **2a**, **2b** or **2c** with intermediate **3a** in the presence of a base or Lewis acid. For reaction conditions for this general coupling methodology, see Edmunds, A. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.3 and references cited therein.

88

Scheme 2

1a, 1b or 1c

As shown in Scheme 3, intermediate **4a**, **4b** or **4c** can also be prepared by allowing dione **2a**, **2b** or **2c** to react with acid **6** in the presence of a dehydrating condensation agent such as 2-chloro-1-pyridinium iodide (known as the Mukaiyama coupling agent), dicyclohexyl carbodiimide (DCC) or the like and optionally in the presence of a base. For additional reaction conditions for this general enol ester coupling methodology, see Edmunds, A. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.3 and references cited therein.

10

15

5

Scheme 3

4a, 4b or 4c

Intermediate **4a**, **4b** or **4c** can also be made by the palladium-catalyzed carbonylation reaction of a compound of Formula 7 in the presence of dione **2a**, **2b** or **2c** (Scheme 4). For reaction conditions for this general enol ester forming methodology, see Edmunds, A. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.3 and references cited therein.

Scheme 4

10

15

20

25

Compounds of Formula **1a**, **1b** or **1c** (where R³ is bonded through oxygen) are prepared by reacting compounds of Formula **1a**, **1b** or **1c** with intermediate **8** where X is a nucleophilic reaction leaving group, also known as a nucleofuge in the presence of a base as shown in Scheme 5. Alternatively, compounds of Formula **1a**, **1b** and **1c** (where R³ is bonded through nitrogen, sulfur or carbon) can be prepared using the appropriate halogenating agent followed by nucleophilic addition. For reaction conditions for this general functionalization method, see Edmunds, A. or Almisick A. V. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.3 or Chapter 4.4, and references cited therein.

Scheme 5

1) halogenating agent
1) halogenating agent
1a, 1b or 1c

R³ is bonded through nitrogen, sulfur or carbon

1a, 1b or 1c

R³ is OH

X-R³
base
1a, 1b or 1c

R³ is bonded through oxygen

As shown in Scheme 6, compounds of Formula 1d (i.e. Formula 1 wherein A is A-4 and R^3 is OH) can be prepared by the reaction of intermediate 9 with intermediate 3 in the presence of a Lewis base, for example *n*-butyllithium or lithium diisopropylamide in an appropriate solvent such as tetrahydrofuran or diethyl ether. For reaction conditions for this type of transformation, see JP 2003327580.

Compounds of Formula 1e (i.e. Formula 1 wherein A is A-5 and R³ is OH) can be prepared via a two-step process as shown in Scheme 7. Intermediate 12 can be prepared by reacting pyrazole 11 with intermediate 3 where G¹ is a nucleophilic reaction leaving group (i.e. G¹ is a halogen atom, alkoxycarbonyl, haloalkylcarbonyloxy, benzoyloxy, pyridinyl or imidazoyl group). Reaction of intermediate 12 with the appropriate cyano compound in the presence of a base leads to a compound of Formula 1e. Alternatively, a compound of Formula 1e can be prepared directly by reacting intermediate 11 with intermediate 3 (Process 2, Scheme 7) in the presence of a cyano compound or a fluoride anion source with a base. For reaction conditions for this general coupling methodology, see Almisick A. V. in

90

Modern Crop Protection Compounds; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.4, and references cited therein.

Compounds of Formula 1f (i.e. Formula 1 wherein A is A-5) wherein R³ is bonded through oxygen can be prepared by reacting a compound of Formula 1e with intermediate 8 (where X is a nucleophilic reaction leaving group, also known as a nucleofuge) in the presence of a base as shown in Scheme 8. Alternatively compounds of Formula 1f wherein R³ is bonded through nitrogen, sulfur or carbon can be prepared using the appropriate halogenating agent followed by nucleophilic displacement. For reaction conditions for these general functionalization methods, see Almisick A. V. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.4, and references cited therein.

5

10

15

20

Compounds of Formula 17 can be prepared by reacting intermediate 3 with a compound Formula 16 in an appropriate solvent in the presence of a base. Thereafter intermediate 17 can be rearranged into the compound of Furmula 1g (i.e. Formula 1 wherein A is A-7) in the presence of a cyano compound and a base as shown in Scheme 9. For reaction conditions for this general coupling methodology, see Almisick A. V. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.4, and references cited therein.

91

Scheme 9

Compounds of Formula **19** can be prepared from corresponding compounds of Formula **1g** wherein R¹³ is an alkoxycarbonyl in the presence of an acid such as hydrogen chloride, sulfuric or acetic acid and optionally in the presence of a solvent such as tetrahydrofuran, diethyl ether or dichloromethane as shown in Scheme 10. Intermediate **19** is then reacted with an orthoformate ester or *N*,*N*-dimethylformamide dimethylacetal (DMF-DMA) in the presence of an acid to obtain intermediate **20**. Reaction of intermediate **20** with hydroxylamine hydrochloride salt in a solvent such as ethanol, acetonitrile, water or acetic acid provides isoxazole compounds of Formula **1h** (i.e. Formula **1** wherein A is A-6 and R¹¹ is H). For reaction conditions for this general cyclization methodology, see Almisick A. V. in *Modern Crop Protection Compounds*; Kramer, W. and Schirmer, U., Eds.; Wiley, Weinheim, 2007; Chapter 4.4, and references cited therein.

Scheme 10

$$\mathbf{1g} \xrightarrow{\text{acid}} \mathbf{0} \begin{array}{c} \mathbf{1g} \\ \mathbf{1g} \end{array} \begin{array}{c} \mathbf$$

15

20

25

5

10

As illustrated in Scheme 11, sulfoxides and sulfones of Formula 1 wherein R² is a substituent bonded through a sulfoxide or sulfone radical can be prepared by oxidation of the compounds of Formula 1 wherein R² is a substituent bonded through a sulfide radical. In a typical procedure, an oxidizing agent in an amount from 1 to 4 equivalents depending on the oxidation state of the product desired is added to a solution of the compound of Formula 1 in a solvent. Useful oxidizing agents include Oxone[®] (potassium peroxymonosulfate), hydrogen peroxide, sodium periodate, peracetic acid and 3-chloroperbenzoic acid. The solvent is selected with regard to the oxidizing agent employed. Aqueous ethanol or aqueous acetone is preferably used with potassium peroxymonosulfate, and dichloromethane is generally preferable with 3-chloroperbenzoic acid. Useful reaction temperatures typically range from 0 to 90 °C. Particular procedures useful for oxidizing sulfides to sulfoxides and

92

sulfones are described by Brand et al., *J. Agric. Food Chem.* **1984**, *32*, 221–226 and references cited therein.

One skilled in the art will realize that acid chlorides of Formula 3d (i.e. Formula 3d wherein G^1 is Cl) are easily prepared from the acid of Formula 6d (Scheme 12) by numerous well-known methods. For example reacting the acid with a chlorinating reagent such as oxalyl chloride or thionyl chloride in a solvent such as dichloromethane or toluene and optionally in the presence of a catalytic amount of N,N-dimethylformamide can provide the corresponding acid chloride of Formula 3d.

5

10

15

20

Scheme 12

Scheme 12

Chlorinating reagent
$$Cl$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}

Compounds of Formula 6 can be prepared from esters of Formula 23 by numerous well-known methods, for example standard saponification procedures using aqueous bases such as LiOH, NaOH or KOH in a solvent such methanol or ethanol as described in Scheme 13. Alternatively, a dealkylating agent such as lithium iodide or trimethylsilyl iodide can be used in the presence of a base in a solvent such as pyridine or ethyl acetate. Additional reaction procedures for deesterification can be found in PCT Patent Publication WO 2006/133242. Boron tribromide (BBr₃) can alternatively be used to to prepare a compound of Formula 6 from a compound of Formula 23 in a solovent such as dichloromethane. Procedures using boron tribromide can be found in *Bioorg. & Med. Chem. Lett.* 2009, 19(16), 4733-4739.

93

Scheme 13 Scheme 13 O LiI, TMSI or BBr₃ base Alk is C_1 - C_6 alkyl Alk is C_1 - C_6 alkyl Scheme 13 MOH solvent M is Li, Na or K

Pyrimidinone esters of Formula **23a** (i.e. Formula **23** whererin Alk is ethyl, X is CH and Y is C(O)) are prepared as illustrated in Scheme 14 by *N*-alkylation of pyridones of Formula **26** with agents such as alkyl halides in the presence of a base such as sodium hydride or potassium carbonate in a solvent such as *N*,*N*-dimethylformamide, tetrahydrofuran or diethyl ether.

5

10

15

20

Scheme 14

Alkylating Agent
Providing
$$R^1$$
base, solvent

 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

Pyrimidinone esters of Formula **23a** can be made by the method of Scheme 15. In this method an methylene malonate of Formula **28** is cyclized with an amidine salt of Formula **29** wherein X is a halogen or sulfonate counter ion in the presence of excess base such as sodium alkoxide or potassium carbonate in an appropriate solvent such as ethanol (generally at the reflux temperature of the solvent) to give the corresponding pyrimidinone of Formula **3f**. Examples of this synthetic method are reported in PCT Patent Publication WO 2006/133242 or *Tetrahedron* **2001**, *57*, 2689.

Scheme 15

$$CO_2Et$$
 CO_2Et
 $CO_$

Pyrimidinone esters of Formula 26 can be prepared by the method of Scheme 16. In this method, an ethylene malonate of Formula 28 is cyclized with an amidine salt Formula 29a wherein X is a halogen or sulfonate counter ion in the presence of excess base such as sodium alkoxide or potassium carbonate in an appropriate solvent such as methanol (generally at the reflux temperature of the solvent) to give the corresponding pyrimidinone

PCT/US2011/027737

of Formula **26**. Examples of this synthetic procedure are reported in PCT Patent Publication WO 2006/133242, *Tetrahedron* **2001**, *57*, 2689.

28 +
$$\begin{bmatrix} R^2 \\ H_2N \\ NH \end{bmatrix}$$
 HX base, solvent 26

Thiones of Formula 23b (i.e. Formula 23 wherein Alk is ethyl, X is CH and Y is $S(O)_2$) can be made by the method of Scheme 17. In this method amidines of Formula 29 is reacted with acetal 30 in the presence of a base such as triethylamine, pyridine or potassium carbonate to give the corresponding azabutadiene 31. Reacting this compound with the sulfonic acid chloride 32 as shown in Scheme 17 in the presence of a base such as triethylamine, pyridine or potassium carbonate in an appropriate solvent results in the corresponding compound of Formula 33. The corresponding thiones of formula 23b can be obtained by reacting the compound of Formula 33 with iodomethane and subsequent treatment with a base such as triethylamine. Examples of this synthetic methodology are reported in *Synthesis* 2000, 5, 695.

15 <u>Scheme 17</u>

5

10

20

Alko OAlk

$$R^2$$
 NH
 $N(Me)_2$
 S
 $N(Me)_2$
 $N($

Triazines of Formula **23c** (i.e. Formula **23** wherein Alk is ethyl, X is N and Y is C(O)) can be made by the method of Scheme 18. In this method a ketomalonate of Formula **34** is cyclized with a semicarbazide of Formula **29c** wherein X is a halogen or sulfonate counter ion with or without the presence of excess base such as sodium alkoxide or potassium carbonate in an appropriate solvent such as ethanol or *t*-butanol (generally at the reflux temperature of the solvent) to the corresponding triazine of Formula **23c**. Examples of this synthetic methodology are found in *Eur. J. Med. Chem.* **2008**, *43*(5), 1085, *Bull. Soc. Chim. Fr.* 1976, (11-12, Pt. 2), 1825 and *J. Org. Chem.* **1962**, *27*, 976.

95

Scheme 18

$$CO_2Et$$
 CO_2Et
 C

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula 1.

5

10

15

20

25

30

One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane at 400 MHz unless otherwise noted; "s" means singlet, "m" means multiplet, "br s" means broad singlet, "d" means doublet, "t" means triplet, "dt" means doublet of triplets, "q" means quartet and "sep" means septet.

96

EXAMPLE 1

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2,3-diphenyl-4(3*H*)-pyrimidinone (Compound 2)

Step A: Preparation of *N*-phenylbenzenecarboximidamide sodium salt

5

10

15

20

25

30

35

To a stirred solution of sodium bis(trimethylsilyl)amide (1.0 M in tetrahydrofuran, 21.5 mL, 21.5 mmol) in tetrahydrofuran (10 mL) was added aniline (2.0 g, 21.5 mmol) and allowed to stir for 10 min at room temperature. Benzonitrile (2.21 g, 21.5 mmol) was added, and the reaction mixture was stirred for 1 h at room temperature. The solid that precipitated was filtered, washed with diethyl ether and dried under reduced pressure to afford the title product as an off-white solid (4.0 g), which was used without further purification in the next step.

Step B: Preparation of (A) 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid ethyl ester and (B) 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid

To a stirred solution of *N*-phenylbenzenecarboximidamide sodium salt (i.e. the product from Step A) (6.0 g, 27.5 mmol) in acetonitrile (30 mL) was added ammonium chloride (1.47 g, 27.5 mmol) followed by diethyl ethoxymethylenemalonate (5.94 g, 27.5 mmol). The reaction mixture was heated and stirred at reflux for 2 h. The reaction mixture was concentrated under reduced pressure to give a residue. Water (30 mL) was added to the residue, followed by a saturated solution of sodium bicarbonate (30 mL), and the mixture was extracted with ethyl acetate. The aqueous layer was separated and retained. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The resulting residue was purified by column chromatography eluting with 30% ethyl acetate in hexanes to afford the title product (A) as a white solid (2.80 g).

¹H NMR (CDCl₃) δ 8.81 (s, 1H), 7.11-7.33 (m, 10H), 4.41 (m, 2H), 1.39 (m, 3H).

The above retained aqueous layer was acidified with 1 N hydrochloric acid until the pH was 1-2, and the mixture was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure to provide a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product (B) as a white solid (680 mg).

¹H NMR (DMSO-d₆) δ 13.03 (s, 1H), 8.79 (s, 1H), 7.22-7.36 (m, 10H).

Step B1: Preparation of 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid (alternate preparation to Step B, product (B))

To a stirred solution of 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid ethyl ester (i.e. Step B product (A)) (2.30 g, 7.18 mmol) in pyridine (15 mL) was added lithium iodide (2.46 g, 18.0 mmol). The reaction mixture was heated to reflux with stirring for 24 h. The reaction mixture was concentrated under reduced pressure. To the resulting residue was added water (10 mL) followed by 1 N hydrochloric acid until the pH was 7. The

97

solution was filtered though Celite® diatomaceous filter aid. The filtrate was acidified with 1 N hydrochloric acid until the pH was 1, and the mixture was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure to afford a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product as a white solid (1.40 g).

¹H NMR (DMSO-d₆) δ 13.03 (s, 1H), 8.79 (s, 1H), 7.22-7.36 (m, 10H).

5

10

15

20

25

30

35

Step C: Preparation of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylate

To a stirred solution of 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid (i.e. Step B product (B) or the product from Step B1) (1.40 g, 4.8 mmol) in dichloromethane (30 mL) was added oxalyl chloride (1.21 g, 9.61 mmol) at 0 °C followed by catalytic amount (2 drops) of *N*,*N*-dimethylformamide. The reaction mixture was allowed to warm to room temperature and stir for 1 h. Then the reaction mixture was concentrated under reduced pressure. To the resulting residue was added dichloromethane (30 mL), 1,3-cyclohexanedione (646 mg, 5.76 mmol), followed by triethylamine (976 mg, 9.60 mmol), and the reaction mixture was stirred at room temperature for 30 min. Saturated aqueous ammonium chloride solution was added, and the mixture was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 50% ethyl acetate in hexanes to afford the title product as a white solid (1.1 g).

¹H NMR (CDCl₃) δ 8.89 (s, 1H), 7.31-7.36 (m, 5H), 7.24-7.26 (m, 3H), 7.12-7.15 (m, 2H), 6.04 (m, 1H), 2.68 (m, 2H), 2.45 (m, 2H), 2.11 (m, 2H).

Step D: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2,3-diphenyl-4(3*H*)-pyrimidinone (Compound 2)

To a stirred solution of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylate (i.e. the product from Step C) (640 mg, 1.65 mmol) in acetonitrile (20 mL) was added triethylamine (401 mg, 3.97 mmol), followed by a catalytic amount of acetone cyanohydrin (3 drops). The reaction mixture was stirred for 24 h at room temperature and then concentrated under reduced pressure. To the resulting residue was added dichloromethane and 1 N hydrochloric acid. The organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 100% ethyl acetate to afford the title product, a compound of the present invention, as a white solid (150 mg).

¹H NMR (CDCl₃) δ 8.24 (s, 1H), 7.12-7.34 (m, 10H), 2.70 (m, 2H), 2.48 (m, 2H), 2.03 (m, 2H).

98

EXAMPLE 2

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (Compound 17)

Step A: Preparation of N-(phenylmethyl)-benzenecarboximidamide

5

10

20

30

35

To a stirred solution of ethylbenzimidate hydrochloride (3.0 g, 16.2 mmol) in *N*,*N*-dimethylformamide (10 mL) was added triethylamine (1.60 g, 16.2 mmol). The reaction mixture was allowed to stir at room temperature for 1 h and then filtered to remove triethylamine salts, which were rinsed with *N*,*N*-dimethylformamide (5 mL). Benzylamine (1.23 g, 11.5 mmol) was added to the filtrate, and the mixture was heated to 65 °C for 24 h. To the cooled mixture was added water (80 mL) and ethyl acetate. The organic layer was washed with water and brine, then dried (MgSO₄) and concentrated under reduced pressure to afford the title product as a clear oil (2.80 g).

¹H NMR (CDCl₃) δ 7.61 (m, 2H), 7.26-4.43 (m, 8H), 4.57 (m, 2H), 4.37 (m, 1H), 1.42 (m, 1H).

15 Step B: Preparation of ethyl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate

To a stirred solution of *N*-(phenylmethyl)-benzenecarboximidamide (i.e. the product from Step A) (2.54 g, 12.1 mmol) in ethanol (15 mL) was added diethyl ethoxymethylenemalonate (2.61 g, 12.1 mmol), and the reaction mixture was heated to reflux for 24 h. The reaction mixture was then allowed to cool to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 30% ethyl acetate in hexanes to afford the title product as a white solid (2.9 g). 1 H NMR (CDCl₃) δ 8.71 (s, 1H), 7.51 (m, 1H), 7.42 (m, 2H), 7.33 (m, 2H), 7.23 (m, 3H), 6.93 (m, 2H), 5.28 (s, 2H), 4.42 (m, 2H), 1.40 (m, 3H).

25 Step C: Preparation of 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylic acid

To a stirred solution of ethyl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate (i.e. the product from Step B) (2.9 g, 8.6 mmol) in pyridine (15 mL) was added lithium iodide (3.01 g, 21.7 mmol). The reaction mixture was heated to reflux for 4 h, cooled, and then stirred at room temperature for 72 h. The reaction mixture was concentrated under reduced pressure. To the resulting residue was added water (10 mL), followed by 1 N hydrochloric acid until the pH was 7. The solution was filtered through Celite® diatomaceous filter aid, and the filtrate was acidified with 1 N hydrochloric acid until the pH was 1. The mixture was extracted with dichloromethane, and the organic layer was dried (MgSO₄) and concentrated under reduced pressure to afford a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product as a white solid (2.2 g).

Step D: Preparation of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate

10

15

20

25

30

To stirred solution of 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5pyrimidinecarboxylic acid (i.e. the product from Step C) (1.00 g, 3.26 mmol) in dichloromethane (30 mL) at 0 °C, was added oxalyl chloride (823 mg, 6.53 mmol) followed by a catalytic amount of N,N-dimethylformamide (2 drops). The reaction mixture was allowed to warm to room temperature and stir for 1 h. Then the reaction mixture was concentrated under reduced pressure. To the resulting residue was added dichloromethane (30 mL) and 1,3-cyclohexanedione (440 mg, 3.90 mmol), followed by triethylamine (990 mg, 9.80 mmol), and the reaction mixture was stirred at room temperature for 30 min. Saturated aqueous ammonium chloride solution was added to the reaction mixture, which was then extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 50% ethyl acetate in hexanes to afford the title product as a white solid (500 mg).

¹H NMR (CDCl₃) δ 8.81 (s, 1H), 7.55 (m, 1H), 7.45 (m, 2H), 7.37 (m, 2H), 7.25 (m, 3H), 6.95 (m, 2H), 6.03 (s, 1H), 5.30 (s, 2H), 2.69 (m, 2H), 2.46 (m, 2H), 2.12 (m, 2H).

Step E: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (Compound 17)

To a stirred solution of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate (i.e. the product from Step D) (450 mg, 1.12 mmol) in acetonitrile (15 mL) was added triethylamine (272 mg, 2.69 mmol), followed by a catalytic amount (3 drops) of acetone cyanohydrin. The reaction mixture was stirred for 24 h at room temperature and then concentrated under reduced pressure. To the resulting residue were added dichloromethane and 1 N hydrochloric acid, and the aqueous layer was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with ethyl acetate to afford the title product, a compound of the present invention, as a white solid (160 mg).

¹H NMR (CDCl₃) δ 16.44 (br s, 1H), 8.17 (s, 1H), 7.47 (m, 1H), 7.37 (m, 2H), 7.21-7.30 (m, 5H), 6.95 (m, 2H), 5.20 (s, 2H), 2.72 (m, 2H), 2.51 (m, 2H), 2.06 (m, 2H).

EXAMPLE 3

Preparation of 5-[(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (Compound 20)

100

Step A: Preparation of 1-ethyl-1*H*-pyrazol-5-yl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate

5

10

15

20

25

35

To stirred solution of 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5pyrimidinecarboxylic acid (i.e. the product from Example 2, Step C) (1.20 g, 3.92 mmol) in dichloromethane (30 mL) was added oxalyl chloride (998 mg, 7.84 mmol) at 0 °C followed by a catalytic amount (4-drops) of N,N-dimethylformamide. The reaction mixture was allowed to warm to room temperature and stir for 1 h. The reaction mixture was then concentrated under reduced pressure. To the resulting residue was added dichloromethane (30 mL) and 5-hydroxy-1-ethyl-1*H*-pyrazole, (572 mg, 4.7 mmol), followed by triethylamine (1.18 g, 11.8 mmol), and the reaction mixture was stirred at room temperature for 30 min. Saturated aqueous ammonium chloride solution was added to the reaction mixture, which was then extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 70% ethyl acetate in hexanes to afford the title product as a white solid (700 mg).

¹H NMR (CDCl₃) δ 8.90 (s, 1H), 7.56 (m, 1H), 7.46 (m, 3H), 7.38 (m, 2H), 7.26 (m, 3H), 6.95 (m, 2H), 6.29 (m, 1H), 5.34 (s, 2H), 4.19 (m, 2H), 1.45 (m, 3H).

Step B: Preparation of 5-[(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (Compound 20)

To a stirred solution of 1-ethyl-1*H*-pyrazol-5-yl 1,6-dihydro-6-oxo-2-phenyl-1-(phenylmethyl)-5-pyrimidinecarboxylate (i.e. the product from Step A) (650 mg, 1.62 mmol) in acetonitrile (15 mL) was added triethylamine (393 mg, 3.70 mmol), followed by a catalytic amount (5 drops) of acetone cyanohydrin. The reaction mixture was stirred for 24 h at room temperature and then concentrated under reduced pressure. To the residue were added dichloromethane and 1 N hydrochloric acid, and the aqueous layer was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 10% methanol in ethyl acetate to afford the title product, a compound of the present invention, as a white solid (150 mg).

¹H NMR (CDCl₃) δ 8.56 (s, 1H), 7.86 (s, 1H), 7.53 (m, 1H), 7.39-7.46 (m, 4H), 7.24 (m, 3H), 6.97 (m, 2H), 5.33 (s, 2H), 4.04 (m, 2H), 1.42 (m, 3H).

EXAMPLE 4

Step A: Preparation of 5-[[1-ethyl-5-[[(4-methylphenyl)sulfonyl]oxy]-1*H*-pyrazol-4-yl]carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (Compound 21)

To a stirred solution of 5-[(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)carbonyl]-2-phenyl-3-(phenylmethyl)-4(3*H*)-pyrimidinone (i.e. the product from Example 3, Step B) (300mg, 0.75 mmol) in acetonitrile (10 mL) was added triethylamine (116 mg, 1.12 mmol), followed by *p*-

101

toluenesulfonyl chloride (171 mg, 0.90 mmol), and the reaction mixture was stirred at room temperature for 72 h. Saturated aqueous ammonium chloride solution was added to the mixture, and the aqueous layer was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 50% ethyl acetate in hexanes to afford the title product, a compound of the present invention, as a white solid (160 mg).

¹H NMR (CDCl₃) δ 8.07 (s, 1H), 7.84 (s, 1H), 7.74 (m, 2H), 7.44 (m, 2H), 7.25-7.35 (m, 8H), 6.95 (m, 2H), 5.23 (s, 2H), 4.00 (m, 2H), 2.41 (s, 3H), 1.42 (m, 3H).

EXAMPLE 5

Preparation of 3-(3-fluoro-2-methylphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 47)

5

15

20

25

30

35

Step A: Preparation of N-(3-fluro-2-methylphenyl)benzenecarboximidamide sodium salt (1:1)

To a stirred solution of sodium bis(trimethylsilyl)amide (1.0 M in tetrahydrofuran, 200.0 mL, 200.0 mmol) was added 3-fluoro-2-methylaniline (25.0 g, 200.0 mmol) and allowed to stir for 10 min at room temperature. Benzonitrile (20.6 g, 200.0 mmol) was added, and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was concentrated and the solid that formed was filtered, washed with diethyl ether and dried under reduced pressure to afford the title product as a grey solid (51.0 g), which was used without further purification in the next step.

Step B: Preparation of 1-(3-fluoro-2-methylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylic acid

To a stirred solution of N-(3-fluro-2-methylphenyl)benzenecarboximidamide sodium salt (1:1) (i.e. the product from Example 5, Step A) (51.0 g, 200 mmol) in acetonitrile (300 mL) was added diethyl ethoxymethylenemalonate (44.04 g, 200 mmol). The reaction was stirred at room temperature for 30 min followed by the addition of water (3.6 mL, 200 mmol). The reaction was then stirred for another 30 min. Water (100 mL) was added to the residue, followed by a saturated solution of sodium bicarbonate (300 mL), and the mixture was extracted with ethyl acetate. The aqueous layer was acidified with concentrated hydrochloric acid until the pH was 1-2, and the mixture was extracted with dichloromethane. The organic layer was dried (MgSO₄) and concentrated under reduced pressure to provide a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product as a off-white solid (18 g).

¹H NMR (CDCl₃) δ 12.68 (s, 1H), 9.15 (s, 1H), 7.43 (m, 1H), 7.19–7.38 (m, 5H), 7.12 (m, 1H), 6.88 (m, 1H), 2.03 (s, 3H).

Step C: Preparation of 3-oxo-1-cyclohexen-1-yl 1-(3-fluoro-2-methylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate

5

10

20

25

30

35

To a stirred solution of 1-(3-fluoro-2-methylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylic acid (i.e. the product from Example 5, Step B) (41.0 g, 126 mmol) in dichloromethane (400 mL) was added oxalyl chloride (31.05 g, 252.0 mmol) at 0 °C followed by a catalytic amount (7 drops) of *N*,*N*-dimethylformamide. The reaction mixture was allowed to warm to room temperature and stir for 1 h. The reaction mixture was then concentrated under reduced pressure. To the resulting residue was added dichloromethane (400 mL), 1,3-cyclohexanedione (17.03 g, 152 mmol), followed by triethylamine (38.30 g, 379 mmol) and the reaction mixture was stirred at room temperature for 30 min. Saturated aqueous ammonium chloride solution was added, and the mixture was extracted with dichloromethane. The organic layer was washed once with water. Then the organic layer was dried (MgSO₄) and concentrated under reduced pressure. The resulting solid was washed with chlorobutane to afford the title product pure as an off-white solid (37.6 g).

¹H NMR (CDCl₃) δ 8.92 (s, 1H), 7.24–7.40 (m, 5H), 7.18 (m, 1H), 7.05 (m, 1H), 6.87 (m, 1H), 6.05 (s, 1H), 2.68 (m, 2H), 2.45 (m, 2H), 2.11 (m, 2H), 2.03 (s, 3H).

Step D: Preparation of 3-(3-fluoro-2-methylphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone

To a stirred solution of 3-oxo-1-cyclohexen-1-yl 1-(3-fluoro-2-methylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate (i.e. the product from Example 5, Step C) (42 g, 100.4 mmol) in acetonitrile (200 mL) was added cesium fluoride (30.5 g, 200.8 mmol). The reaction mixture was stirred for 24 h at room temperature. Water and ethyl acetate was added to the reaction mixture and the water layer was extracted several times with ethyl acetate. The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The resulting solid was washed several times with ether and filtered, followed by the addition 60 mL of ethyl acetate and let stir for 2 h. The resulting solid was then washed again with ether and dried under reduced pressure to afford the title product, a compound of the present invention, as a yellow solid (26 g).

¹H NMR (CDCl₃) δ 16.38 (s, 1H), 8.28 (s, 1H), 7.21–7.34 (m, 5H), 7.11 (m, 1H), 7.00 (m, 1H), 6.86 (m, 1H), 2.70 (m, 2H), 2.47 (m, 2H), 2.10 (m, 3H), 2.03 (m, 2H).

EXAMPLE 6

Preparation of 5-[(5-cyclopropyl-4-isoxazolyl)carbonyl]-2,3-diphenyl-4(3*H*)-pyrimidinone (Compound 223)

Step A: Preparation of 1-cyclopropyl-3-(1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinyl)-1,3-propanedione

To a mixture of 1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinecarboxylic acid (i.e. the product from Example 1, step B) (1.84 g, 6.3 mmol) and toluene (6.3 mL) was added

103

phosphorus pentachloride (1.31 g, 6.3 mmol) at ambient temperature. The resulting mixture was heated at reflux under a nitrogen atmosphere for 6 h. The resulting yellow solution was concentrated to give 1.53 g of the acid chloride as a yellow solid.

5

10

15

25

30

35

n-Butyllithium (2.5M solution in hexanes, 2.2mL, 5.6 mmol) was added dropwise to a solution of N,N-diisopropylamine (0.82 mL, 5.8 mmol) and anhydrous tetrahydrofuran (8 mL) at -78 °C under a nitrogen atmosphere. The resulting solution was warmed to 0 °C, stirred for 30 min, and then cooled to -78 °C. Cyclopropyl methyl ketone (0.55 mL, 5.6 mmol) was added dropwise at below -65 °C. The resulting solution was stirred at -78 °C for 30 min and was then treated with a slurry of the acid chloride as prepared above (823 mg, 2.7 mmol) in anhydrous tetrahydrofuran (5 mL) added dropwise via syringe at below 60 °C. Additional anhydrous tetrahydrofuran (5 mL) was used to complete the transfer of the acid chloride. The resulting mixture was stirred at -78 °C for 1 h and was then treated with saturated aqueous ammonium chloride (7 mL) at below -50 °C. The resulting mixture was stirred at ambient temperature for 15 min and was partitioned between ethyl acetate (100 mL) and saturated aqueous ammonium chloride (50 mL). The organic layer was dried over MgSO₄, filtered, and concentrated onto silica gel (2.5 g). The residue was purified by medium pressure liquid chromatography using a 24g silica column and eluting with a gradient of 0 to 100% ethyl acetate in hexanes to provide the title compound as a pale yellow glassy solid (250mg).

¹HNMR (400MHz, CDCl₃) δ 15.88 (s, 1H), 8.93 (s, 1H), 7.40–7.33 (m, 3H), 7.33–7.26 (m, 3H), 7.24–7.19 (m, 3H), 7.14 (apparent d, 2H), 1.81 (sep, 1H), 1.20–1.15 (m, 2H), 0.99–0.92 (m, 2H).

Step B: Preparation of 1-cyclopropyl-3-(1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinyl)-2-(ethoxymethylene)-1,3-propanedione

A suspension of 1-cyclopropyl-3-(1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinyl)-1,3-propanedione (i.e. the product from Example 6, Step A) (165 mg, 0.46 mmol), triethyl orthoformate (0.23 mL, 1.4 mmol), and acetic anhydride (0.92 mL) was heated at 110 °C under a nitrogen atmosphere for 4 h. The residue was dissolved in toluene (5 mL) and the resulting solution was concentrated under reduced pressure at 50 °C. The residue was re-dissolved in toluene (5 mL) and the resulting solution was concentrated at 50 °C to give 181 mg of the title compound as a brown oil that was used in the next step without further purification. ¹H NMR analysis showed the product to contain a mixture of Z- and E-olefin isomers.

¹HNMR (400MHz, CDCl₃) 8.63 and 8.47 (2s, 1H total), 7.68 and 7.62 (2s, 1H total), 7.33–7.16 (m, 8H), 7.10–7.02 (m, 2H), 4.27 and 4.16 (2q, 2H total), 2.64–2.57 (m, <1H), 1.42 and 1.33 (3t, 3H total), 1.11–1.06 and 1.04–0.98 (2m, 2H total), 0.91–0.82 (m, 2H).

104

Step C: Preparation of 5-[(5-cyclopropyl-4-isoxazolyl)carbonyl]-2,3-diphenyl-4(3*H*)-pyrimidinone

Anhydrous sodium acetate (68 mg, 0.83 mmol) was added to a solution of 1-cyclopropyl-3-(1,6-dihydro-6-oxo-1,2-diphenyl-5-pyrimidinyl)-2-(ethoxymethylene)-1,3-propanedione (i.e. the product from Example 6, Step B) (171 mg, 0.41 mmol) in ethanol (4 mL) at 0 °C. Hydroxylamine hydrochloride (29 mg, 0.42 mmol) was added and the resulting suspension was stirred at 0 °C for 30 min and then at ambient temperature for 2 h. The resulting mixture was diluted with ethyl acetate (20 mL) and ethanol (20 mL), concentrated onto 0.8 g silica gel, and the residue purified by medium pressure liquid chromatograpy using a 12 g silica gel column and eluting with 0 to 100% ethyl acetate in hexanes to obtain 14 mg of the title compound, a compound of the present invention as a yellow glassy solid. ¹HNMR (400MHz, CDCl₃) 8.56 (s, 1H), 8.45 (s, 1H), 7.40–7.30 (m, 6H), 7.25–7.20 (m, 2H), 7.16–7.12 (m, 2H), 3.02–2.93 (m, 1H), 1.37–1.32 (m, 2H), 1.27–1.22 (m, 2H).

EXAMPLE 7

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-phenyl-2-(3-pyridinyl)-4(3*H*)-pyrimidone (Compound 113)

Step A: Preparation of *N*-phenyl-3-pyridinecarboximidamide

5

10

15

20

25

30

35

Sodium hydride (60% in mineral oil, 11.52 g, 288 mmol) was added portion-wise over 30 min. to a stirred solution of 3-pyridinecarbonitrile (30 g, 288 mmol) and aniline (26 g, 290 mmol) in dimethylsulfoxide (150 mL) at 10 °C. The reaction mixture was allowed to warm to ambient temperature with stirring for 18 h. The reaction mixture was slowly and cautiously poured into water containing crushed ice. The solid that precipitated was filtered, washed with petroleum ether, dissolved in dichloromethane and dried over anhydrous Na₂SO₄. The volatiles were removed under reduced pressure (high vacuum) and the residue was dried to afford 36.5 g of the title compound as a yellow solid.

¹H NMR (CDCl₃, 500 MHz) δ 9.06 (s, 1H), 8.68 (d, 1H), 8.22 (d, 1H), 7.38–7.35 (m, 3H), 7.08 (t, 1H), 6.97 (d, 2H), 5.00 (s, 2H).

Step B: Preparation of ethyl 1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5-pyrimidinecarboxylate

A suspension of the *N*-phenyl-3-pyridinecarboximidamide (i.e. the product from Example 7, Step A) (36.5 g, 185 mmol) in diethyl ethoxymethylenemalonate (60 g, 280 mmol) was heated to 160 °C for 8 h. Ethanol formed in the reaction was collected using a distillation head attached to the flask containing the heated reaction mixture. The reaction mixture was then cooled to ambient temperature when the formation of a solid was observed. A mixture of diethyl ether/petroleum ether (8:2) was added to the reaction mixture was filtered. The collected solid was washed with additional ether/petroleum ether (4:1)

105

followed by n-chlorobutane/petroleum ether (1:1) to obtain 51 g of the title compound as a light brown powder.

¹H NMR (CDCl₃, 500 MHz) δ 8.79 (s, 1H), 8.57 (dd, 1H), 8.52 (dd, 1H), 7.58 (dt, 1H), 7.38–7.35 (m, 3H), 7.16–7.13 (m, 3H), 4.41 (q, 2H), 1.39 (t, 3H).

5 Step C: Preparation of 1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5-pyrimidinecarboxylic acid

10

15

25

30

1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5suspension of ethyl Α pyrimidinecarboxylate (i.e. the product from Example 7, Step B) (5.0 g, 15.5 mmol) and lithium iodide (powder, 5.2 g, 38.8 mmol) in pyridine (15 mL) was heated to 125–130 °C for 12 h. After cooling to ambient temperature, excess solvent was removed under reduced The resulting residue was dissolved in water (100 mL) and acidified with hydrochloric acid (6 N) to pH 7. The resulting dark brown solution was extracted with ethyl acetate (1 x 100 mL) to remove the non polar impurities. The aqueous layer was again extracted with dichloromethane/methanol (95:5) (2 x 50 mL). After initial extractions, the layer was slowly acidified to pH 4 and further extracted dichloromethane/methanol (95:5) (3 x 50 mL). The combined neutral and acidic extracts were washed with brine and dried over anhydrous Na₂SO₄. The residue obtained after removal of the solvent was dried under high-vacuum to obtain 3.4 g of the title compound as a light brown solid.

¹H NMR (CDCl₃, 500 MHz) δ 12.67 (br s, 1H), 9.12 (s, 1H), 8.60–8.57 (m, 2H), 7.65 (dt, 1H), 7.47–7.46 (m, 3H), 7.22–7.19 (m, 3H).

Step D: Preparation of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5-pyrimidinecarboxylate

To a stirred suspension of 1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5-pyrimidinecarboxylic acid (i.e. the product from Example 7, Step C) (10.7 g, 36.3 mmol) in dichloromethane (150 mL) at ambient temperature was added 2-chloro-*N*-methyl pyridinium iodide (also known as the Mukaiyama reagent) (14.8 g, 57.9 mmol) followed by cyclohexanedione (6.5 g, 58 mmol) and triethylamine (9.2 g, 91 mmol). The reaction mixture was left stirring at ambient temperature overnight, then diluted with dichloromethane, washed with water, brine and dried over anhydrous Na₂SO₄. The residue obtained after removal of the solvent under vacuum was purified by tituration with *n*-chlorobutane/petroleum ether mixtures to obtain 9.8 g of the title compound as a light brown solid.

¹H NMR (CDCl₃, 500 MHz) δ 8.89 (s, 1H), 8.60 (d, 1H) 8.54 (dd, 1H), 7.61 (dt, 1H), 7.42–35 7.37 (m, 3H), 7.19–7.14 (m, 3H), 6.04 (s, 1H), 2.69–2.66 (m, 2H), 2.45–2.42 (m, 2H), 2.10 (q, 2H).

106

Step E: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-phenyl-2-(3-pyridinyl)-4(3*H*)-pyrimidone

To a stirred solution of 3-oxo-1-cyclohexen-1-yl 1,6-dihydro-6-oxo-1-phenyl-2-(3-pyridinyl)-5-pyrimidinecarboxylate (i.e. the product from Example 7, Step D) (11.1 g, 28.6 mmol) in acetonitrile (166 mL) was added cesium fluoride (8.71 g, 57.3 mmol) followed by catalytic amount (~50 mg) of tetrabutylammonium bromide at ambient temperature. After stirring for 3 h at ambient temperature, the reaction mixture was diluted with ethyl acetate, washed with water, brine and dried over anhydrous Na₂SO₄. The volatile components were removed under reduced pressure and the residue was subjected to silica gel column chromatography eluting with ethyl acetate/petroleum ether (1:1) to ethyl acetate to dichloromethane/methanol (95:5). The product obtained was washed with minimum amount of methanol to afford 1.4 g of the title compound, a compound of the present invention as a light yellow solid.

5

10

15

20

25

30

35

¹H NMR (CDCl₃, 500 MHz) mixture of tautomers δ 16.45 (s, 0.8H), 8.57–8.50 (m, 2H), 8.21 (s, 1H), 7.57 (d, 1H), 7.35 (d, 3H), 7.16–7.13 (m, 3H), 5.29 (s, 0.2H,), 2.71 (br s, 2H), 2.47 (br s, 2H), 2.04–2.02 (m, 2H).

EXAMPLE 8

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(*cis/trans*-tetrahydro-1-oxido-2*H*-thiopyran-4-yl)-4(3*H*)-pyrimidinone (Compound 168) and 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(*trans/cis*-tetrahydro-1-oxido-2*H*-thiopyran-4-yl)-4(3*H*)-pyrimidinone (Compound 169)

Step A: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(cis/trans-tetrahydro-1-oxido-2*H*-thiopyran-4-yl)-4(3*H*)-pyrimidinone and 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(trans/cistetrahydro-1-oxido-2*H*-thiopyran-4-yl)-4(3*H*)-pyrimidinone

To 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-(tetrahydro-2*H*-thiopyran-4-yl)-4(3*H*)-pyrimidinone (the tautomer known as 2-[[1,6-dihydro-6-oxo-2-phenyl-1-(tetrahydro-2*H*-thiopyran-4-yl)-5-pyrimidinyl]carbonyl]-1,3-cyclohexanedione) (0.15 g, 0.37 mmol) in a mixture of 5.0 mL water and 5.0 mL methanol at room temperature was added NaIO₄ (0.074 g, 0.35 mmol). After approximately 45 min., additional NaIO₄ (0.011 g, 0.05 mmol) was added and stirring was continued for an additional 2 h. The reaction mixture was extracted with dichloromethane and the combined organics were dried over MgSO₄ concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 10% methanol in chloroform to provide 0.07 g of Compound 168 (alternatively known as 2-[[1,6-dihydro-6-oxo-2-phenyl-1-(*cis/trans*-tetrahydro-1-oxido-2*H*-thiopyran-4-yl)-5-pyrimidinyl]carbonyl]-1,3-cyclohexanedione) and and 0.03 g of Compound 169 (alternatively known as 2-[[1,6-dihydro-6-oxo-2-phenyl-1-

107

(*trans/cis*-tetrahydro-1-oxido-2*H*-thiopyran-4-yl)-5-pyrimidinyl]carbonyl]-1,3-cyclohexanedione) both as solids.

5

10

15

20

25

30

35

¹H NMR of Compound 168 (CDCl₃) δ 16.58 (br s, 1H), 7.99 (s, 1H), 7.58 (m, 3H), 7.47 (m, 2H), 4.14 (m, 1H), 3.39 (m, 2H), 3.12 (m, 2H), 2.74 (t, 2H), 2.49 (t, 2H), 2.37 (t, 2H), 2.05 (m, 4H).

¹H NMR Compound 169 (CDCl₃) δ 16.42 (br s, 1H), 8.00 (s, 1H), 7.54 (m, 5H), 4.06 (m, 1H), 3.65 (m, 2H), 3.07 (m, 2H), 2.60 (br s, 4H), 2.17 (m, 2H), 2.07 (m, 2H), 1.80 (d, 2H).

EXAMPLE 9

Preparation of 2-(3,5-difluorophenyl)-5-[(2-hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-yl)carbonyl]-3-(2-methoxyethyl)-4(3*H*)-pyrimidinone (Compound 243)

Step A: Preparation of 3,5-difluorobenzenecarboxamidic acid ethyl ester hydrochloride (1:1)

To a stirred solution of 3,5-difluorobenzonitirile (25 g, 180 mmol) in ethanol (336 mL) and dichloromethane (180 mL) at 0 °C, was added acetyl chloride (128 mL, 1800 mmol) drop wise via addition funnel. The reaction mixture was allowed to warm to room temperature and stir for 24 h. The reaction mixture was then concentrated under reduced pressure to afford a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product as a white solid (21.5 g) which was carried forward to the next step without further purification.

Step B: Preparation of 3,5-difluoro-*N*-(2-methoxyethyl)benzenecarboximidamide hydrochloride (1:1)

To a stirred solution of 3,5-difluorobenzenecarboxamidic acid ethyl ester hydrochloride (5.39 g, 24.3 mmol) (i.e. the product from Example 9, Step A) in methanol (25 mL) at 0 °C, was added 2-methoxy-1-ethylamine (2.2 mL, 25.5 mmol). The reaction mixture was allowed to warm to room temperature and stir for 24 h. The reaction mixture was concentrated under reduced pressure to afford the title product as a gummy oil, which was used without further purification in the next step.

Step C: Preparation of ethyl 2-(3,5-difluorophenyl)-1,6-dihydro-1-(2-methoxyethyl)-6-oxo-5-pyrimidinecarboxyate

To a stirred solution of 3,5-difluoro-*N*-(2-methoxyethyl)benzenecarboximidamide hydrochloride (1:1 (i.e. the product from Example 9, Step B) (24.3 mmol) in ethanol (25 mL) was added diethyl ethoxymethylenemalonate (5.25 g, 24.3 mmol) followed by sodium ethoxide (21% soln) (9.1 mL, 24.3 mmol). The reaction mixture was heated and stirred at reflux for 24 h. The reaction mixture was cooled to room temperature concentrated under reduced pressure. The residue was purified by column chromatography eluting with 50% ethyl acetate in hexanes to afford the title product as a white solid (6.1 g).

108

¹H NMR (CDCl₃) δ 8.65 (s, 1H), 7.14 (m, 2H), 6.98 (m, 1H), 4.41 (m, 2H), 4.21 (m, 2H), 3.67 (m, 2H), 3.22 (s, 3H), 1.40 (m, 3H).

Step D: Preparation of 2-(3,5-difluorophenyl)-1,6-dihydro-1-(2-methoxyethyl)-6-oxo-5-pyrimidinecarboxylic acid

5

10

15

20

25

30

35

To a stirred solution of ethyl ethyl 2-(3,5-difluorophenyl)-1,6-dihydro-1-(2-methoxyethyl)-6-oxo-5-pyrimidinecarboxyate (i.e. the product from Example 9, Step C) (1.14 g, 3.37 mmol) in ethyl acetate (10 mL) was added lithium iodide powder (1.35 g, 10.0 mmol). The reaction mixture was heated to reflux for 24 h, cooled, and then stirred at room temperature for 72 h. The reaction mixture was concentrated under reduced pressure. To the resulting residue was added water (10 mL), followed by 6 N hydrochloric acid until the pH was 2. The mixture was extracted with dichloromethane, and the organic layer was dried (MgSO₄) and concentrated under reduced pressure to afford a solid, which was washed with diethyl ether and dried under reduced pressure to afford the title product as a white solid (700 mg).

¹H NMR (CDCl₃) δ 12.88 (s, 1H), 8.99 (s, 1H), 7.20 (m, 2H), 7.03 (m, 1H), 4.32 (m, 2H), 3.69 (m, 2H), 3.25 (s, 3H).

Step E: Preparation of 2-(3,5-difluorophenyl)-5-[(2-hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-yl)carbonyl]-3-(2-methoxyethyl)-4(3*H*)-pyrimidinone

2-(3,5-difluorophenyl)-1,6-dihydro-1-(2-methoxyethyl)-6-oxo-5-To pyrimidinecarboxylic acid (i.e. the product from Example 9, Step D) (0.25 g, 0.81 mmol) in 10 mL of dichloromethane was added oxalyl chloride (0.21 g, 1.6 mmol) and one drop of N,N-dimethylformamide. The reaction mixture was stirred at room temperature for 2 h and then concentrated under reduced pressure. The remaining crude oil was re-dissolved in dichloromethane (10 mL) and then treated with bicycle[3.2.1]octane-2,4-dione (0.12 g, 0.88 mmol) (prepared according to U.S. Patent 6,815,563) and triethylamine (0.16 g, 1.6 mmol). After 30 min at room temperature, a catalytic amount of 2-hydroxy-2-methyl-propanenitrile (0.0075 g, 0.088 mmol) and triethylamine (0.16 g, 1.6 mmol) were added and the reaction mixture was stirred at ambient temperature over night. The reaction mixture was then concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 10% methanol in chloroform to provide 0.180 g of the title compound (also known as 3-[[2-(3,5-difluorophenyl)-1,6-dihydro-1-(2methoxyethyl)-6-oxo-5-pyrimidinyl]carbonyl]biciclo[3.2.1]octane-2,4-dione), a compound of the present invention, as a solid.

¹H NMR (CDCl₃) δ 16.58 (br s, 1H), 8.05 (s, 1H), 7.17 (m, 2H), 6.96 (m, 1H), 4.18 (br s, 2H), 3.61 (t, 2H), 3.26 (br s, 3H), 3.09 (br s, 1H), 2.96 (br s, 1H), 2.26 (d, 1H), 2.17 (br s, 2H), 2.02 (br s, 1H), 1.88 (br s, 1H), 1.73 (m, 1H).

109

EXAMPLE 10

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3*H*)-pyrimidinone (Compound 97)

Step A: Preparation of 3-thiophenecarboximidic acid ethyl ester hydrochloride

5

10

15

20

25

30

35

To a solution of thiophene-3-carbonitrile (10 g, 9.2 mmol) in dichloromethane (100 mL) and ethanol (170 mL) at 0 $^{\circ}$ C was added acetyl chloride (114 g, 145 mmol). The reaction was allowed to slowly warm to ambient temperature and stir 16 h. The reaction mixture was then concentrated under reduced pressure to yield a solid which was triturated with diethyl ether resulting in 17.1 g of 3-thiophenecarboximidic acid ethyl ester hydrochloride as a white solid.

¹H NMR (DMSO- d_6) δ 11.77 (br s, 2H), 8.92 (m, 1H), 7.90 (m, 1H), 7.83 (m, 1H), 4.60 (q, 2H), 1.46 (t, 3H).

Step B: Preparation of ethyl 1,6-dihydro-1-(2-methoxyethyl)-6-oxo-2-(3-thienyl)-5-pyrimidinecarboxylate

2-Methoxy-1-ethylamine (0.86 g, 11.4 mmol) was added to a solution of 3-thiophenecarboximidic acid ethyl ester hydrochloride (2.0 g, 10.4 mmol) in methanol (10 mL), which was then stirred at ambient temperature for 1.5 h. The reaction mixture was then concentrated under reduced pressure and redissolved in ethanol (10 mL). Sodium ethoxide solution (21% w/w in ethanol, 3.4 g, 10 mmol) and diethyl ethoxymethylenemalonate (2.2 g, 10 mmol) were added and the mixture was heated to reflux for 2 h before being concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to provide 1.82 g of the title compound as an oil.

¹H NMR (CDCl₃) δ 8.68 (s, 1H), 8.06 (m, 1H), 7.48 (m, 1H), 7.43 (m, 1H), 4.38 (m, 4H), 3.81 (t, 2H), 3.29 (s, 3H), 1.40 (t, 3H).

Step C: 1,6-dihydro-1-(2-methoxyethyl)-6-oxo-2-(3-thienyl)-5-pyrimidinecarboxylic acid

Ethyl 1,6-dihydro-1-(2-methoxyethyl)-6-oxo-2-(3-thienyl)-5-pyrimidinecarboxylate a (1.82 g, 5.90 mmol) (i.e. the product from Example 10, Step B)was dissolved in ethyl acetate and treated with lithium iodide (powder, 2.36 g, 17.6 mmol) and heated to reflux for 16 h. The crude reaction mixture was concentrated under reduced pressure and then aqueous sodium bicarbonate solution was added and the resulting solution was extracted with ethyl acetate which was then discarded. The aqueous layer was made acidic with hydrochloric acid (1 N) and then extracted with dichloromethane (2 X 40 mL). The combined organics were dried over MgSO₄ and concentrated under reduced pressure to provide the title compound as a solid.

¹H NMR (CDCl₃) δ 12.96 (br s, 1H), 8.99 (s, 1H), 8.17 (m, 1H), 7.53 (m, 1H), 7.48 (m, 1H), 4.47 (t, 2H), 3.83 (t, 2H), 3.32 (s, 3H).

110

Step D: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3*H*)-pyrimidinone

5

10

15

20

25

30

To 1,6-dihydro-1-(2-methoxyethyl)-6-oxo-2-(3-thienyl)-5-pyrimidinecarboxylic acid (i.e. the product from Example 10, Step C) (0.5 g, 1.8 mmol) in 10 mL of dichloromethane was added oxalyl chloride (0.45 g, 3.6 mmol) and one drop of *N*,*N*-dimethylformamide. The reaction mixture was stirred at room temperature for 2 h and then concentrated under reduced pressure. The crude oil was redissolved in 10 mL of dichloromethane and treated with 1,3-cyclohexanedione (0.22 g, 2.0 mmol) and triethylamine (0.18 g, 1.8 mmol). The reaction mixture was stirred for 30 min then treated with a catalytic amount of 2-hydroxy-2-methyl-propanenitrile (0.015 g, 0.18 mmol) and triethylamine (0.182 g, 1.8 mmol) and stirred at ambient temperature for 16 h. The reaction mixture was then concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 10% methanol in chloroform to provide 0.160 g of the title compound (also known as 2-[[1,6-dihydro-1-(2-methoxyethyl)-6-oxo-2-(3-thienyl)-5-pyrimidinyl]carbonyl]-1,3-cyclohexanedione), a compound of the invention, as a solid.

¹H NMR (CDCl₃) δ 16.51 (s, 1H), 8.14 (s, 1H), 7.97 (m, 1H), 7.43 (m, 2H), 4.29 (t, 2H), 3.70 (t, 2H), 3.29 (s, 3H), 2.73 (t, 2H), 2.50 (t, 2H), 2.08 (m, 2H).

EXAMPLE 11

Preparation of 3-cyclohexyl-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 128)

Step A: Preparation of ethyl 1-cyclohexyl-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxyate

Cyclohexylamine (0.58 g, 5.8 mmol) was added to a solution of ethyl benzenecarboximidic acid ethyl ester (1.0 g, 5.4 mmol) in methanol (10 mL), which was then stirred at room temperature for 16 h. The reaction mixture was then concentrated under reduced pressure and then redissolved in ethanol (10 mL). Sodium ethoxide solution (21% w/w in ethanol, 1.8 g, 5.5 mmol) and diethyl ethoxymethylenemalonate (1.2 g, 5.5 mmol) were added and the mixture was heated to reflux for 16h before being concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to provide 1.41 g of the title compound as a yellow oil.

¹H NMR (CDCl₃) δ 8.58 (s, 1H), 7.53 (m, 3H), 7.45 (m, 2H), 4.41 (m, 2H), 3.94 (m, 1H), 2.76 (m, 2H), 1.78 (d, 2H), 1.67 (d, 2H), 1.53 (d, 1H), 1.42 (m, 3H), 1.21 (m, 1H), 0.96 (m, 2H).

111

Step B: Preparation of 1-cyclohexyl-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylic acid

Ethyl 1-cyclohexyl-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxyate (1.41 g, 4.32 mmol) (i.e. the product from Example 11, Step A) was dissolved in ethyl acetate and treated with lithium iodide (powder, 1.72 g, 12.8 mmol) and heated to reflux for 16 h. The crude reaction mixture was concentrated under reduced pressure and then aqueous sodium bicarbonate was added and the resulting solution was extracted with ethyl acetate which was then discarded. The aqueous layer was made acidic with hydrochloric acid (1 N) and then extracted with dichloromethane (2 X 40 mL). The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure resulting in 0.58 g of the title product as a solid.

5

10

15

20

25

30

35

¹H NMR (CDCl₃) δ 13.30 (brs, 1 H), 8.94 (s, 1 H), 7.59 (m, 3 H), 7.48 (m, 2 H), 4.12 (m, 1 H), 2.68 (m, 2 H), 1.84 (d, 2 H), 1.74 (d, 2 H), 1.60 (d, 1 H), 1.22 (m, 1 H), 1.03 (m, 2 H).

Step C: Preparation of 2-[(1-cyclohexyl-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinyl)carbonyl]-1,3-cyclohexanedione

To 1-cyclohexyl-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylic acid (i.e. the product from Example 11, Step B) (0.58 g, 1.5 mmol) in 10 mL of dichloromethane was added oxalyl chloride (0.490 g, 3.9 mmol) and one drop of *N*,*N*-dimethylformamide. The reaction was stirred at ambient temperature for 2 h and then concentrated under reduced pressure. The crude oil was then redissolved in 10 mL of dichloromethane and then treated with 1,3-cyclohexanedione (0.24 g, 2.1 mmol) and triethylamine (0.39 g, 3.8 mmol) stirred for 30 min, then treated with a catalytic amount of 2-hydroxy-2-methyl-propanenitrile (0.015 g, 0.15 mmol) and triethylamine (0.393 g, 3.8 mmol) and stirred at ambient temperature for 16 h. The reaction mixture was then concentrated under reduced pressure and purified by medium pressure liquid chromatography on silica gel eluting with 0 to 10% methanol in chloroform to provide 0.570 g of the title compound, a compound of the invention, as a solid.

¹H NMR (CDCl₃) δ 16.61 (s, 1H), 8.02 (s, 1H), 7.50 (m, 5H), 3.93 (m, 1H), 2.73 (t, 2H), 2.61 (m, 2H), 2.51 (t, 2H), 2.08 (m, 2H), 1.74 (m, 4H), 1.51 (d, 1H), 1.19 (m, 1H), 0.97 (m, 2H).

EXAMPLE 12

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylsulfinyl)ethyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 366)

Step A: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylsulfinyl)ethyl]-2-phenyl-4(3*H*)-pyrimidinone

5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylthio)ethyl]-2-phenyl-4(3*H*)-pyrimidinone (i.e. compound 361, 381 mg, 0.99 mmol) was dissolved in 20 mL of a

10

15

20

25

30

1:1 MeOH/ H_2O solution. To this solution was added sodium periodate (254 mg, 1.19 mmol). The resulting mixture was stirred at ambient temperature for 16h. The reaction mixture was then diluted with ~10ml H_2O and extracted with dichloromethane (2 x 25 mL). The organic exetracts were combined and concentrated under reduced pressure to yield 350 mg of the title compound.

¹H NMR (CDCl₃) δ 16.61 (s, 1H) 8.13 (s, 1H) 7.55 (m, 5H) 4.45 (t, 2H) 3.20 (m, 1H) 2.89 (m, 1H) 2.75 (t, 2H) 2.56 (s, 3H) 2.48 (m, 2H) 2.08 (m, 2H).

EXAMPLE 13

Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylsulfonyl)ethyl]-2-phenyl-4(3*H*)-pyrimidinone (Compound 371)

Step A: Preparation of 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylsulfonyl)ethyl]-2-phenyl-4(3*H*)-pyrimidinone

To 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-[2-(methylthio)ethyl]-2-phenyl-4(3*H*)-pyrimidinone (i.e. compound 361, 381 mg, 0.99 mmol) dissolved in 10ml dichloromethane was added 3-chloroperoxybenzoic acid (77% maximum assay, 500 mg, 2.08 mmol). The resulting mixture was stirred at ambient temperature for 16hr. The reaction mixture was purified by silica-gel chromatography (40 g) eluting with 0 to 10% MeOH in chloroform to give the title compound.

¹H NMR (CDCl₃) δ 16.65 (brs, 1H) 8.12 (s, 1H) 7.55 (m, 5H) 4.42 (dd, 2H) 3.39 (m, 2H) 2.90 (s, 3H) 2.75 (m, 2H) 2.49 (d, 2H) 2.09 (m, 2H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 32 can be prepared. The following abbreviations are used in the Tables which follow: Me means methyl, Et means ethyl, *n*-Pr means normal propyl, *i*-Pr means isopropyl, *c*-Pr means cyclopropyl, *n*-Bu means normal butyl, *i*-Bu means isobutyl, *s*-Bu means secondary butyl, *c*-Bu means cyclobutyl, *t*-Bu means tertiary butyl, *n*-pent means normal pentyl, *c*-Pent means cyclopentyl, *n*-Hex means normal hexyl, hept means hetpyl, *c*-Hex means cyclohexyl, Ph means phenyl, OMe means methoxy, OEt means ethoxy, SMe means methylthio, SEt means ethylthio, thp means tetrahydropyran, thtp means tetrahydrothiopyran, thf means tetrahydrofuran, -CN means cyano, -NO₂ means nitro, S(O)Me means methylsulfinyl, SO₂ means sulfonyl and S(O)₂Me means methylsulfonyl.

R ¹	R ¹
Me	Ph(2,5-di-OMe)
Et	Ph(2,6-di-OMe)
n-Pr	Ph(3,5-di-OMe)
i-Pr	CH ₂ Ph(2-OMe)
c-Pr	CH ₂ Ph(3-OMe)
n-Bu	CH ₂ Ph(4-OMe)
i-Bu	CH ₂ CH ₂ SMe
s-Bu	CH ₂ SCH ₂ Ph
c-Bu	$\mathrm{CH_2SO_2Ph}$
t-Bu	CH ₂ CH ₂ SEt
n-pent	Ph(2,4-di-Cl)
c-Pent	Ph(2,5-di-Cl)
n-Hex	Ph(2,6-di-Cl)
c-Hex	Ph(3,5-di-Cl)
Ph	Ph(2,3-di-Me)
CH ₂ -c-Pr	Ph(2,4-di-Me)
CH ₂ -c-Bu	Ph(2,5-di-Me)
CH ₂ SPh	Ph(2,6-di-Me)
CH ₂ SCH ₃	Ph(3,5-di-Me)
CH ₂ CF ₃	CH ₂ -c-Hex
CH ₂ Ph	Ph(2,3-di-F)
Ph(4-Me)	Ph(2,4-di-F)
CH ₂ CHC(CH ₃) ₂	Ph(2,5-di-F)
CH ₂ CH ₂ C≡CH	Ph(2,6-di-F)
CH ₂ CH=CCl ₂	CH ₂ CH ₂ CF ₃
CH ₂ CH=CF ₂	CH ₂ C≡CH
CH ₂ CF=CF ₂	Ph(2,3-di-Cl)
CH ₂ CCl=CCl ₂	Ph(3,5-di-F)
CH ₂ C≡CCH ₃	isoxazolin-2-yl
CH ₂ OCH ₂ CH ₃	Ph(2-Cl)
CH ₂ CH ₂ OCH ₃	Ph(3-Cl)
CH ₂ SO ₂ CH ₃	Ph(4-Cl)
CH ₂ SCH ₂ CH ₃	Ph(2-Me)
Ph(2,3-di-OMe)	Ph(3-Me)
CH ₂ SO ₂ -n-Pr	CH ₂ OCH ₃
CH ₂ CH ₂ SO ₂ Et	CH ₂ CH=CH ₂
Ph(2,4-di-OMe)	Ph(2-OMe)

\mathbb{R}^1	\mathbb{R}^1
Ph(3-OMe)	CH ₂ (3-methylisoxazolin-5-yl)
Ph(4-OMe)	isoxazolin-4-yl
Ph(2-CN)	CH ₂ (3-methylisoxazol-5-yl)
Ph(3-CN)	5-methylisoxazol-3-yl
Ph(4-CN)	4-methyloxazol-2-yl
Ph(2-F)	4-methylthiazol-2-yl
Ph(3-F)	CH ₂ CH ₂ CH=CH ₂
Ph(4-F)	CH ₂ SO ₂ CH ₂ CH ₃
CH ₂ S- <i>n</i> -Pr	CH ₂ CH ₂ SO ₂ Me
CH ₂ -c-Pent	CH ₂ OCH ₂ OCH ₃
oxazolin-2-yl	3-methylthiazol-2-yl
2-pyridinyl	5-chloropyridin-2-yl
3-pyridinyl	5-methylpyridin-2-yl
4-pyridinyl	5-methoxypyridin-2-yl
Ph(2-NO ₂)	6-methylpyridin-2-yl
Ph(3-NO ₂)	6-methylpyridin-3-yl
Ph(4-NO ₂)	3-methoxypyridin-4-yl
Ph(2-CF ₃)	3-methylpyridin-4-yl
Ph(3-CF ₃)	3-chloropyridin-4-yl
Ph(4-CF ₃)	CH ₂ OCH ₂ CH ₂ OCH ₃
Ph(2-Br)	CH ₂ C(CH ₃)C(CH ₃) ₂
Ph(3-Br)	n-hept
Ph(4-Br)	c-hept
CH ₂ Ph(2-Me)	thp-4-yl
$CH_2Ph(3-Me)$	thtp-4-yl
CH ₂ Ph(4-Me)	Ph(2,3-di-OMe)
$CH_2Ph(2-Cl)$	Ph(3,4-di-OMe)
$CH_2Ph(3-Cl)$	Ph(3,4-di-Me)
$CH_2Ph(4-Cl)$	Ph(3,4-di-F)
thiazol-3-yl	Ph(3,4,5-tri-OMe)
thiazol-2-yl	Ph(2-I)
thiazolin-2-yl	Ph(3-I)
thiazol-2-yl	Ph(4-I)
oxazol-2-yl	Ph(2-Et)
CH ₂ CF ₂ CF ₃	Ph(3-Et)
CH=CH ₂	Ph(4-Et)
CH ₂ (thf-2-yl)	CH ₂ CH ₂ OCH ₂ CH ₃

\mathbb{R}^1	R ¹
CH(CH ₃)CH ₂ OCH ₃	c-hex(3,4-di-OCH ₃)
Ph(2-OCF ₃)	<i>c</i> -hex(3,5-di-OCH ₃)
Ph(3-OCF ₃)	CH ₂ CH ₂ SCH ₃
Ph(4-OCF ₃)	Ph(3-OEt)
Ph(2-Me-3-F)	Ph(4-OEt)
Ph(2-Me-4-F)	Ph(3,4-di-OEt)
Ph(2-Me-5-F)	Ph(3,5-di-OEt)
Ph(2-F-3-Me)	Ph(3,4,5-tri-OEt)
Ph(2-F-4-Me)	Ph(3-OCH ₂ CH=CH ₂)
Ph(2-F-5-Me)	Ph(4-OCH ₂ CH=CH ₂)
Ph(3-F-4-Me)	c-hex(3-OEt)
Ph(3-F-5-Me)	c-hex(4-OEt)
Ph(3-Me-4-F)	c-hex(3-Me)
CH ₂ CH ₂ CH ₂ OCH ₃	c-hex(4-Me)
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	<i>c</i> -hex(4,4-di-Me)
CH ₂ (thp-2-yl)	-CH ₂ CH(OCH ₃)CH ₂ OCH ₃
CH ₂ (thp-4-yl)	-CH(CH ₂ OCH ₃) ₂
$CH_2CH_2CH=CH_2$	-CH ₂ CH(OCH ₂ CH ₃)CH ₂ OCH ₂ CH ₃
CH ₂ C≡CH	-CH(CH ₃)CH ₂ OCH ₃
CH ₂ CH ₂ SCH ₃	-CH(CH ₂ OCH ₂ CH ₃)
CH ₂ CH ₂ SOCH ₃	-CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃
CH ₂ CH ₂ SO ₂ CH ₃	CH(CH ₃)Ph
CH ₂ CH ₂ CH ₂ SCH ₃	4,6-dimethoxypyrimidin-2-yl
CH ₂ CH ₂ CH ₂ SOCH ₃	4,6-dimethoxytriazin-2-yl
CH ₂ CH ₂ CH ₂ SO ₂ CH ₃	4,6-diethoxypyrimidin-2-yl
c-hex(3-OCH ₃)	4,6-diethoxytriazine-2-yl
c-hex(4-OCH ₃)	

The present disclosure also includes Tables 1A through 57A, each of which is constructed the same as Table 1 above except that the row heading in Table 1 (i.e. "R² is Ph") is replaced with the respective row headings shown below. For example, in Table 1A the row heading is "R² is Me", and R¹ is as defined in Table 1 above. Thus, the first entry in Table 1A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is Me; R² is Me; R³ is OH; A is A-1; B¹ is C-1; B² is C-3; B³ is C-1; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Tables 2A through 57A and 58A through 89A are constructed similarly.

Table	Row Heading	Table	Row Heading
1A	R ² is Me	2A	R ² is Et

Table	Row Heading	Table	Row Heading
3A	R^2 is <i>n</i> -Pr	40A	R^2 is <i>c</i> -pent
4A	R^2 is c-Pr	41A	R^2 is c -Hex
5A	R^2 is SMe	42A	R^2 is <i>n</i> -Hex
6A	R^2 is SO_2Me	43A	R^2 is thp-4-yl
7A	R^2 is CF_3	44A	R^2 is Ph(2-CN)
8A	R^2 is Ph(2-Cl)	45A	R^2 is Ph(3-CN)
9A	R^2 is Ph(3-Cl)	46A	R^2 is Ph(4-CN)
10A	R^2 is Ph(4-Cl)	47A	R^2 is Ph(2-C=CH)
11A	R^2 is Ph(2-Me)	48A	R^2 is Ph(3-C=CH)
12A	R^2 is Ph(3-Me)	49A	R^2 is Ph(4-C=CH)
13A	R^2 is Ph(4-Me)	50A	R^2 is Ph(3-Me, 2-F)
14A	R^2 is Ph(2-OMe)	51A	R^2 is Ph(3-Me-4-F)
15A	R^2 is Ph(3-OMe)	52A	R^2 is Ph(3-Me, 5-F)
16A	R^2 is Ph(4-OMe)	53A	R^2 is Ph(3-Me, 6-F)
17A	R^2 is Ph(2-F)	54A	R^2 is Ph(3-F, 2-Me)
18A	R^2 is Ph(3-F)	55A	R^2 is Ph(3-F-4-Me)
19A	R^2 is Ph(4-F)	56A	R^2 is Ph(3-F-5-Me)
20A	R^2 is OMe	57A	R^2 is Ph(3-F, 6-Me)
21A	R^2 is OEt	58A	i-Pr
22A	R^2 is CH_2Ph	59A	i-Bu
23A	R^2 is 2-pyridinyl	60A	thiene-2-yl
24A	R^2 is 3-pyridinyl	61A	thiene-3-yl
25A	R^2 is 4-pyridinyl	62A	furan-2-yl
26A	\mathbb{R}^2 is H	63A	furan-3-yl
27A	R^2 is Ph(3,5-di-F)	64A	1-Me-pyrazol-3-yl
28A	R^2 is Ph(3,4-di-F)	65A	isoxazolin-2-yl
29A	R^2 is Ph(3,4,5-tri-F)	66A	oxazolin-2-yl
30A	R^2 is Ph(2,3-di-F)	67A	thiazol-3-yl
31A	R^2 is Ph(3-CF ₃)	68A	thiazol-2-yl
32A	R^2 is Ph(4-CF ₃)	69A	thiazolin-2-yl
33A	R^2 is Ph(3,5-di-CF ₃)	70A	thiazol-2-yl
34A	R^2 is <i>n</i> -Bu	71A	oxazol-2-yl
35A	R^2 is CH_2OCH_3 ,	72A	isoxazolin-4-yl
36A	R^2 is $CH_2CH_2OCH_3$	73A	pyridin-3-yl(5-Me)
37A	R^2 is $CH_2CH_2CF_3$	74A	pyridin-3-yl(5-Cl)
38A	R^2 is CH_2CF_3	75A	Ph(3,4-di-OMe)
39A	R^2 is <i>n</i> -pent	76A	Ph(3,5-di-OMe)

Table	Row Heading	Table	Row Heading
77A	Ph(3-OEt)	84A	$Ph(3-OCH_2CH=CH_2)$
78A	Ph(4-OEt)	85A	Ph(4-OCH ₂ CH=CH ₂)
79A	Ph(3,4-di-OEt)	86A	4,6-dimethoxypyrimidin-2-yl
80A	Ph(3,5-di-OEt)	87A	4,6-dimethoxytriazin-2-yl
81A	Ph(3,4-di-Me)	88A	4,6-diethoxypyrimidin-2-yl
82A	Ph(3,5-di-Me)	89A	4,6-diethoxytriazine-2-yl
83A	Ph(3,4,5-tri-OEt)		

TABLE 1.1

Table 1.1 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.1. Thus the first compound disclosed in Table 1.1 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is phenylthio, A is A-1; B¹ is C-1; B² is C-3; B³ is C-1; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H.

5

10

15

The present disclosure also includes Tables 1.1A through 89.1A, each of which is constructed the same as Table 1.1 above except that the row heading in Table 1.1 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.1A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.1 above. Thus, the first entry in Table 1.1A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is phenylthio; A is A-1; R^3 is C-1; R^3 is C-1; and each R^{14} , R^{15} , R^{18} and R^{19} is H. Tables 2.1A through 89.1A are constructed similarly.

TABLE 1.2

$$\begin{array}{c|c} OH & O & O \\ \hline \\ H_3C & \\ \hline \\ H_3C & \\ \end{array}$$

Table 1.2 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.2. Thus the first compound disclosed in Table 1.2 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is

118

phenyl and R^3 is OH, A is A-1; B^1 is C-1; B^2 is C-3; B^3 is C-1; each R^{14} and R^{15} are H; and each R^{18} and R^{19} is CH₃.

The present disclosure also includes Tables 1.2A through 89.2A, each of which is constructed the same as Table 1.2 above except that the row heading in Table 1.2 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.2A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.2 above. Thus, the first entry in Table 1.2A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-1; R^1 is C-1; R^2 is C-3; R^3 is C-1; and each R^{14} and R^{15} is H; and each R^{18} and R^{19} is CH₃. Tables 2.2A through 89.2A are constructed similarly.

5

10

15

20

25

TABLE 1.3

H₂C OH

Table 1.3 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.3. Thus the first compound disclosed in Table 1.3 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is OH, A is A-5; R¹⁰ is H and R⁹ is CH₃.

The present disclosure also includes Tables 1.3A through 89.3A, each of which is constructed the same as Table 1.3 above except that the row heading in Table 1.3 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.3A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.3 above. Thus, the first entry in Table 1.3A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-5; R^{10} is H and R^9 is CH₃. Tables 2.3A through 89.3A are constructed similarly.

TABLE 1.4

Table 1.4 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.4. Thus the first compound disclosed in Table

1.4 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R^1 is methyl, R^2 is phenyl and R^3 is OH, A is A-5; R^{10} is H and R^9 is CH_2CH_3 .

The present disclosure also includes Tables 1.4A through 89.4A, each of which is constructed the same as Table 1.4 above except that the row heading in Table 1.4 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.4A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.4 above. Thus, the first entry in Table 1.4A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-5; R^{10} is H and R^9 is CH_2CH_3 . Tables 2.4A through 89.4A are constructed similarly.

5

10

15

20

TABLE 1.5

Table 1.5 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.5. Thus the first compound disclosed in Table 1.5 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is OH; A is A-5, R¹⁰ is CH₃ and R⁹ is CH₃.

The present disclosure also includes Tables 1.5Athrough 89.5A, each of which is constructed the same as Table 1.5 above except that the row heading in Table 1.5 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.5A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.5 above. Thus, the first entry in Table 1.5A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-5; R^{10} is CH₃ and R^9 is CH₃. Tables 2.5A through 89.5A are constructed similarly.

TABLE 1.6

$$H_3C$$
 O
 O
 N
 R^1
 R^2

Table 1.6 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.6. Thus the first compound disclosed in Table 1.6 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is OH, A is A-5, R¹⁰ is CH₃ and R⁹ is CH₂CH₃.

The present disclosure also includes Tables 1.6A through 89.6A, each of which is constructed the same as Table 1.6 above except that the row heading in Table 1.6 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.6A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.6 above. Thus, the first entry in Table 1.6A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-5; R^{10} is CH₃ and R^9 is CH₂CH₃. Tables 2.6A through 89.6A are constructed similarly.

5

15

20

25

TABLE 1.7

Table 1.7 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.7. Thus the first compound disclosed in Table 1.7 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is phenylthio, A is A-3, B² is C-3, T is C₂ alkylene, and each R¹⁸ and R¹⁹ is H.

The present disclosure also includes Tables 1.7A through 89.7A, each of which is constructed the same as Table 1.7 above except that the row heading in Table 1.7 (i.e. "R² is Ph") is replaced with the respective row headings shown above. For example, in Table 1.7A the row heading is "R² is Me", and R¹ is as defined in Table 1.7 above. Thus, the first entry in Table 1.7A specifically discloses a compound of Formula 1 wherein X is CH, Y is C(O); R¹ is Me; R² is Me; R³ is phenylthio; A is A-3, B² is C-3, T is C₂ alkylene, and each R¹⁸ and R¹⁹ is H. Tables 2.7A through 89.7A are constructed similarly.

TABLE 1.8

Table 1.8 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.8. Thus the first compound disclosed in Table 1.8 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl and R³ is OH, A is A-3, B² is C-3, T is C₂ alkenylene, and each R¹⁸ and R¹⁹ is H.

WO 2012/033548

5

15

20

25

The present disclosure also includes Tables 1.8A through 89.8A, each of which is constructed the same as Table 1.8 above except that the row heading in Table 1.8 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.8A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.8 above. Thus, the first entry in Table 1.8A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me; R^3 is OH; A is A-3, R^2 is C-3, T is R^2 alkenylene, and each R^{18} and R^{19} is H. Tables 2.8A through 89.8A are constructed similarly.

TABLE 1.9

$$\begin{array}{c|c}
O & O \\
N & R^1 \\
N & R^2
\end{array}$$

Table 1.9 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.9. Thus the first compound disclosed in Table 1.9 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-6, R¹¹ is H, R¹² is cyclopropyl.

The present disclosure also includes Tables 1.9A through 89.9A, each of which is constructed the same as Table 1.9 above except that the row heading in Table 1.9 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.9A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.9 above. Thus, the first entry in Table 1.9A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-6, R^{11} is H, R^{12} is cyclopropyl. Tables 2.9A through 89.9A are constructed similarly.

TABLE 1.10

$$\begin{array}{c|c}
 & O & O \\
 & N & R^1 \\
 & CH_3 & N & R^2
\end{array}$$

Table 1.10 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.10. Thus the first compound disclosed in Table 1.10 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-6, R¹¹ is H, R¹² is CH₃.

The present disclosure also includes Tables 1.10A through 89.10A, each of which is constructed the same as Table 1.10 above except that the row heading in Table 1.10 (i.e. "R² is Ph") is replaced with the respective row headings shown above. For example, in Table

1.10A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.10 above. Thus, the first entry in Table 1.10A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-6, R^{11} is H, R^{12} is CH₃. Tables 2.10A through 89.10A are constructed similarly.

<u>TABLE 1.11</u>

5

10

15

25

Table 1.11 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.11. Thus the first compound disclosed in Table 1.11 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-6, R¹¹ is H and R¹² is CH₂CH₃.

The present disclosure also includes Tables 1.11A through 89.11A, each of which is constructed the same as Table 1.11 above except that the row heading in Table 1.11 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.11A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.11 above. Thus, the first entry in Table 1.11A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-6; R^{11} is H and R^{12} is CH_2CH_3 . Tables 2.11A through 89.11A are constructed similarly.

TABLE 1.12

$$\begin{array}{c|c}
 & O & O \\
 & O & N \\
 & O & R^{2}
\end{array}$$

Table 1.12 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.12. Thus the first compound disclosed in Table 1.12 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7, R¹³ is cyano, and R¹² is cyclopropyl.

The present disclosure also includes Tables 1.12A through 89.12A, each of which is constructed the same as Table 1.12 above except that the row heading in Table 1.12 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.12A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.12 above. Thus, the first entry in Table 1.12A specifically discloses a compound of Formula 1 wherein X is CH;

123

Y is C(O); R¹ is Me; R² is Me; A is A-7, R¹³ is cyano, and R¹² is cyclopropyl. Tables 2.12A through 89.12A are constructed similarly.

TABLE 1.13 N N R R

Table 1.13 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.13. Thus the first compound disclosed in Table 1.13 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7, R¹³ is cyano, and R¹² is CH₃.

10

15

20

25

The present disclosure also includes Tables 1.13A through 89.13A, each of which is constructed the same as Table 1.13 above except that the row heading in Table 1.13 (i.e. "R² is Ph") is replaced with the respective row headings shown above. For example, in Table 1.13A the row heading is "R² is Me", and R¹ is as defined in Table 1.13 above. Thus, the first entry in Table 1.13A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is Me; R² is Me, A is A-7, R¹³ is cyano, and R¹² is CH₃. Tables 2.13A through 89.13A are constructed similarly.

Table 1.14 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.14. Thus the first compound disclosed in Table 1.14 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7, R¹³ is cyano, and R¹² is CH₂CH₃.

The present disclosure also includes Tables 1.14A through 57.14A and 58.14A through 89.14A, each of which is constructed the same as Table 1.14 above except that the row heading in Table 1.14 (i.e. "R² is Ph") is replaced with the respective row headings shown above. For example, in Table 1.14A the row heading is "R² is Me", and R¹ is as defined in Table 1.14 above. Thus, the first entry in Table 1.14A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is Me; R² is Me, A is A-7, R¹³ is cyano, and R¹² is CH₂CH₃. Tables 2.14A through 89.14A are constructed similarly.

124

<u>TABLE 1.15</u> Q Q

$$\begin{array}{c|c}
O_2N & O & O \\
O_1N & O & R^1 \\
O_2N & R^2
\end{array}$$

Table 1.15 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.15. Thus the first compound disclosed in Table 1.15 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7, R¹³ is nitro, and R¹² is cyclopropyl.

The present disclosure also includes Tables 1.15A through 89.15A, each of which is constructed the same as Table 1.15 above except that the row heading in Table 1.15 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.15A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.15 above. Thus, the first entry in Table 1.15A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-7, R^{13} is nitro, and R^{12} is cyclopropyl. Tables 2.15A through 89.15A are constructed similarly.

TABLE 1.16

$$O_2N$$
 O_2N
 O_1
 O_2N
 O_1
 O_2
 O_1
 O_2
 O_3
 O_4
 O_4
 O_4
 O_4
 O_5
 O_7
 O_8
 O

15

5

10

Table 1.16 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.16. Thus the first compound disclosed in Table 1.16 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7; R¹² is CH₃ and R¹³ is nitro.

20

25

The present disclosure also includes Tables 1.16A through 89.16A, each of which is constructed the same as Table 1.16 above except that the row heading in Table 1.16 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.16A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.16 above. Thus, the first entry in Table 1.16A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-7; R^{12} is CH₃ and R^{13} is nitro. Tables 2.16A through 89.16A are constructed similarly.

125

TABLE 1.17

$$\begin{array}{c|c} O_2N & O & O \\ \hline \\ H_3C & OH & N & R^2 \end{array}$$

Table 1.17 is constructed the same way as Table 1 except that the structure in Table 1 is replaced with the above structure for Table 1.17. Thus the first compound disclosed in Table 1.17 is a compound compound of Formula 1 wherein X is CH; Y is C(O), R¹ is methyl, R² is phenyl, A is A-7, R¹² is CH₂CH₃ and R¹³ is nitro.

The present disclosure also includes Tables 1.17A through 89.17A, each of which is constructed the same as Table 1.17 above except that the row heading in Table 1.17 (i.e. " R^2 is Ph") is replaced with the respective row headings shown above. For example, in Table 1.17A the row heading is " R^2 is Me", and R^1 is as defined in Table 1.17 above. Thus, the first entry in Table 1.17A specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is Me, A is A-7, R^{12} is CH_2CH_3 and CH_3 is nitro. Tables 2.17A through 89.17A are constructed similarly.

TABLE 2

R¹ is Me

5

10

R ²	\mathbb{R}^3	R ^{14a}	R ^{15a}	R ¹⁸	R ¹⁹	R ^{14b}	R ^{15b}
Et	ОН	Me	Н	Н	Н	Н	Н
CF ₃	ОН	Me	Н	Н	Н	Н	Н
n-Pr	ОН	Me	Н	Н	Н	Н	Н
c-Pr	ОН	Me	Н	Н	Н	Н	Н
Ph	ОН	Me	Н	Н	Н	Н	Н
Ph(2-Cl)	ОН	Me	Н	Н	Н	Н	Н
Ph(3-Cl)	ОН	Me	Н	Н	Н	Н	Н
Ph(4-Cl)	ОН	Me	Н	Н	Н	Н	Н
SMe	ОН	Me	Н	Н	Н	Н	Н
SO_2Me	ОН	Me	Н	Н	Н	Н	Н
<i>n</i> -Bu	ОН	Me	Н	Н	Н	Н	Н
Ph(2-F)	ОН	Me	Н	Н	Н	Н	Н

\mathbb{R}^2	\mathbb{R}^3	R ^{14a}	R ^{15a}	R ¹⁸	R^{19}	R ^{14b}	R ^{15b}
Ph(3-F)	ОН	Me	Н	Н	H	H	Н
Ph(4-F)	ОН	Me	Н	Н	Н	Н	Н
Ph(3,5-di-F)	ОН	Me	Н	Н	Н	Н	Н
Ph(2-Me)	ОН	Me	Н	Н	Н	Н	Н
Ph(3-Me)	ОН	Me	Н	Н	Н	Н	Н
Ph(4-Me)	ОН	Me	Н	Н	Н	Н	Н
Ph(3,5-di-Me)	ОН	Me	Н	Н	Н	Н	Н
2-pyridinyl	ОН	Me	Н	Н	Н	Н	Н
3-pyridinyl	ОН	Me	Н	Н	Н	Н	Н
4-pyridinyl	ОН	Me	Н	Н	Н	Н	Н
Et	ОН	Me	Me	Н	Н	Н	Н
CF ₃	ОН	Me	Me	Н	Н	Н	Н
n-Pr	ОН	Me	Me	Н	Н	Н	Н
c-Pr	ОН	Me	Me	Н	Н	Н	Н
Ph	ОН	Me	Me	Н	Н	Н	Н
Ph(2-Cl)	ОН	Me	Me	Н	Н	Н	Н
Ph(3-Cl)	ОН	Me	Me	Н	Н	Н	Н
Ph(4-Cl)	ОН	Me	Me	Н	Н	Н	Н
SMe	ОН	Me	Me	Н	Н	Н	Н
SO_2Me	ОН	Me	Me	Н	Н	Н	Н
Et	ОН	Н	Н	Me	Me	Н	Н
CF ₃	ОН	Н	Н	Me	Me	Н	Н
n-Pr	ОН	Н	Н	Me	Me	Н	Н
c-Pr	ОН	Н	Н	Me	Me	Н	Н
Ph	ОН	Н	Н	Me	Me	Н	Н
Ph(2-Cl)	ОН	Н	Н	Me	Me	Н	Н
Ph(3-Cl)	ОН	Н	Н	Me	Me	Н	Н
Ph(4-Cl)	ОН	Н	Н	Me	Me	Н	Н
SMe	ОН	Н	Н	Me	Me	Н	Н
SO_2Me	ОН	Н	Н	Me	Me	Н	Н
<i>n</i> -Bu	ОН	Н	Н	Me	Me	Н	Н
Ph(2-F)	ОН	Н	Н	Me	Me	Н	Н
Ph(3-F)	ОН	Н	Н	Me	Me	Н	Н
Ph(4-F)	ОН	Н	Н	Me	Me	Н	Н
Ph(3,5-di-F)	ОН	Н	Н	Me	Me	Н	Н
Ph(2-Me)	ОН	Н	Н	Me	Me	Н	Н
Ph(3-Me)	ОН	Н	Н	Me	Me	Н	Н

\mathbb{R}^2	\mathbb{R}^3	R ^{14a}	R^{15a}	R ¹⁸	R^{19}	R ^{14b}	R ^{15b}
Ph(4-Me)	ОН	— <u>Н</u>	Н	Me	Me	H	Н
Ph(3,5-di-Me)	ОН	Н	Н	Me	Me	Н	Н
2-pyridinyl	ОН	Н	Н	Me	Me	Н	Н
3-pyridinyl	ОН	Н	Н	Me	Me	Н	H
4-pyridinyl	ОН	Н	Н	Me	Me	Н	Н
Et	ОН	Me	Me	Н	Н	Me	Me
CF ₃	ОН	Me	Me	Н	Н	Me	Me
n-Pr	ОН	Me	Me	Н	Н	Me	Me
c-Pr	ОН	Me	Me	Н	Н	Me	Me
Ph	ОН	Me	Me	Н	Н	Me	Me
Ph(2-Cl)	ОН	Me	Me	H	Н	Me	Me
Ph(3-Cl)	ОН	Me	Me	Н	Н	Me	Me
Ph(4-Cl)	ОН	Me	Me	Н	Н	Me	Me
SMe	ОН	Me	Me	Н	Н	Me	Me
SO_2Me	ОН	Me	Me	Н	Н	Me	Me
<i>n</i> -Bu	ОН	Me	Me	Н	Н	Me	Me
Ph(2-F)	ОН	Me	Me	Н	Н	Me	Me
Ph(3-F)	ОН	Me	Me	Н	Н	Me	Me
Ph(4-F)	ОН	Me	Me	Н	Н	Me	Me
Ph(3,5-di-F)	ОН	Me	Me	H	Н	Me	Me
Ph(2-Me)	ОН	Me	Me	Н	Н	Me	Me
Ph(3-Me)	ОН	Me	Me	H	Н	Me	Me
Ph(4-Me)	ОН	Me	Me	Н	Н	Me	Me
Ph(3,5-di-Me)	ОН	Me	Me	H	Н	Me	Me
2-pyridinyl	ОН	Me	Me	H	Н	Me	Me
3-pyridinyl	ОН	Me	Me	H	Н	Me	Me
4-pyridinyl	ОН	Me	Me	H	Н	Me	Me
Et	SPh	Н	H	H	Н	Н	H
CF3	SPh	Н	H	H	Н	Н	H
n-Pr	SPh	Н	H	H	Н	Н	H
c-Pr	SPh	Н	H	Н	Н	Н	Н
Ph	SPh	Н	H	H	Н	Н	H
Ph(2-Cl)	SPh	Н	H	H	Н	Н	H
Ph(3-Cl)	SPh	Н	H	H	Н	Н	Н
Ph(4-Cl)	SPh	Н	Н	Н	Н	Н	Н
SMe	SPh	Н	Н	Н	Н	Н	Н
SO_2Me	SPh	Н	Н	Н	Н	Н	Н

R ²	\mathbb{R}^3	R ^{14a}	R ^{15a}	R ¹⁸	R ¹⁹	R ^{14b}	R ^{15b}
n-Bu	SPh	Н	Н	Н	Н	Н	Н
Ph(2-F)	SPh	Н	Н	Н	Н	Н	Н
Ph(3-F)	SPh	Н	Н	Н	Н	Н	Н
Ph(4-F)	SPh	Н	Н	Н	Н	Н	Н
Ph(3,5-di-F)	SPh	Н	Н	Н	Н	Н	Н
Ph(2-Me)	SPh	Н	Н	Н	Н	Н	Н
Ph(3-Me)	SPh	Н	Н	Н	Н	Н	Н
Ph(4-Me)	SPh	Н	Н	Н	Н	Н	Н
Ph(3,5-di-Me)	SPh	Н	Н	Н	Н	Н	Н
2-pyridiny1	SPh	Н	Н	Н	Н	Н	Н
3-pyridinyl	SPh	Н	Н	Н	Н	Н	Н
4-pyridinyl	SPh	Н	Н	Н	Н	Н	Н
Et	OMe	Н	H	Н	Н	Н	Н
CF ₃	OMe	Н	Н	Н	Н	Н	H
n-Pr	OMe	Н	Н	Н	Н	Н	Н
c-Pr	OMe	Н	Н	Н	Н	Н	Н
Ph	OMe	Н	H	Н	Н	Н	H
Ph(2-Cl)	OMe	Н	H	Н	Н	Н	\mathbf{H}
Ph(3-Cl)	OMe	Н	H	Н	Н	Н	\mathbf{H}
Ph(4-Cl)	OMe	Н	H	Н	Н	Н	H
SMe	OMe	Н	H	Н	Н	Н	H
SO ₂ Me	OMe	Н	H	Н	Н	Н	H
<i>n</i> -Bu	OMe	Н	Н	Н	Н	Н	H
Ph(2-F)	OMe	Н	H	Н	Н	Н	Н
Ph(3-F)	OMe	Н	H	Н	Н	Н	H
Ph(4-F)	OMe	Н	H	Н	Н	Н	H
Ph(3,5-di-F)	OMe	Н	H	Н	Н	Н	Н
Ph(2-Me)	OMe	Н	Н	Н	Н	Н	Н
Ph(3-Me)	OMe	Н	H	Н	Н	Н	H
Ph(4-Me)	OMe	Н	H	Н	Н	Н	Н
Ph(3,5-di-Me)	OMe	Н	H	Н	Н	Н	H
2-pyridinyl	OMe	Н	H	Н	Н	Н	Н
3-pyridinyl	OMe	Н	H	H	Н	Н	H
4-pyridinyl	OMe	Н	Н	Н	Н	Н	Н
Et	OSO ₂ Ph(4-Me)	Н	Н	Н	Н	Н	Н
CF ₃	OSO ₂ Ph(4-Me)	Н	Н	Н	Н	Н	Н
<i>n</i> -Pr	OSO ₂ Ph(4-Me)	Н	Н	Н	Н	Н	Н

\mathbb{R}^2	\mathbb{R}^3	R ^{14a}	R ^{15a}	R ¹⁸	R ¹⁹	R ^{14b}	R ^{15b}
c-Pr	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(2-C1)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(3-Cl)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(4-Cl)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
SMe	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
SO_2Me	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
n-Bu	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(2-F)	OSO ₂ Ph(4-Me)	Н	Н	Н	Н	Н	Н
Ph(3-F)	OSO ₂ Ph(4-Me)	Н	Н	Н	Н	Н	Н
Ph(4-F)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(3,5-di-F)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(2-Me)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(3-Me)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(4-Me)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Ph(3,5-di-Me)	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
2-pyridinyl	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
3-pyridinyl	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
4-pyridinyl	$OSO_2Ph(4-Me)$	Н	Н	Н	Н	Н	Н
Et	ОН	Me	Me	-C(O)-	Me	Me
CF ₃	ОН	Me	Me	-C(O)-	Me	Me
n-Pr	ОН	Me	Me	-C(O)-	Me	Me
c-Pr	ОН	Me	Me	-C(O)-	Me	Me
Ph	ОН	Me	Me	-C(O)-	Me	Me
Ph(2-Cl)	ОН	Me	Me	-C(O)-	Me	Me
Ph(3-Cl)	ОН	Me	Me	-C(O)-	Me	Me
Ph(4-Cl)	ОН	Me	Me	-C(O)-	Me	Me
SMe	ОН	Me	Me	-C(O)-	Me	Me
SO_2Me	ОН	Me	Me	-C(O)-	Me	Me
n-Bu	ОН	Me	Me	-C(O)-	Me	Me
Ph(2-F)	ОН	Me	Me	-C(O)-	Me	Me
Ph(3-F)	ОН	Me	Me	-C(O)-	Me	Me
Ph(4-F)	ОН	Me	Me	-C(O)-	Me	Me
Ph(3,5-di-F)	ОН	Me	Me	-C(O)-	Me	Me
Ph(2-Me)	ОН	Me	Me	-C(O)-	Me	Me
Ph(3-Me)	ОН	Me	Me	-C(O)-	Me	Me
Ph(4-Me)	ОН	Me	Me	-C(O)-	Me	Me

130

R ²	R ³	R ^{14a}	R ^{15a}	R ¹⁸	R ¹⁹	R ^{14b}	R ^{15b}
Ph(3,5-di-Me)	ОН	Me	Me	-C(O)-		Me	Me
2-pyridinyl	ОН	Me	Me	-C(0	D)-	Me	Me
3-pyridinyl	ОН	Me	M	-C(O)-		Me	M
4-pyridinyl	ОН	Me	Me	-C(0	O)-	Me	Me

The present disclosure also includes Tables 1B through 38B, each of which is constructed the same as Table 2 above except that the row heading in Table 2 (i.e. " R^1 is Me") is replaced with the respective row headings shown below. For example, in Table 1B the row heading is " R^1 is Et", and R^2 , R^3 , R^{14a} , R^{15a} , R^{18} , R^{19} , R^{14b} and R^{15b} are as defined in Table 2 above. Thus, the first entry in Table 1B specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Et; R^2 is Et, R^3 is OH; A is A-1; R^1 is C-1, R^2 is C-3 and R^3 is C-1; R^{14a} is Me; R^{15a} is H; R^{18} is H; R^{19} is H; R^{14b} is H; and R^{15b} is H. Tables 2B through 38B are constructed similarly.

Table	Row Heading	Table	Row Heading
1B	R ¹ is Et	20B	R^1 is $CH_2CH_2OCH_2CH_3$
2B	R^1 is CH_2CF_3	21B	R^1 is $CH_2CH_2CH_2OCH_3$
3B	R^1 is $CH_2CH=CH_2$	22B	R^1 is $CH_2CH_2CH_2OCH_2CH_3$
4B	R^1 is $CH_2C \equiv CH$	23B	R^1 is Ph(3-OMe)
5B	R^1 is Ph	24B	R^1 is Ph(4-OMe)
6B	R^1 is Ph(2-Me)	25B	R ¹ is Ph(3,4-di-OMe)
7B	R^1 is Ph(4-Me)	26B	R^1 is Ph(2-F)
8B	R^1 is Ph(2-Cl)	27B	R^1 is Ph(3-F)
9B	R^1 is Ph(3-Cl)	28B	R^1 is Ph(4-F)
10B	R^1 is n -Pr	29B	R^1 is Ph(3-Me)
11B	R^1 is c -Pr	30B	R^1 is Ph(2-Me-3-F)
12B	R^1 is n -Bu	31B	R^1 is Ph(2-Me-4-F)
13B	R^1 is <i>i</i> -Bu	32B	R^1 is Ph(2-Me-5-F)
14B	R^1 is <i>n</i> -pent	33B	R^1 is Ph(2-F-3-Me)
15B	R^1 is <i>n</i> -Hex	34B	R^1 is Ph(2-F-4-Me)
16B	R^1 is thp-4-yl	35B	R^1 is Ph(2-F-5-Me)
17B	R^1 is thtp-4yl	36B	R^1 is Ph(3-F-4-Me)
18B	R^1 is c -Hex	37B	R^1 is Ph(3-F-5-Me)
19B	R^1 is $CH_2CH_2OCH_3$	38B	R^1 is Ph(3-Me-4-F)

 R^1 is CH_3 , R^9 CH_3

5

R ²	R ²
Et	Ph(2-Cl)
n-Pr	Ph(3-Cl)
c-Pr	Ph(4-Cl)
CF ₃	Ph(3-F)
SMe	Ph(3,5-di-F)
Ph	Ph(3-Me)

The present disclosure also includes Tables 1C through 37C, each of which is constructed the same as Table 3 above except that the row heading in Table 3 (i.e. "R¹ is CH₃, R⁹ is CH₃") is replaced with the respective row headings shown below. For example, in Table 1C the row heading is "R¹ is CH₂CH₃, R⁹ is CH₃", and R² is as defined in Table 3 above. Thus, the first entry in Table 1C specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is CH₂CH₃; R² is Et; A is A-5; R³ is OH; R⁹ is CH₃; and R¹⁰ is H.

Tables 2C through 27C are constructed similarly.

Table	Row Heading
1C	R^1 is CH_2CH_3 , R^9 is CH_3
2C	R^1 is $CH_2CH=CH_2$, R^9 is CH_3
3C	R^1 is $CH_2C \equiv CH$, R^9 is CH_3
4C	R^1 is Ph, R^9 is CH_3
5C	R^1 is Ph(2-Me), R^9 is CH_3
6C	R^1 is Ph(4-Me), R^9 is CH_3
7C	R^1 is Ph(2-Me), R^9 is CH_3
8C	R^1 is Ph(3-Cl), R^9 is CH_3
9C	R^1 is CH_3 , R^9 is CH_2CH_3
10C	R^1 is CH_2CH_3 , R^9 is CH_2CH_3
11C	R^1 is $CH_2CH=CH_2$, R^9 is CH_2CH_3
12C	R^1 is $CH_2C \equiv CH$, R^9 is CH_2CH_3
13C	R^1 is Ph, R^9 is CH_2CH_3
14C	R^1 is Ph(2-Me), R^9 is CH_2CH_3
15C	R^1 is Ph(4-Me), R^9 is CH_2CH_3
16C	R^1 is Ph(2-Cl), R^9 is CH_2CH_3

3
CH ₃
is CH ₃
is CH ₃
s CH ₃
}
3
is CH ₃ is CH ₃ is CH ₃

Table	Row Heading
33C	R^1 is c-Hex, R^9 is CH_2CH_3
34C	R^1 is $CH_2CH_2OCH_3$, R^9 is CH_2CH_3
35C	R^1 is $CH_2CH_2OCH_2CH_3$, R^9 is CH_2CH_3

Table	Row Heading
36C	R^1 is $CH_2CH_2CH_2OCH_3$, R^9 is CH_2CH_3
37C	R^1 is $CH_2CH_2CH_2OEt$, R^9 is CH_2CH_3

TABLE 4

5

R ¹ 18 CH ₃ , R ² 18 CH ₃		
R ²	R ²	
Et	Ph(2-Cl)	
n-Pr	Ph(3-Cl)	
$c ext{-Pr}$	Ph(4-Cl)	
CF ₃	Ph(3-F)	
SMe	Ph(3,5-di-F)	
Ph	Ph(3-Me)	

The present disclosure also includes Tables 1D through 37D, each of which is constructed the same as Table 4 above except that the row heading in Table 4 (i.e. "R¹ is CH₃, R⁹ is CH₃") is replaced with the respective row headings shown below. For example, in Table 1D the row heading is "R¹ is CH₂CH₃, R⁹ is CH₃", and R² is as defined in Table 4 above. Thus, the first entry in Table 1D specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is CH₂CH₃; R² is Et; A is A-5; R³ is OH; R⁹ is CH₃; and R¹⁰ is CH₃.

Tables 2D through 37D are constructed similarly.

Table	Row Heading	Table	Row Heading
1D	R^1 is CH_2CH_3 , R^9 is CH_3	12D	R^1 is $CH_2C \equiv CH$, R^9 is CH_2CH_3
2D	R^1 is $CH_2CH=CH_2$, R^9 is CH_3	13D	R^1 is Ph, R^9 is CH_2CH_3
3D	R^1 is $CH_2C \equiv CH$, R^9 is CH_3	14D	R^1 is Ph(2-Me), R^9 is CH_2CH_3
4D	R^1 is Ph, R^9 is CH_3	15D	R^1 is Ph(4-Me), R^9 is CH_2CH_3
5D	R^1 is Ph(2-Me), R^9 is CH_3	16D	R^1 is Ph(2-Cl), R^9 is CH_2CH_3
6D	R^1 is Ph(4-Me), R^9 is CH_3	17D	R^1 is Ph(3-Cl), R^9 is CH_2CH_3
7D	R^1 is Ph(2-Me), R^9 is CH_3 R^5 is CH_3	18D	R^1 is <i>n</i> -Bu, R^9 is CH_3
8D	R^1 is Ph(3-Cl), R^9 is CH_3	19D	R^1 is <i>n</i> -pent, R^9 is CH_3
9D	R^1 is CH_3 , R^9 is CH_2CH_3	20D	R^1 is <i>n</i> -Hex, R^9 is CH_3
10 D	R^1 is CH_2CH_3 , R^9 is CH_2CH_3	21D	R^1 is thp-4-yl, R^9 is CH_3
11 D	R^1 is $CH_2CH=CH_2$, R^9 is CH_2CH_3	22D	R^1 is thtp-4-yl, R^9 is CH_3

Table	Row Heading	Table	Row Heading
23D	R^1 is c -Hex, R^9 is CH_3	31D	R^1 is thp-4-yl, R^9 is CH_2CH_3
24D	R^1 is $CH_2CH_2OCH_3$, R^9 is CH_3	32D	R^1 is thtp-4-yl, R^9 is CH_2CH_3
25D	R^1 is $CH_2CH_2OCH_2CH_3$, R^9 is CH_3	33D	R^1 is c-Hex, R^9 is CH_2CH_3
26D	R^1 is $CH_2CH_2CH_2OCH_3$, R^9 is CH_3	34D	R^1 is $CH_2CH_2OCH_3$, R^9 is CH_2CH_3
27D	R^1 is $CH_2CH_2CH_2OEt$, R^9 is CH_3	35D	R^1 is $CH_2CH_2OCH_2CH_3$, R^9 is CH_2CH_3
28D	R^1 is n -Bu, R^9 is CH_2CH_3	36D	R^1 is $CH_2CH_2CH_2OCH_3$, R^9 is CH_2CH_3
29D	R^1 is <i>n</i> -pent, R^9 is CH_2CH_3	37D	R^1 is $CH_2CH_2CH_2OEt$, R^9 is CH_2CH_3
30D	R^1 is <i>n</i> -Hex, R^9 is CH_2CH_3		

TABLE 5

R² is Ph

R ² is Pn R ¹	\mathbb{R}^{1}
	-
Me	Ph(4-Me)
Et	CH ₂ CHC(CH ₃) ₂
<i>n</i> -Pr	CH ₂ CH ₂ C≡CH
$i ext{-}\Pr$	CH ₂ CH=CCl ₂
c-Pr	CH ₂ CH=CF ₂
n-Bu	CH ₂ CF=CF ₂
<i>i</i> -Bu	CH ₂ CCl=CCl ₂
s-Bu	CH ₂ C≡CCH ₃
c-Bu	CH ₂ OCH ₂ CH ₃
<i>t</i> -Bu	CH ₂ CH ₂ OCH ₃
<i>n</i> -pent	CH ₂ SO ₂ CH ₃
c-Pent	CH ₂ SCH ₂ CH ₃
n-Hex	Ph(2,3-di-OMe)
c-Hex	CH ₂ SO ₂ -n-Pr
Ph	CH ₂ CH ₂ SO ₂ Et
CH ₂ -c-Pr	Ph(2,4-di-OMe)
CH ₂ -c-Bu	Ph(2,5-di-OMe)
CH ₂ SPh	Ph(2,6-di-OMe)
CH ₂ SCH ₃	Ph(3,5-di-OMe)
CH ₂ CF ₃	CH ₂ Ph(2-OMe)
CH ₂ Ph	CH ₂ Ph(3-OMe)

R ¹	R ¹
CH ₂ Ph(4-OMe)	Ph(2-F)
CH ₂ CH ₂ SMe	Ph(3-F)
$\mathrm{CH_2SCH_2Ph}$	Ph(4-F)
CH ₂ SO ₂ Ph	CH ₂ S- <i>n</i> -Pr
CH ₂ CH ₂ SEt	CH ₂ -c-Pent
Ph(2,4-di-Cl)	oxazolin-2-yl
Ph(2,5-di-Cl)	2-pyridinyl
Ph(2,6-di-Cl)	3-pyridinyl
Ph(3,5-di-Cl)	4-pyridinyl
Ph(2,3-di-Me)	Ph(2-NO ₂)
Ph(2,4-di-Me)	Ph(3-NO ₂)
Ph(2,5-di-Me)	Ph(4-NO ₂)
Ph(2,6-di-Me)	Ph(2-CF ₃)
Ph(3,5-di-Me)	Ph(3-CF ₃)
CH ₂ -c-Hex	Ph(4-CF ₃)
Ph(2,3-di-F)	Ph(2-Br)
Ph(2,4-di-F)	Ph(3-Br)
Ph(2,5-di-F)	Ph(4-Br)
Ph(2,6-di-F)	CH ₂ Ph(2-Me)
CH ₂ CH ₂ CF ₃	CH ₂ Ph(3-Me)
CH ₂ C≡CH	CH ₂ Ph(4-Me)
Ph(2,3-di-Cl)	CH ₂ Ph(2-Cl)
Ph(3,5-di-F)	CH ₂ Ph(3-Cl)
isoxazolin-2-yl	CH ₂ Ph(4-Cl)
Ph(2-Cl)	thiazol-3-yl
Ph(3-Cl)	thiazol-2-yl
Ph(4-Cl)	thiazolin-2-yl
Ph(2-Me)	thiazol-2-yl
Ph(3-Me)	oxazol-2-yl
CH ₂ OCH ₃	CH ₂ CF ₂ CF ₃
CH ₂ CH=CH ₂	CH=CH ₂
Ph(2-OMe)	CH ₂ (thf-2-yl)
Ph(3-OMe)	CH ₂ (3-methylisoxazolin-5-yl)
Ph(4-OMe)	isoxazolin-4-yl
Ph(2-CN)	CH ₂ (3-methylisoxazol-5-yl)
Ph(3-CN)	5-methylisoxazol-3-yl
Ph(4-CN)	4-methyloxazol-2-yl

R ¹	
4-methylthiazol-2-yl	CH ₂ CH ₂ OCH ₂ CH ₃
CH ₂ CH ₂ CH=CH ₂	CH(CH ₃)CH ₂ OCH ₃
CH ₂ SO ₂ CH ₂ CH ₃	Ph(2-OCF ₃)
CH ₂ CH ₂ SO ₂ Me	Ph(3-OCF ₃)
CH ₂ OCH ₂ OCH ₃	Ph(4-OCF ₃)
3-methylthiazol-2-yl	Ph(2-Me-3-F)
5-chloropyridin-2-yl	Ph(2-Me-4-F)
5-methylpyridin-2-yl	Ph(2-Me-5-F)
5-methoxypyridin-2-yl	Ph(2-F-3-Me)
6-methylpyridin-2-yl	Ph(2-F-4-Me)
6-methylpyridin-3-yl	Ph(2-F-5-Me)
3-methoxypyridin-4-yl	Ph(3-F-4-Me)
3-methylpyridin-4-yl	Ph(3-F-5-Me)
3-chloropyridin-4-yl	Ph(3-Me-4-F)
CH ₂ OCH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ CH ₂ OCH ₃
$CH_2C(CH_3)C(CH_3)_2$	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
n-hept	CH ₂ (thp-2-yl)
c-hept	CH ₂ (thp-4-yl)
thp-4-yl	CH ₂ CH ₂ CH=CH ₂
thtp-4-yl	CH ₂ C≡CH
Ph(2,3-di-OMe)	CH ₂ CH ₂ SCH ₃
Ph(3,4-di-OMe)	CH ₂ CH ₂ SOCH ₃
Ph(3,4-di-Me)	CH ₂ CH ₂ SO ₂ CH ₃
Ph(3,4-di-F)	CH ₂ CH ₂ CH ₂ SCH ₃
Ph(3,4,5-tri-OMe)	CH ₂ CH ₂ CH ₂ SOCH ₃
Ph(2-I)	CH ₂ CH ₂ CH ₂ SO ₂ CH ₃
Ph(3-I)	<i>c</i> -hex(3-OCH ₃)
Ph(4-I)	c-hex(4-OCH ₃)
Ph(2-Et)	<i>c</i> -hex(3,4-di-OCH ₃)
Ph(3-Et)	<i>c</i> -hex(3,5-di-OCH ₃)
Ph(4-Et)	CH ₂ CH ₂ SCH ₃

The present disclosure also includes Tables 1E through 57E, each of which is constructed the same as Table 1 above except that the row heading in Table 1 (i.e. " R^2 is Ph") is replaced with the respective row headings shown below. For example, in Table 1E the row heading is " R^2 is Me", and R^1 is as defined in Table 5 above. Thus, the first entry in Table 1E specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is Me; R^2 is

136

Me; R^3 is OH; A is A-1; B^1 is C-1; B^2 is C-3; B^3 is C-1; and each R^{14} , R^{15} , R^{18} and R^{19} is H. Tables 2E through 57E are constructed similarly.

Table	Row Heading	Table	Row Heading
1E	R ² is Me	30E	R ² is Ph(2,3-di-F)
2E	R^2 is Et	31E	R^2 is Ph(3-CF ₃)
3E	R^2 is <i>n</i> -Pr	32E	R^2 is Ph(4-CF ₃)
4E	R^2 is c-Pr	33E	R^2 is Ph(3,5-di-CF ₃)
5E	R^2 is SMe	34E	R^2 is <i>n</i> -Bu
6E	R^2 is SO_2Me	35E	R^2 is CH_2OCH_3
7E	R^2 is CF_3	36E	R ² is CH ₂ CH ₂ OCH ₃
8E	R^2 is Ph(2-Cl)	37E	R^2 is $CH_2CH_2CF_3$
9E	R^2 is Ph(3-Cl)	38E	R^2 is CH_2CF_3
10E	R^2 is Ph(4-Cl)	39E	R^2 is <i>n</i> -pent
11E	R^2 is Ph(2-Me)	40E	R^2 is c-pent
12E	R^2 is Ph(3-Me)	41E	R^2 is c-Hex
13E	R^2 is Ph(4-Me)	42E	R^2 is <i>n</i> -Hex
14E	R^2 is Ph(2-OMe)	43E	R^2 is thp-4-yl
15E	R^2 is Ph(3-OMe)	44E	R^2 is Ph(2-CN)
16E	R^2 is Ph(4-OMe)	45E	R^2 is Ph(3-CN)
17E	R^2 is Ph(2-F)	46E	R^2 is Ph(4-CN)
18E	R^2 is Ph(3-F)	47E	R^2 is Ph(2-C=CH)
19E	R^2 is Ph(4-F)	48E	R^2 is Ph(3-C=CH)
20E	R^2 is OMe	49E	R^2 is Ph(4-C=CH)
21E	R^2 is OEt	50E	R^2 is Ph(3-Me, 2-F)
22E	R^2 is CH_2Ph	51E	R^2 is Ph(3-Me-4-F)
23E	R^2 is 2-pyridinyl	52E	R^2 is Ph(3-Me, 5-F)
24E	R^2 is 3-pyridinyl	53E	R^2 is Ph(3-Me, 6-F)
25E	R^2 is 4-pyridinyl	54E	R^2 is Ph(3-F, 2-Me)
26E	R^2 is H	55E	R^2 is Ph(3-F-4-Me)
27E	R^2 is Ph(3,5-di-F)	56E	R^2 is Ph(3-F-5-Me)
28E	R^2 is Ph(3,4-di-F)	57E	R^2 is Ph(3-F, 6-Me)
29E	R^2 is Ph(3,4,5-tri-F)		

TABLE 6

$$\begin{array}{c|c}
R^3 & O & O \\
\hline
O & N & R^1 \\
\hline
O & N & R^2
\end{array}$$

137

\mathbf{R}^{1}	iç	phenyl
1/\^	19	DHCHAI

5

10

R ²	R ³	R ²	R ³	R ²	R ³
Et	OMe	Ph(3-F)	SPh	CF ₃	OC(O)Ph
n-Pr	OMe	Ph(3,5-di-F)	SPh	SMe	OC(O)Ph
c-Pr	OMe	Ph(3-Me)	SPh	Ph	OC(O)Ph
CF ₃	OMe	Et	OSO_2Ph	Et	OC(O)Ph
SMe	OMe	n-Pr	OSO_2Ph	Ph(3-F)	OC(O)Ph
Ph	OMe	c-Pr	${\rm OSO_2Ph}$	Ph(3,5-di-F)	OC(O)Ph
Ph(3-F)	OMe	CF ₃	${\rm OSO_2Ph}$	Ph(3-Me)	OC(O)Ph
Ph(3,5-di-F)	OMe	SMe	${ m OSO_2Ph}$	n-Pr	$OC(O)CH_3$
Ph(3-Me)	OMe	Ph	${ m OSO_2Ph}$	c-Pr	$OC(O)CH_3$
Et	SPh	Ph(3-F)	${ m OSO_2Ph}$	CF ₃	$OC(O)CH_3$
n-Pr	SPh	Ph(3,5-di-F)	${ m OSO_2Ph}$	SMe	$OC(O)CH_3$
c-Pr	SPh	Ph(3-Me)	${ m OSO_2Ph}$	Ph	$OC(O)CH_3$
CF ₃	SPh	Et	OC(O)Ph	Ph(3-F)	$OC(O)CH_3$
SMe	\mathbf{SPh}	n-Pr	OC(O)Ph	Ph(3,5-di-F)	$OC(O)CH_3$
Ph	SPh	c-Pr	OC(O)Ph	Ph(3-Me)	$OC(O)CH_3$

The present disclosure also includes Tables 1F through 11F, each of which is constructed the same as Table 6 above except that the row heading in Table 6 (i.e. "R¹ is Ph") is replaced with the respective row headings shown below. For example, in Table 1F the row heading is "R¹ is *n*-Pr", and R² is as defined in Table 6 above. Thus, the first entry in Table 1F specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is phenyl; R² *n*-Pr; R³ is OMe; A is A-3; B² is C-3; T is -CH₂CH₂-; R¹8 and R¹9 are both H. Tables 2F through 11F are constructed similarly.

Table	Row Heading	Table	Row Heading
1F	R^1 is <i>n</i> -Pr	7F	R^1 is c-Hex
2F	R^1 is <i>n</i> -Bu	8F	R^1 is $CH_2CH_2OCH_3$
3F	R^1 is <i>n</i> -pent	9F	R^1 is $CH_2CH_2OCH_2CH_3$
4F	R^1 is <i>n</i> -Hex	10F	R^1 is $CH_2CH_2CH_2OCH_3$
5F	R^1 is thp-4-yl	11F	R^1 is $CH_2CH_2CH_2OCH_2CH_3$
6F	R^1 is thtp-4-yl		

TABLE 7

138

R ²	R ²	R ²	R ²	R ²	R ²
Et	n-Pr	c-Pr	CF ₃	SMe	Ph
Ph(2-Me)	Ph(3-C1)	Ph(4-C1)	Ph(2-Me)	Ph(3-Me)	Ph(4-Me)

 R^{12} is c-Pr

R^1	\mathbb{R}^2	\mathbb{R}^1	R^2
CH ₃	Et	CH ₂ CH=CH ₂	n-Pr
CH ₃	n-Pr	CH ₂ CH=CH ₂	c-Pr
CH ₃	c-Pr	CH ₂ CH=CH ₂	CF ₃
CH ₃	CF ₃	CH ₂ CH=CH ₂	SMe
CH ₃	SMe	CH ₂ CH=CH ₂	Ph
CH ₃	Ph	CH ₂ CH=CH ₂	Ph(2-Cl)
CH ₃	Ph(2-Cl)	CH ₂ CH=CH ₂	Ph(3-Cl)
CH ₃	Ph(3-Cl)	CH ₂ CH=CH ₂	Ph(4-Cl)
CH ₃	Ph(4-Cl)	CH ₂ CH=CH ₂	Ph(3-F)
CH ₃	Ph(3-F)	CH ₂ CH=CH ₂	Ph(3,5-di-F)
CH ₃	Ph(3,5-di-F)	CH ₂ CH=CH ₂	Ph(3-Me)
CH ₃	Ph(3-Me)	CH ₂ C≡CH	Et
Et	Et	CH ₂ C≡CH	n-Pr
Et	<i>n</i> -Pr	CH ₂ C≡CH	c-Pr
Et	$c ext{-Pr}$	CH ₂ C≡CH	CF ₃
Et	CF ₃	CH ₂ C≡CH	SMe
Et	SMe	CH ₂ C≡CH	Ph
Et	Ph	CH ₂ C≡CH	Ph(2-C1)
Et	Ph(2-C1)	CH ₂ C≡CH	Ph(3-Cl)
Et	Ph(3-C1)	CH ₂ C≡CH	Ph(4-Cl)
Et	Ph(4-C1)	CH ₂ C≡CH	Ph(3-F)
Et	Ph(3-F)	CH ₂ C≡CH	Ph(3,5-di-F)
Et	Ph(3,5-di-F)	CH ₂ C≡CH	Ph(3-Me)
Et	Ph(3-Me)	Ph	Et
$CH_2CH=CH_2$	Et	Ph	n-Pr

R ¹	R ²	R ¹	R ²
Ph	c-Pr	Ph(2-Cl)	
Ph	CF ₃	Ph(2-Cl)	SMe
Ph	SMe	Ph(2-C1)	Ph
Ph	Ph	Ph(2-Cl)	Ph(2-Cl)
Ph	Ph(2-C1)	Ph(2-Cl)	Ph(3-Cl)
Ph	Ph(3-Cl)	Ph(2-Cl)	Ph(4-Cl)
Ph	Ph(4-Cl)	Ph(2-Cl)	Ph(3-F)
Ph	Ph(3-F)	Ph(2-Cl)	Ph(3,5-di-F)
Ph	Ph(3,5-di-F)	Ph(2-Cl)	Ph(3-Me)
Ph	Ph(3-Me)	Ph(3-Cl)	Et
Ph(2-Me)	Et	Ph(3-Cl)	n-Pr
Ph(2-Me)	n-Pr	Ph(3-Cl)	c-Pr
Ph(2-Me)	c-Pr	Ph(3-Cl)	CF ₃
Ph(2-Me)	CF ₃	Ph(3-Cl)	SMe
Ph(2-Me)	SMe	Ph(3-Cl)	Ph
Ph(2-Me)	Ph	Ph(3-Cl)	Ph(2-Cl)
Ph(2-Me)	Ph(2-Cl)	Ph(3-Cl)	Ph(3-Cl)
Ph(2-Me)	Ph(3-C1)	Ph(3-C1)	Ph(4-Cl)
Ph(2-Me)	Ph(4-Cl)	Ph(3-C1)	Ph(3-F)
Ph(2-Me)	Ph(3-F)	Ph(3-C1)	Ph(3,5-di-F)
Ph(2-Me)	Ph(3,5-di-F)	Ph(3-C1)	Ph(3-Me)
Ph(2-Me)	Ph(3-Me)	n-Pr	Et
Ph(4-Me)	Et	n-Pr	n-Pr
Ph(4-Me)	n-Pr	n-Pr	c-Pr
Ph(4-Me)	c-Pr	n-Pr	CF ₃
Ph(4-Me)	CF ₃	n-Pr	SMe
Ph(4-Me)	SMe	n-Pr	Ph
Ph(4-Me)	Ph	n-Pr	Ph(2-Cl)
Ph(4-Me)	Ph(2-Cl)	n-Pr	Ph(3-Cl)
Ph(4-Me)	Ph(3-Cl)	n-Pr	Ph(4-Cl)
Ph(4-Me)	Ph(4-Cl)	n-Pr	Ph(3-F)
Ph(4-Me)	Ph(3-F)	n-Pr	Ph(3,5-di-F)
Ph(4-Me)	Ph(3,5-di-F)	n-Pr	Ph(3-Me)
Ph(4-Me)	Ph(3-Me)	c-Pr	Et
Ph(2-Cl)	Et	$c ext{-Pr}$	n-Pr
Ph(2-Cl)	n-Pr	$c ext{-Pr}$	c-Pr
Ph(2-Cl)	c-Pr	$c ext{-Pr}$	CF ₃

\mathbb{R}^1	\mathbb{R}^2	R^1	\mathbb{R}^2
c-Pr	SMe	n-Hex	Ph
c-Pr	Ph	n-Hex	Ph(2-C1)
c-Pr	Ph(2-Cl)	n-Hex	Ph(3-Cl)
c-Pr	Ph(3-Cl)	n-Hex	Ph(4-Cl)
c-Pr	Ph(4-Cl)	n-Hex	Ph(3-F)
c-Pr	Ph(3-F)	n-Hex	Ph(3,5-di-F)
c-Pr	Ph(3,5-di-F)	n-Hex	Ph(3-Me)
c-Pr	Ph(3-Me)	thp-4-yl	Et
<i>n</i> -Bu	Et	thp-4-yl	n-Pr
<i>n</i> -Bu	<i>n</i> -Pr	thp-4-yl	c-Pr
<i>n</i> -Bu	c-Pr	thp-4-yl	CF ₃
<i>n</i> -Bu	CF ₃	thp-4-yl	SMe
<i>n</i> -Bu	SMe	thp-4-yl	Ph
<i>n</i> -Bu	Ph	thp-4-yl	Ph(2-Cl)
n-Bu	Ph(2-Cl)	thp-4-yl	Ph(3-Cl)
n-Bu	Ph(3-Cl)	thp-4-yl	Ph(4-Cl)
<i>n</i> -Bu	Ph(4-Cl)	thp-4-yl	Ph(3-F)
<i>n</i> -Bu	Ph(3-F)	thp-4-yl	Ph(3,5-di-F)
<i>n</i> -Bu	Ph(3,5-di-F)	thp-4-yl	Ph(3-Me)
n-Bu	Ph(3-Me)	c-Hex	Et
<i>n</i> -pent	Et	c-Hex	n-Pr
<i>n</i> -pent	n-Pr	c-Hex	c-Pr
<i>n</i> -pent	c-Pr	c-Hex	CF ₃
<i>n</i> -pent	CF ₃	c-Hex	SMe
<i>n</i> -pent	SMe	c-Hex	Ph
n-pent	Ph	c-Hex	Ph(2-Cl)
<i>n</i> -pent	Ph(2-Cl)	c-Hex	Ph(3-Cl)
<i>n</i> -pent	Ph(3-Cl)	c-Hex	Ph(4-Cl)
n-pent	Ph(4-Cl)	c-Hex	Ph(3-F)
<i>n</i> -pent	Ph(3-F)	c-Hex	Ph(3,5-di-F)
<i>n</i> -pent	Ph(3,5-di-F)	c-Hex	Ph(3-Me)
<i>n</i> -pent	Ph(3-Me)	CH ₂ CH ₂ OCH ₃	Et
n-Hex	Et	CH ₂ CH ₂ OCH ₃	n-Pr
n-Hex	n-Pr	CH ₂ CH ₂ OCH ₃	c-Pr
n-Hex	c-Pr	CH ₂ CH ₂ OCH ₃	CF ₃
n-Hex	CF ₃	CH ₂ CH ₂ OCH ₃	SMe
n-Hex	SMe	CH ₂ CH ₂ OCH ₃	Ph

\mathbb{R}^1	\mathbb{R}^2	R ¹	R ²
CH ₂ CH ₂ OCH ₃	Ph(2-C1)	CH ₂ CH ₂ CH ₂ OCH ₃	CF ₃
CH ₂ CH ₂ OCH ₃	Ph(3-C1)	CH ₂ CH ₂ CH ₂ OCH ₃	SMe
$CH_2CH_2OCH_3$	Ph(4-Cl)	CH ₂ CH ₂ CH ₂ OCH ₃	Ph
CH ₂ CH ₂ OCH ₃	Ph(3-F)	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(2-Cl)
CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-C1)
CH ₂ CH ₂ OCH ₃	Ph(3-Me)	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(4-Cl)
CH ₂ CH ₂ OCH ₂ CH ₃	Et	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-F)
CH ₂ CH ₂ OCH ₂ CH ₃	n-Pr	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)
CH ₂ CH ₂ OCH ₂ CH ₃	$c ext{-Pr}$	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Me)
CH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	CH ₂ CH ₂ CH ₂ OEt	Et
CH ₂ CH ₂ OCH ₂ CH ₃	SMe	CH ₂ CH ₂ CH ₂ OEt	n-Pr
CH ₂ CH ₂ OCH ₂ CH ₃	Ph	CH ₂ CH ₂ CH ₂ OEt	c-Pr
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(2-C1)	CH ₂ CH ₂ CH ₂ OEt	CF ₃
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-C1)	CH ₂ CH ₂ CH ₂ OEt	SMe
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(4-Cl)	CH ₂ CH ₂ CH ₂ OEt	Ph
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-F)	CH ₂ CH ₂ CH ₂ OEt	Ph(2-C1)
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3,5-di-F)	CH ₂ CH ₂ CH ₂ OEt	Ph(3-Cl)
CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-Me)	CH ₂ CH ₂ CH ₂ OEt	Ph(4-Cl)
CH ₂ CH ₂ CH ₂ OCH ₃	Et	CH ₂ CH ₂ CH ₂ OEt	Ph(3-F)
CH ₂ CH ₂ CH ₂ OCH ₃	n-Pr	CH ₂ CH ₂ CH ₂ OEt	Ph(3,5-di-F)
CH ₂ CH ₂ CH ₂ OCH ₃	c-Pr	CH ₂ CH ₂ CH ₂ OEt	Ph(3-Me)

The present disclosure also includes Tables 1H through 2H, each of which is constructed the same as Table 8 above except that the row heading in Table 8 (i.e. " R^{12} is c-Pr") is replaced with the respective row headings shown below. For example, in Table 1H the row heading is " R^{12} is CH_3 ", and R^1 and R^2 are as defined in Table 8 above. Thus, the first entry in Table 1H specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is CH_3 ; R^2 is Et; A is A-6; R^{11} is H; and R^{12} is CH_3 . Table 2H is constructed similarly.

$$\begin{tabular}{ll} \hline Table & Row Heading \\ \hline 1H & R^{12} is CH_3 \\ \hline 2H & R^{12} is CH_2CH_3 \\ \hline \end{tabular}$$

$$\begin{array}{c|c}
NC & O & O \\
HO & R^{12} & N & R^{2}
\end{array}$$

\mathbf{R}^{12}	is	c-Pr
1.	1,7	C = I I

\mathbb{R}^1	R ²	R ¹	R ²
CH ₃	Et	CH ₂ C≡CH	Et
CH ₃	n-Pr	CH ₂ C≡CH	n-Pr
CH ₃	c-Pr	CH ₂ C≡CH	c-Pr
CH ₃	CF ₃	CH ₂ C≡CH	CF ₃
CH ₃	SMe	CH ₂ C≡CH	SMe
CH ₃	Ph	CH ₂ C≡CH	Ph
CH ₃	Ph(2-Cl)	CH ₂ C≡CH	Ph(2-Cl)
CH ₃	Ph(3-Cl)	CH ₂ C≡CH	Ph(3-Cl)
CH ₃	Ph(4-Cl)	CH ₂ C≡CH	Ph(4-Cl)
CH ₃	Ph(3-F)	CH ₂ C≡CH	Ph(3-F)
CH ₃	Ph(3,5-di-F)	CH ₂ C≡CH	Ph(3,5-di-F)
CH ₃	Ph(3-Me)	CH ₂ C≡CH	Ph(3-Me)
Et	Et	Ph	Et
Et	n-Pr	Ph	n-Pr
Et	c-Pr	Ph	c-Pr
Et	CF ₃	Ph	CF ₃
Et	SMe	Ph	SMe
Et	Ph	Ph	Ph
Et	Ph(2-Cl)	Ph	Ph(2-C1)
Et	Ph(3-Cl)	Ph	Ph(3-Cl)
Et	Ph(4-Cl)	Ph	Ph(4-Cl)
Et	Ph(3-F)	Ph	Ph(3-F)
Et	Ph(3,5-di-F)	Ph	Ph(3,5-di-F
Et	Ph(3-Me)	Ph	Ph(3-Me)
$CH_2CH=CH_2$	Et	Ph(2-Me)	Et
$CH_2CH=CH_2$	n-Pr	Ph(2-Me)	n-Pr
$CH_2CH=CH_2$	c-Pr	Ph(2-Me)	c-Pr
$CH_2CH=CH_2$	CF ₃	Ph(2-Me)	CF ₃
$CH_2CH=CH_2$	SMe	Ph(2-Me)	SMe
$CH_2CH=CH_2$	Ph	Ph(2-Me)	Ph
$CH_2CH=CH_2$	Ph(2-C1)	Ph(2-Me)	Ph(2-C1)
$CH_2CH=CH_2$	Ph(3-C1)	Ph(2-Me)	Ph(3-Cl)
$CH_2CH=CH_2$	Ph(4-Cl)	Ph(2-Me)	Ph(4-Cl)
$CH_2CH=CH_2$	Ph(3-F)	Ph(2-Me)	Ph(3-F)
$CH_2CH=CH_2$	Ph(3,5-di-F)	Ph(2-Me)	Ph(3,5-di-F
CH ₂ CH=CH ₂	Ph(3-Me)	Ph(2-Me)	Ph(3-Me)

R ¹	R ²	R ¹	R ²
Ph(4-Me)	Et	n-Pr	n-Pr
Ph(4-Me)	n-Pr	n-Pr	c-Pr
Ph(4-Me)	c-Pr	n-Pr	CF ₃
Ph(4-Me)	CF ₃	n-Pr	SMe
Ph(4-Me)	SMe	n-Pr	Ph
Ph(4-Me)	Ph	n-Pr	Ph(2-Cl)
Ph(4-Me)	Ph(2-Cl)	n-Pr	Ph(3-Cl)
Ph(4-Me)	Ph(3-Cl)	n-Pr	Ph(4-Cl)
Ph(4-Me)	Ph(4-Cl)	n-Pr	Ph(3-F)
Ph(4-Me)	Ph(3-F)	n-Pr	Ph(3,5-di-F)
Ph(4-Me)	Ph(3,5-di-F)	n-Pr	Ph(3-Me)
Ph(4-Me)	Ph(3-Me)	<i>n</i> -Bu	Et
Ph(2-C1)	Et	<i>n</i> -Bu	n-Pr
Ph(2-C1)	n-Pr	<i>n</i> -Bu	c-Pr
Ph(2-C1)	c-Pr	n-Bu	CF ₃
Ph(2-C1)	CF ₃	<i>n</i> -Bu	SMe
Ph(2-C1)	SMe	<i>n</i> -Bu	Ph
Ph(2-C1)	Ph	<i>n</i> -Bu	Ph(2-Cl)
Ph(2-C1)	Ph(2-Cl)	<i>n</i> -Bu	Ph(3-Cl)
Ph(2-C1)	Ph(3-Cl)	<i>n</i> -Bu	Ph(4-Cl)
Ph(2-C1)	Ph(4-Cl)	<i>n</i> -Bu	Ph(3-F)
Ph(2-C1)	Ph(3-F)	<i>n</i> -Bu	Ph(3,5-di-F)
Ph(2-C1)	Ph(3,5-di-F)	<i>n</i> -Bu	Ph(3-Me)
Ph(2-C1)	Ph(3-Me)	n-pent	Et
Ph(3-C1)	Et	n-pent	n-Pr
Ph(3-C1)	n-Pr	n-pent	c-Pr
Ph(3-C1)	c-Pr	n-pent	CF ₃
Ph(3-C1)	CF ₃	n-pent	SMe
Ph(3-C1)	SMe	n-pent	Ph
Ph(3-C1)	Ph	n-pent	Ph(2-Cl)
Ph(3-C1)	Ph(2-Cl)	n-pent	Ph(3-Cl)
Ph(3-C1)	Ph(3-Cl)	n-pent	Ph(4-Cl)
Ph(3-Cl)	Ph(4-Cl)	n-pent	Ph(3-F)
Ph(3-Cl)	Ph(3-F)	n-pent	Ph(3,5-di-F)
Ph(3-Cl)	Ph(3,5-di-F)	n-pent	Ph(3-Me)
Ph(3-Cl)	Ph(3-Me)	n-Hex	Et
n-Pr	Et	n-Hex	n-Pr

R^1	\mathbb{R}^2	R^1	\mathbb{R}^2
n-Hex	c-Pr	c-Hex	CF ₃
n-Hex	CF ₃	c-Hex	SMe
n-Hex	SMe	c-Hex	Ph
n-Hex	Ph	c-Hex	Ph(2-Cl)
n-Hex	Ph(2-Cl)	c-Hex	Ph(3-Cl)
n-Hex	Ph(3-Cl)	c-Hex	Ph(4-Cl)
n-Hex	Ph(4-Cl)	c-Hex	Ph(3-F)
n-Hex	Ph(3-F)	c-Hex	Ph(3,5-di-F)
n-Hex	Ph(3,5-di-F)	c-Hex	Ph(3-Me)
n-Hex	Ph(3-Me)	CH ₂ CH ₂ OCH ₃	Et
thp-4-yl	Et	CH ₂ CH ₂ OCH ₃	n-Pr
thp-4-yl	n-Pr	CH ₂ CH ₂ OCH ₃	c-Pr
thp-4-yl	c-Pr	CH ₂ CH ₂ OCH ₃	CF ₃
thp-4-yl	CF ₃	CH ₂ CH ₂ OCH ₃	SMe
thp-4-yl	SMe	CH ₂ CH ₂ OCH ₃	Ph
thp-4-yl	Ph	CH ₂ CH ₂ OCH ₃	Ph(2-Cl)
thp-4-yl	Ph(2-Cl)	CH ₂ CH ₂ OCH ₃	Ph(3-Cl)
thp-4-yl	Ph(3-Cl)	CH ₂ CH ₂ OCH ₃	Ph(4-Cl)
thp-4-yl	Ph(4-Cl)	CH ₂ CH ₂ OCH ₃	Ph(3-F)
thp-4-yl	Ph(3-F)	CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)
thp-4-yl	Ph(3,5-di-F)	CH ₂ CH ₂ OCH ₃	Ph(3-Me)
thp-4-yl	Ph(3-Me)	CH ₂ CH ₂ OCH ₂ CH ₃	Et
thtp-4-yl	Et	CH ₂ CH ₂ OCH ₂ CH ₃	n-Pr
thtp-4-yl	n-Pr	CH ₂ CH ₂ OCH ₂ CH ₃	c-Pr
thtp-4-yl	c-Pr	$CH_2CH_2OCH_2CH_3$	CF ₃
thtp-4-yl	CF ₃	$CH_2CH_2OCH_2CH_3$	SMe
thtp-4-yl	SMe	$CH_2CH_2OCH_2CH_3$	Ph
thtp-4-yl	Ph	$CH_2CH_2OCH_2CH_3$	Ph(2-C1)
thtp-4-yl	Ph(2-Cl)	$CH_2CH_2OCH_2CH_3$	Ph(3-Cl)
thtp-4-yl	Ph(3-Cl)	$CH_2CH_2OCH_2CH_3$	Ph(4-Cl)
thtp-4-yl	Ph(4-Cl)	$CH_2CH_2OCH_2CH_3$	Ph(3-F)
thtp-4-yl	Ph(3-F)	$CH_2CH_2OCH_2CH_3$	Ph(3,5-di-F)
thtp-4-yl	Ph(3,5-di-F)	CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-Me)
thtp-4-yl	Ph(3-Me)	$CH_2CH_2CH_2OCH_3$	Et
c-Hex	Et	CH ₂ CH ₂ CH ₂ OCH ₃	n-Pr
c-Hex	<i>n</i> -Pr	CH ₂ CH ₂ CH ₂ OCH ₃	c-Pr
c-Hex	c-Pr	$CH_2CH_2CH_2OCH_3$	CF ₃

145

\mathbb{R}^1	\mathbb{R}^2	R1	R ²
CH ₂ CH ₂ CH ₂ OCH ₃	SMe	CH ₂ CH ₂ CH ₂ OEt	c-Pr
CH ₂ CH ₂ CH ₂ OCH ₃	Ph	CH ₂ CH ₂ CH ₂ OEt	CF ₃
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(2-C1)	CH ₂ CH ₂ CH ₂ OEt	SMe
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Cl)	CH ₂ CH ₂ CH ₂ OEt	Ph
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(4-Cl)	CH ₂ CH ₂ CH ₂ OEt	Ph(2-Cl)
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-F)	CH ₂ CH ₂ CH ₂ OEt	Ph(3-Cl)
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	CH ₂ CH ₂ CH ₂ OEt	Ph(4-Cl)
CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Me)	CH ₂ CH ₂ CH ₂ OEt	Ph(3-F)
CH ₂ CH ₂ CH ₂ OEt	Et	CH ₂ CH ₂ CH ₂ OEt	Ph(3,5-di-F)
CH ₂ CH ₂ CH ₂ OEt	n-Pr	CH ₂ CH ₂ CH ₂ OEt	Ph(3-Me)

The present disclosure also includes Tables 1J through 2J, each of which is constructed the same as Table 9 above except that the row heading in Table 9 (i.e. " R^{12} is c-Pr") is replaced with the respective row headings shown below. For example, in Table 1J the row heading is " R^{12} is CH_3 ", and R^1 and R^2 are as defined in Table 9 above. Thus, the first entry in Table 1J specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is CH_3 ; R^2 is Et; A is A-7; R^{12} is CH_3 ; and R^{13} is cyano. Table 2J is constructed similarly.

$$\begin{array}{cc} \underline{\text{Table}} & \underline{\text{Row Heading}} \\ 1J & R^{12} \text{ is CH}_3 \\ 2J & R^{12} \text{ is CH}_2\text{CH}_3 \end{array}$$

TABLE 10

$$O_2N \longrightarrow O_1 \longrightarrow O_1 \longrightarrow R^1$$

$$O_1 \longrightarrow O_2 \longrightarrow O_1 \longrightarrow O_2 \longrightarrow R^2$$

$$O_1 \longrightarrow O_2 \longrightarrow O_1 \longrightarrow O_2 \longrightarrow R^2$$

R¹ is phenyl

\mathbb{R}^2	R^2
Et	SMe
Ph(2-Me)	Ph(3-Me)
n-Pr	Ph
Ph(3-Cl)	Ph(4-Me)
c-Pr	Ph(3-F)
Ph(4-Cl)	Ph(3,5-di-F)
CF ₃	Ph(3-Me)
Ph(2-Me)	

5

10

The present disclosure also includes Tables 1K through 10K, each of which is constructed the same as Table 9 above except that the row heading in Table 10 (i.e. " R^1 is Ph") is replaced with the respective row headings shown below. For example, in Table 1K the row heading is " R^1 is n-Bu", and R^2 is as defined in Table 10 above. Thus, the first entry in Table 1K specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R^1 is n-Bu; R^2 is Ph; A is A-7; R^{12} is hydroxy; and R^{13} is nitro. Table 2K through 10K are constructed similarly.

Table	Row Heading	_Table_	Row Heading
1 K	R^1 is <i>n</i> -Bu	6K	R^1 is <i>c</i> -Hex
2 K	R^1 is <i>n</i> -pent	7K	R ¹ is CH ₂ CH ₂ OCH ₃
3K	R^1 is <i>n</i> -Hex	8K	R^1 is $CH_2CH_2OCH_2CH_3$
4K	R^{1} is thp-4-yl	9K	R ¹ is CH ₂ CH ₂ CH ₂ OCH ₃
5K	R^1 is thtp-4-yl	10 K	R ¹ is CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃

$$\begin{array}{c|c}
 & \underline{\text{TABLE 11}} \\
 & OH & O \\
 & O & N \\
 & & R^{24}
\end{array}$$

Q is CH ₂				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is -CH ₂ CH ₂ -				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is O				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-C1)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is NCH ₃				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is S				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R^{24}

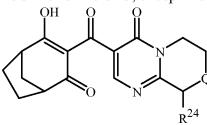
147

Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is S(O)	-24	- 24	-24	~24
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	$OCH_2CH_2OCH_3$	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is $S(O)_2$				
R ²⁴	R ²⁴	R ²⁴	R^{24}	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-C1)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)

TABLE 12
Table 12 is constructed the same as Table 11, except the structure is replaced with

TABLE 13

Q is O


	R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
	Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
	Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
	Q is NCH ₃ R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
	Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
	Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
10	Q is S				
	R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
	Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
	Ph	Ph(3-C1)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
	Q is S(O) 	R ²⁴	R ²⁴	R ²⁴	R ²⁴

148

Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)
Q is $S(O)_2$				
R ²⁴	R ²⁴	R ²⁴	R ²⁴	R ²⁴
Н	Et	n-Pr	OCH ₂ CH ₂ OCH ₃	Ph(4-OMe)
Ph	Ph(3-Cl)	Ph(3-F)	Ph(3-OMe)	Ph(3,5-di-F)

TABLE 14

Table 14 is constructed the same as Table 13, except the structure is replaced with

TABLE 15

Table 15 is constructed the same as Table 13, except the structure is replaced with

$$\bigcap_{OH} \bigcap_{O} \bigcap_{N} \bigcap_{R^{24}}$$

TABLE 16

Table 16 is constructed the same as Table 13, except the structure is replaced with

TABLE 17

Table 17 is constructed the same as Table 13, except the structure is replaced with

TABLE 18

Table 18 is constructed the same as Table 13, except the structure is replaced with

5

10

149

<u>TABLE 19</u>

$$0 \longrightarrow 0 \longrightarrow \mathbb{R}^{2}$$

 R^2 is Ph

R ² IS Ph	_ 1	_ 1
R ¹	R ¹	R ¹
Me	CH ₂ CH=CCl ₂	Ph(2,5-di-Cl)
Et	$CH_2CH=CF_2$	Ph(2,6-di-Cl)
n-Pr	$CH_2CF=CF_2$	Ph(3,5-di-Cl)
<i>i</i> -Pr	CH ₂ CCl=CCl ₂	Ph(2,3-di-Me)
c-Pr	CH ₂ C≡CCH ₃	Ph(2,4-di-Me)
<i>n</i> -Bu	CH ₂ OCH ₂ CH ₃	Ph(2,5-di-Me)
<i>i</i> -Bu	CH ₂ CH ₂ OCH ₃	Ph(2,6-di-Me)
s-Bu	$CH_2SO_2CH_3$	Ph(3,5-di-Me)
c-Bu	CH ₂ SCH ₂ CH ₃	CH ₂ -c-Hex
t-Bu	Ph(2,3-di-OMe)	Ph(2,3-di-F)
n-pent	CH ₂ SO ₂ - <i>n</i> -Pr	Ph(2,4-di-F)
c-Pent	CH ₂ CH ₂ SO ₂ Et	Ph(2,5-di-F)
n-Hex	Ph(2,4-di-OMe)	Ph(2,6-di-F)
c-Hex	Ph(2,5-di-OMe)	CH ₂ CH ₂ CF ₃
Ph	Ph(2,6-di-OMe)	CH ₂ C≡CH
CH ₂ -c-Pr	Ph(3,5-di-OMe)	Ph(2,3-di-Cl)
CH ₂ -c-Bu	CH ₂ Ph(2-OMe)	Ph(3,5-di-F)
CH ₂ SPh	CH ₂ Ph(3-OMe)	isoxazolin-2-yl
CH ₂ SCH ₃	CH ₂ Ph(4-OMe)	Ph(2-Cl)
CH ₂ CF ₃	CH ₂ CH ₂ SMe	Ph(3-Cl)
CH ₂ Ph	CH ₂ SCH ₂ Ph	Ph(4-Cl)
Ph(4-Me)	$\mathrm{CH_2SO_2Ph}$	Ph(2-Me)
CH ₂ CHC(CH ₃) ₂	CH ₂ CH ₂ SEt	Ph(3-Me)
CH ₂ CH ₂ C≡CH	Ph(2,4-di-C1)	CH ₂ OCH ₃

150

R^1	R^1	R^1
CH ₂ CH=CH ₂	thiazol-2-yl	Ph(3,4,5-tri-OMe)
Ph(2-OMe)	oxazol-2-yl	Ph(2-I)
Ph(3-OMe)	CH ₂ CF ₂ CF ₃	Ph(3-I)
Ph(4-OMe)	CH=CH ₂	Ph(4-I)
Ph(2-CN)	CH ₂ (thf-2-yl)	Ph(2-Et)
Ph(3-CN)	CH ₂ (3-methylisoxazolin-5-yl)	Ph(3-Et)
Ph(4-CN)	isoxazolin-4-yl	Ph(4-Et)
Ph(2-F)	CH ₂ (3-methylisoxazol-5-yl)	CH ₂ CH ₂ OCH ₂ CH ₃
Ph(3-F)	5-methylisoxazol-3-yl	CH(CH ₃)CH ₂ OCH ₃
Ph(4-F)	4-methyloxazol-2-yl	Ph(2-OCF ₃)
CH ₂ S- <i>n</i> -Pr	4-methylthiazol-2-yl	Ph(3-OCF ₃)
CH ₂ -c-Pent	CH ₂ CH ₂ CH=CH ₂	Ph(4-OCF ₃)
oxazolin-2-yl	CH ₂ SO ₂ CH ₂ CH ₃	Ph(2-Me-3-F)
2-pyridinyl	CH ₂ CH ₂ SO ₂ Me	Ph(2-Me-4-F)
3-pyridinyl	CH ₂ OCH ₂ OCH ₃	Ph(2-Me-5-F)
4-pyridinyl	3-methylthiazol-2-yl	Ph(2-F-3-Me)
Ph(2-NO ₂)	5-chloropyridin-2-yl	Ph(2-F-4-Me)
Ph(3-NO ₂)	5-methylpyridin-2-yl	Ph(2-F-5-Me)
Ph(4-NO ₂)	5-methoxypyridin-2-yl	Ph(3-F-4-Me)
Ph(2-CF ₃)	6-methylpyridin-2-yl	Ph(3-F-5-Me)
Ph(3-CF ₃)	6-methylpyridin-3-yl	Ph(3-Me-4-F)
Ph(4-CF ₃)	3-methoxypyridin-4-yl	CH ₂ CH ₂ CH ₂ OCH ₃
Ph(2-Br)	3-methylpyridin-4-yl	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
Ph(3-Br)	3-chloropyridin-4-yl	$CH_2(thp-2-yl)$
Ph(4-Br)	CH ₂ OCH ₂ CH ₂ OCH ₃	$CH_2(thp-4-yl)$
CH ₂ Ph(2-Me)	CH ₂ C(CH ₃)C(CH ₃) ₂	CH ₂ CH ₂ CH=CH ₂
CH ₂ Ph(3-Me)	n-hept	CH ₂ C≡CH
CH ₂ Ph(4-Me)	c-hept	CH ₂ CH ₂ SCH ₃
CH ₂ Ph(2-Cl)	thp-4-yl	CH ₂ CH ₂ SOCH ₃
CH ₂ Ph(3-Cl)	thtp-4-yl	CH ₂ CH ₂ SO ₂ CH ₃
CH ₂ Ph(4-Cl)	Ph(2,3-di-OMe)	CH ₂ CH ₂ CH ₂ SCH ₃
thiazol-3-yl	Ph(3,4-di-OMe)	CH ₂ CH ₂ CH ₂ SOCH ₃
thiazol-2-yl	Ph(3,4-di-Me)	CH ₂ CH ₂ CH ₂ SO ₂ CH ₃
thiazolin-2-yl	Ph(3,4-di-F)	

The present disclosure also includes Tables 1U through 57U, each of which is constructed the same as Table 19 above except that the row heading in Table 19 (i.e. "R² is Ph") is

151

replaced with the respective row headings shown below. For example, in Table 1U the row heading is "R² is Me", and R¹ is as defined in Table 19 above. Thus, the first entry in Table 1U specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is Me; R² is Me; R³ is OH; A is A-1; B¹ is C-1; B² is C-3; B³ is C-1; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Tables 2U through 57U are constructed similarly.

Table	Row Heading	Table	Row Heading
1U	R ² is Me	30U	R ² is Ph(2,3-di-F)
2U	R^2 is Et	31U	R^2 is Ph(3-CF ₃)
3U	R^2 is <i>n</i> -Pr	32U	R^2 is Ph(4-CF ₃)
4U	R^2 is c-Pr	33U	R^2 is Ph(3,5-di-CF ₃)
5U	R^2 is SMe	34U	R^2 is <i>n</i> -Bu
6U	R^2 is SO_2Me	35U	R^2 is CH_2OCH_3
7U	R^2 is CF_3	36U	R ² is CH ₂ CH ₂ OCH ₃
8U	R^2 is Ph(2-Cl)	37U	R^2 is $CH_2CH_2CF_3$
9U	R^2 is Ph(3-Cl)	38U	R^2 is CH_2CF_3
10 U	R^2 is Ph(4-Cl)	39U	R^2 is <i>n</i> -pent
11 U	R^2 is Ph(2-Me)	40U	R^2 is <i>c</i> -pent
12U	R^2 is Ph(3-Me)	41U	R^2 is c-Hex
13U	R^2 is Ph(4-Me)	42U	R^2 is <i>n</i> -Hex
14U	R^2 is Ph(2-OMe)	43U	R^2 is thp-4-yl
15U	R^2 is Ph(3-OMe)	44U	R^2 is Ph(2-CN)
16U	R^2 is Ph(4-OMe)	45U	R^2 is Ph(3-CN)
17U	R^2 is Ph(2-F)	46U	R^2 is Ph(4-CN)
18U	R^2 is Ph(3-F)	47U	R^2 is Ph(2-C=CH)
19U	R^2 is Ph(4-F)	48U	R^2 is Ph(3-C=CH)
20U	R^2 is OMe	49U	R^2 is Ph(4-C=CH)
21U	R^2 is OEt	50U	R^2 is Ph(3-Me, 2-F)
22U	R^2 is CH_2Ph	51U	R^2 is Ph(3-Me-4-F)
23U	R^2 is 2-pyridinyl	52U	R^2 is Ph(3-Me, 5-F)
24U	R^2 is 3-pyridinyl	53U	R^2 is Ph(3-Me, 6-F)
25U	R^2 is 4-pyridinyl	54U	R^2 is Ph(3-F, 2-Me)
26U	R^2 is H	55U	R^2 is Ph(3-F-4-Me)
27U	R^2 is Ph(3,5-di-F)	56U	R^2 is Ph(3-F-5-Me)
28U	R^2 is Ph(3,4-di-F)	57U	R^2 is Ph(3-F, 6-Me)
29U	R^2 is Ph(3,4,5-tri-F)		

TABLE 20

Table 20 is constructed the same as Table 19 except the structure is replaced with

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{R}^1$$

TABLE 21

Table 21 is constructed the same as Table 19 except the structure is replaced with

$$\bigcap_{O} \bigcap_{O} \bigcap_{N} \bigcap_{R^2}$$

TABLE 22

5

10

Table 22 is constructed the same as Table 19 except the structure is replaced with

$$\begin{array}{c|c} & & & & \\ & &$$

TABLE 23

Table 23 is constructed the same as Table 19 except the structure is replaced with

$$0 \longrightarrow 0 \longrightarrow \mathbb{R}^1$$

$$0 \longrightarrow \mathbb{R}^2$$

TABLE 24

Table 24 is constructed the same as Table 19 except the structure is replaced with

$$0 \longrightarrow 0 \longrightarrow \mathbb{R}^1$$

$$\mathbb{R}^2$$

153

TABLE 25

Table 25 is constructed the same as Table 19 except the structure is replaced with

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{R}^1$$

$$0 \longrightarrow \mathbb{R}^2$$

TABLE 26

Table 26 is the same as Table 19 except the structure is replaced with

<u>TABLE 27</u>

$$R^1$$

 R^2 is Ph

R^1	\mathbb{R}^1
Me	CH ₂ -c-Pr
Et	CH ₂ -c-Bu
n-Pr	CH ₂ SPh
i-Pr	CH ₂ SCH ₃
$c ext{-Pr}$	CH ₂ CF ₃
n-Bu	CH ₂ Ph
<i>i</i> -Bu	Ph(4-Me)
s-Bu	CH ₂ CHC(CH ₃) ₂
c-Bu	CH ₂ CH ₂ C≡CH
<i>t</i> -Bu	CH ₂ CH=CCl ₂
n-pent	CH ₂ CH=CF ₂
c-Pent	CH ₂ CF=CF ₂
n-Hex	CH ₂ CCl=CCl ₂
c-Hex	CH ₂ C≡CCH ₃
Ph	CH ₂ OCH ₂ CH ₃

R1	
CH ₂ CH ₂ OCH ₃	Ph(2-Cl)
$CH_2SO_2CH_3$	Ph(3-Cl)
CH ₂ SCH ₂ CH ₃	Ph(4-Cl)
Ph(2,3-di-OMe)	Ph(2-Me)
CH ₂ SO ₂ -n-Pr	Ph(3-Me)
CH ₂ CH ₂ SO ₂ Et	CH ₂ OCH ₃
Ph(2,4-di-OMe)	CH ₂ CH=CH ₂
Ph(2,5-di-OMe)	Ph(2-OMe)
Ph(2,6-di-OMe)	Ph(3-OMe)
Ph(3,5-di-OMe)	Ph(4-OMe)
CH ₂ Ph(2-OMe)	Ph(2-CN)
CH ₂ Ph(3-OMe)	Ph(3-CN)
CH ₂ Ph(4-OMe)	Ph(4-CN)
CH ₂ CH ₂ SMe	Ph(2-F)
CH ₂ SCH ₂ Ph	Ph(3-F)
CH ₂ SO ₂ Ph	Ph(4-F)
CH ₂ CH ₂ SEt	CH ₂ S- <i>n</i> -Pr
Ph(2,4-di-Cl)	CH ₂ -c-Pent
Ph(2,5-di-Cl)	oxazolin-2-yl
Ph(2,6-di-Cl)	2-pyridinyl
Ph(3,5-di-Cl)	3-pyridinyl
Ph(2,3-di-Me)	4-pyridinyl
Ph(2,4-di-Me)	Ph(2-NO ₂)
Ph(2,5-di-Me)	Ph(3-NO ₂)
Ph(2,6-di-Me)	Ph(4-NO ₂)
Ph(3,5-di-Me)	Ph(2-CF ₃)
CH ₂ -c-Hex	Ph(3-CF ₃)
Ph(2,3-di-F)	Ph(4-CF ₃)
Ph(2,4-di-F)	Ph(2-Br)
Ph(2,5-di-F)	Ph(3-Br)
Ph(2,6-di-F)	Ph(4-Br)
CH ₂ CH ₂ CF ₃	CH ₂ Ph(2-Me)
CH ₂ C≡CH	CH ₂ Ph(3-Me)
Ph(2,3-di-Cl)	CH ₂ Ph(4-Me)
Ph(3,5-di-F)	CH ₂ Ph(2-Cl)
isoxazolin-2-yl	CH ₂ Ph(3-Cl)

R ¹	R ¹
CH ₂ Ph(4-Cl)	Ph(3,4-di-Me)
thiazol-3-yl	Ph(3,4-di-F)
thiazol-2-yl	Ph(3,4,5-tri-OMe)
thiazolin-2-yl	Ph(2-I)
thiazol-2-yl	Ph(3-I)
oxazol-2-yl	Ph(4-I)
CH ₂ CF ₂ CF ₃	Ph(2-Et)
CH=CH ₂	Ph(3-Et)
CH ₂ (thf-2-yl)	Ph(4-Et)
CH ₂ (3-methylisoxazolin-5-yl)	CH ₂ CH ₂ OCH ₂ CH ₃
isoxazolin-4-yl	CH(CH ₃)CH ₂ OCH ₃
CH ₂ (3-methylisoxazol-5-yl)	Ph(2-OCF ₃)
5-methylisoxazol-3-yl	Ph(3-OCF ₃)
4-methyloxazol-2-yl	Ph(4-OCF ₃)
4-methylthiazol-2-yl	Ph(2-Me-3-F)
CH ₂ CH ₂ CH=CH ₂	Ph(2-Me-4-F)
CH ₂ SO ₂ CH ₂ CH ₃	Ph(2-Me-5-F)
CH ₂ CH ₂ SO ₂ Me	Ph(2-F-3-Me)
CH ₂ OCH ₂ OCH ₃	Ph(2-F-4-Me)
3-methylthiazol-2-yl	Ph(2-F-5-Me)
5-chloropyridin-2-yl	Ph(3-F-4-Me)
5-methylpyridin-2-yl	Ph(3-F-5-Me)
5-methoxypyridin-2-yl	Ph(3-Me-4-F)
6-methylpyridin-2-yl	CH ₂ CH ₂ CH ₂ OCH ₃
6-methylpyridin-3-yl	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
3-methoxypyridin-4-yl	CH ₂ (thp-2-yl)
3-methylpyridin-4-yl	CH ₂ (thp-4-yl)
3-chloropyridin-4-yl	$CH_2CH_2CH=CH_2$
CH ₂ OCH ₂ CH ₂ OCH ₃	CH ₂ C≡CH
CH ₂ C(CH ₃)C(CH ₃) ₂	CH ₂ CH ₂ SCH ₃
n-hept	CH ₂ CH ₂ SOCH ₃
c-hept	$CH_2CH_2SO_2CH_3$
thp-4-yl	CH ₂ CH ₂ CH ₂ SCH ₃
thtp-4-yl	CH ₂ CH ₂ CH ₂ SOCH ₃
Ph(2,3-di-OMe)	$CH_2CH_2CH_2SO_2CH_3$

Ph(3,4-di-OMe)

WO 2012/033548

5

The present disclosure also includes Tables 1BB through 57BB, each of which is constructed the same as Table 27 above except that the row heading in Table 27 (i.e. "R² is Ph") is replaced with the respective row headings shown below. For example, in Table 1BB the row heading is "R² is Me", and R¹ is as defined in Table 27 above. Thus, the first entry in Table 1BB specifically discloses a compound of Formula 1 wherein X is CH; Y is C(O); R¹ is Me; R² is Me; R³ is OH; A is A-1; B¹ is C-1; B² is C-3; B³ is C-1; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Tables 2BB through 57BB are constructed similarly.

Table	Row Heading	Table	Row Heading
1BB	R^2 is Me	30BB	Ph(2,3-di-F)
2BB	R^2 is Et	31BB	Ph(3-CF ₃)
3BB	R^2 is <i>n</i> -Pr	32BB	Ph(4-CF ₃)
4BB	R^2 is c-Pr	33BB	Ph(3,5-di-CF ₃)
5BB	R^2 is SMe	34BB	<i>n</i> -Bu
6BB	R^2 is SO_2Me	35BB	CH ₂ OCH ₃
7BB	R^2 is CF_3	36BB	CH ₂ CH ₂ OCH ₃
8BB	R^2 is Ph(2-Cl)	37BB	CH ₂ CH ₂ CF ₃
9BB	R^2 is Ph(3-Cl)	38BB	CH ₂ CF ₃
10BB	R^2 is Ph(4-Cl)	39BB	n-pent
11BB	R^2 is Ph(2-Me)	40BB	c-pent
12BB	R^2 is Ph(3-Me)	41BB	c-Hex
13BB	R^2 is Ph(4-Me)	42BB	n-Hex
14BB	R^2 is Ph(2-OMe)	43BB	thp-4-yl
15BB	R^2 is Ph(3-OMe)	44BB	Ph(2-CN)
16BB	R^2 is Ph(4-OMe)	45BB	Ph(3-CN)
17BB	R^2 is Ph(2-F)	46BB	Ph(4-CN)
18BB	R^2 is Ph(3-F)	47BB	Ph(2-C≡CH)
19BB	R^2 is Ph(4-F)	48BB	Ph(3-C≡CH)
20BB	R^2 is OMe	49BB	Ph(4-C≡CH)
21BB	R^2 is OEt	50BB	Ph(3-Me, 2-F)
22BB	R^2 is CH_2Ph	51BB	Ph(3-Me-4-F)
23BB	R^2 is 2-pyridinyl	52BB	Ph(3-Me, 5-F)
24BB	R^2 is 3-pyridinyl	53BB	Ph(3-Me, 6-F)
25BB	R^2 is 4-pyridinyl	54BB	Ph(3-F, 2-Me)
26BB	Н	55BB	Ph(3-F-4-Me)
27BB	Ph(3,5-di-F)	56BB	Ph(3-F-5-Me)
28BB	Ph(3,4-di-F)	57BB	Ph(3-F, 6-Me)
29BB	Ph(3,4,5-tri-F)		

157

TABLE 28

Table 28 is constructed the same as Table 27 except the structure is replaced with

$$H_3C$$
 O
 O
 R^1
 R^2

TABLE 29

Table 29 is constructed the same as Table 27 except the structure is replaced with

TABLE 30

Table 30 is constructed the same as Table 27 except the structure is replaced with

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

TABLE 31

Table 31 is constructed the same as Table 27 except the structure is replaced with

TABLE 32

Table 32 is constructed the same as Table 27 except the structure is replaced with

$$\bigcap_{O} \bigcap_{N \in \mathbb{R}^2} \mathbb{R}^1$$

TABLE 33

Table 32 is constructed the same as Table 27 except the structure is replaced with

10

5

$$\begin{array}{c|c}
158 \\
0 \\
0 \\
0
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
R^2$$

TABLE 34

R^2 is Ph				
R ¹	R ¹	R ¹	R ¹	R ¹
Me	$CH_2CHC(CH_3)_2$	$\mathrm{CH_2SO_2Ph}$	Ph(2-Cl)	Ph(4-NO ₂)
Et	CH ₂ CH ₂ C≡CH	$\mathrm{CH}_2\mathrm{SCH}_2\mathrm{Ph}$	Ph(3-Cl)	Ph(2-CF ₃)
n-Pr	CH ₂ CH=CCl ₂	CH ₂ CH ₂ SEt	Ph(4-Cl)	Ph(3-CF ₃)
i-Pr	$CH_2CH=CF_2$	Ph(2,4-di-Cl)	Ph(2-Me)	Ph(4-CF ₃)
c-Pr	$CH_2CF=CF_2$	Ph(2,5-di-Cl)	Ph(3-Me)	Ph(2-Br)
<i>n</i> -Bu	CH ₂ CCl=CCl ₂	Ph(2,6-di-Cl)	CH ₂ OCH ₃	Ph(3-Br)
i-Bu	CH ₂ C≡CCH ₃	Ph(3,5-di-Cl)	$CH_2CH=CH_2$	Ph(4-Br)
s-Bu	$CH_2OCH_2CH_3$	Ph(2,3-di-Me)	Ph(2-OMe)	$CH_2Ph(2-Me)$
c-Bu	$CH_2CH_2OCH_3$	Ph(2,4-di-Me)	Ph(3-OMe)	$CH_2Ph(3-Me)$
t-Bu	$CH_2SO_2CH_3$	Ph(2,5-di-Me)	Ph(4-OMe)	$CH_2Ph(4-Me)$
n-pent	$\mathrm{CH_2SCH_2CH_3}$	Ph(2,6-di-Me)	Ph(2-CN)	CH ₂ Ph(2-C1)
c-Pent	Ph(2,3-di-OMe)	Ph(3,5-di-Me)	Ph(3-CN)	CH ₂ Ph(3-Cl)
<i>n</i> -Hex	CH ₂ SO ₂ -n-Pr	CH ₂ -c-Hex	Ph(4-CN)	$CH_2Ph(4-Cl)$
c-Hex	$\mathrm{CH_{2}CH_{2}SO_{2}Et}$	Ph(2,3-di-F)	Ph(2-F)	$CH_2CH_2SO_2Me$
Ph	Ph(2,4-di-OMe)	Ph(2,4-di-F)	Ph(3-F)	$CH_2OCH_2OCH_3$
CH ₂ - <i>c</i> -Pr	Ph(2,5-di-OMe)	Ph(2,5-di-F)	Ph(4-F)	$CH_2OCH_2CH_2OCH_3$
CH ₂ - <i>c</i> -Bu	Ph(2,6-di-OMe)	Ph(2,6-di-F)	CH ₂ S-n-Pr	$\mathrm{CH}_2\mathrm{C}(\mathrm{CH}_3)\mathrm{C}(\mathrm{CH}_3)_2$
$\mathrm{CH}_2\mathrm{SPh}$	Ph(3,5-di-OMe)	$CH_2CH_2CF_3$	CH ₂ -c-Pent	Ph(4-Me)
CH ₂ SCH ₃	CH ₂ Ph(2-OMe)	CH ₂ C≡CH	$CH_2CF_2CF_3$	CH ₂ CH ₂ SMe
CH_2CF_3	CH ₂ Ph(3-OMe)	Ph(2,3-di-Cl)	CH=CH ₂	Ph(3,5-di-F)
CH ₂ Ph	CH ₂ Ph(4-OMe)	Ph(3-NO ₂)	$Ph(2-NO_2)$	

The present disclosure also includes Tables 1K through 4K, each of which is constructed the same as Table 11 above except that the row heading in Table 11 (i.e. "R² is Ph") is replaced with the respective row headings shown below. For example, in Table 1K the row heading is "R² is Ph", and R¹ is as defined in Table 11 above. Thus, the first entry in Table 1K specifically discloses a compound of Formula **1P** wherein X is N, Y is C(O), R¹ is Me; R² is

159

c-Pr; R³ is OH; A is A-1; B¹ is C-1; B² is C-3; B³ is C-1; and each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H. Tables 2K through 4K are constructed similarly.

Table	Row Heading
1K	R^2 is c-Pr
2K	R^2 is SMe
3K	R^2 is SO_2Me
4K	R ² is CF ₃

TABLE 35

5	R^2 is Ph				
	R^1	R ¹	R ¹	R ¹	R ¹
	Me	$CH_2CHC(CH_3)_2$	$\mathrm{CH_2SO_2Ph}$	Ph(2-Cl)	Ph(4-NO ₂)
	Et	$CH_2CH_2C \equiv CH$	$\mathrm{CH}_2\mathrm{SCH}_2\mathrm{Ph}$	Ph(3-Cl)	Ph(2-CF ₃)
	n-Pr	CH ₂ CH=CCl ₂	CH ₂ CH ₂ SEt	Ph(4-Cl)	Ph(3-CF ₃)
	i-Pr	$CH_2CH=CF_2$	Ph(2,4-di-Cl)	Ph(2-Me)	Ph(4-CF ₃)
	c-Pr	$CH_2CF=CF_2$	Ph(2,5-di-Cl)	Ph(3-Me)	Ph(2-Br)
	<i>n-</i> Bu	CH ₂ CCl=CCl ₂	Ph(2,6-di-Cl)	CH ₂ OCH ₃	Ph(3-Br)
	i-Bu	CH ₂ C≡CCH ₃	Ph(3,5-di-Cl)	$CH_2CH=CH_2$	Ph(4-Br)
	s-Bu	$CH_2OCH_2CH_3$	Ph(2,3-di-Me)	Ph(2-OMe)	$CH_2Ph(2-Me)$
	c-Bu	$CH_2CH_2OCH_3$	Ph(2,4-di-Me)	Ph(3-OMe)	$CH_2Ph(3-Me)$
	t-Bu	$CH_2SO_2CH_3$	Ph(2,5-di-Me)	Ph(4-OMe)	CH ₂ Ph(4-Me)
	n-pent	$CH_2SCH_2CH_3$	Ph(2,6-di-Me)	Ph(2-CN)	$CH_2Ph(2-Cl)$
	c-Pent	Ph(2,3-di-OMe)	Ph(3,5-di-Me)	Ph(3-CN)	$CH_2Ph(3-Cl)$
	<i>n</i> -Hex	$\mathrm{CH}_2\mathrm{SO}_2$ - n -Pr	CH ₂ -c-Hex	Ph(4-CN)	$CH_2Ph(4-Cl)$
	c-Hex	$\mathrm{CH_{2}CH_{2}SO_{2}Et}$	Ph(2,3-di-F)	Ph(2-F)	$CH_2CH_2SO_2Me$
	Ph	Ph(2,4-di-OMe)	Ph(2,4-di-F)	Ph(3-F)	$CH_2OCH_2OCH_3$
	CH ₂ - <i>c</i> -Pr	Ph(2,5-di-OMe)	Ph(2,5-di-F)	Ph(4-F)	$CH_2OCH_2CH_2OCH_3$
	CH ₂ - <i>c</i> -Bu	Ph(2,6-di-OMe)	Ph(2,6-di-F)	CH ₂ S-n-Pr	$\mathrm{CH}_2\mathrm{C}(\mathrm{CH}_3)\mathrm{C}(\mathrm{CH}_3)_2$
	$\mathrm{CH}_2\mathrm{SPh}$	Ph(3,5-di-OMe)	$\mathrm{CH_2CH_2CF_3}$	CH_2 - c -Pent	Ph(4-Me)
	CH_2SCH_3	CH ₂ Ph(2-OMe)	CH ₂ C≡CH	$CH_2CF_2CF_3$	CH ₂ CH ₂ SMe
	CH ₂ CF ₃	$CH_2Ph(3-OMe)$	Ph(2,3-di-Cl)	CH=CH ₂	Ph(3,5-di-F)
	CH ₂ Ph	CH ₂ Ph(4-OMe)	Ph(3-NO ₂)	$Ph(2-NO_2)$	

The present disclosure also includes Tables 1L through 11L, each of which is constructed the same as Table 12 above except that the row heading in Table 12 (i.e. "R² is Ph") is replaced

160

with the respective row headings shown below. For example, in Table 1L the row heading is " R^2 is Ph", and R^1 is as defined in Table 12 above. Thus, the first entry in Table 1L specifically discloses a compound of Formula **1P** wherein X is CH; Y is $S(O)_2$; R^1 is Me and R^2 is c-Pr; R^3 is OH; A is A-1; B^1 is C-1; B^2 is C-3; B^3 is C-1; and each R^{14} , R^{15} , R^{18} and R^{19} is H. Tables 2L through 11L are constructed similarly.

5

10

15

20

25

30

Table	Row Heading	Table	Row Heading
1L	R^2 is c-Pr	7L	R ² Ph(3-Cl)
2L	R^2 is n -Pr	8L	R^2 is Ph(4-Cl)
3L	R ² is SMe	9L	R^2 is Ph(2-Me)
4L	R^2 is SO_2Me	10L	R^2 is Ph(3-Me)
5L	R^2 is CF_3	11L	R^2 is Ph(4-Me)
6L	R^2 Ph(2-Cl)		

A compound of this invention will generally be used as a herbicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.

Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion and suspo-emulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.

The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable") or water-soluble. Films and coatings formed from film-forming solutions or flowable suspensions are particularly useful for seed treatment. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation.

Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water. Spray volumes can range from about from about one to several thousand

161

liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.

5

10

15

20

25

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent		
	Active Ingredient	<u>Diluent</u>	Surfactant
Water-Dispersible and Water- soluble Granules, Tablets and Powders	0.001–90	0–99.999	0–15
Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	1–50	40–99	0–50
Dusts	1–25	70–99	0–5
Granules and Pellets	0.001-99	5-99.999	0–15
High Strength Compositions	90–99	0–10	0–2

Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., *Handbook of Insecticide Dust Diluents and Carriers*, 2nd Ed., Dorland Books, Caldwell, New Jersey.

Liquid diluents include, for example, water, N,N-dimethylalkanamides (e.g., N,N-dimethylformamide), limonene, dimethyl sulfoxide, N-alkylpyrrolidones (e.g., N-methylpyrrolidinone), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic esters and γ -butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, n-propanol, isopropyl alcohol,

162

n-butanol, isobutyl alcohol, *n*-hexanol, 2-ethylhexanol, *n*-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol and benzyl alcohol. Liquid diluents also glycerol esters of saturated and unsaturated fatty acids C₆-C₂₂), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.

5

10

15

20

25

30

35

The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents") generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.

Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.

Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as *N*,*N*-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.

Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as *N*-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.

Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including *McCutcheon's Emulsifiers and Detergents*, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, *Synthetic Detergents*, Seventh Edition, John Wiley and Sons, New York, 1987.

Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples

164

of formulation auxiliaries and additives include those listed in *McCutcheon's Volume 2: Functional Materials*, annual International and North American editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.

5

10

15

20

25

30

35

The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,000 µm can be wet milled using media mills to obtain particles with average diameters below 3 µm. Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 µm range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147–48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8–57 and following, Pellets can be prepared as described in U.S. 4,172,714. and WO 91/13546. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox – Product Forms for Modern Agriculture" in *Pesticide Chemistry and Bioscience, The Food–Environment Challenge*, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120–133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10–41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138–140, 162–164, 166, 167 and 169–182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1–4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81–96; Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and *Developments in formulation technology*, PJB Publications, Richmond, UK, 2000.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A—

165

B. Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except where otherwise indicated.

5	Example A	
	High Strength Concentrate	
	Compound 4	98.5%
	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%
	Example B	
	Wettable Powder	
	Compound 2	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%
	Example C	
	Granule	
	Compound 12	10.0%
	attapulgite granules (low volatile matter, 0.71/0.30 mm;	90.0%
	U.S.S. No. 25–50 sieves)	
	Example D	
	Extruded Pellet	
	Compound 8	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%
	Example E	
	Emulsifiable Concentrate	
	Compound 2	10.0%
	polyoxyethylene sorbitol hexoleate	20.0%
	C ₆ -C ₁₀ fatty acid methyl ester	70.0%
10	Example F	
	Microemulsion	
	Compound 12	5.0%
	polyvinylpyrrolidone-vinyl acetate copolymer	30.0%

166

5

10

15

20

25

30

35

alkylpolyglycoside	30.0%
glyceryl monooleate	15.0%
Water	20.0%

These compounds generally show highest activity for early postemergence weed control (i.e. applied when the emerged weed seedlings are still young) and preemergence weed control (i.e. applied before weed seedlings emerge from the soil). Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the selective control of grass and broadleaf weeds within a crop/weed mixture. One skilled in the art will recognize that the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays. Compounds of this invention may show tolerance to important agronomic crops including, but not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Compounds of the invention are particularly useful for selective control of weeds in wheat, barley, and particularly maize, soybean, cotton and perennial plantation crops such as sugarcane and citrus. Compounds of this invention can be used in crops genetically transformed or bred to incorporate resistance to herbicides, express proteins toxic to invertebrate pests (such as Bacillus thuringiensis toxin), and/or express other useful traits. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

As the compounds of the invention have both postemergent and preemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or reducing its growth, the compounds can be usefully applied by a variety of methods involving contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is growing or which surrounds the seed or other propagule of the undesired vegetation.

167

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of a compound of this invention is about 0.001 to 20 kg/ha with a typical range of about 0.004 to 1 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

5

10

15

20

25

30

35

Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including herbicides, herbicide safeners, fungicides, insecticides, nematocides, bactericides, acaricides, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Mixtures of the compounds of the invention with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. Thus the present invention also pertains to a composition comprising a compound of Formula 1 (in a herbicidally effective amount) and at least one additional biologically active compound or agent (in a biologically effective amount) and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other biologically active compounds or agents can be formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For mixtures of the present invention, one or more other biologically active compounds or agents can be formulated together with a compound of Formula 1, to form a premix, or one or more other biologically active compounds or agents can be formulated separately from the compound of Formula 1, and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.

A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, aminocyclopyrachlor and its esters (e.g., methyl, ethyl) and salts (e.g., sodium, potassium), aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, catechin, chlomethoxyfen, chloramben, chlorbromuron, chlorflurenol-methyl, chloridazon, chlorimuron-ethyl, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, clefoxydim, clethodim, clodinafop5

10

15

20

25

30

35

propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulam-methyl, cumyluron, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid and its sodium salt, dinitramine, dinoterb, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate and its salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate), halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iodosulfuronmethyl, ioxynil, ioxynil octanoate, ioxynil-sodium, ipfencabazone, IR6396, isoproturon, isouron, isoxaben, isoxaflutole, isoxachlortole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its salts (e.g., MCPA-dimethylammonium, MCPA-potassium and MCPAsodium, esters (e.g., MCPA-2-ethylhexyl, MCPA-butotyl) and thioesters (e.g., MCPAthioethyl), MCPB and its salts (e.g., MCPB-sodium) and esters (e.g., MCPB-ethyl), mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron-methyl, mesotrione, metam-sodium, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metribuzin, metsulfuron-methyl, molinate, monolinuron, naproanilide, metoxuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat dichloride, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxamid, pethoxyamid, phenmedipham, picloram-potassium, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron-methyl,

169

profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, prodiamine, propazine, propham, propisochlor, propoxycarbazone, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrasulfotole, pyrazogyl, pyrazolynate, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pyriftalid, pyrazoxyfen, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbuthylazine, terbutryn, thenylchlor, terbumeton, thiazopyr, thiencarbazone, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron. triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyrtriethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron and vernolate. Other herbicides also include bioherbicides such as Alternaria destruens Simmons, Colletotrichum gloeosporiodes (Penz.) Penz. & Sacc., Drechsiera monoceras (MTB-951), Myrothecium verrucaria (Albertini & Schweinitz) Ditmar: Fries, Phytophthora palmivora (Butl.) Butl. and Puccinia thlaspeos Schub.

5

10

15

20

25

30

35

Compounds of this invention can also be used in combination with plant growth regulators such as aviglycine, N-(phenylmethyl)-1H-purin-6-amine, epocholeone, gibberellic acid, gibberellin A_4 and A_7 , harpin protein, mepiquat chloride, prohexadione calcium, prohydrojasmon, sodium nitrophenolate and trinexapac-methyl, and plant growth modifying organisms such as *Bacillus cereus* strain BP01.

General references for agricultural protectants (i.e. herbicides, herbicide safeners, insecticides, fungicides, nematocides, acaricides and biological agents) include *The Pesticide Manual, 13th Edition*, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2003 and *The BioPesticide Manual, 2nd Edition*, L. G. Copping, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2001.

For embodiments where one or more of these various mixing partners are used, the weight ratio of these various mixing partners (in total) to the compound of Formula 1 is typically between about 1:3000 and about 3000:1. Of note are weight ratios between about 1:300 and about 300:1 (for example ratios between about 1:30 and about 30:1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It will be evident that including these additional components may expand the spectrum of weeds controlled beyond the spectrum controlled by the compound of Formula 1 alone.

In certain instances, combinations of a compound of this invention with other biologically active (particularly herbicidal) compounds or agents (i.e. active ingredients) can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive

170

effect (i.e. safening) on crops or other desirable plants. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. Ability to use greater amounts of active ingredients to provide more effective weed control without excessive crop injury is also desirable. When synergism of herbicidal active ingredients occurs on weeds at application rates giving agronomically satisfactory levels of weed control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load. When safening of herbicidal active ingredients occurs on crops, such combinations can be advantageous for increasing crop protection by reducing weed competition.

5

10

15

20

25

30

35

Of note is a combination of a compound of the invention with at least one other herbicidal active ingredient. Of particular note is such a combination where the other herbicidal active ingredient has different site of action from the compound of the invention. In certain instances, a combination with at least one other herbicidal active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise (in a herbicidally effective amount) at least one additional herbicidal active ingredient having a similar spectrum of control but a different site of action.

Compounds of this invention can also be used in combination with herbicide safeners as allidochlor, benoxacor, BCS (1-bromo-4-[(chloromethyl)sulfonyl]benzene), cloquintocet-mexyl, cyometrinil, cyprosulfonamide, diamuron, dichlormid, (dichloroacetyl)-1-oxa-4-azospiro[4.5]decane (MON 4660), 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), dicyclonon, dimepiperate, dietholate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, H-31866, LAB 147886, M-32988, isoxadifenethyl, mefenpyr-diethyl, mephenate, methoxyphenone ((4-methoxy-3-methylphenyl)(3methylphenyl)methanone) (MG 191), naphthalic anhydride (1,8-naphthalic anhydride) and oxabetrinil to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of this invention and an antidotally effective amount of a herbicide safener.

One aspect of this invention is the general nature of a compound of Formulae 1Q, 1R or 1S to function as herbicide safener. Therefore, as described in the Summary of the Invention, this invention is also directed to the method of using a compound of Formula 1Q, 1R or 1S as a herbicide safener. These intermediate compounds are shown herein to reduce the injury caused by high application rates of commercial herbicides. In the present method, a compound of Formulae 1Q, 1R or 1S can be applied simultaneously or sequentially with a commercial herbicide (such as dimetheneamid-P or metsulfuron-methyl) to reduce the injury to recently sown seeds of wheat caused by the commercial herbicide. This method is not

restricted to a commercially available herbicides, but can likewise be used with a compound of Formula 1 in the event said compound causes injury to a growing plant. Although the method is useful with a compound of Formula 1Q, 1R or 1S, of note is the method using a compound of Formula 1Q selected from 20Q, 32Q, 256Q, 18Q, 81Q, 89Q, 553Q, 163Q, 503Q, 551Q, 550Q, 552Q, 376Q, 344Q, 345Q and 339Q; a compound of Formula 1R selected from 29R, 31R, 35R, 32R, 50R, 547R, 79R, 81R, 89R, 121R, 125R, 146R, 162R, 189R, 198R, 130R, 218R, 546R, 271R, 559R, 344R, 554R, 339R, 550R, 551R, 345R, 336R, 341R, 377R, 180R and 355R; and a compound of Formula 1S selected from 2S, 17S, 203S, 15S, 545S, 25S, 35S, 87S, 2S, 11S, 9S, 7S, 17S, 101S, 206S, 212S, 546S, 89S, 103S, 94S, 107S, 130S, 207S, 209S, 218S, 548S, 549S, 470S, 356S, 550S, 551S, 552S, 555S, 338S, 377S, 374S, 556S, 557S, 558S, 339S, 344S, 324S, 337S, 355S and 341S. Of particular note is the method using 32Q or 15S.

Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of this invention wherein seed from which the crop is grown is treated with an antidotally effective amount of safener. Antidotally effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

Of note is a composition comprising a compound of the invention (in a herbicidally effective amount), at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners (in an effective amount), and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

Preferred for better control of undesired vegetation (e.g., lower use rate such as from synergism, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group consisting of 2,4-D, ametryne, aminocyclopyrachlor, aminopyralid, atrazine, bromacil, bromoxynil, bromoxynil octanoate, carfentrazone-ethyl, chlorimuron-ethyl, chlorsulfuron, clopyralid, clopyralid-olamine, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, diflufenican, dimethenamid, dimethenamid-P, diuron, florasulam, flufenacet, flumetsulam, flumioxazin, flupyrsulfuron-methyl, flupyrsulfuron-methyl-sodium, fluroxypyr, glyphosate (particularly glyphosate-isopropylammonium, glyphosate-sodium, glyphosate-potassium, glyphosate-trimesium), hexazinone, imazamethabenz-methyl, imazaquin, imazethapyr, iodosulfuron-methyl, lactofen, lenacil, linuron, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, MCPA-thioethyl, mesosulfuron-methyl, S-metolachlor, metribuzin, metsulfuron-methyl, nicosulfuron, oxyfluorfen, pendimethalin, pinoxaden, pronamide,

172

5

10

15

20

25

30

35

quinclorac, saflufenacil, prosulfuron, pyroxasulfone, pyroxsulam, rimsulfuron, sulfentrazone, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, and triclopyr-triethylammonium. Specifically preferred mixtures (compound numbers refer to compounds in Index Table A) are selected from the group: compound 2 and 2,4-D; compound 4 and 2,4-D; compound 8 and 2,4-D; compound 12 and 2,4-D; compound 2 and ametryne; compound 4 and ametryne; compound 8 and ametryne; compound 12 and ametryne; compound 2 and aminocyclopyrachlor; compound 4 and aminocyclopyrachlor; compound 8 and aminocyclopyrachlor; compound 12 and aminocyclopyrachlor; compound 2 and aminopyralid; compound 4 and aminopyralid; compound 8 and aminopyralid; compound 12 and aminopyralid; compound 2 and atrazine; compound 4 and atrazine; compound 8 and atrazine; compound 12 and atrazine; compound 2 and bromacil; compound 4 and bromacil; compound 8 and bromacil; compound 12 and bromacil; compound 2 and bromoxynil; compound 4 and bromoxynil; compound 8 and bromoxynil; compound 12 and bromoxynil; compound 2 and bromoxynil octanoate; compound 4 and bromoxynil octanoate; compound 8 and bromoxynil octanoate; compound 12 and bromoxynil octanoate; compound 2 and carfentrazone-ethyl; compound 4 and carfentrazone-ethyl; compound 8 and carfentrazone-ethyl; compound 12 and carfentrazoneethyl; compound 2 and chlorimuron-ethyl; compound 4 and chlorimuron-ethyl; compound 8 and chlorimuron-ethyl; compound 12 and chlorimuron-ethyl; compound 2 and chlorsulfuron; compound 4 and chlorsulfuron; compound 8 and chlorsulfuron; compound 12 and chlorsulfuron; compound 2 and clopyralid; compound 4 and clopyralid; compound 8 and clopyralid; compound 12 and clopyralid; compound 2 and clopyralid-olamine; compound 4 and clopyralid-olamine; compound 8 and clopyralid-olamine; compound 12 and clopyralidolamine; compound 2 and dicamba; compound 4 and dicamba; compound 8 and dicamba; compound 12 and dicamba; compound 2 and diflufenican; compound 4 and diflufenican; compound 8 and diflufenican; compound 12 and diflufenican; compound 2 and dimethenamid; compound 4 and dimethenamid; compound 8 and dimethenamid; compound 12 and dimethenamid; compound 2 and dimethenamid-P; compound 4 and dimethenamid-P; compound 8 and dimethenamid-P; compound 12 and dimethenamid-P; compound 2 and diuron; compound 4 and diuron; compound 8 and diuron; compound 12 and diuron; compound 2 and florasulam; compound 4 and florasulam; compound 8 and florasulam; compound 12 and florasulam; compound 2 and flufenacet; compound 4 and flufenacet; compound 8 and flufenacet; compound 12 and flufenacet; compound 2 and flumetsulam; compound 4 and flumetsulam; compound 8 and flumetsulam; compound 12 and flumetsulam; compound 2 and flumioxazin; compound 4 and flumioxazin; compound 8 and flumioxazin; compound 12 and flumioxazin; compound 2 and flupyrsulfuron-methyl; compound 4 and flupyrsulfuron-methyl; compound 8 and flupyrsulfuron-methyl; compound 12 and flupyrsulfuron-methyl; compound 2 and flupyrsulfuron-methyl-sodium; compound 4

5

10

15

20

25

30

35

flupyrsulfuron-methyl-sodium; compound 8 and flupyrsulfuron-methyl-sodium; compound 12 and flupyrsulfuron-methyl-sodium; compound 2 and fluroxypyr; compound 4 and fluroxypyr; compound 8 and fluroxypyr; compound 12 and fluroxypyr; compound 2 and glyphosate; compound 4 and glyphosate; compound 8 and glyphosate; compound 12 and glyphosate; compound 2 and hexazinone; compound 4 and hexazinone; compound 8 and hexazinone; compound 12 and hexazinone; compound 2 and imazamethabenz-methyl; compound 4 and imazamethabenz-methyl; compound 8 and imazamethabenz-methyl; compound 12 and imazamethabenz-methyl; compound 2 and imazaquin; compound 4 and imazaquin; compound 8 and imazaquin; compound 12 and imazaquin; compound 2 and imazethapyr; compound 4 and imazethapyr; compound 8 and imazethapyr; compound 12 and imazethapyr; compound 2 and iodosulfuron-methyl; compound 4 and iodosulfuronmethyl; compound 8 and iodosulfuron-methyl; compound 12 and iodosulfuron-methyl; compound 2 and lactofen; compound 4 and lactofen; compound 8 and lactofen; compound 12 and lactofen; compound 2 and lenacil; compound 4 and lenacil; compound 8 and lenacil; compound 12 and lenacil; compound 2 and linuron; compound 4 and linuron; compound 8 and linuron; compound 12 and linuron; compound 2 and MCPA; compound 4 and MCPA; compound 8 and MCPA; compound 12 and MCPA; compound 2 and MCPA-isoctyl; compound 4 and MCPA-isoctyl; compound 8 and MCPA-isoctyl; compound 12 and MCPAisoctyl; compound 2 and MCPA-thioethyl; compound 4 and MCPA-thioethyl; compound 8 and MCPA-thioethyl; compound 12 and MCPA-thioethyl; compound 2 and mesosulfuronmethyl; compound 4 and mesosulfuron-methyl; compound 8 and mesosulfuron-methyl; compound 12 and mesosulfuron-methyl; compound 2 and S-metolachlor; compound 4 and S-metolachlor; compound 8 and S-metolachlor; compound 12 and S-metolachlor; compound 2 and metribuzin; compound 4 and metribuzin; compound 8 and metribuzin; compound 12 and metribuzin; compound 2 and metsulfuron-methyl; compound 4 and metsulfuron-methyl; compound 8 and metsulfuron-methyl; compound 12 and metsulfuron-methyl; compound 2 and nicosulfuron; compound 4 and nicosulfuron; compound 8 and nicosulfuron; compound 12 and nicosulfuron; compound 2 and oxyfluorfen; compound 4 and oxyfluorfen; compound 8 and oxyfluorfen; compound 12 and oxyfluorfen; compound 2 and pendimethalin; compound 4 and pendimethalin; compound 8 and pendimethalin; compound 12 and pendimethalin; compound 2 and pinoxaden; compound 4 and pinoxaden; compound 8 and pinoxaden; compound 12 and pinoxaden; compound 2 and pronamide; compound 4 and pronamide; compound 8 and pronamide; compound 12 and pronamide; compound 2 and prosulfuron; compound 4 and prosulfuron; compound 8 and prosulfuron; compound 12 and prosulfuron; compound 2 and pyroxasulfone; compound 4 and pyroxasulfone; compound 8 and pyroxasulfone; compound 12 and pyroxasulfone; compound 2 and pyroxsulam; compound 4 and pyroxsulam; compound 8 and pyroxsulam; compound 12 and pyroxsulam; compound 2 and quinclorae; compound 4 and quinclorae; compound 8 and quinclorae;

174

compound 12 and quinclorac; compound 2 and rimsulfuron; compound 4 and rimsulfuron; compound 8 and rimsulfuron; compound 12 and rimsulfuron; compound 2 and saflufenacil; compound 4 and saflufenacil; compound 8 and saflufenacil; compound 12 and saflufenacil; compound 2 and sulfentrazone; compound 4 and sulfentrazone; compound 8 and sulfentrazone; compound 12 and sulfentrazone; compound 2 and thifensulfuron-methyl; compound 4 and thifensulfuron-methyl; compound 8 and thifensulfuron-methyl; compound 12 and thifensulfuron-methyl; compound 2 and triasulfuron; compound 4 and triasulfuron; compound 8 and triasulfuron; compound 12 and triasulfuron; compound 2 and tribenuronmethyl; compound 4 and tribenuron-methyl; compound 8 and tribenuron-methyl; compound 12 and tribenuron-methyl; compound 2 and triclopyr; compound 4 and triclopyr; compound 8 and triclopyr; compound 12 and triclopyr; compound 2 and triclopyr-butotyl; compound 4 and triclopyr-butotyl; compound 8 and triclopyr-butotyl; compound 12 and triclopyr-butotyl; compound 2 and triclopyr-triethylammonium; compound 4 and triclopyr-triethylammonium; triclopyr-triethylammonium; compound and compound 12 and triclopyrtriethylammonium.

5

10

15

20

25

Table A1 lists specific combinations of a compound of Formula 1 (i.e. Component (a)) with an additional active ingredient (i.e. Component (b)) illustrative of the mixtures, compositions and methods of the present invention. The first column of Table A1 lists compound 45 as the illustrative compound of Forumula 1. The second column of Table A1 lists the specific Component (b) compound (e.g., "2,4-D" in the first line). The third, fourth and fifth columns of Table A1 lists ranges of weight ratios for rates at which the Component (b) compound is typically applied to a field-grown crop relative to Component (a). Thus, for example, the first line of Table A1 specifically discloses the combination of Component (a) with 2,4-D is typically applied in a weight ratio between 1:192 to 6:1. The remaining lines of Table A1 are to be construed similarly.

TABLE A1

				1
		<u>Typical</u>	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	2,4-D	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	acetochlor	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	acifluorfen	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	aclonifen	1:857 to 2:1	1:285 to 1:3	1:107 to 1:12
Compound 47	alachlor	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	ametryn	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	amicarbazone	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	amidosulfuron	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
Compound 47	aminocyclopyrachlor	1:48 to 24:1	1:16 to 8:1	1:6 to 2:1

		<u>Typical</u>	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	aminopyralid	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	amitrole	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	anilofos	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	asulam	1:960 to 2:1	1:320 to 1:3	1:120 to 1:14
Compound 47	atrazine	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	azimsulfuron	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
Compound 47	beflubutamid	1:342 to 4:1	1:114 to 2:1	1:42 to 1:5
Compound 47	benfuresate	1:617 to 2:1	1:205 to 1:2	1:77 to 1:9
Compound 47	bensulfuron	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	bentazon	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	benzobicyclon	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	benzofenap	1:257 to 5:1	1:85 to 2:1	1:32 to 1:4
Compound 47	bicyclopyrone	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	bifenox	1:257 to 5:1	1:85 to 2:1	1:32 to 1:4
Compound 47	bispyribac-sodium	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	bromacil	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	bromobutide	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	bromoxynil	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	butachlor	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	butafenacil	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	butylate	1:1542 to 1:2	1:514 to 1:5	1:192 to 1:22
Compound 47	carfenstrole	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	carfentrazone	1:128 to 9:1	1:42 to 3:1	1:16 to 1:2
Compound 47	chlorimuron	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	chlorotoluron	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	chlorsulfuron	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
Compound 47	cincosulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	cinidon-ethyl	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	cinmethylin	1:34 to 34:1	1:11 to 12:1	1:4 to 3:1
Compound 47	clethodim	1:48 to 24:1	1:16 to 8:1	1:6 to 2:1
Compound 47	clodinafop	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	clomazone	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	clomeprop	1:171 to 7:1	1:57 to 3:1	1:21 to 1:3
Compound 47	clopyralid	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	cloransulam	1:12 to 96:1	1:4 to 32:1	1:1 to 6:1

		Typical	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	cumyluron	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	cyanazine	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	cyclosulfamuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	cycloxydim	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	cyhalofop	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	daimuron	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	desmedipham	1:322 to 4:1	1:107 to 2:1	1:40 to 1:5
Compound 47	dicamba	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	dichlobenil	1:1371 to 1:2	1:457 to 1:4	1:171 to 1:20
Compound 47	dichlorprop	1:925 to 2:1	1:308 to 1:3	1:115 to 1:13
Compound 47	diclofop	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	diclosulam	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	difenzoquat	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	diflufenican	1:857 to 2:1	1:285 to 1:3	1:107 to 1:12
Compound 47	diflufenzopyr	1:12 to 96:1	1:4 to 32:1	1:1 to 6:1
Compound 47	dimethachlor	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	dimethametryn	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	dimethenamid	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	dithiopyr	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	diuron	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	EPTC	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	esprocarb	1:1371 to 1:2	1:457 to 1:4	1:171 to 1:20
Compound 47	ethalfluralin	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	ethametsulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	ethoxyfen	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	ethoxysulfuron	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	etobenzanid	1:257 to 5:1	1:85 to 2:1	1:32 to 1:4
Compound 47	fenoxaprop	1:120 to 10:1	1:40 to 4:1	1:15 to 1:2
Compound 47	fenoxasulfone	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	fentrazamide	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	flazasulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	florasulam	1:2 to 420:1	1:1 to 140:1	2:1 to 27:1
Compound 47	fluazifop	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	flucarbazone	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	flucetosulfuron	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1

		Typical	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	flufenacet	1:257 to 5:1	1:85 to 2:1	1:32 to 1:4
Compound 47	flumetsulam	1:24 to 48:1	1:8 to 16:1	1:3 to 3:1
Compound 47	flumiclorac	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	flumioxazin	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	fluometuron	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	flupyrsulfuron	1:3 to 336:1	1:1 to 112:1	2:1 to 21:1
Compound 47	fluridone	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	fluroxypyr	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	flurtamone	1:857 to 2:1	1:285 to 1:3	1:107 to 1:12
Compound 47	fluthiacet-methyl	1:48 to 42:1	1:16 to 14:1	1:3 to 3:1
Compound 47	fomesafen	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2
Compound 47	foramsulfuron	1:13 to 84:1	1:4 to 28:1	1:1 to 6:1
Compound 47	glufosinate	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	glyphosate	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	halosulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	haloxyfop	1:34 to 34:1	1:11 to 12:1	1:4 to 3:1
Compound 47	hexazinone	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	imazamox	1:13 to 84:1	1:4 to 28:1	1:1 to 6:1
Compound 47	imazapic	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	imazapyr	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	imazaquin	1:34 to 34:1	1:11 to 12:1	1:4 to 3:1
Compound 47	imazethabenz	1:171 to 7:1	1:57 to 3:1	1:21 to 1:3
Compound 47	imazethapyr	1:24 to 48:1	1:8 to 16:1	1:3 to 3:1
Compound 47	imazosulfuron	1:27 to 42:1	1:9 to 14:1	1:3 to 3:1
Compound 47	indanofan	1:342 to 4:1	1:114 to 2:1	1:42 to 1:5
Compound 47	indaziflam	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	iodosulfuron	1:3 to 336:1	1:1 to 112:1	2:1 to 21:1
Compound 47	ioxynil	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	ipfencarbazone	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	isoproturon	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	isoxaben	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	isoxaflutole	1:60 to 20:1	1:20 to 7:1	1:7 to 2:1
Compound 47	lactofen	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	lenacil	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	linuron	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6

		Typical	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	MCPA	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	МСРВ	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	mecoprop	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	mefenacet	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	mefluidide	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	mesosulfuron	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	mesotrione	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	metamifop	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	metazachlor	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	metazosulfuron	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	methabenzthiazuron	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	metolachlor	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	metosulam	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	metribuzin	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	metsulfuron	1:2 to 560:1	1:1 to 187:1	3:1 to 35:1
Compound 47	molinate	1:1028 to 2:1	1:342 to 1:3	1:128 to 1:15
Compound 47	napropamide	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	naptalam	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	nicosulfuron	1:12 to 96:1	1:4 to 32:1	1:1 to 6:1
Compound 47	norflurazon	1:1152 to 1:1	1:384 to 1:3	1:144 to 1:16
Compound 47	orbencarb	1:1371 to 1:2	1:457 to 1:4	1:171 to 1:20
Compound 47	orthosulfamuron	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	oryzalin	1:514 to 3:1	1:171 to 1:2	1:64 to 1:8
Compound 47	oxadiargyl	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	oxadiazon	1:548 to 3:1	1:182 to 1:2	1:68 to 1:8
Compound 47	oxasulfuron	1:27 to 42:1	1:9 to 14:1	1:3 to 3:1
Compound 47	oxaziclomefone	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	oxyfluorfen	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	paraquat	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	pendimethalin	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	penoxsulam	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	penthoxamid	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	pentoxazone	1:102 to 12:1	1:34 to 4:1	1:12 to 1:2
Compound 47	phenmedipham	1:102 to 12:1	1:34 to 4:1	1:12 to 1:2
Compound 47	picloram	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2

		<u>Typical</u>	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	picolinafen	1:34 to 34:1	1:11 to 12:1	1:4 to 3:1
Compound 47	pinoxaden	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	pretilachlor	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	primisulfuron	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	prodiamine	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	profoxydim	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	prometryn	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	propachlor	1:1152 to 1:1	1:384 to 1:3	1:144 to 1:16
Compound 47	propanil	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	propaquizafop	1:48 to 24:1	1:16 to 8:1	1:6 to 2:1
Compound 47	propoxycarbazone	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	propyrisulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	propyzamide	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	prosulfocarb	1:1200 to 1:2	1:400 to 1:4	1:150 to 1:17
Compound 47	prosulfuron	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
Compound 47	pyraclonil	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	pyraflufen	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	pyrasulfotole	1:13 to 84:1	1:4 to 28:1	1:1 to 6:1
Compound 47	pyrazolynate	1:857 to 2:1	1:285 to 1:3	1:107 to 1:12
Compound 47	pyrazosulfuron	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	pyrazoxyfen	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	pyribenzoxim	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	pyributicarb	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	pyridate	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	pyriftalid	1:10 to 112:1	1:3 to 38:1	1:1 to 7:1
Compound 47	pyriminobac	1:20 to 56:1	1:6 to 19:1	1:2 to 4:1
Compound 47	pyrimisulfan	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	pyrithiobac	1:24 to 48:1	1:8 to 16:1	1:3 to 3:1
Compound 47	pyroxasulfone	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	pyroxsulam	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	quinclorac	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	quizalofop	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	rimsulfuron	1:13 to 84:1	1:4 to 28:1	1:1 to 6:1
Compound 47	saflufenacil	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	sethoxydim	1:96 to 12:1	1:32 to 4:1	1:12 to 1:2

180

		<u>Typical</u>	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
Compound 47	simazine	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	sulcotrione	1:120 to 10:1	1:40 to 4:1	1:15 to 1:2
Compound 47	sulfentrazone	1:147 to 8:1	1:49 to 3:1	1:18 to 1:3
Compound 47	sulfometuron	1:34 to 34:1	1:11 to 12:1	1:4 to 3:1
Compound 47	sulfosulfuron	1:8 to 135:1	1:2 to 45:1	1:1 to 9:1
Compound 47	tebuthiuron	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	tefuryltrione	1:42 to 27:1	1:14 to 9:1	1:5 to 2:1
Compound 47	tembotrione	1:31 to 37:1	1:10 to 13:1	1:3 to 3:1
Compound 47	tepraloxydim	1:25 to 45:1	1:8 to 15:1	1:3 to 3:1
Compound 47	terbacil	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	terbuthylatrazine	1:857 to 2:1	1:285 to 1:3	1:107 to 1:12
Compound 47	terbutryn	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	thenylchlor	1:85 to 14:1	1:28 to 5:1	1:10 to 1:2
Compound 47	thiazopyr	1:384 to 3:1	1:128 to 1:1	1:48 to 1:6
Compound 47	thiencarbazone	1:3 to 336:1	1:1 to 112:1	2:1 to 21:1
Compound 47	thifensulfuron	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	thiobencarb	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	topramazone	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
Compound 47	tralkoxydim	1:68 to 17:1	1:22 to 6:1	1:8 to 2:1
Compound 47	triallate	1:768 to 2:1	1:256 to 1:2	1:96 to 1:11
Compound 47	triasulfuron	1:5 to 224:1	1:1 to 75:1	1:1 to 14:1
Compound 47	triaziflam	1:171 to 7:1	1:57 to 3:1	1:21 to 1:3
Compound 47	tribenuron	1:3 to 336:1	1:1 to 112:1	2:1 to 21:1
Compound 47	triclopyr	1:192 to 6:1	1:64 to 2:1	1:24 to 1:3
Compound 47	trifloxysulfuron	1:2 to 420:1	1:1 to 140:1	2:1 to 27:1
Compound 47	trifluralin	1:288 to 4:1	1:96 to 2:1	1:36 to 1:4
Compound 47	triflusulfuron	1:17 to 68:1	1:5 to 23:1	1:2 to 5:1
Compound 47	tritosulfuron	1:13 to 84:1	1:4 to 28:1	1:1 to 6:1

The present disclosure also includes Tables A2 through A22 which are each constructed the same as Table A1 above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Thus, for example, in Table A2 the entries below the "Component (a)" column heading all recite "Compound 50", and the first line below the column headings in Table A2 specifically discloses a mixture of Compound 50 with 2,4-D. Tables A3 through A22 are constructed similarly.

Table Number	Component (a) Column Entries	Table Number	Component (a) Column Entries
A2	Compound 50	A13	Compound 107
A3	Compound 52	A14	Compound 118
A4	Compound 59	A15	Compound 128
A5	Compound 75	A16	Compound 133
A6	Compound 81	A17	Compound 169
A7	Compound 82	A18	Compound 175
A 8	Compound 83	A19	Compound 186
A9	Compound 85	A20	Compound 218
A10	Compound 87	A21	Compound 240
A11	Compound 96	A22	Compound 243
A12	Compound 97		

Also of note is a mixture of a compound of Formula 1 and a herbicide safener. Table B1 lists specific combinations of a Component (a) with Component (b) illustrative of the mixtures, compositions and methods of the present invention. The second column of Table B1 lists the specific Component (b) compound (e.g., "Allidochlor" in the first line). The third, fourth and fifth columns of Table B1 lists ranges of weight ratios for rates at which the Component (b) compound is typically applied to a field-grown crop relative to Component (a). Thus, for example, the first line of Table B1 specifically discloses the combination of Component (a) with Allidochlor is typically applied in a weight ratio between 1:48 to 6:1. The remaining lines of Table B1 are to be construed similarly.

5

10

TABLE B1

		Typical	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
47	Allidochlor	1:48 to 6:1	1:16 to 2:1	1:12 to 1:2
47	Benoxacor	1:17 to 17:1	1:5 to 6:1	1:4 to 3:1
47	Cloquintocet-mexyl	1:6 to 168:1	1:2 to 56:1	1:1 to 11:1
47	Cumyluron	1:24 to 42:1	1:8 to 14:1	1:3 to 3:1
47	Cyometrinil	1:48 to 168:1	1:16 to 56:1	1:6 to 2:1
47	Cyprosulfamide	1:24 to 42:1	1:8 to 14:1	1:3 to 3:1
47	Diamuron	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Dichlormid	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Dicyclonon	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Dietholate	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Dimepiperate	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Fenchlorazole-ethyl	1:8 to 42:1	1:2 to 14:1	1:2 to 5:1

		<u>Typical</u>	More Typical	Most Typical
Component (a)	Component (b)	Weight Ratio	Weight Ratio	Weight Ratio
47	Fenclorim	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Flurazole	1:48 to 12:1	1:16 to 4:1	1:6 to 2:1
47	Fluxofenim	1:48 to 168:1	1:16 to 56:1	1:6 to 2:1
47	Furilazole	1:48 to 12:1	1:16 to 4:1	1:6 to 2:1
47	Isoxadifen-ethyl	1:8 to 42:1	1:2 to 14:1	1:2 to 5:1
47	Mefenpyr-diethyl	1:8 to 84:1	1:2 to 28:1	1:1 to 6:1
47	Mephenate	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Methoxyphenone	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Naphthalic anhydride	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	Oxabetrinil	1:48 to 168:1	1:16 to 56:1	1:6 to 2:1
47	2-(dichloromethyl)-2-methyl-1,3-			
	dioxolane (MG-191)	1:48 to 12:1	1:16 to 4:1	1:12 to 1:2
47	1-(Oxa-4-aza-spiro[4.5]dec-4-yl)-			
	ethanone (AD-67)	1:42 to 17:1	1:14 to 6:1	1:10 to 1:2
47	Cmpd. 15S	1:12 to 168:1	1:4 to 56:1	1:1 to 6:1

Tables B2 through B22 are each constructed the same as Table B1 above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Thus, for example, in Table B2 the entries below the "Component (a)" column heading all recite "Compound 50", and the first line below the column headings in Table B2 specifically discloses a mixture of Compound 50 with Allidochlor. Tables B3 through B24 are constructed similarly.

Table Number	Component (a) Column Entries	Table Number	Component (a) Column Entries
B2	Compound 50	B14	Compound 118
В3	Compound 52	B15	Compound 128
B4	Compound 59	B16	Compound 133
В5	Compound 75	B17	Compound 169
В6	Compound 81	B18	Compound 175
В7	Compound 82	B19	Compound 186
B8	Compound 83	B20	Compound 218
В9	Compound 85	B21	Compound 240
B10	Compound 87	B22	Compound 243
B11	Compound 96	B23	Compound 298
B12	Compound 97	B24	Compound 344
B13	Compound 107		

The following Tests demonstrate the herbicidal effect of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to the plant species tested. See Index Tables A–I for compound descriptions. The following abbreviations are used in the Index Tables which follow: "Cmpd" means Compound, Me is methyl, Et is ethyl, *c*-Pr is cyclopropyl, *i*-Bu is isobutyl (i.e. -CH₂CH(CH₃)₂), Ph is phenyl, OMe is methoxy, *c*-hex is cyclohexyl, *n*-hex is normal hexyl Bn in benzyl, acetylene means -C≡CH, and SMe is methylthio and -CH₂(tetrahydrofuran-2-yl) also means (tetrahydro-2-furanyl)methyl. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared. Substitution is noted in parenthases following the listed ring, for example Ph(4-OMe) indicates that the phenyl group is substituted by methoxy at the 4-position (relative to the point of attachment of the phenyl group to the remainder of the Formula 1 compound).

INDEX TABLE A

$$\mathbb{R}^3$$
 \mathbb{Q} \mathbb{R}^1 \mathbb{R}^2

15

5

<u>Cmpd</u>	<u>R</u> 1	$\underline{\mathbf{R}^2}$	$\underline{\mathbb{R}^3}$	<u>m.p.(°C)</u>
1	CH ₃	c-Pr	ОН	*
2 (Ex. 1)	Ph	Ph	ОН	* **
3	Et	c-Pr	ОН	*
4	Ph(4-OMe)	Ph	ОН	*
7	Ph	Et	ОН	*
8	Ph(4-Me)	Ph	ОН	*
9	Ph(3-Cl)	Ph	ОН	101-102
10	Ph(2-Cl)	Ph	ОН	142-143
11	Ph(4-Cl)	Ph	ОН	83-85
12	Ph(2-Me)	Ph	ОН	181-182
13	Ph(4-Cl)	Ph	O^-K^+	105-108
14	Ph	Ph	O^-K^+	128-130
15	Ph(2-OMe)	Ph	ОН	178-179
17 (Ex. 2)	-CH ₂ Ph	Ph	ОН	57-58 **
18	Ph(3-Me)	Ph	ОН	77-78
19	Ph(3-OMe)	Ph	ОН	87-88
22	Ph(3-F)	Ph	ОН	72-74

23	-CH ₂ CH=CH ₂	Ph	ОН	38-40
24	Ph(4-F)	Ph	ОН	131-132
25	Ph	Ph(4-Cl)	ОН	*
26	Ph(2-F)	Ph	ОН	142-144
27	Ph(2,3-di-Me)	Ph	ОН	155-157
28	Ph(2,4-di-Me)	Ph	ОН	186-187
29	Ph(2,5-di-Me)	Ph	ОН	169-171
30	Ph	SMe	ОН	92-94
31	Ph(2,6-di-Me)	Ph	ОН	177-178
32	Ph(3,4-di-Me)	Ph	ОН	165-166
33	Ph(3,5-di-Me)	Ph	ОН	156-157
34	Ph	Ph(3-Cl)	ОН	131-135
35	Ph	Ph(2-Cl)	OH	138-142
36	Ph(2-Me)	Ph(3-Cl)	ОН	82-83
37	Ph(2-Br)	Ph	ОН	170-171
38	Ph(3-Br)	Ph	ОН	105-107
39	Ph(4-Me)	Ph(3-Cl)	ОН	78-80
40	Ph(3-Cl-2-Me)	Ph	ОН	170-171
41	Ph(2-Cl-4-Me)	Ph	ОН	183-184
42	Ph	<i>n</i> -Bu	ОН	145-147
43	Ph(4-Cl-2-Me)	Ph	ОН	172-173
44	Ph(5-F-2-Me)	Ph	ОН	169-170
45	Ph(3-Me)	Ph(3-Cl)	ОН	69-70
46	Ph(2-Cl-6-Me)	Ph	ОН	180-181
47 (Ex. 5)	Ph(3-F-2-Me)	Ph	ОН	168-169
48	Ph(4-F-2-Me)	Ph	OH	153-155
49	Et	Ph	OH	62-66
50	n-Pr	Ph	ОН	106-108
51	Ph(2-F-5-Me)	Ph	ОН	159-161
52	Ph(5-Cl-2-Me)	Ph	ОН	165-166
53	Ph(4-F-3-Me)	Ph	ОН	152-153
54	Ph	<i>n</i> -hex	ОН	138-140
55	Me	Ph	ОН	152-154
56	Ph	3-thienyl	ОН	*
57	Ph(2,4-di-F)	Ph	ОН	153-154
58	Ph(2-F,3-Me)	Ph	ОН	161-162
59	-CH ₂ (tetrahydrofuran-2yl)	Ph	ОН	155-156
60	Ph	<i>i</i> -Pr	ОН	*

61	-CH ₂ C≡CH	Ph		151-153
62	Ph(2-Me)	n-Bu	ОН	100-101
63	Ph(3-Me)	<i>n</i> -Bu	ОН	136-137
64	Ph(4-Cl)	Ph(3-Cl)	ОН	140-142
65	Ph	2-thienyl(5-Cl)	ОН	*
66	Ph	2-thienyl	ОН	*
67	Ph(4-Me)	n-Bu	ОН	143-144
68	Ph	<i>i</i> -Bu	ОН	*
69	Ph	Ph(3-Br)	ОН	*
70	Ph	Ph(4-Br)	ОН	*
71	Ph	Ph(2-Br)	ОН	*
72	n-Pr	n-Pr	ОН	95-97
73	Ph(2-Me)	n-Pr	ОН	127-128
74	-CH ₂ (tetrahydrofuran-2-yl)	n-Pr	ОН	95-96
75	<i>n</i> -Bu	n-Pr	ОН	88-89
76	Ph	furan-2-yl	ОН	*
77	n-Pr	2-thienyl	ОН	*
78	Ph	<i>n</i> -pentyl	ОН	*
79	Ph(3-Me)	n-Pr	ОН	140-142
80	Ph	Ph(4-Me)	ОН	164-169
81	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph	ОН	121-122
82	Ph	Ph(2-Me)	ОН	165-167
83	Ph	Ph	OC(=O)- <i>i</i> -Bu	175-176
84	$-CH_2(Ph(3,4-di-OMe))$	n-Pr	ОН	*
85	-CH ₂ CH ₂ OCH ₃	Ph	ОН	135-137
86	<i>n</i> -Bu	Ph	ОН	*
87	Ph	c-Pr	ОН	*
88	Ph	Ph	OC(=O)- <i>c</i> -Pr	167-168
89	n-pentyl	Ph	ОН	100-102
90	c-Pr	Ph	ОН	172-174
91	-CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	Ph	ОН	138-139
92	Ph	c-pentyl	ОН	*
93	n-Pr	3-thienyl	ОН	*
94	n-hex	Ph	ОН	95-97
95	i-Pr	Ph	ОН	163-165
96	-CH ₂ CH ₂ OCH ₂ CH ₃	Ph	ОН	129-131
97 (Ex. 10)	-CH ₂ CH ₂ OCH ₃	3-thienyl	ОН	103-105
98	-CH ₂ (tetrahydrofuran-2-yl)	3-thienyl	ОН	*

99	c-hex	3-thienyl	ОН	*
100	n-Pr	Ph(3-OMe)	ОН	*
101	n-Pr	Ph(2-F)	ОН	136-138
102	n-Pr	Ph(4-F)	ОН	100-103
103	Bn	n-Pr	ОН	*
104	-CH2(Ph(3-OMe))	n-Pr	ОН	*
105	-CH2(Ph(3-OCF3))	n-Pr	ОН	*
106	Ph	c-hex	ОН	*
107	-CH(CH ₃)CH ₂ OCH ₃	Ph	ОН	122-123
108	-CH ₂ CH ₂ OCH ₃	2-thienyl	ОН	*
109	-CH ₂ (tetrahydrofuran-2-yl)	2-thienyl	ОН	*
110	n-Pr	furan-2-yl	ОН	*
111	-CH ₂ CH ₂ OCH ₃	furan-2-yl	ОН	*
112	n-Pr	Ph(4-OMe)	ОН	*
113 (Ex. 7)	Ph	3-pyridinyl	ОН	**
113 (LX. 7)	Ph	c-Bu	ОН	*
115	Et	Ph(3-Me)	ОН	*
116	n-Bu	Ph(3-Me)	ОН	*
117	-CH ₂ CH ₂ OCH ₃	Ph(3-Me)	ОН	*
118	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Me)	ОН	*
119	-CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	154-178
120	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	139-140
121	n-Bu	Ph(3,5-di-F)	ОН	144-145
122	Et	Ph(3,5-di-F)	ОН	162-165
123	-CH ₂ CH ₂ OCH ₃	Ph(3-F)	ОН	*
124	Et Et	Ph(3-F)	ОН	*
125	n-Bu	Ph(3-F)	ОН	*
126	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-F)	ОН	*
127	<i>n</i> -Pr	Ph(3-F)	ОН	*
127		111(3.1)	OH	160-163
128 (Ex. 11)	c-hex	Ph	ОН	**
129	tetrahydropyran-4-yl	Ph	ОН	*
130	c-heptyl	Ph	ОН	*
131	c-pentyl	Ph	ОН	*
132	Ph(4-F-3-Me)	Ph(3-Br)	ОН	*
133	Ph(4-F-3-Me)	Ph(3-Cl)	ОН	*
134	n-Pr	Ph(4-Br)	ОН	*
135	n-Pr	1-Me-pyrazol-3-	ОН	*

		yl		
136	-CH ₂ CH ₂ OCH ₃	1-Me-pyrazol-3-	ОН	*
	2 2 3	yl		
137	Et	Ph(3-Br)	ОН	141-145
138	<i>n</i> -Bu	Ph(3-Br)	ОН	112-113
139	-CH ₂ CH ₂ OCH ₃	Ph(3-Br)	ОН	115-116
140	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Br)	ОН	118-119
141	n-Pr	Ph(3-Br)	ОН	134-137
142	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3-Cl)	ОН	*
143	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Cl)	ОН	*
144	Ph(5-Cl-2-Me)	Ph(3-Br)	ОН	*
145	Et	Ph(3-Cl)	ОН	114-115
146	<i>n-</i> Bu	Ph(3-Cl)	ОН	104-112
147	-CH ₂ CH ₂ OCH ₃	Ph(3-Cl)	ОН	124-125
148	Ph(5-Cl-2-Me)	Ph(3-Cl)	ОН	*
149	n-Pr	1,4-benzodioxan-	ОН	*
149	<i>n</i> -r1	6-yl	Оп	·
150	n-Pr	naphthalen-2-yl	ОН	*
151	Ph(4-OMe)	Ph(3-Cl)	ОН	154-156
152	n-Pr	Ph(3,5-di-F)	ОН	*
153	n-Pr	c-Pr	ОН	163-165
154	Ph(5-F-2-Me)	Ph(3-Br)	ОН	*
155	n-Pr	Ph(3-CF ₃)	ОН	129-131
156	n-Pr	Ph(3,5-di-Me)	ОН	161-163
157	Ph(5-F-2-Me)	Ph(3-Cl)	ОН	*
158	Ph(4-Et)	Ph(3,5-di-F)	ОН	181-182
159	Ph(2-Me)	Ph(3,5-di-F)	ОН	166-168
160	c-hex	c-Pr	ОН	173-175
161	Ph	Ph(3,5-di-F)	ОН	147-148
162	Ph(4-Me)	Ph(3,5-di-F)	ОН	191-192
163	-CH ₂ -c-hex	Ph(3,5-di-F)	ОН	*
164	tetrahydrothiopyran-4-yl	Ph	ОН	*
165	c-dodecahexyl	Ph	ОН	*
166	Ph(4-F-2-Me)	Ph(3-Br)	ОН	*
167	Ph(4-F-2-Me)	Ph(3-Cl)	ОН	*
168 (Ex. 8)	(cis/trans)-tetrahydro-1-oxido-2H- thiopyran-4-yl	Ph	ОН	**
169 (Ex. 8)	(trans/cis)-tetrahydro-1-oxido-2H-	Ph	ОН	**

	thiopyran-4-yl			
170	-CH ₂ C≡CH	Ph(3,5-di-F)	ОН	*
171	-CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	*
172	n-Pr	Ph(3-Me)	ОН	116-117
173	$n ext{-}\Pr$	Ph(3,5-di-Cl)	ОН	97-100
174	Ph(4-Et)	Ph(3-Cl)	ОН	146-148
175	Ph(4-Et)	Ph(3-Br)	ОН	126-129
176	Ph(4-OMe)	Ph(3-Br)	ОН	120-124
177	Ph(4-Et)	Ph(3-Br)	ОН	139-142
178	Ph(5-F-2-Me)	Ph(3-Me)	ОН	*
179	Ph(5-Cl-2-Me)	Ph(3,5-di-F)	ОН	*
180	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3,5-di-F)	ОН	*
181	c-hex	Ph(3,5-di-F)	ОН	*
182	-CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3,5-di-F)	ОН	*
183	Ph(5-F-2-Me)	Ph(3,5-di-F)	ОН	*
184	Ph(5-Cl-2-Me)	Ph(3-F)	ОН	*
185	c-hex	Ph(3-Me)	ОН	*
186	tetrahydropyran-4-yl	3-thienyl	ОН	*
187	c-hex	Ph(3-F)	ОН	*
188	c-hex	furan-2-yl	ОН	*
189	c-hex	2-thienyl	ОН	*
190	n-Pr	Ph(3-Cl)	ОН	123-125
191	Ph(4-F-3-Me)	Ph(3-F)	ОН	*
192	Ph(4-F-2-Me)	Ph(3-Me)	ОН	*
193	<i>n</i> -Bu	$c ext{-Pr}$	ОН	140-142
194	c-hex	Ph(3-Et)	ОН	*
195	c-hex	Ph(3-CF ₃)	ОН	*
196	c-hex	Ph(3-OMe)	ОН	*
197	c-hex	Ph(4-F)	ОН	*
198	c-hex	Ph(3,4-di-F)	ОН	*
199	Ph	Ph(3-F)	OH	*
200	Et	Bn	ОН	*
201	Ph(2-Me)	Ph(3-F)	ОН	*
202	Ph(4-Me)	Ph(3-F)	ОН	*
203	Ph(4-OMe)	Ph(3-F)	ОН	*
204	Ph(4-Et)	Ph(3-F)	ОН	*
205	c-hex	Ph(3,4,5-tri-F)	ОН	*
206	c-hex	Ph(3-Br)	ОН	*

207	-CH ₂ CH ₂ CF ₃	Ph	ОН	*
208	-CH ₂ CH ₂ CF ₃	Ph(3-F)	ОН	69-70
209	Ph(2-Me)	Ph(3-Br)	ОН	144-146
210	Ph(2-Me)	Ph(3-Me)	ОН	152-154
211	Ph(4-Me)	Ph(3-Me)	ОН	146-148
212	Ph(4-OMe)	Ph(3-Me)	ОН	156-158
213	Ph(4-Et)	Ph(3-Me)	ОН	147-148
214	-CH ₂ CH ₂ CHCH ₂	Ph	ОН	124-127
215	c-octyl	Ph	ОН	*
216	c-hex	Ph(4-acetylene)	ОН	*
217	Ph	n-Pr	ОН	145-147
218	Ph(3,4-di-OMe)	Ph	ОН	164-165
219	Ph(4-Et)	Ph	ОН	160-162
220	Ph(3-Et)	Ph	ОН	126-127
255	Ph(2-Et)	Ph	ОН	171-172
256	Ph(2,4-di-OMe)	Ph	ОН	182-183
257	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -		ОН	*
261	c-hex	Ph	$O(C=O)CH(Me)_2$	*
262	c-hex	Ph	$O(C=O)C(Me)_3$	*
263	-CH ₂ CH ₂ SCH ₃	Ph(3-Me)	ОН	*
265	-CH ₂ CH ₂ SO ₂ CH ₃	Ph(3-Me)	ОН	*
266	-CH ₂ CH ₂ SOCH ₃	Ph(3-Me)	ОН	*
267	-CH ₂ CH ₂ OCH ₃	Ph(3-Cl, 4-Me)	ОН	*
268	Et	Ph(3-Cl, 4-Me)	ОН	159-160
269	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Cl, 4-Me)	ОН	131-133
270	Et	Ph(3-F, 5-Me)	ОН	*
271	n-Bu	Ph(3-F, 5-Me)	ОН	*
272	-CH ₂ CH ₂ OCH ₃	Ph(3-F, 4-Me)	ОН	*
273	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-F, 5-Me)	ОН	126-129
274	-CH ₂ CH ₂ CH ₂ O- <i>n</i> -Pr	Ph(3-Cl)	ОН	*
275	-CH ₂ CH ₂ O- <i>i</i> -Pr	Ph(3-F)	ОН	144-147
276	-CH ₂ CH ₂ OCH ₃	$-CH_2CH_2OCH_3$	ОН	*
277	-CH ₂ CH ₂ OCH(CH ₃) ₂	Ph	ОН	118-120
278	-CH ₂ CH ₂ OCH ₃	Bn	ОН	*
279	-CH ₂ CH ₂ CH ₂ OCH ₃	Bn	ОН	*
	Et	-CH ₂ Ph(4-Ome)	ОН	*
280	D.	2 (
280 281	-CH ₂ CH ₂ CH ₂ OCH ₃	Pyridin-3-yl	ОН	*

283	-CH ₂ CH ₂ CH ₂ OCH ₃	Pyrazin-2-yl	ОН	*
284	c-hex	Pyrazin-2-yl	ОН	*
285	Et	-CH ₂ OCH ₃	ОН	*
286	-CH ₂ CH ₂ OCH ₃	-CH ₂ OCH ₃	ОН	*
287	-CH ₂ CH ₂ OCH(Me) ₂	Ph(3-Cl)	ОН	*
288	-CH ₂ CH ₂ OCH ₃	-CH=CH-Ph	ОН	*
290	-CH ₂ CH ₂ SCH ₂ CH ₃	Ph	ОН	*
291	-CH ₂ CH ₂ SCH ₂ CH ₃	Ph(3-Me)	ОН	*
294	-CH ₂ CH ₂ SOCH ₂ CH ₃	Ph	ОН	*
295	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_2\mathrm{CH}_3$	Ph	ОН	*
296	-CH ₂ CH ₂ SOCH ₂ CH ₃	Ph(3-Me)	ОН	*
297	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_2\mathrm{CH}_3$	Ph(3-Me)	ОН	*
298	n-Pr	Pyridin-3-yl	ОН	*
299	2,2-difluoro-benzo[1,3]dioxalan-4-yl	Ph	ОН	173-175
300	Ph(2,5-di-OMe)	Ph	ОН	136-138
301	Ph(3,4,5-tri-OMe)	Ph(3-Me)	ОН	142-144
302	2,3-dihydro-benzo[1,4]dioxalan-6-yl	Pyridin-3-yl	ОН	*
303	-CH ₂ -furan-2-yl	Ph	ОН	*
304	Ph(3,4-di-OEt)	Ph	ОН	159-161
305	Ph(3,4-di-OEt)	Ph(3-Me)	ОН	154-156
306	-CH ₂ CH ₂ OCH ₃	Ph(3-I)	ОН	*
308	-CH ₂ CH ₂ OCH ₃	Ph(3-CN)	ОН	*
309	-CH ₂ CH ₂ OCH ₃	Ph(3-acetylene)	ОН	*
311	-CH(CH $_2$ CH $_2$ CH $_3$) $_2$	Ph	ОН	*
312	s-Bu	Ph	ОН	123-126
313	Et	-CH ₂ CH ₂ OCH ₃	ОН	*
314	n-Pr	-CH ₂ CH ₂ OCH ₃	ОН	*
315	n-Pr	Ph(3-Cl, 5-Me)	ОН	*
316	-CH ₂ CH ₂ O- <i>n</i> -Pr	Ph	ОН	146-148
317	-CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-Me)	ОН	*
318	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-NO ₂)	ОН	*
319	n-Pr	Pyrazin-2-yl	ОН	*
320	-CH ₂ C(Me) ₃	Ph	ОН	159-161
321	-CH(CH ₃)CH ₂ OCH ₃ (R)	Ph	ОН	114-116
322	n-Bu	Ph(3-Cl, 5-Me)	ОН	*
323	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Cl, 5-Me)	ОН	*
324	-CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	Ph(3-Cl)	ОН	136-138
325	Ph(3,4,5-tri-OMe)	Ph	ОН	174-176

326	CH ₂ C≡CH	Pyridin-3-yl	ОН	*
327	$-CH(CH_2OCH_3)_2$	Ph	ОН	*
328	-CH ₂ CH ₂ OCH ₃	$CH(OCH_2CH_3)_2$	OH	*
329	tetrahydrothiopyran-4-yl-1,1-dioxide	Ph	OH	*
330	<i>n</i> -Pr	Ph(3,5-di-CF ₃)	OH	188-190
331	-CH ₂ CH ₂ OCH ₃	Ph(3-Cl, 5-Me)	OH	142-145
332	Et	Ph(3-Cl, 5-Me)	OH	*
333	-CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	Ph(3-F)	OH	151-154
334	-CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	Ph	OH	*
335	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph	OH	*
336	-CH(CH ₂ OCH ₃)OCH ₂ CH ₃	Ph	OH	125-127
337	c-hex	Pyridin-3-yl(5-Cl)	OH	*
338	Ph(3,4,5-tri-OMe)	Ph(3-F)	ОН	188-189
339	<i>i-</i> Bu	Ph	OH	153-156
340	1,3-dimethyl-butyl	Ph	ОН	150-153
341	-CH ₂ CH ₂ OCH ₂ CF ₃	Ph(3-F)	ОН	163-165
342	n-pentyl	Ph(3-Me)	ОН	*
343	n-hex	Ph(3-Me)	ОН	*
344	trans-4-OMe-c-hex	Ph	ОН	*
345	trans-4-OMe-c-hex	Ph(3-F)	ОН	156-160
346	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph(3-Me)	OH	*
347	n-Pr	-CH ₂ -thien-3-yl	ОН	*
349	Ph	Ph(3-I)	ОН	*
350	-CH ₂ CH ₂ OCH ₃	Ph(3-CH=CH ₂)	OH	*
354	-CH ₂ CH ₂ OCH ₂ CF ₃	Ph	ОН	144-146
355	Ph(2-Me-4-OMe)	Ph	ОН	183-185
356	-CH ₂ -tetrahydropyran-4-yl	Ph	ОН	158-156
357	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph	ОН	*
359	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph(3-Me)	ОН	*
361	-CH ₂ CH ₂ SCH ₃	Ph	ОН	*
363	-CH ₂ CH ₂ CH ₂ SOCH ₃	Ph	ОН	*
365	-CH ₂ CH ₂ CH ₂ SOCH ₃	Ph(3-Me)	ОН	*
366 (Ex. 12)	-CH ₂ CH ₂ SOCH ₃	Ph	ОН	* **
368	-CH ₂ CH ₂ CH ₂ SO ₂ CH ₃	Ph	ОН	*
370	-CH ₂ CH ₂ CH ₂ SO ₂ CH ₃	Ph(3-Me)	ОН	*
371 (Ex. 13)	-CH ₂ CH ₂ SO ₂ CH ₃	Ph	ОН	* **
373	c-hex	Ph(3,5-di-CF ₃)	ОН	219-221
374	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-CF ₃)	ОН	145-147

375	-CH ₂ CH ₂ OCH ₂ CF ₃	Ph(3-Cl)	ОН	168-171
376	Ph(3-Me, 4-OMe)	Ph	ОН	*
377	n-hex	Ph(3,5-di-F)	ОН	*
378	<i>n</i> -pent	Ph(3,5-di-F)	ОН	138-140
379	-CH ₂ CH ₂ CH ₂ OCH ₃	c-Pr	ОН	*
380	$-CH_2CH(OCH_3)_2$	Ph	ОН	*
381	-CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃	Ph	ОН	118-121
382	trans-4-OMe-c-hex	Ph(3-Me)	ОН	*
383	$-CH_2(CH_2)_3CH_2OCH_3$	Ph	ОН	*
384	-CH2(CH2)2CH2OCH3	Ph(3-Me)	ОН	112-114
385	$-CH_2(CH_2)_3CH_2OCH_3$	Ph(3-Me)	ОН	72-74
386	<i>n</i> -pent	Ph(3-F)	ОН	*
387	$-CH_2CH_2(C=O)OC(Me)_3$	Ph	ОН	*
388	trans-4-OMe-c-hex	Ph(3-Cl)	ОН	*
389	c-hex-3-enyl	Ph	ОН	*
390	-CH ₂ CH ₂ SCH ₃	Ph	ОН	*
391	c-hex	-CH ₂ -thien-3-yl	ОН	*
392	Ph(3-OMe, 4-Me)	Ph	ОН	158-160
393	-CH(CH ₂ OCH ₃) ₂	thien-3-yl	ОН	*
395	-CH(CH ₃)CH ₂ OCH ₃	thien-2-yl	ОН	*
396	tetrahydrothiopyran-4-yl	thien-2-yl	ОН	*
397	tetrahydropyran-4-yl	thien-2-yl	ОН	*
398	-CH(CH2OCH3)2	thien-2-yl	ОН	*
399	<i>n</i> -Bu	Ph(3-Br-5-F)	ОН	*
400	<i>n</i> -Bu	Ph(3-F-4-Cl)	ОН	*
401	-CH ₂ CH ₂ CH ₂ OCH ₃	thien-3-yl	ОН	*
402	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3-Me)	ОН	*
403	$-CH(CH_2OCH_3)_2$	Ph(3-Me)	ОН	*
404	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OCH}_3$	thien-2-yl	ОН	*
405	<i>i</i> -Bu	thien-2-yl	ОН	*
406	-CH ₂ CH ₂ SCH ₃	thien-2-yl	ОН	*
407	-CH ₂ CH ₂ CH ₂ SCH ₃	thien-2-yl	ОН	*
409	-CH(CH ₃)CH ₂ OCH ₃	Ph(4-F)	ОН	*
410	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(4-F)	ОН	*
411	-CH ₂ (tetrahydrofuran-2-yl)	Ph(4-F)	ОН	*
412	$-CH(CH_2OCH_3)_2$	Ph(4-F)	ОН	*
413	tetrahydropyran-4-yl	Ph(4-F)	ОН	*
414	-CH ₂ CH ₂ OCH ₃	Ph(4-F)	ОН	*

415	$-\mathrm{CH}_2\mathrm{CH}(\mathrm{OCH}_3)\mathrm{CH}_2\mathrm{OCH}_3$	Ph	OH	*
416	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Et)	OH	*
417	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-Me)	ОН	*
418	-CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-F)	ОН	*
419	n-hex	Ph(3,5-di-Me)	ОН	139-141
420	$-CH_2(C=O)OC(Me)_3$	Ph	ОН	128-131
421	c-hex(4-Me)	Ph	ОН	*
422	-CH ₂ CH ₂ OCH ₂ CH ₃	c-Pr	ОН	*
423	-CH ₂ CH ₂ SCH ₃	thien-3-yl	ОН	*
424	tetrahydrothiopyran-4-yl-1,1-dioxide	thien-2-yl	ОН	*
425	-CH ₂ CH ₂ SOCH ₃	thien-2-yl	ОН	*
426	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_3$	thien-2-yl	ОН	*
427	-CH ₂ CH ₂ CH ₂ SOCH ₃	thien-2-yl	ОН	*
428	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_3$	thien-2-yl	ОН	*
430	-CH ₂ CH ₂ SOCH ₃	thien-3-yl	ОН	*
431	-CH ₂ CH ₂ CH ₂ OCH ₃	furan-2-yl	ОН	*
432	-CH(CH ₃)CH ₂ OCH ₃ l	Ph(3-Me)	ОН	*
433	<i>i-</i> Bu	Ph(3-Me)	ОН	*
434	tetrahydropyran-4-yl	Ph(3-Me)	ОН	*
435	Ph(3-F, 5-OMe)	Ph	ОН	*
436	<i>n</i> -pentyl	Ph(3,5-di-Me)	ОН	*
437	c-hex(2-Me)	Ph	ОН	174-176
438	<i>n</i> -Bu	Ph(2-Me, 5-F)	ОН	*
439	c-hex-3-enyl	Ph(3-Me)	ОН	*
440	<i>n-</i> Bu	Ph(2,4-di-F)	ОН	*
441	-CH ₂ CH ₂ OCH ₃	Pyridin-3-yl(5-Cl)	ОН	*
442	-CH ₂ (tetrahydrofuran-2-yl)	furan-2-yl	ОН	*
443	-CH(CH ₃)CH ₂ OCH ₃	furan-2-yl	ОН	*
444	$-CH_2CH_2SO_2CH_3$	thien-3-yl	ОН	*
445	i-Bu	thien-3-yl	ОН	*
446	Ph(2-Me, 3-F)	Ph(3-Me)	ОН	*
448	$-CH(CH_2OCH_3)_2$	Ph(3-Br)	ОН	*
449	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OCH}_3$	Ph(3-F)	ОН	*
450	$-\mathrm{CH}_2(\mathrm{CH}_2)_3\mathrm{CH}_2\mathrm{OCH}_3$	Ph(3-F)	ОН	117-118
451	n-hex	Ph(3-F)	ОН	97-99
452	$-CH(CH_2OCH_3)_2$	furan-3-yl	ОН	*
453	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3-F)	ОН	*
454	Ph(3,4-di-OMe)	Ph(4-F)	ОН	*

455	Ph(2-Me, 3-F)	Ph(4-F)	ОН	*
456	n-Pr	Ph(2-Me, 5-F)	OH	*
457	$-CH_2CH_2OCH_3$	c-Pr	ОН	97-99
458	-CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3-Br)	ОН	*
459	-CH(CH ₃)CH ₂ OCH ₃	Ph(3-Br)	ОН	*
460	n-Bu	Ph(3,4-di-Cl)	ОН	*
461	n-Bu	Ph(3-Br, 5-OMe)	ОН	*
462	-CH ₂ CH ₂ OCH ₃	Ph(3-Br, 5-F)	ОН	*
463	-CH ₂ CH ₂ OCH ₃	Ph(3-F, 4-Cl)	ОН	*
464	$\hbox{-CH}_2\hbox{CH}(\hbox{OCH}_2\hbox{CH}_3)\hbox{CH}_2\hbox{OCH}_2\hbox{CH}_3$	Ph	ОН	119-120
465	-CH(Me)Ph	Ph	ОН	*
467	-CH(Et)Ph	Ph	ОН	*
469	tetrahydropyran-4-yl	furan-2-yl	ОН	*
470	Ph(3-OMe, 4-F)	Ph	ОН	*
471	c-hex	<i>i-</i> Bu	ОН	*
472	n-pentyl(4-Me)	Ph	ОН	*
473	<i>n</i> -pentyl(4-Me)	Ph(3-Me)	ОН	*
474	n-pentyl(4-Me)	Ph(3-F)	ОН	*
475	c-hex(3-Me)	Ph	ОН	*
476	<i>c</i> -hex(3,5-di-Me)	Ph	ОН	*
477	c-hex(3,3,5,5-tetra-Me)	Ph	ОН	170-173
478	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(2-Me, 5-F)	ОН	*
479	Ph(4-Me)	c-Pr	ОН	*
480	-CH ₂ (tetrahydrofuran-2-yl)	i-Bu	ОН	*
481	c-hex	c-pentyl	ОН	*
482	n-propyl	Pyridin-3-yl(5-Cl)	ОН	*
483	tetrahydropyran-4-yl	Ph(3-F)	OH	*
484	$-CH(CH_2OCH_3)_2$	Ph(3-F)	ОН	*
485	-CH(CH ₃)CH ₂ OCH ₃	Ph(3-F)	ОН	*
486	-CH(CH ₃)CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	*
487	-CH ₂ CH ₂ OCH ₃	i-Bu	ОН	*
488	tetrahydropyran-4-yl	c-pentyl	ОН	*
489	-CH ₂ CH ₂ OCH ₃	c-pentyl	OH	*
490	4-Me-pentyl	Ph(3,5-di-F)	ОН	117-119
491	-CH(CH ₃)CH ₂ OCH ₃	c-Pr	ОН	*
492	-CH ₂ CH ₂ CH ₂ OCH ₃	n-Bu	ОН	*
493	-CH ₂ CH ₂ CH ₂ OCH ₃	<i>i-</i> Bu	ОН	*
494	i-Bu	<i>i-</i> Bu	ОН	*

495	-CH ₂ CH ₂ OCH ₃	Ph(3,4-di-Me)	ОН	*
496	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-OMe)	ОН	*
497	Ph(3,4-di-OEt)	Ph(3,5-di-F)	ОН	176-178
499	-CH ₂ (tetrahydrofuran-2-yl)	c-pentyl	ОН	*
500	<i>i-</i> Bu	c-pentyl	ОН	*
501	-CH ₂ CH ₂ OCH ₃	Pyridin-3-yl	ОН	*
502	<i>i-</i> Bu	Pyridin-3-yl	ОН	*
503	Ph(2-Me, 5-OMe)	Ph	ОН	97-98
504	Ph(2-Me)	c-Pr	ОН	*
505	-CH ₂ CH ₂ CH ₂ SCH ₃	<i>n</i> -But	ОН	*
506	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,4-di-Me)	ОН	*
507	c-hex	Ph(3,4-di-Me)	ОН	156-159
508	-CH ₂ CH ₂ SCH ₃	Ph(3,4-di-Me)	ОН	139-142
509	-CH ₂ CH ₂ SCH ₃	Ph(3-OMe)	ОН	*
510	Ph(3,5-di-OMe)	Ph(4-F)	ОН	*
511	Ph(3,4-di-OEt)	Ph(3-Cl)	ОН	159-161
512	Ph(3,4-di-OEt)	Ph(3-F)	ОН	166-167
513	-CH ₂ CH ₂ OCH ₃	furan-3-yl	ОН	*
514	-CH ₂ CH(OCH ₃)CH ₂ OCH ₃	Ph(3-Me)	ОН	107-109
515	-CH ₂ CH ₂ SCH ₃	Ph(3,5-di-F)	ОН	*
516	<i>n</i> -Bu	Pyridin-3-yl	ОН	*
517	-CH ₂ CH ₂ CH ₂ OCH ₃	c-pent	ОН	*
518	cis-4-OMe-c-hexyl	Ph	ОН	*
519	-CH(CH ₃)CH ₂ OCH ₃	<i>i</i> -Bu	ОН	*
520	-CH(CH $_2$ OCH $_3$) $_2$	Ph(3,5-di-F)	ОН	*
521	-CH ₂ CH ₂ OCH ₂ CH ₃	Ph(3,5-di-F)	ОН	*
522	-CH(CH ₃)CH ₂ OCH ₃	Pyridin-3-yl	ОН	*
523	$-CH(CH_2OCH_3)_2$	<i>i-</i> Bu	ОН	*
524	Ph(4-OMe)	c-Pr	ОН	180-182
525	3-OMe- <i>c</i> -hexyl	Ph	ОН	*
526	<i>n</i> -Bu	<i>n</i> -Bu	ОН	*
527	-CH ₂ CH ₂ CH ₂ SOCH ₃	<i>n</i> -Bu	ОН	*
528	$-CH_2CH_2CH_2SO_2CH_3$	<i>n</i> -Bu	ОН	*
529	<i>i-</i> Bu	<i>n</i> -Bu	ОН	82-84
530	$-CH_2CH_2SO_2CH_3$	Ph(3,4-di-Me)	ОН	*
531	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OCH}_3$	Ph(4-OMe)	ОН	*
532	-CH(CH ₂ CH ₃) ₂	c-pentyl	ОН	*
533	-CH(CH ₃)CH ₂ OCH ₃	c-pentyl	ОН	*

196

534	-CH ₂ CH ₂ OCH ₂ CH ₃	Pyridin-3-yl	ОН	*
535	-CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	*
536	-CH ₂ CH ₂ OCH ₃	Ph(3-OMe)	ОН	*
537	-CH ₂ CH ₂ SOCH ₃	Ph(3-OMe)	ОН	*

*See Index Table J for M.S. or ${}^1{\rm H}$ NMR data. **See synthesis examples for ${}^1{\rm H}$ NMR data.

INDEX TABLE B

<u>Cmpd</u>	<u>R</u> 1	<u>R</u> ²	<u>R</u> 3	<u>m.p. (°C)</u>
16	Ph	Ph	$OS(O)_2$ Ph(4-Me)	63-65
20 (Ex. 3)	-CH ₂ Ph	Ph	ОН	56-57 **
21 (Ex. 4)	-CH ₂ Ph	Ph	$OS(O)_2$ Ph(4-Me)	52-53 **
221	n-Pr	2-thienyl	ОН	*

^{*}See Index Table J for M.S. or ¹H NMR data. ** See synthesis example for ¹H NMR data.

5

INDEX TABLE C

$$\begin{array}{c|c}
0 & 0 \\
N & R^{1} \\
\end{array}$$

<u>Cmpd</u>	$\underline{\mathbf{R}^1}$	$\underline{\mathbf{R}^2}$	<u>m.p. (°C)</u>
222	Ph(2,5-di-Me)	Ph	*
223 (Ex. 6)	Ph	Ph	**

*See Index Table J for M.S. or ¹H NMR data. **See synthesis examples for ¹H NMR data.

INDEX TABLE D

$$H_3C$$
 H_3C
 O
 O
 R^1
 R^2

Cmpd R^1 R^2 R^3 m.p. (°C)

197

224	n-Pr	Ph(3,5-di-F)	ОН	*
225	Ph	Ph	OH	125-127
260	-CH ₂ (tetrahydrofuran-2-yl)	Ph	ОН	*
351	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3,5-di-F)	ОН	136-138
352	-CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	OH	145-147
353	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	OH	127-129
408	-CH ₂ CH ₂ OCH ₃	Ph	ОН	*
429	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph	ОН	*

^{*}See Index Table J for M.S. or ¹H NMR data.

<u>INDEX TABLE E</u>

$$\begin{array}{c|c}
R^3 & O & O \\
\hline
O & N & R^1
\end{array}$$

Cmpd	R ¹	R ²	R^3	m.p.(°C)
226	n-Pr	Ph	ОН	*
227	n-Pr	3-thienyl	OH	*
228	-CH ₂ CH ₂ OCH ₃	3-thienyl	ОН	*
229	-CH ₂ (tetrahydrofuran-2-yl)	3-thienyl	ОН	*
230	n-Pr	furan-2-yl	ОН	*
231	Et	Ph(3-Me)	ОН	*
232	n-Bu	Ph(3-Me)	ОН	*
233	-CH ₂ CH ₂ OCH ₃	Ph(3-Me)	ОН	*
234	Ph(3-F-2-Me)	Ph	ОН	*
235	-CH ₂ CH ₂ OCH ₃	Ph(3-F)	ОН	*
236	Et	Ph(3-F)	ОН	*
237	n-Bu	Ph(3-F)	ОН	*
238	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-F)	ОН	*
239	Et	Ph	ОН	*
240	n-Bu	Ph	ОН	*
241	n-Pr	1,4-benzodioxan-6-yl	ОН	*
242	n-Pr	naphthalen-2-yl	ОН	*
243 (Ex. 9)	-CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	**
244	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	ОН	*
245	n-Bu	Ph(3,5-di-F)	ОН	*

198

246	Ph	Ph(3,5-di-F)	ОН	158-159
247	c-dodecahexyl	Ph	ОН	*
248	c-hex	Ph	ОН	*
249	tetrahydropyran-4-yl	Ph	ОН	*
250	-CH ₂ (tetrahydrofuran-2-yl)	Ph	ОН	*
251	c-hex	Ph(3,4,5-tri-F)	ОН	*
252	c-hex	Ph(3-Br)	OH	*
253	c-heptyl	Ph	OH	*
254	c-hex	Ph(4-acetylene)	ОН	*
264	-CH ₂ CH ₂ OCH ₃	Ph	ОН	*
289	-CH ₂ CH ₂ OCH ₃	-CH=CH-Ph	ОН	
292	-CH ₂ CH ₂ SCH ₂ CH ₃	Ph	ОН	
293	-CH ₂ CH ₂ SCH ₂ CH ₃	Ph(3-Me)	ОН	
307	-CH ₂ CH ₂ OCH ₃	Ph(3-I)		
310	-CH ₂ CH ₂ OCH ₃	Ph(3-acetylene)	ОН	
348	tetrahydrothiopyran-4-yl	Ph	ОН	
358	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph	OH	
360	-CH ₂ CH ₂ CH ₂ SCH ₃	Ph(3-Me)	OH	
362	-CH ₂ CH ₂ SCH ₃	Ph	OH	
364	-CH ₂ CH ₂ SOCH ₃	Ph	OH	
367	-CH ₂ CH ₂ SOCH ₃	Ph	OH	
369	$-\mathrm{CH_2CH_2CH_2SO_2CH_3}$	Ph	OH	
372	$-\mathrm{CH_2CH_2SO_2CH_3}$	Ph	OH	
394	-CH(CH ₃)CH ₂ OCH ₃	thien-2-yl	ОН	
447	-CH ₂ CH ₂ CH ₂ OCH ₃	furan-2-yl	ОН	
466	-CH(CH ₃)Ph	Ph	ОН	
468	-CH(CH ₂ CH ₃)Ph	Ph	ОН	

^{*}See index table J for ${}^1{\rm H}$ NMR. **See synthesis example for ${}^1{\rm H}$ NMR data.

INDEX TABLE F

$$0 \longrightarrow 0 \longrightarrow \mathbb{R}^1$$

$$0 \longrightarrow \mathbb{R}^2$$

<u>Cmpd</u>	$\underline{\mathbb{R}^1}$	$\underline{\mathbf{R}^2}$	<u>m.p. (°C)</u>
2Q (Ex. 1)	Ph	Ph	**
17Q (Ex. 2)	-CH ₂ Ph	Ph	**

199

23Q	-CH ₂ CH=CH ₂	Ph	*
47Q (Ex. 5)	Ph(3-F-2-Me)	Ph	**
59Q	-CH ₂ (tetrahydrofuran-2yl)	Ph	*
61Q	-CH ₂ C≡CH	Ph	*
76Q	Ph	2-furanyl	*
84Q	-CH ₂ (Ph(3,4-di-OMe))	n-Pr	*
105Q	$-\mathrm{CH}_2(\mathrm{Ph}(3\mathrm{-OCF}_3))$	n-Pr	*
113Q (Ex. 7)	Ph	3-pyridinyl	**
153Q	n-Pr	c-Pr	*
163Q	-CH ₂ -c-hex	Ph(3,5-di-F)	*
212Q	Ph(4-OMe)	Ph(3-Me)	*
257Q	-CH ₂ CH ₂ CH ₂ CH ₂ CH	H ₂ -	*
32Q	Ph(3,4-di-Me)	Ph	*
256Q	Ph(2,4-di-OMe)	Ph	*
18Q	Ph(3-Me)	Ph	*
81Q	$CH_2CH_2CH_2OCH_3$	Ph	
89Q	<i>n</i> -pentyl	Ph	*
553Q	Ph(3,4-di-OMe)	Ph(3-F)	
163Q	$CH_2CH(CH_3)CH_2CH_3$	Ph	*
503Q	Ph(4-OMe, 2-Me)	Ph	150-153
551Q	Ph(3,4-di-OMe)	Ph(3,5-di-F)	*
550Q	Ph(3,4-di-OMe)	Ph(3-Cl)	*
552Q	Ph(3,5-di-OMe)	Ph	
376Q	Ph(4-OMe, 3-Me)	Ph	170-172
344Q	trans-4-OMe-c-hex	Ph	165-166
345Q	c-hex(4-OMe)	Ph(3-F)	145-146
339Q	$CH(CH_3)CH(CH_3)_2$	Ph	128-132

^{*}See Index Table J for MS or $^1\mathrm{H}$ NMR data. **See synthesis examples for $^1\mathrm{H}$ NMR data.

INDEX TABLE G

<u>Cmpd</u>	$\underline{R^1}$	$\underline{\mathbf{R}^2}$	<u>m.p. (°C)</u>
20Q (Ex. 3)	-CH ₂ Ph	Ph	**

^{**}See synthesis example for ¹H NMR data.

200

INDEX TABLE H

HO
$$R^1$$

<u>Cmpd</u>	$\underline{\mathbf{R}^1}$	$\underline{R^2}$	<u>m.p. (°C)</u>
2R (Ex. 1)	Ph	Ph	**
17R (Ex. 2)	-CH ₂ Ph	Ph	**
23R	-CH ₂ CH=CH ₂	Ph	*
47R (Ex. 5)	Ph(3-F-2-Me)	Ph	**
59R	-CH ₂ (tetrahydrofuran-2-yl)	Ph	*
61R	-CH ₂ C≡CH	Ph	*
76R	Ph	2-furanyl	*
84R	-CH ₂ (Ph(3,4-di-OMe))	n-Pr	*
105R	$-CH_2(Ph(3-OCF_3))$	n-Pr	*
97R (Ex. 10)	-CH ₂ CH ₂ OCH ₃	3-thienyl	**
118R	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Me)	*
113R (Ex. 7)	Ph	3-pyridinyl	**
135R	n-Pr	1-Me-pyrazol-3-yl	*
128R (Ex. 11)	c-hex	Ph	**
153R	n-Pr	$c ext{-Pr}$	*
163R	$-CH_2$ - c -hex	Ph(3,5-di-F)	*
164R	tetrahydrothiopyran-4-yl	Ph	*
186R	tetrahydropyran-4-yl	3-thienyl	*
212R	Ph(4-OMe)	Ph(3-Me)	*
216R	c-hex	Ph(4-acetylene)	*
242R	n-Pr	naphthalene-2-yl	*
247R	c-dodecahexyl	Ph	*
243R (Ex. 9)	-CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	**
257R	-CH ₂ CH ₂ CH ₂ CI	H ₂ CH ₂ -	*
29R	Ph(2,5-di-Me)	Ph	*
31R	Ph(2,6-di-Me)	Ph	*
35R	Ph	Ph(2-Cl)	*
32R	Ph(3,4-di-Me)	Ph	*
50R	<i>n</i> -Bu	Ph	116-120
547R	Ph(4-OMe)	Ph(3,5-di-F)	*
79R	Ph(3-Me)	<i>n</i> -Pr	

201

81R	CH ₂ CH ₂ CH ₂ OCH ₃	Ph	125-127
89R	n-pentyl	Ph	117-119
121R	<i>n-</i> Bu	Ph(3,5-di-F)	*
125R	<i>n</i> -Bu	Ph(3-F)	*
146R	<i>n</i> -Bu	Ph(3-Cl)	*
162R	Ph(4-Me)	Ph(3,5-di-F)	*
189R	thien-2-yl	c-hex	*
198R	Ph(3,4-di-F)	c-hex	*
130R	c-Heptyl	Ph	*
218R	Ph(3,4-di-MeO)	Ph	*
546R	c-hexyl	Ph(3-Cl)	*
271R	<i>n-</i> Bu	Ph(3-F, 5-Me)	*
559R	$CH_2CH_2CH_2OCH(CH_3)_2$	Ph	82-84
344R	trans-4-OMe-c-hex	Ph	226-227
554R	Bn	$c ext{-Pr}$	143-145
339R	$CH(CH_3)CH(CH_3)_2$	Ph	157-159
550R	Ph(3,4-di-OMe)	Ph(3-Cl)	*
551R	Ph(3,4-di-OMe)	Ph(3,5-di-F)	*
345R	c-Hex(4-OMe)	Ph(3-F)	151-152
336R	CH(CH ₂ CH ₃)CH ₂ OCH ₃	Ph	*
341R	CH ₂ CH ₂ OCH ₂ CF ₃	Ph(3-F)	95-98
377R	n-hex	Ph(3,5-di-F)	100-101
180R	-CH ₂ (tetrahydrofuran-2-yl)	Ph(3,5-di-F)	134-136
355R	Ph(4-OMe, 2-Me)	Ph	158-161

^{*}See Index Table J for MS or ¹H NMR data. **See synthesis examples for ¹H NMR data.

INDEX TABLE I

$$R^{23}$$

<u>Cmpd</u>	$\frac{\mathbb{R}^1}{}$	<u>R</u> ²	$\underline{R^{23}}$	<u>m.p. (°C)</u>
2S (Ex. 1)	${ m Ph}$	Ph	Et	**
17S (Ex. 2)	-CH ₂ Ph	Ph	Et	**
23S	-CH ₂ CH=CH ₂	Ph	Et	*
59S	-CH ₂ (tetrahydrofuran-2-yl)	Ph	Et	*
61S	-CH ₂ C≡CH	Ph	Et	*
84S	-CH ₂ (Ph(3,4-di-OMe))	n-Pr	Et	*

105S	-CH2(Ph(3-OCF3))	<i>n</i> -Pr	Et	*
97S (Ex. 10)	-CH ₂ CH ₂ OCH ₃	3-thienyl	Et	**
118S	-CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3-Me)	Et	*
113S (Ex. 7)	Ph	3-pyridinyl	Et	**
135S	<i>n</i> -Pr	1-Me-pyrazol-3-yl	Et	*
128S (Ex. 11)	c-hex	Ph	Et	**
153S	n-Pr	$c ext{-Pr}$	Me	*
163S	-CH ₂ -c-hex	Ph(3,5-di-F)	Et	*
164S	tetrahydrothiopyran-4-yl	Ph	Et	*
186S	tetrahydropyran-4-yl	3-thienyl	Et	*
212S	Ph(4-OMe)	Ph(3-Me)	Et	*
216S	c-hex	Ph(4-acetylene)	Et	*
242S	<i>n</i> -Pr	naphthalene-2-yl	Et	*
247S	c-dodecahexyl	Ph	Et	*
243S (Ex. 9)	-CH ₂ CH ₂ OCH ₃	Ph(3,5-di-F)	Et	**
257S	-CH ₂ CH ₂ CH ₂ C	H ₂ CH ₂ -	Et	*
203S	Ph(4-OMe)	Ph(3-F)	Me	*
15S	Ph(2-OMe)	Ph	Et	*
545S	Ph(3-CF ₃)	Ph	Et	*
25S	Ph	Ph(4-Cl)	Et	*
35S	Ph	Ph(2-Cl)	Et	*
87S	Ph	c-Pr	Et	*
2S	Ph	Ph	Et	
11 S	Ph(4-Cl)	Ph	Et	*
9S	Ph(3-Cl)	Ph	Et	*
7S	Ph	Et	Et	*
17S	CH ₂ -Ph	Ph	Et	
101S	<i>n</i> -Pr	Ph(2-F)	Et	*
206S	c-hex	Ph(3-Br)	Et	
212S	Ph(4-OMe)	Ph(3-Me)	Me	*
546S	c-hex	Ph(3-C1)	Et	*
89S	<i>n</i> -pentyl	Ph	Et	*
103S	Bn	n-Pr	Et	*
94S	n-hexyl	Ph	Et	*
107S	CH(CH ₃)CH ₂ OCH ₃	Ph	Et	*
130S	c-heptyl	Ph	Et	*
207S	CH ₂ CH ₂ CF ₃	Ph	Et	67-68
209S	Ph(2-Me)	Ph(3-Br)	Me	*

203

218S	Ph(3,4-di-MeO)	Ph	Me	*
548S	CH ₂ CH ₂ CH ₂ CF ₃	Ph	Et	*
549S	Ph(4-OMe)	Ph(3,5-di-F)	Me	*
470S	Ph(3-OMe, 4-F)	Ph	Et	147-149
356S	-CH ₂ (tetrahydropyran-4-yl)	Ph	Me	*
550S	Ph(3,4-di-OMe)	Ph(3-Cl)	Me	*
551S	Ph(3,4-di-OMe)	Ph(3,5-di-F)	Me	*
552S	Ph(3,5-di-OMe)	Ph	Me	
555S	pyridin-3-yl(6-OMe)	Ph	Me	*
338S	Ph(3,4,5-tri-OMe)	Ph(3-F)	Me	*
377S	n-hex	Ph(3-5-di-F)	Et	73-75
374S	CH ₂ CH ₂ CH ₂ OCH ₃	Ph(3,5-di-CF ₃)	Me	101-103
556S	Ph(3,4-di-OMe)	Ph(3-Me)	Me	*
557S	Ph(3,5-di-OMe)	Ph(3-F)	Me	*
558S	$(CH_2)_3OCH_2CH_2CH_3$	Ph	Et	*
339S	$CH_2CH(CH_3)_2$	Ph	Et	102-103
344S	trans-4-OMe-c-hex	Ph	Me	147-149
324S	$CH_2C(CH_3)_3$	Ph	Et	*
337S	c-hex	Pyridin-3-yl(5-Cl)	Me	*
355S	Ph(4-OMe,2-Me)	Ph	Et	143-146
341S	CH ₂ CH ₂ OCH ₂ CF ₃	Ph	Et	63-66

^{*}See Index Table J for MS or ${}^1{\rm H}$ NMR data. **See synthesis examples for ${}^1{\rm H}$ NMR data.

INDEX TABLE J

<u>Cmpd</u>	Mass spectra data ^a or ¹ H NMR data ^b
1	289
3	303
4	417
7	339
8	401
25	421
56	393
60	353 (ESI, M+1)
65	427
66	393
68	367 (ESI, M+1)
69	(500 MHz) δ 16.38 (s, 1H), 8.14 (s, 1H), 7.45 (t, 1H), 7.34 (dd, 1H), 7.32–7.23 (m, 3H), 7.10–7.05 (m, 3H), 7.01–6.95 (m, 1H), 2.64 (t, 2H), 2.40 (t, 2H), 1.96 (dd, 2H).

```
70 465
```

- 71 463 (AP, M–H)
- 76 377
- 77 359
- 78 381 (ESI, M+H)
- 84 425 (AP, M–H)
- 86 367
- 87 351 (ESI, M+H)
- 92 379 (ESI, M+H)
- 93 359
- 98 401
- 99 399
- 100 381 (ESI, M-H)

- 106 393 (ESI, M+H)
- 108 375
- 109 401
- 110 343
- 111 359
- 112 382
- 114 365 (ESI, M+H)
- 115 353
- 116 381
- 117 383
- 118 397
- 123 387
- 124 357
- 125 385
- 126 401
- δ 8.09 (s, 1H), 7.55–7.46 (m, 1H), 7.33–7.20 (m, 3H), 3.94–3.83 (m, 2H), 2.74 (t, 2H), 2.51 (t, 2H), 2.08 (quin, 2H), 1.63 (sxt, 2H), 0.78 (t, 3H).
- 129 395
- 130 407

PCT/US2011/027737

```
131
                                       379
132
                                       495 (AP, M-H)
133
                                       453
134
                                       431 (ESI, M+H)
135
                                       357
                                       373
136
142
                                       429
143
                                       417
                                       (500 \text{ MHz}) \delta 16.32 \text{ (br s, 1H)}, 8.22 \text{ (s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.55 \text{ (s, 1H)}, 7.46 \text{ (d, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.55 \text{ (s, 1H)}, 7.55 \text{ (s, 1H)}, 7.55 \text{ (s, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 7.25-7.06 \text{ (m, 5H)}, 2.70 \text{ (br s, 1H)}, 2
144
                                       2H), 2.46 (d, 2H), 2.14 (s, 3H), 2.08–2.00 (m, 2H)
148
                                       469
149
                                       411
150
                                       403
152
                                       389
154
                                       497
157
                                       453
163
                                       443
164
                                       411
165
                                       477
166
                                       495 (AP, M-H)
167
                                       453
170
                                       385
171
                                       449
178
                                       433
179
                                       471
180
                                       431
181
                                       429
182
                                       419
183
                                       455
184
                                       453
185
                                       δ 16.65 (br s, 1H), 8.00 (s, 1H), 7.20–7.40 (m, 4H), 3.90–4.00 (m, 1H), 0.90–2.80 (m, 19H).
                                       401
186
187
                                       411
188
                                       383
189
                                       399
191
                                       437
192
                                       433
```

- 195 461
- 196 423
- 197 411
- 198 429
- 199 403 (AP, M–H)
- 200 353
- 201 417 (AP, M–H)
- 202 417 (AP, M–H)
- 203 433 (AP, M–H)
- 204 431 (AP, M–H)
- 205 447
- 206 471
- 207 405 (AP, M–H)
- 215 421
- 216 417
- 221 359
- 222 412
- 224 417
- 226 379
- 227 385
- 228 401
- 229 427
- 230 369
- 231 379
- 232 407
- 233 409
- 233 409

- 235 413
- 236 383
- 237 411
- 238 427
- 239 365
- 240 393
- 241 437
- 242 429
- 244 445
- 245 429
- 247 503

WO 2012/033548

PCT/US2011/027737

```
419
248
249
         421
         δ 16.75 (d, 1H), 8.09 (s, 1H), 7.53 (m, 2H), 7.49 (m, 3H), 4.35 (m, 3H), 3.85 (m, 1H), 3.61 (m, 1H),
250
         3.31 (m, 1H), 3.15 (m, 1H), 2.95 (m, 1H), 2.20–1.20 (m, 9H).
251
         473
252
         497
253
         433
254
         443
         δ 16.60 (s, 1H), 7.94 (s, 1H), 4.32 (m, 2H), 3.02 (m, 2H), 2.74 (m, 2H), 2.45 (m, 2H), 2.06 (m, 2H),
257
         1.85 (m, 4H), 1.8 (m, 2H).
         423 (ESI, M+H)
260
261
         463
262
         477
263
         399
264
         395
265
         431
266
         415
267
         417 (ESI, M+H)
270
         291 (ESI, M+H)
271
         399 (ESI, M+H)
272
         401 (ESI, M+H)
274
         445 (ESI, M+H)
276
         351
278
         383
279
         397
280
         383
281
         384
282
         448
         (500 \text{ MHz}) \delta 16.47 \text{ (brs, 1H)}, 9.13 \text{ (s, 1H)}, 8.74 \text{ (s, 1H)}, 8.65 \text{ (s, 1H)}, 8.12 \text{ (s, 1H)}, 4.35-4.32 \text{ (t, 1H)}
283
         2H), 3.32 (s, 3H), 3.15–3.11 (m, 2H), 2.75 (t, 2H), 2.50 (t, 2H), 2.09–2.01 (m, 4H)
         (500 \text{ MHz}) \delta 16.50 \text{ (brs, 1H)}, 9.06 \text{ (s, 1H)}, 8.74 \text{ (s, 1H)}, 8.66 \text{ (s, 1H)}, 8.00 \text{ (s, 1H)}, 3.98-3.93 \text{ (m, 1H)}
284
         1H), 2.75 (t, 2H), 2.49 (m, 2H), 2.08 (m, 2H), 2.05 (m, 2H), 1.42–1.29 (m, 4H), 1.06–1.02 (m, 4H)
285
         307
286
         337
288
         395
289
         421
290
         399
291
         413
```

WO 2012/033548

```
292
                                     425
293
                                     439
294
                                     415
295
                                     431
296
                                     429
297
                                     445
298
                                     354
302
                                     446
303
                                     391
306
                                     495
307
                                     521
308
                                     394
309
                                     393
310
                                     419
311
                                     409
313
                                     321
314
                                     335 (ESI, M+H)
315
                                     399 (ESI, M-H)
317
                                     411 (ESI, M+H)
318
                                     428
                                     (500 \text{ MHz}) \delta 16.43 \text{ (brs, 1H)}, 9.13 \text{ (s, 1H)}, 8.75 \text{ (s, 1H)}, 8.66 \text{ (s, 1H)}, 8.12 \text{ (s, 1H)}, 4.18 \text{ (t, 2H)}, 2.75 \text{ (s, 1H)}, 8.12 \text{ (s, 1H)}, 4.18 \text{ (t, 2H)}, 2.75 \text{ (s, 1H)}, 8.12 \text{ (s, 1H)}, 8.12 \text{ (s, 1H)}, 4.18 \text{ (t, 2H)}, 2.75 \text{ (s, 1H)}, 8.12 \text{ (
319
                                     (t, 2H), 2.51 (t, 2H), 2.09 (m, 2H), 1.76–1.73 (m, 2H), 1.63 (m, 2H), 0.85 (t, 3H)
322
                                     415 (ESI, M+H)
323
                                     431 (ESI, M+H)
326
                                     350 (ESI, M+H)
327
                                     413
328
                                     395
329
                                     443
332
                                     387 (ESI, M+H)
334
                                     395 (ESI, M-H)
335
                                     399 (ESI, M+H)
337
                                     428
342
                                     393 (ESI, M-H)
343
                                     407 (ESI, M-H)
344
                                     421 (ESI, M-H)
                                     413 (ESI, M+H)
346
```

```
349
        513
350
        395
357
        399
358
        425
359
        413
        439
360
361
        385
362
        411
363
        415
364
        441
365
        429
366
        401
367
        427
368
        431
369
        457
370
        445
371
        417
372
        443
376
        431
377
        429 (ESI, M-H)
379
        347 (ESI, M+H)
        (500 \text{ MHz}) \delta 16.51 \text{ (brs, 1H)}, 8.07 \text{ (s, 1H)}, 7.42-7.52 \text{ (m, 5H)}, 4.66 \text{ (m, 1H)}, 4.06 \text{ (m, 2H)}, 3.25 \text{ (s, 1H)}
380
        6H), 2.98 (m, 2H), 2.45 (m, 2H), 1.19 (m, 2H)
382
        437 (ESI, (M+H)
383
        409 (ESI, M-H)
386
        399 (ESI, M+H)
387
        439 (ESI, M+H)
388
        456 (ESI, M-H)
390
        383 (ESI, M-H)
391
        413
393
        419
394
        415
395
        389
396
        417
```

462.9 (ESI, M+H)

419.0 (ESI, M+H)

```
401 389
```

WO 2012/033548

- 402 409
- 403 427
- 404 389
- 405 373
- 406 391
- 407 405
- 408 397 (ESI, M+H)
- 409 401
- 410 401
- 411 413
- 412 431
- 413 413
- 414 387

δ 8.15 (s, 1H), 7.62–7.56 (m, 2H), 7.52–7.46 (m, 3H), 4.32–4.25 (m, 1H), 4.13–4.04 (m, 1H), 3.73–

- 3.80 (m, 1H), 3.36–3.44 (m, 1H), 3.27–3.32 (m, 4H), 3.24 (s, 3H), 2.83–2.65 (m, 2H), 2.57–2.45 (m, 2H), 2.04–2.15 (m, 2H)
- 416 410 (ESI, M+H)
- 417 410 (ESI, M+H)
- 418 414 (ESI, M+H)
- 421 407
- 422 347 (ESI, M+H)
- 423 391
- 424 449
- 425 407
- 426 423
- 427 421
- 428 437
- 429 411 (ESI, M+H)
- 430 407
- 431 373 (ESI, M+H)
- 432 397
- 433 381
- 434 409
- 436 409 (ESI, M+H)
- 438 399 (ESI, M+H)
- 439 405
- 440 403 (ESI, M+H)

```
211
        404
441
442
        385
443
        373
444
        423
445
        373
        433
446
447
        399 (ESI, M+H)
448
        492 (ESI, M+H)
449
        429
452
        403 (ESI, M+H)
        δ 16.53 (s, 1H), 8.12 (s, 1H), 7.4–7.53 (m, 1H), 7.30–7.40 (m, 2H), 7.18–7.25 (m, 1H), 4.20–4.30
453
        (m, 2H), 3.74–3.81 (m, 1H), 3.58–3.63 (m, 1H), 3.38 (q, 1H), 2.7–2.75 (m, 2H), 2.45–2.55 (m, 2H),
        1.95-2.15 (m, 3H), 1.70-1.80 (m, 1H), 1.55-1.65 (m, 1H), 1.35-1.42 (m,1H)
454
        465
        437
455
        385
456
458
        463 (ESI, M+H)
459
        463 (ESI, M+H)
        δ 16.4 (s, 1H), 8.06 (s,1H), 7.6 (s+d, 2H) 7.3 (d, 1H), 3.9 (t, 2H), 2.7 (t, 2H), 2.5 (t, 2H), 2.0 (t, 2H),
460
        1.6 (m, 2H) 1.2 (m, 2H), 0.80 (t, 3H)
        \delta 16.4 (s, 1H), 8.06 (s, 1H), 7.2 (m, 2H) 6.9 (s, 1H), 3.9 (m, 2H), 3.85 (s, 3H), 2.7 (t, 2H), 2.4 (t, 2H),
461
        2.1 (t, 2H), 1.6 (m, 2H) 1.2 (m, 2H), 0.80 (t, 3H)
        \delta 16.4 (s, 1H), 8.1 (s,1 H), 8.05 (s, 1H), 7.5 (d, 1H), 7.4 (d, 1H), 7.3 (d, 1H), 4.1 (m, 2H), 3.6 (m,
462
        2H), 3.2 (s, 3H), 2.7 (t, 2H), 2.4 (t, 2H), 2.1 (t, 2H)
        \delta 16.4 (s, 1H), 8.09 (s, 1H), 7.5 (t, 1H), 7.4 (d, 1H), 7.3 (d, 1H), 4.17 (m, 2H), 3.59 (m, 2H), 3.24 (s,
463
        3H), 2.7 (t, 2H), 2.4 (t, 2H), 2.0 (t, 2H)
465
        415
        441
466
```

- 467 429
- 468 455
- 469 385
- 470 435
- 471 373
- 472 393 (ESI, M–H)
- 473 407 (ESI, M–H)
- 474 413 (ESI, M+H)
- 475 405 (AP, M–H)
- 476 421

- 478 412 (ESI, M–H)
- 479 365 (ESI, M+H)
- 480 375
- 481 385 (ESI, M+H)
- 482 388
- 483 413
- 484 431
- 485 401
- 486 419 (ESI, M+H)
- 487 349
- 488 387 (ESI, M+H)
- 489 359 (ESI, M–H)
- 491 347 (ESI, M+H)
- 492 363 (ESI, M+H)
- 493 363
- 494 347
- 495 397
- 496 412 (ESI, M+H)
- 499 387 (ESI, M+H)
- 500 357 (ESI, M-H)
- 501 370
- 502 368
- 504 365 (ESI, M+H)
- 505 377 (ESI, M–H)
- 506 411
- 509 412 (ESI, M–H)
- 510 465
- 513 359
- 515 421 (ESI, M+H)
- 516 368
- 517 373 (ESI, M–H)
- 518 423
- 519 363
- 520 449
- 521 419
- 522 384
- 523 393
- 525 423

213

526 347 (ESI, M–H)

- 527 393 (ESI, M–H)
- 528 410 (ESI, M+H)
- 530 443 (AP, M–H)
- 531 412 (ESI, M+H)
- 532 405 (ESI, M+H)
- 533 375 (ESI, M+H)
- 534 384
- 535 449
- 536 398
- 537 429 (ESI, M–H)
- δ 8.80 (s, 1H), 7.46–7.66 (m, 5H), 6.04 (m, 1H), 5.86–5.98 (m, 1H), 5.26 (m, 1H), 5.02 (m, 1H),
 4.62 (m, 2H), 2.69 (m, 2H), 2.42 (m, 2H), 2.12 (m, 2H).
 δ 8.78 (s, 1H), 7.49–7.57 (m, 5H), 6.03 (s, 1H), 4.28–4.39 (m, 2H), 3.94 (m, 1H), 3.59 (m, 1H), 3.33
- 59Q (m, 1H), 2.68 (m, 2H), 2.45 (m, 2H), 2.12 (m, 2H), 1.99 (m, 1H), 1.76 (m, 1H), 1.57–1.66 (m, 1H), 1.39 (m, 1H).
- δ 8.81 (s, 1H), 7.77 (m, 2H), 7.57 (m, 3H), 6.04 (s, 1H), 4.69 (m, 2H), 2.69 (m, 2H), 2.46 (m, 3H), 2.12 (m, 2H).
- 76Q 8.91 (s, 1H), 7.60 (m, 3H), 7.56 (m, 1H), 7.28 (dd, 2H), 6.35 (dd, 1H), 6.03 (s, 1H), 5.75 (d, 1H), 2.66 (t, 2H), 2.44 (m, 2H), 2.09 (m, 2H).
- δ 8.74 (s, 1H), 7.40 (m, 1H), 7.20 (m, 1H), 7.15 (m. 1H), 7.00 (s, 1H), 6.00 (s, 1H), 5.40 (s, 2H), 2.78 (m, 2H), 2.72 (m, 2H), 2.40 (m, 2H), 2.15 (m, 2H), 1.80 (m, 2H), 0.94 (m, 3H).
- (300 MHz) δ 8.57 (s, 1H), 5.98 (s, 1H), 4.25–4.19 (m, 2H), 2.67–2.63 (m, 2H), 2.45–2.41 (m, 2H), 2.13–1.92 (m, 3H), 1.86–1.78 (m, 2H), 1.42–1.37 (m, 2H), 1.26–1.20 (m, 2H), 1.07–1.02 (m, 3H). (500 MHz) δ 8.72 (s, 1H), 7.13-6.95 (m, 3H), 6.03 (s, 1H), 3.98 (d, 2H), 2.69 (td, 2H), 2.53-2.39 (m, 2H), 2.53–2.39 (m, 2H)
- 163Q 2H), 2.12 (quin, 2H), 1.75 (ddt, 1H), 1.66-1.57 (m, 3H), 1.50-1.43 (m, 2H), 1.19-0.99 (m, 3H), 0.77-0.66 (m, 2H).
- δ 8.86 (s., 1H), 7.07–7.32 (m, 4H), 6.80–7.06 (m, 4H), 6.04 (s., 1H), 3.78 (s, 3H), 2.67 (m, 2H), 2.44 (m, 2H), 2.27 (s, 3H), 2.11 (m, 2H).
- 257Q 8 8.60 (s, 1H), 6.00 (s, 1H), 4.40 (m, 2H), 3.15 (m, 2H), 2.66 (m, 2H), 2.44 (m, 2H), 2.15 (m, 2H), 1.85 (m, 6H).
- δ 8.88 (s, 1H), 7.31–7.36 (m, 3H), 7.19–7.26 (m, 3H), 7.14 (m, 1H), 6.98 (m, 1H), 6.89 (m, 1H), 6.04 (s, 1H), 2.68 (m, 2H), 2.45 (m, 2H), 2.29 (s, 3H), 2.10 (m, 2H)

- 89Q 381
- 163Q 381
- δ 8.87 (s, 1H), 7.31–7.37 (m, 3H), 7.22–7.27 (m, 3H), 7.02 (m, 1H), 6.45 (m, 1H), 6.36 (m, 1H), 6.04 (s, 1H), 3.77 (s, 1H), 3.64 (s, 1H), 2.68 (m, 2H), 2.44 (m, 2H), 2.10 (m, 2H) δ 8.86 (s, 1H), 7.48–7.46 (d, 1H), 7.35–7.31 (m, 1H), 7.20–7.13 (m, 2H), 6.83–6.78 (m, 1H), 6.68–
- 550Q 6.63 (m, 2H), 6.05–6.03 (s, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 2.71–2.65 (m, 2H), 2.48–2.43 (m, 2H), 2.15–2.07 (m, 2H)
- δ 8.87 (s, 1H), 7.34–7.43 (m, 3H), 7.25–7.31 (m, 2H), 6.41 (s, 1H), 6.28 (m, 2H), 6.04 (s, 1H), 3.69 (s, 6H), 2.66–2.70 (m, 2H), 2.48–2.42 (d, 2H), 2.06–2.15 (m, 2H)
- δ 8.86 (s, 1H), 7.25–7.19 (m, 1H), 7.17–7.02 (m, 3H), 6.82–6.78 (m, 1H), 6.68–6.63 (m, 2H), 6.04 (s, 1H), 3.87 (s, 3H), 3.78 (s, 3H), 2.71–2.65 (m, 2H), 2.48–2.42 (m, 2H), 2.16–2.07 (m, 2H)
- 23R δ 9.03 (s, 1H), 7.42–7.76 (m, 5H), 5.82–6.04 (m, 1H), 5.42 (m, 1H), 5.04 (m, 1H), 4.72 (m, 2H).
- δ 9.00 (s, 1H), 7.48–7.60 (m, 5H), 4.35 (m, 1H), 4.24–4.32 (m, 1H), 4.06 (m, 1H), 3.53–3.65 (m, 1H), 3.29–3.41 (m, 1H), 2.02 (m, 1H), 1.79 (m, 1H), 1.57–1.69 (m, 1H), 1.41 (m, 1H).
- 61R δ 13.02 (br s, 1H), 8.65 (s, 1H), 7.73 (m, 2H), 7.62 (m, 3H), 4.58 (m, 2H), 3.44 (m, 1H).
- δ 12.64 (br s, 1H), 9.11 (s, 1H), 7.66 (m, 3H), 7.56 (d, 1H), 7.33 (m, 2H), 6.39 (dd, 1H), 5.93 (d, 1H).
- 84R δ 13.00 (br s, 1H), 8.92 (s, 1H), 6.80 (d, 1H), 6.79 (s, 1H), 6.85 (d, 1H), 5.34 (s, 2H), 3.87 (d, 6H), 2.80 (m, 2H), 1.80 (m, 2H), 1.01 (t, 3H).

- $\frac{\delta 13.33 \text{ (s, 1H), 8.95 (s, 1H), 7.50 (d, 1H), 7.11 (d, 1H), 4.69 (m, 2H), 4.04 (s, 3H), 1.86 (m, 2H),}{1.01 \text{ (t, 3H)}}$
- $(300 \text{ MHz}), \delta 13.15 \text{ (br s, 1H)}, 8.76 \text{ (s, 1H)}, 4.31-4.25 \text{ (m, 2H)}, 2.04-1.99 \text{ (m, 1H)}, 1.90-1.80 \text{ (m, 2H)}, 1.45-1.41 \text{ (m, 2H)}, 1.31-1.25 \text{ (m, 2H)}, 1.09 \text{ (t, 3H)}.$
- 163R (500 MHz), δ 12.77 (br s, 1H), 7.19-6.94 (m, 3H), 4.08 (d, 2H), 1.86-1.52 9m, 4H), 1.44 (d, 2H), 1.22–0.95 (m, 3H), 0.82-0.63 (m, 2H).
- $\begin{array}{l} 8 \ 13.12 \ (br\ s,\ 1H),\ 8.95 \ (s,\ 1H),\ 7.59 \ (m,\ 3H),\ 7.46 \ (m,\ 2H),\ 4.09 \ (s,\ 1H),\ 3.08 \ (d,\ 2H),\ 2.69 \ (d,\ 2H), \\ 2.46 \ (m,\ 2H),\ 2.05 \ (m,\ 2H). \end{array}$
- $\begin{array}{l} 8 \text{ 13.12 (br s, 1H), 8.93 (s, 1H), 7.83 (m, 1H), 7.58 (m, 1H), 7.29 (m, 1H), 4.56 (m, 1H), 4.09 (m, 2H), 3.26 (m, 2H), 3.12 (m, 2H), 1.67 (m, 2H).} \end{array}$
- 212R δ 9.09 (s, 1H), 6.98–7.21 (m, 6H), 6.90 (d, 2H), 3.81 (s, 3H), 2.28 (s, 3H).
- δ 13.25 (br s, 1H), 8.93 (s, 1H), 7.67 (m, 2H), 7.48 (m, 2H), 4.06 (m, 1H), 3.28 (s, 1H), 2.68 (dd, 2H), 1.85 (d, 2H), 1.73 (d, 2H), 1.63 (m, 1H), 1.24 (m, 1H), 1.05 (m, 2H).
- δ 13.14 (br s, 1H), 9.03 (s, 1H), 8.05 (m, 2H), 7.96 (d, 2H), 7.65 (ddd, 2H), 7.56 (dd, 1H), 4.14 (m, 2H), 1.75 (m, 2H), 0.80 (t, 3H).

- 8 13.26 (br s, 1H), 8.96 (s, 1H), 7.57 (m, 3H), 7.46 (m, 2H), 4.45 (m, 1H), 2.32 (m, 2H), 1.99 (m, 247R 2H), 1.18 (m, 15H), 0.69 (m, 3H).
- 257R δ 13.00 (br s, 1H), 8.75 (s, 1H), 4.42 (m, 2H), 3.10 (m, 2H), 1.82 (m, 6H)
- 29R 321
- 31R 321
- 32R 321
- 35R 327
- 8 12.80 (m, 1H), 8.99 (s, 1H), 7.52 (m, 1H), 7.42 (m, 1H), 7.04 (m, 2H), 2.47 (m, 5H), 1.75 (m, 2H), 79R $0.89 \, (m, 3H)$
- δ 12.96 (s, 1H), 8.97 (s, 1H), 7.12–7.04 (m, 3H), 4.10–4.04 (m, 2H), 1.72–1.62 (m, 2H), 1.21–1.31 121R (m, 2H), 0.89–0.82 (m, 3H)
- 125R 291
- 130R 313
- δ 12.91–13.13 (bs, 1H), 8.98 (s, 1H), 7.62–7.57 (m, 1H), 7.56–7.49 (m, 2H), 7.43–7.39 (m, 1H), 146R 4.10-4.04 (m, 2H), 1.71-1.63 (m, 2H), 1.30-1.19 (m, 2H), 0.87-0.81 (m, 3H)
- 162R 343
- 189R 305
- 198R 335
- 8 12.84 (bs, 1H), 9.10 (s, 1H), 7.41–7.36 (m, 3H), 7.32–7.22 (m, 2H), 6.86–6.83 (m, 1H), 6.76–6.72 218R (m, 1H), 6.66–6.65 (m, 1H), 3.88 (s, 3H), 3.77 (s, 3H)
- 305 271R
- 8.97 (s, 1H), 7.61–7.49 (m, 5H), 4.58–4.48 (m, 1H), 4.31–4.24 (s, 1H), 3.57–3.52 (m, 1H), 3.32 (s, 336R 3H), 2.26–2.12 (m, 1H), 1.88–1.75 (m, 1H), 0.78–0.73 (m, 3H)
- 547R 12.70 (m, 1H), 9.09 (s, 1H), 7.06–7.11 (m, 2H), 6.81–6.98 (m, 5H), 3.84 (s, 3H)
- δ 9.09 (s, 1H), 7.49–7.47 (m, 1H), 7.38–7.34 (m, 1H), 7.23–7.16 (m, 2H), 6.88–6.84 (m, 1H), 6.74– 550R 6.70 (m, 1H), 6.68–6.65 (m, 1H), 3.89 (s, 3H), 3.80 (s, 3H)
- 551R 8 9.08 (s, 1H), 6.96–6.82 (m, 4H), 6.75–6.72 (m, 1H), 6.67–6.65 (m, 1H), 3.91 (s, 3H), 3.81 (s, 3H)
- δ 8.70 (s, 1H), 7.49–7.53 (m, 5H), 5.85–5.97 (m, 1H), 5.25 (m, 1H), 4.95 (m, 1H), 4.59 (m, 2H), 23S 4.41 (m, 2H), 1.40 (m, 3H).
- δ 8.68 (s, 1H), 7.46–7.55 (m, 5H), 4.40 (m, 2H), 4.28–4.35 (m, 2H), 3.88 (m, 1H), 3.58 (m, 1H), 59S 3.31 (m, 1H), 1.91–2.02 (m, 1H), 1.52-1.81 (m, 4H), 1.39 (m, 3H).
- 61S 8 8.72 (s, 1H), 7.76 (m, 2H), 7.55 (m, 3H), 4.66 (m, 2H), 4.42 (m, 2H), 2.41 (s, 1H), 1.42 (m, 3H).
- δ 8.62 (s, 1H), 6.81 (m, 2H), 6.70 (m, 1H), 5.29 (s, 2H), 4.39 (q, 2H), 3.86 (d, 6H), 2.76 (t, 2H), 1.73 84S (m, 2H), 1.40 (t, 3H), 0.98 (t, 3H).
- δ 8.64 (s, 1H), 7.42 (m, 1H), 7.20 (m, 1H), 7.18 (m, 1H), 7.00 (s, 1H), 5.34 (s, 2H), 4.39 (m, 2H), 105S 2.65 (m, 2H), 1.75 (m, 2H), 1.40 (m, 3H), 0.95 (t, 3H).
- 8 8.66 (s, 1H), 7.38 (m, 2H), 7.29 (m, 2H), 4.40 (m, 2H), 4.11 (m, 2H), 3.30 (t, 2H), 3.15 (s, 3H), 118S 2.43 (s, 3H), 1.93 (m, 2H), 1.40 (t, 3H).
- 135S 8.68 (s, 1H), 7.47 (d, 1H), 6.98 (d, 1H), 4.53 (m, 2H), 4.39 (q, 2H), 4.02 (s, 3H), 1.82 (m, 2H),

- 1.39 (t, 3H), 0.96 (t, 3H).

- δ 8.59 (s, 1H), 7.55 (m, 3H), 7.42 (m, 2H), 4.40 (q, 2H), 3.92 (m, 1H), 3.10 (d, 2H), 2.64 (d, 2H), 2.41 (m, 2H), 1.98 (m, 2H), 1.40 (t, 3H).
- $\frac{88.57 \text{ (s, 1H), 7.71 (m, 1H), 7.52 (m, 1H), 7.24 (m, 1H), 4.39 (m, 3H), 4.04 (d, 2H), 3.17 (m, 4H),}{1.58 (m, 3H), 1.39 (t, 3H).}$
- δ 8.80 (s, 1H), 7.14–7.25 (m, 1H), 6.95–7.18 (m, 5 H), 6.82–6.92 (m, 2H), 3.94 (s, 3H), 3.78 (s, 3H), 2.26 (s, 3H).
- δ 8.57 (s, 1H), 7.64 (m, 2H), 7.43 (m, 2H), 4.40 (q, 2H), 3.89 (m, 1H), 3.24 (s, 1H), 2.75 (dd, 2H), 1.78 (d, 2H), 1.63 (m, 3H), 1.55 (d, 1H), 1.39 (t, 3H), 0.99 (m, 2H).
- 242S 8.71 (s, 1H), 7.99 (m, 2H), 7.93 (d, 2H), 7.62 (m, 2H), 7.53 (dd, 1H), 4.42 (q, 2H), 4.01 (m, 2H), 1.71 (m, 2H), 1.42 (t, 3H), 0.75 (t, 3H).
- δ 8.60 (s, 1H), 7.51 (m, 3H), 7.42 (m, 2H), 4.39 (q, 2H), 4.12 (m, 1H), 2.32 (m, 2H), 1.98 (m, 2H), 1.39 (t, 3H), 1.18 (m, 12H), 1.02 (m, 3H), 0.66 (m, 3H).
- 257S δ 8.47 (s, 1H), 4.34 (m, 4H), 3.02 (m, 2H), 1.82 (m, 6H), 1.36 (m, 3H).
- 7S 273
- 9S 355
- 11S 355
- $\frac{\delta 8.80 \text{ (s, 1H), } 7.10-7.38 \text{ (m, 7H), } 6.91 \text{ (m, 1H), } 6.79 \text{ (m, 1H), } 4.39 \text{ (m, 2H), } 3.64 \text{ (s, 3H), } 1.38 \text{ (m, 3H)}}{3\text{H}}$
- 25S 355
- 35S 355
- 87S 285
- 89S 315
- 94S 329
- 101S 305
- δ 8.63 (s, 1H), 7.31 (m, 3H), 7.22 (m, 2H), 5.40 (s, 2H), 4.38 (m, 2H), 2.72 (m, 2H), 1.75 (m, 2H), 1.40 (m, 3H), 0.94 (m, 3H)
- $\begin{array}{l} 8\,8.62\,(s,\,1H),\,7.53-7.47\,(m,\,5H),\,4.53-4.45\,(m,\,3H),\,4.22-4.29\,(m,\,1H),\,3.51-3.46\,(m,\,1H),\,3.24\\ (s,\,3H),\,1.55-1.51\,(m,\,3H),\,1.42-1.36\,(m,\,3H) \end{array}$
- 130S 341
- 203S δ 8.78 (s, 1H), 7.06 (m, 1H), 7.00 (m, 4H), 6.83 (m, 2H), 3.93 (s, 3H), 3.78 (s, 3H)
- 206S 405
- $\begin{array}{l} \text{209S} & \delta \text{ ppm 8.84 (s, 1H), 7.54-7.53 (m, 1H), 7.40-7.48 (m, 1H), 7.18-7.24 (m, 3H), 7.18-7.14 (m, 1H), } \\ \text{7.00-7.10 (m, 2H), 3.94 (s, 3H), 2.10 (s, 3H)} \end{array}$
- δ 8.82–8.78 (m, 1H), 7.25–7.20 (m, 1H), 7.17–6.95 (m, 5H), 6.87–6.81 (m, 2H), 3.95–3.92 (m, 3H),

217

3.79–3.76 (m, 3H), 2.29–2.25 (m, 3H) 8.81 (s, 1H), 7.36–7.29 (m, 3H), 7.28–7.21 (m, 2H), 6.77–6.74 (m, 1H), 6.66–6.61 (m, 2H), 3.94 218S (s, 3H), 3.85 (s, 3H), 3.75 (s, 3H) 324S 315 337S 348 8 8.79 (s, 1H), 7.25–7.19 (m, 1H), 7.16–7.09 (m, 2H), 7.08–7.03 (m, 1H), 6.34 (s, 2H), 3.95 (s, 3H), 338S 3.82 (s, 3H), 3.71 (s, 6H) δ 8.71 (s, 1H), 7.51–7.59 (m, 3H), 7.44–7.48 (m, 2H), 4.06 (m, 2H), 3.95 (s, 3H), 3.80–3.85 (m, 2H), 356S 3.18–3.26 (m, 2H), 2.12–1.99 (m, 1H), 1.38–1.30 (m, 2H), 1.09–0.97 (m, 2H) 545S 389 546S 361 548S 355 549S 8 8.76 (s, 1H), 7.00–7.05 (m, 2H), 6.84–6.90 (m, 4H), 6.78 (m, 1H), 3.93 (s, 3H), 3.80 (s, 3H) δ ppm 8.78 (s, 1H), 7.46–7.44 (m, 1H), 7.28–7.35 (m, 1H), 7.10–7.18 (m, 2H), 6.78–6.75 (m, 1H), 550S 6.68–6.66 (m, 1H), 6.64–6.60 (m, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 3.77 (s, 3H) 8 8.77 (s, 1H), 6.94–6.86 (m, 2H), 6.83–6.76 (m, 2H), 6.68–6.62 (m, 2H), 3.94 (s, 3H), 3.86–3.89 551S (m, 3H), 3.81–3.77 (m, 3H) 8 8.80 (s, 1H), 7.43–7.30 (m, 3H), 7.29–7.20 (m, 2H), 6.39 (m, 1H), 6.27 (m, 2H), 3.93 (s, 3H), 3.68 552S (s, 6H)555S 338 8.80 (s, 1H), 7.24 (s, 1H), 7.01–7.15 (m, 3H), 6.78–6.74 (m, 1H), 6.61–6.68 (m, 2H), 3.93 (s, 3H), 556S 3.85 (s, 3H), 3.76 (s, 3H), 2.26 (s, 3H) 8 8.78 (s, 1H), 7.26–7.19 (m, 1H), 7.18–7.13 (m, 2H), 6.43–6.40 (m, 1H), 6.29–6.26 (m, 2H), 3.93 557S (s, 3H), 3.69 (s, 6H)558S 345 ^a Mass spectra are reported as the molecular weight of the highest isotopic abundance parent ion (M+1) formed by addition of H⁺ (molecular weight of 1) to the molecule, observed by mass spectrometry using

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5

10

Seeds of barnyardgrass (*Echinochloa crus-galli*), large crabgrass (*Digitaria sanguinalis*), giant foxtail (*Setaria faberii*), morningglory (*Ipomoea spp.*), pigweed (*Amaranthus retroflexus*), velvetleaf (*Abutilon theophrasti*), wheat (*Triticum aestivum*) and corn (*Zea mays*) were planted into a blend of loam soil and sand and treated preemergence

Mass spectra are reported as the molecular weight of the highest isotopic abundance parent ion (M+1) formed by addition of H⁺ (molecular weight of 1) to the molecule, observed by mass spectrometry using atmospheric pressure chemical ionization (AP⁺) unless otherwise noted. b 1H NMR data are reported in CDCl₃ at 400 MHz unless otherwise noted; s means singlet, br s means broad singlet, d means doublet, dd means doublet of doublet of doublet of doublet of doublet of triplets, t means triplet, td means triplet of doublets, q means quartet, quin means quintet and sxt means sextet.

218

with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time these species were also treated with postemergence applications of test compounds formulated in the same manner.

Plants ranged in height from two to ten cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately ten days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

	Table A	Compound					Tabl	e A		Co	mpou:	nd			
	1000 g ai/ha	217					1000	g a	i/ha		2	17			
	Postemergence						Post	emer	genc	е					
	Barnyardgrass	90				1	Morn	ingg	lory		1	00			
	Corn	40					Pigw	eed			1	00			
	Crabgrass, Lar	ge 100				,	Velv	etle	af		1	00			
	Foxtail, Giant	80				1	Whea	t				40			
10	Table A						Comp	pound	ds						
	500 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
	Postemergence														
	Barnyardgrass	60	100	90	100	70	100	100	90	100	90	90	80	40	60
	Corn	0	90	10	50	40	50	70	90	20	80	50	20	10	20
15	Crabgrass, Lar	rge 80	100	90	90	70	90	90	100	90	100	90	90	70	40
	Foxtail, Giant	40	100	60	90	60	100	90	100	90	90	80	90	70	70
	Morningglory	90	100	90	100	100	100	90	100	90	100	50	100	50	20
	Pigweed	80	100	100	100	100	100	100	100	100	100	100	100	90	70
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
20	Wheat	20	20	10	60	40	50	40	60	0	0	60	0	20	10
	Table A						Comp	pound	ds						
	500 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Postemergence														
	Barnyardgrass	70	90	70	10	10	70	60	70	90	80	90	90	90	30
25	Corn	10	20	10	10	0	40	0	30	20	20	30	0	10	0
	Crabgrass, Lar	rge 70	80	20	10	10	80	60	90	90	90	100	80	90	60
	Foxtail, Giant	30	90	50	0	0	80	50	90	90	90	90	80	90	40
	Morningglory	70	100	60	10	0	100	100	100	90	80	70	10	90	50
	Pigweed	100	100	100	50	50	100	100	100	100	100	100	100	100	80
30	Velvetleaf	100	100	100	70	70	100	100	100	100	100	100	100	100	-

	Wheat	10	50	0	0	0	0	0	30	0	0	0	0	0	0
	Table A						Comp	ound	ds						
	500 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	Postemergence														
5	Barnyardgrass	80	80	100	100	60	100	90	90	90	90	90	90	90	100
	Corn	20	10	20	30	10	60	40	60	40	50	10	30	50	40
	Crabgrass, Large	90	90	100	100	80	100	100	100	90	100	70	80	90	90
	Foxtail, Giant	90	90	100	100	80	100	90	90	90	100	80	70	80	90
	Morningglory	70	100	90	100	80	100	100	100	90	100	70	80	80	90
10	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	30	20	30	0	0	0	40	0	0	0	0	0	20
	Table A						Comp	oound	ds						
	500 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
15	Postemergence														
	Barnyardgrass	100	90	100	90	90	100	90	90	100	60	70	90	90	90
	Corn	20	20	70	30	20	30	80	70	80	10	10	50	40	20
	Crabgrass, Large	90	90	100	100	90	90	100	100	100	70	90	90	90	90
	Foxtail, Giant	90	90	100	100	80	90	90	100	90	60	60	90	90	90
20	Morningglory	100	70	100	100	100	80	100	100	100	100	90	100	60	100
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	40	0	0	20	0	0	0	40	50	0	0	0	10	0
	Table A						Comp	oound	ds						
25	500 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
	Postemergence														
	Barnyardgrass	90	90	90	90	90	90	50	90	90	90	100	80	60	90
	Corn	30	10	10	70	50	60	0	60	10	10	40	20	20	10
	Crabgrass, Large	100	100	90	90	90	90	60	90	90	100	100	90	80	90
30	Foxtail, Giant	90	90	80	90	80	80	40	80	60	70	90	90	60	60
	Morningglory	100	90	100	100	100	100	60	90	100	90	100	100	100	90
	Pigweed	100	100	100	100	100	100	60	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100		100	100		100	100	100	100	100
	Wheat	10	50	0	20	0	30	0	0	30	0	10	0	0	0
35	Table A						Comp	oound	ds						
	500 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Postemergence														

	Barnyardgrass	90	90	90	80	90	70	90	80	100	70	90	10	90	90
	Corn	60	20	50	20	20	20	60	50	70	20	30	20	80	50
	Crabgrass, Large	90	90	90	90	80	70	90	90	90	90	90	10	90	90
	Foxtail, Giant	90	80	90	70	70	50	80	90	90	80	90	0	90	90
5	Morningglory	100	100	100	90	100	100	100	100	100	100	100	90	100	90
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	50	20	50	10	0	0	50	0	30	0	0	0	40	50
	Table A						Comp	pound	ds						
10	500 g ai/ha	87	88	89	90	91	92	93	94	95	96	97	98	99	100
	Postemergence														
	Barnyardgrass	90	90	90	90	100	90	90	90	90	90	90	90	90	90
	Corn	50	60	10	20	10	20	30	10	10	20	80	60	20	0
	Crabgrass, Large	90	90	100	90	100	90	100	90	90	100	100	100	100	90
15	Foxtail, Giant	90	90	90	80	80	90	90	80	90	90	80	90	90	90
	Morningglory	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
				0.0		^	^	^	^	^	20	20	20	^	2.0
	Wheat	60	0	20	40	50	0	0	0	0	20	20	20	0	30
20	Wheat Table A	60	0	20	40	50		pound		U	20	20	20	U	30
20			102				Comp	pound	ds		110				
20	Table A						Comp	pound	ds						
20	Table A 500 g ai/ha						Comp	pound	ds						
20	Table A 500 g ai/ha Postemergence	101	102	103	104	105	Comp	pound 107	ds 108	109	110	111	112	113	114
20	Table A 500 g ai/ha Postemergence Barnyardgrass	101 90 10	102	103	104	105 50	Comp 106 50	90 107	ds 108 90	109	110	111 90	112 90 20	113	114
	Table A 500 g ai/ha Postemergence Barnyardgrass Corn	101 90 10	102 90 20	103 60 20	104	105 50 10	Comp 106 50 10	90 50	ds 108 90 40	109 90 30	110 90 10	111 90 30	112 90 20 90	113 90 60	114 90 50
	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large	101 90 10 90 80	102 90 20 100	103 60 20 40 20	104 40 0 0	105 50 10 70 20	Comp 106 50 10 70 60	90 90 50 90	ds 108 90 40 90	109 90 30 100 90	110 90 10 90	111 90 30 90	90 20 90 80	113 90 60 100	114 90 50 90
	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant	101 90 10 90 80 70	102 90 20 100 90	103 60 20 40 20	104 40 0 0 0	105 50 10 70 20 80	Comp 106 50 10 70 60	90 50 90 90	108 108 90 40 90 90	109 90 30 100 90	110 90 10 90 50	1111 90 30 90 90	90 20 90 80 100	113 90 60 100 100	114 90 50 90 80 100
	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory	101 90 10 90 80 70	90 20 100 90	103 60 20 40 20 100	104 40 0 0 0 100	105 50 10 70 20 80 100	Comp 106 50 10 70 60 100	90 50 90 100	90 40 90 100	109 90 30 100 90 100	110 90 10 90 50	90 30 90 90 100	90 20 90 80 100	90 60 100 100 100	114 90 50 90 80 100
	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed	101 90 10 90 80 70	90 20 100 90 100	103 60 20 40 20 100	104 40 0 0 0 100	105 50 10 70 20 80 100	Comp 106 50 10 70 60 100	90 50 90 100	90 40 90 100	109 90 30 100 90 100	90 10 90 50 100	90 30 90 90 100	90 20 90 80 100	90 60 100 100 100	114 90 50 90 80 100
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	101 90 10 90 80 70 100	90 20 100 90 100 100	103 60 20 40 20 100 100	104 40 0 0 100 100	105 50 10 70 20 80 100	Comp 106 50 10 70 60 100 100	90 50 90 100 100	90 40 90 100 100	109 90 30 100 90 100 100	90 10 90 50 100 100	90 30 90 90 100 100	90 20 90 80 100 100	113 90 60 100 100 100	90 50 90 80 100 100
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat	101 90 10 90 80 70 100 100	90 20 100 90 100 100	103 60 20 40 20 100 100	104 40 0 0 100 100 80	105 50 10 70 20 80 100 100	Comp 106 50 10 70 60 100 100 0	90 50 90 100 100 100	ds 108 90 40 90 100 100 0	109 90 30 100 90 100 100	110 90 10 90 50 100 100 0	90 30 90 100 100 100	90 20 90 80 100 100 100	113 90 60 100 100 100 100 60	114 90 50 90 80 100 100 0
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A	101 90 10 90 80 70 100 100	90 20 100 90 100 100 100	103 60 20 40 20 100 100	104 40 0 0 100 100 80	105 50 10 70 20 80 100 100	Comp 106 50 10 70 60 100 100 0	90 50 90 100 100 100	ds 108 90 40 90 100 100 0	109 90 30 100 90 100 100	110 90 10 90 50 100 100 0	90 30 90 100 100 100	90 20 90 80 100 100 100	113 90 60 100 100 100 100 60	114 90 50 90 80 100 100
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 500 g ai/ha	101 90 10 90 80 70 100 0	90 20 100 90 100 100 100	103 60 20 40 20 100 100	104 40 0 0 100 100 80	105 50 10 70 20 80 100 100	Comp 106 50 10 70 60 100 100 0 Comp 120	90 50 90 100 100 100	ds 108 90 40 90 100 100 0	109 90 30 100 90 100 100	110 90 10 90 50 100 100 0	90 30 90 100 100 100	90 20 90 80 100 100 100	113 90 60 100 100 100 60	114 90 50 90 80 100 100
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 500 g ai/ha Postemergence	101 90 10 90 80 70 100 0	90 20 100 90 100 100 100	103 60 20 40 20 100 100 0	104 40 0 0 100 100 80 0	105 50 10 70 20 80 100 100 0	Comp 106 50 10 70 60 100 100 0 Comp 120	90 90 90 90 100 100 100 121	ds 108 90 40 90 100 100 0 ds 122	109 90 30 100 90 100 100 0	110 90 10 90 50 100 100 0	90 30 90 100 100 100 125	90 20 90 80 100 100 100	113 90 60 100 100 100 60	90 50 90 80 100 100 0
25	Table A 500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 500 g ai/ha Postemergence Barnyardgrass	101 90 10 90 80 70 100 100 0	90 20 100 90 100 100 100 116	103 60 20 40 20 100 100 100 0	104 40 0 0 100 100 80 0	105 50 10 70 20 80 100 100 0	Comp 106 50 100 70 60 100 100 0 Comp 120	90 50 90 90 100 100 100 121	ds 108 90 40 90 100 100 0 ds 122 80	109 90 30 100 90 100 100 0	110 90 10 90 50 100 100 0	90 30 90 90 100 100 0	90 20 90 80 100 100 100 126	113 90 60 100 100 100 60 127	90 50 90 80 100 100 0

	Morningglory	100	100	100	100	100	100	100	100	100	100	80	100	100	100	
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Wheat	0	0	30	10	60	70	60	50	20	0	10	20	0	20	
5	Table A						Comp	oound	ds							
	500 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143	
	Postemergence															
	Barnyardgrass	100	100	90	90	90	60	30	80	90	80	90	90	90	90	
	Corn	50	50	30	40	40	20	0	0	20	40	20	30	20	20	
10	Crabgrass, Large	90	100	90	70	100	80	70	90	90	80	90	90	90	90	
	Foxtail, Giant	90	90	90	70	90	70	0	50	90	80	90	90	80	80	
	Morningglory	100	100	100	90	70	60	90	100	100	100	100	100	100	100	
	Pigweed	100	100	100	90	100	80	90	100	100	100	100	100	100	90	
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
15	Wheat	20	30	0	30	40	0	0	0	20	40	0	0	20	10	
	Table A						Comp	oound	ds							
	500 g ai/ha	144	145	146	147	148	149	150	151	152	153	154	155	156	157	
	Postemergence															
	Barnyardgrass	100	100	100	90	100	90	80	90	100	90	90	100	90	100	
20	Corn	30	40	30	30	60	30	0	10	50	20	10	40	20	30	
	Crabgrass, Large	90	90	90	90	90	70	50	70	100	90	100	90	80	100	
	Foxtail, Giant	90	80	90	80	90	80	70	70	100	80	90	90	90	100	
	Morningglory	70	90	90	100	100	100	100	100	100	60	70	100	100	30	
	Pigweed	90	100	100	100	100	100	60	100	100	100	100	100	100	100	
25	Velvetleaf	100	100	100	100	100	100	90	100	100	100	100	100	100	100	
	Wheat	0	0	50	60	0	50	20	20	70	10	0	30	20	0	
	Table A						Comp	oound	ds							
	500 g ai/ha	158	159	160	161	162	163	164	165	166	167	168	169	170	171	
	Postemergence															
30	Barnyardgrass	90	100	100	90	100	100	100	80	100	100	100	100	90	90	
	Corn	50	70	60	10	50	20	50	30	40	30	30	30	30	40	
	Crabgrass, Large	100	90	90	90	100	90	100	50	90	90	90	100	90	90	
	Foxtail, Giant	90	100	80	90	100	50	100	30	90	90	90	100	80	90	
	Morningglory	100	100	100	100	100	100	100	100	-	100	100	100	100	100	
35	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Wheat	50	60	50	0	50	0	20	0	0	0	50	20	20	50	

	Table A						Comp	pound	ds						
	500 g ai/ha	172	173	174	175	176	177	178	179	180	181	182	183	184	185
	Postemergence														
	Barnyardgrass	90	100	100	100	90	100	90	90	100	100	90	90	100	90
5	Corn	30	20	20	20	10	0	70	80	40	50	20	80	80	50
	Crabgrass, Large	80	90	90	80	60	70	80	100	100	90	90	100	100	70
	Foxtail, Giant	90	90	60	80	70	40	80	90	100	100	80	100	100	80
	Morningglory	100	100	60	80	50	10	100	100	100	100	100	70	100	100
	Pigweed	100	100	100	100	100	100	80	100	100	100	100	100	100	100
10	Velvetleaf	100	100	100	100	90	100	100	100	100	100	100	100	100	100
	Wheat	20	60	0	0	0	0	30	80	30	60	50	80	50	0
	Table A						Comp	pound	ds						
	500 g ai/ha	186	187	188	189	190	191	192	193	194	195	196	197	198	199
	Postemergence														
15	Barnyardgrass	90	100	90	90	100	100	90	100	100	90	90	100	100	100
	Corn	60	50	10	40	0	50	40	40	10	20	40	50	30	50
	Crabgrass, Large	90	100	90	90	90	100	80	100	90	90	90	100	100	100
	Foxtail, Giant	90	90	80	90	90	100	70	100	50	70	100	100	90	100
	Morningglory	100	100	100	100	100	100	70	100	100	_	100	100	100	100
20	Pigweed	100	100	100	100	100	90	80	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	0	50	0	70	0	0	30	0	0	10
	Table A						Comp	pound	ds						
	500 g ai/ha	200	202	203	204	205	206	207	208	209	210	211	212	213	214
25	Postemergence														
	Barnyardgrass	10	100	100	100	100	100	90	90	100	90	100	100	100	90
	Corn	0	30	30	10	20	0	30	20	40	0	20	0	20	30
	Crabgrass, Large	10	100	70	100	90	100	90	80	100	30	80	30	50	90
	Foxtail, Giant	10	100	80	100	90	90	90	80	100	70	80	40	40	90
30	Morningglory	60	100	100	100	100	100	80	100	100	100	100	100	100	100
	Pigweed	80	100	100	100	100	100	100	90	100	100	90	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	70	70	70	60	100
	Wheat	0	50	30	40	10	0	0	10	0	10	0	0	0	20
	Table A						Comp	pound	ds						
35	500 g ai/ha	215	216	218	219	220	221	222	223	224	225	226	227	228	229
	Postemergence														
	Barnyardgrass	100	90	90	90	90	20	80	50	90	100	90	90	90	100

	Corn	30	0	70	30	30	20	0	20	50	50	60	60	90	40
	Crabgrass, Large	70	80	70	100	90	20	30	60	100	100	100	100	100	100
	Foxtail, Giant	80	70	70	90	60	10	40	70	100	90	90	90	90	100
	Morningglory	100	90	100	100	100	20	40	80	100	100	100	100	100	100
5	Pigweed	100	90	100	100	100	70	70	70	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	80	90	80	100	100	100	100	100	100
	Wheat	0	30	0	30	20	0	0	0	60	40	50	0	20	20
	Table A						Comp	pound	ds						
	500 g ai/ha	230	231	232	233	234	235	236	237	238	239	240	241	242	243
10	Postemergence														
	Barnyardgrass	90	90	90	90	100	100	90	100	100	90	100	90	90	100
	Corn	20	40	60	80	50	90	50	80	80	30	80	50	20	90
	Crabgrass, Large	90	70	60	90	90	100	90	100	100	90	100	70	60	90
	Foxtail, Giant	50	80	90	90	90	100	90	100	100	80	100	90	80	100
15	Morningglory	90	100	100	100	100	100	100	100	100	100	100	100	100	100
	Pigweed	90	90	90	100	90	100	100	100	100	90	100	80	30	100
	Velvetleaf	100	100	80	100	100	100	100	100	100	100	100	100	90	100
	Wheat	0	0	50	60	20	80	40	70	80	0	40	60	30	90
	Table A					С	ompou	ınds							
20	500 g ai/ha	244	245	246	247	248	249	250	251	252	253	254	255	256	
	Postemergence														
	Barnyardgrass	100	100	100	80	100	100	100	100	90	100	90	100	90	
	Corn	80	90	90	30	30	20	70	20	10	40	10	70	10	
	Crabgrass, Large	90	90	100	70	80	100	100	90	60	100	70	100	80	
25	Foxtail, Giant	90	100	100	30	100	90	100	90	60	100	50	90	70	
	Morningglory	100	100	100	100	100	100	100	100	100	100	50	100	80	
	Pigweed	100	100	100	90	90	100	100	80	90	100	90	100	100	
	Velvetleaf	100	100	100	100	100	100	100	100	90	100	90	100	100	
	Wheat	70	80	50	0	0	50	20	10	10	20	0	50	0	
30	Table A						Comp	pound	ds						
	125 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
	Postemergence														
	Barnyardgrass	20	100	50	90	30	90	80	90	40	90	30	30	10	20
	Corn	0	30	0	10	0	10	10	30	0	40	0	0	0	0
35	Crabgrass, Large	50	90	90	70	50	80	70	90	50	90	30	30	20	10
	Foxtail, Giant	10	90	30	80	40	90	80	90	70	90	30	30	10	30
	Morningglory	70	90	80	100	100	90	80	100	90	100	0	20	10	10

	Pigweed	70	100	100	100	80	100	100	100	90	100	80	80	60	50
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	70
	Wheat	10	0	0	0	0	10	0	40	0	0	10	0	0	0
	Table A						Comp	pound	ds						
5	125 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Postemergence														
	Barnyardgrass	10	20	0	0	0	10	10	10	30	30	50	30	20	10
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	10	30	0	0	0	40	30	70	40	70	70	40	70	30
10	Foxtail, Giant	0	40	20	0	0	30	10	70	50	50	80	30	70	10
	Morningglory	20	40	0	0	0	30	50	70	50	50	60	0	60	30
	Pigweed	80	100	80	10	0	80	80	90	80	90	100	100	80	70
	Velvetleaf	100	100	100	20	30	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	Table A						Comp	pound	ds						
	125 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	Postemergence														
	Barnyardgrass	10	20	80	90	10	90	50	60	60	90	50	60	70	90
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Crabgrass, Large	50	50	70	90	50	80	70	60	80	90	20	60	70	80
	Foxtail, Giant	70	30	60	90	40	80	70	50	80	90	20	40	60	80
	Morningglory	20	50	80	80	-	50	80	100	80	50	10	80	20	80
	Pigweed	70	100	90	100	80	90	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
25	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
	Postemergence														
	Barnyardgrass	90	80	90	80	60	90	90	90	90	10	50	90	70	50
30	Corn	0	0	0	0	0	0	0	0	0	0	0	10	0	0
	Crabgrass, Large	60	70	90	90	90	90	90	90	90	40	70	80	80	80
	Foxtail, Giant	50	60	90	90	50	90	90	90	90	10	20	80	80	70
	Morningglory	80	60	80	90	100	80	100	100	100	40	90	90	50	80
	Pigweed	90	80	90	100	100	100	100	90	100	100	90	90	90	100
35	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	0	0	0	0	30	0	0	0	0	0

	Table A						Comp	pound	ds						
	125 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
	Postemergence														
	Barnyardgrass	90	60	70	80	70	50	10	80	70	80	90	50	0	80
5	Corn	10	0	0	30	10	0	0	_	_	0	20	0	0	0
	Crabgrass, Large	90	90	80	70	80	80	30	70	60	80	80	50	30	80
	Foxtail, Giant	80	80	50	70	60	60	10	70	30	50	80	50	20	40
	Morningglory	100	60	100	100	100	90	50	90	100	90	100	100	80	90
	Pigweed	100	100	100	90	90	90	20	100	100	100	100	100	70	80
10	Velvetleaf	100	100	100	100	100	100	90	100	100	100	100	100	100	100
	Wheat	0	20	0	0	0	0	0	0	20	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Postemergence														
15	Barnyardgrass	70	80	80	50	80	50	80	30	100	10	70	0	90	90
	Corn	30	0	0	0	0	0	10	0	10	0	0	0	10	0
	Crabgrass, Large	90	90	90	70	60	30	80	70	90	40	80	0	90	90
	Foxtail, Giant	80	40	80	40	50	20	50	70	80	10	70	0	70	80
	Morningglory	100	90	90	90	90	70	100	100	90	90	100	90	100	90
20	Pigweed	100	100	100	90	100	100	100	100	100	90	90	100	100	100
	Velvetleaf	100	90	100	100	100	100	100	100	100	100	100	70	100	100
	Wheat	10	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	87	88	89	90	91	92	93	94	95	96	97	98	99	100
25	Postemergence														
	Barnyardgrass	80	80	90	80	90	80	90	90	80	90	90	80	90	80
	Corn	10	0	0	0	0	0	10	0	0	0	50	0	0	0
	Crabgrass, Large	90	90	90	80	90	90	90	80	90	90	80	90	90	80
	Foxtail, Giant	70	60	60	70	80	80	80	30	70	70	60	70	80	80
30	Morningglory	90	90	100	100	100	100	100	100	100	100	100	100	100	90
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	90
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	30	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
35	125 g ai/ha	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	Postemergence														
	Barnyardgrass	80	80	30	10	20	10	90	90	80	60	90	60	70	70

	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	10
	Crabgrass, Large	90	90	10	0	20	40	80	90	90	80	90	80	100	80
	Foxtail, Giant	60	80	0	0	0	20	70	60	70	10	60	70	90	60
	Morningglory	60	100	100	70	10	100	100	100	90	90	100	90	100	90
5	Pigweed	90	100	100	100	90	80	100	100	100	90	100	90	100	100
	Velvetleaf	100	100	100	70	100	100	100	100	100	90	100	100	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	115	116	117	118	119	120	121	122	123	124	125	126	127	128
10	Postemergence														
	Barnyardgrass	70	80	80	90	80	90	80	60	80	40	70	80	80	100
	Corn	0	0	20	0	0	10	0	0	20	0	0	10	20	20
	Crabgrass, Large	60	60	80	90	80	90	80	70	80	70	70	90	80	90
	Foxtail, Giant	50	60	70	80	70	80	90	70	70	50	70	70	70	90
15	Morningglory	90	100	100	100	90	100	100	90	100	100	80	100	90	100
	Pigweed	100	100	100	100	100	90	100	100	100	90	90	90	90	100
	Velvetleaf	100	70	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	50	20	30	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
20	125 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143
	Postemergence														
	Barnyardgrass	90	100	90	10	20	10	10	30	90	60	90	90	70	70
	Corn	20	10	0	0	10	0	0	0	20	20	0	20	0	10
	Crabgrass, Large	90	70	90	20	40	50	40	80	70	70	90	80	70	70
25	Foxtail, Giant	90	80	80	0	20	40	0	30	60	50	80	80	30	60
	Morningglory	100	100	100	90	40	0	70	100	50	100	100	70	100	90
	Pigweed	100	100	100	60	80	70	80	80	100	90	90	90	90	70
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	20	0	0	0	0	20	0	0	0	0
30	Table A						Comp	poun	ds						
	125 g ai/ha	144	145	146	147	148	149	150	151	152	153	154	155	156	157
	Postemergence														
	Barnyardgrass	70	70	100	80	90	70	40	60	100	80	90	90	90	90
	Corn	0	30	20	20	0	0	0	0	0	0	0	20	20	0
35	Crabgrass, Large	50	70	80	80	70	40	20	30	90	90	70	70	70	80
	Foxtail, Giant	40	60	70	70	60	60	40	20	80	70	60	80	80	90
	Morningglory	30	90	90	100	100	100	100	40	100	50	30	100	100	10

	Pigweed	80	100	100	100	90	70	20	100	100	100	60	100	100	90	
	Velvetleaf		100	100	100	100	100	50	100	100	100	100			100	
	Wheat	0	0	20	20	0	20	0	0	20	0	0	0	0	0	
	Table A						Comp	ound	ds							
5	125 g ai/ha	158	159	160	161	162	163	164	165	166	167	168	169	170	171	
	Postemergence															
	Barnyardgrass	90	90	90	30	100	50	100	0	80	60	30	90	40	50	
	Corn	10	0	20	0	0	0	10	0	30	30	20	0	20	30	
	Crabgrass, Large	70	90	90	60	80	60	90	20	40	60	50	90	60	60	
10	Foxtail, Giant	70	90	70	40	70	20	100	20	60	90	50	80	50	60	
	Morningglory	70	100	100	60	100	10	100	50	100	60	100	100	100	100	
	Pigweed	100	100	100	80	100	80	100	80	70	90	100	100	80	100	
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Wheat	0	10	0	0	30	0	0	0	0	0	0	20	0	20	
15	Table A						Comp	ound	ds							
	125 g ai/ha	172	173	174	175	176	177	178	179	180	181	182	183	184	185	
	Postemergence															
	Barnyardgrass	90	90	90	50	50	80	80	60	90	100	70	60	90	70	
	Corn	20	0	10	0	0	0	0	10	10	10	0	10	10	0	
20	Crabgrass, Large	60	70	70	40	10	30	50	60	90	90	80	80	80	50	
	Foxtail, Giant	60	70	20	30	10	0	50	40	70	100	50	80	90	50	
	Morningglory	90	100	30	10	0	0	50	60	40	30	100	40	50	100	
	Pigweed	100	100	100	100	100	100	60	90	100	100	80	100	100	90	
	Velvetleaf	100	100	100	100	80	90	90	100	100	100	100	100	100	90	
25	Wheat	0	0	0	0	0	0	0	40	0	30	0	50	0	0	
	Table A						Comp	oound	ds							
	125 g ai/ha	186	187	188	189	190	191	192	193	194	195	196	197	198	199	
	Postemergence															
	Barnyardgrass	80	90	70	90	90	90	60	90	90	70	80	80	70	90	
30	Corn	0	0	0	10	0	0	0	10	0	0	10	20	0	0	
	Crabgrass, Large	90	90	80	90	90	70	30	100	60	40	50	70	70	70	
	Foxtail, Giant	80	80	40	80	80	80	50	90	30	30	70	80	60	100	
	Morningglory	100	100	90	100	100	90	_	100	90	60	100	100	100	100	
	Pigweed	100	100	90	100	100	80	60	100	100	90	80	100	90	100	
35	Velvetleaf	100	100	100	100	100	100	70	100	100	100	100	100	100	100	
	Wheat	0	0	0	0	0	0	0	40	0	0	0	0	0	0	

South Corab Cora		Table A						Comp	pound	ds						
Barnyardgrass		125 g ai/ha	200	202	203	204	205	206	207	208	209	210	211	212	213	214
South Corab Cora		Postemergence														
Crabgrass, Large 10 70 30 60 60 60 60 30 50 10 40 10 20 88 Foxtail, Giant 0 80 30 30 40 50 60 30 60 10 50 0 10 50 60 80 80 80 80 90 90 100 80 60 90 70 100 80 90 90 100 80 60 90 70 100 80 90 90 100 80 60 90 70 100 80 90 90 100 80 80 60 90 70 100 80 90 90 100 80 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90		Barnyardgrass	0	90	80	100	90	90	60	30	80	40	50	50	20	80
Foxtail, Giant	5	Corn	0	10	0	0	0	0	0	0	0	0	0	0	0	0
Morningglory		Crabgrass, Large	10	70	30	60	60	60	60	30	50	10	40	10	20	80
Pigweed 60 100 100 100 100 100 80 60 90 70 100 80 60 90 70 100 80 80 60 90 70 100 80 80 60 90 70 100 80 80 60 90 70 100 80 80 60 90 70 100 80 80 60 90 70 100 80 80 60 70 70 70 100 80 80 60 70 70 70 100 80 80 80 80 80 70 100 100 100 100 100 70 60 70 70 100 80 80 80 80 80 80 80 80 80 80 80 80 8		Foxtail, Giant	0	80	30	30	40	50	60	30	60	10	50	0	10	50
10 Velvetleaf		Morningglory	50	100	100	30	100	100	40	50	30	50	70	50	60	80
Table A Compounds Tompounds Table A Compounds Tompounds Tompounds Table A Compounds Tompounds Tompounds		Pigweed	60	100	100	100	90	90	100	80	60	90	70	100	80	90
Table A 215 216 218 219 220 221 222 223 224 225 226 227 228 227 228 228 Postemergence 15 Barnyardgrass 90 10 80 90 90 10 10 0 90 90 90 90 90 90 90 90 90 90 90 90	10	Velvetleaf	100	100	90	100	100	100	100	100	100	70	60	70	70	100
125 g ai/ha		Wheat	0	20	0	0	0	0	0	0	0	0	0	0	0	0
Postemergence 15 Barnyardgrass 90 10 80 90 90 10 10 0 90 90 90 90 90 90 90 90 90 90 90 90		Table A						Comp	pound	ds						
15 Barnyardgrass 90 10 80 90 90 10 10 0 90 90 90 90 90 90 90 90 90 90 90 90		125 g ai/ha	215	216	218	219	220	221	222	223	224	225	226	227	228	229
Corn O O O O O O O O O O O O O O O O O O O		Postemergence														
Crabgrass, Large 40 40 20 80 50 10 0 0 70 90 90 90 90 90 80 Foxtail, Giant 40 30 40 50 20 0 0 0 70 70 70 90 90 90 90 90 90 90 90 90 90 90 90 90	15	Barnyardgrass	90	10	80	90	90	10	10	0	90	90	90	90	90	90
Foxtail, Giant 40 30 40 50 20 0 0 0 70 70 90 90 90 90 90 90 90 90 90 90 90 90 90		Corn	0	0	0	0	0	0	0	0	10	10	10	10	50	0
Morningglory 100 70 80 100 100 10 30 60 100 100 100 100 100 100 100 100 100		Crabgrass, Large	40	40	20	80	50	10	0	0	70	90	90	90	90	80
Pigweed 90 90 100 100 100 40 40 50 100 100 100 100 100 100 100 100 100		Foxtail, Giant	40	30	40	50	20	0	0	0	70	70	90	90	90	90
Velvetleaf 100 90 100 100 100 80 60 50 100 100 100 100 100 100 100 100 100		Morningglory	100	70	80	100	100	10	30	60	100	100	100	100	100	100
Wheat 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	Pigweed	90	90	100	100	100	40	40	50	100	100	100	100	100	100
Table A Compounds 125 g ai/ha 230 231 232 233 234 235 236 237 238 239 240 241 242 24 25 Postemergence Barnyardgrass 70 70 60 90 80 90 90 100 100 90 100 90 50 10 Corn 0 10 60 20 80 20 40 40 30 40 20 0 7 Crabgrass, Large 80 50 20 90 40 100 80 80 90 80 90 50 20 9 Foxtail, Giant 30 60 60 90 70 90 70 90 90 70 90 80 50 10 Morningglory 70 90 100 100 100 100 100 100 100 100 100		Velvetleaf	100	90	100	100	100	80	60	50	100	100	100	100	100	100
125 g ai/ha 230 231 232 233 234 235 236 237 238 239 240 241 242 242 245 25 Postemergence Barnyardgrass 70 70 60 90 80 90 90 100 100 90 100 90 50 100 Corn 0 10 60 20 80 20 40 40 30 40 20 0 70 Crabgrass, Large 80 50 20 90 40 100 80 80 90 80 90 50 20 90 Foxtail, Giant 30 60 60 90 70 90 70 90 90 70 90 80 50 100 100 100 100 100 100 100 100 100		Wheat	0	20	0	0	0	0	0	0	0	0	0	0	0	0
25 Postemergence Barnyardgrass 70 70 60 90 80 90 90 100 100 90 100 90 50 10 Corn 0 10 60 20 80 20 40 40 30 40 20 0 70 Crabgrass, Large 80 50 20 90 40 100 80 80 90 80 90 50 20 90 Foxtail, Giant 30 60 60 90 70 90 70 90 90 70 90 80 50 10 Morningglory 70 90 100 100 100 100 100 100 100 100 100		Table A						Comp	pound	ds						
Barnyardgrass 70 70 60 90 80 90 100 100 90 100 90 50 100 Corn 0 0 10 60 20 80 20 40 40 30 40 20 0 70 Crabgrass, Large 80 50 20 90 40 100 80 80 90 80 90 50 20 90 Foxtail, Giant 30 60 60 90 70 90 70 90 90 70 90 80 50 100 100 100 100 100 100 100 100 100		125 g ai/ha	230	231	232	233	234	235	236	237	238	239	240	241	242	243
Corn 0 0 10 60 20 80 20 40 40 30 40 20 0 70 70 70 70 90 70 90 80 90 70 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 90 70 90 80 80 90 80 90 70 90 80 80 9	25	Postemergence														
Crabgrass, Large 80 50 20 90 40 100 80 80 90 80 90 50 20 90 50 50 50 50 50 50 50 50 50 50 50 50 50		Barnyardgrass	70	70	60	90	80	90	90	100	100	90	100	90	50	100
Foxtail, Giant 30 60 60 90 70 90 70 90 90 70 90 80 50 10 30 Morningglory 70 90 100 100 100 100 100 100 100 100 100		Corn	0	0	10	60	20	80	20	40	40	30	40	20	0	70
30 Morningglory 70 90 100 100 100 100 100 100 100 100 100		Crabgrass, Large	80	50	20	90	40	100	80	80	90	80	90	50	20	90
Pigweed 80 80 70 100 70 100 80 90 100 80 90 70 20 10		Foxtail, Giant	30	60	60	90	70	90	70	90	90	70	90	80	50	100
-	30	Morningglory	70	90	100	100	100	100	100	100	100	100	100	100	40	100
		Pigweed	80	80	70	100	70	100	80	90	100	80	90	70	20	100
Velvetleaf 100 90 70 100 100 100 100 100 100 100 100 50 10		Velvetleaf	100	90	70	100	100	100	100	100	100	100	100	100	50	100
Wheat 0 0 20 20 0 50 0 20 50 0 20 40 0 7		Wheat	0	0	20	20	0	50	0	20	50	0	20	40	0	70
Table A Compounds		Table A					С	ompou	ınds							
35 125 g ai/ha 244 245 246 247 248 249 250 251 252 253 254 255 256	35	125 g ai/ha	244	245	246	247	248	249	250	251	252	253	254	255	256	
Postemergence		Postemergence														
Barnyardgrass 90 90 70 30 90 90 50 80 80 100 0 90 40		Barnyardgrass	90	90	70	30	90	90	50	80	80	100	0	90	40	

	Corn	40	40	0	0	0	0	0	0	0	10	0	30	0	
	Crabgrass, Large	90	90	70	40	50	90	60	50	30	80	20	90	30	
	Foxtail, Giant	90	100	80	0	50	80	90	50	40	60	10	90	20	
	Morningglory	100	100	90	100	100	100	100	100	80	100	20	100	30	
5	Pigweed	100	100	90	70	80	90	100	70	70	90	60	90	90	
	Velvetleaf	100	100	100	100	100	100	100	100	70	100	50	100	100	
	Wheat	40	40	0	0	0	10	0	0	0	0	0	10	0	
	Table A Comp	oound				i	[abl	e A		Coi	mpou:	nd			
	1000 g ai/ha	217					1000	g a	i/ha		2	17			
	Preemergence						Pree	merg	ence						
	Barnyardgrass	80]	Morn	ingg	lory		,	70			
	Corn	0					Pigw	eed			1	00			
	Crabgrass, Large	100				,	Velv	etle	af		1	00			
	Foxtail, Giant	80				1	Whea	t				30			
	Table A						Comp	pound	ds						
	500 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
10	Preemergence														
	Barnyardgrass	10	70	60	70	10	80	100	90	70	70	90	70	90	70
	Corn	0	0	0	20	0	20	0	0	0	0	20	0	0	20
	Crabgrass, Large	70	100	80	90	40	100	100	100	90	90	100	90	90	70
	Foxtail, Giant	10	90	10	70	20	90	90	100	50	90	90	90	70	70
15	Morningglory	50	90	100	70	40	70	90	90	70	90	0	60	60	0
	Pigweed	100	100	100	90	80	90	100	100	100	100	100	100	90	50
	Velvetleaf	80	100	90	100	100	90	100	100	100	90	100	100	90	40
	Wheat	0	0	0	20	0	20	0	50	0	0	40	0	20	0
	Table A						Comp	pound	ds						
20	500 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Preemergence														
	Barnyardgrass	80	100	90	20	0	100	70	90	80	60	80	70	100	40
	Corn	0	20	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	100	80	30	20	90	90	100	100	90	90	60	100	60
25	Foxtail, Giant	20	90	30	20	10	80	20	100	90	70	90	30	100	10
	Morningglory	10	70	50	0	0	70	70	80	60	70	80	80	80	60
	Pigweed	90	100	90	-	70	90	70	100	80	100	90	100	100	80
	Velvetleaf	100	100	100	50	0	100	100	100	100	100	100	80	100	70

	Table A						Comp	oound	ds						
	500 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	Preemergence														
	Barnyardgrass	40	90	90	100	0	50	30	90	90	100	80	60	80	100
5	Corn	0	0	30	0	0	0	0	30	0	0	0	0	0	0
	Crabgrass, Large	90	90	100	100	60	80	50	100	90	100	80	90	100	90
	Foxtail, Giant	40	90	90	100	10	60	50	80	90	90	30	40	70	90
	Morningglory	50	80	50	60	20	30	30	70	60	80	20	50	10	70
	Pigweed	80	100	90	100	100	80	100	100	90	90	90	100	100	90
10	Velvetleaf	70	70	80	100	70	100	90	100	90	100	80	100	100	100
	Wheat	0	20	10	0	0	20	0	20	0	0	0	0	0	0
	Table A						Comp	oound	ds						
	500 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
	Preemergence														
15	Barnyardgrass	80	50	90	100	60	90	90	100	100	10	10	90	90	90
	Corn	0	0	0	0	0	0	0	10	0	0	0	0	0	0
	Crabgrass, Large	100	80	100	100	90	100	100	100	100	30	50	90	100	90
	Foxtail, Giant	80	60	90	90	50	80	100	100	100	0	0	90	90	80
	Morningglory	90	70	90	80	80	80	90	90	90	0	60	90	80	100
20	Pigweed	100	90	100	100	90	100	100	100	100	90	100	100	100	100
	Velvetleaf	100	70	100	100	90	90	90	100	90	70	60	100	100	100
	Wheat	20	20	0	0	0	0	0	0	10	0	0	0	0	0
	Table A						Comp	oound	ds						
	500 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
25	Preemergence														
	Barnyardgrass	90	90	90	90	90	90	10	70	40	50	60	10	0	60
	Corn	0	10	0	20	0	0	0	0	0	0	0	0	0	20
	Crabgrass, Large	100	100	100	90	100	90	80	100	90	100	100	90	50	100
	Foxtail, Giant	80	90	60	70	80	70	40	80	50	60	70	60	10	30
30	Morningglory	90	80	80	100	70	0	0	30	50	50	50	10	0	70
	Pigweed	100	100	90	100	100	100	0	100	90	100	100	100	90	90
	Velvetleaf	100	100	100	90	90	90	50	100	80	100	100	80	70	100
	Wheat	0	40	0	10	0	0	0	0	0	0	10	0	0	0
	Table A						Comp	oound	ds						
35	500 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Preemergence														
	Barnyardgrass	70	60	80	30	50	30	70	10	90	10	90	0	100	100

	Corn	0	0	0	0	0	0	0	0	0	0	20	0	10	_
	Crabgrass, Large	100	90	100	100	90	50	100	90	100	100	100	0	100	_
	Foxtail, Giant	70	40	70	30	20	10	50	60	80	40	90	0	90	100
	Morningglory	80	60	90	50	70	0	50	30	70	60	60	10	80	60
5	Pigweed	100	100	100	100	90	100	100	90	100	100	100	100	_	_
	Velvetleaf	100	90	100	70	100	50	100	100	100	90	100	40	-	100
	Wheat	30	0	0	20	0	0	30	0	20	0	30	0	40	-
	Table A						Comp	pound	ds						
	500 g ai/ha	87	88	89	90	91	92	93	94	95	96	97	98	99	100
10	Preemergence														
	Barnyardgrass	90	90	80	70	100	100	100	30	80	100	100	60	90	90
	Corn	0	0	0	0	0	0	0	0	0	10	0	0	0	0
	Crabgrass, Large	100	-	90	100	100	100	100	90	90	100	100	100	100	90
	Foxtail, Giant	80	100	70	60	70	80	80	40	60	80	90	80	80	80
15	Morningglory	80	70	70	70	80	80	90	40	90	80	80	80	80	80
	Pigweed	_	-	100	100	90	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	70	100	100	100	100	100	80
	Wheat	40	10	30	0	20	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
20	500 g ai/ha	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	Preemergence														
	Barnyardgrass	70	90	20	0	0	50	90	90	70	60	90	80	90	90
	Corn	0	0	0	0	0	0	-	0	0	0	0	0	-	0
	Crabgrass, Large	90	100	80	0	50	80	100	90	90	80	100	100	100	100
25	Foxtail, Giant	50	100	60	0	50	70	90	40	30	10	70	60	90	80
	Morningglory	80	80	60	0	-	80	100	90	70	70	80	80	80	80
	Pigweed	80	100	100	90	90	90	100	100	100	90	100	100	100	100
	Velvetleaf	100	100	90	40	70	60	100	90	100	70	100	70	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	20
30	Table A						Comp	pound	ds						
	500 g ai/ha	115	116	117	118	119	120	121	122	123	124	125	126	127	128
	Preemergence														
	Barnyardgrass	80	70	90	90	100	100	100	100	100	60	90	100	100	100
	Corn	0	0	20	0	30	30	30	0	30	0	0	20	0	0
35	Crabgrass, Large	80	70	100	90	100	100	100	100	100	90	100	100	100	100
	Foxtail, Giant	70	60	70	50	100	100	100	100	100	40	80	90	90	90
	Morningglory	80	40	90	70	90	90	70	80	-	80	0	90	80	-

	Pigweed	100	100	100	100	100	100	100	100	100	100	90	100	100	100	
	Velvetleaf	90	60	90	80	100				100				100		
	Wheat	0	0	20	0	60	70	50	40	20	0	0	20	0	30	
-	Table A						_	oound								
5	500 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143	
	Preemergence															
	Barnyardgrass	100		100			10	0	60	90		100	100	80	90	
	Corn	0	30	0	20	20	0	0	0	20	20	0	0	0	0	
	Crabgrass, Large	90	100	100	100	100	30	40	60	70	100	90	100	80	90	
10	Foxtail, Giant	80	90	80	90	80	30	0	0	70	70	90	80	20	70	
	Morningglory	90	80	80	30	0	30	50	60	0	80	50	30	50	70	
	Pigweed	100	100	100	80	100	60	80	100	90	100	100	100	100	90	
	Velvetleaf	90	90	100	80	100	70	70	100	80	90	100	100	60	100	
	Wheat	0	0	0	10	20	0	0	0	20	10	0	0	0	0	
15	Table A						Comp	oound	ds							
	500 g ai/ha	144	145	146	147	148	149	150	151	152	153	154	155	156	157	
	Preemergence															
	Barnyardgrass	20	90	100	100	30	50	0	100	100	80	40	90	80	50	
	Corn	0	20	30	0	0	20	0	0	30	20	0	30	20	0	
20	Crabgrass, Large	30	100	100	100	50	80	10	50	100	100	50	90	50	70	
	Foxtail, Giant	10	70	90	90	10	60	0	60	90	70	30	60	50	50	
	Morningglory	10	80	_	90	0	40	0	30	80	70	0	0	0	0	
	Pigweed	90	100	100	100	60	100	0	70	100	100	80	90	80	50	
	Velvetleaf	70	100	100	100	80	70	0	70	100	100	80	100	50	100	
25	Wheat	0	20	40	20	0	20	0	20	50	20	0	0	0	0	
	Table A						Comp	oound	ds							
	500 g ai/ha	158	159	160	161	162	163	164	165	166	167	168	169	170	171	
	Preemergence															
	Barnyardgrass	80	90	80	90	100	20	80	0	20	30	20	50	60	70	
30	Corn	20	40	20	0	0	0	0	0	0	0	0	20	0	20	
	Crabgrass, Large	100	100	100	90	100	10	90	0	70	90	80	40	70	100	
	Foxtail, Giant	80	90	70	80	90	10	70	0	20	50	70	50	70	80	
	Morningglory	80	50	_	40	80	0	50	0	0	0	70	20	70	60	
	Pigweed	100	100	100	100	100	60	100	0	40	90	50	50	50	80	
35	Velvetleaf		100	30		100	50	70	0	100	100	60	50	80	100	
	Wheat	10	20	20	0	50	0	0	0	0	0	0	0	20	40	

	Table A						Comp	pound	ds						
	500 g ai/ha	172	173	174	175	176	177	178	179	180	181	182	183	184	185
	Preemergence														
	Barnyardgrass	80	60	40	30	30	10	50	70	80	100	90	100	90	50
5	Corn	0	10	20	0	0	20	0	0	0	0	20	0	20	0
	Crabgrass, Large	90	100	60	50	20	10	70	100	100	100	100	100	100	30
	Foxtail, Giant	60	40	40	50	50	20	50	90	70	80	80	90	90	50
	Morningglory	50	-	0	10	20	-	40	40	-	30	80	50	60	30
	Pigweed	100	90	90	100	100	50	40	90	100	100	100	100	90	70
10	Velvetleaf	80	100	70	50	50	40	60	100	100	100	100	100	100	50
	Wheat	0	20	0	0	0	0	0	60	20	20	50	50	0	0
	Table A						Comp	pound	ds						
	500 g ai/ha	186	187	188	189	190	191	192	193	194	195	196	197	198	199
	Preemergence														
15	Barnyardgrass	60	90	30	90	100	80	30	90	40	10	50	40	50	90
	Corn	0	0	0	0	0	30	40	0	0	0	20	30	20	30
	Crabgrass, Large	80	90	70	80	90	100	40	100	40	50	70	60	90	100
	Foxtail, Giant	60	90	40	60	90	90	40	90	_	30	80	50	70	90
	Morningglory	90	90	80	80	70	70	0	90	20	0	40	60	30	80
20	Pigweed	100	70	80	100	100	100	50	100	100	10	30	100	100	100
	Velvetleaf	100	100	80	100	100	100	60	100	70	50	50	90	80	100
	Wheat	0	0	0	0	0	20	20	50	0	20	20	20	20	20
	Table A						Comp	pound	ds						
	500 g ai/ha	200	202	203	204	205	206	207	208	209	210	211	212	213	214
25	Preemergence														
	Barnyardgrass	0	100	70	80	10	20	50	80	50	70	70	90	30	60
	Corn	0	40	20	20	0	0	0	20	20	0	0	0	0	0
	Crabgrass, Large	0	100	70	100	90	60	100	100	70	50	90	40	50	90
	Foxtail, Giant	0	100	90	90	80	60	80	70	60	90	50	50	30	70
30	Morningglory	_	100	70	80	60	0	70	70	30	50	10	80	60	80
	Pigweed	20	100	100	100	90	80	100	100	70	100	60	90	90	90
	Velvetleaf	60	100	80	90	80	60	100	90	100	60	60	70	60	100
	Wheat	0	40	30	40	0	0	0	20	0	0	0	0	0	30
	Table A						Comp	pound	ds						
35	500 g ai/ha	215	216	218	219	220	221	222	223	224	225	226	227	228	229
	Preemergence														
	Barnyardgrass	20	20	100	100	90	0	60	70	90	90	100	100	100	70

	Corn	0	20	0	0	10	0	0	0	20	20	0	10	50	0
	Crabgrass, Large	60	80	80	100	90	10	20	80	100	100	100	100	100	100
	Foxtail, Giant	30	60	50	80	40	10	60	90	70	80	90	80	90	60
	Morningglory	70	30	80	80	70	0	40	_	30	80	80	80	80	80
5	Pigweed	90	50	90	100	100	60	0	90	100	100	100	100	100	100
	Velvetleaf	70	30	90	90	100	30	60	60	80	100	100	100	100	100
	Wheat	0	0	0	20	0	0	0	0	30	30	10	10	0	0
	Table A						Comp	ooun	ds						
	500 g ai/ha	230	231	232	233	234	235	236	237	238	239	240	241	242	243
10	Preemergence														
	Barnyardgrass	80	60	50	100	80	100	90	90	100	80	_	90	0	100
	Corn	0	20	0	0	20	70	10	50	50	0	40	20	0	60
	Crabgrass, Large	90	90	40	100	90	100	100	100	100	100	100	90	10	100
	Foxtail, Giant	50	60	70	80	60	90	70	90	90	70	80	70	0	100
15	Morningglory	20	80	40	90	10	90	80	80	90	50	0	30	0	90
	Pigweed	80	80	90	100	60	90	90	100	100	100	100	50	0	100
	Velvetleaf	80	60	60	80	90	100	100	100	100	100	80	60	0	100
	Wheat	0	0	30	40	20	40	30	30	40	30	40	40	0	70
	Table A					С	ompou	ınds							
20	500 g ai/ha	244	245	246	247	248	249	250	251	252	253	254	255	256	
	Preemergence														
	Barnyardgrass	100	100	100	0	30	40	40	20	0	20	10	100	70	
	Corn	40	20	50	0	20	0	0	0	0	-	0	0	0	
	Crabgrass, Large	100	100	100	0	70	80	90	80	20	80	50	90	80	
25	Foxtail, Giant	100	90	90	0	20	40	60	40	10	70	30	50	30	
	Morningglory	80	60	60	0	40	70	60	40	10	70	-	60	50	
	Pigweed	100	90	100	0	40	100	100	60	40	80	0	90	90	
	Velvetleaf	100	100	100	0	60	90	90	70	50	90	20	100	80	
	Wheat	40	20	50	0	20	0	10	0	0	20	0	0	0	
30	Table A						Comp	ooun	ds						
	125 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
	Preemergence														
	Barnyardgrass	0	10	30	10	0	10	0	30	0	10	10	10	10	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Large	10	80	50	20	0	40	90	90	20	50	60	30	40	40
	Foxtail, Giant	0	50	0	10	0	40	40	70	10	20	50	40	40	30
	Morningglory	-	60	0	0	0	0	20	10	0	30	0	10	0	0

Piaweed	20	100	80	90	1 0	90	50	100	60	80	40	100	3.0	30
_														0
														0
	O	O	O	O	O	O	O	O	O	O	Ü	O	O	O
						Comp	ound	ds						
125 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Preemergence														
Barnyardgrass	0	10	10	0	0	10	0	10	20	0	10	10	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	20	60	20	0	0	40	10	30	60	20	30	20	20	0
Foxtail, Giant	0	40	10	0	0	20	0	40	50	30	30	0	30	0
Morningglory	0	20	0	0	0	20	0	20	0	10	20	20	40	0
Pigweed	80	70	80	0	-	70	50	90	50	60	70	80	50	0
Velvetleaf	40	30	50	0	0	30	40	90	80	20	60	20	20	20
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table A						Comp	ound	ds						
125 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
Preemergence														
Barnyardgrass	0	0	10	10	0	10	0	10	10	10	0	0	10	30
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	0	20	80	90	10	10	10	30	60	60	20	40	50	80
Foxtail, Giant	0	10	30	60	0	10	10	10	50	50	10	10	10	30
Morningglory	0	0	0	10	-	0	0	0	40	10	0	0	0	20
Pigweed	40	30	80	90	10	0	50	50	60	70	90	90	90	60
Velvetleaf	10	20	50	50	0	60	50	70	70	70	30	70	60	70
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table A						Comp	ound	ds						
125 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
Preemergence														
Barnyardgrass	40	0	10	20	20	50	10	40	40	0	0	50	40	30
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	50	30	70	90	60	90	30	90	90	0	0	80	90	70
Foxtail, Giant	0	0	50	70	20	50	30	80	70	0	0	70	70	50
Morningglory	20	10	60	40	30	40	_	30	80	0	30	50	20	-
Pigweed	80	60	80	90	80	90	90	100	90	80	50	90	90	70
Velvetleaf	60	40	70	80	80	80	70	100	80	60	60	80	80	70
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 125 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 125 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A 125 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	Velvetleaf Wheat Table A 125 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Pigweed Wheat Table A 125 g ai/ha Morningglory Pigweed Wheat Table A 125 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Barnyardgrass Corn Crabgrass, Large O Foxtail, Giant Morningglory O Pigweed Velvetleaf O Crabgrass, Large Toxtail, Giant O Morningglory O Pigweed Velvetleaf 10 Wheat O Table A 125 g ai/ha Preemergence Barnyardgrass O Corn Crabgrass, Large O Foxtail, Giant O Crabgrass, Large Toxtail, Giant O Crabgrass, Large Foxtail, Giant O Crabgrass, Large Barnyardgrass O Corn Crabgrass, Large Barnyardgrass O Corn O Crabgrass, Large Barnyardgrass O Foxtail, Giant O Morningglory Pigweed Bo Velvetleaf	Velvetleaf 60 60 Wheat 0 0 Table A 125 g ai/ha 17 18 Preemergence 10 10 Barnyardgrass 0 10 Corn 0 60 Foxtail, Giant 0 40 Morningglory 0 20 Pigweed 80 70 Velvetleaf 40 30 Wheat 0 0 Table A 31 32 Preemergence 31 32 Preemergence 30 0 Corn 0 0 Corn 0 0 Crabgrass, Large 0 20 Figweed 40 30 Velvetleaf 10 20 Wheat 0 0 Table A 125 g ai/ha 45 46 Preemergence 30 0 0 Barnyardgrass 40 0 0 Corn 0 0 0 Corbgrass, Lar	Velvetleaf 60 60 80 Wheat 0 0 0 Table A 17 18 19 Preemergence 17 18 19 Preemergence 0 10 10 Corn 0 0 0 0 Corn 0 0 0 0 Foxtail, Giant 0 40 10 Morningglory 0 20 60 20 Pigweed 80 70 80 Velvetleaf 40 30 50 Wheat 0 0 0 0 Corn 0 0 0 0 Corn 0 0 0 0 Pigweed 40 30 80 Velvetleaf 40 30 80 Velvetleaf 10 20 50 Wheat 0 0 0 Table A 125 g ai/ha 45 46 47 Preemergence 8arnyardgrass 40	Velvetleaf 60 60 80 40 Wheat 0 0 0 0 Table A 17 18 19 20 Preemergence 8 10 10 0 0 Barnyardgrass 0 10 10 0	Velvetleaf 60 60 80 40 60 Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 21 21 22 22 22 22 22 22 22 22 20 0 <t< th=""><th>Velvetleaf 60 60 80 40 60 70 Wheat 0 0 0 0 0 0 0 Table A Table A 17 18 19 20 21 22 125 g ai/ha 17 18 19 20 21 22 Preemergence Barnyardgrass 0 10 10 0</th><th> Name</th><th>Velvetleaf 60 60 80 40 60 70 70 90 Wheat 0</th><th> March 1</th><th> Value Valu</th><th> Name</th><th>Velvetleafe 66 60 80 40 60 70</th><th> Mineat</th></t<>	Velvetleaf 60 60 80 40 60 70 Wheat 0 0 0 0 0 0 0 Table A Table A 17 18 19 20 21 22 125 g ai/ha 17 18 19 20 21 22 Preemergence Barnyardgrass 0 10 10 0	Name	Velvetleaf 60 60 80 40 60 70 70 90 Wheat 0	March 1	Value Valu	Name	Velvetleafe 66 60 80 40 60 70	Mineat

	Table A						Comp	pound	ds						
	125 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
	Preemergence														
	Barnyardgrass	40	60	30	10	10	10	0	20	0	0	10	0	0	10
5	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	90	60	60	90	80	10	90	30	70	90	40	10	70
	Foxtail, Giant	50	60	10	60	50	50	0	_	_	_	40	30	0	0
	Morningglory	_	_	60	90	10	0	0	0	30	20	0	0	0	_
	Pigweed	90	90	80	80	100	80	0	90	90	90	100	60	-	50
10	Velvetleaf	100	80	60	70	80	60	30	70	70	70	70	70	50	90
	Wheat	0	0	0	0	_	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Preemergence														
15	Barnyardgrass	0	30	40	0	20	0	0	0	50	0	30	0	50	20
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Crabgrass, Large	70	70	90	50	50	10	50	50	90	-	70	0	100	-
	Foxtail, Giant	50	0	50	0	0	0	0	10	30	10	40	0	-	-
	Morningglory	10	40	60	0	-	0	0	0	0	0	20	0	50	0
20	Pigweed	100	90	100	50	80	50	100	60	100	90	80	90	-	-
	Velvetleaf	80	70	90	20	70	20	70	50	100	50	70	0	70	-
	Wheat	10	0	0	0	0	0	0	0	0	0	0	0	0	-
	Table A						Comp	pound	ds						
	125 g ai/ha	87	88	89	90	91	92	93	94	95	96	97	98	99	100
25	Preemergence														
	Barnyardgrass	20	10	20	40	60	60	80	0	40	90	60	0	10	40
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	-	-	60	60	90	90	90	30	50	100	100	90	60	80
	Foxtail, Giant	-	-	20	30	40	70	60	0	30	50	60	40	40	50
30	Morningglory	50	50	0	0	20	0	80	10	70	80	70	70	-	70
	Pigweed	_	-	90	80	90	100	100	70	90	100	100	100	90	80
	Velvetleaf	100	80	70	70	100	90	90	40	90	100	100	90	80	60
	Wheat	10	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
35	125 g ai/ha	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	Preemergence														
	Barnyardgrass	20	40	0	0	0	10	40	30	10	20	30	0	10	30

	Corn	0	0	0	0	0	0	20	0	0	0	0	0	0	0	
	Crabgrass, Large	70	80	40	0	30	70	90	70	40	40	90	60	70	90	
	Foxtail, Giant	30	80	0	0	30	40	60	30	0	0	-	20	70	40	
	Morningglory	80	80	20	0	0	50	70	80	40	40	50	0	30	0	
5	Pigweed	70	60	90	80	80	80	100	90	90	80	100	20	100	100	
	Velvetleaf	80	80	60	0	0	40	100	80	70	60	90	40	100	70	
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Table A						Comp	pound	ds							
	125 g ai/ha	115	116	117	118	119	120	121	122	123	124	125	126	127	128	
10	Preemergence															
	Barnyardgrass	0	10	50	30	70	70	20	30	50	20	10	70	40	10	
	Corn	0	0	0	0	20	20	0	0	0	0	0	0	0	0	
	Crabgrass, Large	20	30	60	60	100	100	90	90	100	60	80	90	90	80	
	Foxtail, Giant	20	10	20	10	90	90	80	30	50	10	40	60	50	60	
15	Morningglory	60	0	40	10	60	30	0	40	70	60	0	70	10	80	
	Pigweed	70	60	90	90	100	100	80	100	90	100	90	100	100	80	
	Velvetleaf	60	30	70	70	90	80	80	100	70	70	60	80	70	80	
	Wheat	0	0	0	0	20	0	0	0	0	0	0	0	0	0	
	Table A						Comp	pound	ds							
20	125 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143	
	Preemergence															
	Barnyardgrass	30	20	50	10	10	0	0	0	20	40	60	60	10	40	
	Corn	0	20	0	0	0	0	0	0	0	0	0	0	0	0	
	Crabgrass, Large	70	40	80	50	50	0	0	20	40	90	70	80	30	50	
25	Foxtail, Giant	40	20	60	20	40	0	0	0	30	20	40	40	0	10	
	Morningglory	-	10	-	0	0	-	20	30	0	0	30	0	0	10	
	Pigweed	100	90	100	10	40	0	40	80	50	70	80	70	90	70	
	Velvetleaf	80	80	80	50	50	70	40	70	20	60	80	70	20	70	
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
30	Table A						Comp	pound	ds							
	125 g ai/ha	144	145	146	147	148	149	150	151	152	153	154	155	156	157	
	Preemergence															
	Barnyardgrass	0	20	60	70	10	20	0	20	50	40	0	10	0	0	
	Corn	0	0	0	0	0	0	0	0	0	20	0	0	0	0	
	00211															
35	Crabgrass, Large	10	50	60	100	0	30	0	10	90	80	10	60	10	20	
35		10	50 30	60 30	100 70	0	30 10	0	10 20	90 60	80 20	10 10	60 30	10 10	20 10	

	Pigweed	0	70	70	90	0	80	0	50	100	100	30	90	70	0
	Velvetleaf	20	90	70	80	30	40	0	50	60	100	40	60	0	60
	Wheat	0	0	0	0	0	0	0	0	20	0	0	0	0	0
	Table A						Comp	pound	ds						
5	125 g ai/ha	158	159	160	161	162	163	164	165	166	167	168	169	170	171
	Preemergence														
	Barnyardgrass	20	30	40	10	10	0	10	0	0	0	0	0	0	20
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	70	80	80	50	90	0	30	0	10	20	30	40	10	70
10	Foxtail, Giant	10	60	20	50	30	0	40	0	0	10	10	40	10	30
	Morningglory	0	0	70	0	0	0	10	_	0	0	0	0	0	0
	Pigweed	100	100	80	90	100	0	60	0	0	10	10	0	30	50
	Velvetleaf	50	70	60	70	60	10	40	0	40	70	0	20	10	80
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	20
15	Table A						Comp	pound	ds						
	125 g ai/ha	172	173	174	175	176	177	178	179	180	181	182	183	184	185
	Preemergence														
	Barnyardgrass	10	0	0	0	10	0	0	0	30	20	70	20	20	0
	Corn	0	0	10	0	0	0	0	0	0	0	0	0	0	0
20	Crabgrass, Large	10	40	20	30	0	0	10	20	80	90	100	90	30	0
	Foxtail, Giant	10	20	0	0	10	0	10	10	30	30	50	60	30	0
	Morningglory	0	0	0	0	0	0	0	0	0	0	70	20	10	-
	Pigweed	10	50	30	60	60	0	0	50	90	100	90	90	70	0
	Velvetleaf	50	70	20	40	10	10	0	50	80	70	70	100	80	0
25	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	186	187	188	189	190	191	192	193	194	195	196	197	198	199
	Preemergence														
	Barnyardgrass	0	20	0	20	10	10	10	80	0	0	0	0	0	20
30	Corn	0	0	0	0	0	0	40	0	0	0	0	0	0	20
	Crabgrass, Large	30	30	30	30	60	50	10	90	20	0	0	0	10	60
	Foxtail, Giant	20	30	10	30	60	40	0	90	-	0	0	0	70	60
	Morningglory	20	80	70	-	-	0	0	80	-	0	0	0	0	70
	Pigweed	50	60	60	70	70	80	0	100	50	0	0	20	10	80
35	Velvetleaf	60	70	70	70	70	60	0	100	30	0	0	40	0	90
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Table A						Comp	pound	ds						
	125 g ai/ha	200	202	203	204	205	206	207	208	209	210	211	212	213	214
	Preemergence														
	Barnyardgrass	0	20	30	30	0	0	10	10	0	10	10	10	0	10
5	Corn	0	20	0	20	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	0	50	20	40	20	10	60	80	20	10	10	0	0	30
	Foxtail, Giant	0	50	30	20	10	0	30	40	10	20	20	10	10	30
	Morningglory	0	0	0	0	0	0	0	0	0	0	0	0	-	0
	Pigweed	0	90	100	100	10	30	80	60	0	60	40	60	50	70
10	Velvetleaf	0	70	50	50	10	0	70	60	60	40	30	50	40	90
	Wheat	0	0	0	20	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	215	216	218	219	220	221	222	223	224	225	226	227	228	229
	Preemergence														
15	Barnyardgrass	0	0	20	40	10	0	0	0	0	20	30	50	40	0
	Corn	0	0	0	0	0	0	0	0	20	0	0	0	0	0
	Crabgrass, Large	0	0	10	50	20	0	20	30	70	60	90	90	100	80
	Foxtail, Giant	10	0	0	10	0	0	30	30	20	40	70	40	50	50
	Morningglory	0	0	0	20	0	0	0	10	-	30	60	50	70	40
20	Pigweed	20	0	20	90	80	0	0	60	70	90	100	80	100	90
	Velvetleaf	0	0	50	30	40	20	0	0	50	80	80	90	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A						Comp	pound	ds						
	125 g ai/ha	230	231	232	233	234	235	236	237	238	239	240	241	242	243
25	Preemergence														
	Barnyardgrass	10	0	0	30	0	90	50	20	70	20	40	10	0	70
	Corn	0	0	0	0	0	20	0	0	0	0	0	0	0	30
	Crabgrass, Large	30	40	10	40	60	100	80	40	90	70	50	20	0	100
	Foxtail, Giant	40	0	0	20	10	70	40	40	50	20	40	10	0	90
30	Morningglory	0	10	0	50	-	80	70	10	40	-	0	0	0	70
	Pigweed	-	50	0	70	50	90	80	30	100	70	20	20	0	100
	Velvetleaf	60	50	0	60	30	100	80	80	90	80	60	20	0	90
	Wheat	0	0	0	0	0	10	0	0	0	0	0	0	0	30
	Table A					С	ompo	ınds							
35	125 g ai/ha	244	245	246	247	248	249	250	251	252	253	254	255	256	
	Preemergence														
	Barnyardgrass	30	40	10	0	0	0	0	0	0	10	0	10	0	

Corn	20	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	90	80	100	0	10	40	30	20	10	30	0	20	10
Foxtail, Giant	70	80	90	0	10	20	30	10	0	20	0	0	0
Morningglory	30	20	20	0	0	30	10	0	0	40	0	40	0
Pigweed	100	80	100	0	0	80	60	0	0	20	0	70	0
Velvetleaf	50	70	90	0	20	60	50	50	20	50	0	60	20
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0

TEST A1

5

10

15

20

Seeds of barnyardgrass (*Echinochloa crus-galli*), large (Lg) crabgrass (*Digitaria sanguinalis*), giant foxtail (*Setaria faberii*), morningglory (*Ipomoea spp.*), pigweed (*Amaranthus retroflexus*), velvetleaf (*Abutilon theophrasti*), wheat (*Triticum aestivum*), and corn (*Zea mays*) were planted into a blend of loam soil and sand and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time these species were also treated with postemergence applications of test compounds formulated in the same manner.

Plants ranged in height from 2 to 10 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 10 days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A1, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

	Table A1						Comp	pound	ds						
	500 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Postemergence														
25	Barnyardgrass	90	70	60	90	100	90	90	40	30	70	0	90	70	100
	Corn	60	10	10	30	100	40	40	10	10	10	0	20	10	40
	Crabgrass, Large	90	80	80	80	100	80	90	50	30	50	0	60	80	90
	Foxtail, Giant	90	90	80	90	100	90	90	30	40	50	0	70	70	90
	Morningglory	80	70	70	80	100	100	90	70	50	90	0	80	90	100
30	Pigweed	100	100	100	100	100	100	100	60	50	60	0	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	90	100	80	0	100	100	100
	Wheat	50	0	0	10	40	30	30	0	0	0	0	30	20	50
	Table A1						Comp	pound	ds						
	500 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
35	Postemergence														
	Barnyardgrass	70	80	60	90	20	20	0	90	80	40	50	10	50	50
	Corn	0	20	0	20	0	0	0	0	0	0	0	0	0	0

	Crabgrass, Large	70	80	80	80	10	30	0	70	30	60	60	40	80	60
	Foxtail, Giant	70	60	50	60	0	10	0	50	40	50	40	30	40	40
	Morningglory	80	80	100	90	20	10	10	80	60	90	80	0	80	80
	Pigweed		100	100		90	80		100	90	90	100	70	90	80
5	Velvetleaf		100	100	100	100	90		100		100	100	90	100	100
	Wheat	0	0	0	0	0	0	0	10	10	0	10	0	0	30
	Table A1	200	289	200	201	202		pound		206	007	200	200	200	201
	500 g ai/ha	∠88	289	290	291	292	293	294	295	296	297	298	299	300	301
10	Postemergence	0	0	0.0	100	0.0	0.0	100	0.0	0.0	0.0	0.0	Γ.	0.0	0.0
10	Barnyardgrass	0	0		100	90		100	90	80	90	90	50	80	90
	Corn	0	0	0	0	10	10	10	30	20	10	10	40	20	40
	Crabgrass, Large	0	0	90	70	90	60	90	90	80	70	80	80	90	90
	Foxtail, Giant	0	0	90	80	90	70	90	90	80	90	50	80	80	90
1.5	Morningglory	10	10	100	60	90	50	80	90	70	80	100	80	70	60
15	Pigweed	10	0					100			90	100	90	90	100
	Velvetleaf	40	10	100	100		100		100	100	100	100	100	100	100
	Wheat	0	0	20	20	0	10	20	20	0	20	0	0	30	10
	Table A1						Comp	pound	ds						
	500 g ai/ha	302	303	304	305	306	307	308	309	310	311	312	313	314	315
20	Postemergence														
	Barnyardgrass	100	30	90	90	90	100	100	90	100	80	90	30	60	100
	Corn	20	10	30	0	40	100	80	70	100	30	20	0	0	20
	Crabgrass, Large	60	50	90	50	90	100	90	90	100	90	90	40	80	90
	Foxtail, Giant	50	10	80	60	90	100	90	90	100	90	90	20	50	90
25	Morningglory	40	60	100	80	100	100	100	100	100	90	90	60	90	100
	Pigweed	100	90	100	100	100	100	100	100	100	100	100	70	100	100
	Velvetleaf	100	100	100	80	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	40	80	70	60	100	0	10	0	0	40
	Table A1						Comr	oound	10						
	10.010 111						Timo	Journe	10						
30	500 g ai/ha	316	317	318	319	320	_			324	325	326	327	328	329
30		316	317	318	319	320	_			324	325	326	327	328	329
30	500 g ai/ha	316 100	317 90	318	319 70	320 90	_				325		327		329 100
30	500 g ai/ha Postemergence						321	322	323						
30	500 g ai/ha Postemergence Barnyardgrass	100	90	90	70	90	321 90	322 90	323 90	90	100	60 0	100	90	100
30	500 g ai/ha Postemergence Barnyardgrass Corn	100	90 20	90	70 0	90 10	321 90 10	322 90 0	323 90 0	90 0 80	100	60 0	100	90 0 80	100
	500 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large	100 20 90	90 20 90	90 0 70	70 0 80	90 10 90 80	321 90 10 80	322 90 0 60 80	32390080	90 0 80 70	100 20 100	60 0 50	100 70 100	90 0 80 70	100 10 100 100

Morningglory Pigweed 100 100 100 80 100 100 100 100 100 100 1		Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
500 q ai/ha 330 331 332 333 334 335 336 337 338 339 340 341 342 343 5 Postemergence Barnyardgrass 80 100 90 90 100 100 90 100 100 90 90 90 90 90 80 Corn 0 10 10 10 10 90 100 100 90 90 90 80 80 70 50 Foxtail, Giant 60 80 70 80 90 90 100 100 90 100 100 90 80 80 70 50 Postemergence Barnyardgrass, Large 70 80 70 80 90 90 100 100 90 100 90 80 80 70 50 Poxtail, Giant 60 80 70 80 90 90 100 100 100 100 90 100 100 90 100 10		Wheat	10	0	0	20	0	0	0	40	0	70	0	40	50	70
Solution		Table A1						Comp	oound	ds						
Barnyardgrass		500 g ai/ha	330	331	332	333	334	335	336	337	338	339	340	341	342	343
Corn	5	Postemergence														
Crabgrass, Large 70 80 70 90 100 100 90 100 100 90 80 80 70 70 20 Foxtail, Giant 60 80 70 80 90 90 100 100 90 100 90 70 70 70 20 100 Morningglory 10 100 100 100 100 100 100 100 100 100		Barnyardgrass	80	100	90	90	100	100	90	100	100	90	90	90	90	80
Foxtail, Giant 60 80 70 80 90 90 100 90 100 90 90 70 70 70 20 100 Morningglory 10 100 90 100 100 100 100 100 100 100 1		Corn	0	10	10	10	30	20	20	80	40	30	30	10	20	10
10 Morningglory 10 100 90 100 100 100 100 100 100 100 1		Crabgrass, Large	70	80	70	90	100	100	90	100	100	90	80	80	70	50
Pigweed 60 100 100 100 100 100 100 100 100 100		Foxtail, Giant	60	80	70	80	90	90	100	90	100	90	90	70	70	20
Velvetleaf	10	Morningglory	10	100	90	100	100	100	100	100	100	90	100	100	90	40
Table Al Superior Sup		Pigweed	60	100	100	100	100	100	100	100	100	100	100	100	90	80
Table Al Song ai/ha 344 345 346 347 348 349 350 351 352 353 354 355 356 357 Postemergence Barnyardgrass 100 100 90 60 100 100 80 100 100 100 90 90 100 100 Corn 70 90 10 100 90 100 100 40 70 30 80 90 90 10 50 70 40 Crabgrass, Large 100 100 90 100 100 100 100 100 100 100		Velvetleaf	100	100	100	100	100	100	100	100	90	100	100	100	100	90
15 500 g ai/ha 344 345 346 347 348 349 350 351 352 353 354 355 356 357 Postemergence Barnyardgrass 100 100 90 60 100 100 80 100 100 100 90 90 100 100 Corn 70 90 10 100 40 70 30 80 90 90 10 50 70 40 Crabgrass, Large 100 100 90 10 100 100 60 90 90 100 100 80 50 90 90 90 90 90 90 90 90 90 90 90 90 90		Wheat	0	60	30	50	0	30	0	70	50	0	0	0	0	0
Postemergence Barnyardgrass		Table A1						Comp	oound	ds						
Barnyardgrass	15	500 g ai/ha	344	345	346	347	348	349	350	351	352	353	354	355	356	357
Corn 70 90 10 10 40 70 30 80 90 90 10 50 70 40 Crabgrass, Large 100 100 90 10 100 90 100 70 90 100 100 80 50 90 90 90 90 Foxtail, Giant 100 100 90 10 100 100 100 100 100 100 1		Postemergence														
Crabgrass, Large 100 100 90 10 90 100 70 90 100 100 80 50 90 90 90 Morningglory 100 100 100 40 100 100 100 100 100 100		Barnyardgrass	100	100	90	60	100	100	80	100	100	100	90	90	100	100
20 Foxtail, Giant 100 100 90 10 100 100 60 90 90 100 70 50 90 90 Morningglory 100 100 100 40 100 100 100 100 100 100		Corn	70	90	10	10	40	70	30	80	90	90	10	50	70	40
Morningglory Pigweed 100 100 100 80 100 100 100 100 100 100 1		Crabgrass, Large	100	100	90	10	90	100	70	90	100	100	80	50	90	90
Pigweed 100 100 100 80 100 100 100 100 100 100	20	Foxtail, Giant	100	100	90	10	100	100	60	90	90	100	70	50	90	90
Velvetleaf 100 100 100 70 100 100 100 100 100 100 1		Morningglory	100	100	100	40	100	100	90	100	100	100	90	90	100	100
Wheat 40 60 0 0 - 50 0 50 90 70 0 0 30 10 25 Table Al Compounds 500 g ai/ha 358 359 360 361 362 363 364 365 366 367 368 369 370 371 Postemergence Barnyardgrass 90 100 90 100 100 90 100 100 100 100 10		Pigweed	100	100	100	80	100	100	100	100	100	100	100	100	100	100
25 Table A1		Velvetleaf	100	100	100	70	100	100	100	100	100	100	100	100	100	100
500 g ai/ha 358 359 360 361 362 363 364 365 366 367 368 369 370 371 Postemergence Barnyardgrass 90 100 90 100 100 90 100 100 100 100 10		Wheat	40	60	0	0	-	50	0	50	90	70	0	0	30	10
Postemergence Barnyardgrass 90 100 90 100 100 90 100 100 100 100 10	25	Table A1						Comp	oound	ds						
Barnyardgrass 90 100 90 100 100 90 100 100 100 100 10		500 g ai/ha	358	359	360	361	362	363	364	365	366	367	368	369	370	371
Corn 50 30 50 40 60 20 70 20 40 40 80 80 50 80 30 Crabgrass, Large 90 90 70 100 90 90 100 90 100 100 100 100 100 1		Postemergence														
30 Crabgrass, Large 90 90 70 100 90 90 100 90 100 100 100 100 100 1		Barnyardgrass	90	100	90	100	100	90	100	100	100	100	100	90	100	100
Foxtail, Giant 90 90 90 90 90 90 90 90 100 100 100 100		Corn	50	30	50	40	60	20	70	20	40	40	80	80	50	80
Morningglory 100 100 90 100 100 100 90 100 100 90 100 10	30	Crabgrass, Large	90	90	70	100	90	90	100	90	100	100	100	100	100	100
Pigweed 100 100 100 100 100 100 100 100 100 10		Foxtail, Giant	90	90	90	90	90	90	90	90	100	100	100	100	100	90
Velvetleaf 100 100 100 100 100 100 100 100 100 10		Morningglory	100	100	90	100	100	100	90	100	100	90	100	100	90	100
35 Wheat 10 0 0 40 60 10 10 0 10 40 30 10 20 60 Table A1 Compounds		Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Table A1 Compounds		Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	35	Wheat	10	0	0	40	60	10	10	0	10	40	30	10	20	60
500 q ai/ha 372 373 374 375 376 377 378 379 380 381 382 383 384 385		Table A1						Comp	oound	ds						
3		500 g ai/ha	372	373	374	375	376	377	378	379	380	381	382	383	384	385

	Postemergence														
	Barnyardgrass	100	0	60	70	90	100	90	90	80	90	90	90	90	90
	Corn	100	0	10	0	70	70	50	60	0	50	70	20	40	20
	Crabgrass, Large	100	0	70	80	70	90	90	90	90	90	90	90	90	90
5	Foxtail, Giant	100	0	50	60	70	90	90	90	50	80	90	70	80	70
	Morningglory	90	10	80	70	100	90	90	100	80	100	100	100	100	90
	Pigweed	100	20	70	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	30	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	50	0	0	0	50	30	40	20	0	0	40	0	30	0
10	Table A1						Comp	ooun	ds						
	500 g ai/ha	386	387	388	389	390	_		393	395	396	397	398	399	400
	Postemergence														
	Barnyardgrass	90	0	100	100	100	70	90	90	90	100	90	100	100	80
	Corn	10	10	60	30	20	10	60	50	40	10	70	60	30	0
15	Crabgrass, Large	90	90	100	90	90	50	90	90	90	100	90	100	90	90
	Foxtail, Giant	90	90	90	80	100	50	90	90	90	90	90	90	90	80
	Morningglory	100	90	100	90	100	90	40	100	100	100	100	100	90	90
	Pigweed	100	100	100	100	100	90	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	0	100
20	Wheat	20	0	40	0	10	0	50	0	0	10	0	0	60	0
	Table A1						Comp	oound	ds						
	500 g ai/ha	401	402	403	404	405	406	407	409	410	411	412	413	414	415
	Postemergence														
	Barnyardgrass	90	100	100	90	90	90	90	90	90	90	90	100	90	90
25	Corn	50	40	60	40	20	50	20	10	20	0	90	50	60	10
	Crabgrass, Large	90	90	100	90	70	100	100	90	100	90	100	100	100	90
	Foxtail, Giant	90	80	100	90	80	80	80	70	90	30	100	90	80	90
	Morningglory	100	100	100	100	90	100	100	100	100	80	100	100	100	100
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
30	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	20	20	70	0	0	0	0	0	10	0	50	0	50	30
	Table A1						Comp	ooun	ds						
	500 g ai/ha	416	417	418	419	420	421	422	423	424	425	426	427	428	430
	Postemergence														
	roscemergence														
35	Barnyardgrass	100	100	90	90	80	100	100	100	100	90	100	100	100	90
35	_	100	100 30	90 30	90 10	80	100 30	100 50	100 20	100	90 10	100 50	100 30	100	90 10

	Foxtail, Giant	80	90	90	70	30	90	70	80	100	80	90	80	100	80
	Morningglory	100	100	100	70	70	100	90	90	100	100	100	100	100	100
	Pigweed	100	100	100	90	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
5	Wheat	50	70	40	0	0	50	30	0	50	0	70	0	0	10
	Table A1						Comp	ooun	ds						
	500 g ai/ha	449	450	451	452	453	454	455	456	457	458	459	460	461	462
	Postemergence														
	Barnyardgrass	90	90	90	90	90	80	70	60	100	90	90	100	90	90
10	Corn	10	60	0	50	10	20	50	0	50	0	10	0	20	80
	Crabgrass, Large	90	90	90	90	90	60	90	70	100	80	100	90	90	90
	Foxtail, Giant	70	80	40	90	70	40	80	-	-	-	-	90	90	90
	Morningglory	100	90	40	100	100	100	70	100	100	100	100	100	100	100
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
15	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	40	0	40	0	0	0	0	60	20	0	0	50	80
	Table A1						Comp	ooun	ds						
	500 g ai/ha	463	464	465	466	467	468	469	470	471	472	473	474	475	477
	Postemergence														
20	Barnyardgrass	90	100	100	100	90	90	90	90	90	90	90	90	90	90
	Corn	40	30	30	70	40	80	20	80	80	70	20	30	90	80
	Crabgrass, Large	90	100	100	90	90	90	90	100	100	90	90	100	100	100
	Foxtail, Giant	90	90	90	90	90	90	80	90	100	90	90	90	100	90
	Morningglory	100	100	100	100	90	100	100	100	90	100	100	90	100	100
25	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	50	40	0	40	30	60	20	70	30	20	0	0	10	70
	Table A1	С	ompou	ınds											
	500 g ai/ha	478	479	483	485	486									
30	Postemergence														
	Barnyardgrass	80	90	100	100	90									
	Corn	20	80	50	60	70									
	Crabgrass, Large	80	100	100	100	100									
	Foxtail, Giant	50	90	100	100	100									
35	Morningglory	100	100	100	100	100									
	Pigweed	100	100	100	100	100									
	Velvetleaf	100	100	100	100	100									

	Wheat	0	60	0	10	70									
	Table A1						Comp	oound	ds						
	250 g ai/ha	429	431	432	433	434	435			438	439	440	441	442	443
	Postemergence														
5	Barnyardgrass	90	70	90	90	90	70	30	90	30	10	30	80	50	60
	Corn	60	10	0	20	30	0	30	20	_	0	0	0	0	0
	Crabgrass, Large	90	90	80	60	80	50	20	90	50	0	60	70	60	60
	Foxtail, Giant	80	60	70	60	70	20	20	80	0	10	20	40	20	10
	Morningglory	100	100	90	60	100	0	80	80	50	0	10	100	100	100
10	Pigweed	100	100	100	100	100	100	50	100	80	80	60	100	100	100
	Velvetleaf	100	100	100	100	100	100	90	100	100	90	100	100	100	100
	Wheat	40	0	10	10	0	0	0	0	0	0	0	0	0	0
	Table A1	С	ompou	ınds											
	250 g ai/ha	444	445	446	447	448									
15	Postemergence														
	Barnyardgrass	60	90	90	80	90									
	Corn	10	0	10	0	10									
	Crabgrass, Large	90	80	70	90	90									
	Foxtail, Giant	70	80	70	60	80									
20	Morningglory	100	100	30	100	100									
	Pigweed	100	100	100	100	100									
	Velvetleaf	100	100	80	100	100									
	Wheat	0	0	0	0	40									
	Table A1						Comp	oound	ds						
25	125 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Postemergence														
	Barnyardgrass	30	40	20	40	90	60	50	10	10	20	0	50	20	70
	Corn	10	0	0	10	70	0	0	0	0	0	0	0	0	20
	Crabgrass, Large	50	60	50	50	90	50	50	20	10	20	0	20	40	70
30	Foxtail, Giant	50	50	50	50	90	60	60	10	20	30	0	20	40	60
	Morningglory	60	20	60	60	100	100	60	60	10	70	0	60	60	70
	Pigweed	70	90	70	70	90	80	70	30	20	50	0	80	80	90
	Velvetleaf	100	100	100	100	100	90	90	70	80	70	0	100	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	10
35	Table A1						Comp	oound	ds						
	125 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
	Postemergence														

	Barnyardgrass	30	30	30	30	10	0	0	40	0	10	10	0	10	10
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	40	40	40	70	0	0	0	20	0	10	0	10	30	10
	Foxtail, Giant	40	30	30	30	0	0	0	10	0	10	0	0	10	0
5	Morningglory	70	60	90	80	0	0	0	60	40	70	40	0	70	20
	Pigweed	30	70	90	70	60	70	20	90	60	70	80	40	70	60
	Velvetleaf	90	100	100	100	100	80	90	100	80	100	100	90	100	90
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
10	125 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Postemergence														
	Barnyardgrass	0	0	40	10	20	0	10	30	40	30	40	10	50	40
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	0	0	50	10	10	0	50	60	30	30	30	30	50	40
15	Foxtail, Giant	0	0	40	0	10	0	40	60	30	40	20	30	40	50
	Morningglory	0	0	80	10	50	20	40	80	50	60	100	10	40	10
	Pigweed	0	0	90	70	80	70	70	100	60	80	90	80	90	100
	Velvetleaf	0	0	100	80	100	100	100	100	100	80	100	100	100	90
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Table A1						Comp	pound	ds						
20		302	303	304	305		_		ds 309	310	311	312	313	314	315
20	Table A1	302	303	304	305		_			310	311	312	313	314	315
20	Table A1 125 g ai/ha	302 90	303	304	305		_			310	311	312	313	314	315
20	Table A1 125 g ai/ha Postemergence					306	307	308	309						
20	Table A1 125 g ai/ha Postemergence Barnyardgrass	90	10	30	40	306 70	307	308 90	309 90	100	30	60	0	30	80
	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn	90	10	30	40	306 70 0	307 100 70	308 90 10	309 90 10	100	30	60 0	0	30	80
	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large	90 0 10	10 0 10 0	30 0 50 30	40 0 30 30	306 70 0 60 50 90	307 100 70 90 90	308 90 10 90 80 90	309 90 10 80 80	100 30 90 90	30 0 50	60 0 70	0 0	30 0 50	80 0 50
	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed	90 0 10	10 0 10 0 10	30 0 50 30 60	40 0 30 30 10 80	306 70 0 60 50 90	307 100 70 90 90 100	308 90 10 90 80 90	309 90 10 80	100 30 90 90 100	30 0 50 40 50 70	60 0 70 80 80 90	0 0 0	30 0 50 30	80 0 50
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	90 0 10 10 20 100 80	10 0 10 0 10 50 70	30 0 50 30 60 100	40 0 30 30 10 80	306 70 0 60 50 90 100	307 100 70 90 90 100 100	308 90 10 90 80 90 100 100	309 90 10 80 80 100 100	100 30 90 90 100 100	30 0 50 40 50 70	60 0 70 80 80 90	0 0 0 0 20 30 90	30 0 50 30	80 0 50 60 70
	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed	90 0 10 10 20	10 0 10 0 10	30 0 50 30 60	40 0 30 30 10 80	306 70 0 60 50 90	307 100 70 90 90 100	308 90 10 90 80 90	309 90 10 80 80 100	100 30 90 90 100	30 0 50 40 50 70	60 0 70 80 80 90	0 0 0 0 20 30	30 0 50 30 80	80 0 50 60 70
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	90 0 10 10 20 100 80	10 0 10 0 10 50 70	30 0 50 30 60 100	40 0 30 30 10 80 70	306 70 0 60 50 90 100	307 100 70 90 90 100 100 50	308 90 10 90 80 90 100 100	309 90 10 80 80 100 100 90 30	100 30 90 90 100 100	30 0 50 40 50 70	60 0 70 80 80 90	0 0 0 0 20 30 90	30 0 50 30 80 80	80 0 50 60 70 90
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat	90 0 10 20 100 80 0	10 0 10 0 10 50 70	30 0 50 30 60 100 100	40 0 30 30 10 80 70	306 70 0 60 50 90 100 100	307 100 70 90 90 100 100 50 Comp	308 90 10 90 80 90 100 0	309 90 10 80 80 100 100 90 30	100 30 90 90 100 100 20	30 0 50 40 50 70 100	60 0 70 80 80 90 100	0 0 0 20 30 90	30 0 50 30 80 80 100	80 0 50 60 70 90 100 20
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A1	90 0 10 20 100 80 0	10 0 10 0 10 50 70	30 0 50 30 60 100 100	40 0 30 30 10 80 70	306 70 0 60 50 90 100 100	307 100 70 90 90 100 100 50 Comp	308 90 10 90 80 90 100 0	309 90 10 80 80 100 100 90 30	100 30 90 90 100 100 20	30 0 50 40 50 70 100	60 0 70 80 80 90 100	0 0 0 20 30 90	30 0 50 30 80 80 100	80 0 50 60 70 90 100 20
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A1 125 g ai/ha	90 0 10 20 100 80 0	10 0 10 0 10 50 70	30 0 50 30 60 100 100	40 0 30 30 10 80 70	306 70 0 60 50 90 100 100	307 100 70 90 90 100 100 50 Comp	308 90 10 90 80 90 100 0	309 90 10 80 80 100 100 90 30	100 30 90 90 100 100 20	30 0 50 40 50 70 100	60 0 70 80 80 90 100	0 0 0 20 30 90	30 0 50 30 80 80 100	80 0 50 60 70 90 100 20
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A1 125 g ai/ha Postemergence	90 0 10 10 20 100 80 0	10 0 10 0 10 50 70 0	30 0 50 30 60 100 0	40 0 30 30 10 80 70 0	306 70 0 60 50 90 100 0	307 100 70 90 100 100 50 Comp	308 90 10 90 80 90 100 0 0 0	309 90 10 80 100 100 90 30 ds 323	100 30 90 90 100 100 20	30 0 50 40 50 70 100 0	60 0 70 80 80 90 100 0	0 0 0 20 30 90 0	30 0 50 30 80 100 0	80 0 50 60 70 90 100 20
25	Table A1 125 g ai/ha Postemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table A1 125 g ai/ha Postemergence Barnyardgrass	90 0 10 20 100 80 0	10 0 10 10 50 70 0	30 0 50 30 60 100 0 318	40 0 30 30 10 80 70 0	306 70 0 60 50 90 100 0	307 100 70 90 90 100 100 50 Comp 321	308 90 10 90 80 90 100 0 0 0 0 322	309 90 10 80 80 100 90 30 ds 323	100 30 90 90 100 20 324	30 0 50 40 50 70 100 0	60 0 70 80 80 90 100 0	0 0 0 20 30 90 0	30 0 50 30 80 80 100 0	80 0 50 60 70 90 100 20

	Morningglory	100	90	50	80	50	90	40	100	50	70	70	100	90	100	
	Pigweed	100	100	80	70	100	100	60	70	80	100	70	100	100	100	
	Velvetleaf	100	100	100	100	100	100	90	100	100	100	100	100	100	100	
	Wheat	0	0	0	0	0	0	0	0	0	30	0	0	0	10	
5	Table A1						Comp	oound	ds							
	125 g ai/ha	330	331	332	333	334	335	336	337	338	339	340	341	342	343	
	Postemergence															
	Barnyardgrass	20	70	60	50	60	60	50	90	70	90	70	40	80	50	
	Corn	0	0	0	0	20	0	0	20	0	0	0	0	0	0	
10	Crabgrass, Large	20	50	40	50	90	70	70	90	50	80	70	50	30	20	
	Foxtail, Giant	10	60	50	40	80	60	60	90	60	80	70	40	30	10	
	Morningglory	0	90	30	100	100	60	90	100	50	80	90	100	70	40	
	Pigweed	30	80	100	90	90	100	100	100	100	100	100	100	80	70	
	Velvetleaf	100	100	100	100	100	100	100	100	80	100	100	100	100	70	
15	Wheat	0	0	0	0	0	0	0	20	30	0	0	0	0	0	
	Table A1						Comp	oound	ds							
	125 g ai/ha	344	345	346	347	348	349	350	351	352	353	354	355	356	357	
	Postemergence															
	Barnyardgrass	100	90	80	20	90	100	40	90	90	80	50	80	100	90	
20	Corn	30	30	0	0	30	20	0	50	60	50	0	0	10	0	
	Crabgrass, Large	90	100	50	0	50	80	30	80	80	80	60	20	90	70	
	Foxtail, Giant	90	100	50	0	70	90	10	80	70	80	50	20	60	70	
	Morningglory	100	100	100	0	100	50	90	90	100	100	90	60	90	90	
	Pigweed	100	100	100	60	100	100	80	100	90	100	100	100	100	100	
25	Velvetleaf	100	100	90	50	100	100	100	100	100	100	100	100	100	100	
	Wheat	30	40	0	0	0	0	0	10	60	30	0	0	0	0	
	Table A1						Comp	oound	ds							
	125 g ai/ha	358	359	360	361	362	363	364	365	366	367	368	369	370	371	
	Postemergence															
30	Barnyardgrass	70	90	70	90	90	80	60	90	90	90	80	70	90	90	
	Corn	30	0	10	0	10	0	10	0	30	20	20	0	0	0	
	Crabgrass, Large	60	80	40	80	80	80	70	70	80	80	90	80	80	80	
	Foxtail, Giant	70	70	60	80	80	70	90	80	70	80	90	90	80	80	
	Morningglory	100	100	90	90	100	100	90	90	100	90	90	90	90	90	
35	Pigweed	100	100	100	100	90	100	100	100	100	100	100	100	100	100	
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

	Table A1						Com	oound	ds						
	125 g ai/ha	372	373	374	375	376				380	381	382	383	384	385
	Postemergence														
	Barnyardgrass	90	0	10	20	80	80	90	90	40	90	90	80	90	80
5	Corn	50	0	0	0	20	0	20	10	0	0	20	0	0	0
	Crabgrass, Large	80	0	40	50	30	70	60	90	50	90	90	70	70	50
	Foxtail, Giant	90	0	10	20	20	30	60	70	10	70	80	40	70	40
	Morningglory	80	0	50	70	80	70	70	90	50	100	90	90	90	90
	Pigweed	100	0	50	100	100	100	100	100	80	100	100	100	100	100
10	Velvetleaf	100	0	100	100	100	100	100	100	100	100	100	70	100	100
	Wheat	20	0	0	0	0	0	0	0	0	0	0	0	0	0
	m - l - l 7 1						G		J						
	Table A1	206	387	200	200	200		pound		204	205	206	207	200	200
	125 g ai/ha	386	387	388	389	390	391	392	393	394	393	396	397	398	399
15	Postemergence	0.0	0.0	0.0	4.0	0.0	1.0	7.0	0.0	0.0	0.0	7.0	70	0.0	0.0
13	Barnyardgrass	80	90	90	40	80	10	70	80	90	90	70	70	90	80
	Corn	0	7.0	20	10	0	0	7.0	10	10	30	0	0	30	10
	Crabgrass, Large	80	70	90	80	80	0	70	90	90		100	80	80	80
	Foxtail, Giant	50	50	80	60	80	20	60	80	80	70	80	70	80	60
20	Morningglory	90	80	90	30	100	90		100					100	90
20	Pigweed	100	80	100	100	100	70		100					100	100
	Velvetleaf	100	100	100	100	100	80	100			100			100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	40
	Table A1						Comp	pound	ds						
	125 g ai/ha	400	401	402	403	404	405	406	407	409	410	411	412	413	414
25	Postemergence														
	Barnyardgrass	30	90	80	100	90	80	70	80	50	60	10	90	80	70
	Corn	0	30	0	30	10	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	50	90	70	100	80	50	80	80	60	80	50	90	80	70
	Foxtail, Giant	50	85	60	90	70	60	50	60	30	60	0	70	80	60
30	Morningglory	80	100	90	100	100	90	100	100	100	100	30	90	100	100
	Pigweed	90	100	100	100	100	100	100	100	90	100	90	100	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	40	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	oound	ds						
35	125 g ai/ha	415	416	417	418	419	420	421	422	423	424	425	426	427	428
	Postemergence														
	Barnyardgrass	80	90	90	90	40	50	90	90	80	60	70	100	70	90

	Corn	0	0	0	0	0	0	0	10	0	0	0	10	0	0
	Crabgrass, Large	80	60	90	80	20	60	90	80	80	80	70	90	80	90
	Foxtail, Giant	60	60	90	80	30	0	90	70	50	70	40	90	40	90
	Morningglory	100	100	100	100	40	50	100	90	90	90	100	100	90	90
5	Pigweed	100	100	90	100	70	100	100	100	100	100	100	100	100	100
	Velvetleaf	100	80	100	100	90	100	100	100	100	100	100	100	100	100
	Wheat	0	0	50	0	0	0	10	0	0	0	0	10	0	0
	Table A1						Comp	poun	ds						
	125 g ai/ha	430	449	450	451	452	453	454	455	456	457	458	459	460	461
10	Postemergence														
	Barnyardgrass	60	50	90	10	80	60	30	0	50	90	70	90	60	90
	Corn	0	10	10	0	0	0	0	0	0	10	0	0	0	0
	Crabgrass, Large	90	90	90	40	80	80	20	40	40	90	60	80	60	70
	Foxtail, Giant	50	30	60	0	70	40	0	20	10	70	50	60	60	80
15	Morningglory	100	60	90	0	100	100	20	0	90	100	100	100	50	100
	Pigweed	100	100	100	100	100	90	100	70	100	100	100	100	100	100
	Velvetleaf	100	100	100	80	100	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	0	0	0	0	0	10	0	0	0	0
	Table A1						Comp	pound	ds						
20	125 g ai/ha	462	463	464	465	466	467	468	469	470	471	472	473	474	475
	Postemergence														
	Barnyardgrass	50	70	80	90	90	90	90	80	90	80	90	80	90	90
	Corn	0	0	0	10	10	10	20	0	30	40	10	0	0	50
	Crabgrass, Large	80	80	90	80	70	70	70	80	90	70	80	70	80	90
25	Foxtail, Giant	70	80	60	70	70	80	80	40	90	70	70	60	60	90
	Morningglory	100	100	100	100	100	90	100	90	70	90	100	100	40	80
	Pigweed	90	100	100	100	100	100	90	90	100	100	100	70	100	100
	Velvetleaf	100	100	100	100	100	100	100	80	100	100	100	70	100	100
	Wheat	20	0	0	0	0	10	0	0	30	0	0	0	0	0
30	Table A1						Comp	poun	ds						
	125 g ai/ha	476	477	478	479	480	481	482	483	485	486	487	488	489	490
	Postemergence														
	Barnyardgrass	90	80	50	90	60	30	90	90	90	90	50	0	80	70
	Corn	90	30	0	30	30	0	10	0	20	40	20	0	20	20
35	Crabgrass, Large	100	80	60	90	70	10	80	100	90	90	70	10	90	70
	Foxtail, Giant	90	80	0	80	30	0	30	90	80	90	30	0	70	40
	Morningglory	100	100	100	90	100	10	100	100	90	100	100	0	100	30

	Pigweed	100	100	100	100	70	40	90	100	100	100	100	10	100	90
	Velvetleaf	100	100	90	100	100	90	100	100	100	100	100	50	100	0
	Wheat	30	30	0	30	0	0	0	0	0	30	0	0	0	0
	Table A1						Comp	oound	ds						
5	125 g ai/ha	491	492	493	494	495	496	497	499	500	501	502	503	504	505
	Postemergence														
	Barnyardgrass	90	60	60	70	20	90	80	70	80	90	90	90	80	50
	Corn	40	10	20	70	0	10	20	10	10	10	0	60	50	50
	Crabgrass, Large	90	80	70	70	10	80	30	80	90	70	70	90	90	70
10	Foxtail, Giant	70	40	40	70	10	70	10	40	70	10	50	80	80	10
	Morningglory	100	90	100	90	70	100	40	100	100	100	100	100	70	90
	Pigweed	100	90	100	90	60	100	100	90	100	100	100	100	100	100
	Velvetleaf	100	100	100	100	90	100	100	100	100	100	100	100	100	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	40	0
15	Table A1						Comp	oound	ds						
	125 g ai/ha	506	507	508	509	510	511	512	513	514	515	516	517	518	520
	Postemergence														
	Barnyardgrass	60	30	70	90	25	90	80	90	90	30	90	80	100	90
	Corn	20	40	10	20	0	20	10	40	10	20	50	20	60	70
20	Crabgrass, Large	60	10	30	70	10	20	50	80	90	70	90	90	100	100
	Foxtail, Giant	30	40	40	60	10	10	10	60	60	40	80	60	100	100
	Morningglory	100	40	80	90	60	10	40	90	100	100	100	100	100	100
	Pigweed	60	80	60	100	100	100	100	100	100	100	100	100	100	100
	Velvetleaf	80	60	90	100	75	100	100	100	100	100	100	100	100	100
25	Wheat	0	0	0	0	0	0	0	0	10	0	20	0	40	70
	Table A1 Compo	ound				Tab	le A	1		Comp	ound	S			
	125 g ai/ha	521				62 (g ai.	/ha			447	448			
	Postemergence					Pos	teme:	rgen	ce						
	Barnyardgrass	80				Bar	nyaro	dgra	ss		20	40			
	Corn	50				Cor	n				0	0			
	Crabgrass, Large	80				Cral	bgra:	ss,	Larg	е	50	50			
	Foxtail, Giant	60				Fox	tail	, Gi	ant		30	30			
	Morningglory	100				Mor	ning	glor	У		90	90			
	Pigweed	100				Pig	weed				60	90			
	Velvetleaf	100				Vel	vetl	eaf			100	100			
	Wheat	10				Whe	at				0	0			

	Table A1						Comp	pound	ds						
	62 g ai/ha	431	434	435	436	437	438	439	440	441	442	443	444	445	446
	Postemergence														
	Barnyardgrass	60	60	10	0	10	0	0	0	50	20	10	0	30	0
5	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	70	50	0	0	50	20	0	20	30	10	30	20	60	30
	Foxtail, Giant	20	40	0	0	30	0	0	0	30	0	0	0	40	0
	Morningglory	70	100	0	0	70	0	0	0	90	80	100	100	50	0
	Pigweed	100	80	70	20	100	-	-	40	100	70	80	70	90	50
10	Velvetleaf	100	80	80	50	100	100	70	100	100	90	100	100	100	60
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	31 g ai/ha	394	401	476	480	481	482	487	488	489	490	491	492	493	494
	Postemergence														
15	Barnyardgrass	60	80	90	10	0	70	10	0	50	40	70	30	30	30
	Corn	0	0	50	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	60	90	90	40	0	30	30	0	70	50	70	60	40	30
	Foxtail, Giant	50	80	80	10	0	0	10	0	30	0	10	30	10	10
	Morningglory	100	100	80	90	0	90	100	0	90	0	90	80	90	80
20	Pigweed	60	100	100	70	0	70	80	0	90	60	80	70	60	80
	Velvetleaf	100	100	100	100	90	100	100	0	100	100	100	100	100	100
	Wheat	0	0	20	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	31 g ai/ha	495	496	497	499	500	501	502	503	504	505	506	507	508	509
25	Postemergence														
	Barnyardgrass	0	70	30	20	60	60	30	90	60	10	20	10	10	30
	Corn	0	0	0	0	0	0	0	0	20	0	0	0	0	0
	Crabgrass, Large	0	20	10	60	50	30	30	70	80	50	10	0	10	10
	Foxtail, Giant	0	20	0	10	30	0	10	60	50	0	10	10	0	10
30	Morningglory	20	100	0	50	90	100	100	80	20	50	40	40	60	90
	Pigweed	40	90	100	70	70	100	60	100	90	100	30	50	30	70
	Velvetleaf	40	100	30	100	100	100	100	100	100	100	60	20	60	100
	Wheat	0	10	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1				С	ompoi	ınds								
35	31 g ai/ha	510	511	512	513	514	515	516	517	518	520	521			
	Postemergence														
	Barnyardgrass	0	30	20	60	70	10	90	50	90	90	40			

	Corn	0	0	0	0	0	0	0	0	40	30	0			
	Crabgrass, Large	0	0	10	70	70	20	50	70	90	90	60			
	Foxtail, Giant	0	0	0	40	30	0	30	40	80	80	30			
	Morningglory	10	0	0	90	100	30	100	50	100	100	90			
5	Pigweed	65	90	100	100	100	40	100	90	100	100	90			
	Velvetleaf	60	60	70	100	100	10	100	100	100	100	100			
	Wheat	0	0	0	0	0	0	0	0	0	20	0			
	Table A1						Comp	ooun	ds						
	500 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
10	Preemergence														
	Barnyardgrass	10	20	30	50	100	10	40	10	0	0	0	30	60	80
	Corn	20	0	0	0	80	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	30	60	60	100	80	70	60	20	50	0	50	60	100
	Foxtail, Giant	50	30	20	30	90	60	50	10	0	20	0	40	40	80
15	Morningglory	30	20	10	30	90	60	20	50	20	50	0	0	70	70
	Pigweed	90	50	40	80	100	90	70	0	0	0	0	70	10	100
	Velvetleaf	80	60	60	60	100	60	60	50	50	40	0	60	90	80
	Wheat	20	0	0	0	40	0	0	0	0	0	0	0	10	40
	Table A1						Comp	ooun	ds						
20	500 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
	Preemergence														
	Barnyardgrass	30	70	10	100	30	30	0	60	20	30	50	50	30	70
	Corn	0	0	0	0	0	0	0	0	20	0	0	0	0	0
	Crabgrass, Large	50	90	60	100	0	10	0	70	20	30	60	0	70	90
25	Foxtail, Giant	40	30	0	40	0	0	0	20	20	10	30	0	30	40
	Morningglory	30	80	50	70	10	0	10	20	0	70	70	0	50	80
	Pigweed	40	90	80	100	70	70	-	100	90	70	90	40	70	-
	Velvetleaf	60	90	90	100	80	70	40	100	20	90	90	60	80	80
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	Table A1						Comp	ooun	ds						
	500 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Preemergence														
	Barnyardgrass	0	0	10	50	30	30	40	80	60	70	80	60	80	90
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Large	0	0	60	40	70	40	50	80	50	80	70	90	100	100
	Foxtail, Giant	0	0	40	50	50	50	50	70	50	60	40	50	80	90
	Morningglory	0	0	10	10	10	10	30	40	10	50	90	70	80	50

	Pigweed	0	0	80	90	50	90	40	90	20	100	100	100	90	100
	Velvetleaf	0	0	90	60	70	40	70	100	70	60	100	80	90	70
	Wheat	0	0	0	0	0	0	0	20	0	0	0	0	10	40
	Table A1						Comm		J ~						
5	500 g ai/ha	202	303	204	205	206	_	oound		210	211	212	212	21/	215
5	Preemergence	302	303	304	303	300	307	300	309	310	211	J12	213	214	313
	Barnyardgrass	90	0	90	80	90	100	100	100	100	10	80	0	20	90
	Corn	0	0	0	10	0	70	40	30	80	0	0	0	0	0
	Crabgrass, Large	10	20	100	60		100			100	20	100	0	60	90
10	Foxtail, Giant	10	0	90	70	90	100	90	100	100	10	90	0	10	90
10	Morningglory	10	10	80	60	90	100	90	90	100	0	10	0	60	40
	Pigweed	100	20	100	100		100		100	100	70	90	50	80	100
	Velvetleaf	50	50	100	60			100	90	100	80	90	30	90	70
	Wheat	0	0	0	0	30	60	70	50	80	0	0	0	0	0
1.5							_								
15	Table A1		0.4.5				-	ound							
	500 g ai/ha	316	317	318	319	320	321	322	323	324	325	326	327	328	329
	Preemergence	0.0		0.0	0.0	.	0.0	F.0			4.00	•		E 0	5 0
	Barnyardgrass	90	90	80	20	50	90	50	90	70	100	0	100	70	50
20	Corn	0	0	0	0	0	0	0	0	0	10	0	10	0	0
20	Crabgrass, Large	100	90	70	50	40	90	20	90	90	100	0	100	80	100
	Foxtail, Giant	90	60	10	10	30	40	30	70	40	100	0	80	40	60
	Morningglory	90	80	0	60	50	80	0	60	20	70	0	90	50	60
	Pigweed	100	80	70	90	90	100	70	80	90	100	0		100	90
25	Velvetleaf	100	90	60	60	100	100	40	70	80	90	80		100	90
23	Wheat	40	0	0	0	0	10	0	20	0	50	0	20	30	30
	Table A1						Comp	ooun	ds						
	500 g ai/ha	330	331	332	333	334	335	336	337	338	339	340	341	342	343
	Preemergence														
	Barnyardgrass	30	100	70	100	90	60	100	100	100	70	40	50	20	10
30	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	80	100	80	100	100	80	100	100	100	90	70	100	30	0
	Foxtail, Giant	30	90	50	70	60	70	80	100	100	70	50	40	20	0
	Morningglory	0	90	70	80	70	40	90	90	80	40	50	70	0	0
	Pigweed	50	100					100		100	100	90	90	50	40
35	Velvetleaf	50	80	70		100	100	100	100	60	100	90	90	30	30
	Wheat	0	30	0	10	0	20	0	0	40	0	0	0	0	0

	Table A1						Comp	pound	ds						
	500 g ai/ha	344	345	346	347	348	349	350	351	352	353	354	355	356	357
	Preemergence														
	Barnyardgrass	100	100	80	0	50	80	80	80	100	100	60	100	100	60
5	Corn	10	30	0	0	0	0	0	30	80	60	0	20	0	0
	Crabgrass, Large	100	100	60	0	90	100	80	100	100	100	100	60	100	80
	Foxtail, Giant	80	100	20	0	70	100	50	90	100	100	50	40	80	70
	Morningglory	80	80	10	0	50	50	70	80	80	90	60	80	70	20
	Pigweed	100	100	80	50	90	90	80	90	90	100	90	90	90	60
10	Velvetleaf	100	100	30	40	50	100	70	100	100	100	100	100	100	70
	Wheat	0	20	0	0	0	40	30	10	80	50	-	0	20	0
	Table A1						Comp	pound	ds						
	500 g ai/ha	358	359	360	361	362	363	364	365	366	367	368	369	370	371
	Preemergence														
15	Barnyardgrass	60	60	30	50	50	60	50	70	60	40	30	50	60	70
	Corn	10	0	0	0	0	0	0	0	20	30	0	0	0	0
	Crabgrass, Large	80	80	60	90	70	80	70	90	100	90	100	100	100	100
	Foxtail, Giant	80	50	60	70	60	50	70	50	60	50	70	50	70	80
	Morningglory	70	10	30	70	60	10	50	30	40	40	60	30	70	60
20	Pigweed	90	80	90	70	70	70	90	90	100	80	90	100	100	100
	Velvetleaf	80	70	40	100	100	100	90	80	90	100	100	70	80	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	500 g ai/ha	372	373	374	375	376	377	378	379	380	381	382	383	384	385
25	Preemergence														
	Barnyardgrass	80	0	50	70	90	90	100	80	40	100	100	70	90	60
	Corn	0	0	0	0	0	0	0	0	0	0	20	0	0	0
	Crabgrass, Large	100	40	90	90	80	90	100	100	60	100	100	80	90	70
	Foxtail, Giant	90	10	60	30	80	80	80	70	20	70	90	40	60	10
30	Morningglory	80	0	0	10	80	20	80	80	50	80	70	70	80	30
	Pigweed	100	0	70	90	100	90	100	100	80	100	100	100	100	90
	Velvetleaf	100	20	70	80	100	80	100	100	80	100	80	80	70	60
	Wheat	0	0	0	0	0	0	10	20	0	10	40	0	0	0
	Table A1						Comp	pound	ds						
35	500 g ai/ha	386	387	388	389	390	391	392	393	395	396	397	398	399	400
	Preemergence														
	Barnyardgrass	60	50	100	30	40	10	90	90	80	90	70	90	100	30

	Corn	0	0	20	0	0	0	20	0	20	0	10	0	30	0
	Crabgrass, Large	80	70	100	70	90	10	100	100	90	100	90	100	100	80
	Foxtail, Giant	50	40	80	60	70	0	100	90	50	60	50	80	90	40
	Morningglory	20	10	70	20	60	0	80	100	90	80	100	100	40	20
5	Pigweed	100	100	100	100	100	70	100	100	100	80	100	100	100	100
	Velvetleaf	70	90	100	90	80	50	100	100	100	80	100	100	100	90
	Wheat	0	0	20	0	0	0	20	0	0	0	0	0	40	0
	Table A1						Comp	poun	ds						
	500 g ai/ha	401	402	403	404	405	406	407	409	410	411	412	413	414	415
10	Preemergence														
	Barnyardgrass	90	80	100	100	70	80	50	60	90	70	90	80	90	70
	Corn	0	0	20	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	100	100	100	80	90	80	80	100	90	100	90	100	90
	Foxtail, Giant	80	30	90	60	30	30	20	40	80	0	70	70	70	70
15	Morningglory	100	70	90	100	70	80	40	60	80	100	90	90	80	80
	Pigweed	100	100	100	100	100	30	-	100	80	90	100	100	100	100
	Velvetleaf	100	80	90	100	80	100	100	100	100	100	100	100	100	100
	Wheat	10	20	60	0	0	0	0	0	0	0	20	0	20	0
	Table A1						Comp	pound	ds						
20	500 g ai/ha	416	417	418	419	420	421	422	423	424	425	426	427	428	430
	Preemergence														
	Barnyardgrass	90	100	90	40	50	100	90	80	90	80	90	60	90	60
	Corn	0	0	0	0	0	0	0	0	0	0	10	0	0	0
	Crabgrass, Large	90	100	100	20	60	100	100	90	100	90	100	60	100	90
25	Foxtail, Giant	80	90	80	40	10	70	80	50	80	60	90	30	60	60
	Morningglory	90	90	90	0	30	60	100	80	80	50	90	60	90	60
	Pigweed	100	100	100	60	90	100	100	80	100	100	100	90	100	80
	Velvetleaf	100	90	100	50	80	100	100	100	100	100	100	100	100	80
	Wheat	0	50	0	0	0	0	20	0	0	0	40	0	0	0
30	Table A1						Comp	poun	ds						
	500 g ai/ha	449	450	451	452	453	454	455	456	457	458	459	460	461	462
	Preemergence														
	Barnyardgrass	90	100	80	100	90	90	80	20	100	80	90	20	50	90
	Corn	20	0	0	20	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Large	100	100	80	100	100	70	100	50	100	100	100	80	90	100
	Foxtail, Giant	70	90	30	80	60	40	70	10	90	40	80	30	80	90
	Morningglory	100	80	10	80	70	100	40	60	90	70	80	0	10	50

	Pigweed	90	90	90	100	90	100	100	100	100	100	90	90	90	90
	Velvetleaf	90	100	70	100	100	100	100	90	100	90	100	90	60	80
	Wheat	0	30	0	20	0	0	0	0	60	10	10	0	0	0
							~		1						
5	Table A1	4.60	1.6.1	465	1.00	467	_	pound		471	470	470	474	475	477
5	500 g ai/ha	463	464	465	466	46/	468	469	4/0	4/1	4/2	4/3	4/4	4/5	4 / /
	Preemergence	0.0	0.0	100	0.0	0.0	7.0	7.0	100	F 0	7.0	60	0.0	0.0	0.0
	Barnyardgrass	90		100	90	80	70		100	50	70	60	80	90	90
	Corn	0	0	0	0	0	0	0	20	0	0	0	0	0	0
10	Crabgrass, Large		100		90	90		100		90	90	60		100	90
10	Foxtail, Giant	90	80	80	80	60	40	50	90	70	70	50	60	90	60
	Morningglory	70	80	70	40	10	40	70	80	70	0	30	10	40	70
	Pigweed		100	90	80	90		100			100	80		100	70
	Velvetleaf		100	90	90	80		100			80		100		80
	Wheat	0	0	0	0	0	0	0	30	0	0	0	0	0	0
15	Table A1	С	roqmc	unds											
	500 g ai/ha	478	479	483	485	486									
	Preemergence														
	Barnyardgrass	60	80	70	90	100									
	Corn	0	0	0	0	0									
20	Crabgrass, Large	70	100	100	100	100									
	Foxtail, Giant	0	80	80	80	90									
	Morningglory	40	80	80	90	80									
	Pigweed	90	90	100	100	100									
	Velvetleaf	80	100	100	100	100									
25	Wheat	0	10	0	0	50									
	Table A1						Comp	oound	ds						
	250 g ai/ha	429	431	432	433	434	435	436	437	438	439	440	441	442	443
	Preemergence														
	Barnyardgrass	100	50	90	80	100	40	10	70	20	20	20	80	10	20
30	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	70	90	70	90	20	10	90	50	10	10	90	30	70
	Foxtail, Giant	90	10	70	60	70	0	10	70	0	10	0	20	0	0
	Morningglory	80	80	80	60	80	10	0	60	40	0	0	80	50	70
	Pigweed	100	100	90	90	100	100	70	100	100	70	40	100	100	90
35	Velvetleaf	100	90	70	70	60	60	30	100	70	10		100	80	80
	Wheat	30	0	0	0	10	0	0	20	0	0	0	0	0	0

	Table A1	С	ompoi	ınds											
	250 g ai/ha	444	445	446	447	448									
	Preemergence														
	Barnyardgrass	40	70	80	60	90									
5	Corn	0	0	0	0	0									
	Crabgrass, Large	90	100	70	70	100									
	Foxtail, Giant	30	40	60	10	80									
	Morningglory	10	70	20	70	60									
	Pigweed	70	90	80	100	100									
10	Velvetleaf	100	80	70	100	100									
	Wheat	0	0	0	0	20									
	Table A1						Comp	pound	ds						
	125 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Preemergence														
15	Barnyardgrass	0	0	0	10	50	0	0	0	0	0	0	0	0	20
	Corn	0	0	0	0	10	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	0	10	0	20	90	30	20	0	0	0	0	10	10	30
	Foxtail, Giant	0	10	0	10	70	20	30	0	0	0	0	0	0	30
	Morningglory	0	0	0	0	60	20	0	0	0	0	0	0	0	0
20	Pigweed	10	20	0	30	60	40	20	0	0	0	0	10	20	70
	Velvetleaf	40	0	0	0	80	0	0	0	0	0	0	0	0	50
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	125 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
25	Preemergence														
	Barnyardgrass	0	0	0	20	0	0	0	0	0	0	0	0	0	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	10	50	10	40	0	0	0	10	0	0	0	0	10	20
	Foxtail, Giant	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	Morningglory	0	40	0	0	0	0	0	0	0	0	20	0	0	10
	Pigweed	0	30	20	90	20	20	0	50	40	20	70	0	40	30
	Velvetleaf	10	60	20	40	10	10	0	60	0	30	40	0	60	60
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
35	125 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Preemergence														
	Barnyardgrass	0	0	0	0	0	0	0	10	0	10	0	10	20	60

	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	0	0	30	10	10	10	10	30	10	20	20	60	50	70
	Foxtail, Giant	0	0	10	0	10	10	10	10	0	20	0	20	40	40
	Morningglory	0	0	0	0	0	0	0	10	0	20	60	10	10	0
5	Pigweed	0	0	30	30	0	20	10	70	0	50	90	70	70	80
	Velvetleaf	0	0	0	0	0	0	0	50	0	30	90	60	80	50
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	oound	ds						
	125 g ai/ha	302	303	304	305	306	307	308	309	310	311	312	313	314	315
10	Preemergence														
	Barnyardgrass	20	0	60	10	50	90	80	60	80	0	10	0	0	20
	Corn	0	0	0	0	0	10	0	0	0	0	0	0	0	0
	Crabgrass, Large	0	0	70	10	50	90	90	80	90	0	30	0	20	40
	Foxtail, Giant	0	0	60	10	50	90	80	80	90	0	20	0	0	30
15	Morningglory	0	0	30	20	60	60	50	40	50	0	0	0	10	0
	Pigweed	90	0	80	80	90	90	80	80	80	0	80	0	60	100
	Velvetleaf	0	0	60	50	70	80	80	70	70	0	80	0	80	20
	Wheat	0	0	0	0	0	30	0	0	0	0	0	0	0	0
	Table A1						Comp	ound	ds						
20	125 g ai/ha	316	317	318	319	320	321	322	323	324	325	326	327	328	329
	Preemergence														
	Barnyardgrass	30	40	20	0	0	30	0	50	10	40	0	40	0	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	80	30	10	0	0	50	0	60	10	100	10	80	10	40
25	Foxtail, Giant	30	10	0	0	10	10	0	0	10	90	0	40	0	20
	Morningglory	10	10	0	10	0	0	0	0	0	40	40	50	0	0
	Pigweed	90	70	0	30	30	90	0	70	0	90	70	70	30	50
	Velvetleaf	80	70	10	50	60	70	-	40	20	40	0	80	70	50
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	Table A1						Comp	oound	ds						
	125 g ai/ha	330	331	332	333	334	335	336	337	338	339	340	341	342	343
	Preemergence														
	Barnyardgrass	0	40	10	20	20	0	10	80	60	0	0	0	0	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Large	20	80	50	70	60	20	90	100	80	30	0	50	0	0
	Foxtail, Giant	0	30	0	20	30	20	50	60	60	30	0	10	0	0
	Morningglory	0	30	0	0	40	0	20	30	20	0	0	10	0	0

	Pigweed	0	60	50	100	80	10	100	90	90	50	30	70	50	0
	Velvetleaf	10	50	50	70	90	10	100	90	50	70	60	60	20	0
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
5	125 g ai/ha	344	345	346	347	348	349	350	351	352	353	354	355	356	357
	Preemergence														
	Barnyardgrass	80	90	0	0	30	50	30	20	90	50	40	70	40	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	90	10	0	50	90	40	70	100	90	80	20	90	30
10	Foxtail, Giant	50	60	0	0	0	50	0	30	90	70	0	0	50	30
	Morningglory	60	30	0	0	0	20	10	0	50	20	0	40	50	0
	Pigweed	100	100	40	0	20	80	80	50	80	80	90	80	90	10
	Velvetleaf	90	90	0	0	0	80	50	60	100	90	70	60	100	0
	Wheat	0	0	0	0	0	20	20	0	40	0	0	0	0	0
15	Table A1						Comp	pound	ds						
	125 g ai/ha	358	359	360	361	362	363	364	365	366	367	368	369	370	371
	Preemergence														
	Barnyardgrass	0	0	0	0	0	0	0	10	10	0	0	0	10	10
	Corn	0	0	0	0	0	0	0	0	20	0	0	0	0	0
20	Crabgrass, Large	30	20	10	50	20	20	50	30	70	30	70	60	80	60
	Foxtail, Giant	20	10	10	30	10	10	30	20	20	20	20	10	50	20
	Morningglory	0	0	0	20	0	0	0	0	0	0	10	20	-	40
	Pigweed	50	10	70	60	40	20	60	20	60	40	80	90	90	90
	Velvetleaf	20	0	10	20	10	0	40	20	30	70	70	10	50	70
25	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	125 g ai/ha	372	373	374	375	376	377	378	379	380	381	382	383	384	385
	Preemergence														
	Barnyardgrass	10	0	0	0	10	10	50	50	0	30	10	10	20	10
30	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	80	0	20	30	10	30	80	90	0	70	80	30	50	10
	Foxtail, Giant	70	0	0	0	20	10	50	30	0	30	30	0	20	0
	Morningglory	70	0	0	0	10	0	0	60	10	50	0	0	10	0
	Pigweed	90	0	60	60	90	70	100	90	20	100	50	100	90	90
35	Velvetleaf	90	0	50	70	70	50	100	100	40	80	70	50	60	40
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Table A1						Comp	pound	ds						
	125 g ai/ha	386	387	388	389	390	391	392	393	394	395	396	397	398	399
	Preemergence														
	Barnyardgrass	0	0	90	0	10	0	10	60	20	10	0	0	20	10
5	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	40	10	90	0	50	0	70	90	50	70	10	30	90	80
	Foxtail, Giant	0	10	50	0	30	0	20	60	0	10	0	10	50	20
	Morningglory	0	0	10	0	0	0	0	70	50	90	10	80	60	0
	Pigweed	80	60	100	40	60	50	100	100	80	100	10	90	100	70
10	Velvetleaf	30	60	80	10	20	0	60	80	70	80	10	40	100	60
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	125 g ai/ha	400	401	402	403	404	405	406	407	409	410	411	412	413	414
	Preemergence														
15	Barnyardgrass	0	60	10	50	30	0	10	0	0	10	0	70	30	60
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	20	95	30	80	50	0	50	10	10	60	30	90	50	100
	Foxtail, Giant	10	55	0	50	20	0	10	0	0	30	0	50	30	40
	Morningglory	0	80	50	60	80	50	0	20	0	10	0	70	90	60
20	Pigweed	40	100	100	100	100	70	-	-	90	70	70	90	90	100
	Velvetleaf	40	90	50	50	100	60	50	30	60	70	80	90	70	90
	Wheat	0	0	0	10	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	125 g ai/ha	415	416	417	418	419	420	421	422	423	424	425	426	427	428
25	Preemergence														
	Barnyardgrass	50	70	80	50	10	20	50	70	0	20	10	80	0	20
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	50	30	90	80	0	20	60	100	80	100	20	80	20	100
	Foxtail, Giant	40	20	70	40	0	0	20	30	10	40	10	50	0	10
30	Morningglory	60	40	60	70	0	0	20	70	50	30	0	70	0	30
	Pigweed	90	80	80	80	10	70	70	100	60	80	10	90	60	90
	Velvetleaf	70	70	70	80	0	60	70	100	90	70	70	100	50	100
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
35	125 g ai/ha	430	449	450	451	452	453	454	455	456	457	458	459	460	461
	Preemergence														
	Barnyardgrass	20	0	50	10	50	20	10	10	0	80	20	50	0	0

	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	40	30	90	40	90	50	0	40	10	100	60	70	10	40
	Foxtail, Giant	30	0	40	0	50	0	0	0	0	40	0	20	0	20
	Morningglory	20	0	70	0	50	10	0	0	-	70	0	10	0	0
5	Pigweed	60	90	80	60	100	80	100	100	100	100	70	80	20	70
	Velvetleaf	50	40	100	50	100	60	70	70	60	100	60	70	20	0
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
	125 g ai/ha	462	463	464	465	466	467	468	469	470	471	472	473	474	475
10	Preemergence														
	Barnyardgrass	0	10	10	20	0	40	0	0	40	0	10	20	10	50
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	90	80	80	20	70	10	50	90	80	60	30	80	90
	Foxtail, Giant	60	60	20	20	20	10	10	10	70	0	30	0	20	60
15	Morningglory	0	30	30	0	10	0	0	40	10	0	0	0	0	0
	Pigweed	60	90	80	90	80	80	60	80	90	80	90	60	70	80
	Velvetleaf	50	60	80	60	60	70	20	60	80	70	70	0	80	80
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A1						Comp	pound	ds						
20	125 g ai/ha	476	477	478	479	480	481	482	483	485	486	487	488	489	490
	Preemergence														
	Barnyardgrass	40	10	10	60	0	0	70	40	60	20	10	0	50	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	40	10	90	10	0	80	90	100	90	80	0	100	10
25	Foxtail, Giant	80	20	0	30	0	0	0	30	40	50	0	0	40	0
	Morningglory	0	10	0	20	0	0	70	20	20	10	30	0	80	0
	Pigweed	90	60	80	90	40	0	100	90	90	100	90	0	100	10
	Velvetleaf	100	50	60	100	70	0	100	60	80	80	100	0	100	50
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	Table A1						Comp	poun	ds						
	125 g ai/ha	491	492	493	494	495	496	497	499	500	501	502	503	504	505
	Preemergence														
	Barnyardgrass	40	10	0	0	0	40	10	40	30	70	50	50	20	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	20	0
35	Crabgrass, Large	90	70	40	30	0	40	20	60	80	50	50	90	90	50
	Foxtail, Giant	0	10	0	0	0	30	10	10	0	0	10	50	40	0
	Morningglory	50	0	0	0	0	10	0	0	0	60	70	20	0	0

	Pigweed	90	50	70	20	0	80	100	60	40	100	40	100	90	40
	Velvetleaf	100	70	80	60	10	100	20	80	80	100	100	100	100	0
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	20	0
	Table A1						Comp	oound	ds						
5	125 g ai/ha	506	507	508	509	510	511	512	513	514	515	516	517	518	520
	Preemergence														
	Barnyardgrass	10	0	30	0	0	0	20	80	30	0	80	30	70	100
	Corn	_	0	0	0	0	0	0	0	0	0	10	0	0	10
	Crabgrass, Large	10	0	10	20	10	0	50	100	80	60	70	100	90	100
10	Foxtail, Giant	0	0	10	10	0	0	10	30	40	50	30	40	70	90
	Morningglory	0	0	0	0	0	0	0	60	10	-	60	0	70	50
	Pigweed	30	0	40	20	15	50	100	100	80	100	100	90	100	100
	Velvetleaf	0	0	0	20	10	0	50	80	80	10	100	90	90	100
	Wheat	0	0	0	0	0	0	0	20	0	0	0	0	0	40
	Table A1 Comp	ound				Tab	le A	1		Comp	ound	S			
	125 g ai/ha	521				62	g ai	/ha			447	448			
	Preemergence					Pre	emer	genc	е						
	Barnyardgrass	90				Bar	nyar	dgra	SS		0	40			
	Corn	0				Cor	n				0	0			
	Crabgrass, Large	100				Cra	bgra	ss,	Larg	е	10	70			
	Foxtail, Giant	60				Fox	tail	, Gi	ant		0	40			
	Morningglory	70				Mor	ning	glor	У		0	0			
	Pigweed	80				Pig	weed				60	70			
	Velvetleaf	100				Vel	vetl	eaf			70	70			
	Wheat	0				Whe	at				0	0			
15	Table A1						Comp	oound	ds						
	62 g ai/ha	431	434	435	436	437	438	439	440	441	442	443	444	445	446
	Preemergence														
	Barnyardgrass	_	10	10	0	20	0	0	0	20	0	0	0	10	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Crabgrass, Large	40	60	0	0	40	0	0	0	40	0	0	10	40	-
	Foxtail, Giant	0	20	0	0	30	0	0	0	0	0	0	0	0	10
	Morningglory	50	20	0	0	0	0	0	0	30	0	0	0	0	0
	Pigweed	100	90	100	0	90	60	0	0	100	30	60	0	70	40
	Velvetleaf	70	40	20	20	80	40	0	60	80	30	60	30	70	20
25	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0

263

						COM	pound	10						
31 g ai/ha	394	401	476	480	481	482	487	488	489	490	491	492	493	494
Preemergence														
Barnyardgrass	0	20	10	0	0	0	0	0	10	0	0	0	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	30	80	80	0	0	30	50	0	90	0	70	20	10	0
Foxtail, Giant	0	30	50	0	0	0	0	0	0	0	0	0	0	0
Morningglory	0	70	0	-	0	10	0	0	10	0	0	0	0	0
Pigweed	50	90	80	0	0	50	10	0	100	0	70	10	60	0
Velvetleaf	20	70	60	-	0	90	20	0	80	10	70	40	70	10
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table A1						Comp	oound	ds						
31 g ai/ha	495	496	497	499	500				504	505	506	507	508	509
Preemergence														
Barnyardgrass	0	10	0	0	0	0	0	20	0	0	0	0	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	0	0	0	0	10	0	0	30	30	0	0	0	0	0
Foxtail, Giant	0	0	0	0	0	0	0	20	0	0	0	0	0	0
Morningglory	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pigweed	0	0	20	10	0	40	0	100	30	-	0	-	0	0
Velvetleaf	0	60	0	0	0	50	20	50	70	0	0	0	0	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table A1				С	ompoi	ınds								
31 g ai/ha	510	511	512	513	514	515	516	517	518	520	521			
Preemergence														
Barnyardgrass	0	0	0	0	0	0	0	0	0	30	0			
Corn	0	0	0	0	0	0	0	0	0	0	0			
Crabgrass, Large	0	0	0	80	10	0	10	60	10	100	80			
Foxtail, Giant	0	0	0	0	0	0	0	0	20	70	10			
Morningglory	0	0	0	0	0	0	0	0	0	0	0			
Pigweed	0	0	50	30	0	-	10	20	70	60	30			
Velvetleaf	0	0	0	30	0	0	90	50	20	70	70			
Wheat	0	0	0	0	0	0	0	0	0	0	0			
	Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table Al 31 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table Al 31 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Wheat Table Al 31 g ai/ha Preemergence Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	Barnyardgrass 0 Corn 0 Crabgrass, Large 30 Foxtail, Giant 0 Morningglory 0 Pigweed 50 Velvetleaf 20 Wheat 0 Table Al 31 g ai/ha 495 Preemergence Barnyardgrass 0 Corn 0 Crabgrass, Large 0 Foxtail, Giant 0 Morningglory 0 Pigweed 0 Velvetleaf 0 Velvetleaf 0 Table Al 31 g ai/ha 510 Preemergence Barnyardgrass 0 Corn 0 Crabgrass, Large 10 Foxtail, Giant 0 Wheat 0 Table Al 31 g ai/ha 510 Preemergence Barnyardgrass 0 Corn 0 Crabgrass, Large 0 Foxtail, Giant 0 Morningglory 0 Pigweed 0 Velvetleaf 0 Velvetleaf 0 Velvetleaf 0 Velvetleaf 0	Barnyardgrass 0 20 Corn 0 0 Crabgrass, Large 30 80 Foxtail, Giant 0 30 Morningglory 0 70 Pigweed 50 90 Velvetleaf 20 70 Wheat 0 0 Table Al 31 g ai/ha 495 496 Preemergence 8arnyardgrass 0 10 Corn 0 0 0 Corhadgrass, Large 0 0 Velvetleaf 0 60 Wheat 0 0 Table Al 31 g ai/ha 510 511 Preemergence Barnyardgrass 0 0 Corn 0 0 Corb	Barnyardgrass 0 20 10 Corn 0 0 0 Crabgrass, Large 30 80 80 Foxtail, Giant 0 70 0 Morningglory 0 70 60 Pigweed 50 90 80 Velvetleaf 20 70 60 Wheat 0 0 0 Table Al 31 g ai/ha 495 496 497 Preemergence 8arnyardgrass 0 10 0 Corn 0 0 0 0 Corabgrass, Large 0 0 0 0 Velvetleaf 0 0 0 0 Wheat 0 0 0 0 Table Al 31 g ai/ha 510 511 512 Preemergence 8arnyardgrass 0 0 0 Corn 0 0 0 0 Corn 0 0 0 0 Corn 0 0 0	Barnyardgrass 0 20 10 0 Corn 0 0 0 0 Crabgrass, Large 30 80 80 0 Foxtail, Giant 0 30 50 0 Morningglory 0 70 0 - Pigweed 50 90 80 0 Velvetleaf 20 70 60 - Wheat 0 0 0 0 Table Al 495 496 497 499 Preemergence Barnyardgrass 0 10 0 0 Corn 0 0 0 0 0 0 Foxtail, Giant 0 0 0 0 0 Wheat 0 0 0 0 0 0 Wheat 0 0 0 0 0 0 0 0 Table Al 510 511 512 513 0 0 0 0 0 0 Table Al	Barnyardgrass 0 20 10 0 0 Corn 0 0 0 0 0 0 Crabgrass, Large 30 80 80 0 0 Foxtail, Giant 0 30 50 0 0 Morningglory 0 70 0 - 0 Pigweed 50 90 80 0 0 Wheat 0 0 0 0 0 Wheat 495 496 497 499 500 Preemergence Barnyardgrass 0 10 0 0 0 Corn 0 0 0 0 0 0 0 Foxtail, Giant 0 0 0 0 0 0 0 Welvetleaf 0 0 0 0 0 0 0 Welvetleaf 0 0 0 0 0 0	Barnyardgrass 0 20 10 0 0 Corn 0 20 10 0 0 Crabgrass, Large 30 80 80 0 0 30 Foxtail, Giant 0 30 50 0 0 0 Morningglory 0 70 0 - 0 10 Pigweed 50 90 80 0 0 0 0 Wheat 0 0 0 0 0 0 0 0 31 g ai/ha 495 496 497 499 500 501 Preemergence Barnyardgrass 0 10 0 0 0 0 Corn 0 0 0 0 0 0 0 0 Corn 0 0 0 0 0 0 0 0 Foxtail, Giant 0 0 0 0 <th< th=""><th>Barnyardgrass 0 20 10 0 0 0 0 Corn 0 0 0 0 0 0 0 0 Crabgrass, Large 30 80 80 0 0 0 0 Foxtail, Giant 0 70 0 - 0 10 0 Pigweed 50 90 80 0 0 50 10 Velvetleaf 20 70 60 - 0 90 20 Wheat 0 0 0 0 0 0 0 0 Table Al 495 496 497 499 500 501 502 Preemergence Barnyardgrass 0 10 <t< th=""><th>Barnyardgrass 0 20 10 0</th><th> Corn</th><th> Corn</th><th> Corn</th><th> Barnyardgrass</th><th> Corn</th></t<></th></th<>	Barnyardgrass 0 20 10 0 0 0 0 Corn 0 0 0 0 0 0 0 0 Crabgrass, Large 30 80 80 0 0 0 0 Foxtail, Giant 0 70 0 - 0 10 0 Pigweed 50 90 80 0 0 50 10 Velvetleaf 20 70 60 - 0 90 20 Wheat 0 0 0 0 0 0 0 0 Table Al 495 496 497 499 500 501 502 Preemergence Barnyardgrass 0 10 0 <t< th=""><th>Barnyardgrass 0 20 10 0</th><th> Corn</th><th> Corn</th><th> Corn</th><th> Barnyardgrass</th><th> Corn</th></t<>	Barnyardgrass 0 20 10 0	Corn	Corn	Corn	Barnyardgrass	Corn

TEST B

Seeds of plant species selected from blackgrass (Alopecurus myosuroides), downy bromegrass (Bromus tectorum), green foxtail (Setaria viridis), Italian ryegrass (Lolium

multiflorum), wheat (Triticum aestivum), wild oat (Avena fatua), deadnettle (henbit deadnettle, Lamium amplexicaule), galium (catchweed bedstraw, Galium aparine), bermudagrass (Cynodon dactylon), Surinam grass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), large crabgrass (Digitaria sanguinalis), woolly cupgrass (Eriochloa villosa), giant foxtail (Setaria faberii), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), kochia (Kochia scoparia), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), nightshade (eastern black nightshade, Solanum ptycanthum), yellow nutsedge (Cyperus esculentus), pigweed (Amaranthus retroflexus), ragweed (common ragweed, Ambrosia elatior), Russian thistle (Salsola kali), soybean (Glycine max), sunflower (common oilseed sunflower, Helianthus annuus) and velvetleaf (Abutilon theophrasti) were planted into a blend of loam soil and sand and treated preemergence with test compounds formulated in a non-phytotoxic solvent mixture which included a surfactant.

5

10

15

20

25

At the same time, plants selected from these crop and weed species and also winter barley (*Hordeum vulgare*), canarygrass (*Phalaris minor*), chickweed (*Stellaria media*) and windgrass (*Apera spica-venti*) were planted in pots containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Plant species in the flooded paddy test consisted of rice (*Oryza sativa*), umbrella sedge (*Cyperus difformis*), ducksalad (*Heteranthera limosa*) and barnyardgrass (*Echinochloa crusgalli*) grown to the 2-leaf stage for testing. At the time of treatment, test pots were flooded with water to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test.

Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all treated plants were visually evaluated and compared to controls. Plant response ratings, summarized in Table B, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

30	Table B						Comp	ound	s						
	250 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
	Flood														
	Barnyardgrass	0	0	0	20	0	45	50	0	25	0	35	0	35	10
	Ducksalad	0	78	70	85	0	90	75	80	80	55	95	40	60	75
35	Rice	0	8	0	0	0	50	0	0	25	0	25	0	0	10
	Sedge, Umbrella	0	75	60	90	0	95	75	55	85	65	85	40	30	50

	Table B						Comp	ound	.s						
	250 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Flood														
	Barnyardgrass	25	50	15	0	0	0	0	20	0	0	40	20	30	0
5	Ducksalad	45	90	90	75	75	60	45	75	0	85	85	85	85	50
	Rice	15	25	0	15	0	0	15	0	0	0	0	0	0	0
	Sedge, Umbrella	80	85	95	60	65	65	45	75	0	85	85	80	80	50
	Table B						Comp	ound	.s						
	250 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
10	Flood														
	Barnyardgrass	0	40	40	0	0	15	0	0	30	40	30	0	20	30
	Ducksalad	75	95	95	65	0	40	60	65	90	90	75	50	80	90
	Rice	0	30	50	0	_	35	20	0	15	25	0	20	40	40
	Sedge, Umbrella	75	90	85	40	0	20	40	40	90	85	80	30	80	90
15	Table B						Comp	ound	.s						
	250 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
	Flood														
	Barnyardgrass	30	0	20	35	0	60	55	55	75	0	20	35	25	0
	Ducksalad	90	20	95	85	70	85	95	70	75	40	50	50	60	0
20	Rice	20	10	25	65	15	20	60	60	85	0	25	20	25	0
	Sedge, Umbrella	85	65	85	75	85	95	90	40	90	40	60	75	75	0
	Table B						Comp	ound	s						
	250 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
	Flood														
25	Barnyardgrass	45	40	20	0	10	0	0	45	0	20	30	20	0	30
	Ducksalad	40	60	0	30	40	60	0	20	0	40	20	0	0	0
	Rice	15	15	0	0	10	0	0	20	0	30	0	20	0	20
	Sedge, Umbrella	75	85	0	0	0	40	0	50	0	0	40	20	25	30
	Table B						Comp	ound	s						
30	250 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Flood														
	Barnyardgrass	0	40	60	0	65	0	30	30	60	20	40	0	65	60
	Ducksalad	0	0	50	0	40	20	40	30	40	20	50	20	65	65
	Rice	0	0	45	0	15	20	20	15	15	20	30	0	20	40
35	Sedge, Umbrella	0	60	50	0	40	40	30	40	40	50	50	50	80	85

	Table B						Comp	pound	ds						
	250 g ai/ha	87	88	89	90	91	92	93	94	95	96	97	98	99	100
	Flood														
	Barnyardgrass	60	60	40	30	65	45	85	60	70	85	75	50	55	75
5	Ducksalad	20	80	100	90	100	85	80	30	20	75	70	0	80	85
	Rice	70	50	15	0	15	40	45	35	30	15	40	40	60	-
	Sedge, Umbrella	70	65	85	80	100	85	90	85	75	90	80	75	85	85
	Table B						Comp	pound	ds						
	250 g ai/ha	101	102	103	104	105	106	107	108	109	110	111	112	113	114
10	Flood														
	Barnyardgrass	40	70	0	0	0	15	60	30	20	40	60	40	15	40
	Ducksalad	30	85	0	0	0	0	40	70	100	75	75	95	70	75
	Rice	20	35	0	0	0	20	45	10	25	30	30	15	0	20
	Sedge, Umbrella	65	75	0	0	0	0	85	95	80	75	85	90	70	40
15	Table B						Comp	pound	ds						
	250 g ai/ha	115	116	117	118	119	120	121	122	123	124	125	126	127	128
	Flood														
	Barnyardgrass	65	75	75	70	50	65	70	40	70	30	60	75	75	40
	Ducksalad	85	85	100	100	70	85	80	0	95	0	70	85	80	100
20	Rice	20	0	15	15	35	40	55	15	40	20	0	15	35	35
	Sedge, Umbrella	90	90	95	85	75	75	70	45	85	40	90	85	80	75
	Table B						Comp	pound	ds						
	250 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143
	Flood														
25	Barnyardgrass	60	85	50	30	0	0	0	25	25	35	45	50	10	20
	Ducksalad	100	100	85	100	100	0	40	75	80	90	85	85	80	90
	Rice	30	25	55	0	0	0	0	20	15	30	40	35	0	0
	Sedge, Umbrella	60	100	85	100	100	0	0	50	80	85	85	85	80	65
	Table B						Comp	pound	ds						
30	250 g ai/ha	144	145	146	147	148	151	152	153	154	155	156	158	161	162
	Flood														
	Barnyardgrass	20	25	30	75	50	55	75	45	40	45	60	60	30	55
	Ducksalad	100	80	100	100	100	100	100	100	100	95	100	100	80	100
	Rice	25	0	35	15	50	50	60	65	75	45	35	85	50	90
35	Sedge, Umbrella	100	80	90	80	95	100	100	95	100	100	100	100	60	100

	Table B						Comp	pound	ds						
	250 g ai/ha	164	178	179	183	184	185	186	187	188	189	190	191	192	193
	Flood														
	Barnyardgrass	0	80	30	35	25	0	30	80	0	70	30	25	0	50
5	Ducksalad	85	100	100	95	100	75	100	100	85	100	100	100	75	100
	Rice	35	70	65	0	15	0	65	70	15	60	15	0	20	65
	Sedge, Umbrella	90	95	95	90	95	60	90	100	85	100	95	85	60	90
	Table B						Comp	pound	ds						
	250 g ai/ha	194	195	196	197	198	199	200	203	204	206	207	208	209	210
10	Flood														
	Barnyardgrass	15	20	30	30	35	25	38	20	60	0	20	25	20	40
	Ducksalad	80	85	95	85	95	90	85	95	100	90	50	75	85	90
	Rice	0	15	65	45	50	0	23	0	60	20	15	0	20	25
	Sedge, Umbrella	65	65	80	85	80	85	70	85	95	85	70	70	80	80
15	Table B						Comp	pound	ds						
	250 g ai/ha	211	212	213	214	215	216	217	218	219	220	221	222	223	224
	Flood														
	Barnyardgrass	35	50	30	20	40	0	0	40	60	40	20	0	0	30
	Ducksalad	85	95	100	95	85	95	40	95	90	100	70	65	0	75
20	Rice	15	10	20	15	15	0	20	15	75	70	15	0	0	60
	Sedge, Umbrella	80	95	90	85	90	100	40	85	85	85	75	40	0	75
	Table B						Comp	pound	ds						
	250 g ai/ha	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	Flood														
25	Barnyardgrass	95	60	80	30	40	40	50	65	0	75	20	30	40	15
	Ducksalad	40	80	80	40	0	0	85	100	70	100	70	100	100	80
	Rice	65	55	60	20	45	0	0	50	0	55	0	45	0	0
	Sedge, Umbrella	60	85	85	70	75	75	80	85	40	80	40	100	80	75
	Table B					С	ompo	unds							
30	250 g ai/ha	243	244	245	246	248	249	250	251	252	253	254	255	256	
	Flood														
	Barnyardgrass	85	75	65	60	40	0	10	20	0	20	15	0	0	
	Ducksalad	100	100	100	100	90	90	75	80	0	90	100	80	85	
	Rice	75	85	90	65	0	15	0	10	0	20	0	0	0	
35	Sedge, Umbrella	100	100	100	100	85	90	70	75	0	85	80	60	75	

	Table B						Comp	ounc	ds						
	125 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	16	17
	Flood														
	Barnyardgrass	0	0	0	0	0	20	0	0	0	0	0	0	0	25
5	Ducksalad	0	58	70	75	0	85	60	75	65	35	0	30	75	30
	Rice	0	0	0	0	0	15	0	0	20	0	0	0	0	0
	Sedge, Umbrella	0	45	60	80	0	85	70	55	40	50	60	0	40	70
	Table B						Comp	ounc	ds						
	125 g ai/ha	18	19	20	21	22	23	33	34	35	36	37	38	49	50
10	Flood														
	Barnyardgrass	20	0	0	0	0	0	30	0	0	0	0	0	0	35
	Ducksalad	65	85	65	70	30	45	80	30	0	0	50	60	40	85
	Rice	25	0	0	0	0	0	20	0	0	20	0	0	10	15
	Sedge, Umbrella	50	85	50	60	40	40	50	0	0	0	30	30	0	85
15	Table B						Comp	ounc	ds						
	125 g ai/ha	51	52	53	54	55	56	57	58	59	60	61	62	63	64
	Flood														
	Barnyardgrass	40	40	55	0	20	20	20	0	20	30	0	0	0	0
	Ducksalad	85	40	75	30	0	40	40	0	0	40	0	0	40	50
20	Rice	25	50	60	0	15	15	15	0	15	0	0	0	0	0
	Sedge, Umbrella	85	30	90	0	40	60	50	0	50	75	0	0	0	0
	Table B						Comp	ounc	ds						
	125 g ai/ha	65	66	67	68	69	70	71	72	76	79	80	81	82	83
	Flood														
25	Barnyardgrass	0	0	0	0	20	0	0	0	0	20	25	40	15	15
	Ducksalad	0	0	0	30	0	0	0	0	0	15	30	15	0	40
	Rice	0	0	0	20	0	0	0	20	0	15	0	15	15	0
	Sedge, Umbrella	0	30	0	0	0	20	0	0	0	0	30	30	40	40
	Table B						Comp	ounc	ds						
30	125 g ai/ha	84	85	86	87	88	89	90	91	92	93	94	95	96	97
	Flood														
	Barnyardgrass	0	55	50	55	40	30	15	60	20	75	40	65	80	60
	Ducksalad	0	60	55	20	75	100	80	90	70	80	25	0	50	30
	Rice	0	15	20	60	40	0	0	15	25	20	20	30	15	0
35	Sedge, Umbrella	30	80	70	50	40	85	75	100	70	80	85	50	85	70

	Table B						Comp	pound	ds						
	125 g ai/ha	98	99	100	101	102	103	104	105	106	108	109	110	111	123
	Flood														
	Barnyardgrass	30	20	60	40	60	0	0	0	0	15	20	20	50	55
5	Ducksalad	0	75	85	30	80	0	0	0	0	60	65	75	75	90
	Rice	0	0	35	0	20	0	0	0	20	0	20	30	0	30
	Sedge, Umbrella	75	65	80	30	65	0	0	0	0	60	75	50	80	75
	Table B						Comp	pound	ds						
	125 g ai/ha	124	125	126	127	128	129	130	132	133	142	143	144	145	146
10	Flood														
	Barnyardgrass	0	40	60	65	15	10	0	0	0	0	0	0	0	0
	Ducksalad	0	60	85	60	95	90	80	80	100	80	80	75	80	80
	Rice	20	0	0	25	10	0	0	0	0	0	0	20	0	0
	Sedge, Umbrella	20	90	80	60	60	60	75	60	95	65	0	95	60	80
15	Table B						Comp	pound	ds						
	125 g ai/ha	147	148	151	152	153	154	155	156	157	158	161	162	163	164
	Flood														
	Barnyardgrass	45	15	30	50	35	0	20	40	0	20	0	40	0	0
	Ducksalad	80	90	100	100	100	70	85	80	70	100	0	100	60	0
20	Rice	10	20	15	30	55	60	25	20	0	40	45	90	20	20
	Sedge, Umbrella	40	85	100	85	80	95	85	100	75	100	0	100	70	0
	Table B						Comp	pound	ds						
	125 g ai/ha	166	167	168	170	171	172	173	174	175	176	177	178	179	180
	Flood														
25	Barnyardgrass	20	20	0	30	20	20	15	0	20	0	15	60	20	15
	Ducksalad	60	70	30	45	70	60	75	95	95	75	70	100	95	75
	Rice	0	0	0	20	0	0	15	0	0	20	20	70	25	30
	Sedge, Umbrella	70	60	20	35	80	75	85	95	85	85	75	95	85	65
	Table B						Comp	pound	ds						
30	125 g ai/ha	181	182	183	184	185	186	190	191	192	193	194	195	196	197
	Flood														
	Barnyardgrass	70	0	0	20	0	30	20	0	0	45	10	0	20	20
	Ducksalad	90	85	80	100	75	90	40	75	75	85	50	70	95	80
	Rice	65	0	0	15	0	45	15	0	0	30	0	0	40	30
35	Sedge, Umbrella	85	75	65	80	65	80	30	80	50	70	0	50	75	75

	Table B						Comp	pound	ds						
	125 g ai/ha	198	199	200	203	204	207	208	209	210	211	212	213	215	216
	Flood														
	Barnyardgrass	30	15	23	0	25	0	15	0	20	25	0	0	30	0
5	Ducksalad	85	85	85	95	90	0	40	85	90	85	90	90	85	90
	Rice	20	0	10	0	0	15	0	10	20	0	0	0	0	0
	Sedge, Umbrella	80	75	43	75	90	60	40	70	75	70	90	85	75	80
	Table B						Comp	pound	ds						
	125 g ai/ha	218	219	220	221	223	224	226	227	228	229	230	235	236	237
10	Flood														
	Barnyardgrass	30	20	30	0	0	0	95	50	75	0	20	50	0	0
	Ducksalad	85	65	85	70	0	0	30	75	75	0	0	100	60	90
	Rice	10	70	50	0	0	0	60	45	35	0	30	45	0	0
	Sedge, Umbrella	85	60	20	75	0	0	50	85	75	50	40	80	0	55
15	Table B						Comp	pound	ds						
	125 g ai/ha	238	239	243	244	245	246	248	249	250	251	253	254	255	256
	Flood														
	Barnyardgrass	30	0	75	40	40	20	0	0	10	0	0	10	0	0
	Ducksalad	80	70	100	100	100	100	80	80	70	50	85	85	60	80
20	Rice	0	0	95	60	50	65	0	0	0	0	0	0	0	0
	Sedge, Umbrella	65	40	100	100	100	100	75	85	65	65	75	75	50	75
	Table B						Comp	pound	ds						
	62 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	15	16
	Flood														
25	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	20	0
	Ducksalad	0	40	0	40	0	85	30	20	0	25	0	20	0	40
	Rice	0	0	0	0	0	0	0	0	10	0	0	0	0	0
	Sedge, Umbrella	0	0	50	65	0	65	30	40	0	40	0	0	0	0
	Table B						Comp	pound	ds						
30	62 g ai/ha	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Flood														
	Barnyardgrass	20	20	0	0	0	0	0	0	0	0	0	10	0	0
	Ducksalad	30	50	75	60	70	20	35	20	0	75	75	70	70	20
	Rice	0	15	0	0	0	0	0	0	0	0	0	0	0	0
35	Sedge, Umbrella	70	30	70	40	50	30	30	0	0	75	75	70	70	20

	m-1-1 - D						C		_						
	Table B	0.4					Comp								
	62 g ai/ha	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	Flood														
_	Barnyardgrass	0	10	20	0	0	0	0	0	0	0	0	0	20	0
5	Ducksalad	60	75	75	0	0	0	30	20	80	0	70	30	70	80
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	20
	Sedge, Umbrella	60	75	30	0	0	0	20	0	90	70	70	30	30	80
	Table B						Comp	ound	.s						
	62 g ai/ha	45	46	47	48	49	50	51	52	53	54	55	56	57	58
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	20	0	40	0	20	15	0	0
	Ducksalad	20	20	65	0	0	75	30	0	65	0	0	20	0	0
	Rice	15	10	15	0	0	10	15	0	20	0	10	0	0	0
	Sedge, Umbrella	70	45	70	40	0	75	40	30	85	0	30	40	0	0
15	Table B						Comp	ound	s						
	62 g ai/ha	59	60	61	62	63	64	65	66	67	68	69	70	71	72
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	0	20	30	0	0	0	0	0	0	0	0
20	Rice	15	0	0	0	0	0	0	0	0	15	0	0	0	0
	Sedge, Umbrella	40	30	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	ound	.s						
	62 g ai/ha	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Flood														
25	Barnyardgrass	0	0	20	0	30	0	0	20	0	0	0	0	25	40
	Ducksalad	0	0	30	0	30	0	0	20	0	0	30	0	50	55
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	30	0	0	40	30	0	20	0	0	30	0	75	30
	Table B						Comp	ound	.s						
30	62 g ai/ha Flood	87	88	89	90	91	92	93	94	95	96	97	98	99	100
	Barnyardgrass	45	20	20	0	20	0	60	0	35	65	40	30	20	45
	Ducksalad	30	40	90	65	90	30	55	20	0	0	30	0	40	75
	Rice	20	0	0	0	15	0	15	0	20	15	0	0	0	30
35	Sedge, Umbrella	20	30	85	60	95	65	75	70	20	75	40	65	50	75

	Table B						Comp	oound	ds						
	62 g ai/ha	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	Flood														
	Barnyardgrass	40	60	0	0	0	0	40	0	0	0	40	35	10	20
5	Ducksalad	30	40	0	0	0	0	0	50	60	40	30	85	25	65
	Rice	0	15	0	0	0	0	20	0	0	0	0	0	0	0
	Sedge, Umbrella	20	40	0	0	0	0	60	40	60	35	75	85	40	30
	Table B						Comp	oound	ds						
	62 g ai/ha	115	116	117	118	119	120	121	122	123	124	125	126	127	128
10	Flood														
	Barnyardgrass	50	65	65	50	30	20	30	20	40	0	25	45	40	10
	Ducksalad	85	80	-	100	30	30	45	0	80	0	40	80	30	95
	Rice	20	0	0	0	20	0	0	0	20	15	0	0	15	0
	Sedge, Umbrella	70	75	95	70	25	40	30	20	70	0	35	70	20	30
15	Table B						Comp	oound	ds						
	62 g ai/ha	129	130	131	132	133	134	135	136	138	139	140	141	142	143
	Flood														
	Barnyardgrass	0	0	20	0	0	0	0	20	0	10	20	20	0	0
	Ducksalad	90	80	40	50	60	0	30	55	70	75	50	75	0	80
20	Rice	0	0	25	0	0	0	0	15	0	10	0	0	0	0
	Sedge, Umbrella	0	60	20	0	60	0	0	45	70	70	75	80	0	0
	Table B						Comp	oound	ds						
	62 g ai/ha	144	145	146	147	148	151	152	153	154	155	156	158	161	162
	Flood														
25	Barnyardgrass	0	0	0	10	0	15	25	0	0	0	20	20	0	25
	Ducksalad	60	80	60	60	90	80	90	65	50	60	65	75	0	100
	Rice	20	0	0	0	10	0	20	35	0	0	30	30	50	25
	Sedge, Umbrella	65	0	50	40	80	85	0	0	95	60	95	85	0	100
	Table B						Comp	oound	ds						
30	62 g ai/ha	164	178	179	183	184	185	186	187	188	189	190	191	192	193
	Flood														
	Barnyardgrass	0	20	10	0	0	0	20	45	0	30	0	0	0	20
	Ducksalad	0	75	90	65	100	70	90	95	70	100	20	85	60	50
	Rice	0	20	0	0	15	0	20	15	0	20	15	0	0	15
35	Sedge, Umbrella	0	85	80	50	80	75	80	95	80	95	0	75	40	30

	Table B						Comp	pound	ds						
	62 g ai/ha	194	195	196	197	198	199	200	203	204	206	207	208	209	210
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	15	0	0	0	0	0
5	Ducksalad	50	50	60	65	50	85	83	75	70	70	0	30	50	85
	Rice	0	0	0	0	20	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	30	70	20	70	33	65	75	60	40	40	50	75
	Table B						Comp	pound	ds						
	62 g ai/ha	211	212	213	214	215	216	217	218	219	220	221	222	223	224
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	-	85	85	0	75	90	0	80	20	40	65	50	0	0
	Rice	0	0	0	0	0	0	0	0	0	15	0	0	0	0
	Sedge, Umbrella	0	85	80	0	0	65	40	80	40	0	60	30	0	0
15	Table B						Comp	pound	ds						
	62 g ai/ha	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	Flood														
	Barnyardgrass	60	40	40	0	0	40	30	20	0	20	0	0	0	0
	Ducksalad	0	-	50	0	0	0	85	100	20	95	0	65	40	0
20	Rice	40	30	20	0	20	0	0	25	0	0	0	0	0	0
	Sedge, Umbrella	40	85	75	0	30	0	80	70	0	70	0	45	0	0
	Table B					С	ompoi	unds							
	62 g ai/ha	243	244	245	246	248	249	250	251	252	253	254	255	256	
	Flood														
25	Barnyardgrass	30	20	0	0	0	0	0	0	0	0	0	0	0	
	Ducksalad	85	80	100	100	80	65	30	0	0	75	85	50	40	
	Rice	60	0	50	30	0	0	0	0	0	0	0	0	0	
	Sedge, Umbrella	90	0	100	85	65	60	65	50	0	65	50	20	40	
	Table B						Comp	pound	ds						
30	31 g ai/ha	1	2	3	4	7	8	9	10	11	12	13	14	16	17
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	_	0	20	0	30	0	0	0	0	0	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Sedge, Umbrella	0	0	40	50	0	30	0	0	0	20	0	0	0	0

	Table B						Comp	oound	ds						
	31 g ai/ha	18	19	20	21	22	23	33	34	35	36	37	38	49	50
	Flood														
	Barnyardgrass	10	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Ducksalad	20	0	60	60	0	20	60	0	0	0	0	0	0	70
	Rice	10	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	40	0	20	20	0	0	0	0	0	0	75
	Table B						Comp	oound	ds						
	31 g ai/ha	51	52	53	54	55	56	57	58	59	60	61	62	63	64
10	Flood														
	Barnyardgrass	15	0	20	0	0	10	0	0	0	0	0	0	0	0
	Ducksalad	0	0	40	0	0	0	0	0	0	0	0	0	0	30
	Rice	10	0	15	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	30	20	40	0	0	30	0	0	30	0	0	0	0	0
15	Table B						Comp	ooun	ds						
	31 g ai/ha	65	66	67	68	69	70	71	72	76	79	80	81	82	83
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	15	0	0	0
	Ducksalad	0	0	0	0	0	0	0	0	0	0	0	0	0	20
20	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	ooun	ds						
	31 g ai/ha	84	85	86	87	88	89	90	91	92	93	94	95	96	97
	Flood														
25	Barnyardgrass	0	25	30	20	0	20	0	15	0	30	0	20	60	30
	Ducksalad	0	40	0	20	30	45	50	65	20	40	0	0	0	30
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	10	0
	Sedge, Umbrella	0	50	20	0	0	30	50	75	65	70	20	0	50	30
	Table B						Comp	ooun	ds						
30	31 g ai/ha	98	99	100	101	102	103	104	105	106	108	109	110	111	123
	Flood	0	^	2.0	2.0	1 5	0	0	0	0	0	0	0	0	2.0
	Barnyardgrass Ducksalad	0	30	20 35	20 20	15 30	0	0	0	0	0 40	0 50	0	30	30 30
	Rice	0	0	33	20	10	0	0	0	0	0	0	0	0	0
35	Sedge, Umbrella	40	50	40	0	30	0	0	0	0	0	50	30	0	40
33	beage, umbretta	40	50	40	U	50	U	U	U	U	U	50	50	U	40

	Table B						Comp	oound	ds						
	31 g ai/ha	124	125	126	127	128	129	130	132	133	142	143	144	145	146
	Flood														
	Barnyardgrass	0	0	20	0	0	0	0	0	0	0	0	0	0	0
5	Ducksalad	0	20	75	0	90	0	60	0	60	0	80	50	80	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	15	0	0
	Sedge, Umbrella	0	25	50	0	0	0	40	0	0	0	0	50	0	0
	Table B						Comp	oound	ds						
	31 g ai/ha	147	148	151	152	153	154	155	156	157	158	161	162	163	164
10	Flood														
	Barnyardgrass	0	0	0	15	0	0	0	0	0	20	0	20	0	0
	Ducksalad	60	90	80	0	0	0	0	0	50	50	0	98	30	0
	Rice	0	20	20	20	35	0	0	30	0	20	25	0	10	0
	Sedge, Umbrella	0	80	85	0	0	0	60	0	40	70	0	95	70	0
15	Table B						Comp	oound	ds						
	31 g ai/ha	166	167	168	170	171	172	173	174	175	176	177	178	179	180
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	20	0	0
	Ducksalad	0	0	0	0	40	20	30	80	75	40	30	75	90	60
20	Rice	0	0	0	15	0	0	0	0	0	15	15	0	0	15
	Sedge, Umbrella	50	20	0	0	70	0	0	85	75	70	60	55	40	20
	Table B						Comp	oound	ds						
	31 g ai/ha	181	182	183	184	185	186	190	191	192	193	194	195	196	197
	Flood														
25	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	85	60	30	95	75	90	20	65	60	40	40	0	40	65
	Rice	0	0	0	15	0	10	15	0	0	0	0	0	0	0
	Sedge, Umbrella	75	50	0	65	65	70	0	60	0	0	0	0	20	65
	Table B						Comp	oound	ds						
30	31 g ai/ha	198	199	200	203	204	207	208	209	210	211	212	213	215	216
	Flood														
	Barnyardgrass	0	0	0	0	10	0	0	0	0	0	0	0	0	0
	Ducksalad	40	85	38	40	50	0	0	0	75	50	85	75	70	50
	Rice	15	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Sedge, Umbrella	20	60	30	0	70	0	0	0	50	0	80	65	0	0

	Table B						Comp	pound	ds						
	31 g ai/ha	218	219	220	221	223	224	226	227	228	229	230	235	236	237
	Flood														
	Barnyardgrass	0	0	0	0	0	0	50	20	15	0	0	0	0	0
5	Ducksalad	75	0	30	20	0	0	0	-	40	0	0	95	0	0
	Rice	0	0	0	0	0	0	20	20	0	0	0	0	0	0
	Sedge, Umbrella	75	20	0	0	0	0	30	80	65	0	0	0	0	0
	Table B						Comp	pound	ds						
	31 g ai/ha	238	239	243	244	245	246	248	249	250	251	253	254	255	256
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	35	100	85	75	0	30	0	60	45	0	30
	Rice	0	0	45	0	50	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	60	0	50	0	0	0	60	30	0	30
15	Table B						Comp	pound	ds						
	250 g ai/ha	1	3	4	7	8	9	10	11	12	14	24	26	27	29
	Postemergence														
	Barley	0	0	10	0	20	35	5	10	0	40	70	0	20	0
	Bermudagrass	65	80	100	70	100	98	95	100	100	80	100	75	100	100
20	Blackgrass	5	5	50	5	20	70	50	40	20	5	50	40	50	50
	Bromegrass, Downy	10	45	55	5	10	50	20	45	20	70	75	40	30	45
	Canarygrass	0	5	80	0	85	60	40	90	40	50	60	60	50	40
	Chickweed	90	100	100	100	100	98	98	100	100	80	100	85	80	85
	Cocklebur	85	100	100	70	100	45	98	100	100	98	100	100	98	98
25	Corn	0	15	85	10	80	80	65	85	75	70	85	50	70	60
	Crabgrass, Large	65	90	100	60	100	95	80	100	90	85	100	80	60	80
	Cupgrass, Woolly	20	55	100	65	100	85	75	95	80	80	95	85	80	85
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	50	65	100	60	100	100	95	100	98	95	95	95	90	95
30	Foxtail, Green	40	50	60	40	95	95	70	98	70	85	95	95	90	90
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	80	95	98		100		98	98	100	85	98	95	98	95
	Johnsongrass	20	15	98	0		95	75	98	75	80	80	70	80	45
	Kochia	45	95	100		100	85	20	98	65	-	100	-	100	-
35	Lambsquarters	90		100		100	95	95	98	98	85	100	98	98	98
	Morningglory	65	70	95		100	75	55	80	95	95	90	75	90	98
	Nutsedge, Yellow	45	80	80	0	85	70	75	60	80	50	70	35	55	70

	Oat, Wild	10	50	50	10	35	55	40	70	20	50	80	60	65	80
	Pigweed	90	100	100	98	100	100	100	98	100	98	80	98	100	85
	Ragweed	75	100	100	85	100	100	98	100	100	98	98	100	100	100
	Ryegrass, Italian	0	5	20	20	50	45	20	40	5	50	50	45	10	45
5	Soybean	80	90	100	85	100	98	98	100	100	90	100	98	100	98
	Surinam Grass	20	65	90	25	80	85	80	85	85	55	80	60	80	85
	Velvetleaf	90	100	100	98	100	98	85	100	100	100	98	98	90	98
	Wheat	5	30	70	15	35	30	5	45	0	20	50	30	30	40
	Windgrass	5	5	75	5	40	80	40	98	50	50	80	60	60	50
10	Table B						Comr	pound	ds						
	250 g ai/ha	33	34	36	37	38	39	40	42	44	45	46	47	48	49
	Postemergence														
	Barley	0	30	_	0	35	10	10	5	15	5	0	35	10	0
	Bermudagrass	98	98	100	100	100	100	100	98	98	100	90	_	100	98
15	Blackgrass	30	40	15	30	40	20	15	20	30	25	10	30	30	30
	Bromegrass, Downy	20	50	65	45	85	0	85	25	85	50	25	55	70	5
	Canarygrass	5	50	50	30	45	20	35	0	40	30	0	40	45	0
	Chickweed	100	100	100	100	100	100	100	95	100	100	98	100	100	90
	Cocklebur	95	95	-	-	-	98	-	95	98	95	90	100	98	85
20	Corn	15	50	85	75	90	65	90	45	85	80	75	-	85	15
	Crabgrass, Large	98	98	98	90	100	90	100	90	98	85	75	100	95	85
	Cupgrass, Woolly	90	95	98	100	100	90	98	55	95	80	45	100	95	55
	Deadnettle	_	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	95	95	98	100	100	95	100	85	98	98	85	98	98	75
25	Foxtail, Green	90	95	90	95	95	90	95	85	90	95	85	95	95	90
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	85	95	95	95	95	75	98	95	95	90	80	98	98	70
	Johnsongrass	40	100	100	85	100	98	100	65	95	100	75	-	95	10
	Kochia	98	100	65	65	100	95	75	100	95	98	30	100	100	90
30	Lambsquarters	100	100	100	100	100	100	100	100	98	100	95	100	100	98
	Morningglory	85	95	75	95	100	95	85	98	80	90	80	95	80	85
	Nutsedge, Yellow	80	65	60	65	55	45	-	70	55	60	75	70	70	70
	Oat, Wild	55	70	85	80	85	40	90	25	85	70	30	60	85	40
	Pigweed	100	98	98	100	100		100		100	100	80	100	100	98
35	Ragweed	98	98	95	98	95	98	98	85	98	98	80	95	98	90
	Ryegrass, Italian	45	40	15	30	65	20	10	15	35	35	10	50	30	0
	Soybean	100	100			100		100	95	95	98	90	98	98	85
	Surinam Grass	90	85	95	95	95	70	100	65	95	95	90	100	98	70

	Velvetleaf	100	100	100	100	100	95	100	98	100	95	90	100	100	98	
	Wheat	5	55	5	5	60	20	35	10	30	30	0	15	30	30	
	Windgrass	60	80	85	70	90	_	90	_	_	_	50	_	_	30	
	Table B						Comp	oound	ds							
5	250 g ai/ha	50	51	52	53	55	56	58	59	61	62	63	64	66	67	
	Postemergence															
	Barley	5	50	25	70	0	_	10	10	0	30	0	35	0	30	
	Bermudagrass	100	98	100	98	90	100	100	100	90	90	95	98	95	85	
	Blackgrass	15	55	30	50	10	20	40	60	5	50	50	15	15	10	
10	Bromegrass, Downy	20	60	70	60	0	60	50	45	5	50	40	85	25	5	
	Canarygrass	5	98	85	90	0	40	85	70	0	5	0	60	0	5	
	Chickweed	98	95	98	100	90	98	90	100	98	80	95	100	98	100	
	Cocklebur	90	90	85	90	75	95	90	100	85	75	95	95	45	90	
	Corn	25	85	80	85	10	70	80	75	15	80	45	90	75	75	
15	Crabgrass, Large	98	90	98	100	85	95	90	100	75	85	90	98	70	95	
	Cupgrass, Woolly	85	90	95	98	20	85	95	95	60	65	65	98	75	75	
	Deadnettle	_	-	-	-	-	-	-	_	-	-	-	-	-	_	
	Foxtail, Giant	95	85	90	95	75	95	98	95	75	80	80	100	95	90	
	Foxtail, Green	95	100	100	100	80	100	100	70	80	85	90	100	98	95	
20	Galium	_	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Goosegrass	90	85	85	85	75	90	90	95	80	75	75	90	95	80	
	Johnsongrass	70	98	95	100	20	100	100	100	10	10	15	100	65	10	
	Kochia	100	35	65	80	85	100	25	75	85	80	65	80	98	85	
	Lambsquarters	100	98	95	98	98	100	100	100	98	100	98	100	100	100	
25	Morningglory	80	100	85	98	85	100	90	80	80	75	75	90	100	100	
	Nutsedge, Yellow	75	80	65	75	65	75	75	75	65	55	60	25	70	70	
	Oat, Wild	30	90	95	85	5	45	85	80	5	40	20	98	10	10	
	Pigweed	100	100	98	100	95	100	100	100	98	100	100	100	100	100	
	Ragweed	98	95	85	98	98	75	98	95	90	80	80	90	60	90	
30	Ryegrass, Italian	0	30	60	45	0	50	70	80	0	50	10	30	10	5	
	Soybean	95	95	98	95	75	98	95	95	50	95	85	98	98	98	
	Surinam Grass	85	90	98	98	60	100	98	90	75	70	75	98	98	25	
	Velvetleaf	100	95	100	98	100	98	95	98	98	100	98	100	100	100	
	Wheat	15	30	35	50	10	0	0	60	10	30	10	55	0	25	
35	Windgrass	80	85	100	95	5	85	70	70	20	50	60	100	80	5	
	Table B						Comp	oounc	ds							
	250 g ai/ha	68	70	71	72	73	74	75	77	79	80	81	82	83	85	

	Postemergence														
	Barley	30	90	5	0	10	0	0	0	55	75	5	5	5	20
	Bermudagrass	98	98	98	85	90	98	98	95	85	55	95	95	90	90
	Blackgrass	20	50	5	0	30	45	20	5	45	10	30	15	0	50
5	Bromegrass, Downy	40	70	30	20	60	35	50	5	65	80	50	30	60	30
	Canarygrass	35	98	20	0	40	0	0	0	50	70	20	35	25	60
	Chickweed	100	100	98	90	100	100	100	98	98	100	100	100	100	98
	Cocklebur	90	40	95	95	80	95	95	85	98	65	90	100	90	98
	Corn	80	75	15	10	85	60	55	75	75	65	65	15	25	85
10	Crabgrass, Large	98	100	95	90	95	95	100	85	95	95	98	90	98	95
	Cupgrass, Woolly	75	90	100	50	65	75	80	40	75	75	90	75	95	90
	Deadnettle	_	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	90	98	95	80	90	85	95	80	95	95	98	95	98	98
	Foxtail, Green	95	98	98	90	95	85	90	80	98	98	95	90	98	98
15	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	95	95	90	70	80	85	98	85	80	85	80	85	95	85
	Johnsongrass	100	98	100	45	75	85	75	10	75	45	100	95	100	98
	Kochia	98	98	65	90	90	98	100	95	80	60	100	75	95	90
	Lambsquarters	100	100	98	100	100	98	100	98	100	100	100	100	100	100
20	Morningglory	100	100	80	90	95	100	95	90	100	100	100	100	100	100
	Nutsedge, Yellow	80	60	25	75	70	70	75	80	80	75	80	55	85	85
	Oat, Wild	70	95	5	40	95	80	60	5	75	50	55	10	10	60
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	95	80	95	95	85	90	95	85	98	75	100	95	98	98
25	Ryegrass, Italian	50	70	5	30	70	35	60	10	55	5	55	10	5	45
	Soybean	98	98	98	95	95	95	98	70	98	95	98	98	95	95
	Surinam Grass		100	85	100	85	75	85	80	90	65	100	80	90	85
	Velvetleaf	100		95		100			100			100		100	98
2.0	Wheat	10	35	5	10	50	50	25	10	40	35	25	5	0	35
30	Windgrass	85	100	60	65	98	95	90	25	90	80	70	50	30	95
	Table B						Comp	pound	ds						
	250 g ai/ha	86	87	88	89	90	91	92	93	94	95	96	97	98	99
	Postemergence														
	Barley	65	5	80	20	20	40	0	5	5	0	5	5	15	30
35	Bermudagrass	95	100	85	95	85	95	85	85	98	90	98	98	98	98
	Blackgrass	55	40	10	30	30	50	5	30	20	5	40	50	50	15
	Bromegrass, Downy	50	80	60	5	10	30	20	0	0	0	10	10	40	25
	Canarygrass	85	35	90	60	30	75	0	10	35	0	45	30	50	70

	Chickweed	98	100	95	98	90	100	100	98	100	100	100	100	100	98
	Cocklebur	98	100	95	70	100	95	98	98	90	100	100	100	100	100
	Corn	85	75	80	98	75	60	60	60	80	35	80	75	70	80
	Crabgrass, Large	98	98	98	98	80	100	100	90	90	80	90	95	95	95
5	Cupgrass, Woolly	95	90	95	75	55	98	70	70	70	65	85	75	95	85
	Deadnettle	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Foxtail, Giant	98	95	95	98	85	98	98	85	98	85	85	90	85	95
	Foxtail, Green	100	95	100	80	90	98	98	90	80	90	85	95	95	98
	Galium	_	_	_	_	_	_	_	_	_	_	_	_	-	_
10	Goosegrass	95	98	70	80	75	85	90	75	85	90	85	98	90	80
	Johnsongrass	100	45	100	100	65	100	100	70	45	45	80	85	98	95
	Kochia	98	100	85	100	98	95	100	98	90	100	100	100	98	100
	Lambsquarters	100	100	100	100	100	100	100	98	100	100	100	100	100	100
	Morningglory	100	65	95	100	100	98	100	100	100	100	100	100	100	100
15	Nutsedge, Yellow	85	75	75	75	75	75	75	70	65	85	85	80	75	75
	Oat, Wild	80	90	80	50	20	50	10	5	30	0	30	10	50	80
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	98	98	98	100	95	98	75	98	80	95	95	100	90	95
	Ryegrass, Italian	60	60	80	30	0	20	30	0	10	0	10	5	15	20
20	Soybean	98	100	98	98	100	98	98	98	95	98	98	100	100	100
	Surinam Grass	100	85	98	95	75	98	75	70	80	70	85	85	90	80
	Velvetleaf	100	100	98	100	100	100	100	98	80	100	100	100	98	100
	Wheat	45	50	5	10	35	50	0	5	5	0	15	5	20	5
	Windgrass	95	95	70	50	50	65	90	55	50	0	45	85	70	60
25	Table B						Comp	pound	ds						
	250 g ai/ha	100	102	107	108	109	111	113	117	118	119	120	121	123	126
	Postemergence														
	Barley	50	60	30	0	5	30	20	0	0	5	5	10	50	40
	Bermudagrass	85	100	98	100	95	100	95	100	98	98	98	100	98	95
30	Blackgrass	40	45	20	30	50	40	5	40	40	50	60	60	80	45
	Bromegrass, Downy	35	30	30	5	5	10	90	45	35	85	80	90	45	40
	Canarygrass	10	50	80	5	45	15	90	5	15	30	55	30	85	90
	Chickweed	100	100	100	100	100	100	100	100	100	100	100	100	100	98
	Cocklebur	98	100	100	100	100	100	98	100	98	95	80	100	100	98
35	Corn	45	70	85	65	60	60	85	25	25	70	75	85	80	80
	Crabgrass, Large	80	90	95	85	85	85	95	95	95	95	98	98	90	90
	Cupgrass, Woolly	75	85	80	75	75	75	95	98	95	100	100	100	90	90
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	Foxtail, Giant	85	95	95	80	90	70	95	95	95	95	98	98	85	90
	Foxtail, Green	85	95	98	80	98	70	95	95	95	100	100	100	90	95
	Galium	-	_	_	-	_	_	_	_	_	_	_	_	_	_
	Goosegrass	75	90	85	85	85	85	90	85	90	95	98	98	85	85
5	Johnsongrass	25	75	90	60	75	40	95	25	35	80	80	85	90	90
	Kochia	100	100	100	100	98	100	100	85	98	100	98	100	100	85
	Lambsquarters	98	100	100	100	100	100	98	100	100	100	100	100	98	98
	Morningglory	100	100	100	100	100	100	100	100	80	95	90	45	100	100
	Nutsedge, Yellow	40	80	85	85	80	85	75	35	65	75	75	50	80	80
10	Oat, Wild	30	80	40	0	40	10	85	35	40	95	95	98	60	50
	Pigweed	98	98	100	100	100	100	100	100	100	100	100	100	100	98
	Ragweed	80	95	98	98	98	98	98	98	98	98	80	95	98	90
	Ryegrass, Italian	50	10	5	0	40	5	85	50	60	85	80	75	50	50
	Soybean	100	100	100	85	100	98	98	95	100	80	98	100	90	98
15	Surinam Grass	75	85	85	80	80	80	90	85	90	98	100	100	85	98
	Velvetleaf	85	100	100	100	100	100	98	100	100	100	100	100	100	98
	Wheat	35	30	15	5	15	30	50	25	10	60	80	80	50	50
	Windgrass	60	70	85	40	80	70	80	65	80	100	90	100	90	60
	Table B						Comp	oound	ds						
20	250 g ai/ha	127	128	129	130	140	141	146	147	152	155	156	157	160	162
	Postemergence														
	Barley	60	5	_	^	0	5	30	0	90	85	85	20	50	85
			J	0	0	U					0.5	65	30		
	Bermudagrass	98	100	98	95	90	90	100	98	98	100	98	100	95	100
	Bermudagrass Blackgrass	98 40					90 25	100 50	98 55	98 70				95 25	100 65
25	-		100	98	95	90			55		100	98	100		
25	Blackgrass	40	100 15	98 5	95 5	90 5	25	50	55	70	100 65	98 50	100	25	65
25	Blackgrass Bromegrass, Downy	40 40 60	100 15 50 30	98 5 35	95 5 40 25	90 5 20	25 45	50 35	55 10	70 85	100 65 50	98 50 40 60	100 40 65	25 55 35	65 50
25	Blackgrass Bromegrass, Downy Canarygrass	40 40 60 98	100 15 50 30	98 5 35 0	95 5 40 25 100	90 5 20 5	25 45 5	50 35 10	55 10 5	70 85 85	100 65 50 65	98 50 40 60	100 40 65 90	25 55 35 100	65 50 90
25	Blackgrass Bromegrass, Downy Canarygrass Chickweed	40 40 60 98	100 15 50 30 100	98 5 35 0	95 5 40 25 100	90 5 20 5 75	25 45 5 95	50 35 10 98	55 10 5 98	70 85 85 95	100 65 50 65 100	98 50 40 60	100 40 65 90 100	25 55 35 100	65 50 90 100
25	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur	40 40 60 98 100 75	100 15 50 30 100	98 5 35 0 100	95 5 40 25 100	90 5 20 5 75 95	25 45 5 95	50 35 10 98	55 10 5 98 100	70 85 85 95 100	100 65 50 65 100	98 50 40 60 100 98	100 40 65 90 100	25 55 35 100 100	65 50 90 100
	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn	40 40 60 98 100 75	100 15 50 30 100 100	98 5 35 0 100 100	95 5 40 25 100 100 80	90 5 20 5 75 95 45	25 45 5 95 100 45	50 35 10 98 - 35	55 10 5 98 100 40 90	70 85 85 95 100	100 65 50 65 100 100 65	98 50 40 60 100 98 60	100 40 65 90 100 100	25 55 35 100 100 60 95	65 50 90 100 100 85
	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large	40 40 60 98 100 75 95	100 15 50 30 100 100 60	98 5 35 0 100 100 60 85	95 40 25 100 100 80	90 5 20 5 75 95 45	25 45 5 95 100 45 85	50 35 10 98 - 35 98	55 10 5 98 100 40 90	70 85 85 95 100 80 95	100 65 50 65 100 100 65 90	98 50 40 60 100 98 60 80	100 40 65 90 100 100 100	25 55 35 100 100 60 95	65 50 90 100 100 85 98
	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	40 40 60 98 100 75 95 85	100 15 50 30 100 100 60	98 5 35 0 100 100 60 85	95 40 25 100 100 80	90 5 20 5 75 95 45	25 45 5 95 100 45 85	50 35 10 98 - 35 98	55 10 5 98 100 40 90	70 85 85 95 100 80 95	100 65 50 65 100 100 65 90	98 50 40 60 100 98 60 80	100 40 65 90 100 100 100	25 55 35 100 100 60 95	65 50 90 100 100 85 98
	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle	40 40 60 98 100 75 95 85	100 15 50 30 100 100 60 100 95	98 5 35 0 100 100 60 85 85	95 5 40 25 100 100 80 100 90	90 5 20 5 75 95 45 90 65	25 45 95 100 45 85 70	50 35 10 98 - 35 98 75	55 10 5 98 100 40 90 80	70 85 85 95 100 80 95 100	100 65 50 65 100 100 65 90 75	98 50 40 60 100 98 60 80 65	100 40 65 90 100 100 100 98	25 55 35 100 100 60 95 95 -	65 50 90 100 100 85 98 100
	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	40 40 60 98 100 75 95 85 -	100 15 50 30 100 100 60 100 95 -	98 5 35 0 100 100 60 85 85 -	95 40 25 100 100 80 100 90 -	90 5 20 5 75 95 45 90 65 -	25 45 95 100 45 85 70 -	50 35 10 98 - 35 98 75 - 98	55 10 5 98 100 40 90 80 -	70 85 85 95 100 80 95 100 -	100 65 50 65 100 100 65 90 75 -	98 50 40 60 100 98 60 80 65 -	100 40 65 90 100 100 100 98 -	25 55 35 100 100 60 95 95 -	65 50 90 100 100 85 98 100 -
30	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green	40 40 60 98 100 75 95 85 -	100 15 50 30 100 100 60 100 95 -	98 5 35 0 100 100 60 85 85 -	95 40 25 100 100 80 100 90 -	90 5 20 5 75 95 45 90 65 -	25 45 95 100 45 85 70 -	50 35 10 98 - 35 98 75 - 98	55 10 5 98 100 40 90 80 -	70 85 85 95 100 80 95 100 -	100 65 50 65 100 100 65 90 75 -	98 50 40 60 100 98 60 80 65 -	100 40 65 90 100 100 100 98 -	25 55 35 100 100 60 95 95 -	65 50 90 100 100 85 98 100 -
30	Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green Galium	40 40 98 100 75 95 85 - 90 95	100 15 50 30 100 100 60 100 95 - 98 98	98 5 35 0 100 100 60 85 85 - 98 95	95 5 40 25 100 100 80 100 90 - 98 98	90 5 20 5 75 95 45 90 65 - 90 95	25 45 95 100 45 85 70 - 85 90	50 35 10 98 - 35 98 75 - 98 90 - 95	55 10 5 98 100 40 90 - 90 - 95	70 85 85 95 100 95 100 - 98 100	100 65 50 65 100 100 65 90 75 - 95 80 - 98 70	98 50 40 60 100 98 60 80 65 - 90 85	100 40 65 90 100 100 100 98 - 100 95	25 55 35 100 100 60 95 - 85 98 -	65 50 90 100 100 85 98 100 - 98

	Lambsquarters	95	100	98	100	80	100	100	100	100	100	100	100	98	100
	Morningglory	98	90	90	100	65	65	95	100	95	100	100	100	100	100
	Nutsedge, Yellow	80	60	85	40	75	60	40	75	80	75	75	45	80	80
	Oat, Wild	60	80	30	60	40	40	70	45	85	70	50	70	60	55
5	Pigweed	100	100	98	100	98	98	100	100	100	100	100	98	100	100
	Ragweed	98	98	95	98	75	95	98	98	98	95	90	100	98	100
	Ryegrass, Italian	30	30	0	5	5	5	15	40	80	60	40	35	35	90
	Soybean	98	98	98	100	80	90	100	85	100	100	98	100	98	100
	Surinam Grass	90	85	85	90	65	75	75	75	95	75	70	100	75	85
10	Velvetleaf	100	100	100	100	85	98	100	100	100	100	100	100	100	100
	Wheat	40	5	0	10	15	10	45	10	90	70	45	30	45	40
	Windgrass	70	85	85	85	30	50	60	70	98	85	60	80	80	80
	Table B						Comp	pound	ds						
	250 g ai/ha	164	173	181	184	186	187	189	190	191	193	197	217	218	219
15	Postemergence														
	Barley	35	50	55	60	5	40	40	70	70	50	40	10	35	30
	Bermudagrass	100	100	100	100	98	100	70	100	100	100	100	100	100	100
	Blackgrass	35	50	15	50	20	5	5	40	60	60	45	30	5	90
	Bromegrass, Downy	95	70	85	60	50	40	10	35	75	85	30	65	30	80
20	Canarygrass	98	80	90	95	40	60	10	55	85	25	60	20	5	55
	Chickweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Cocklebur	100	100	100	100	100	100	100	100	100	100	100	100	-	-
	Corn	70	85	95	98	65	80	45	65	85	60	65	35	80	80
	Crabgrass, Large	100	100	100	100	95	100	100	90	100	100	100	98	90	98
25	Cupgrass, Woolly	100	100	100	100	85	95	80	85	98	98	98	55	80	98
	Deadnettle	-	-	-	100	100	100	100	100	100	100	100	-	-	-
	Foxtail, Giant	100	100	100	100	95	100	98	95	100	100	100	90	85	95
	Foxtail, Green	100	90	98	98	95	98	95	70	98	80	70	90	90	90
	Galium	-	-	-	60	70	85	85	85	60	90	80	-	-	-
30	Goosegrass	98	100	100	100	100	100	90	98	100	100	100	95	35	95
	Johnsongrass	98	-	100	100	100	100	70	80	100	80	100	65	80	100
	Kochia	100	100			100	80	100	98	35	100	98		100	
	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	100					100		100	100	90	100	80	98	100
35	Nutsedge, Yellow	75	75	85	75	80	75	65	75	70	75	75	70	60	85
	Oat, Wild	90	85	100	98	45	45	25	50	80	75	85	85	60	85
	Pigweed	100							100	100	100	100			
	Ragweed	100	00	100	_	100	100	80	_	_	_	_	98	100	100

	Ryegrass, Italian	40	30	65	60	30	30	5	30	50	45	35	40	70	40
	Soybean	100	100	100	100	100	100	100	98	100	100	100	98	100	100
	Surinam Grass	98	_	100	100	-	-	85	90	98	95	70	95	90	65
	Velvetleaf	95	100	100	100	100	100	100	100	100	100	100	100	100	98
5	Wheat	50	50	70	60	5	5	0	30	65	60	40	50	0	50
	Windgrass	85	75	65	100	65	80	80	65	100	75	98	85	45	85
	Table B						Comp	pound	ds						
	250 g ai/ha	220	226	227	228	229	233	235	236	237	238	239	240	243	244
	Postemergence														
10	Barley	15	60	30	40	25	10	-	0	40	40	5	15	95	98
	Bermudagrass	100	98	90	95	90	100	100	-	100	100	100	100	100	100
	Blackgrass	40	60	20	55	30	50	-	40	80	70	50	65	98	85
	Bromegrass, Downy	30	30	25	10	30	60	85	25	95	85	10	50	100	80
	Canarygrass	30	60	10	10	60	20	30	10	50	30	0	40	100	100
15	Chickweed	100	95	90	100	98	100	100	100	100	100	100	100	100	100
	Cocklebur	-	100	95	100	100	100	-	100	-	-	100	-	-	_
	Corn	75	98	85	90	85	85	100	-	100	95	75	100	100	100
	Crabgrass, Large	90	98	90	98	90	100	100	100	100	98	98	100	100	100
	Cupgrass, Woolly	65	95	95	98	90	100	100	-	100	100	95	100	100	100
20	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	95	95	98	95	95		100	98	100			100		100
	Foxtail, Green	90	90	90	100	95	100	98	98	95	98	95	98	100	100
	Galium	_	_	_	_	_	_	_	_	_	_	_	_	_	_
25	Goosegrass	90	85	80	90	80	98		100	98	98		98	98	98
25	Johnsongrass	90	100		100			100		100				100	
	Kochia		100						100					100	
	Lambsquarters	100	98		100				100						
	Morningglory		100								100			100	
30	Nutsedge, Yellow Oat, Wild	55 50	75 50	65 30	70 40	55 35	25 60	60 95	65 60	45 90	25 60	70 30	45	85 100	75 98
30	Pigweed	100	98		100		-	100			100				
	Ragweed	98	90	85	98	95		100			100				
	Ryegrass, Italian	60	20	10	0	10	60	60	5	60	70	0	40	95	95
	Soybean	100			100				100					100	
35	Surinam Grass	75	85	95	98		100			100				100	
	Velvetleaf	100	98		100	85			100						
	Wheat	15	30	20	35	35	65	80	60	85	80	30		100	95
	Windgrass	60	85	50	90	65	60	98		100	95	70		100	95
	2											-			-

	Table B Com	pound	ds				Table	е В		C	ompou	ınds			
	250 g ai/ha	245	255				250 q	g ai/	/ha		24	15 2	55		
	Postemergence						Post	emerç	genc	е					
	Barley	95	50				John	songr	rass		10	00	95		
	Bermudagrass	100	100				Koch:	ia			10	00	65		
	Blackgrass	80	60				Lamb	squar	rter	s	10	00 1	00		
	Bromegrass, Downy	95	85				Morn	inggl	lory		10	00 1	00		
	Canarygrass	100	60				Nutse	edge,	Ye	llow	7	75	60		
	Chickweed	100	100				Oat,	Wilc	d		10	00	90		
	Cocklebur	_	_				Pigwe	eed			10	00 1	00		
	Corn	100	85				Ragwe	eed			10	0	95		
	Crabgrass, Large	100	95				Ryeg:	rass,	It	alia:	n 8	35	80		
	Cupgrass, Woolly	100	98				Soybe	ean			10	00 1	00		
	Deadnettle	_	_				Suri	nam G	Gras	S	10	0	90		
	Foxtail, Giant	100	100				Velve	etlea	af		10	00 1	00		
	Foxtail, Green	100	90				Wheat	t			9	8	80		
	Galium	_	_				Wind	grass	3		9	8	95		
	Goosegrass	100	98												
	Table B						Comp	oound	ls						
	125 g ai/ha	1	2	3	4	7	8	9	10	11	12	14	24	26	27
	Postemergence														
	Barley	0	30	0	0	0	5	20	0	10	0	5	50	0	10
5	Bermudagrass	60	90	70	85	65	95	98	90	100	98	80	100	60	100
	Blackgrass	5	45	0	30	0	10	40	50	40	10	5	40	10	45
	Bromegrass, Downy	0	80	0	50	5	10	40	10	45	20	50	70	20	20
	Canarygrass	0	80	0	75	0	70	50	5	90	5	20	-	50	30
	Chickweed	65	95	98	100	90	100	95	95	100	100	80	95	85	50
10	Cocklebur	70	95	85	100	65	100	35	95	100	100	90	98	95	95
	Corn	0	35	10	50	0	75	75	45	80	45	45	85	40	50
	Crabgrass, Large	55	90	80	100	45	90	85	75	100	80	85	95	50	60
	Cupgrass, Woolly	0	85	20	100	50	90	80	70	90	70	80	95	85	70
	Deadnettle	_	_	-	_	-	-	-	-	-	-	-	-	-	-
15	Foxtail, Giant	20	85	60	98	55	100	95	80	98	98	80	90	70	90
	Foxtail, Green	30	100	35	60	30	85	80	70	85	70	50	90	85	80
	Galium	-	-	-	_	-	-	-	-	-	-	-	-	-	-
	Goosegrass	65	95	70	85	35	95	90	95	95	98	80	85	95	98
	Johnsongrass	0	98	-	95	0	98	85	60	90	60	80	70	50	45

	Kochia	25	80	85	100	45	100	25	15	75	60	_	80	_	100
	Lambsquarters	90	95	98	100	65	100	80	90	95	98	85	90	90	95
	Morningglory	45	95	55	90	15	100	70	45	70	70	80	60	75	80
	Nutsedge, Yellow	20	75	65	75	0	80	60	60	50	65	30	30	35	50
5	Oat, Wild	10	55	5	50	0	35	40	20	70	20	50	60	45	50
	Pigweed	85	95	100	100	90	100	100	95	85	98	80	80	85	100
	Ragweed	70	90	98	100	80	100	75	90	100	100	85	90	98	100
	Ryegrass, Italian	0	40	5	15	0	30	30	0	40	5	5	40	10	5
	Soybean	70	95	80	100	75	98	85	95	100	100	90	95	95	95
10	Surinam Grass	10	85	40	75	20	75	75	70	85	65	50	60	60	80
	Velvetleaf	85	90	100	90	90	95	90	75	100	98	90	98	95	80
	Wheat	0	20	10	50	10	35	30	0	40	0	0	30	5	10
	Windgrass	0	50	0	60	5	30	60	30	85	45	30	60	40	50
	Table B						Comp	ooun	ds						
15	125 g ai/ha	29	33	34	36	37	38	39	40	42	44	45	46	47	48
	Postemergence														
	Barley	0	0	30	20	0	0	0	10	0	5	5	0	10	10
	Bermudagrass	90	98	95	100	98	100	85	100	95	95	95	90	98	98
	Blackgrass	40	30	10	15	5	15	0	10	15	30	10	10	25	20
20	Bromegrass, Downy	40	10	50	45	15	85	0	70	15	80	45	10	50	50
	Canarygrass	40	5	50	50	10	10	0	30	0	30	30	0	40	45
	Chickweed	50	100	98	100	85	100	100	100	80	98	98	95	100	95
	Cocklebur	95	95	85	-	-	-	95	-	85	90	70	80	95	98
	Corn	50	10	45	65	60	75	45	85	20	80	60	60	80	85
25	Crabgrass, Large	55	90	95	95	85	98	85	100	85	95	75	75	90	95
	Cupgrass, Woolly	85	70	90	95	75	95	85	98	25	85	75	25	90	90
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	90	85	95	98	95	100	95	100	75	95	95	80	98	95
	Foxtail, Green	75	90	90	90	85	95	90	95	60	90	85	85	95	95
30	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	85	85	90	90	85	90	65	95	90	90	80	80	95	95
	Johnsongrass	40	35	95	85	60	95	90	75	40	90	98	70	98	80
	Kochia	-	95	100	60	15	100	60	10	100	75	15	20	98	100
	Lambsquarters	90	98	100	100	98	100	100	100	100	95	100	90	98	100
35	Morningglory	80	80	85	75	75	75	75	75	75	75	80	45	90	80
	Nutsedge, Yellow	70	75	55	25	25	15	15	55	70	50	45	70	70	60
	Oat, Wild	60	40	60	75	40	80	30	90	10	80	60	20	60	85
	Pigweed	80	98	98	90	98	98	100	100	100	98	100	80	100	100

	Ragweed	100	98	95	95	95	80	95	98	85	95	95	80	95	90
	Ryegrass, Italian	40	40	20	10	5	60	5	0	10	10	35	5	30	30
	Soybean	98	98	95	100	95	90	98	100	95	95	98	90	98	98
	Surinam Grass	70	75	80	85	75	90	65	98	45	95	95	80	98	95
5	Velvetleaf	80	98	98	100	95	100	80	100	95	100	90	85	98	98
	Wheat	10	5	35	5	0	40	5	30	5	30	15	0	5	10
	Windgrass	30	30	50	80	50	85	5	80	70	85	70	15	80	90
	Table B						Comp	ooun	ds						
	125 g ai/ha	49	50	51	52	53	55	56	58	59	61	62	63	64	66
10	Postemergence														
	Barley	0	5	30	25	70	0	30	5	10	0	5	0	_	0
	Bermudagrass	95	100	90	95	98	85	100	98	98	90	85	85	98	95
	Blackgrass	0	5	50	25	40	5	20	20	40	0	30	35	5	10
	Bromegrass, Downy	0	20	55	60	55	0	50	45	35	0	50	20	60	20
15	Canarygrass	0	5	60	65	90	0	40	80	50	0	0	0	40	0
	Chickweed	80	98	85	95	98	80	98	90	98	95	75	80	98	95
	Cocklebur	80	90	90	85	85	65	75	85	90	70	55	90	95	25
	Corn	5	25	80	65	80	5	65	65	75	10	75	25	85	70
	Crabgrass, Large	80	95	85	90	95	80	90	90	95	75	80	80	98	65
20	Cupgrass, Woolly	55	80	80	85	95	15	65	70	90	60	60	65	98	60
	Deadnettle	_	_	-	_	_	_	-	_	_	_	_	-	-	_
	Foxtail, Giant	70	95	85	90	90	55	85	90	95	65	75	65	98	80
	Foxtail, Green	75	95	95	98	100	80	98	98	70	60	80	70	100	90
	Galium	_	-	-	-	-	-	-	-	-	-	_	-	-	-
25	Goosegrass	70	90	85	85	80	65	75	85	95	65	65	70	85	70
	Johnsongrass	10	65	85	90	95	10	85	98	100	10	0	10	100	65
	Kochia	80	100	25	55	75	75	100	25	45	70	60	25	80	90
	Lambsquarters	90	100	95	90	98	95	100	100	100	95	98	98	100	95
	Morningglory	80	70	90	75	80	75	100	90	80	70	75	75	85	100
30	Nutsedge, Yellow	70	70	75	45	75	55	75	55	70	60	35	50	10	65
	Oat, Wild	5	10	60	95	85	0	40	60	55	0	25	5	95	5
	Pigweed	95	100	98	95	100	90	100	98	100	90	100	95	100	100
	Ragweed	80	98	90	80	95	95	75	90	90	85	75	80	90	25
	Ryegrass, Italian	0	0	10	55	40	0	50	30	70	0	50	0	0	5
35	Soybean	85	95	95	95	95	60	95	95	95	10	90	85	98	98
	Surinam Grass	55	80	90	90	98	45	85	95	90	75	65	35	98	85
	Velvetleaf	98	98	90	98	95	98	98	85	95	95	95	98	98	98
	Wheat	15	5	10	35	30	5	0	0	10	0	5	0	30	0

	Windgrass	5	60	60	90	85	0	60	60	60	0	35	40	95	70
	Table B						Comp	pound	ds						
	125 g ai/ha	67	68	69	70	71	72	73	74	75	77	79	80	81	82
	Postemergence														
5	Barley	20	25	15	90	0	0	0	0	0	0	35	30	0	0
	Bermudagrass	70	95	98	95	80	85	90	95	98	95	85	45	95	85
	Blackgrass	5	0	0	35	0	0	10	25	0	0	30	5	30	5
	Bromegrass, Downy	0	25	70	70	10	0	50	5	35	5	30	60	30	5
	Canarygrass	0	35	25	85	5	0	5	0	0	0	35	50	10	15
10	Chickweed	95	98	98	98	95	90	95	95	98	95	95	100	98	98
	Cocklebur	90	90	20	40	95	90	65	90	95	60	98	45	65	95
	Corn	65	80	25	60	0	5	80	15	20	60	60	65	15	5
	Crabgrass, Large	90	90	98	95	80	85	90	95	100	75	90	90	95	80
	Cupgrass, Woolly	70	55	95	90	85	50	65	55	55	35	65	70	90	65
15	Deadnettle	-	-	_	-	_	-	_	-	_	-	-	-	-	_
	Foxtail, Giant	85	85	98	95	80	75	80	70	85	75	95	95	95	95
	Foxtail, Green	80	85	100	98	70	90	90	80	90	80	80	95	95	85
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	Goosegrass	65	85	85	85	90	65	75	80	95	75	70	80	70	80
20	Johnsongrass	5	75	100	80	98	40	70	10	20	10	70	10	75	80
	Kochia	85	95	80	75	25	90	90	95	100	95	75	20	90	65
	Lambsquarters	98	100	100	100	90	100	100	95	100	98	100	98	100	100
	Morningglory	95	98	75	100	75	90	75	95	95	80	100	100	100	100
	Nutsedge, Yellow	65	70	40	40	10	65	50	70	70	70	70	55	80	45
25	Oat, Wild	10	50	85	90	0	30	80	60	50	5	60	40	50	5
	Pigweed	98	100	100	98	98	100	100	100	100	100	100	100	100	100
	Ragweed	85	80	100	75	80	90	85	85	90	80	95	65	98	95
	Ryegrass, Italian	5	15	50	50	0	10	60	20	40	5	50	5	45	5
	Soybean	98	98	98	95	95	85	90	95	98	70	95	90	95	95
30	Surinam Grass	20	70	100	95	65	80	85	65	70	75	75	60	98	75
	Velvetleaf	98	100	98	100	90	100	100	100	100	98	98	100	100	90
	Wheat	25	5	10	35	0	10	40	30	10	10	35	20	25	0
	Windgrass	5	65	80	90	45	60	90	80	70	20	65	70	60	20
	Table B						Comp	pound	ds						
35	125 g ai/ha	83	85	86	87	88	89	90	91	92	93	94	95	96	97
	Postemergence														
	Barley	5	20	60	0	40	10	10	30	0	5	5	0	0	0

	Bermudagrass	85	90	95	98	80	95	85	95	85	85	98	75	95	95
	Blackgrass	0	35	45	20	5	20	5	30	5	30	10	0	30	30
	Bromegrass, Downy	45	25	35	60	45	5	10	5	20	0	0	0	5	5
	Canarygrass	25	55	80	35	80	50	30	65	0	5	30	0	30	10
5	Chickweed	98	95	95	100	95	98	85	98	98	95	100	98	98	100
	Cocklebur	80	98	95	100	95	65	100	95	98	95	60	100	98	100
	Corn	15	85	80	75	65	98	45	45	45	50	70	25	65	60
	Crabgrass, Large	95	90	98	95	98	95	75	98	98	80	90	75	85	85
	Cupgrass, Woolly	90	90	95	75	90	65	50	98	65	65	65	65	85	70
10	Deadnettle	_	_	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	95	90	98	85	95	90	75	98	90	80	85	75	80	85
	Foxtail, Green	98	95	100	90	100	70	80	98	98	80	70	65	70	85
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	80	80	85	95	70	75	75	85	75	65	75	75	85	80
15	Johnsongrass	100	95	100	35	100	100	30	95	98	50	45	15	70	75
	Kochia	80	85	98	100	80	85	85	85	95	95	80	100	95	98
	Lambsquarters	100	98	100	100	100	98	100	100	100	95	100	98	100	100
	Morningglory	85	100	90	65	95	90	100	98	100	95	100	100	100	100
	Nutsedge, Yellow	70	85	75	70	70	70	70	75	70	70	60	85	85	80
20	Oat, Wild	10	25	60	65	70	20	10	45	5	0	5	0	25	5
	Pigweed	100	100	100	-	100	100	100	100	100	98	100	100	98	100
	Ragweed	85	85	95	98	95	95	85	95	75	85	65	95	95	100
	Ryegrass, Italian	0	35	50	40	30	20	0	10	5	0	0	0	10	0
	Soybean	90	90	98	100	98	98	98	95	98	95	95	98	75	95
25	Surinam Grass	85	85	98	-	95	80	70	98	70	70	65	45	75	80
	Velvetleaf	95	98	100	100	95	98	100	100	100	95	75	100	98	100
	Wheat	0	20	40	50	5	5	15	35	0	0	0	0	10	0
	Windgrass	15	80	85	85	65	30	5	50	80	50	45	0	45	60
	Table B						Comp	oun	ds						
30	125 g ai/ha	98	99	100	102	107	108	109	111	113	117	118	119	120	121
	Postemergence														
	Barley	10	10	30	30	25	0	5	5	5	0	0	5	5	5
	Bermudagrass	85	80	75	85	95	100	90	100	95	95	98	98	98	100
	Blackgrass	20	5	10	30	15	20	40	25	5	40	35	50	60	40
35	Bromegrass, Downy	5	25	15	10	10	5	5	5	80	15	30	60	60	80
	Canarygrass	35	60	5	30	60	5	30	0	_	5	10	30	55	5
	Chickweed	98	98	95	95	100	100	98	100	100	98	95	100	85	100
	Cocklebur	100	100	95	100	100	100	100	100	98	98	85	80	25	85

	Corn	55	65	20	65	75	50	60	55	80	25	20	60	50	55
	Crabgrass, Large	80	95	75	85	90	75	75	80	95	95	80	95	95	95
	Cupgrass, Woolly	75	80	70	75	75	70	60	75	95	95	75	98	100	100
	Deadnettle	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	Foxtail, Giant	85	95	80	80	85	75	80	65	90	80	85	95	85	98
	Foxtail, Green	85	95	80	90	90	80	85	65	80	80	95	95	95	100
	Galium	_	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	80	75	75	80	75	75	80	85	85	75	80	85	85	98
	Johnsongrass	75	80	10	60	70	20	50	20	90	-	20	75	75	-
10	Kochia	80	100	98	100	100	98	85	100	100	-	70	95	80	-
	Lambsquarters	100	100	98	100	100	100	100	100	98	100	100	100	98	100
	Morningglory	100	100	100	100	100	100	100	100	100	80	70	95	80	25
	Nutsedge, Yellow	70	70	15	75	75	80	75	80	75	25	65	65	65	45
	Oat, Wild	20	40	30	40	20	0	30	0	45	30	10	95	80	98
15	Pigweed	100	100	98	95	100	100	100	100	100	-	100	100	100	100
	Ragweed	80	80	75	85	95	95	95	98	98	90	95	95	75	90
	Ryegrass, Italian	15	20	10	5	5	0	5	0	50	15	5	60	60	70
	Soybean	98	100	100	95	100	65	98	95	98	95	95	60	95	95
	Surinam Grass	85	75	65	75	80	65	65	70	90	-	75	95	100	100
20	Velvetleaf	95	100	70	100	100	100	100	100	98	95	98	100	98	100
	Wheat	5	5	15	20	5	0	5	5	40	20	5	60	60	45
	Windgrass	50	10	45	60	80	30	60	35	35	65	70	100	90	100
	Table B						Comp	pound	ds						
	125 g ai/ha	122	123	126	127	128	129	130	131	140	141	146	147	152	155
25	Postemergence														
	Barley	50	25	15	35	0	0	0	0	0	5	15	0	85	45
	Bermudagrass	85	90	90	98	98	95	90	85	85	85	100	95	98	98
	Blackgrass	15	40	30	25	10	5	5	0	5	10	35	45	55	60
	Bromegrass, Downy	50	10	30	20	40	15	35	0	5	10	10	5	60	35
30	Canarygrass	45	55	60	35	30	0	20	0	5	5	5	5	80	50
	Chickweed	80	95	98	98	95	90	100	90	45	90	98	98	90	100
	Cocklebur	85	100	80	95	100	98	95	100	65	95	-	90	98	98
	Corn	25	75	55	25	60	60	80	20	25	45	20	25	65	40
	Crabgrass, Large	85	85	85	90	95	85	95	80	80	80	85	85	95	80
35	Cupgrass, Woolly	75	75	85	85	90	85	85	65	65	65	65	80	98	65
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	80	80	85	85	98	90	98	80	80	80	95	85	95	90
	Foxtail, Green	85	85	90	90	95	90	95	95	85	90	80	80	98	80

	Galium	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Goosegrass	70	80	75	75	98	90	95	75	70	75	95	80	95	85
	Johnsongrass	75	75	85	80	85	70	80	50	35	50	70	60	95	65
	Kochia	45	80	25	100	95	95	100	75	10	85	85	80	95	100
5	Lambsquarters	90	98	85	90	100	95	100	98	75	98	100	98	98	100
	Morningglory	85	100	100	90	90	90	100	75	65	60	85	65	75	100
	Nutsedge, Yellow	75	75	80	75	60	60	35	45	65	60	20	70	80	70
	Oat, Wild	35	30	35	25	60	20	40	0	10	15	50	20	80	60
	Pigweed	98	100	98	95	98	98	100	100	75	95	100	100	100	100
10	Ragweed	75	95	85	98	95	95	98	95	65	85	98	90	95	90
	Ryegrass, Italian	40	5	5	5	5	0	0	0	0	0	10	30	45	40
	Soybean	80	85	85	98	98	98	98	98	75	75	98	65	98	100
	Surinam Grass	90	85	85	85	85	85	80	65	55	70	75	75	90	65
	Velvetleaf	98	95	95	100	95	95	98	98	80	98	98	95	100	100
15	Wheat	50	15	35	25	0	0	5	0	10	5	15	5	85	40
	Windgrass	50	80	40	55	70	80	75	5	5	40	60	55	85	70
	Table B						Comp	pound	ds						
	125 g ai/ha	156	157	160	162	164	169	173	181	184	186	187	189	190	191
	Postemergence														
20	Barley	60	30	35	50	30	0	35	50	60	5	40	15	40	50
20	_	60 95	30 100	35 90	50 100	30 98	0	35 100	50 100	60 100	5 95	40	15 65	40	50 100
20	Barley														
20	Barley Bermudagrass	95	100	90	100	98	100	100	100	100	95	100	65	100	100
20	Barley Bermudagrass Blackgrass	95 35	100	90 20	100 55	98 10	100	100 30	100 15	100	95 5	100	65 5	100 35	100 50
20	Barley Bermudagrass Blackgrass Bromegrass, Downy	95 35 35 40	100 10 60	90 20 50 20	100 55 45	98 10 85 90	100 10 90 80	100 30 40 40	100 15 60 85	100 40 50	95 5 30 40	100 5 35 55	65 5 5	100 35 35 25	100 50 50
	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass	95 35 35 40	100 10 60 80	90 20 50 20 95	100 55 45 90 100	98 10 85 90 98	100 10 90 80 100	100 30 40 40	100 15 60 85 100	100 40 50 80	95 5 30 40 100	100 5 35 55	65 5 5	100 35 35 25	100 50 50 60
	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed	95 35 35 40 100	100 10 60 80 100	90 20 50 20 95	100 55 45 90 100	98 10 85 90 98	100 10 90 80 100	100 30 40 40	100 15 60 85 100	100 40 50 80 100	95 5 30 40 100	100 5 35 55 100	65 5 5 5	100 35 35 25 100	100 50 50 60 98
	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur	95 35 35 40 100 75	100 10 60 80 100	90 20 50 20 95 100	100 55 45 90 100	98 10 85 90 98 100 45	100 10 90 80 100	100 30 40 40 100	100 15 60 85 100 100	100 40 50 80 100	95 5 30 40 100	100 5 35 55 100	65 5 5 100 100	100 35 35 25 100 95	100 50 50 60 98 98
	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn	95 35 35 40 100 75 45	100 10 60 80 100 100	90 20 50 20 95 100	100 55 45 90 100 100	98 10 85 90 98 100 45 98	100 10 90 80 100 100 55	100 30 40 40 100 100	100 15 60 85 100 100 95	100 40 50 80 100 100 85	95 5 30 40 100 100 30	100 5 35 55 100 100 75	65 5 5 100 100 35	100 35 35 25 100 95 40	100 50 50 60 98 98 75
	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large	95 35 40 100 75 45 65	100 10 60 80 100 100 95 98	90 20 50 20 95 100 50 95	100 55 45 90 100 100 80 98	98 10 85 90 98 100 45 98	100 10 90 80 100 100 55	100 30 40 40 100 100 60 95	100 15 60 85 100 100 95	100 40 50 80 100 100 85	95 30 40 100 100 30 85	100 5 35 55 100 100 75	65 5 5 100 100 35 95	100 35 35 25 100 95 40 80	100 50 50 60 98 98 75
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	95 35 40 100 75 45 65	100 10 60 80 100 100 95 98	90 20 50 20 95 100 50 95	100 55 45 90 100 100 80 98	98 10 85 90 98 100 45 98 98	100 10 90 80 100 55 100	100 30 40 40 100 100 60 95	100 15 60 85 100 100 95 100	100 40 50 80 100 100 85 100	95 30 40 100 100 30 85 80	100 5 35 55 100 100 75 100 85	65 5 5 100 100 35 95 75	100 35 35 25 100 95 40 80	100 50 50 60 98 98 75 100 90
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle	95 35 40 100 75 45 65 55	100 10 60 80 100 95 98 98	90 20 50 20 95 100 50 95 85	100 55 45 90 100 100 80 98 100	98 10 85 90 98 100 45 98 98	100 10 90 80 100 55 100	100 30 40 40 100 100 60 95 100	100 15 60 85 100 100 95 100	100 40 50 80 100 100 85 100 100	95 30 40 100 30 85 80	100 5 35 55 100 100 75 100 85	65 5 5 100 100 35 95 75	100 35 35 25 100 95 40 80 80	100 50 50 60 98 75 100 90
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	95 35 40 100 75 45 65 55 -	100 10 60 80 100 100 95 98 98 -	90 20 50 20 95 100 50 95 85 -	100 55 45 90 100 100 80 98 100 -	98 10 85 90 98 100 45 98 -	100 10 90 80 100 100 55 100 100 -	100 30 40 40 100 100 60 95 100 -	100 15 60 85 100 100 95 100 100	100 40 50 80 100 100 85 100 100 100	95 30 40 100 100 30 85 80 100 95	100 5 35 55 100 100 75 100 85 -	65 5 100 100 35 95 75 100 90	100 35 35 25 100 95 40 80 80 100 90	100 50 50 60 98 98 75 100 90
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green	95 35 40 100 75 45 65 55 -	100 10 60 80 100 100 95 98 98 -	90 20 50 20 95 100 50 95 85 -	100 55 45 90 100 100 80 98 100 -	98 10 85 90 98 100 45 98 -	100 10 90 80 100 100 55 100 100 -	100 30 40 40 100 100 60 95 100 -	100 15 60 85 100 100 95 100 100	100 40 50 80 100 100 100 100 100 85	95 30 40 100 100 30 85 80 100 95 85	100 5 35 55 100 100 75 100 85 -	65 5 5 100 100 35 95 75 100 90	100 35 35 25 100 95 40 80 100 90 45	100 50 50 60 98 98 75 100 90 100
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green Galium	95 35 40 100 75 45 65 55 - 85 85	100 60 80 100 100 95 98 - 100 85 - 98	90 20 50 20 95 100 50 95 85 - 75 70	100 55 45 90 100 100 80 98 100 - 98 98	98 10 85 90 98 100 45 98 98 - 98 98	100 90 80 100 100 55 100 - 100 95 - 100 65	100 30 40 40 100 100 95 100 - 100 90 - 95 95	100 15 60 85 100 100 95 100 - 100 95 -	100 40 50 80 100 100 100 100 100 85 60	95 30 40 100 100 30 85 80 100 95 85 70 98 75	100 5 35 55 100 100 75 100 85 - 100 98 55	65 5 5 100 100 35 95 75 100 90 85	100 35 35 25 100 95 40 80 100 90 45 60	100 50 60 98 98 75 100 90 100 60 100
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass Kochia	95 35 40 100 75 45 65 55 - 85 85 - 70 45 20	100 60 80 100 100 95 98 - 100 85 - 98 100	90 20 50 95 100 95 85 - 75 70 - 90 65	100 55 45 90 100 80 98 100 - 98 98 -	98 10 85 90 98 100 45 98 98 - 98 98 95	100 90 80 100 100 55 100 - 100 95 - 100 65 100	100 30 40 40 100 100 95 100 - 100 95 95 95	100 15 60 85 100 100 95 100 95 - 100 100	100 40 50 80 100 100 100 100 85 60 100 100 5	95 30 40 100 100 30 85 80 100 95 85 70 98 75	100 5 35 55 100 100 75 100 98 55 100 100 70	65 5 100 100 35 95 75 100 90 85 90 65 98	100 35 35 25 100 95 40 80 100 90 45 60 80	100 50 60 98 98 75 100 100 100 60 100 25
25	Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass	95 35 40 100 75 45 65 55 - 85 85 - 70 45 20	100 60 80 100 95 98 98 - 100 85 - 98 100 100	90 20 50 95 100 50 95 85 - 75 70 - 90 65	100 55 45 90 100 100 80 98 100 - 98 98 - 90	98 10 85 90 98 100 45 98 98 - 98 95 100	100 90 80 100 100 55 100 - 100 95 - 100 65 100	100 30 40 40 100 100 95 100 - 100 95 95 95 98 100	100 15 60 85 100 100 - 100 95 - 100 100 100	100 40 50 80 100 100 100 100 100 85 60 100	95 30 40 100 30 85 80 100 95 85 70 98 75 100	100 5 35 55 100 100 75 100 98 55 100 100 70	65 5 5 100 100 35 95 75 100 90 85 90 65 98 100	100 35 35 25 100 95 40 80 100 90 45 60 80 75	100 50 60 98 98 75 100 90 100 60 100

	Nutsedge, Yellow	70	40	80	75	70	55	60	80	45	75	65	55	65	55
	Oat, Wild	35	60	50	45	85	85	70	90	80	20	45	10	40	70
	Pigweed	98	90	100	100	100	100	100	100	75	100	100	100	100	98
	Ragweed	75	100	98	100	98	100	90	100	-	100	100	75	-	-
5	Ryegrass, Italian	20	30	35	80	20	10	30	60	45	0	10	5	20	50
	Soybean	98	100	98	100	100	95	95	100	100	100	100	98	95	100
	Surinam Grass	60	98	60	75	95	-	-	95	100	-	-	80	75	90
	Velvetleaf	95	100	100	95	80	100	100	100	100	100	100	100	100	90
	Wheat	35	20	40	35	35	5	40	50	55	0	5	0	30	55
10	Windgrass	55	70	60	60	75	55	70	60	90	50	65	60	65	85
	Table B						Comp	ound	ds						
	125 g ai/ha	193	197	217	218	219	220	225	226	227	228	229	233	235	236
	Postemergence														
	Barley	50	10	10	35	30	10	40	30	5	40	5	10	40	0
15	Bermudagrass	100	100	98	95	100	98	85	85	85	90	85	100	100	98
	Blackgrass	40	10	30	5	55	30	15	40	5	50	5	30	70	30
	Bromegrass, Downy	40	30	40	20	80	15	85	5	0	10	20	50	50	10
	Canarygrass	25	40	20	0	55	10	85	50	5	5	50	10	30	0
	Chickweed	100	100	100	100	100	98	95	85	80	100	90	100	100	100
20	Cocklebur	100	100	98	-	-	-	100	100	95	100	100	100	-	100
	Corn	40	45	25	75	75	55	70	98	75	85	85	85	100	70
	Crabgrass, Large	98	98	90	70	95	85	95	95	85	98	90	98	98	98
	Cupgrass, Woolly	95	90	45	60	95	65	85	85	90	95	80	100	100	95
	Deadnettle	100	100	-	-	-	-	-	-	-	-	-	-	-	-
25	Foxtail, Giant	95	98	85	65	80	55	85	95	90	95	80	98	100	95
	Foxtail, Green	60	50	85	90	90	80	98	90	90	98	80	95	95	98
	Galium	90	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	98	100	85	15	95	85	95	85	75	85	70	98	98	95
	Johnsongrass	70	95	60	55	98	80	75	100	60	95	100	25	100	20
30	Kochia	100	95	100	100	98	75	15	100	85	100	80	-	100	100
	Lambsquarters	98	100	100	100	100	100	98	95	98	100	95	100	100	100
	Morningglory	65	100	80	80	100	98	95	100	100	100	100	98	100	95
	Nutsedge, Yellow	75	65	70	15	70	25	25	70	65	60	40	25	55	15
	Oat, Wild	70	70	50	60	80	30	85	50	10	15	10	45	85	20
35	Pigweed	100	98	100	100	100	100	98	98	100	100	95	-	100	98
	Ragweed	-	-	85	98	98	98	90	85	70	95	80	98	100	98
	Ryegrass, Italian	40	30	40	60	40	30	40	5	5	0	0	50	55	0
	Soybean	98	100	95	100	100	90	98	100	95	100	98	100	100	98

WO 2012/033548 PCT/US2011/027737

	Surinam Grass	80	65	80	85	35	60	85	80	80	95	80	100	100	75
	Velvetleaf	100	100	100	100	95	95	90	90	98	100	85	95	100	100
	Wheat	60	5	50	0	50	0	55	25	10	20	5	60	80	30
	Windgrass	70	50	80	45	60	40	80	70	40	80	50	60	95	70
5	Table B			Comp	oound	ds									
	125 g ai/ha	237	238	239	240	243	244	245	255						
	Postemergence														
	Barley	40	35	5	15	95	90	85	35						
	Bermudagrass	100	100	100	100	100	100	100	95						
10	Blackgrass	70	60	30	65	85	65	80	10						
	Bromegrass, Downy	90	50	5	25	95	75	95	80						
	Canarygrass	50	30	0	30	100	98	100	50						
	Chickweed	100	100	98	100	100	98	100	100						
	Cocklebur	-	-	100	-	-	-	-	-						
15	Corn	100	95	45	100	100	95	100	85						
	Crabgrass, Large	100	98	95	100	100	100	100	90						
	Cupgrass, Woolly	100	100	95	100	100	100	100	95						
	Deadnettle	-	-	-	-	-	-	-	-						
	Foxtail, Giant	98	100	90	100	98	95	100	98						
20	Foxtail, Green	95	98	90	95	100	98	100	90						
	Galium	_	-	-	-	-	-	-	-						
	Goosegrass	98	98	98	98	98	98	100	95						
	Johnsongrass	100	98	60	100	100	100	100	90						
	Kochia	100	100	98	100	100	100	100	15						
25	Lambsquarters	100	100	100	100	100	100	100	98						
	Morningglory	100	100	100	-	100	100	100	85						
	Nutsedge, Yellow	45	20	65	20	70	65	70	15						
	Oat, Wild	60	50	5	45	85	95	85	85						
	Pigweed	100	100	98	100	100	100	100	98						
30	Ragweed	100	100	100	100	98	98	100	95						
	Ryegrass, Italian	60	25	0	40	85	80	70	30						
	Soybean	100	100	98	95	100	100	100	100						
	Surinam Grass	100	100	45	100	100	100	100	90						
	Velvetleaf	100	100	100	85	100	100	100	98						
35	Wheat	85	80	5	50	95	85	95	50						
	Windgrass	98	85	30	98	98	80	95	80						

	Table B						Comp	poun	ds						
	62 g ai/ha	1	2	3	4	7	8	9	10	11	12	14	24	26	27
	Postemergence														
	Barley	0	20	0	0	0	0	0	0	10	0	0	5	0	0
5	Bermudagrass	50	85	25	85	45	85	95	75	100	85	70	95	50	90
	Blackgrass	0	30	0	20	0	10	0	0	5	10	0	10	0	5
	Bromegrass, Downy	0	60	0	15	0	5	30	0	35	10	30	50	15	5
	Canarygrass	0	50	0	20	0	50	25	0	50	5	20	40	30	10
	Chickweed	60	90	98	100	80	100	85	95	98	100	-	90	50	45
10	Cocklebur	65	90	80	100	45	100	0	90	100	98	90	98	80	95
	Corn	0	25	0	25	0	65	45	15	75	30	40	50	35	40
	Crabgrass, Large	50	85	70	85	45	85	80	70	85	75	55	75	50	50
	Cupgrass, Woolly	0	80	15	95	50	80	75	70	75	60	80	80	40	60
	Deadnettle	-	-	-	_	-	-	-	-	-	_	-	-	-	-
15	Foxtail, Giant	15	85	45	98	55	100	85	75	85	90	70	85	60	85
	Foxtail, Green	10	90	10	40	20	70	40	25	60	60	45	40	40	80
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	60	90	50	75	25	85	85	75	85	85	80	85	90	90
	Johnsongrass	0	90	0	80	0	98	70	55	70	60	80	60	50	45
20	Kochia	20	75	80	100	45	100	15	15	25	20	-	70	-	-
	Lambsquarters	75	90	95	100	65	100	80	80	70	85	85	90	90	95
	Morningglory	20	80	20	85	15	90	45	45	15	60	70	60	50	80
	Nutsedge, Yellow	20	60	45	65	0	70	25	55	35	55	30	30	30	40
	Oat, Wild	5	45	0	50	0	15	5	5	50	5	40	50	40	50
25	Pigweed	80	90	90	100	75	100	85	85	80	95	80	80	80	98
	Ragweed	70	80	85	100	65	100	75	80	100	100	80	80	85	98
	Ryegrass, Italian	0	40	0	10	0	20	0	0	10	0	5	5	0	5
	Soybean	65	90	70	100	65	98	75	95	100	100	85	95	95	95
	Surinam Grass	0	75	25	70	10	65	65	70	70	55	50	55	40	70
30	Velvetleaf	75	85	100	75	80	80	85	70	95	85	90	90	70	60
	Wheat	0	10	0	5	0	30	5	0	35	0	0	10	0	5
	Windgrass	0	15	0	55	5	20	55	10	85	40	30	30	30	10
	Table B						Comp	oun	ds						
	62 g ai/ha	29	33	34	36	37	38	39	40	42	44	45	46	47	48
35	Postemergence														
	Barley	0	0	30	10	0	0	0	0	0	0	5	0	10	5
	Bermudagrass	90	95	95	98	90	100	60	100	75	95	85	85	-	95
	Blackgrass	20	15	5	5	0	15	0	10	10	10	5	5	20	5

	Bromegrass, Downy	10	5	50	30	10	70	0	50	5	70	20	5	40	25
	Canarygrass	20	0	50	45	5	10	0	20	0	20	10	0	30	30
	Chickweed	50	98	75	98	80	90	100	100	70	95	85	95	98	90
	Cocklebur	95	90	25	_	_	_	75	-	45	80	50	80	_	95
5	Corn	35	10	0	55	15	70	45	80	10	80	45	35	_	70
	Crabgrass, Large	50	85	85	95	75	90	80	98	75	90	75	65	85	85
	Cupgrass, Woolly	85	65	80	90	65	90	85	95	20	80	75	20	90	80
	Deadnettle	_	_	_	_	_	_	-	-	_	_	_	_	_	-
	Foxtail, Giant	90	80	90	95	85	98	85	100	65	95	90	80	98	85
10	Foxtail, Green	75	85	90	90	65	90	80	95	55	90	80	60	90	95
	Galium	_	_	_	_	_	_	-	-	_	_	_	_	_	-
	Goosegrass	85	75	80	85	85	85	55	90	85	90	75	75	95	85
	Johnsongrass	20	35	90	75	40	75	65	-	0	70	90	50	_	80
	Kochia	-	80	95	0	0	80	45	0	100	75	0	0	95	98
15	Lambsquarters	85	98	98	100	98	95	95	100	95	95	98	85	98	95
	Morningglory	70	60	80	70	70	70	75	-	70	70	75	30	80	70
	Nutsedge, Yellow	50	50	25	20	15	0	0	35	60	50	10	70	65	45
	Oat, Wild	50	15	50	75	10	75	20	85	10	80	55	5	60	50
	Pigweed	65	95	90	85	85	98	100	98	95	95	98	75	98	85
20	Ragweed	85	95	85	90	80	80	85	98	75	95	85	75	90	85
	Ryegrass, Italian	20	10	10	5	0	50	5	0	5	5	30	5	30	5
	Soybean	95	98	95	98	80	85	95	100	90	95	95	80	95	95
	Surinam Grass	50	65	75	85	70	85	65	95	40	95	75	75	95	85
	Velvetleaf	55	90	95	100	80	100	80	100	80	98	80	80	85	85
25	Wheat	0	0	10	5	0	20	5	20	0	10	15	0	0	0
	Windgrass	10	25	40	70	30	80	0	70	60	70	60	10	-	80
	Table B						Com	ooun	ds						
	62 g ai/ha	49	50	51	52	53	55	56	58	59	61	62	63	64	66
	Postemergence														
30	Barley	0	0	25	0	50	0	10	5	0	0	5	0	_	0
	Bermudagrass	85	100	90	95	95	80	85	85	90	90	80	85	95	70
	Blackgrass	0	5	30	5	30	0	10	10	35	0	30	35	0	10
	Bromegrass, Downy	0	5	50	55	50	0	45	40	30	0	45	20	45	10
	Canarygrass	0	0	60	50	80	0	30	60	5	0	0	0	40	0
35	Chickweed	75	80	80	95	98	75	95	80	98	80	70	65	98	85
	Cocklebur	80	85	85	85	85	60	55	85	85	65	55	80	95	10
	Corn	5	10	80	45	80	5	65	45	0	0	70	20	85	55
	Crabgrass, Large	75	85	85	90	95	75	85	80	85	65	75	75	90	55

	Cupgrass, Woolly	50	75	75	75	90	10	45	65	75	55	55	60	95	40
	Deadnettle	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Foxtail, Giant	60	85	80	80	85	30	80	85	90	65	65	65	95	75
	Foxtail, Green	50	80	95	98	100	40	85	90	70	55	70	70	85	85
5	Galium	_	_	-	-	-	_	_	-	-	_	-	-	_	_
	Goosegrass	70	80	80	80	80	60	75	75	80	50	65	70	80	65
	Johnsongrass	0	10	75	85	95	0	80	85	75	0	0	10	98	60
	Kochia	65	100	20	25	65	65	95	10	10	25	25	25	55	85
	Lambsquarters	80	98	90	85	95	80	98	95	98	95	95	95	100	95
10	Morningglory	80	25	80	45	75	60	-	80	50	70	15	70	80	100
	Nutsedge, Yellow	65	70	65	25	65	10	70	40	60	60	25	20	10	45
	Oat, Wild	5	5	60	90	70	0	20	60	40	0	10	0	90	0
	Pigweed	90	98	95	90	95	85	98	95	100	85	98	95	100	98
	Ragweed	80	90	80	80	85	80	55	85	80	80	75	75	85	10
15	Ryegrass, Italian	0	0	0	45	5	0	0	0	50	0	5	0	0	0
	Soybean	65	85	90	95	95	60	85	85	95	0	80	75	98	95
	Surinam Grass	30	75	85	85	95	15	80	80	80	65	45	25	95	70
	Velvetleaf	95	98	85	98	85	98	90	75	90	80	95	98	98	90
	Wheat	5	5	10	25	25	0	0	0	5	0	0	0	15	-
20	Windgrass	0	50	60	80	80	0	40	50	60	0	35	30	90	60
	Table B						Comp	ound	s						
	62 g ai/ha	67	68	69	70	71	72	73	74	75	77	79	80	81	82
	Postemergence														
	Barley	5	0	5	30	0	0	0	0	0	0	30	30	0	0
25	Bermudagrass	70	75	98	85	75	80	80	80	98	90	80	40	85	85
	Blackgrass	0	0	0	35	0	0	10	0	0	0	15	0	10	0
	Bromegrass, Downy	0	5	55	50	5	0	45	5	20	5	10	60	5	0
	Canarygrass	0	0	0	80	5	0	0	0	0	0	30	50	5	0
	Chickweed	95	90	98	90	90	85	80	85	90	85	95	98	98	90
30	Cocklebur	75	75	0	0	65	80	45	85	80	0	98	10	55	90
	Corn	10	15	10	35	0	0	80	0	0	5	45	35	10	5
	COIII		10												
	Crabgrass, Large	80	90	95	90	75	80	85	80	98	60	85	80	95	75
						75 45	80 45	85 65	80 10	98 55	60 20	85 40	80 70	95 75	75 55
	Crabgrass, Large	80	90	95	90										
35	Crabgrass, Large Cupgrass, Woolly	80	90	95	90										
35	Crabgrass, Large Cupgrass, Woolly Deadnettle	80 70 -	90 10 -	95 95 -	90 65 -	45 -	45 -	65 -	10	55 -	20	40	70 -	75 -	55 -
35	Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	80 70 - 80	90 10 - 80	95 95 - 98	90 65 - 85	45 - 75	45 - 70	65 - 75	10 - 55	55 - 80	20 - 75	40 - 75	70 - 90	75 - 85	55 - 80

	Johnsongrass	0	10	100	70	75	10	65	0	10	0	65	0	10	80
	Kochia	80	90	70	65	0	85	80	75	95	80	75	20	80	60
	Lambsquarters	95	98	100	98	85	100	98	95	100	98	98	95	98	95
	Morningglory	90	85	70	100	65	85	50	85	90	75	95	100	90	100
5	Nutsedge, Yellow	65	10	10	15	10	65	20	20	65	60	60	15	80	15
	Oat, Wild	5	20	80	70	0	-	80	20	20	5	45	30	35	0
	Pigweed	98	95	100	98	85	100	98	98	100	98	100	100	100	98
	Ragweed	80	80	90	70	80	80	80	75	85	75	85	60	80	80
	Ryegrass, Italian	5	5	50	10	0	0	45	20	15	5	20	0	5	0
10	Soybean	90	95	90	75	70	80	85	75	95	50	90	80	95	90
	Surinam Grass	20	55	90	65	55	80	85	45	50	65	45	45	90	65
	Velvetleaf	95	100	98	80	85	100	100	100	100	98	98	100	100	90
	Wheat	5	5	5	20	0	5	35	5	0	5	25	10	20	0
	Windgrass	0	50	60	85	10	20	80	60	50	10	65	60	50	5
15	Table B						Comp	oound	ds						
	62 g ai/ha	83	85	86	87	88	89	90	91	92	93	94	95	96	97
	Postemergence														
	Barley	5	10	40	0	30	5	5	30	0	0	0	0	0	0
	Bermudagrass	75	85	90	90	80	85	80	95	80	75	80	75	95	95
20	Blackgrass	0	35	30	5	5	15	5	20	0	5	10	0	20	20
	Bromegrass, Downy	45	5	10	50	45	0	5	5	5	0	0	0	0	0
	Canarygrass	20	40	20	30	70	35	10	55	0	0	5	0	5	10
	Chickweed	90	95	95	100	85	80	80	95	95	80	100	85	95	100
	Cocklebur	80	95	95	100	90	60	90	65	80	90	45	95	95	100
25	Corn	5	70	60	55	65	95	25	35	35	45	55	0	60	40
	Crabgrass, Large	85	90	98	85	98	95	75	95	90	80	75	65	80	80
	Cupgrass, Woolly	85	85	85	75	80	50	45	85	25	45	65	55	75	60
	Deadnettle	-	-	-	-	_	-	-	-	_	-	-	-	-	-
	Foxtail, Giant	95	80	95	80	95	85	70	98	75	80	75	65	70	75
30	Foxtail, Green	95	95	95	80	98	70	65	85	80	60	60	50	65	85
	Galium	-	_	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	80	70	75	80	70	65	60	75	70	65	70	75	70	70
	Johnsongrass	100	95	98	25	100	90	25	90	85	10	15	10	45	55
	Kochia	75	85	85	100	75	75	85	80	90	85	55	100	85	90
35	Lambsquarters	98	98	100	98	98	98	95	100	98	95	95	98	98	100
	Morningglory	75	100	80	45	90	85	95	90	95	80	75	100	95	100
	Nutsedge, Yellow	20	85	70	60	65	55	65	65	65	60	20	75	70	75
	Oat, Wild	10	25	50	60	55	10	5	30	5	0	5	0	5	5

	Pigweed	90	100	100	98	100	98	98	100	100	95	100	98	95	100
	Ragweed	80	85	90	95	80	85	75	85	60	75	45	80	80	98
	Ryegrass, Italian	0	10	30	10	5	5	0	5	0	0	0	0	5	0
	Soybean	90	85	95	98	90	90	98	85	98	80	80	98	75	80
5	Surinam Grass	75	85	95	75	95	75	65	98	65	65	60	45	75	75
	Velvetleaf	90	98	100	100	90	95	98	100	100	90	70	95	98	100
	Wheat	0	5	35	35	5	5	10	10	0	0	0	0	5	0
	Windgrass	10	70	60	60	60	5	5	40	50	10	40	0	10	50
	Table B						Comp	oound	ds						
10	62 g ai/ha	98	99	100	102	107	108	109	111	113	117	118	119	120	121
	Postemergence														
	Barley	5	5	20	10	5	0	0	0	5	0	0	0	5	5
	Bermudagrass	80	75	70	85	80	90	85	100	90	90	95	98	95	98
	Blackgrass	5	0	5	5	5	5	5	5	0	10	10	20	30	40
15	Bromegrass, Downy	5	5	10	10	5	0	0	0	60	10	5	30	60	50
	Canarygrass	20	60	5	20	15	5	0	0	90	0	0	5	30	5
	Chickweed	80	98	75	80	100	100	98	100	98	95	95	80	75	100
	Cocklebur	100	100	85	95	100	95	98	98	95	75	40	10	15	45
	Corn	35	65	10	15	65	35	15	45	60	15	0	45	20	55
20	Crabgrass, Large	75	85	60	80	85	70	75	75	90	80	75	85	85	90
	Cupgrass, Woolly	70	75	65	75	65	60	60	50	85	85	70	98	75	100
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	75	80	75	75	80	60	75	65	85	75	80	85	80	98
	Foxtail, Green	85	90	70	90	75	30	80	60	80	70	85	90	95	90
25	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	75	75	70	70	75	70	75	70	75	75	65	75	80	98
	Johnsongrass	70	75	5	25	70	20	30	15	85	20	10	40	25	70
	Kochia	70	80	95	70	98	95	75	100	100	50	65	75	40	100
	Lambsquarters	98	100	98		100	98	98	98	98	98	98	100	85	100
30	Morningglory	85	100	100		100	90	98	100	100	75	60	60	50	20
	Nutsedge, Yellow	60	70	5	65	75	75	65	75	75	0	45	50	35	45
	Oat, Wild	20	20	10	15	5	0	0	0	40	10	5	60	80	90
	Pigweed	100		98	70	100	98	100	100		98	100	98	98	100
	Ragweed	75	80	70	80	85	85	95	95	95	75	85	75	75	85
35	Ryegrass, Italian	5	0	5	0	0	0	0	0	45	10	5	30	40	40
	Soybean		100	98	85	98	55	95	80	98	80	90	50	80	90
	Surinam Grass	75	70	65	75	75	60	65	_	85	75	_	85	85	100
	Velvetleaf	95	100	70	100	100	100	98	98	95	85	75	80	95	98

WO 2012/033548 PCT/US2011/027737

	Wheat	5	5	5	10	5	0	5	0	15	5	5	40	40	45
	Windgrass	20	5	40	10	40	10	40	30	30	45	60	85	80	98
	Table B						Comr	oounc	ds						
	62 g ai/ha	122	123	126	127	128	_			140	141	146	147	152	155
5	Postemergence														
	Barley	10	10	5	20	0	0	0	0	0	0	0	0	45	30
	Bermudagrass	80	85	85	95	85	80	90	75	75	85	90	90	95	98
	Blackgrass	5	20	25	20	5	5	5	0	0	5	30	40	35	35
	Bromegrass, Downy	5	5	15	10	35	10	15	0	5	5	5	5	55	30
10	Canarygrass	35	40	40	10	10	0	20	0	0	0	0	0	45	35
	Chickweed	70	75	80	75	90	85	98	80	10	85	95	90	65	100
	Cocklebur	45	80	65	95	98	98	95	98	15	65	25	75	80	55
	Corn	15	70	30	25	50	35	60	10	5	45	5	15	45	25
	Crabgrass, Large	75	80	80	85	85	80	85	75	65	75	75	75	85	75
15	Cupgrass, Woolly	70	45	75	75	90	85	85	60	50	65	65	70	98	45
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	75	75	80	85	95	85	90	75	75	75	85	80	85	80
	Foxtail, Green	85	60	80	85	95	90	90	90	60	75	55	65	75	50
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Goosegrass	65	65	70	75	95	85	85	65	65	75	90	70	85	80
	Johnsongrass	65	65	65	70	70	45	60	25	15	15	45	40	90	40
	Kochia	0	65	25	98	85	95	85	60	10	65	45	75	65	100
	Lambsquarters	65	95	85	85	98	95	100	95	60	80	98	95		100
	Morningglory	75	98	85	80	80	90	95	70	60	60	15	50	75	85
25	Nutsedge, Yellow	70	75	75	70	35	35	20	25	45	10	10	60	75	45
	Oat, Wild	30	5	10	10	50	5	30	0	5	10	20	10	45	40
	Pigweed	90	98	95	95	98	95	98	95	70	75	98	95		100
	Ragweed	60	85	75	85	85	95	90	85	45	75	80	75	80	70
20	Ryegrass, Italian	10	5	5	5	0	0	0	0	0	0	5	5	30	30
30	Soybean	75	75	75	98	98	98	98	95	60	70	85	60	70	95
	Surinam Grass	75	75	80	75	80	85	80	60	50	65	65	65	85	55
	Velvetleaf	90	90	90	95	95 0	95 0	95	85 0	65 5	95	85 0	80		100
	Wheat	30	15	15	10	65		5 65	0		5 35	50	5	50	30
	Windgrass	30	60	10	50	63	60	63	U	5	33	50	50	70	55
35	Table B						Comp	oounc	ds						
	62 g ai/ha	156	157	159	160	162	164	169	173	181	184	186	187	189	190
	Postemergence														

	Barley	45	15	50	30	35	5	0	20	40	40	5	5	5	5
	Bermudagrass	90	90	100	75	95	98	75	98	100	100	80	85	15	100
	Blackgrass	5	5	25	10	40	5	5	10	5	35	0	0	0	30
	Bromegrass, Downy	10	40	50	5	30	80	40	25	50	50	25	30	5	30
5	Canarygrass	30	70	90	20	50	85	80	35	80	50	25	35	0	5
	Chickweed	98	100	100	95	100	90	100	95	100	100	98	100	100	100
	Cocklebur	40	100	100	100	100	100	100	65	100	100	100	100	70	90
	Corn	10	80	75	40	75	25	55	25	85	80	10	65	20	0
	Crabgrass, Large	55	95	95	90	90	98	95	80	100	100	85	98	75	65
10	Cupgrass, Woolly	50	85	85	65	100	85	98	95	85	100	75	85	70	80
	Deadnettle	-	-	-	-	-	-	-	-	-	100	98	95	98	98
	Foxtail, Giant	80	98	95	75	95	98	98	98	98	100	80	98	75	85
	Foxtail, Green	60	85	98	55	98	98	85	70	85	60	80	95	80	40
	Galium	-	-	-	-	-	-	-	-	-	50	40	50	60	50
15	Goosegrass	70	95	90	85	70	98	95	90	98	100	95	98	80	75
	Johnsongrass	45	100	60	55	98	85	65	80	100	100	70	100	55	65
	Kochia	10	0	45	100	45	100	100	65	95	0	85	50	90	10
	Lambsquarters	85	98	100	98	95	98	100	98	100	100	98	100	98	98
	Morningglory	80	95	65	98	80	95	95	80	100	95	100	95	100	40
20	Nutsedge, Yellow	60	40	60	75	60	45	20	45	65	40	65	55	40	45
	Oat, Wild	35	50	80	30	40	40	30	50	75	80	5	30	10	0
	Pigweed	95	75	98	100	100	98	100	90	100	70	100	100	100	75
	Ragweed	65	100	90	95	95	98	100	70	100	-	90	98	70	-
	Ryegrass, Italian	5	20	40	5	45	5	0	10	40	40	0	0	0	0
25	Soybean	90	98	95	98	100	95	95	95	100	100	95	100	98	80
	Surinam Grass	60	90	75	55	70	95	-	-	80	90	-	85	70	60
	Velvetleaf	80	100	100	100	85	70	100	100	100	98	70	95	90	100
	Wheat	30	10	55	30	30	15	0	35	45	45	0	0	0	5
	Windgrass	50	65	60	30	45	40	30	65	50	80	30	50	40	50
30	Table B						Comp	oun	ds						
	62 g ai/ha	191	193	197	217	218	219	220	225	226	227	228	229	233	235
	Postemergence														
	Barley	50	0	5	5	30	25	10	35	30	5	5	0	0	30
	Bermudagrass	100	100	100	85	80	98	95	85	80	75	85	80	95	98
35	Blackgrass	45	15	10	5	0	55	20	5	30	0	35	0	30	60
	Bromegrass, Downy	40	30	15	15	15	50	10	70	0	0	5	15	40	30
	Canarygrass	50	5	30	20	0	55	10	85	30	0	0	15	5	30
	Chickweed	98	98	100	95	100	100	95	40	75	75	100	85	95	100

	Cocklebur	98	95	100	98	_	_	-	100	98	80	98	90	100	_
	Corn	75	15	35	10	10	60	50	50	80	75	85	80	50	100
	Crabgrass, Large	100	90	85	85	45	95	75	85	85	80	98	90	90	98
	Cupgrass, Woolly	90	85	85	45	45	85	60	75	80	75	95	75	85	100
5	Deadnettle	100	100	100	-	-	_	-	-	-	-	-	-	-	_
	Foxtail, Giant	100	85	95	75	55	70	50	80	90	80	85	80	95	100
	Foxtail, Green	55	50	30	60	85	80	65	98	80	90	90	80	90	90
	Galium	40	-	75	_	_	_	-	_	-	-	_	_	_	_
	Goosegrass	98	95	98	80	10	95	85	90	80	75	80	70	95	98
10	Johnsongrass	100	65	85	60	-	60	65	75	85	60	75	100	5	80
	Kochia	10	80	80	98	85	98	65	10	85	75	100	70	85	100
	Lambsquarters	80	98	100	100	98	100	100	85	90	98	98	95	98	100
	Morningglory	65	60	100	75	70	85	65	95	98	100	100	100	80	98
	Nutsedge, Yellow	40	65	55	60	15	55	25	25	65	45	45	20	5	45
15	Oat, Wild	60	50	40	40	45	70	20	50	30	0	5	5	35	50
	Pigweed	85	95	90	100	100	100	100	95	85	90	100	95	98	100
	Ragweed	-	-	-	80	95	98	95	80	85	70	80	80	85	100
	Ryegrass, Italian	40	40	0	30	40	25	5	35	0	0	0	0	45	30
	Soybean	95	98	100	85	100	98	85	95	98	65	98	98	98	100
20	Surinam Grass	85	65	55	80	80	25	60	75	75	70	85	70	85	90
	Velvetleaf	80	100	80	98	100	90	90	90	85	80	100	75	85	100
	Wheat	40	35	0	45	0	50	0	40	15	0	5	0	30	80
	Windgrass	85	70	50	50	20	40	40	55	50	30	50	40	55	95
	Table B			С	ompoi	ınds									
25	62 g ai/ha	236	237	238	239	240	243	244	245	255					
	Postemergence														
	Barley	0	15	30	0	5	90	65	85	35					
	Bermudagrass	98	98	98	100	100	98	100	100	95					
	Blackgrass	5	70	60	5	50	80	60	70	5					
30	Bromegrass, Downy	5	45	40	5	20	70	50	95	60					
	Canarygrass	0	40	25	0	5	98	95	95	50					
	Chickweed	100	98	90	98	98	100	95	85	98					
	Cocklebur	100	-	-	100	-	-	-	-	-					
	Corn	60	98	80	45	95	95	90	100	75					
35	Crabgrass, Large	90	98	98	90	98	100	100	100	85					
	Cupgrass, Woolly	85	100	100	95	100	95	100	100	95					
	Deadnettle	-	-	-	-	-	-	-	-	-					
	Foxtail, Giant	80	98	100	85	100	95	95	100	98					

	Foxtail, Green	95	90	95	85	90	98	98	98	90					
	Galium	_	-	-	_	_	-	_	_	-					
	Goosegrass	90	98	98	98	98	95	95	98	90					
	Johnsongrass	15	100	_	20	100	100	95	100	85					
5	Kochia	98	80	98	98	98	95	90	100	15					
	Lambsquarters	100	100	100	98	100	100	100	100	95					
	Morningglory	95	95	_	-	-	100	95	100	85					
	Nutsedge, Yellow	15	35	20	30	15	65	50	45	15					
	Oat, Wild	0	55	35	5	40	85	70	85	80					
10	Pigweed	85	98	100	98	100	100	100	98	98					
	Ragweed	95	98	100	98	98	95	98	98	90					
	Ryegrass, Italian	0	50	25	0	15	85	60	50	30					
	Soybean	98	100	100	95	95	98	100	98	95					
	Surinam Grass	70	98	100	35	98	95	95	100	80					
15	Velvetleaf	100	90	90	100	85	100	100	100	98					
	Wheat	10	70	45	0	35	95	80	95	40					
	Windgrass	50	90	70	30	80	90	70	70	80					
	Table B						Comp	pound	ds						
	31 g ai/ha	1	2	3	4	7	8	9	10	11	12	14	24	26	27
20	Postemergence														
	Barley	0	10	0	0	0	0	0	0	0	0	0	0	0	0
	Bermudagrass	40	80	15	15	35	60	90	70	80	65	70	85	40	70
	Blackgrass	0	10	0	10	0	5	0	0	5	10	0	5	0	0
	Bromegrass, Downy	0	35	0	10	0	5	5	0	20	5	10	25	10	5
25	Canarygrass	0	40	0	10	0	20	5	0	50	0	10	40	20	10
	Chickweed	55	75	90	100	60	98	20	90	80	100	-	80	40	40
	Cocklebur	65	80	65	100	45	100	0	70	90	70	80	90	80	90
	Corn	0	15	0	10	0	15	15	15	70	25	10	30	35	35
	Crabgrass, Large	40	80	60	70	30	70	70	65	80	65	50	70	40	50
30	Cupgrass, Woolly	0	75	0	75	0	75	70	60	55	55	50	80	40	60
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	0	85	15	80	20	98	75	70	75	75	50	70	60	65
	Foxtail, Green	5	75	5	40	5	40	35	10	60	40	45	40	35	80
	Galium	-	-	-	-	-	-	-	-	-	_	-	-	-	-
35	Goosegrass	60	80	15	25	20	80	60	45	65	70	80	85	60	90
	Johnsongrass	0	85	0	45	0	80	60	0	65	55	45	60	35	40
	Kochia	15	60	65	80	0	85	10	10	25	20	_	70	_	_
	Lambsquarters	70	90	85	98	ŭ		75	80	50	80	85	90		90

	Morningglory	0	70	15	60	15	75	45	0	15	15	70	50	50	50
	Nutsedge, Yellow	15	45	15	55	0	65	20	15	25	15	20	20	30	30
	Oat, Wild	5	30	0	30	0	10	0	0	50	0	30	40	40	45
	Pigweed	65	85	75	100	75	98	80	85	65	95	80	70	50	98
5	Ragweed	60	70	80	100	50	90	70	75	100	100	80	70	70	85
	Ryegrass, Italian	0	0	0	10	0	20	0	0	10	0	0	0	0	0
	Soybean	50	80	65	95	60	98	70	95	100	98	80	85	95	95
	Surinam Grass	0	70	15	60	0	60	55	60	60	25	40	50	30	50
	Velvetleaf	55	85	95	70	70	75	85	70	80	80	85	75	70	50
10	Wheat	0	5	0	5	0	25	0	0	30	0	0	5	0	0
	Windgrass	0	10	0	50	5	5	50	5	40	10	5	20	10	10
	Table B						Comp	ound	ds						
	31 g ai/ha	29	33	34	36	37	38	39	40	42	44	45	46	47	48
	Postemergence														
15	Barley	0	0	0	5	0	0	0	0	0	0	5	0	5	5
	Bermudagrass	85	75	75	90	85	98	50	-	70	80	80	80	85	85
	Blackgrass	10	10	0	5	0	5	0	0	5	0	5	0	5	0
	Bromegrass, Downy	5	5	40	30	0	50	0	45	0	40	10	0	35	10
	Canarygrass	10	0	5	40	0	10	0	20	0	20	10	0	20	30
20	Chickweed	50	80	50	85	80	85	98	100	60	90	75	80	85	85
	Cocklebur	85	85	0	-	-	-	75	-	0	80	10	75	95	95
	Corn	20	0	0	50	0	55	25	80	0	75	10	20	65	65
	Crabgrass, Large	45	75	80	90	70	90	75	85	70	85	65	60	85	85
	Cupgrass, Woolly	80	65	80	85	55	80	65	90	15	80	70	10	85	80
25	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	80	75	85	95	70	95	75	100	45	95	75	70	90	85
	Foxtail, Green	60	50	70	85	60	85	80	90	50	90	50	45	80	85
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	80	70	75	85	80	80	40	85	70	85	75	75	90	85
30	Johnsongrass	20	15	75	65	0	70	65	-	0	70	60	40	85	45
	Kochia	-	10	85	0	0	65	20	0	80	75	0	0	95	98
	Lambsquarters	85	95	95	98	95	90	95	100	90	90	95	80	98	85
	Morningglory	60	60	60	60	60	65	65	70	45	60	75	30	75	70
	Nutsedge, Yellow	40	40	5	10	10	0	0	20	55	40	10	65	65	40
35	Oat, Wild	40	10	40	60	0	55	10	85	5	50	35	0	40	40
	Pigweed	60	90	70	85	80	95	98	90	85	75	85	75	98	85
	Ragweed	80	90	75	90	80	75	85	98	70	85	80	70	85	85
	Ryegrass, Italian	5	5	10	0	0	35	0	0	0	5	30	0	0	0

	Soybean	85	95	85	90	75	85	95	100	70	95	80	75	95	95
	Surinam Grass	50	45	70	75	60	70	60	85	40	85	70	45	85	70
	Velvetleaf	50	80	80	98	75	95	75	98	80	95	70	75	80	85
	Wheat	0	0	0	5	0	0	5	0	0	5	10	0	0	0
5	Windgrass	5	10	10	50	5	70	0	70	10	65	30	10	60	70
	Table B						Comp	ound	ds						
	31 g ai/ha	49	50	51	52	53	55	56	58	59	61	62	63	64	66
	Postemergence														
	Barley	0	0	5	0	0	0	0	5	0	0	0	0	15	0
10	Bermudagrass	75	90	80	85	90	80	75	85	-	75	-	-	95	70
	Blackgrass	0	5	0	5	20	0	0	5	10	0	15	30	0	5
	Bromegrass, Downy	0	0	50	50	35	0	35	40	5	0	30	10	25	5
	Canarygrass	0	0	60	0	40	0	0	60	5	0	0	0	40	0
	Chickweed	75	80	80	95	85	65	90	70	85	80	70	60	98	80
15	Cocklebur	65	85	85	75	80	45	5	85	85	0	25	65	90	10
	Corn	5	5	75	30	55	0	45	0	-	0	70	-	80	25
	Crabgrass, Large	75	75	80	85	85	60	75	75	80	65	55	70	85	50
	Cupgrass, Woolly	50	70	75	70	65	10	15	65	75	55	55	50	75	40
	Deadnettle	-	-	-	-	-	-	-	_	-	-	-	-	-	-
20	Foxtail, Giant	45	75	80	80	80	25	75	75	75	55	55	60	90	65
	Foxtail, Green	50	80	85	95	95	30	80	75	50	50	40	60	70	80
	Galium	-	-	-	-	-	-	_	-	-	-	-	-	-	-
	Goosegrass	65	75	75	75	75	45	65	70	75	40	65	70	80	65
	Johnsongrass	0	0	75	75	55	0	55	50	-	0	0	-	90	45
25	Kochia	55	95	20	20	45	20	90	0	-	5	10	10	50	80
	Lambsquarters	70	98	75	85	90	80	98	95	95	85	85	-	95	95
	Morningglory	65	10	75	10	55	55	_	65	-	45	-	-	80	98
	Nutsedge, Yellow	65	70	60	20	20	10	20	25	45	20	15	20	0	25
	Oat, Wild	0	5	60	90	50	0	5	45	30	0	5	0	60	0
30	Pigweed	80	80	85	85	85	80	98	80	-	80	98	85	98	98
	Ragweed	75	80	80	75	80	70	55	80	75	75	70	70	85	0
	Ryegrass, Italian	0	0	0	40	0	0	0	0	5	0	0	0	0	0
	Soybean	55	85	85	80	90	25	85	85	90	0	75	75	85	95
	Surinam Grass	15	65	80	75	85	10	75	70	75	20	20	10	85	65
35	Velvetleaf	90	90	80	95	85	90	85	75	85	80	85	95	85	85
	Wheat	0	0	5	15	20	0	0	0	0	0	0	0	10	0
	Windgrass	0	10	50	60	60	0	30	35	20	0	30	10	70	60

	Table B						Comp	ound	ls						
	31 g ai/ha	67	68	69	70	71	72	73	74	75	77	79	80	81	82
	Postemergence														
	Barley	0	0	5	10	0	0	0	0	0	0	5	15	0	0
5	Bermudagrass	35	75	98	75	65	75	65	75	90	90	80	20	85	80
	Blackgrass	0	0	0	30	0	0	0	0	0	0	5	0	5	0
	Bromegrass, Downy	0	5	40	10	0	0	20	0	5	0	5	45	5	0
	Canarygrass	0	0	0	50	0	0	0	0	0	0	15	45	0	0
	Chickweed	90	85	98	80	75	70	80	75	85	80	80	90	95	90
10	Cocklebur	75	25	0	0	65	75	0	20	40	0	95	0	5	85
	Corn	5	0	5	15	0	0	20	0	0	0	5	5	5	0
	Crabgrass, Large	75	75	95	80	65	75	80	80	95	55	80	75	85	70
	Cupgrass, Woolly	60	10	90	45	10	45	60	10	10	20	10	65	65	55
	Deadnettle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Foxtail, Giant	75	65	95	75	20	65	70	25	75	65	70	75	75	75
	Foxtail, Green	10	40	95	80	60	10	70	20	65	40	60	90	5	60
	Galium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	55	65	75	75	75	60	65	65	75	65	45	70	65	75
	Johnsongrass	0	10	98	65	65	0	10	0	0	0	0	0	5	65
20	Kochia	75	70	60	65	0	75	75	75	75	75	75	0	75	10
	Lambsquarters	80	95	100	85	75	90	85	95	98	95	95	95	95	80
	Morningglory	80	80	70	98	65	20	0	60	20	75	80	85	75	65
	Nutsedge, Yellow	60	0	5	10	10	35	20	20	10	45	25	10	65	10
	Oat, Wild	0	5	60	55	0	0	55	20	0	0	40	20	25	0
25	Pigweed	98	85	98	85	85	80	80	90	100	98	100	100	98	75
	Ragweed	75	75	90	60	75	75	75	75	80	75	80	50	75	75
	Ryegrass, Italian	0	5	30	10	0	0	35	5	0	0	20	0	0	0
	Soybean	80	80	80	75	65	80	80	75	80	25	75	75	85	75
	Surinam Grass	10	25	85	65	50	75	80	20	50	65	20	45	75	65
30	Velvetleaf	90	95	95	75	75	98	95	98	100	90	95		100	85
	Wheat	5	5	5	5	0	0	0	5	0	0	10	5	5	0
	Windgrass	0	40	60	80	5	5	70	5	30	10	50	50	10	5
	Table B						Comp	ound	ls						
	31 g ai/ha	83	85	86	87	88	89	90	91	92	93	94	95	96	97
35	Postemergence														
	Barley	0	5	30	0	30	0	0	0	0	0	0	0	0	0
	Bermudagrass	75	85	85	90	80	75	70	75	20	60	80	45	80	95
	Blackgrass	0	5	15	5	0	10	5	10	0	0	5	0	5	5

	Bromegrass, Downy	40	0	10	20	40	0	5	0	0	0	0	0	0	0
	Canarygrass	20	35	20	0	60	10	5	25	0	0	0	0	0	0
	Chickweed	90	85	80	100	75	75	70	85	90	80	95	75	75	95
	Cocklebur	75	95	85	98	90	10	75	20	25	70	45	70	75	95
5	Corn	0	50	10	20	15	80	15	25	20	0	0	0	45	20
	Crabgrass, Large	85	90	85	85	95	85	65	80	80	70	70	45	75	75
	Cupgrass, Woolly	70	75	75	50	75	35	45	70	10	45	-	45	70	55
	Deadnettle	_	_	_	_	-	-	-	_	_	_	_	_	-	-
	Foxtail, Giant	80	75	90	75	95	70	65	85	65	70	65	45	65	60
10	Foxtail, Green	90	80	70	75	95	60	65	70	75	50	10	20	50	40
	Galium	_	_	-	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	75	70	70	75	65	55	60	30	60	60	45	65	70	60
	Johnsongrass	95	80	95	5	95	25	10	65	20	10	-	5	20	15
	Kochia	65	75	75	100	75	65	65	20	75	65	-	80	65	65
15	Lambsquarters	95	98	100	98	95	95	85	85	90	85	80	80	90	90
	Morningglory	70	95	70	45	90	70	65	75	80	70	55	100	65	100
	Nutsedge, Yellow	10	75	65	10	25	35	60	50	45	45	20	75	70	75
	Oat, Wild	10	5	20	50	50	10	0	30	0	0	0	0	0	0
	Pigweed	80	100	98	98	98	80	85	100	90	90	100	85	90	95
20	Ragweed	75	80	80	85	75	70	60	85	40	65	40	75	80	85
	Ryegrass, Italian	0	0	25	5	5	0	0	0	0	0	0	0	0	0
	Soybean	75	80	80	98	75	90	98	75	90	55	65	95	65	70
	Surinam Grass	75	75	80	75	95	55	65	85	25	50	-	45	75	65
	Velvetleaf	85	90	98	100	80	90	85	98	95	85	-	85	95	100
25	Wheat	0	0	5	35	0	0	5	0	0	0	0	0	0	0
	Windgrass	5	40	30	55	40	0	0	10	0	5	0	0	5	5
	Table B						Com	ooun	ds						
	31 g ai/ha	98	99	100	102	107	_	109		113	117	118	119	120	121
	Postemergence														
30	Barley	0	5	5	0	0	0	0	0	0	0	0	0	_	0
	Bermudagrass	75	75	70	80	75	85	70	95	80	75	75	75	80	95
	Blackgrass	0	0	0	0	0	0	0	5	0	0	5	5	30	5
	Bromegrass, Downy	5	5	5	0	0	0	0	0	5	5	0	10	20	25
	Canarygrass	5	40	0	5	5	0	0	0	65	0	0	5	0	0
35	Chickweed	80	80	75	60	98	85	90	95	98	85	90	70	60	100
	Cocklebur	98	95	40	90	98	75	75	98	95	75	40	0	10	40
	Corn	35	40	0	_	65	15	0	10	25	10	0	20	15	25
	Crabgrass, Large	75	85	55	70	75	60	65	70	85	75	70	75	80	85

	Cupgrass, Woolly	65	70	-	70	65	40	-	40	85	65	65	75	70	95
	Deadnettle	_	_	-	_	_	-	_	_	_	_	_	-	-	-
	Foxtail, Giant	65	75	70	70	75	45	70	60	80	65	75	75	75	95
	Foxtail, Green	30	50	20	80	70	5	20	40	80	50	50	85	90	80
5	Galium	_	_	_	_	_	_	_	_	-	_	_	-	-	-
	Goosegrass	60	75	70	55	75	60	65	70	70	45	55	75	75	95
	Johnsongrass	55	70	0	20	60	10	5	10	65	5	10	10	15	20
	Kochia	65	80	_	65	98	70	70	80	98	45	45	40	10	95
	Lambsquarters	95	98	95	95	90	98	98	98	95	95	85	85	80	95
10	Morningglory	70	100	60	65	100	75	70	100	98	10	10	10	15	5
	Nutsedge, Yellow	50	45	_	45	75	50	_	65	65	0	35	10	5	5
	Oat, Wild	10	10	0	5	0	0	0	0	20	5	5	50	50	60
	Pigweed	100	100	90	70	95	95	100	95	95	95	85	95	95	100
	Ragweed	70	65	70	70	75	80	75	75	80	70	70	70	50	65
15	Ryegrass, Italian	0	0	5	0	0	0	0	0	40	0	5	5	10	40
	Soybean	90	98	95	75	95	45	95	70	98	65	75	0	40	90
	Surinam Grass	65	70	-	60	75	55	65	60	85	65	50	75	20	95
	Velvetleaf	95	95	-	98	90	100	90	80	85	70	75	75	75	98
	Wheat	0	0	0	0	0	0	0	0	0	0	0	10	20	5
20	Windgrass	0	5	0	5	5	0	30	0	5	40	50	60	60	80
20	Windgrass Table B	0	5	0	5	5		30 pound		5	40	50	60	60	80
20	-				5 127		Comp	pound	ds	5 140					
20	Table B						Comp	pound	ds						
20	Table B 31 g ai/ha						Comp	pound	ds						
20	Table B 31 g ai/ha Postemergence	122	123	126	127	128	Comp 129	pound 130	ds 131 0	140	141	146	147	152	155
	Table B 31 g ai/ha Postemergence Barley	122	123	126	127	128	Comp 129 0	90uno 130 0	ds 131 0	140	141	146	147	152	155 30
	Table B 31 g ai/ha Postemergence Barley Bermudagrass	122 0 75	123 5 80	126 5 75	127 0 95	128 0 75	Comp 129 0 80	130 0 75	ds 131 0 65	140	141	146 0 85	147 0 75	152 10 95	155 30 85
	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass	122 0 75 5	123 5 80 20	126 5 75 5	127 0 95 5	128 0 75 5	Comp 129 0 80	130 0 75	ds 131 0 65	140	141 0 80 5	146 0 85 5	147 0 75 10	152 10 95 20	155 30 85 10
	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy	122 0 75 5	123 5 80 20	126 5 75 5	127 0 95 5	128 0 75 5 30	Comp 129 0 80 0	130 0 75 0	ds 131 0 65 0	140 0 60 0	141 0 80 5 0	146 0 85 5	147 0 75 10	152 10 95 20 30	155 30 85 10 5
	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass	122 0 75 5 5	123 5 80 20 0 25	126 5 75 5 5	127 0 95 5 5	128 0 75 5 30	Comp 129 0 80 0 5	0 75 0 10 5	ds 131 0 65 0 0	140 0 60 0 0	141 0 80 5 0	146 0 85 5 0	147 0 75 10 0	152 10 95 20 30 35	155 30 85 10 5
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed	122 0 75 5 5 10 70	123 5 80 20 0 25 70	126 5 75 5 5 15 65	127 0 95 5 5 5	128 0 75 5 30 10 90	Comp 129 0 80 0 5 0	0 75 0 10 5	ds 131 0 65 0 0 65	140 0 60 0 0	141 0 80 5 0 0	146 0 85 5 0 0 70	147 0 75 10 0 0 70	152 10 95 20 30 35 10	155 30 85 10 5 10
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur	122 0 75 5 10 70 20	123 5 80 20 0 25 70 65	126 5 75 5 15 65	127 0 95 5 5 5 65 75	128 0 75 5 30 10 90 98	Comp 129 0 80 0 5 0 85 95	0 75 0 10 5 98	ds 131 0 65 0 0 65 95	140 0 60 0 0 0	141 0 80 5 0 0 60 40	146 0 85 5 0 0 70	147 0 75 10 0 0 70 50	152 10 95 20 30 35 10 70	155 30 85 10 5 10 100
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn	122 0 75 5 10 70 20	123 5 80 20 0 25 70 65 35	126 5 75 5 15 65 15	127 0 95 5 5 65 75 5	128 0 75 5 30 10 90 98 40	Comp 129 0 80 0 5 0 85 95 20	0 75 0 10 5 98 85 55	ds 131 0 65 0 0 65 95 0	140 0 60 0 0 0	141 0 80 5 0 0 60 40	146 0 85 5 0 70 10	147 0 75 10 0 70 50	152 10 95 20 30 35 10 70 25	155 30 85 10 5 10 100 15 5
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large	122 0 75 5 10 70 20 0 75	123 5 80 20 0 25 70 65 35 70	126 5 75 5 15 65 15 10 75	127 0 95 5 5 65 75 5 80	128 0 75 5 30 10 90 98 40 85	Comp 129 0 80 0 5 0 85 95 20 80	0 75 0 10 5 98 85 55 85	ds 131 0 65 0 0 65 95 0 75	140 0 60 0 0 0 0	141 0 80 5 0 60 40 0 70	146 0 85 5 0 70 10 0 65	147 0 75 10 0 70 50 0	152 10 95 20 30 35 10 70 25 75	155 30 85 10 5 100 155 5
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	122 0 75 5 10 70 20 0 75	123 5 80 20 0 25 70 65 35 70	126 5 75 5 15 65 15 10 75	127 0 95 5 5 65 75 5 80	128 0 75 5 30 10 90 98 40 85	Comp 129 0 80 0 5 0 85 95 20 80	0 75 0 10 5 98 85 55 85	ds 131 0 65 0 0 65 95 0 75	140 0 60 0 0 0 0	141 0 80 5 0 60 40 0 70	146 0 85 5 0 70 10 0 65	147 0 75 10 0 70 50 0	152 10 95 20 30 35 10 70 25 75	155 30 85 10 5 100 155 5
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle	122 0 75 5 10 70 20 0 75 65	123 5 80 20 0 25 70 65 35 70 25 -	126 5 75 5 15 65 10 75 65	127 0 95 5 5 65 75 80 75	128 0 75 5 30 10 90 98 40 85 85	Comp 129 0 80 0 5 0 85 95 20 80 80	0 75 0 10 5 98 85 55 85	ds 131 0 65 0 0 65 95 0 75 50 -	140 0 60 0 0 0 0 50 50	141 0 80 5 0 0 40 40 70 65 -	146 0 85 5 0 0 70 10 65 60	147 0 75 10 0 70 50 0 60 65	152 10 95 20 30 35 10 70 25 75 95	155 30 85 10 5 100 155 60 20
25	Table B 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	122 0 75 5 10 70 20 0 75 65 -	123 5 80 20 0 25 70 65 35 70 25 -	126 5 75 5 15 65 10 75 65 - 70	127 0 95 5 5 65 75 80 75 -	128 0 75 5 30 10 90 98 40 85 85 -	Comp 129 0 80 0 5 0 85 95 20 80 80 -	0 75 0 10 5 98 85 55 80 -	ds 131 0 65 0 0 65 95 0 75 50 - 75	140 0 60 0 0 0 0 0 50 50 -	141 0 80 5 0 60 40 0 70 65 - 75	146 0 85 5 0 70 10 65 60 - 75	147 0 75 10 0 70 50 0 65 -	152 10 95 20 30 35 10 70 25 75 95 -	155 30 85 10 5 100 155 60 20 -

	Johnsongrass	45	35	65	65	70	40	60	5	10	15	45	15	70	10
	Kochia	0	60	10	45	60	80	85	35	0	20	40	40	10	35
	Lambsquarters	60	80	70	75	95	90	98	85	45	80	95	85	85	98
	Morningglory	60	70	75	65	80	90	95	70	0	60	0	50	45	55
5	Nutsedge, Yellow	55	65	65	65	20	35	10	15	10	0	5	50	65	20
	Oat, Wild	5	0	5	5	40	0	20	0	0	10	0	5	30	10
	Pigweed	85	80	75	80	95	85	95	90	55	60	95	85	95	98
	Ragweed	60	70	55	70	85	90	85	80	25	65	65	20	60	45
	Ryegrass, Italian	5	0	0	0	0	0	0	0	0	0	5	5	5	5
10	Soybean	45	60	70	95	98	95	98	75	10	70	70	15	70	95
	Surinam Grass	75	25	70	75	50	80	80	20	50	40	65	50	75	40
	Velvetleaf	80	80	80	90	90	95	95	80	50	75	80	60	85	100
	Wheat	15	10	5	5	0	0	5	0	5	0	0	0	35	15
	Windgrass	5	30	10	25	50	45	60	0	0	25	45	10	50	50
15	Table B						Comp	pound	ds						
	31 g ai/ha	156	157	159	160	162	164	169	173	181	184	186	187	189	190
	Postemergence														
	Barley	30	5	20	5	30	5	0	5	5	5	0	0	0	0
	Bermudagrass	80	75	95	65	85	70	70	98	100	98	80	75	10	98
20	Blackgrass	5	0	20	5	30	5	5	5	0	30	0	0	0	5
	Bromegrass, Downy	10	40	50	0	20	40	10	5	40	40	5	5	0	5
	Canarygrass	15	40	80	5	40	40	40	10	50	45	5	10	0	0
	Chickweed	80	100	100	85	90	80	100	65	100	100	95	100	98	-
	Cocklebur	20	100	95	98	100	98	100	60	100	100	90	100	60	40
25	Corn	10	70	60	15	50	15	45	5	70	80	10	50	20	0
	Crabgrass, Large	45	80	80	80	80	95	85	70	98	100	80	85	75	60
	Cupgrass, Woolly	40	85	70	65	90	75	85	85	80	75	70	80	70	75
	Deadnettle	-	-	-	-	-	-	-	-	-	100	90	80	85	65
	Foxtail, Giant	75	98	85	70	85	90	95	95	98	98	75	98	75	70
30	Foxtail, Green	45	70	85	55	98	70	60	55	70	30	50	65	65	25
	Galium	-	-	-	-	-	-	-	-	-	50	40	20	20	50
	Goosegrass	65	85	85	80	60	85	95	80	95	100	85	85	60	70
	Johnsongrass	15	70	45	45	98	45	60	65	100	100	65	90	50	60
	Kochia	10	0	40	90	20	98	100	65	65	0	75	40	85	0
35	Lambsquarters	80	98	100	95	80	98	100	98	100	80	98	98	98	80
	Morningglory	80	20	60	75	75	90	95	75	95	40	95	80	100	40
	Nutsedge, Yellow	45	30	40	65	25	40	0	45	60	35	65	45	20	35
	Oat, Wild	5	30	60	10	35	25	0	50	65	40	0	10	5	0

	Pigweed	60	65	95	90	100	98	100	85	100	70	85	100	80	65
	Ragweed	65	90	90	80	90	85	100	55	98	_	85	95	10	_
	Ryegrass, Italian	0	10	30	0	40	5	0	0	10	20	0	0	0	0
	Soybean	80	95	95	85	98	80	90	60	100	98	85	98	90	80
5	Surinam Grass	40	75	75	40	65	60	-	-	70	80	-	65	65	60
	Velvetleaf	60	100	100	90	80	70	100	100	100	85	70	90	85	100
	Wheat	15	0	40	10	10	0	0	10	40	30	0	0	0	0
	Windgrass	40	60	45	20	40	5	15	30	40	60	10	10	25	15
	Table B						Comp	pound	ds						
10	31 g ai/ha	191	193	197	217	218	219	220	225	226	227	228	229	233	235
	Postemergence														
	Barley	5	0	0	0	30	0	10	20	10	0	0	0	0	0
	Bermudagrass	100	95	95	70	70	95	80	80	80	75	80	75	95	98
	Blackgrass	30	10	0	0	0	50	10	0	5	0	5	0	5	45
15	Bromegrass, Downy	35	10	15	10	5	45	10	35	0	0	5	5	40	10
	Canarygrass	20	5	5	0	0	35	10	60	5	0	0	5	0	20
	Chickweed	98	95	100	75	100	100	95	25	75	65	98	70	90	98
	Cocklebur	90	95	80	80	-	-	-	98	98	75	98	85	90	-
	Corn	65	0	15	0	0	10	25	40	75	20	80	70	30	95
20	Crabgrass, Large	85	75	75	80	40	90	70	75	85	80	80	80	80	98
	Cupgrass, Woolly	85	75	70	25	40	85	60	75	80	55	75	70	80	95
	Deadnettle	90	100	100	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	100	75	85	70	40	70	30	75	85	75	85	75	90	98
	Foxtail, Green	40	40	5	55	60	70	60	85	70	50	85	40	85	90
25	Galium	20	75	75	-	-	-	-	-	-	-	-	-	-	-
	Goosegrass	95	85	85	80	0	90	80	85	80	75	80	70	85	95
	Johnsongrass	70	50	70	0	-	-	60	60	85	45	75	70	0	70
	Kochia	5	20	65	75	35	80	45	5	80	70	90	55	70	98
	Lambsquarters	75	98	95	90	98	100	100	85	90	90	98	85	98	98
30	Morningglory	40	40	98	70	70	60	65	95	98	100	100	98	65	95
	Nutsedge, Yellow	40	60	45	10	10	10	10	10	55	10	40	0	0	45
	Oat, Wild	50	0	40	30	40	50	10	45	25	0	0	0	30	35
	Pigweed	80	90	80	85	100	100	95	90	75	80	98	80	85	100
	Ragweed	-	-	-	80	95	80	90	75	80	60	70	80	80	98
35	Ryegrass, Italian	40	5	0	0	30	20	5	0	0	0	0	0	30	30
	Soybean	90	80	98	75	85	95	80	85	95	55	95	95	98	98
	Surinam Grass	70	65	50	70	75	10	50	75	75	55	75	65	80	80
	Velvetleaf	75	90	80	98	85	85	80	80	85	80	80	75	80	95

WO 2012/033548 PCT/US2011/027737

	Wheat	35	30	0	30	0	40	0	30	10	0	0	0	10	45
	Windgrass	55	50	10	50	10	35	5	50	10	0	5	0	50	85
	Table B			Co	ompoi	ınds									
	31 g ai/ha	236	237		_		243	244	245	255					
5	Postemergence														
	Barley	0	5	10	0	5	60	50	45	30					
	Bermudagrass	95	98	95	95	98	98	80	80	90					
	Blackgrass	0	50	40	5	40	60	50	40	5					
	Bromegrass, Downy	0	30	10	0	10	50	40	60	50					
10	Canarygrass	0	30	20	0	5	90	80	80	50					
	Chickweed	75	90	80	90	90	80	80	80	95					
	Cocklebur	-	-	-	90	-	-	-	-	_					
	Corn	15	85	80	5	90	90	85	100	60					
	Crabgrass, Large	75	95	95	75	80	95	80	80	85					
15	Cupgrass, Woolly	70	100	95	75	98	95	100	100	85					
	Deadnettle	-	-	-	-	-	-	-	-	-					
	Foxtail, Giant	75	98	100	75	100	95	95	98	95					
	Foxtail, Green	80	80	85	80	90	98	85	85	85					
	Galium	-	-	-	-	-	-	-	-	-					
20	Goosegrass	80	95	95	80	95	95	85	98	90					
	Johnsongrass	0	100	60	0	-	100	85	100	80					
	Kochia	80	65	90	90	80	85	85	85	10					
	Lambsquarters	98	95	100	98	98	100	100	98	90					
	Morningglory	60	85	-	95	-	95	90	90	75					
25	Nutsedge, Yellow	0	20	20	30	10	65	45	40	10					
	Oat, Wild	0	40	30	0	25	80	50	70	65					
	Pigweed	85		100	95	-	85	95	80	80					
	Ragweed	80		100	95	98	90	98	95	50					
2.0	Ryegrass, Italian	0	50	20	0	10	60	35	40	10					
30	Soybean	90		98	70	95	95	85	95	95					
	Surinam Grass	60	85	95	25	95	90		100	80					
	Velvetleaf	98	85		100			100		95					
	Wheat	0	50	40	0	30	85	60	75	35					
	Windgrass	30	60	45	20	60	80	50	65	50					
35	Table B		Co	ompo	unds										
	16 g ai/ha	2	69	122	131	159	169	225							
	Postemergence														

WO 2012/033548 PCT/US2011/027737

	Barley	0	0	0	0	20	0	5		
	Bermudagrass	40	85	65	60	80	70	40		
	Blackgrass	0	0	0	0	5	0	0		
	Bromegrass, Downy	20	30	5	0	15	0	30		
5	Canarygrass	20	0	0	0	40	5	55		
	Chickweed	70	95	65	45	100	90	15		
	Cocklebur	75	0	0	80	80	100	85		
	Corn	15	0	0	0	25	20	10		
	Crabgrass, Large	70	95	65	65	75	75	70		
10	Cupgrass, Woolly	75	75	65	10	65	75	70		
	Foxtail, Giant	70	80	65	65	80	75	75		
	Foxtail, Green	50	75	40	40	80	45	85		
	Goosegrass	80	75	10	65	80	80	80		
	Johnsongrass	75	75	20	0	45	40	20		
15	Kochia	55	60	0	20	20	100	5		
	Lambsquarters	80	100	55	75	95	95	85		
	Morningglory	55	65	55	5	10	95	80		
	Nutsedge, Yellow	40	5	35	0	20	0	5		
	Oat, Wild	5	50	5	0	35	0	25		
20	Pigweed	70	95	75	60	75	90	80		
	Ragweed	65	75	55	65	80	98	70		
	Ryegrass, Italian	0	0	5	0	0	0	0		
	Soybean	75	45	20	75	85	55	65		
	Surinam Grass	70	75	25	15	65	_	35		
25	Velvetleaf	-	75	75	70	100	75	80		
	Wheat	0	0	5	0	35	0	20		
	Windgrass	10	40	5	0	40	5	5		
	Table B Compo	ound					Table	е В	Comp	ound
	8 g ai/ha	159					8 g a	ai/ha		159
	Postemergence						Poste	emerg	ence	
	Barley	0					Kochi	ia		20
	Bermudagrass	70					Lambs	squar	ters	90
	Blackgrass	0					Morni	inggl	ory	0
	Bromegrass, Downy	15					Nutse	edge,	Yellow	10
	Canarygrass	25					Oat,	Wild		0
	Chickweed	80					Pigwe	eed		55
	Cocklebur	75					Ragwe	eed		65
	Corn	15					Ryegı	cass,	Italian	0

	Crabgrass, Large	65					Soyb	ean				80			
	Cupgrass, Woolly	60					Suri	nam (Gras	S		65			
	Foxtail, Giant	75					Velv	etle	af			98			
	Foxtail, Green	50					Whea	t				10			
	Goosegrass	70					Wind	gras	S			10			
	Johnsongrass	10													
	Table B						Comp	pound	ds						
	250 g ai/ha	3	7	9	10	11	12	14	24	26	27	29	33	34	36
	Preemergence														
	Bermudagrass	90	98	100	100	100	100	100	100	100	100	100	100	100	100
5	Blackgrass	0	0	40	20	60	10	0	10	10	30	50	30	50	25
	Bromegrass, Downy	0	0	10	0	5	0	0	20	10	30	5	30	80	10
	Cocklebur	100	75	100	98	100	100	95	95	98	90	90	90	85	80
	Corn	5	0	10	0	35	75	10	5	0	0	0	0	0	0
	Crabgrass, Large	100	95	100	95	100	100	100	100	100	100	100	100	100	100
10	Cupgrass, Woolly	10	45	60	40	75	85	70	90	85	80	90	85	100	65
	Foxtail, Giant	0	25	98	45	100	100	90	100	90	95	100	98	100	80
	Foxtail, Green	0	0	-	30	65	80	60	100	70	80	100	100	100	85
	Galium	50	0	95	85	75	95	80	80	98	95	100	90	98	95
	Goosegrass	98	60	100	98	100	100	100	100	100	100	100	98	100	100
15	Johnsongrass	10	0	98	75	98	98	95	90	90	85	90	20	100	85
	Kochia	100	100	100	100	100	100	100	100	100	100	100	-	-	-
	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	100	20	98	40	100	100	100	100	100	100	100	90	98	20
	Nightshade	100	100	100	100	100	100	100	100	100	100	100	100	100	98
20	Nutsedge, Yellow	50	55	95	75	90	90	85	90	85	90	85	90	90	75
	Oat, Wild	0	0	60	10	40	5	0	80	5	50	50	50	60	0
	Pigweed	95	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	90	90	100	100	100	100	90	100	100	100	100	100	90	90
	Russian Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	Ryegrass, Italian	0	0	40	0	0	0	0	10	0	0	40	5	10	0
	Soybean	50	30	80	75	95	95	85	85	90	90	95	75	80	40
	Sunflower	85	25	98	98	98	100	98	98	95	100	100	90	90	85
	Surinam Grass	5	10	95	80	75	100	80	100	90	95	95	100	90	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	95	100	100	100	100
30	Wheat	0	0	5	5	5	0	0	0	0	5	0	5	0	0

	Table B						Comp	pound	ds						
	250 g ai/ha	37	38	39	40	42	44	45	46	47	48	49	50	51	52
	Preemergence														
	Bermudagrass	100	100	100	100	100	100	100	98	100	100	100	100	100	100
5	Blackgrass	10	40	0	5	5	60	5	0	5	5	0	5	20	10
	Bromegrass, Downy	0	40	0	10	0	5	5	0	10	45	-	0	40	5
	Cocklebur	45	90	45	100	_	45	_	15	_	85	55	-	75	75
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	100	100	100	100	100	100	98	100	100	100	100	100	100
10	Cupgrass, Woolly	70	80	10	85	5	85	75	60	90	95	20	70	85	80
	Foxtail, Giant	75	95	75	98	10	98	75	25	100	98	45	90	75	75
	Foxtail, Green	90	100	100	100	85	100	100	10	98	98	30	100	100	100
	Galium	100	85	85	90	50	98	85	70	95	70	95	98	95	95
	Goosegrass	100	100	100	100	100	100	100	98	100	100	100	100	100	100
15	Johnsongrass	90	95	75	90	65	95	85	70	100	98	10	95	80	95
	Kochia	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Lambsquarters	100	100	100	100	100	100	100	100	100	100	98	100	98	100
	Morningglory	0	100	100	65	0	95	0	0	55	100	85	55	70	55
	Nightshade	85	100	100	100	100	100	100	98	100	100	98	100	100	100
20	Nutsedge, Yellow	90	80	10	85	85	90	70	90	90	90	90	90	90	90
	Oat, Wild	10	20	0	30	0	30	5	0	10	15	0	0	0	60
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	98	95	95	95	80	95	95	100	95	95	95	100	90	95
	Russian Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	Ryegrass, Italian	0	40	0	5	0	0	0	0	0	0	5	0	5	0
	Soybean	35	75	0	70	0	0	0	25	0	20	85	0	85	80
	Sunflower	90	75	65	80	75	80	75	60	85	80	75	85	75	75
	Surinam Grass	100	80	15	90	75	100	98	90	100	100	85	100	100	98
	Velvetleaf	98	100	98	100	90	100	95	65	100	100	100	100	100	100
30	Wheat	0	5	0	-	0	0	0	0	0	0	0	0	10	0
	Table B						Comp	pound	ds						
	250 g ai/ha	53	55	56	58	59	61	62	63	64	66	67	68	72	73
	Preemergence														
	Bermudagrass	100	100	100	100	98	98	100	98	98	98	100	100	100	100
35	Blackgrass	60	30	5	30	40	0	0	40	0	5	5	5	5	10
	Bromegrass, Downy	30	0	5	0	0	0	0	0	0	0	0	5	0	20
	Cocklebur	70	15	0	65	75	65	10	10	70	0	20	80	80	65
	Corn	20	0	0	0	0	0	-	0	0	0	0	0	0	10

Cooleman I amon	100	0.0	0.0	100	0.0	0.0	0.0	100	0.0	100	100	100	100	100
Crabgrass, Large	100	98	98		98	98	98	100	98					
														80
														80
														80
														85
-														100
_	75	0	80	85										98
	_	_	-	-		_								90
_						-			98					100
Morningglory	65					65	20	55	0		80	85	75	70
Nightshade	100	100	100	100	100	-	98	98	98	98	98	100	100	100
Nutsedge, Yellow	90	65	90	90	90	90	-	90	10	95	75	90	90	85
Oat, Wild	70	0	0	30	0	0	0	0	5	40	0	5	0	65
Pigweed	100	100	100	100	100	-	100	100	98	98	98	100	100	100
Ragweed	90	90	80	90	95	90	60	85	85	55	50	90	85	85
Russian Thistle	-	_	-	-	-	-	-	-	-	-	90	98	80	-
Ryegrass, Italian	50	0	0	0	20	5	20	0	0	5	0	0	0	5
Soybean	85	65	90	95	80	20	-	15	-	-	-	-	-	-
Sunflower	65	70	75	75	80	70	55	70	55	10	55	85	80	75
Surinam Grass	100	45	98	95	95	35	60	85	90	100	75	85	98	100
Velvetleaf	100	100	98	95	100	100	95	100	100	100	100	100	100	100
Wheat	10	0	10	0	0	0	0	0	0	0	0	0	0	30
Table B						Comp	oound	ds						
250 g ai/ha	7.4													
	74	75	77	81	113	119	120	193	217	218	219	220	243	244
Preemergence	/4	75	77	81	113	119	120	193	217	218	219	220	243	244
Preemergence Bermudagrass		75 100									219			
-														
Bermudagrass	100	100	100	100	100	100	100	98	100	100	100	100	100	100
Bermudagrass Blackgrass	100	100	100	100 35 0	100	100	100	98 70	100	100	100	100 35	100 95	100
Bermudagrass Blackgrass Bromegrass, Downy	100 10 0	100 10 0	100	100 35 0	100 20 10	100 70 55	100 50 85	98 70 50	100	100 20 0	100 60 20	100 35 5	100 95 70	100 70 30
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur	100 10 0 80	100 10 0 90	100 0 0 65	100 35 0 85 55	100 20 10 100	100 70 55 85	100 50 85 98 55	98 70 50 95	100 0 0 85	100 20 0 100	100 60 20 85	100 35 5 0	100 95 70 98	100 70 30 100 85
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn	100 10 0 80	100 10 0 90	100 0 0 65	100 35 0 85 55	100 20 10 100 0	100 70 55 85 50	100 50 85 98 55	98 70 50 95	100 0 0 85	100 20 0 100	100 60 20 85	100 35 5 0 0	100 95 70 98 95	100 70 30 100 85 100
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large	100 10 0 80 0	100 10 0 90 0	100 0 0 65 0	100 35 0 85 55	100 20 10 100 0 100 95	100 70 55 85 50	100 50 85 98 55 100	98 70 50 95 5	100 0 0 85 0	100 20 0 100 0	100 60 20 85 0	100 35 5 0 0	100 95 70 98 95 100	100 70 30 100 85 100
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	100 10 0 80 0 100	100 10 0 90 0 100 75	100 0 0 65 0 100 0 45	100 35 0 85 55 100 85 98	100 20 10 100 0 100 95 85	100 70 55 85 50 100	100 50 85 98 55 100 90	98 70 50 95 5 100	100 0 0 85 0 100 80 85	100 20 0 100 0 98 85 85	100 60 20 85 0 100	100 35 5 0 0 100 25 75	100 95 70 98 95 100 100	100 70 30 100 85 100
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant	100 10 0 80 0 100 5 45	100 10 0 90 0 100 75 80	100 0 0 65 0 100 0 45 15	100 35 0 85 55 100 85 98	100 20 100 100 0 100 95 85 100	100 70 55 85 50 100 100	100 50 85 98 55 100 90 100	98 70 50 95 5 100 90 80	100 0 85 0 100 80 85 90	100 20 0 100 98 85 85	100 60 20 85 0 100 80	100 35 5 0 100 25 75	100 95 70 98 95 100 100	100 70 30 100 85 100 100
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green	100 10 0 80 0 100 5 45 0 98	100 10 0 90 0 100 75 80 98	100 0 0 65 0 100 45 15 90	100 35 0 85 55 100 85 98 100	100 20 100 100 0 100 95 85 100	100 70 55 85 50 100 100 100	100 50 85 98 55 100 90 100	98 70 50 95 5 100 90 80 98 100	100 0 0 85 0 100 80 85 90	100 20 0 100 0 98 85 85 100	100 60 20 85 0 100 80 80	100 35 5 0 0 100 25 75 100	100 95 70 98 95 100 100 95 100	100 70 30 100 85 100 100 90 98
Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium	100 10 0 80 0 100 5 45 0 98	100 10 0 90 0 100 75 80 98	100 0 0 65 0 100 45 15 90	100 35 0 85 55 100 85 98 100	100 20 100 100 0 100 95 85 100	100 70 55 85 50 100 100 100	100 50 85 98 55 100 90 100	98 70 50 95 5 100 90 80 98 100	100 0 0 85 0 100 80 85 90	100 20 0 100 0 98 85 85 100	100 60 20 85 0 100 80 100	100 35 5 0 0 100 25 75 100 100	100 95 70 98 95 100 100 95 100	100 70 30 100 85 100 100 90 98
	Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass Kochia Lambsquarters Morningglory Nightshade Nutsedge, Yellow Oat, Wild Pigweed Ragweed Russian Thistle Ryegrass, Italian Soybean Sunflower Surinam Grass Velvetleaf Wheat Table B	Cupgrass, Woolly 95 Foxtail, Giant 100 Foxtail, Green 98 Galium 90 Goosegrass 100 Johnsongrass 75 Kochia - Lambsquarters 100 Morningglory 65 Nightshade 100 Nutsedge, Yellow 90 Oat, Wild 70 Pigweed 100 Ragweed 90 Russian Thistle - Ryegrass, Italian 50 Soybean 85 Sunflower 65 Surinam Grass 100 Wheat 100	Cupgrass, Woolly 95 55 Foxtail, Giant 100 10 Foxtail, Green 98 0 Galium 90 85 Goosegrass 100 98 Johnsongrass 75 0 Kochia - - Lambsquarters 100 100 Morningglory 65 65 Nightshade 100 100 Nutsedge, Yellow 90 65 Oat, Wild 70 0 Pigweed 100 100 Ragweed 90 90 Russian Thistle - - Ryegrass, Italian 50 0 Soybean 85 65 Surinam Grass 100 45 Velvetleaf 100 100 Wheat 10 0	Cupgrass, Woolly 95 55 70 Foxtail, Giant 100 10 80 Foxtail, Green 98 0 100 Galium 90 85 85 Goosegrass 100 98 100 Johnsongrass 75 0 80 Kochia - - - Lambsquarters 100 100 98 Morningglory 65 65 65 Nightshade 100 100 100 Nutsedge, Yellow 90 65 90 Oat, Wild 70 0 0 Pigweed 100 100 100 Ragweed 90 90 80 Russian Thistle - - - Ryegrass, Italian 50 0 0 Soybean 85 65 90 Surinam Grass 100 45 98 Velvetleaf 100 100 10 Wheat 10 0 10	Cupgrass, Woolly 95 55 70 85 Foxtail, Giant 100 10 80 75 Foxtail, Green 98 0 100 100 Galium 90 85 85 80 Goosegrass 100 98 100 100 Johnsongrass 75 0 80 85 Kochia - - - - - Lambsquarters 100 100 98 98 Morningglory 65 65 65 75 Nightshade 100 100 100 100 Nutsedge, Yellow 90 65 90 90 Oat, Wild 70 0 0 30 Pigweed 100 100 100 100 Ragweed 90 90 80 90 Russian Thistle - - - - Ryegrass, Italian 50 0 0 0 Suriham Grass 100 45 98 95	Cupgrass, Woolly 95 55 70 85 85 Foxtail, Giant 100 10 80 75 75 Foxtail, Green 98 0 100 100 98 Galium 90 85 85 80 98 Goosegrass 100 98 100 100 100 Johnsongrass 75 0 80 85 90 Kochia - - - - 98 Lambsquarters 100 100 98 98 100 Morningglory 65 65 65 75 60 Nutsedge, Yellow 90 65 90 90 90 Oat, Wild 70 0 0 30 0 Pigweed 100 100 100 100 100 Ragweed 90 90 80 90 95 Russian Thistle - - - - - Soybean 85 65 90 95 80	Cupgrass, Woolly 95 55 70 85 85 0 Foxtail, Giant 100 10 80 75 75 45 Foxtail, Green 98 0 100 100 98 98 98 Goosegrass 100 98 100 100 100 98 Johnsongrass 75 0 80 85 90 20 Kochia 98 98 100 100 100 98 100 100 100 98 Morningglory 65 65 65 75 60 65 Nightshade 100 100 100 100 100 - Nutsedge, Yellow 90 65 90 90 90 90 90 Augustation 100 100 100 100 100 Pigweed 100 100 100 100 100 - Ragweed 90 90 80 90 95 90 Russian Thistle Ryegrass, Italian 50 0 0 0 0 20 5 Soybean 85 65 90 95 80 20 Surinam Grass 100 45 98 95 95 35 Velvetleaf 100 100 100 98 95 100 100 Wheat 100 100 100 98 95 100 100 Wheat 100 100 100 98 95 100 100 Wheat 100 100 100 100 0 0 0	Cupgrass, Woolly 95 55 70 85 85 0 10 Foxtail, Giant 100 10 80 75 75 45 20 Foxtail, Green 98 0 100 100 98 75 10 Galium 90 85 85 80 98 98 0 Goosegrass 100 98 100 100 100 98 98 98 Johnsongrass 75 0 80 85 90 20 - Kochia - 9 - 9 8 98 100 - 100 Lambsquarters 100 100 98 98 100 - 100 Morningglory 65 65 65 65 75 60 65 20 Nightshade 100 100 100 100 100 - 98 Nutsedge, Yellow 90 65 90 90 90 90 90 90 P0 A0	Cupgrass, Woolly 95 55 70 85 85 0 10 10 Foxtail, Giant 100 10 80 75 75 45 20 10 Foxtail, Green 98 0 100 100 98 75 10 30 Galium 90 85 85 80 98 98 0 20 Goosegrass 100 98 100 100 98 98 98 100 Johnsongrass 75 0 80 85 90 20 - 60 Kochia - - - - 98 98 100 100 100 Lambsquarters 100 100 98 98 100 - 100 100 Morningglory 65 65 65 75 60 65 20 55 Nutsedge, Yellow 90 65 90 90 90	Cupgrass, Woolly 95 55 70 85 85 0 10 10 10 Foxtail, Giant 100 10 80 75 75 45 20 10 65 Foxtail, Green 98 0 100 100 98 75 10 30 50 Galium 90 85 85 80 98 98 0 20 70 Goosegrass 100 98 100 100 100 98 98 100 100 100 Johnsongrass 75 0 80 85 90 20 - 60 75 Kochia - - - - 98 90 20 - 60 75 Kochia - - - - 98 98 90 100 100 100 98 Morningglory 65 65 65 75 60	Cupgrass, Woolly 95 55 70 85 85 0 10 10 10 75 Foxtail, Giant 100 10 80 75 75 45 20 10 65 80 Foxtail, Green 98 0 100 100 98 75 10 30 50 75 Galium 90 85 85 85 80 98 98 0 20 70 70 0 Goosegrass 100 98 100 100 100 98 98 100 100 100 100 100 100 100 100 100 10	Cupgrass, Woolly 95 55 70 85 85 0 10 10 75 10 Foxtail, Giant 100 10 10 75 75 45 20 10 65 80 65 Foxtail, Green 98 0 100 100 98 75 10 30 50 75 40 Galium 90 85 85 80 98 98 0 20 70 0 90 Goosegrass 100 98 100 100 98 98 100 100 98 98 100 100 98 98 100 100 98 98 90 20 - 60 75 98 0 0 98 98 100 100 100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90	Cupgrass, Woolly	Cupgrass, Woolly

	Lambsquarters	100	100	100	98	100	100	100	100	100	100	100	100	100	100
	Morningglory	80	90	90	95	-	95	100	95	0	65	100	90	100	100
	Nightshade	100	100	100	100	100	100	98	100	100	100	100	100	98	100
	Nutsedge, Yellow	90	90	90	95	90	98	98	90	90	90	90	90	95	95
5	Oat, Wild	5	0	0	0	40	80	65	60	0	0	40	60	90	40
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	100	95	95	90	98	95	95	100	95	100	98	95	98	100
	Russian Thistle	98	-	-	100	-	100	_	100	-	-	-	-	100	-
	Ryegrass, Italian	0	0	0	0	40	100	100	45	10	5	10	0	70	45
10	Soybean	_	-	-	-	90	80	80	80	0	90	75	75	95	95
	Sunflower	85	85	85	90	95	85	95	95	85	95	85	90	95	100
	Surinam Grass	95	75	100	100	98	100	100	45	90	100	100	65	100	100
	Velvetleaf	100	100	100	100	100	100	100	100	100	100	95	100	100	100
	Wheat	0	0	0	0	10	50	30	25	0	0	0	5	70	45
	Table B Com	pound	ds				Tabl	е В		C	ompo	unds			
	250 g ai/ha	245	255				250	g ai	/ha		2	45 2	55		
	Preemergence						Pree	merg	ence						
	Bermudagrass	100	100				Morn	ingg	lory		1	00	90		
	Blackgrass	45	60				Nigh	tsha	de		1	00 1	00		
	Bromegrass, Downy	15	40				Nuts	edge	, Ye	llow		80	90		
	Cocklebur	100	-				0at,	Wil	d			30	90		
	Corn	65	0				Pigw	eed			1	00 1	00		
	Crabgrass, Large	100	100				Ragw	eed			1	00 1	00		
	Cupgrass, Woolly	100	90				Russ	ian	This	tle		-	-		
	Foxtail, Giant	100	98				Ryeg	rass	, It	alia:	n ·	40	30		
	Foxtail, Green	100	100				Soyb	ean			,	75	80		
	Galium	95	100				Sunf	lowe	r			95	90		
	Goosegrass	100	100				Suri	nam	Gras	S	1	00 1	00		
	Johnsongrass	100	98				Velv	etle	af		1	00 1	00		
	Kochia	100	-				Whea	t				15	5		
	Lambsquarters	100	100												
15	Table B						Comp	pound	ds						
	125 g ai/ha	2	3	7	9	10	11	12	14	24	26	27	29	33	34
	Preemergence														
	Bermudagrass	100	80	85	100	100	100	100	100	100	98	100	100	100	100
	Blackgrass	50	0	0	20	0	30	5	0	0	0	10	50	10	50
20	Bromegrass, Downy	5	0	0	5	0	0	0	0	0	0	0	0	5	10
	Cocklebur	80	70	0	65	65	95	98	85	95	85	85	90	85	75

	Corn	0	0	0	0	0	0	15	0	0	0	0	0	0	0
	Crabgrass, Large	100	85	45	100	70	100	100	100	100	100	100	100	100	100
	Cupgrass, Woolly	20	0	0	45	35	15	75	50	85	50	60	55	60	100
	Foxtail, Giant	70	0	0	60	0	75	70	75	90	45	85	100	95	90
5	Foxtail, Green	60	0	0	5	0	65	40	10	100	30	50	100	100	90
	Galium	_	30	0	60	85	50	90	40	10	90	85	98	50	90
	Goosegrass	100	85	45	100	95	100	100	98	100	95	100	100	90	100
	Johnsongrass	80	0	0	90	60	85	75	80	90	60	50	30	0	98
	Kochia	100	100	100	100	100	100	100	100	100	100	100	100	-	-
10	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	75	100	0	70	0	35	85	100	100	100	100	100	70	75
	Nightshade	100	98	95	100	100	100	100	100	100	100	100	100	100	100
	Nutsedge, Yellow	70	40	15	80	55	85	75	40	85	50	30	60	70	75
	Oat, Wild	50	0	0	0	0	10	0	0	0	0	30	45	30	30
15	Pigweed	100	90	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	98	90	15	100	100	100	100	90	98	95	100	100	100	90
	Russian Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	Ryegrass, Italian	5	0	0	0	0	0	0	0	10	0	0	10	5	5
	Soybean	70	35	20	-	65	65	80	50	80	80	80	90	65	65
20	Sunflower	90	70	0	95	95	95	98	85	95	90	90	90	75	80
	Surinam Grass	60	0	0	95	15	35	95	60	95	90	60	90	95	65
	Velvetleaf	100	90	100	100	100	100	100	100	100	100	90	100	100	95
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	poun	ds						
25	125 g ai/ha	36	37	38	39	40	42	44	45	46	47	48	49	50	51
	Preemergence														
	Bermudagrass	100	98	100	100	100	100	100	100	-	100	100	98	100	100
	Blackgrass	25	5	30	0	0	0	40	0	0	5	0	0	0	10
	Bromegrass, Downy	0	0	5	0	5	0	0	0	0	5	0	0	0	5
30	Cocklebur	_	0	25	-	85	-	-	-	0	-	0	45	75	20
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	10	100	100	100	95	100	100	85	100	100	98	100	100
	Cupgrass, Woolly	10	10	60	0	70	0	80	60	50	75	75	0	15	75
	Foxtail, Giant	65	0	80	70	80	10	75	45	15	85	85	20	90	50
35	Foxtail, Green	85	0	85	75	85	85	98	80	5	98	98	5	95	98
	Galium	80	30	85	85	85	10	65	50	0	50	60	90	95	80
	Goosegrass	95	80	100	100	100	100	100	100	98	100	100	98	100	100
	Johnsongrass	80	45	85	65	85	10	90	75	45	80	90	0	90	75

	Kochia	-	_	_	_	_	_	_	_	_	_	_	_	_	_
	Lambsquarters	100	100	100	100	100	100	100	100	95	100	100	98	100	98
	Morningglory	0	0	0	15	0	0	50	-	0	0	100	80	-	20
	Nightshade	95	80	98	100	98	100	100	100	98	100	100	98	100	98
5	Nutsedge, Yellow	40	20	70	0	65	75	75	20	80	80	85	85	90	85
	Oat, Wild	0	0	0	0	0	0	5	0	0	0	0	0	0	0
	Pigweed	100	100	100	100	100	100	100	100	95	100	100	100	100	100
	Ragweed	85	65	80	75	90	25	95	80	100	90	90	80	95	80
	Russian Thistle	_	-	-	-	-	-	-	-	-	-	-	-	-	-
10	Ryegrass, Italian	0	0	5	0	5	0	0	0	0	0	0	0	0	0
	Soybean	0	0	0	0	20	0	0	0	15	0	0	85	-	80
	Sunflower	55	45	25	25	75	55	75	10	0	80	80	75	85	75
	Surinam Grass	100	55	65	10	85	10	90	98	75	100	100	75	98	98
	Velvetleaf	100	20	98	75	100	85	100	85	55	90	100	100	100	98
15	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	pound	ds						
	125 g ai/ha	52	53	55	56	58	59	61	62	63	64	66	67	68	69
	Preemergence														
	Bermudagrass	98	100	100	100	100	98	75	95	98	98	98	95	98	100
20	Blackgrass	0	5	0	0	5	30	0	0	5	0	5	0	0	0
	Bromegrass, Downy	5	5	0	0	0	0	0	0	0	0	0	0	0	0
	Cocklebur	10	65	10	0	10	10	20	0	0	10	0	15	-	10
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	100	95	98	98	98	98	80	100	98	95	98	98	100
25	Cupgrass, Woolly	65	85	0	50	20	65	0	5	0	0	60	0	55	45
	Foxtail, Giant	25	100	0	75	75	60	15	20	0	35	75	45	55	90
	Foxtail, Green	45	98	0	20	70	90	40	10	-	0	30	-	25	85
	Galium	70	0	20	60	30	95	98	0	0	30	0	85	70	0
	Goosegrass	100	100	98	95	100	100	98	98	100	98	90	90	98	100
30	Johnsongrass	90	60	0	55	80	80	10	0	55	55	85	0	75	85
	Kochia	-	-	-	-	-	60	85	100	100	45	85	80	95	45
	Lambsquarters	100	100	98	98	98	100	98	100	100	98	98	98	98	100
	Morningglory	45	25	45	45	55	55	45	0	0	0	25	15	65	0
	Nightshade	98	100	100	98	98	100	98	98	98	95	98	95	100	98
35	Nutsedge, Yellow	80	90	45	85	75	85	90	45	25	0	85	65	85	0
	Oat, Wild	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pigweed	100	100	98	100	100	100	100	100	100	85	98	98	100	100
	Ragweed	85	85	85	70	85	90	75	45	70	75	45	35	80	65

	Russian Thistle	_	_	_	_	_	_	_	_	_	_	_	_	80	100
	Ryegrass, Italian	0	0	0	0	0	20	5	0	0	0	0	0	0	0
	Soybean	55	80	15	80	85	0	0	80	5	_	_	_	_	_
	Sunflower	70	65	60	65	65	70	60	10	20	0	0	35	75	5
5	Surinam Grass	95	100	0	98	85	85	0	25	55	85	90	15	55	100
	Velvetleaf	98	98	100	98	95	100	98	95	100	95	95	90	100	85
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	oun	ds						
	125 g ai/ha	72	73	74	75	77	81	113	119	120	193	217	218	219	220
10	Preemergence														
	Bermudagrass	98	98	100	100	100	100	100	100	100	95	100	100	100	98
	Blackgrass	0	0	0	5	0	35	0	50	50	30	0	0	40	20
	Bromegrass, Downy	0	5	0	0	0	0	10	55	30	5	0	0	10	0
	Cocklebur	70	60	70	75	10	75	90	70	60	_	85	90	-	_
15	Corn	0	0	0	0	0	50	0	50	25	5	0	0	0	0
	Crabgrass, Large	100	100	100	100	98	100	100	100	100	100	100	65	100	80
	Cupgrass, Woolly	45	55	0	55	0	75	85	95	75	80	65	65	20	10
	Foxtail, Giant	10	75	5	80	5	85	60	95	98	70	75	20	10	0
	Foxtail, Green	50	30	0	50	0	100	60	100	100	50	0	80	90	-
20	Galium	85	80	40	95	85	100	85	90	95	100	70	95	98	90
	Goosegrass	100	100	100	100	98	100	100	100	100	100	100	98	100	98
	Johnsongrass	0	98	0	65	0	90	60	95	80	15	20	20	65	0
	Kochia	85	80	85	90	90	65	85	55	50	80	-	-	-	-
	Lambsquarters	98	100	98	100	100	98	100	100	100	100	100	100	100	100
25	Morningglory	65	45	75	75	75	80	-	95	90	95	0	15	15	0
	Nightshade	98	98	98	98	98	98	100	98	95	100	100	100	100	98
	Nutsedge, Yellow	75	65	65	90	90	95	90	98	98	70	70	90	85	60
	Oat, Wild	0	0	5	0	0	0	20	50	65	30	0	0	5	0
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
30	Ragweed	80	75	98	95	90	90	95	95	95	100	90	98	85	80
	Russian Thistle	80	-	90	-	-	100	-	100	80	100	-	-	-	-
	Ryegrass, Italian	0	0	0	0	0	0	5	100	100	25	5	5	5	0
	Soybean	-	-	-	-	-	-	85	80	80	60	0	80	65	0
	Sunflower	65	70	70	75	75	85	90	70	85	80	85	90	80	70
35	Surinam Grass		100	85	60	75	100			100	30	85	98	45	45
	Velvetleaf	100	100		100	100	100					100	90	90	90
	Wheat	0	5	0	0	0	0	10	30	25	10	0	0	0	0

	Table B	Comp	pound	ds			Tabl	е В			C	ompo	unds		
	125 g ai/ha	243	244	245	255		125 (g ai	/ha		2	43 2	44 2	45 2	55
	Preemergence						Pree	merg	ence						
	Bermudagrass	100	100	100	100]	Morn	ingg	lory			98	98	65	65
	Blackgrass	70	60	30	40	1	Nigh	tsha	de			98 1	00 1	00 1	00
	Bromegrass, Downy	60	5	0	0]	Nuts	edge	, Ye	llow		90	80	65	40
	Cocklebur	95	100	98	-	(Oat,	Wil	d			85	10	30	60
	Corn	85	60	25	0		Pigw	eed			1	00 1	00 1	00 1	00
	Crabgrass, Large	100	100	100	100		Ragw	eed				98 1	00 1	00	85
	Cupgrass, Woolly	95	95	80	75		Russ	ian	This	tle	1	00	-	-	_
	Foxtail, Giant	95	100	90	55		Ryeg	rass	, It	alian	n ·	45	5	0	10
	Foxtail, Green	100	90	75	80		Soyb	ean				85	90	55	15
	Galium	98	98	95	60		Sunf	lowe	r			95	85	80	75
	Goosegrass	100	100	100	100		Suri	nam	Gras	S	1	00 1	00 1	00	95
	Johnsongrass	95	100	80	75	-	Velv	etle	af		1	00 1	00 1	00	98
	Kochia	90	95	98	-	1	Whea	t			,	70	5	5	0
	Lambsquarters	100	100	100	100										
	Table B						Comp	pound	ds						
	62 g ai/ha	2	3	7	9	10	11	12	14	24	26	27	29	33	34
	Preemergence														
	Bermudagrass	100	70	0	100	80	100	100	75	100	70	98	100	100	100
5	Blackgrass	0	0	0	0	0	5	0	0	0	0	0	5	0	5
	Bromegrass, Downy	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cocklebur	65	10	0	25	15	75	80	85	-	40	85	80	80	55
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	100	70	0	90	0	100	90	50	98	40	80	100	98	100
10	Cupgrass, Woolly	15	0	0	15	10	0	10	5	70	5	0	10	50	100
	Foxtail, Giant	20	0	0	15	0	35	20	10	85	10	5	50	45	55
	Foxtail, Green	5	0	0	0	0	25	0	0	40	0	30	40	45	70
	Galium	-	5	0	40	10	50	50	0	0	50	50	80	10	50
	Goosegrass	100	70	25	98	75	95	95	85	98	80	98	100	85	100
15	Johnsongrass	65	0	0	85	10	55	0	30	85	10	5	5	0	75
	Kochia	100	-	100	100	50	100	100	100	100	100	100	100	-	-
	Lambsquarters	100	-	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	20	100	0	40	0	0	55	100	100	100	100	100	15	0
	Nightshade	100	-	90	100	100	100	100	98	98	100	98	90	100	95
20	Nutsedge, Yellow	40	10	10	45	0	55	60	30	50	50	20	30	45	45

	Oat, Wild	5	0	0	0	0	0	0	0	0	0	0	0	0	10
	Pigweed	100	_	100	100	100	100	100	98	100	100	100	100	100	100
	Ragweed	85	65	0	90	100	100	98	90	90	85	85	90	85	80
	Russian Thistle	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Soybean	60	30	0	10	60	45	65	-	60	60	70	85	60	45
	Sunflower	70	70	0	85	80	85	98	85	90	90	75	85	75	70
	Surinam Grass	20	0	0	45	10	25	60	5	75	5	20	20	65	60
	Velvetleaf	90	90	85	100	100	100	100	98	100	90	85	90	90	85
10	Wheat	0	0	0	0	-	0	0	0	0	0	0	0	0	0
	Table B						Comp	ooun	ds						
	62 g ai/ha	36	37	38	39	40	42	44	45	46	47	48	49	50	51
	Preemergence														
	Bermudagrass	100	80	100	100	100	100	100	100	-	100	100	-	100	98
15	Blackgrass	25	0	5	0	0	0	30	0	0	5	0	0	0	0
	Bromegrass, Downy	0	0	0	0	0	0	0	0	0	5	0	0	0	0
	Cocklebur	-	-	10	-	-	0	-	-	0	0	0	20	75	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	0	90	95	98	85	75	95	75	95	90	95	100	98
20	Cupgrass, Woolly	0	0	10	0	50	0	45	45	45	45	10	0	5	35
	Foxtail, Giant	20	0	40	45	65	0	45	0	0	70	75	0	75	45
	Foxtail, Green	80	0	30	-	85	65	98	80	0	80	60	0	50	50
	Galium	80	10	40	80	70	0	65	40	0	50	60	80	95	75
	Goosegrass	90	0	100	100	98	95	98	100	95	100	100	95	98	100
25	Johnsongrass	65	0	80	60	80	0	75	45	10	75	45	0	20	5
	Kochia	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Lambsquarters	100	98	98			100		100		100			100	98
	Morningglory	0	0	0	0	0	0	0	-	0		100	80	0	20
2.0	Nightshade	95	40	95	100		100		100		100			100	98
30	Nutsedge, Yellow	0	0	60	0	45	35	60	10	55	45	20	60	85	70
	Oat, Wild	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pigweed				100			98	95		100				100
	Ragweed	75	10	70	45	75	20	90	80	100	80	85	75	95	70
25	Russian Thistle	-	_	_	_	_	_	_	_	_	_	_	_	_	-
35	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Soybean	0	0	0	0	0	0	0	0	0	0	0	80	0	0
	Sunflower	0	0	0	5	55	0	70	0	0	65	75	75	75	70
	Surinam Grass	95	45	60	10	75	5	85	60	5	98	90	-	95	98

	Velvetleaf	85	0	60	45	85	80	90	65	45	90	95	100	85	85
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	ooun	ds						
	62 g ai/ha	52	53	55	56	58	59	61	62	63	64	66	67	68	69
5	Preemergence														
	Bermudagrass	98	100	98	100	98	98	75	75	98	85	80	90	98	100
	Blackgrass	0	5	0	0	0	0	0	0	0	0	0	0	0	0
	Bromegrass, Downy	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cocklebur	0	20	10	0	0	0	10	0	0	0	0	0	10	0
10	Corn	0	0	0	0	0	0	0	-	0	0	0	0	0	0
	Crabgrass, Large	98	100	60	85	98	95	85	50	85	75	85	65	95	100
	Cupgrass, Woolly	10	55	0	20	10	65	0	0	0	0	40	0	20	0
	Foxtail, Giant	15	85	0	40	20	0	0	0	0	25	20	0	20	75
	Foxtail, Green	30	60	0	20	5	70	0	0	-	0	5	30	5	70
15	Galium	0	0	0	0	0	90	70	0	0	0	0	35	70	-
	Goosegrass	100	100	95	95	98	98	98	95	98	40	75	85	95	100
	Johnsongrass	75	55	0	45	20	-	0	0	0	0	55	0	5	45
	Kochia	-	-	-	-	-	45	70	100	100	0	80	70	80	20
	Lambsquarters	100	100	98	98	98	100	98	98	98	98	98	98	98	100
20	Morningglory	0	20	0	0	0	0	0	0	0	0	20	15	55	0
	Nightshade	95	98	98	98	98	98	95	95	95	85	95	95	98	98
	Nutsedge, Yellow	25	80	45	80	75	65	70	25	15	0	30	65	70	0
	Oat, Wild	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pigweed	100	98	95	100	98	100	100	98	98	75	98	98	98	100
25	Ragweed	80	75	65	65	75	90	75	20	65	50	0	25	75	65
	Russian Thistle	-	-	-	-	-	-	-	-	-	0	0	-	-	100
	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Soybean	0	70	0	-	-	0	0	80	0	-	-	-	-	-
	Sunflower	10	55	60	60	55	65	45	10	15	0	0	20	60	0
30	Surinam Grass	25	85	0	95	65	75	0	20	0	85	80	10	50	100
	Velvetleaf	98	98	98	90	80	90	85	75	90	75	80	85	100	70
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	poun	ds						
	62 g ai/ha	72	73	74	75	77	81	113	119	120	193	217	218	219	220
35	Preemergence														
	Bermudagrass	98	98	98	100	100	100	95	100	100	95	100	100	100	98
	Blackgrass	0	0	0	0	0	0	0	30	50	0	0	0	35	20

ss, Downy 0 5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 40 - 0 0 0 0 98 100 100 100 100 20 98 50 75 70 70 5 0 10	0 0 0 75
0 0 0 0 0 4 s, Large 100 98 98 100 98 10 , Woolly 0 20 0 - 0 5 Giant 5 70 0 25 0 7	0 40 - 0 0 0 0 98 100 100 100 100 20 98 50 75 70 70 5 0 10	0
s, Large 100 98 98 100 98 10 , Woolly 0 20 0 - 0 5 Giant 5 70 0 25 0 7	98 100 100 100 100 20 98 50 75 70 70 5 0 10	
, Woolly 0 20 0 - 0 5 Giant 5 70 0 25 0 7	50 75 70 70 5 0 10	75
Giant 5 70 0 25 0 7		
		0
Green 0 30 0 50 0 9	40 85 98 65 40 0 0	0
	40 100 98 50 0 30 70	90
85 30 30 85 20 10	70 85 90 100 10 80 85	50
ss 98 98 98 100 95 9	90 100 100 100 98 60 100	95
rass 0 0 0 10 0 8	5 85 70 0 5 0 15	0
75 – – 90 90 5	80 0 20 70	-
rters 98 98 98 100 98 9	100 98 100 100 100 100 100 1	.00
lory 55 0 60 60 65 6	- 95 90 90 0 0 0	0
de 95 95 98 98 98 9	98 98 95 100 100 98 98	90
, Yellow 70 65 55 80 80 7	80 95 90 65 65 75 45	0
d 0 0 0 0	5 45 10 5 0 0 0	0
98 100 98 100 100 10	98 90 100 100 100 100 100 1	.00
70 60 98 75 75 8	90 80 80 100 60 95 75	60
Thistle 30 - 80 10	- 100 80 98	-
, Italian 0 0 0 0 0	5 100 100 0 0 0 0	0
	65 55 70 60 0 65 0	0
r 25 20 55 55 75 7	80 60 - 80 75 80 45	45
Grass 75 100 80 60 20 10	80 98 100 15 75 65 10	20
af 100 100 100 100 100 10	100 80 100 100 100 85 75	70
0 0 0 0 0	0 0 0 0 0 0 0	0
Compounds Tabl	B Compounds	
- ha 243 244 245 255 62 g	ai/ha 243 244 245 255	
ence Pree	ergence	
rass 100 100 100 100 Morn	ngglory - 90 0 55	
ss 10 35 5 20 Nigh	shade 98 100 100 90	
ss, Downy 40 0 0 0 Nuts	dge, Yellow 80 60 0 25	
r 75 90 0 - Oat,	Wild 85 5 0 0	
75 25 5 0 Pigw	ed 98 100 95 100	
s, Large 100 100 100 95 Ragw	ed 95 95 85 75	
-	an Thistle 100	
-	ass, Italian 10 0 0 0	
Green 100 45 0 80 Soyb		
90 65 60 50 Sunf	ower 85 80 70 60	
r 75 90 0 - Oat, 75 25 5 0 Pigw s, Large 100 100 100 95 Ragw , Woolly 95 55 70 10 Russ Giant 85 80 10 45 Ryeg Green 100 45 0 80 Soyb	Wild 85 5 ed 98 100 ed 95 95 an Thistle 100 - ass, Italian 10 0 an 75 80	95 100 5 85 75 0 0 0 10 0

WO 2012/033548 PCT/US2011/027737

	Goosegrass	100	100	100	98	St	ırina	ım Gr	ass		98	100	100	85	;
	Johnsongrass	95	85	75	60	Ve	elvet	leaf	:		100	100	100	95	5
	Kochia	20	90	45	_	Wh	eat				40	0	0	C)
	Lambsquarters	100	100	100	100										
	Table B						Comp	pound	ds						
	31 g ai/ha	2	3	7	9	10	11	12	14	24	26	27	29	33	34
	Preemergence														
	Bermudagrass	98	10	0	98	45	98	100	70	95	5	70	98	98	100
5	Blackgrass	0	0	0	0	0	0	0	0	0	0	0	5	0	0
	Bromegrass, Downy	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	Cocklebur	0	10	0	0	0	35	25	0	10	10	0	5	25	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	15	0	0	0	0	60	0	5	90	0	5	98	85	55
10	Cupgrass, Woolly	0	0	0	0	0	0	0	0	5	0	0	5	10	100
	Foxtail, Giant	15	0	0	0	0	0	0	0	30	5	0	10	10	15
	Foxtail, Green	0	0	0	0	0	0	0	0	0	0	0	0	0	50
	Galium	_	0	0	0	0	5	0	0	0	0	0	50	0	10
	Goosegrass	85	30	10	75	0	70	85	70	85	5	80	95	80	95
15	Johnsongrass	60	0	0	0	0	0	0	5	20	0	0	0	0	20
	Kochia	100	98	15	15	0	15	15	85	100	80	100	98	-	-
	Lambsquarters	100	100	100	100	100	100	100	100	98	98	100	100	98	100
	Morningglory	0	100	-	0	0	0	40	100	100	100	100	100	0	0
	Nightshade	98	50	80	100	100	85	100	85	90	85	80	90	80	55
20	Nutsedge, Yellow	15	5	0	0	0	0	25	0	30	10	0	0	0	10
	Oat, Wild	_	0	0	0	0	0	0	0	0	0	0	0	0	10
	Pigweed	100	85	100	50	100	100	100	90	98	98	100	100	100	100
	Ragweed	60	65	0	55	98	65	90	70	85	65	85	80	80	75
	Russian Thistle	_	_	-	-	-	_	-	-	-	_	_	-	-	_
25	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Soybean	15	0	0	0	10	25	60	25	45	50	70	20	60	0
	Sunflower	50	50	0	45	0	75	95	50	85	60	75	75	65	55
	Surinam Grass	15	0	0	0	0	0	35	0	65	0	0	0	0	5
	Velvetleaf	75	50	40	98	55	100	90	70	98	50	55	10	80	75
30	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Table B						Comp	pound	ds						
	31 g ai/ha	36	37	38	39	40	42	44	45	46	47	48	49	50	51
	Preemergence														

	Bermudagrass	95	10	98	85	98	90	100	98	0	100	100	_	100	95
	Blackgrass	20	0	0	0	0	0	5	0	0	0	0	0	0	0
	Bromegrass, Downy	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cocklebur	_	0	0	0	65	0	-	-	0	-	-	0	-	0
5	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	20	0	60	55	70	45	65	45	45	75	75	75	98	75
	Cupgrass, Woolly	0	0	0	0	0	0	0	45	10	0	10	0	0	10
	Foxtail, Giant	10	0	0	0	10	0	20	0	0	45	20	0	45	0
	Foxtail, Green	35	0	20	-	0	65	0	0	0	65	60	0	50	50
10	Galium	10	0	0	70	50	0	0	40	0	50	0	0	70	0
	Goosegrass	0	0	95	85	80	50	90	80	85	95	98	20	95	98
	Johnsongrass	0	0	10	0	10	0	10	0	0	65	20	0	0	0
	Kochia	_	_	-	-	-	-	_	_	-	-	_	_	_	-
	Lambsquarters	98	95	98	100	100	100	100	100	90	100	100	95	100	95
15	Morningglory	0	0	0	0	0	0	0	0	0	0	0	45	0	0
	Nightshade	80	0	90	50	65	100	95	98	95	100	100	98	100	98
	Nutsedge, Yellow	0	0	10	0	10	10	45	0	25	45	20	60	80	55
	Oat, Wild	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pigweed	100	100	100	90	98	100	98	85	85	98	100	100	90	100
20	Ragweed	35	0	40	0	75	0	20	45	100	45	65	70	75	65
	Russian Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sunflower	0	0	0	0	20	0	10	0	0	65	0	60	55	20
25	Surinam Grass	70	0	40	0	40	0	65	45	0	85	80	0	75	95
	Velvetleaf	65	0	55	15	80	75	75	0	0	80	75	95	85	75
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B						Comp	pound	ds						
	31 g ai/ha	52	53	55	56	58	59	61	62	63	64	66	67	68	69
30	Preemergence														
	Bermudagrass	98	-	95	98	98	10	20	20	75	50	20	45	95	98
	Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bromegrass, Downy	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cocklebur	0	10	0	0	0	0	0	0	0	0	0	0	0	0
35	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	60	75	10	80	95	55	70	0	50	50	70	40	65	98
	Cupgrass, Woolly	0	0	0	0	10	10	0	0	0	0	25	0	5	0
	Foxtail, Giant	0	5	0	0	10	0	0	0	0	20	15	0	0	5

	Foxtail, Green	0	60	0	0	0	_	0	0	0	0	0	0	0	_
	Galium	0	0	0	0	0	0	70	0	0	0	0	0	0	-
	Goosegrass	98	98	45	90	95	98	80	15	90	30	35	85	80	95
	Johnsongrass	10	10	0	10	10	_	0	0	0	0	0	0	0	5
5	Kochia	_	_	_	_	_	0	0	98	0	0	80	70	80	0
	Lambsquarters	98	98	95	95	85	98	90	98	98	95	98	98	98	98
	Morningglory	0	0	0	0	0	-	0	0	0	0	0	0	0	0
	Nightshade	90	98	60	85	90	95	90	10	80	55	80	70	98	95
	Nutsedge, Yellow	0	65	0	20	20	55	25	15	10	0	10	0	0	0
10	Oat, Wild	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pigweed	90	95	45	98	85	90	0	45	95	55	98	98	95	98
	Ragweed	80	65	55	20	20	75	50	0	65	0	0	25	10	65
	Russian Thistle	-	-	-	-	-	-	-	-	-	-	-	85	-	100
	Ryegrass, Italian	0	0	0	0	0	0	-	0	0	0	0	0	0	0
15	Soybean	0	0	0	20	10	-	-	0	0	-	-	-	-	-
	Sunflower	10	15	10	0	0	55	0	0	5	0	0	0	0	0
	Surinam Grass	10	75	0	55	40	5	0	5	0	0	35	0	45	80
	Velvetleaf	80	80	75	85	75	75	80	75	75	65	80	75	95	70
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Table B						Comp	oound	ds						
20	Table B 31 g ai/ha	72	73	74	75	77	_			120	193	217	218	219	220
20		72	73	74	75	77	_			120	193	217	218	219	220
20	31 g ai/ha	72 95	73 50	74	75 98	77 55	_			120	193 75	217	218	219	220
20	31 g ai/ha Preemergence						81	113	119						
20	31 g ai/ha Preemergence Bermudagrass	95	50	_	98	55	81	113950	119	100	75 0	98	98 0	98	80
	31 g ai/ha Preemergence Bermudagrass Blackgrass	95 0	50	- 0	98	55 0	81	113950	11910030	100	75 0	98	98 0	98	80
	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy	95 0 0	50 0 0	- 0 0	98	55 0 0	81 100 0	1139500	119 100 30 0	100 5 10	75 0	98	98 0 0	98	80 10 0
	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur	95 0 0	50 0 0	- 0 0	98 0 0	55 0 0	81 100 0 0	95 0 0 45	119 100 30 0	100 5 10	75 0 0	98 0 0	98 0 0	98 30 0	80 10 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn	95 0 0 10	50 0 0 0	- 0 0 10	98 0 0 10	55 0 0 0	81 100 0 0 0 40	95 0 0 45	119 100 30 0 0	100 5 10 0	75 0 0 -	98 0 0 -	98 0 0 - 0	98 30 0 -	80 10 0 0
	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large	95 0 0 10 0 95	50 0 0 0 0	- 0 0 10 0	98 0 0 10 0 98 5	55 0 0 0 0 70	81 100 0 0 0 40	95 0 0 45 0	119 100 30 0 0	100 5 10 0 0	75 0 0 - 0	98 0 0 - 0 95	98 0 0 - 0	98 30 0 - 0	80 10 0 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	95 0 0 10 0 95	50 0 0 0 0 0 85	- 0 0 10 0 98	98 0 0 10 0 98	55 0 0 0 0 70	81 100 0 0 0 40 100 40	95 0 0 45 0 70	119 100 30 0 0 0	100 5 10 0 0 98 50	75 0 0 - 0 100	98 0 0 - 0 95	98 0 0 - 0	98 30 0 - 0 10	80 10 0 0 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant	95 0 0 10 0 95 0 0	50 0 0 0 0 85 10 0	- 0 0 10 0 98 0 0 0	98 0 0 10 0 98 5 0 5	55 0 0 0 0 70 0 0	81 100 0 0 40 100 40 60 80 85	113 95 0 0 45 0 70 5 10 50	119 100 30 0 0 100 65 55 95 65	100 5 10 0 98 50 75 95 80	75 0 0 - 0 100 10 5 75	98 0 0 - 0 95 0 5	98 0 0 - 0 0 0 0	98 30 0 - 0 10 0 20 75	80 10 0 0 0 0 0 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green	95 0 0 10 0 95 0	50 0 0 0 0 85 10 0 - 85	- 0 0 10 0 98 0 0 0 20 98	98 0 0 10 0 98 5 0 5 60 95	55 0 0 0 0 70 0 0 0 55	81 100 0 0 40 100 40 60 80 85 98	113 95 0 0 45 0 70 5 10 50 75	119 100 30 0 0 100 65 55 95 65 100	100 5 10 0 98 50 75 95 80	75 0 0 - 0 100 10 5 75 98	98 0 0 - 0 95 0 5	98 0 0 - 0 0 0	98 30 0 - 0 10 0 20 75 98	80 10 0 0 0 0 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass	95 0 0 10 0 95 0 0 0	50 0 0 0 0 85 10 0	- 0 0 10 0 98 0 0 20 98	98 0 0 10 0 98 5 0 5 60 95	55 0 0 0 70 0 0 0 55	81 100 0 0 40 100 40 60 85 98 10	113 95 0 0 45 0 70 5 10 50 75 0	119 100 30 0 0 100 65 55 95 65	100 5 10 0 98 50 75 95 80 100 35	75 0 0 - 0 100 10 5 75 98 0	98 0 0 - 0 95 0 5	98 0 0 - 0 0 0 0	98 30 0 - 0 10 0 20 75	80 10 0 0 0 0 0 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass Kochia	95 0 0 10 0 95 0 0 0 60 0 45	50 0 0 0 0 85 10 0 - 85 0	- 0 0 10 0 98 0 0 0 20 98 0	98 0 0 10 0 98 5 0 5 60 95 0	55 0 0 0 70 0 0 0 55 0 85	81 100 0 0 40 100 40 60 85 98 10 45	113 95 0 0 45 0 70 5 10 50 75 0 80	119 100 30 0 0 100 65 55 95 65 100 50	100 5 10 0 98 50 75 95 80 100 35	75 0 0 - 0 100 10 5 75 98 0 20	98 0 0 95 0 5 0 95 0	98 0 0 0 0 0 0 0 60 10	98 30 0 - 0 10 0 20 75 98 0 -	80 10 0 0 0 0 0 80 65 0
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass Kochia Lambsquarters	95 0 0 10 0 95 0 0 0 60 0 45 98	50 0 0 0 85 10 0 - 85 0 95	- 0 0 10 0 98 0 0 20 98 0 80 98	98 0 0 10 0 98 5 0 5 60 95 0 80 98	55 0 0 0 70 0 0 0 55 0 85 98	81 100 0 0 40 100 40 60 85 98 10	113 95 0 0 45 0 70 5 10 50 75 0	119 100 30 0 0 100 65 55 95 65 100 50 0 95	100 5 10 0 98 50 75 95 80 100 35 0	75 0 0 100 10 5 75 98 0 20	98 0 0 95 0 5 0 95 0 -	98 0 0 0 0 0 0 60 10 -	98 30 0 - 0 10 0 20 75 98 0 -	80 10 0 0 0 0 80 0 65 0 -
25	31 g ai/ha Preemergence Bermudagrass Blackgrass Bromegrass, Downy Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Foxtail, Giant Foxtail, Green Galium Goosegrass Johnsongrass Kochia	95 0 0 10 0 95 0 0 0 60 0 45	50 0 0 0 0 85 10 0 - 85 0	- 0 0 10 0 98 0 0 0 20 98 0	98 0 0 10 0 98 5 0 5 60 95 0	55 0 0 0 70 0 0 0 55 0 85	81 100 0 0 40 100 40 60 85 98 10 45	113 95 0 0 45 0 70 5 10 50 75 0 80	119 100 30 0 0 100 65 55 95 65 100 50	100 5 10 0 98 50 75 95 80 100 35 0	75 0 0 100 10 5 75 98 0 20	98 0 0 95 0 5 0 95 0	98 0 0 0 0 0 0 0 60 10	98 30 0 - 0 10 0 20 75 98 0 -	80 10 0 0 0 0 0 80 65 0

	Nutsedge, Yellow	40	20	20	60	75	10	65	75	70	10	60	45	0	0
	Oat, Wild	0	0	0	0	0	0	0	0	0	5	0	0	0	_
	Pigweed	98	95	98	98	100	100	98	80	95	98	95	100		100
	Ragweed	55	45	10	75	50	60	55	80	80	100	60	85	45	15
5	Russian Thistle	0	0	0	_	_	100	_	100	_	90	_	_	_	_
	Ryegrass, Italian	0	0	0	0	0	0	0	100	100	0	0	0	0	0
	Soybean	_	_	_	_	_	_	0	10	15	40	0	0	0	_
	Sunflower	25	0	0	30	60	60	75	40	45	70	70	75	0	0
	Surinam Grass	45	85	0	40	0	98	0	90	100	0	45	10	10	10
10	Velvetleaf	98	100	98	100	95	100	80	75	80	85	95	80	0	45
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table B	Comp	pound	ds				Tab!	le B		С	ompo	ounda	5	
	31 g ai/ha		244		255			16 (g ai,	/ha		-	2	69	
	Preemergence							Pre	emer	gence	€				
	Bermudagrass	100	100	98	100			Berr	nudaç	grass	5		25	90	
	Blackgrass	0	35	0	0			Blac	ckgra	ass			0	0	
	Bromegrass, Downy	0	0	0	0			Bron	negra	ass,	Down	У	0	0	
	Cocklebur	_	-	0	-			Cocl	clebu	ır			0	0	
	Corn	65	5	0	0			Cor	n				0	0	
	Crabgrass, Large	100	98	60	80			Crab	ogras	ss,]	Large		0	75	
	Cupgrass, Woolly	75	45	50	0			Cup	grass	s, Wo	oolly		0	0	
	Foxtail, Giant	55	60	0	15			Foxt	cail,	Gia	ant		0	0	
	Foxtail, Green	35	0	0	0			Foxt	cail,	Gre	een		0	-	
	Galium	85	55	20	0			Goos	segra	ass			0	55	
	Goosegrass	98	98	95	80			Johr	nson	grass	5		0	0	
	Johnsongrass	70	70	65	0			Kocł	nia				0	-	
	Kochia	15	85	0	-			Lamb	osqua	arte	cs.	-	100	95	
	Lambsquarters	100	100	100	98			Morn	ning	glory	7		0	0	
	Morningglory	-	85	0	40			Nigh	ntsha	ade			55	80	
	Nightshade	90	98	98	75			Nuts	sedge	e, Ye	ellow		0	0	
	Nutsedge, Yellow	65	20	0	10			Oat,	. Wil	ld			0	0	
	Oat, Wild	30	0	0	0			Pigv	veed				98	95	
	Pigweed	75	100	80	100			Ragi	veed				25	40	
	Ragweed	85	70	75	65			Russ	sian	This	stle		- :	100	
	Russian Thistle	100	-	-	-			Rye	grass	s, It	calia	n	0	-	
	Ryegrass, Italian	0	0	0	0			_	oean				0	-	
	Soybean	65	70	0	0				flowe				0	0	
	Sunflower	80	80	45	45			Sur	inam	Gras	ss		0	75	

326

Surinam Grass	80	75	95	65	Velvetleaf	0	0
Velvetleaf	100 1	100	95	80	Wheat	0	0
Wheat	0	0	0	0			

TEST B1

5

10

15

20

25

30

Seeds of plant species selected from blackgrass (Alopecurus myosuroides), downy bromegrass (Bromus tectorum), green foxtail (Setaria viridis), Italian ryegrass (Lolium multiflorum), wheat (Triticum aestivum), wild oat (Avena fatua), catchweed bedstraw (Galium aparine), bermudagrass (Cynodon dactylon), Surinam grass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), large crabgrass (Digitaria sanguinalis), woolly cupgrass (Eriochloa villosa), giant foxtail (Setaria faberii), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), kochia (Kochia scoparia), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), nightshade (eastern black nightshade, Solanum ptycanthum), yellow nutsedge (Cyperus esculentus), pigweed (Amaranthus retroflexus), common ragweed (Ambrosia elatior), soybean (Glycine max), common (oilseed) sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), and Russian thistle (Salsola kali) were planted into a blend of loam soil and sand and treated preemergence with test compounds formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also winter barley (*Hordeum vulgare*), canarygrass (*Phalaris minor*), chickweed (*Stellaria media*), henbit deadnettle (*Lamium amplexicaule*), and windgrass (*Apera spica-venti*) were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Plant species in the flooded paddy test consisted of rice (*Oryza sativa*), umbrella sedge (*Cyperus difformis*), duck salad (*Heteranthera limosa*) and barnyardgrass (*Echinochloa crusgalli*) grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test.

Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B1, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table B1		Comp	oound	ds										
250 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
Flood														
Barnvardgrass	Ω	0	0	0	75	0	0	0	0	0	0	40	20	40

	Ducksalad	0	30	40	60	90	85	85	80	0	0	0	80	60	85
	Rice	0	20	0	20	30	0	15	15	0	0	0	0	0	0
	Sedge, Umbrella	0	70	40	65	90	85	90	60	0	0	0	80	70	80
	Table B1						Comp	pound	ds						
5	250 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
	Flood														
	Barnyardgrass	0	30	0	0	0	0	0	0	0	0	0	0	0	20
	Ducksalad	70	75	30	30	0	0	0	40	40	0	30	0	0	70
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	Sedge, Umbrella	80	85	75	80	0	0	0	70	80	0	0	0	0	90
	Table B1						Comp	pound	ds						
	250 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	30	0	40	20	40	30	30
15	Ducksalad	0	0	0	30	0	40	40	60	50	75	80	50	55	80
	Rice	0	0	20	0	0	0	0	0	0	0	20	60	30	40
	Sedge, Umbrella	0	0	60	20	0	20	30	60	40	70	80	80	65	90
	Table B1						Comp	pound	ds						
	250 g ai/ha	302	303	304	305	306	307	308	309	310	311	312	313	314	315
20	Flood														
	Barnyardgrass	20	0	70	65	35	75	60	55	90	0	20	0	0	40
	Ducksalad	50	0	100	90	75	80	85	95	95	50	70	0	0	90
	Rice	20	0	15	20	25	60	30	25	75	0	60	0	0	25
	Sedge, Umbrella	80	0	90	90	85	85	85	85	95	75	85	0	0	90
25	Table B1						Comp	pound	ds						
	250 g ai/ha	316	317	318	319	320	321	322	323	324	325	326	327	328	329
	Flood														
	Barnyardgrass	45	55	0	0	35	60	55	85	65	85	10	80	30	20
	Ducksalad	50	30	75	40	95	80	80	85	70	100	20	90	0	70
30	Rice	0	15	0	15	60	25	20	40	20	85	10	75	15	30
	Sedge, Umbrella	80	75	85	65	85	85	80	85	80	100	65	85	20	85
	Table B1						Comp	pound	ds						
	250 g ai/ha	330	331	332	333	334	335	336	337	338	339	340	341	342	343
	Flood														
35	Barnyardgrass	10	65	30	60	60	30	70	75	80	60	40	0	30	0
	Ducksalad	85	85	85	85	85	70	85	75	100	90	30	0	30	0

	Rice	0	35	20	30	20	15	75	70	60	70	65	0	0	0
	Sedge, Umbrella	95	85	85	95	85	65	85	85	85	75	20	0	20	0
	Table B1						Comp	oound	ds						
	250 g ai/ha	344	345	346	347	348	349	350	352	353	354	355	356	357	358
5	Flood														
	Barnyardgrass	80	80	20	0	20	70	40	85	65	20	45	50	0	0
	Ducksalad	80	100	30	0	60	85	65	75	85	65	75	95	0	55
	Rice	80	85	15	0	15	55	0	50	60	20	50	40	0	10
	Sedge, Umbrella	85	85	40	0	65	75	75	60	70	65	75	95	0	65
10	Table B1						Comp	oound	ds						
	250 g ai/ha	360	361	362	363	364	365	366	367	368	369	370	371	372	373
	Flood														
	Barnyardgrass	0	30	20	25	0	25	25	0	30	30	50	40	50	0
	Ducksalad	60	75	70	60	80	75	75	35	60	80	75	80	75	0
15	Rice	0	0	20	15	15	20	20	0	20	0	0	20	0	0
	Sedge, Umbrella	40	80	70	75	80	85	70	25	75	85	80	85	85	0
	Table B1						Comp	oound	ds						
	250 g ai/ha	374	375	376	377	378	379	380	381	382	383	384	385	386	387
	Flood														
20	Barnyardgrass	20	20	75	45	80	85	0	75	85	35	95	55	45	20
	Ducksalad	70	80	90	80	90	100	0	85	85	35	80	60	80	60
	Rice	0	25	45	45	65	80	0	20	65	0	60	0	0	10
	Sedge, Umbrella	75	95	95	80	85	90	0	80	85	55	75	85	85	80
	Table B1						Comp	oound	ds						
25	250 g ai/ha	388	389	390	391	392	393	394	395	396	397	398	399	400	401
	Flood														
	Barnyardgrass	85	10	25	0	70	70	60	20	10	20	80	90	0	85
	Ducksalad	95	30	60	0	75	90	90	60	85	90	90	75	30	90
	Rice	70	0	0	0	35	40	10	20	50	30	80	85	0	50
30	Sedge, Umbrella	75	20	40	0	85	85	70	70	80	85	80	60	10	80
	Table B1						Comp	oound	ds						
	250 g ai/ha	402	403	404	405	406	407	409	410	411	412	413	414	415	416
	Flood														
	Barnyardgrass	20	90	75	30	10	10	30	60	30	70	65	80	20	85
35	Ducksalad	80	80	70	50	70	60	40	80	45	60	60	90	70	75
	Rice	15	80	15	30	10	10	20	20	0	55	40	10	15	0

	Sedge, Umbrella	85	70	80	50	50	85	65	85	75	60	65	85	40	60
	Table B1						Comr	oound	ds						
	250 g ai/ha	417	418	419	420	421	_			425	426	427	428	429	430
	Flood														
5	Barnyardgrass	90	75	10	0	75	90	15	70	10	25	15	80	60	10
	Ducksalad	75	80	50	0	85	90	50	60	60	80	60	70	80	20
	Rice	10	20	15	0	40	80	15	20	10	10	0	25	10	10
	Sedge, Umbrella	80	60	60	0	70	75	50	60	30	80	50	70	60	35
	Table B1						Comp	pound	ds						
10	250 g ai/ha	431	432	433	434	435	436	437	438	439	440	441	442	443	444
	Flood														
	Barnyardgrass	30	30	0	45	0	0	50	0	0	0	40	0	20	0
	Ducksalad	80	60	0	80	75	0	80	0	70	0	75	40	65	80
	Rice	45	20	0	60	0	0	45	0	0	0	25	0	20	20
15	Sedge, Umbrella	80	20	0	80	75	0	80	0	75	0	85	40	70	75
	Table B1						Comp	pound	ds						
	250 g ai/ha	445	446	447	448	449	450	451	452	453	454	455	456	457	458
	Flood														
	Barnyardgrass	65	20	40	60	35	65	30	65	40	60	30	0	65	30
20	Ducksalad	100	75	75	75	70	80	65	65	60	90	60	0	80	80
	Rice	40	0	35	40	15	30	30	80	0	20	25	15	50	10
	Sedge, Umbrella	95	65	80	75	85	85	80	80	70	80	75	0	80	90
	Table B1						Comp	pound	ds						
	250 g ai/ha	459	460	461	462	463	464	465	466	467	468	469	470	471	472
25	Flood														
	Barnyardgrass	25	0	0	0	0	80	65	50	60	45	0	40	50	15
	Ducksalad	70	0	0	40	55	80	100	60	65	30	0	80	85	60
	Rice	20	0	0	10	0	10	35	15	50	0	0	20	60	0
	Sedge, Umbrella	50	0	0	70	0	80	85	40	75	0	0	85	80	80
30	Table B1						Comp	pound	ds						
	250 g ai/ha	473	474	475	477	478	479	480	481	482	483	485	486	487	488
	Flood														
	Barnyardgrass	0	30	40	15	20	85	0	0	60	60	70	80	10	0
	Ducksalad	50	80	85	95	0	90	30	0	85	95	90	85	40	0
35	Rice	0	0	10	15	15	85	0	0	50	90	60	70	0	0
	Sedge, Umbrella	75	80	80	90	0	80	60	0	80	85	80	80	40	0

	Table B1						Comp	pound	ds						
	250 g ai/ha	489	490	491	492	493	494	495	496	497	503	504	505	506	507
	Flood														
	Barnyardgrass	60	30	60	60	0	0	0	90	60	80	40	0	15	0
5	Ducksalad	75	75	80	70	50	0	50	85	95	75	70	0	70	0
	Rice	30	25	40	25	0	0	0	10	15	60	60	0	0	0
	Sedge, Umbrella	75	90	85	60	75	45	0	85	85	85	70	75	30	0
	Table B1			Comp	pound	ds									
	250 g ai/ha	508	509	510	511	512	513	514	515						
10	Flood														
	Barnyardgrass	0	20	0	30	20	60	40	25						
	Ducksalad	40	50	75	95	85	75	75	75						
	Rice	15	15	0	10	15	35	15	20						
	Sedge, Umbrella	60	40	75	85	75	70	75	80						
15	Table B1						Comp	pound	ds						
	125 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Flood														
	Barnyardgrass	0	0	0	0	45	0	0	0	0	0	0	30	0	30
	Ducksalad	0	0	0	40	80	80	60	70	0	0	0	75	50	80
20	Rice	0	20	0	20	25	0	0	15	0	0	0	0	0	0
	Sedge, Umbrella	0	50	30	60	85	60	70	50	0	0	0	70	60	70
	Table B1						Comp	pound	ds						
	125 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
	Flood														
25	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	50	65	20	0	0	0	0	30	30	0	20	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	75	75	60	50	0	0	0	60	50	0	0	0	0	30
	Table B1						Comp	pound	ds						
30	125 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	20	0	20	0	20
	Ducksalad	0	0	0	0	0	0	0	40	0	70	80	40	25	40
	Rice	0	0	0	0	0	0	0	0	0	0	0	10	20	20
35	Sedge, Umbrella	0	0	40	0	0	0	0	50	0	60	75	75	55	80

	Table B1						Comp	pound	ds						
	125 g ai/ha	302	303	304	305	306	307	308	309	310	311	312	313	314	315
	Flood														
	Barnyardgrass	15	0	0	15	15	30	25	25	45	0	0	0	0	15
5	Ducksalad	40	0	85	85	65	80	80	80	85	40	60	0	0	75
	Rice	20	0	10	15	15	20	15	20	20	0	0	0	0	15
	Sedge, Umbrella	80	0	85	85	75	85	80	80	85	70	80	0	0	70
	Table B1						Comp	pound	ds						
	125 g ai/ha	316	317	319	320	321	322	323	324	337	338	339	340	341	342
10	Flood														
	Barnyardgrass	15	20	0	0	20	30	40	20	60	40	20	20	0	20
	Ducksalad	20	0	30	30	40	25	70	40	65	50	30	0	0	30
	Rice	0	10	10	15	10	10	0	10	60	20	20	30	0	0
	Sedge, Umbrella	70	70	40	30	60	40	65	65	75	70	50	20	0	20
15	Table B1						Comp	pound	ds						
	125 g ai/ha	343	344	345	346	347	348	349	350	352	353	354	355	356	357
	Flood														
	Barnyardgrass	0	75	55	10	0	0	30	20	40	35	0	30	25	0
	Ducksalad	0	75	100	30	0	40	75	50	70	80	60	30	80	0
20	Rice	0	50	65	0	0	15	35	0	30	35	0	10	10	0
	Sedge, Umbrella	0	75	75	30	0	30	75	70	40	60	50	35	90	0
	Table B1						Comp	pound	ds						
	125 g ai/ha	358	360	361	362	363	364	365	366	367	368	369	370	371	372
	Flood														
25	Barnyardgrass	0	0	20	0	15	0	10	15	0	20	0	20	0	20
	Ducksalad	30	30	45	50	30	30	20	40	0	60	30	40	75	50
	Rice	10	0	0	15	0	15	20	15	15	0	0	0	15	0
	Sedge, Umbrella	40	0	75	60	40	20	40	45	20	75	75	75	85	75
	Table B1						Comp	pound	ds						
30	125 g ai/ha	373	374	375	376	377	378	379	380	381	382	383	384	385	386
	Flood														
	Barnyardgrass	0	10	15	55	20	70	70	0	25	35	0	60	20	15
	Ducksalad	0	60	50	80	0	85	90	0	75	60	25	65	20	40
	Rice	0	0	15	60	20	35	50	0	0	10	0	20	0	0
35	Sedge, Umbrella	0	60	80	85	20	85	80	0	60	60	30	70	40	40

	Table B1						Comp	pound	ds						
	125 g ai/ha	387	388	389	390	391	392	393	394	395	396	397	398	399	400
	Flood														
	Barnyardgrass	0	50	0	10	0	30	40	15	10	0	10	20	20	0
5	Ducksalad	40	85	25	30	0	70	80	70	30	60	70	80	40	20
	Rice	0	10	0	0	0	0	30	10	0	10	10	20	10	0
	Sedge, Umbrella	50	70	0	25	0	80	80	50	20	30	30	50	20	0
	Table B1						Comp	pound	ds						
	125 g ai/ha	401	402	403	404	405	406	407	409	410	411	412	413	414	415
10	Flood														
	Barnyardgrass	60	15	80	20	0	0	0	20	20	30	40	50	40	15
	Ducksalad	80	75	80	40	0	50	20	20	60	0	50	30	85	50
	Rice	30	10	55	0	0	0	0	0	10	0	15	20	0	5
	Sedge, Umbrella	60	80	50	60	0	30	20	40	70	70	50	50	50	20
15	Table B1						Comp	pound	ds						
	125 g ai/ha	416	417	418	419	420	421	422	423	424	425	426	427	428	429
	Flood														
	Barnyardgrass	40	75	40	0	0	25	75	10	15	10	10	0	60	30
	Ducksalad	60	60	40	30	0	85	80	50	40	30	60	40	50	65
20	Rice	0	10	10	0	0	10	50	10	20	0	0	0	15	10
	Sedge, Umbrella	50	50	45	0	0	60	50	20	40	10	60	30	50	20
	Table B1						Comp	pound	ds						
	125 g ai/ha	430	431	432	433	434	435	436	437	438	439	440	441	442	443
	Flood														
25	Barnyardgrass	0	0	0	0	20	0	0	20	0	0	0	15	0	0
	Ducksalad	20	50	60	0	50	30	0	80	0	0	0	75	0	30
	Rice	0	10	15	0	30	0	0	20	0	0	0	20	0	20
	Sedge, Umbrella	35	50	0	0	60	40	0	70	0	0	0	70	0	40
	Table B1						Comp	pound	ds						
30	125 g ai/ha	444	445	446	447	448	449	450	451	452	453	454	455	456	457
	Flood														
	Barnyardgrass	0	35	0	20	40	25	40	20	40	30	0	20	0	40
	Ducksalad	70	65	60	60	75	70	75	40	50	50	30	30	0	70
	Rice	10	25	0	15	25	0	10	10	70	0	0	25	10	40
35	Sedge, Umbrella	50	90	0	60	65	80	75	75	65	50	75	65	0	75
	Table B1						Comp	pound	ds						
	125 g ai/ha	458	459	464	465	467	468	469	471	472	473	474	475	476	477

	Flood														
	Barnyardgrass	0	0	10	45	20	0	0	0	10	0	20	20	35	10
	Ducksalad	75	60	0	20	40	0	0	40	0	20	70	80	80	0
	Rice	0	15	0	20	10	0	0	0	0	0	0	0	15	10
5	Sedge, Umbrella	75	0	30	80	60	0	0	50	70	0	70	70	75	30
	Table B1						Comp	pound	ds						
	125 g ai/ha	478	479	480	481	482	483	485	486	490	491	492	493	494	495
	Flood														
	Barnyardgrass	0	75	20	0	40	0	50	50	15	50	20	0	0	0
10	Ducksalad	0	50	0	0	80	85	85	80	30	50	0	0	0	0
	Rice	15	70	0	0	25	0	20	60	0	20	10	0	0	0
	Sedge, Umbrella	0	65	60	0	80	75	70	75	60	75	0	0	0	0
	Table B1		Comp	pound	ds										
	125 g ai/ha	496	503	505	507	510	515								
15	Flood														
	Barnyardgrass	65	40	0	0	0	0								
	Ducksalad	75	75	0	0	75	75								
	Rice	0	0	0	0	0	10								
	Sedge, Umbrella	75	80	0	0	70	60								
20	Table B1						Comp	pound	ds						
	62 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	30	70	60	50	50	0	0	0	50	40	70
25	Rice	0	15	0	15	20	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	50	75	50	0	40	0	0	0	40	50	0
	Table B1						Comp	pound	ds						
	62 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
	Flood														
30	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	50	0	0	0	0	0	20	0	0	0	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	50	50	0	0	0	0	0	50	0	0	0	0	0	0
	Table B1						Comp	pound	ds						
35	62 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Flood														

	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Ducksalad	0	0	0	0	0	0	0	0	0	50	55	40	0	20	
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Sedge, Umbrella	0	0	30	0	0	0	0	0	0	50	60	70	0	75	
5	Table B1						Comr	oound	ds							
	62 g ai/ha	302	303	304	305	306				310	311	312	313	314	315	
	Flood	002	000	001			00,		003	010	011	012	010	011	010	
	Barnyardgrass	15	0	0	10	10	0	0	20	30	0	0	0	0	0	
	Ducksalad	30	0	80	75	50	75	85	60	80	0	0	0	0	40	
10	Rice	20	0	0	0	10	0	0	0	15	0	0	0	0	0	
	Sedge, Umbrella	70	0	80	75	70	80	75	75	80	50	70	0	0	0	
	Table B1						Comr	oound	ds							
	62 g ai/ha	316	317	318	319	320	_			324	325	326	327	328	329	
	Flood															
15	Barnyardgrass	0	0	0	0	0	15	0	0	0	25	10	40	0	0	
	Ducksalad	0	0	65	0	0	0	0	60	0	90	0	80	0	50	
	Rice	0	0	0	0	15	0	0	0	0	45	20	35	10	20	
	Sedge, Umbrella	30	40	65	0	20	30	20	60	20	95	65	75	0	75	
	Table B1						Comp	ound	ds							
20	Table B1 62 g ai/ha	330	331	332	333	334	_			338	339	340	341	342	343	
20		330	331	332	333	334	_			338	339	340	341	342	343	
20	62 g ai/ha	330	331	332	333	334	_			338	339	340	341	342	343	
20	62 g ai/ha Flood						335	336	337							
20	62 g ai/ha Flood Barnyardgrass	0	20 80	0	20	30	335	336 40	337 40 40	0 40	20	0	0	0	0	
20	62 g ai/ha Flood Barnyardgrass Ducksalad	0	20 80	0	20	30 40	335	3364060	337 40 40	0 40	20	0	0	0	0	
	62 g ai/ha Flood Barnyardgrass Ducksalad Rice	0 50 -	20 80 10	0 0 15	20 40 30	30 40 10	335 0 0 10 20	336406030	337 40 40 20 70	0 40 15	20 0	0 0	0 0	0 0	0 0	
	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella	0 50 - 65	20 80 10	0 0 15 0	20 40 30 80	30 40 10 40	335 0 0 10 20	336 40 60 30 75	337 40 40 20 70	0 40 15 50	20 0 0 40	0 0 0	0 0 0	0 0 0	0 0 0	
	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1	0 50 - 65	20 80 10 70	0 0 15 0	20 40 30 80	30 40 10 40	335 0 0 10 20	336 40 60 30 75	337 40 40 20 70	0 40 15 50	20 0 0 40	0 0 0	0 0 0	0 0 0	0 0 0	
	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha	0 50 - 65	20 80 10 70	0 0 15 0	20 40 30 80	30 40 10 40	335 0 0 10 20	336 40 60 30 75	337 40 40 20 70	0 40 15 50	20 0 0 40	0 0 0	0 0 0	0 0 0	0 0 0	
	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood	0 50 - 65	20 80 10 70	0 0 15 0	20 40 30 80	30 40 10 40	335 0 0 10 20 Comp 349	336 40 60 30 75 Sound	337 40 40 20 70 ds 352	0 40 15 50	20 0 0 40	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass	0 50 - 65 344	20 80 10 70 345	0 0 15 0	20 40 30 80	30 40 10 40	335 0 0 10 20 Comp 349	336 40 60 30 75 Sound 350	337 40 40 20 70 ds 352	0 40 15 50 353	20 0 0 40 354	0 0 0 0 355	0 0 0 0 356	0 0 0 0	0 0 0 0	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass Ducksalad	0 50 - 65 344 50 40	20 80 10 70 345 40 50	0 0 15 0 346	20 40 30 80 347 0	30 40 10 40 348 0 40	335 0 0 10 20 Comp 349 0 40	336 40 60 30 75 50 350 20 40	337 40 40 20 70 ds 352 20 30	0 40 15 50 353 20 70	20 0 40 354 0 40	0 0 0 0 355 30 30	0 0 0 0 356 15 70	0 0 0 0 357 0	0 0 0 0 358	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass Ducksalad Rice	0 50 - 65 344 50 40 15	20 80 10 70 345 40 50 40	0 0 15 0 346 0 0	20 40 30 80 347 0 0	30 40 10 40 348 0 40	335 0 0 10 20 Comp 349 0 40 0 30	336 40 60 30 75 50 350 20 40 0	337 40 40 20 70 4s 352 20 30 20	0 40 15 50 353 20 70 25	20 0 40 354 0 40	0 0 0 0 355 30 30	0 0 0 0 356 15 70 0	0 0 0 0 357 0 0	0 0 0 0 358 0 0	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella	0 50 - 65 344 50 40 15 40	20 80 10 70 345 40 50 40	0 0 15 0 346 0 0	20 40 30 80 347 0 0	30 40 10 40 348 0 40 0 30	335 0 0 10 20 Comp 349 0 40 0 30 Comp	336 40 60 30 75 20 40 0 40	337 40 40 20 70 ds 352 20 30 20 0	0 40 15 50 353 20 70 25 50	20 0 40 354 0 40 0 30	0 0 0 0 355 30 30 10	0 0 0 356 15 70 0 75	0 0 0 0 357 0 0	0 0 0 0 358 0 0 10	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood	0 50 - 65 344 50 40 15 40	20 80 10 70 345 40 50 40 50	0 0 15 0 346 0 0 20	20 40 30 80 347 0 0 0	30 40 10 40 348 0 40 0 30	335 0 0 10 20 Comp 349 0 40 0 30 Comp 365	336 40 60 30 75 350 40 0 40 0 366	337 40 40 20 70 ds 352 20 30 20 0 ds 367	0 40 15 50 353 20 70 25 50	20 0 40 354 0 40 0 30	0 0 0 355 30 30 10 0	0 0 0 356 15 70 0 75	0 0 0 0 357 0 0 0	0 0 0 0 358 0 0 10	
25	62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B1 62 g ai/ha	0 50 - 65 344 50 40 15 40	20 80 10 70 345 40 50 40	0 0 15 0 346 0 0	20 40 30 80 347 0 0	30 40 10 40 348 0 40 0 30	335 0 0 10 20 Comp 349 0 40 0 30 Comp	336 40 60 30 75 20 40 0 40	337 40 40 20 70 ds 352 20 30 20 0	0 40 15 50 353 20 70 25 50	20 0 40 354 0 40 0 30	0 0 0 0 355 30 30 10	0 0 0 356 15 70 0 75	0 0 0 0 357 0 0	0 0 0 0 358 0 0 10	

	Rice	0	0	10	0	0	15	15	0	0	0	0	0	0	0
	Sedge, Umbrella	0	70	0	40	0	20	0	0	75	70	65	50	65	0
	Table B1						Comp	oound	ds						
	62 g ai/ha	374	375	376	377	378	_			382	383	384	385	386	387
5	Flood														
	Barnyardgrass	0	0	30	20	45	40	0	20	15	0	0	0	0	0
	Ducksalad	0	30	70	0	80	80	0	50	20	0	40	0	40	25
	Rice	0	0	0	0	0	20	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	40	80	0	75	75	0	35	25	30	50	0	0	20
10	Table B1						Comp	oound	ds						
	62 g ai/ha	388	389	390	391	392	393	394	395	396	397	398	399	400	401
	Flood														
	Barnyardgrass	15	0	0	0	15	0	0	10	0	0	0	5	0	0
	Ducksalad	30	0	0	0	70	70	10	20	20	20	20	0	0	20
15	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	40	0	0	0	75	20	10	0	0	20	0	10	0	20
	Table B1						Comp	oound	ds						
	62 g ai/ha	402	403	404	405	406	407	409	410	411	412	413	414	415	416
	Flood														
20	Barnyardgrass	0	20	20	0	0	0	0	0	20	5	0	10	5	20
	Ducksalad	50	40	20	0	30	0	0	0	0	30	30	60	20	30
	Rice	0	15	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	45	40	20	0	0	0	30	50	70	30	30	25	0	30
	Table B1						Comp	oound	ds						
25	62 g ai/ha	417	418	419	420	421	422	423	424	425	426	427	428	429	430
	Flood														
	Barnyardgrass	50		0	0	10	30	0	0	0	0	0	15	20	0
	Ducksalad	30	20	0	0	35	30	40	40	10	50	20	25	50	0
30	Rice	0	0	0	0	5	30	1.0	0	0	0	0	0 40	10	0
30	Sedge, Umbrella	10	20	0	U	40	20	10	20	10	20	20	40	U	0
	Table B1						_	ound							
	62 g ai/ha	431	432	433	434	435	436	437	438	439	440	441	442	443	444
	Flood	•	^	^	^	^	^	^	^	^	^	4.0	^	^	^
25	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	10	0	0	0
35	Ducksalad	40	0	0	0	0	0	70	0	0	0	60	0	20	30
	Rice	10	10	0	10	0	0	0	0	0	0	20	0	0	0

	Sedge, Umbrella	40	0	0	0	0	0	30	0	0	0	60	0	0	0
	Table B1						Comp	oun	ds						
	62 g ai/ha	445	446	447	448	449	450	451	452	453	454	455	456	457	458
	Flood														
5	Barnyardgrass	25	0	0	0	0	20	0	40	20	0	20	0	15	0
	Ducksalad	45	40	40	60	70	70	0	40	30	20	0	0	70	50
	Rice	15	0	0	10	0	0	0	15	0	0	20	10	30	0
	Sedge, Umbrella	75	0	30	0	75	75	70	60	40	70	30	0	65	50
	Table B1						Comp	poun	ds						
10	62 g ai/ha	459	460	461	462	463	464	465	466	467	468	469	470	471	472
	Flood														
	Barnyardgrass	0	0	0	0	0	10	15	0	0	0	0	20	0	0
	Ducksalad	20	0	0	0	40	0	0	0	0	0	0	80	30	0
	Rice	15	0	0	10	0	0	15	0	20	0	0	15	0	0
15	Sedge, Umbrella	0	0	0	0	0	0	30	0	40	0	0	75	50	40
	Table B1						Comp	pound	ds						
	62 g ai/ha	473	474	475	476	477	478	479	480	481	482	483	485	486	487
	Flood														
	Barnyardgrass	0	20	0	0	0	0	30	0	0	0	0	30	30	0
20	Ducksalad	0	60	80	60	0	0	30	0	0	75	70	40	60	0
	Rice	0	0	0	15	10	15	10	0	0	0	0	40	20	0
	Sedge, Umbrella	0	60	60	40	20	0	40	50	0	75	50	40	50	0
	Table B1						Comp	poun	ds						
	62 g ai/ha	488	489	490	491	492	493	494	495	496	497	503	504	505	506
25	Flood														
	Barnyardgrass	0	20	0	0	0	0	0	0	0	0	30	15	0	0
	Ducksalad	0	50	0	30	0	0	0	0	40	80	75	0	0	40
	Rice	0	0	0	15	10	0	0	0	0	0	0	25	0	0
	Sedge, Umbrella	0	40	45	40	0	0	0	0	60	75	75	0	0	30
30	Table B1			С	ompoi	ınds									
	62 g ai/ha	507	508	509	510	511	512	513	514	515					
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	20	0					
	Ducksalad	0	20	0	0	90	80	45	0	40					
35	Rice	0	15	0	0	0	0	25	15	0					
	Sedge, Umbrella	0	30	0	0	70	65	30	75	30					

	Table B1						Comp	pound	ds						
	31 g ai/ha	260	261	262	263	264	265	266	267	268	269	270	271	272	273
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Ducksalad	0	0	0	20	70	50	0	30	0	0	0	0	30	40
	Rice	0	10	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	60	0	0	0	0	0	0	0	0	0
	Table B1						Comp	pound	ds						
	31 g ai/ha	274	275	276	277	278	279	280	281	282	283	284	285	286	287
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	Table B1						Comp	pound	ds						
	31 g ai/ha	288	289	290	291	292	293	294	295	296	297	298	299	300	301
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	0	0	0	0	0	0	30	0	0	0	0
20	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	0	0	0	60
	Table B1						Comp	pound	ds						
	31 g ai/ha	302	303	304	305	306	307	308	309	310	311	312	313	314	315
	Flood														
25	Barnyardgrass	0	0	0	0	0	0	0	0	20	0	0	0	0	0
	Ducksalad	0	0	70	20	40	70	80	60	80	0	0	0	0	0
	Rice	15	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	80	30	30	60	70	60	70	0	0	0	0	0
	Table B1						Comp	pound	ds						
30	31 g ai/ha Flood	316	317	319	320	321	322	323	324	337	338	339	340	341	342
	Barnyardgrass	0	0	0	0	0	0	0	0	30	0	0	0	0	0
	Ducksalad	0	0	0	0	0	0	60	0	30	20	0	0	0	0
	Rice	0	0	0	15	0	0	0	0	15	0	0	0	0	0
35	Sedge, Umbrella	0	0	0	0	0	0	40	20	0	0	30	0	0	0

	Table B1						Comp	pound	ds						
	31 g ai/ha	343	344	345	346	347	348	349	350	352	353	354	355	356	357
	Flood														
	Barnyardgrass	0	30	30	0	0	0	0	10	20	10	0	20	0	0
5	Ducksalad	0	40	40	0	0	20	30	0	20	30	20	20	50	0
	Rice	0	0	20	0	0	0	0	0	20	0	0	0	0	0
	Sedge, Umbrella	0	30	40	0	0	0	0	0	0	0	0	0	60	0
	Table B1						Comp	pound	ds						
	31 g ai/ha	358	360	361	362	363	364	365	366	367	368	369	370	371	372
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	0	0	0	0	0	0	0	70	0	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	60	0	0	0	0	0	0	75	0	45	40	0
15	Table B1						Comp	pound	ds						
	31 g ai/ha	373	374	375	376	377	378	379	380	381	382	383	384	385	386
	Flood														
	Barnyardgrass	0	0	0	20	0	20	20	0	10	0	0	0	0	0
	Ducksalad	0	0	0	70	0	75	70	0	25	0	0	30	0	0
20	Rice	0	0	0	0	0	0	20	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	80	0	30	75	0	35	25	20	40	0	0
	Table B1						Comp	pound	ds						
	31 g ai/ha	387	388	389	390	391	392	393	394	395	396	397	398	399	400
	Flood														
25	Barnyardgrass	0	5	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	10	10	0	0	0	0	30	0	0	0	0	10	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	30	0	0	0	0	0	0	0	0	0	0	0	0
	Table B1						Comp	pound	ds						
30	31 g ai/ha	401	402	403	404	405	406	407	409	410	411	412	413	414	415
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	0	30	20	0	0	0	0	0	0	20	20	40	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Sedge, Umbrella	10	0	20	10	0	0	0	0	20	70	10	20	10	0

	Table B1						Comp	pound	ds						
	31 g ai/ha	416	417	418	419	420	421	422	423	424	425	426	427	428	429
	Flood														
	Barnyardgrass	10	0	0	0	0	5	10	0	0	0	0	0	0	0
5	Ducksalad	0	0	0	0	0	20	10	10	20	0	40	0	15	0
	Rice	0	0	0	0	0	5	10	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	0	30	10	0	20	0	0	0	20	0
	Table B1						Comp	pound	ds						
	31 g ai/ha	430	431	432	433	434	435	436	437	438	439	440	441	442	443
10	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	0	30	0	0	0	0	0	0	0	0	0	0	0	0
	Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	Table B1						Comp	pound	ds						
	31 g ai/ha	444	445	446	447	448	449	450	451	452	453	454	455	456	457
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	20	0	0	15	0	0
	Ducksalad	0	30	0	0	0	0	70	0	30	0	0	0	0	70
20	Rice	0	0	0	0	0	0	0	0	15	0	0	10	10	20
	Sedge, Umbrella	0	70	0	0	0	70	60	50	30	0	60	20	0	40
	Table B1						Comp	pound	ds						
	31 g ai/ha	458	459	464	465	467	468	469	471	472	473	474	475	476	477
	Flood														
25	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ducksalad	40	20	0	0	0	0	0	20	0	0	30	60	20	0
	Rice	0	15	0	15	20	0	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	30	0	0	0	40	0	0	0	0	0	0
	Table B1						Comp	pound	ds						
30	31 g ai/ha	478	479	480	481	482	483	485	486	490	491	492	493	494	495
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	20	0	0	0	0	0	0
	Ducksalad	0	30	0	0	70	50	30	50	0	0	0	0	0	0
	Rice	15	0	0	0	0	0	0	15	0	0	10	0	0	0
35	Sedge, Umbrella	0	40	40	0	70	40	0	40	20	0	0	0	0	0

	Table B1		Comr	pound	ds										
	31 g ai/ha	496	503			510	515								
	Flood														
	Barnyardgrass	0	20	0	0	0	0								
5	Ducksalad	30	65	0	0	0	0								
	Rice	0	0	0	0	0	0								
	Sedge, Umbrella	40	70	0	0	0	0								
	Table B1 Comp	ound													
	16 g ai/ha	476													
10	Flood														
	Barnyardgrass	0													
	Ducksalad	0													
	Rice	0													
	Sedge, Umbrella	0													
15	Table B1						Comp	pound	ds						
	250 g ai/ha	264	276	295	298	306	307	308	309	310	312	316	317	321	327
	Postemergence														
	Barley	90	35	85	25	45	90	50	90	95	60	45	40	10	70
	Bermudagrass	95	90	100	95	98	98	95	95	98	98	98	95	85	95
20	Blackgrass	80	20	80	25	85	90	70	80	85	45	50	35	20	55
	Bromegrass, Downy	30	10	80	20	45	70	70	70	80	30	15	15	5	80
	Canarygrass	90	30	98	20	75	80	45	90	95	40	45	80	30	85
	Chickweed	100	98	100	100	100	90	98	100	100	85	98	85	98	_
	Cocklebur	100	95	100	100	98	100	100	100	100	100	98	100	98	_
25	Corn	98	80	95	10	70	95	85	85	95	75	75	75	35	90
	Crabgrass, Large	95	98	100	85	90	98	95	90	95	95	90	95	85	95
	Cupgrass, Woolly	98	90	100	20	95	100	95	98	95	85	98	75	50	90
	Deadnettle	100	75	100	80	90	80	80	85	75	70	85	85	100	100
	Foxtail, Giant	95	85	100	75	95	90	95	90	95	90	90	95	85	95
30	Foxtail, Green	90	60	95	65	80	90	60	70	85	55	85	85	70	95
	Galium	90	90	95	90	90	90	90	85	95	90	85	85	85	95
	Goosegrass	95	85	98	90	90	95	90	90	95	90	95	85	80	95
	Johnsongrass	100	80	85	45	95	100	90	95	100	95	95	85	45	85
	Kochia	100	100	95	100	100	65	45	20	85	20	100	65	95	98
35	Lambsquarters	100	98	100	100	100	100	100	100	100	100	100	100	98	100
	Morningglory	100	100	100	100	100	100	100	100	100	85	100	100	95	100
	Nutsedge, Yellow	80	55	85	80	80	75	85	90	80	75	90	80	90	90

	Oat, Wild	70	30	90	30	75	50	70	60	95	60	50	40	15	80
	Pigweed	98	100	100	100	100	100	100	100	100	98	100	100	98	98
	Ragweed	100	95	100	_	98	98	100	95	98	100	100	95	95	100
	Ryegrass, Italian	20	20	70	10	60	70	40	60	95	35	30	35	5	30
5	Soybean	98	100	95	90	95	100	95	90	98	98	90	98	95	100
	Surinam Grass	95	80	100	45	85	85	90	85	90	85	90	75	50	90
	Velvetleaf	98	98	100	100	98	98	95	90	95	98	98	85	90	98
	Wheat	_	45	90	35	45	90	80	70	95	35	35	35	25	50
	Windgrass	95	25	85	5	80	70	80	90	85	70	60	50	55	85
10	Table B1						Comp	pound	ds						
	250 g ai/ha	328	329	333	334	336	337	344	345	349	353	357	359	361	362
	Postemergence														
	Barley	45	50	50	10	60	85	45	50	85	80	40	35	60	60
	Bermudagrass	98	90	98	90	85	100	98	100	-	100	98	-	_	98
15	Blackgrass	45	85	60	70	55	40	90	95	55	60	60	60	80	65
	Bromegrass, Downy	60	95	10	5	_	70	85	85	80	50	50	40	60	80
	Canarygrass	35	95	65	40	70	90	90	85	85	85	85	55	90	85
	Chickweed	98	98	98	-	95	100	100	100	100	98	100	100	-	100
	Cocklebur	100	98	100	-	100	100	100	100	100	100	98	-	-	100
20	Corn	60	80	75	50	75	98	85	100	100	90	85	-	-	98
	Crabgrass, Large	85	98	90	95	98	100	98	100	100	100	98	95	100	98
	Cupgrass, Woolly	80	98	95	70	55	100	100	100	100	100	95	-	-	100
	Deadnettle	85	100	90	100	-	90	100	100	95	90	80	-	90	80
	Foxtail, Giant	90	95	90	90	98	100	98	100	100	98	95	98	100	100
25	Foxtail, Green	80	95	85	75	95	90	95	98	90	90	90	90	95	90
	Galium	85	90	90	85	-	95	85	85	90	85	85	90	90	90
	Goosegrass	90	95	90	85		100		100	100	98	90	95	95	98
	Johnsongrass	65	95	98	80		100			100	98	98	75		
• •	Kochia	80	100	65		100				75	85	98	80		100
30	Lambsquarters		100						100		100	100	100		100
	Morningglory	98		100		100				95	95	95	100		95
	Nutsedge, Yellow	55	90	85	95	75	85		100	75	55	80	65	80	40
	Oat, Wild	50	95	50	35	80	95	90	90	85	90	55	30	85	85
2.5	Pigweed	98		100					100			100	100		100
35	Ragweed	80	98	100		100				100		98	-		100
	Ryegrass, Italian	5	80	35	20	20	60	40	45	70	45	25	30	60	60
	Soybean	95	98	85	95				100		98	100			100
	Surinam Grass	75	95	85	70	80	95	90	100	100	98	95	95	98	98

	Velvetleaf	98	98	98	98	98	100	100	100	100	98	98	95	-	100
	Wheat	50	90	50	30	45	60	35	60	70	70	60	15	85	85
	Windgrass	60	90	50	35	80	80	85	98	85	75	60	50	80	85
	Table B1						Comp	pound	ds						
5	250 g ai/ha	363	365	366	367	368	369	370	371	372	379	381	382	384	385
	Postemergence														
	Barley	50	40	60	65	85	60	80	85	55	40	40	45	45	20
	Bermudagrass	_	_	-	95	_	98	95	98	100	100	100	100	98	98
	Blackgrass	70	50	80	60	85	50	65	80	45	55	70	45	40	40
10	Bromegrass, Downy	35	40	80	70	45	75	65	80	85	35	25	60	30	5
	Canarygrass	90	80	90	85	98	85	90	98	95	65	70	85	50	50
	Chickweed	_	100	100	100	100	100	100	100	100	100	100	100	100	98
	Cocklebur	_	_	_	_	_	_	100	100	_	_	85	100	80	60
	Corn	_	-	98	98	98	100	85	90	100	80	90	90	90	85
15	Crabgrass, Large	100	98	98	98	98	98	98	98	100	95	98	100	95	98
	Cupgrass, Woolly	-	90	100	98	98	98	95	98	98	85	85	75	95	70
	Deadnettle	65	-	80	90	80	80	-	85	90	95	80	95	90	85
	Foxtail, Giant	100	100	100	98	98	98	98	98	100	95	85	95	85	90
	Foxtail, Green	95	90	95	90	95	90	85	95	95	85	90	90	65	60
20	Galium	90	85	90	85	90	90	90	95	95	90	90	80	90	80
	Goosegrass	95	85	95	95	95	90	95	95	98	95	85	98	85	80
	Johnsongrass	-	100	100	100	100	100	100	100	100	85	100	85	100	100
	Kochia	100	-	98	98	95	85	60	95	100	100	100	95	98	90
	Lambsquarters	100	-	100	100	100	100	100	100	100	100	98	100	98	100
25	Morningglory	-	100	98	100	100	95	100	100	98	100	100	90	100	100
	Nutsedge, Yellow	85	65	85	45	95	40	85	85	65	90	80	80	80	60
	Oat, Wild	50	20	85	70	60	50	30	90	90	50	50	60	45	30
	Pigweed	100	100		100					100	100	98	100	100	98
	Ragweed	-	-		100				100			98	100	98	98
30	Ryegrass, Italian	30	25	50	55	50	35	55	70	70	50	40	40	45	30
	Soybean		100	95	100		100	100	98		100	100		98	98
	Surinam Grass	98	85	98	95	98	95	98	95	100	85	80	60	85	80
	Velvetleaf	-	98	100	95	100	100	85		100		95	85	90	80
2.5	Wheat	60	15	85	65	90	60	60	90	90	45	45	35	35	30
35	Windgrass	70	50	75	80	85	85	70	90	90	60	70	50	60	40
	Table B1						Comp	pound	ds						
	250 g ai/ha	386	387	388	389	394	395	396	397	398	399	400	401	402	403

	Postemergence														
	Barley	40	40	35	40	60	50	35	5	55	85	60	60	45	85
	Bermudagrass	98	90	98	98	98	85	98	95	100	98	98	-	95	90
	Blackgrass	65	70	70	20	30	40	60	10	25	70	50	80	80	80
5	Bromegrass, Downy	30	60	60	15	30	35	80	40	60	70	40	35	55	50
	Canarygrass	65	80	90	70	50	30	95	60	30	95	70	90	80	90
	Chickweed	100	100	100	100	90	85	100	100	100	100	95	98	95	95
	Cocklebur	95	55	100	98	-	85	100	-	-	-	-	-	95	95
	Corn	85	80	90	80	85	60	85	90	85	95	90	80	85	95
10	Crabgrass, Large	98	95	98	100	95	80	100	98	100	98	95	85	90	95
	Cupgrass, Woolly	90	98	98	98	95	65	100	90	98	100	90	85	90	95
	Deadnettle	85	90	90	75	90	_	85	80	85	85	70	90	90	95
	Foxtail, Giant	98	95	95	98	95	80	100	90	100	98	90	80	90	95
	Foxtail, Green	85	85	90	85	90	90	90	85	90	90	80	95	80	90
15	Galium	90	90	85	85	95	95	90	90	95	90	85	95	90	95
	Goosegrass	85	75	90	90	95	80	98	95	98	95	85	80	90	90
	Johnsongrass	100	100	-	95	-	40	-	-	100	100	90	75	95	90
	Kochia	95	100	60	100	100	85	100	100	100	100	95	98	10	35
	Lambsquarters	100	100	100	100	100	98	100	100	100	100	100	100	98	98
20	Morningglory	100	100	100	95	100	100	100	100	100	100	100	100	98	95
	Nutsedge, Yellow	60	75	80	65	70	70	90	90	90	55	35	80	50	90
	Oat, Wild	40	75	90	65	50	35	90	35	40	90	70	35	35	50
	Pigweed	98	98	100	100	100	98	100	100	100	100	100	100	98	95
	Ragweed	98	100	100	100	98	90	100	100	100	90	98	90	95	95
25	Ryegrass, Italian	40	40	25	15	5	5	25	20	10	50	20	10	40	50
	Soybean													98	98
	Surinam Grass	85	85	75	85	75	70	98	90	90	95	85	85	85	90
	Velvetleaf	98	90	95	100	90	85	95	95		100	95	95	95	90
20	Wheat	40	35	35	40	50	30	75	30	40	75	40	45	40	85
30	Windgrass	60	65	85	20	25	60	90	45	60	90	50	85	45	55
	Table B1						Comp	pound	ds						
	250 g ai/ha	404	405	407	409	412	413	414	416	417	418	421	422	423	424
	Postemergence														
	Barley	50	10	10	10	55	40	35	35	90	70	85	50	60	35
35	Bermudagrass	-	85	98	95	-	-	-	90	95	90	95	100	-	-
	Blackgrass	50	35	35	30	40	60	80	60	85	60	70	60	50	70
	Bromegrass, Downy	30	10	35	5	70	35	25	25	60	25	40	30	40	85
	Canarygrass	75	25	60	70	85	85	85	75	90	90	95	40	85	98

	Chickweed	98	95	100	98	90	95	85	95	90	95	95	100	95	100
	Cocklebur	95	_	_	100	_	_	_	90	90	90	98	98	_	_
	Corn	70	80	95	80	80	85	80	50	90	80	_	90	80	80
	Crabgrass, Large	90	75	100	95	90	90	85	90	90	90	95	98	90	100
5	Cupgrass, Woolly	85	45	98	80	95	95	75	75	90	90	95	95	98	98
	Deadnettle	70	80	80	70	100	45	95	90	95	95	95	90	-	30
	Foxtail, Giant	90	85	100	95	85	80	80	90	90	90	90	85	85	90
	Foxtail, Green	90	65	75	90	95	90	90	80	90	90	90	90	90	95
	Galium	95	80	95	95	95	95	90	95	95	90	95	95	95	95
10	Goosegrass	95	80	95	85	80	90	80	85	90	90	90	85	75	90
	Johnsongrass	30	25	100	65	80	95	80	80	95	90	95	-	95	100
	Kochia	98	100	100	100	95	98	95	95	45	90	95	100	98	100
	Lambsquarters	100	100	100	100	98	98	98	98	100	95	100	100	98	100
	Morningglory	100	98	100	100	100	100	100	95	95	95	98	100	100	100
15	Nutsedge, Yellow	80	75	75	80	80	75	85	85	80	85	80	90	80	85
	Oat, Wild	45	20	25	50	80	50	50	45	80	40	85	45	20	90
	Pigweed	100	100	100	100	98	100	100	95	95	90	98	100	98	100
	Ragweed	90	75	100	95	90	90	90	90	90	95	95	98	95	90
	Ryegrass, Italian	10	20	25	5	10	5	30	35	35	50	45	40	5	40
20	Soybean	100	98	100	100	100	98	98	90	95	90	98	100	98	100
	Surinam Grass	85	65	95	75	85	80	80	85	90	90	90	85	80	90
	Velvetleaf	95	90	100	98	95	95	95	90	85	90	95	98	95	95
	Wheat	15	20	15	25	60	20	40	45	80	70	40	50	45	90
	Windgrass	80	25	50	30	85	80	90	30	50	50	95	50	65	90
25	Table B1						Comp	pound	ds						
	250 g ai/ha	425	426	427	428	430	431	434	437	441	442	443	444	445	450
	Postemergence														
	Barley	30	85	80	60	60	30	85	60	60	15	60	98	30	45
	Bermudagrass	80	-	-	-	-	90	-	95	-	85	-	-	-	95
30	Blackgrass	40	75	30	80	30	40	60	50	30	50	5	35	50	70
	Bromegrass, Downy	15	85	30	70	35	35	60	35	50	5	20	60	15	30
	Canarygrass	80	98	80	98	90	35	85	85	90	35	5	98	40	50
	Chickweed	100	98	100	98	98	98	98	100	100	85	95	100	100	98
	Cocklebur	98	100	100	100	100	100	-	100	100	98	-	100	100	-
35	Corn	70	85	85	80	75	55	90	80	75	50	40	85	60	80
	Crabgrass, Large	95	95	95	95	95	85	100	98	90	80	75	98	85	98
	Cupgrass, Woolly	80	98	98	95	95	40	98	85	98	25	25	95	65	98
	Deadnettle	30	98	85	-	-	90	95	90	-	90	90	-	90	100

	Foxtail, Giant	85	98	90	90	90	80	90	95	85	65	60	98	90	98
	Foxtail, Green	75	90	75	90	85	85	90	95	90	50	30	95	90	95
	Galium	95	95	95	95	95	95	95	100	98	85	95	95	90	95
	Goosegrass	85	_	85	85	85	85	85	90	85	70	80	95	85	95
5	Johnsongrass	65	90	80	95	85	20	100	100	65	5	10	98	80	98
	Kochia	100	98	98	100	100	100	98	100	100	98	98	100	100	100
	Lambsquarters	100	100	98	100	100	100	100	100	100	100	100	100	98	100
	Morningglory	100	100	100	100	100	100	100	100	100	100	100	100	98	100
	Nutsedge, Yellow	80	85	75	85	80	75	75	80	80	60	75	80	80	80
10	Oat, Wild	25	60	5	40	60	25	70	85	60	20	30	75	40	40
	Pigweed	98	100	100	100	100	100	100	100	100	98	100	100	100	100
	Ragweed	90	98	95	95	90	98	90	100	100	90	85	98	80	100
	Ryegrass, Italian	5	40	25	5	35	0	25	55	35	5	5	50	10	30
	Soybean	100	100	100	100	100	100	100	100	95	98	100	100	100	100
15	Surinam Grass	80	85	95	85	85	70	85	80	80	70	70	90	85	85
	Velvetleaf	100	100	100	90	95	98	80	100	98	85	95	98	85	100
	Wheat	35	85	25	45	40	30	50	40	35	25	30	85	30	45
	Windgrass	60	95	45	85	60	45	80	95	50	50	30	85	50	60
	Table B1						Comp	oound	ds						
20	250 g ai/ha	452	453	456	457	458	_			463	464	465	466	467	468
20	250 g ai/ha Postemergence	452	453	456	457	458	_			463	464	465	466	467	468
20	<u>-</u>	452 50	453 15	456 0	457 80	458 25	_			463	464 35	465 30	466 80	467 80	468 50
20	Postemergence						459	461	462						
20	Postemergence Barley	50	15	0	80	25	459	461 80	462 70	10	35	30	80	80	50
20	Postemergence Barley Bermudagrass	50 95 60	15 85 70	0	80 90 90	25 95	459 60 95	461 80 90	462 70 95	10 98 80	35 85	30 95	80 98	80 95	50 90
	Postemergence Barley Bermudagrass Blackgrass	50 95 60	15 85 70	0 80 40	80 90 90	25 95 40	459 60 95 55	461 80 90 35	462709580	10 98 80	35 85 50	30 95 40	80 98 80	80 95 60	50 90 60
	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy	50 95 60 40	15 85 70 5	0 80 40	80 90 90 70	25 95 40 5 35	459 60 95 55	461 80 90 35 30	70 95 80 40	10 98 80 25	35 85 50 60	30 95 40 50	80 98 80 40	80 95 60 50	50 90 60 30
	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass	50 95 60 40 30	15 85 70 5	0 80 40 0	80 90 90 70	25 95 40 5 35	459 60 95 55 50	461 80 90 35 30 85	462 70 95 80 40 80	10 98 80 25 70	35 85 50 60	30 95 40 50	80 98 80 40	80 95 60 50	50 90 60 30
	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed	50 95 60 40 30	15 85 70 5 60 95	0 80 40 0 0	80 90 90 70 90	25 95 40 5 35	459 60 95 55 50 90	461 80 90 35 30 85 98	70 95 80 40 80 75	10 98 80 25 70	35 85 50 60 80 98	30 95 40 50 80 98	80 98 80 40 60	80 95 60 50 80	50 90 60 30 30 98
	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur	50 95 60 40 30 100	15 85 70 5 60 95	0 80 40 0 0 98 75	80 90 90 70 90 100	25 95 40 5 35 90	459 60 95 55 50 90 100	461 80 90 35 30 85 98 75	70 95 80 40 80 75	10 98 80 25 70 100	35 85 50 60 80 98	30 95 40 50 80 98	80 98 80 40 60 98	80 95 60 50 80 95	50 90 60 30 30 98
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn	50 95 60 40 30 100 -	15 85 70 5 60 95 98 80	0 80 40 0 98 75 55	80 90 70 90 100	25 95 40 5 35 90 -	459 60 95 55 50 90 100 100	461 80 90 35 30 85 98 75 75 85	70 95 80 40 80 75 10 85 85	10 98 80 25 70 100 - 75	35 85 50 60 80 98 100 75	30 95 40 50 80 98 -	80 98 80 40 60 98 -	80 95 60 50 80 95 100 80	50 90 60 30 30 98 98
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large	50 95 60 40 30 100 - 85 95	15 85 70 5 60 95 98 80 100	0 80 40 0 98 75 55	80 90 70 90 100 100	25 95 40 5 35 90 - 55 75	459 60 95 55 50 90 100 100 80 90	461 80 90 35 30 85 98 75 75 85	70 95 80 40 80 75 10 85 85	10 98 80 25 70 100 - 75 85	35 85 50 60 80 98 100 75 85	30 95 40 50 80 98 - 80 85	80 98 80 40 60 98 - 100 98	80 95 60 50 80 95 100 80 75	50 90 60 30 98 98 85 80
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	50 95 60 40 30 100 - 85 95	15 85 70 5 60 95 98 80 100 98	0 80 40 0 98 75 55 70	80 90 70 90 100 100 80 100 85	25 95 40 5 35 90 - 55 75 65	459 60 95 55 50 90 100 80 90	461 80 90 35 30 85 98 75 75 85 100	70 95 80 40 80 75 10 85 85	10 98 80 25 70 100 - 75 85 75	35 85 50 60 80 98 100 75 85 65	30 95 40 50 80 98 - 80 85 75	80 98 80 40 60 98 - 100 98	80 95 60 50 80 95 100 80 75	50 90 60 30 38 98 85 80
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle	50 95 60 40 30 100 - 85 95 98	15 85 70 5 60 95 98 80 100 98	0 80 40 0 98 75 55 70 10	80 90 70 90 100 100 80 100 85	25 95 40 5 35 90 - 55 75 65 90	459 60 95 55 50 90 100 100 90 90	461 80 90 35 30 85 98 75 75 85 100 80	70 95 80 40 80 75 10 85 85	10 98 80 25 70 100 - 75 85 75 80	35 85 50 60 80 98 100 75 85 65 90	30 95 40 50 80 98 - 80 85 75 85	80 98 80 40 60 98 - 100 98	80 95 60 50 80 95 100 80 75 75 98	50 90 60 30 30 98 98 85 80 100 65
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	50 95 60 40 30 100 - 85 95 98 90 95	15 85 70 5 60 95 98 80 100 98 85 95	0 80 40 0 98 75 55 70 10 80 40	80 90 70 90 100 100 80 100 85 100	25 95 40 5 35 90 - 55 75 65 90 85	459 60 95 55 50 90 100 100 80 90 70 98	461 80 90 35 30 85 98 75 75 85 100 80 100	462 70 95 80 40 85 100 85 100 100	10 98 80 25 70 100 - 75 85 75 80 95	35 85 50 60 80 98 100 75 85 65 90 85	30 95 40 50 80 98 - 80 85 75 85 95	80 98 80 40 60 98 - 100 98 100	80 95 60 50 80 95 100 80 75 75 98	50 90 60 30 30 98 98 85 80 100 65
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green	50 95 60 40 30 100 - 85 95 98 90 95	15 85 70 5 60 95 98 80 100 98 85 95 55	0 80 40 0 98 75 55 70 10 80 40	80 90 70 90 100 100 80 100 85 100 95	25 95 40 5 35 90 - 55 75 65 90 85	459 60 95 55 50 90 100 100 90 70 98 85	461 80 90 35 30 85 98 75 75 85 100 80 100 95	462 70 95 80 40 80 75 100 85 85 100 90	10 98 80 25 70 100 - 75 85 75 80 95 80	35 85 50 60 80 98 100 75 85 65 90 85	30 95 40 50 80 98 - 80 85 75 85 95	80 98 80 40 60 98 - 100 98 100 95	80 95 60 50 80 95 100 80 75 75 98 100	50 90 60 30 98 98 85 80 100 65 100 85
25	Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant Foxtail, Green Galium	50 95 60 40 30 100 - 85 95 98 90 95 95	15 85 70 5 60 95 98 80 100 98 85 95 55 90	0 80 40 0 98 75 55 70 10 80 40 45 90	80 90 70 90 100 100 80 100 85 100 95 95	25 95 40 5 35 90 - 55 75 65 90 85 85	459 60 95 55 50 90 100 80 90 70 98 85 95	461 80 90 35 30 85 98 75 75 85 100 80 100 95 85	462 70 95 80 40 85 100 85 100 90 95	10 98 80 25 70 100 - 75 85 75 80 95	35 85 50 60 80 98 100 75 85 65 90 85 90	30 95 40 50 80 98 - 80 85 75 85 95	80 98 80 40 60 98 - 100 98 100 95 95	80 95 60 80 95 100 80 75 75 98 100 90	50 90 60 30 98 98 85 80 100 65 100 85 90

	Lambsquarters	100	98	100	100	100	100	100	95	100	100	100	100	100	100
	Morningglory	100	100	100	100	100	100	100	98	100	100	100	100	100	100
	Nutsedge, Yellow	80	75	45	80	75	75	55	65	80	65	75	25	65	15
	Oat, Wild	60	80	5	90	40	70	90	90	80	60	60	25	90	45
5	Pigweed	100	100	85	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	100	100	100	100	100	98	90	75	90	100	100	100	100	100
	Ryegrass, Italian	20	40	0	60	10	5	25	30	20	50	5	10	5	5
	Soybean	100	100	100	100	75	100	100	60	98	100	100	100	100	100
	Surinam Grass	85	85	20	85	75	85	85	75	70	75	80	80	75	80
10	Velvetleaf	100	85	95	100	90	98	85	90	90	100	100	95	100	85
	Wheat	70	30	5	90	35	35	45	70	40	40	35	35	55	45
	Windgrass	80	80	0	90	20	85	80	75	60	45	70	35	70	40
	Table B1			Comp	oound	ds									
	250 g ai/ha	469	471	472	475	479	483	485	486						
15	Postemergence														
	Barley	20	45	10	85	60	20	45	90						
	Bermudagrass	75	95	95	95	95	95	85	98						
	Blackgrass	30	50	60	10	40	70	50	80						
	Bromegrass, Downy	70	30	5	70	35	60	40	85						
20	Canarygrass	60	55	15	90	30	85	90	95						
	Chickweed	98	98	90	100	100	100	100	100						
	Cocklebur	-	-	-	-	100	-	98	100						
	Corn	40	75	75	85	90	80	75	80						
	Crabgrass, Large	90	95	95	98	98	98	95	100						
25	Cupgrass, Woolly	50	75	90	95	90	90	85	100						
	Deadnettle	80	98	85	100	100	100	95	-						
	Foxtail, Giant	75	85	95	100	98	95	95	98						
	Foxtail, Green	85	85	90	90	85	100	90	95						
	Galium	-	-	-	-	95	-	95	-						
30	Goosegrass	80	85	90	95	90	95	95	98						
	Johnsongrass	45	80	98	100	40	98	95	100						
	Kochia		100			100									
	Lambsquarters	98	100	100	100	100	100	100	100						
	Morningglory	100	100	98	100	98	100	100	100						
35	Nutsedge, Yellow	70	75	65	75	80	75	75	80						
	Oat, Wild	50	55	40	55	30	80	75	95						
	Pigweed		100												
	Ragweed	85	100	100	100	100	100	100	100						

	Ryegrass, Italian	30	40	25	5	60	25	20	65						
	Soybean	100	100	100	100	100	100	100	100						
	Surinam Grass	70	75	75	90	85	90	85	85						
	Velvetleaf	100	100	100	100	100	98	100	100						
5	Wheat	25	40	5	15	55	35	40	80						
	Windgrass	50	55	60	90	60	85	70	90						
	Table B1						Comp	pound	ds						
	125 g ai/ha	264	276	295	298	306	307	308	309	310	312	316	317	321	327
	Postemergence														
10	Barley	80	10	70	0	30	90	35	55	95	40	15	25	0	35
	Bermudagrass	95	85	100	85	85	95	90	85	95	98	95	95	80	90
	Blackgrass	75	5	55	5	60	80	70	80	60	40	50	30	10	50
	Bromegrass, Downy	25	0	70	10	30	50	55	70	60	30	5	5	5	55
	Canarygrass	60	10	98	5	50	80	45	60	95	35	40	45	30	50
15	Chickweed	98	95	100	100	75	85	95	98	98	15	90	20	98	98
	Cocklebur	100	90	100	-	95	100	100	98	100	100	98	98	95	-
	Corn	95	10	90	5	60	95	75	80	85	65	70	45	35	85
	Crabgrass, Large	95	90	100	60	85	95	85	85	95	85	85	80	70	95
	Cupgrass, Woolly	98	80	98	-	95	90	95	95	95	85	80	45	50	85
20	Deadnettle	98	70	95	80	80	75	70	70	75	70	85	85	95	100
	Foxtail, Giant	95	80	98	-	85	90	90	85	95	90	85	85	80	95
	Foxtail, Green	80	25	90	55	60	60	55	55	65	50	80	70	55	80
	Galium	90	85	90	85	85	80	90	80	70	85	85	80	80	90
	Goosegrass	95	75	98	80	75	90	85	85	95	90	90	65	80	95
25	Johnsongrass	100			-		100		80						
	Kochia	98	95	80	-	80	45	20	5	60	10	80	15	90	90
	Lambsquarters	100	98	85	100			100		100		100		95	98
	Morningglory	100	100	100	95		100		95	100	75	90	100	95	100
20	Nutsedge, Yellow	75	50	80	70	70	60	85	80	65	65	85	65	90	90
30	Oat, Wild	35	25	90	5	75	50	60	50	85	40	40	35	5	65
	Pigweed	98		100	-	98	98	98	98	98	90	100	95	95	95
	Ragweed	98	90		100	70	98	98	75	95	100	95	85	95	98
	Ryegrass, Italian	10	20	40	5	55	45	30	35	80	30	10	30	0	20
25	Soybean	98	98	90	80	70	100	85	80	98	98	85	95	95	98
35	Surinam Grass	95	75	98	20	70	85	85	80	85	80	85	65	45	85
	Velvetleaf	95	95	100	100	75	95	85	75	80	95	95	70	80	98
	Wheat	80	35	80	5	40	90	55	70	95	30	30	30	25	35
	Windgrass	60	5	80	0	55	50	60	50	70	45	40	50	40	60

	Table B1						Comp	pound	ds						
	125 g ai/ha	328	329	333	334	336	337	344	345	349	351	352	353	356	357
	Postemergence														
	Barley	35	35	45	5	20	55	40	45	80	85	65	75	50	35
5	Bermudagrass	95	90	95	90	80	100	98	98	100	98	100	98	100	95
	Blackgrass	5	80	45	60	40	40	80	85	55	40	60	50	75	55
	Bromegrass, Downy	25	95	10	5	_	60	80	80	70	60	45	45	70	35
	Canarygrass	25	90	45	30	55	90	85	85	85	90	95	80	80	75
	Chickweed	90	90	75	-	95	98	100	100	100	85	95	95	100	100
10	Cocklebur	90	98	80	-	100	100	-	100	100	-	75	100	-	65
	Corn	45	60	45	45	60	95	70	100	100	95	85	80	85	70
	Crabgrass, Large	80	95	85	95	90	100	98	98	100	95	85	98	98	98
	Cupgrass, Woolly	70	95	85	70	30	100	98	100	98	98	90	98	70	90
	Deadnettle	80	90	85	100	-	90	100	100	-	90	80	85	98	80
15	Foxtail, Giant	75	95	90	90	95	98	98	100	100	95	85	98	90	95
	Foxtail, Green	70	75	80	60	90	90	95	95	90	85	90	90	85	80
	Galium	70	90	85	85	-	85	85	85	85	80	95	85	90	85
	Goosegrass	90	95	80	85	85	98	98	100	98	95	80	95	95	80
	Johnsongrass	65	95	80	60	65	100	95	100	100	80	80	95	100	98
20	Kochia	25	90	10	40	98	100	98	100	55	20	40	20	45	90
	Lambsquarters	100	100	100	98	100	100	100	100	100	98	95	100	100	100
	Morningglory	95	98	100	98	100	100	100	100	95	95	95	95	95	95
	Nutsedge, Yellow	25	90	75	90	70	75	90	100	10	20	55	25	85	65
	Oat, Wild	40	90	40	35	80	90	80	-	80	80	85	75	80	55
25	Pigweed	98	98	98	65	100	100	100	100	100	98	95	100	100	100
	Ragweed	80	95	75	98	98	100			100	95	85	95	98	85
	Ryegrass, Italian	5	75	10	10	5	50	35	35	60	40	40	45	70	20
	Soybean	90	95	60	95			100		98	95	98	98	98	95
2.0	Surinam Grass	70	95	75	70	75	95	75		100	95	80	95	70	90
30	Velvetleaf	95	95	90	98	95		100			95	95	95	100	95
	Wheat	25	85	45	25	30	60	30	45	45	60	90	45	45	55
	Windgrass	20	85	35	15	65	70	85	95	80	65	85	60	70	45
	Table B1						Comp	pound	ds						
	125 g ai/ha	359	361	362	363	365	366	367	368	369	370	371	372	376	379
35	Postemergence														
	Barley	10	35	50	10	30	35	50	60	40	60	60	40	45	35
	Bermudagrass	90	95	95	98	90	98	85	95	95	95	95	90	-	100
	Blackgrass	35	50	50	45	45	50	40	70	50	60	70	35	45	35

	Bromegrass, Downy	25	50	60	30	25	40	65	45	60	45	70	70	30	20
	Canarygrass	30	90	85	60	70	90	85	95	85	85	90	95	60	55
	Chickweed	98	98	100	100	100	95	100	100	100	100	98	100	100	98
	Cocklebur	15	90	100	85	85	85	-	90	85	100	100	100	100	_
5	Corn	60	85	95	45	20	35	95	75	85	70	80	95	85	75
	Crabgrass, Large	90	95	98	98	90	98	95	98	98	95	95	98	65	95
	Cupgrass, Woolly	70	95	98	90	65	90	95	95	95	85	98	95	75	85
	Deadnettle	90	85	70	65	85	80	80	80	80	90	85	90	98	95
	Foxtail, Giant	95	95	98	95	95	95	95	95	98	98	95	98	80	95
10	Foxtail, Green	85	80	85	85	80	85	85	85	85	80	95	90	85	80
	Galium	85	85	85	85	60	85	85	85	85	85	90	90	80	90
	Goosegrass	75	90	95	85	80	85	90	95	80	90	95	95	85	90
	Johnsongrass	70	85	98	98	95	95	100	100	100	100	98	100	85	80
	Kochia	70	95	95	98	25	95	95	90	70	40	90	100	98	98
15	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	95	98	95	100	98	95	95	100	95	100	100	98	-	95
	Nutsedge, Yellow	60	65	20	80	30	65	10	80	20	75	75	40	85	80
	Oat, Wild	5	55	60	45	20	60	70	45	35	25	70	75	35	40
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
20	Ragweed	75	90	100	98	100	90	98	98	100	98	98	100	100	95
	Ryegrass, Italian	10	40	45	20	20	30	40	40	35	35	55	60	40	35
	Soybean	85	80	95	85	75	75	95	98	100	95	95	98	100	98
	Surinam Grass	75	85	95	90	75	95	85	95	90	95	95	98	65	75
	Velvetleaf	85	95	95	95	85	98	95	95	85	80	100	95	100	100
25	Wheat	0	60	80	50	15	60	60	60	50	40	85	85	35	35
	Windgrass	25	50	80	40	30	50	60	55	85	50	80	80	55	50
	Table B1						Comp	oound	ds						
	125 g ai/ha	381	382	384	385	386	387	388	389	393	394	395	396	397	398
	Postemergence														
30	Barley	40	40	40	10	40	35	30	15	40	30	30	35	5	15
	Bermudagrass	98	100	95	80	98	90	98	98	90	98	80	95	85	98
	Blackgrass	40	30	35	30	40	55	70	20	50	25	40	55	5	20
	Bromegrass, Downy	25	50	30	5	10	40	50	15	25	25	5	75	30	45
	Canarygrass	60	75	45	45	35	80	90	45	25	40	15	95	50	20
35	Chickweed	98	100	95	98	100	95	100	100	100	85	80	100	100	100
	Cocklebur	80	100	65	50	70	35	98	95	100	95	85	100	100	100
	Corn	80	75	75	80	85	80	85	80	80	85	45	80	80	80
	Crabgrass, Large	95	98	95	85	95	95	95	95	95	90	75	100	95	100

	Cupgrass, Woolly	80	65	85	55	80	95	95	80	98	80	25	98	70	95
	Deadnettle	70	80	75	75	80	85	85	70	85	85	45	80	80	70
	Foxtail, Giant	85	90	85	85	95	90	95	95	98	90	75	98	85	90
	Foxtail, Green	75	85	50	40	85	50	90	75	90	80	60	90	85	90
5	Galium	85	70	85	60	85	85	85	80	95	85	90	90	90	95
	Goosegrass	85	95	85	75	75	65	90	85	95	85	75	98	90	85
	Johnsongrass	85	65	90	80	100	-	-	90	95	100	30	-	100	95
	Kochia	98	80	85	25	90	85	55	100	98	95	80	100	100	98
	Lambsquarters	98	100	98	98	98	100	100	100	100	98	98	100	100	100
10	Morningglory	98	90	100	80	98	100	100	90	100	98	95	100	100	100
	Nutsedge, Yellow	75	60	75	50	55	70	65	25	85	65	70	70	90	85
	Oat, Wild	40	60	30	30	30	50	90	45	35	40	0	85	30	25
	Pigweed	95	100	100	98	98	98	100	100	100	95	98	100	100	100
	Ragweed	95	98	98	90	98	95	100	98	100	90	80	100	95	100
15	Ryegrass, Italian	35	35	40	30	30	40	10	15	0	5	0	25	5	0
	Soybean	100	100	98	80	100	100	100	100	100	100	100	100	100	100
	Surinam Grass	80	50	75	70	85	85	65	80	80	75	65	98	85	85
	Velvetleaf	95	75	85	75	95	85	90	100	100	85	85	95	80	98
	Wheat	35	30	35	20	30	35	30	30	40	35	10	50	30	30
20	Windgrass	40	40	50	15	50	45	70	10	80	10	45	90	40	55
	Table B1						Comp	pound	ds						
	125 g ai/ha	399	400	401	402	403	404	405	406	407	409	410	412	413	414
	Postemergence														
	Barley	85	40	40	45	75	40	10	25	5	0	30	40	-	30
25	Bermudagrass	98	95	-	90	90	-	85	98	90	85	90	-	-	-
	Blackgrass	55	30	40	60	60	45	30	35	25	5	45	30	35	45
	Bromegrass, Downy	45	10	35	50	50	30	10	30	5	5	10	60	30	10
	Canarygrass	90	55	85	60	85	50	10	60	40	15	80	80	80	70
	Chickweed	100	80	95	80	95	95	70	100	100	85	98	85	95	75
30	Cocklebur	_	_	-	90	90	-	45	100	100	90	_	_	_	_
	Corn	90	75	80	70	90	65	75	85	85	65	80	80	60	75
	Crabgrass, Large	98	85	85	85	90	85	75	95	100	75	90	85	90	75
	Cupgrass, Woolly	98	80	75	90	90	85	20	90	95	45	85	85	85	75
	Deadnettle	80	70	-	85	95	55	70	70	70	70	85	60	40	70
35	Foxtail, Giant	95	85	80	90	90	85	75	85	85	75	90	85	75	75
	Foxtail, Green	70	60	90	60	90	85	60	85	75	90	90	90	90	90
	Galium	80	80	95	90	90	95	65	90	90	90	90	95	95	90
	Goosegrass	95	80	80	90	90	80	70	85	80	80	85	80	85	80

	Johnsongrass	98	85	75	90	90	20	15	-	-	20	85	75	95	75
	Kochia	100	95	95	0	20	95	95	98	100	95	95	90	95	85
	Lambsquarters	100	98	100	98	95	100	100	98	100	100	98	98	98	95
	Morningglory	95	98	100	90	95	100	95	100	100	98	98	100	100	100
5	Nutsedge, Yellow	30	25	75	30	85	75	45	60	50	50	80	80	75	80
	Oat, Wild	90	60	30	35	50	30	20	20	5	10	60	80	40	20
	Pigweed	100	95	100	95	95	100	90	100	100	98	100	98	100	98
	Ragweed	85	85	90	90	95	85	70	100	95	95	85	90	75	80
	Ryegrass, Italian	40	15	5	30	50	10	5	30	20	0	5	5	0	10
10	Soybean	100	100	95	95	95	95	98	98	100	98	95	100	95	95
	Surinam Grass	90	75	80	70	90	75	60	85	90	65	80	85	75	75
	Velvetleaf	100	95	95	60	80	95	80	98	98	95	100	90	85	95
	Wheat	75	35	35	35	80	15	5	30	10	0	35	40	20	15
	Windgrass	85	40	80	20	55	70	15	40	40	5	55	70	60	60
15	Table B1						Comp	pound	ds						
	125 g ai/ha	416	417	418	421	422	423	424	425	426	427	428	430	431	434
	Postemergence														
	Barley	25	70	50	55	30	35	30	-	85	30	60	15	0	60
	Bermudagrass	90	95	90	90	95	-	-	-	-	-	-	-	85	-
20	Blackgrass	50	80	50	50	35	30	60	40	65	5	55	15	40	5
	Bromegrass, Downy	20	45	20	40	20	30	50	10	80	10	60	35	30	40
	Canarygrass	50	90	90	90	30	40	95	70	90	80	98	80	30	80
	Chickweed	95	85	60	95	100	95	98	98	95	70	98	98	95	98
	Cocklebur	90	90	85	98	95	-	-	75	100	98	100	100	98	100
25	Corn	35	85	45	90	80	65	75	65	75	85	80	65	50	80
	Crabgrass, Large	85	85	90	95	95	90	95	80	95	90	95	95	80	90
	Cupgrass, Woolly	75	90	90	90	85	95	90	65	98	75	95	80	20	85
	Deadnettle	85	85	90	95	85	60	20	30	-	-	-	-	80	30
	Foxtail, Giant	85	90	90	90	85	75	90	70	95	75	85	85	75	85
30	Foxtail, Green	60	80	90	90	85	85	95	40	85	75	60	80	80	90
	Galium	95	90	90	95	90	95	95	95	95	95	95	95	95	95
	Goosegrass	85	90	90	90	85	75	90	80	95	65	85	85	75	85
	Johnsongrass	70	90	80	95	95	85	90	55	85	75	65	85	10	98
	Kochia	90	5	80	90	100	95	100	80	95	95	100	100	98	95
35	Lambsquarters	98	98	90	98	98	95	100	100	100	98	98	100	100	98
	Morningglory	95	95	95	95	100	100	100	100	100	100	100	100	100	100
	Nutsedge, Yellow	50	40	85	40	80	75	80	65	85	70	80	75	75	75
	Oat, Wild	30	75	25	70	30	15	85	5	55	5	10	45	10	25

	Pigweed	95	95	80	98	100	98	100	98	100	100	100	100	100	100
	Ragweed	90	80	90	95	95	90	90	85	95	90	90	90	95	80
	Ryegrass, Italian	20	25	50	30	30	5	25	0	25	5	0	15	0	5
	Soybean	90	90	85	95	100	95	100	100	100	95	100	90	98	100
5	Surinam Grass	75	80	85	90	80	75	80	70	85	85	85	85	70	85
	Velvetleaf	90	70	90	90	95	95	90	85	100	98	90	90	95	70
	Wheat	35	70	50	40	40	30	60	35	70	15	40	20	5	30
	Windgrass	20	50	35	90	10	60	80	55	90	45	75	50	40	40
	Table B1						Comp	pound	ds						
10	125 g ai/ha	437	441	442	443	444	445	448	450	452	453	456	457	458	459
	Postemergence														
	Barley	55	30	0	5	60	30	90	45	40	5	0	40	5	30
	Bermudagrass	90	-	85	-	-	-	85	95	95	85	80	85	85	85
	Blackgrass	30	25	20	5	30	40	65	30	35	40	5	25	30	40
15	Bromegrass, Downy	30	25	0	15	60	10	35	5	40	5	0	30	5	5
	Canarygrass	80	65	30	5	80	20	85	50	10	55	0	55	30	80
	Chickweed	100	100	85	85	100	98	95	80	98	95	90	98	80	90
	Cocklebur	98	95	90	98	100	100	-	-	-	98	20	98	25	70
	Corn	80	75	40	15	80	45	85	75	85	75	15	75	15	65
20	Crabgrass, Large	95	90	75	70	98	80	95	98	95	98	60	90	65	75
	Cupgrass, Woolly	75	85	10	20	85	55	80	95	80	98	0	85	60	75
	Deadnettle	45	-	-	50	20	80	85	100	70	55	65	90	75	55
	Foxtail, Giant	95	70	55	55	95	85	100	95	95	95	20	85	75	90
	Foxtail, Green	80	85	15	30	90	85	90	80	90	50	0	90	50	60
25	Galium	100			90	95	90	95	95	95	90	90	90	80	85
	Goosegrass	85	80	70	75	90	85	90	85	95	75	60	90	75	85
	Johnsongrass	98	50	0	5	98	70	100	98	70	95	0	75	55	65
	Kochia	95	90	95	85	100	90	55	98	100	20	75	100	25	25
20	Lambsquarters	100		98			98	100		100	98	98	100	98	98
30	Morningglory	100	100		100		80	100		100	95	85	100	98	100
	Nutsedge, Yellow	80	75	45	65	75	80	75	75	75	65	30	75	65	45
	Oat, Wild	80	15	10	10	75	30	90	20	40	60	0	50	30	30
	Pigweed	100		98	98	100	95			100	98	80	100	98	100
35	Ragweed	100	90	80	75	98	80	100		98	100	95	100	65	90
33	Ryegrass, Italian	30	20	0	0	30	5	35	25	5	30	0	25	5	0
	Soybean	100	85	98	98	95	100	100	95	100	100	100	98	45	98
	Surinam Grass	75	70	65	65	85	60	80	85	80	80	15	80	75	70
	Velvetleaf	100	90	85	80	98	85	95	90	98	80	80	100	80	85

	Wheat	20	30	0	25	45	20	50	30	50	10	0	45	_	20
	Windgrass	60	25	30	10	80	40	70	50	60	65	0	50	10	60
	Table B1						Comr	oounc	10						
	125 g ai/ha	461	462	463	464	465				469	Δ71	472	475	477	478
5	Postemergence	401	102	100	T 0 T	400	100	407	100	407	7/1	1/2	4/5	1 //	470
5	Barley	45	45	5	5	20	50	70	50	20	45	10	80	70	0
	Bermudagrass	85	85	80	85	90	95	90	90	35	85	90	95	95	75
	Blackgrass	15	80	35	50	40	50	50	60	5	30	55	5	30	10
	Bromegrass, Downy	20	20	15	25	30	10	50	-	15	25	0	70	60	0
10	Canarygrass	30	55	50	75	60	30	50	25	40	55	15	90	95	5
10	Chickweed	65	65	90	90	98	95	95	98	85	90	80	98		98
	Cocklebur	5	-	-	98	-	100	100	95	98	100	-	-	85	60
	Corn	65	65	65	25	70	80	75	85	25	65	75	85	100	20
	Crabgrass, Large	70	85	75	85	80	80	70	75	80	85	90	95	90	35
15	Cupgrass, Woolly	75	98	60	60	75	100	75	100	25	70	85	95		0
	Deadnettle	60	60	80	50	85	60	90	65	80	70	70	100	65	65
	Foxtail, Giant	95	85	80	85	85	98	95	100	65	80	95	98	98	25
	Foxtail, Green	45	80	60	60	85	80	90	85	40	85	90	90	85	5
	Galium	70	80	95	90	_	90	95	90	90	_	_	_	90	80
20	Goosegrass	70	85	75	85	90	95	85	85	80	85	90	85	95	65
	Johnsongrass	65	80	40	55	65	100	65	80	10	45	85	100	100	0
	Kochia	0	98	98	45	75	100	5	75	100	95	50	95	10	15
	Lambsquarters	90	90	100	98	100	100	100	100	98	100	100	100	100	100
	Morningglory	90	98	85	100	100	100	100	100	100	100	85	100	85	98
25	Nutsedge, Yellow	5	60	75	60	65	15	60	10	55	70	60	65	25	45
	Oat, Wild	30	85	20	40	25	25	85	45	25	40	25	55	90	10
	Pigweed	75	100	100	98	100	100	100	100	98	100	95	100	100	98
	Ragweed	65	45	85	100	100	100	100	100	75	80	100	98	100	98
	Ryegrass, Italian	10	20	10	50	5	5	0	5	5	25	5	0	40	5
30	Soybean	85	55	80	100	100	100	100	100	100	100	100	100	100	98
	Surinam Grass	70	70	65	65	70	75	75	75	55	70	75	90	70	10
	Velvetleaf	75	65	85	98	98	80	100	80	85	100	100	100	85	85
	Wheat	30	50	35	40	10	25	50	40	5	40	0	15	90	5
	Windgrass	20	75	35	45	50	20	70	35	5	50	50	85	90	10
	Table B1	Comp	oound	ds											
	125 g ai/ha	479	483	485	486	125	g a	i/ha	ı		479	483	485	486	
	Postemergence					Pos	teme	ergen	ice						

	Barley	40	15	30	60	Joh	nsor	ngras	ss		40	90	85	90	
	Bermudagrass	95	95	85	95	Koc	chia				100	100	100	100	
	Blackgrass	40	10	50	60	Lam	ıbsqı	ıarte	ers		100	100	100	100	
	Bromegrass, Downy	30	50	35	85	Mor	ning	gglo:	гy		95	100	100	100	
	Canarygrass	25	50	80	90	Nut	sedo	ge, :	Yello	W	75	70	70	75	
	Chickweed	100	98	98	100	Oat	i, Wi	ild			20	50	70	90	
	Cocklebur	100	-	98	100	Pig	yweed	k			100	100	100	100	
	Corn	90	75	70	75	Rag	gweed	ŀ			100	100	100	100	
	Crabgrass, Large	98	95	90	95	Rye	gras	ss,	Itali	lan	50	5	5	60	
	Cupgrass, Woolly	85	90	80	98	Soy	bear	ı			100	100	100	100	
	Deadnettle	90	75	_	-	Sur	rinam	n Gra	ass		85	85	85	85	
	Foxtail, Giant	98	95	90	95	Vel	.vet]	Leaf			100	95	100	100	
	Foxtail, Green	85	100	90	95	Wh∈	eat				50	30	30	60	
	Galium	95	_	95	_	Win	ndgra	ass			45	60	65	80	
	Goosegrass	90	95	90	95										
	Table B1						Comp	poun	ds						
	62 g ai/ha	264	276	295	298	306	307	308	309	310	312	316	317	321	327
	Postemergence														
	Barley	40	0	65	0	30	85	30	25	90	20	10	25	0	5
5	Bermudagrass	95	75	98	55	80	95	85	85	85	95	95	80	65	85
	Blackgrass	50	0	25	0	60	75	55	50	60	40	40	30	-	40
	Bromegrass, Downy	5	0	50	0	5	35	55	45	55	10	0	5	5	40
	Canarygrass	30	5	85	0	30	70	40	60	80	10	15	35	25	40
	Chickweed	98	85	90	100	15	70	95	95	95	10	85	5	85	90
10	Cocklebur	100	90	98	100	80	100	100	75	98	98	85	95	95	-
	Corn	90	0	75	0	25	95	60	50	85	45	70	15	10	70
	Crabgrass, Large	95	85	98	40	75	95	85	80	95	80	80	75	50	90
	Cupgrass, Woolly	95	75	98	10	70	85	80	90	95	80	75	15	50	85
	Deadnettle	80	65	-	50	80	70	-	65	-	70	85	85	85	80
15	Foxtail, Giant	95	75	98	35	75	85	85	80	95	85	75	75	65	95
	Foxtail, Green	60	15	85	50	30	45	50	50	60	50	60	55	45	60
	Galium	80	85	90	75	85	80	90	65	60	85	80	80	75	90
	Goosegrass	90	75	95	55	60	85	85	65	90	80	80	60	80	90
	Johnsongrass	95	70	80	0	20	98	85	70	95	80	60	45	40	85
20	Kochia	80	85	55	98	60	45	20	5	20	5	45	5	90	85
	Lambsquarters	100	95	85	100	98	100	100	98	100	100	100	100	90	95
	Morningglory	100	100	98	90	80	100	98	85	95	25	80	100	85	85

	Nutsedge, Yellow	70	5	65	65	45	60	80	75	45	60	75	55	90	90
	Oat, Wild	35	5	60	0	45	40	40	30	80	40	25	30	5	45
	Pigweed	95	98	100	85	98	85	98	95	95	85	98	95	95	95
-	Ragweed	98	85	100	90	10	98	95	65	85	85	75	70	90	90
5	Ryegrass, Italian	10	5	30	0	30	40	20	10	50	20	10	10	0	0
	Soybean	95	85	85	60	25	100	85	50	95	95	75	80	95	98
	Surinam Grass	90	65	98	20	65	80	85	65	85	65	80	45	45	80
	Velvetleaf	90	85	98	100	65	95	85	70	75	90	90	45	80	95
10	Wheat	40	0	70	0	35	90	40	40	90	25	30	15	5	35
10	Windgrass	55	0	60	0	55	50	50	40	50	40	30	5	10	55
	Table B1						Comp	pound	ds						
	62 g ai/ha	328	329	333	334	336	337	344	345	349	351	352	353	356	357
	Postemergence														
	Barley	10	15	40	0	10	45	35	40	45	70	65	70	35	15
15	Bermudagrass	80	90	75	85	80	98	95	98	98	95	95	98	95	90
	Blackgrass	5	50	45	40	40	40	80	65	30	40	45	45	55	35
	Bromegrass, Downy	10	90	5	5	10	30	80	60	50	40	35	40	45	15
	Canarygrass	10	50	40	20	55	85	85	80	85	85	95	70	55	60
	Chickweed	85	90	20	-	90	98	100	100	100	75	70	60	100	100
20	Cocklebur	85	98	75	-	95	100	-	100	95	90	75	98	100	60
	Corn	5	5	15	40	40	85	65	100	90	85	85	80	60	55
	Crabgrass, Large	75	95	70	85	80	98	95	98	98	90	80	90	95	95
	Cupgrass, Woolly	60	90	65	50	25	95	98	100	95	95	85	98	60	75
	Deadnettle	65	85	85	100	-	90	100	100	85	80	60	85	98	80
25	Foxtail, Giant	70	95	80	85	80	98	98	100	95	95	85	95	80	90
	Foxtail, Green	55	75	60	50	85	90	95	95	85	80	85	85	80	60
	Galium	50	85	80	85	-	85	85	85	80	70	90	85	85	85
	Goosegrass	75	95	65	50	80	98	98	100	98	85	80	85	90	65
	Johnsongrass	65	85	75	50	45	100	75	100	100	70	70	75	75	80
30	Kochia	15	85	5	35	95	95	95	95	10	20	35	10	10	75
	Lambsquarters	98	100	95	98	98	100	100	100	100	98	90	100	100	95
	Morningglory	80	90	85	85	100	95	90	100	85	95	85	95	90	90
	Nutsedge, Yellow	10	70	65	90	70	65	80	100	5	10	25	15	75	60
	Oat, Wild	25	85	35	25	60	75	70	80	55	70	85	60	65	40
35	Pigweed	98	95	85	60	98	100	100	100	98	98	95	100	98	100
	Ragweed	75	95	70	90	95	100	98	100	95	85	80	95	98	75
	Ryegrass, Italian	5	55	10	5	0	30	35	30	50	40	5	40	50	10
	Soybean	75	95	25	80	100	100	98	100	95	85	85	98	98	80

	Surinam Grass	65	85	65	55	65	75	75	100	90	80	80	85	65	80
	Velvetleaf	90	95	80	90	85	98	95	100	95	85	85	90	90	95
	Wheat	10	50	40	20	30	50	30	45	20	45	80	40	40	35
	Windgrass	10	75	10	5	55	60	80	85	55	60	40	45	60	40
5	Table B1						Comp	pound	ds						
	62 g ai/ha	359	361	362	363	365	366	367	368	369	370	371	372	376	379
	Postemergence														
	Barley	0	10	40	5	5	0	20	25	35	40	45	35	35	5
	Bermudagrass	85	85	95	95	85	90	85	95	95	90	95	80	85	95
10	Blackgrass	30	45	50	40	25	35	25	50	35	45	50	30	45	35
	Bromegrass, Downy	5	35	60	15	5	30	40	30	45	40	40	50	15	15
	Canarygrass	30	80	80	60	35	80	85	85	85	85	85	80	40	25
	Chickweed	95	95	98	95	98	85	98	98	98	98	95	100	100	98
	Cocklebur	10	90	70	60	85	80	-	90	85	95	95	95	100	-
15	Corn	10	25	85	10	5	0	10	55	75	60	75	85	70	50
	Crabgrass, Large	80	90	95	95	85	90	95	95	98	95	95	98	55	95
	Cupgrass, Woolly	60	85	95	85	65	80	85	95	75	75	98	85	70	80
	Deadnettle	80	80	70	60	80	70	80	80	80	70	70	80	90	95
	Foxtail, Giant	85	90	98	90	95	85	95	95	95	95	95	95	75	85
20	Foxtail, Green	50	65	80	70	60	80	80	70	80	80	90	90	50	60
	Galium	80	80	80	60	60	70	85	85	65	85	85	85	70	85
	Goosegrass	70	85	90	75	60	75	85	95	75	80	95	90	70	85
	Johnsongrass	65	80	95	90	80	85	80	98	100	95	85	100	70	65
	Kochia	20	75	80	80	10	50	85	65	65	5	85	95	90	95
25	Lambsquarters	90	98	100	98	98	100	100	100	100	98	98	100	100	100
	Morningglory	90	90	95	90	80	90	85	100	85	100	100	95	80	90
	Nutsedge, Yellow	25	50	15	65	20	65	10	75	5	60	65	20	70	70
	Oat, Wild	0	45	50	40	5	45	45	45	35	0	55	60	35	25
	Pigweed	100	98	100	100	100	100	98	100	98	100	100	100	100	100
30	Ragweed	70	80	95	90	80	90	90	95	98	95	98	100	98	95
	Ryegrass, Italian	5	25	45	15	5	25	25	30	15	30	55	50	25	30
	Soybean	65	75	95	80	60	65	85	98	95	95	90	98	100	95
	Surinam Grass	65	80	75	85	75	75	80	90	80	90	85	95	65	75
	Velvetleaf	80	90	80	80	70	85	90	95	75	80	98	90	80	100
35	Wheat	0	40	70	20	0	45	45	55	40	15	80	60	30	35
	Windgrass	15	45	60	30	10	30	50	50	75	50	60	65	40	40

	Table B1	Compounds													
	62 g ai/ha	381	382	384	385	386	387	388	389	393	394	395	396	397	398
	Postemergence														
	Barley	35	30	30	0	30	15	10	10	15	25	30	5	5	5
5	Bermudagrass	95	95	95	70	95	60	95	95	90	95	75	80	70	98
	Blackgrass	30	30	30	25	35	50	70	0	5	25	5	30	5	20
	Bromegrass, Downy	15	25	10	0	5	30	40	5	25	10	5	60	30	35
	Canarygrass	50	60	35	30	35	80	85	30	5	25	5	90	40	10
	Chickweed	98	95	75	80	100	70	100	100	98	80	75	100	98	100
10	Cocklebur	65	100	35	10	65	5	95	90	98	95	75	98	100	100
	Corn	80	65	65	80	85	80	85	70	80	85	30	80	75	80
	Crabgrass, Large	95	95	80	80	95	85	95	90	85	80	70	100	90	98
	Cupgrass, Woolly	80	40	65	40	75	80	95	70	85	80	15	95	65	80
	Deadnettle	70	80	70	75	75	70	80	65	60	70	45	70	60	60
15	Foxtail, Giant	85	80	80	75	95	85	95	85	90	85	75	98	75	85
	Foxtail, Green	60	80	20	10	60	35	90	75	90	75	60	90	80	85
	Galium	85	65	80	55	85	85	80	70	95	85	90	90	90	85
	Goosegrass	80	85	65	70	75	45	80	85	90	85	75	95	80	85
	Johnsongrass	80	45	90	75	80	-	-	85	80	-	10	-	98	90
20	Kochia	85	60	85	25	45	75	55	95	85	95	75	100	98	90
	Lambsquarters	95	100	95	98	98	95	98	98	100	98	95	100	98	100
	Morningglory	85	80	98	75	98	80	95	70	100	98	95	95	100	100
	Nutsedge, Yellow	75	45	65	40	45	65	65	10	80	60	65	45	75	75
	Oat, Wild	30	60	25	5	30	50	70	30	10	5	0	85	5	20
25	Pigweed	95	100	95	95	98	95	98	98	100	90	95	100	100	100
	Ragweed	95	85	85	70	98	90	100	98	98	85	80	98	90	98
	Ryegrass, Italian	15	35	20	5	25	30	10	5	0	0	0	10	5	0
	Soybean	95	98	85	65	98	98	98	100		100		100	100	98
2.0	Surinam Grass	75	35	65	65	75	75	65	75	80	70	65	85	75	80
30	Velvetleaf	85	70	80	70	95	80	85	85	95	85	80	80	80	90
	Wheat	25	20	30	15	30	30	30	0	15	15	5	35	5	20
	Windgrass	20	30	30	10	50	40	60	10	50	5	5	80	40	50
	Table B1						Comp	pound	ds						
	62 g ai/ha	399	400	401	402	403	404	405	406	407	409	410	412	413	414
35	Postemergence														
	Barley	85	35	-	20	45	25	0	15	5	0	0	35	0	0
	Bermudagrass	98	95	85	85	90	_	75	95	80	75	85	-	-	-
	Blackgrass	45	25	35	20	50	40	15	30	10	0	40	25	5	10

	Bromegrass, Downy	25	10	35	25	50	15	5	25	5	5	0	40	20	5
	Canarygrass	85	25	80	50	70	50	5	35	35	5	45	70	60	20
	Chickweed	100	75	95	80	90	95	55	98	100	80	90	75	80	75
	Cocklebur	-	_	75	90	90	80	5	90	85	75	55	-	-	-
5	Corn	85	75	75	60	80	55	60	80	80	35	65	70	45	45
	Crabgrass, Large	95	85	80	85	90	75	55	95	98	70	85	80	90	75
	Cupgrass, Woolly	98	75	55	90	85	70	20	80	80	20	70	75	75	55
	Deadnettle	70	70	70	80	90	50	50	70	70	60	70	60	40	-
	Foxtail, Giant	95	85	75	85	90	75	70	80	80	70	85	75	75	75
10	Foxtail, Green	70	40	85	50	85	50	30	55	50	75	80	90	90	60
	Galium	80	60	95	85	90	95	60	85	85	70	90	95	90	90
	Goosegrass	95	75	75	90	90	75	65	75	70	70	80	75	75	70
	Johnsongrass	-	80	50	85	65	10	5	98	_	15	55	70	80	75
	Kochia	100	95	80	0	5	75	75	90	100	75	75	75	80	75
15	Lambsquarters	100	95	98	98	85	98	98	98	100	98	98	95	98	95
	Morningglory	95	98	95	90	95	100	85	100	100	95	98	95	98	90
	Nutsedge, Yellow	15	20	70	5	80	75	25	25	5	45	75	75	75	75
	Oat, Wild	85	25	30	30	35	20	10	15	5	10	20	40	40	15
	Pigweed	100	95	98	90	90	98	85	100	100	98	100	95	100	98
20	Ragweed	85	75	75	90	90	75	25	95	95	80	70	85	75	75
	Ryegrass, Italian	30	5	5	25	5	0	5	5	5	0	5	0	0	0
	Soybean	100	90	95	95	90	95	85	98	98	95	80	98	95	85
	Surinam Grass	85	75	75	60	85	75	55	75	85	55	70	85	75	75
	Velvetleaf	100	90	85	60	55	90	70	95	95	85	95	90	85	85
25	Wheat	75	35	25	35	65	5	0	30	5	0	15	30	5	10
	Windgrass	80	15	55	20	50	50	5	30	10	5	30	45	40	15
	Table B1						Comp	mpounds							
	62 g ai/ha	416	417	418	421	422	_			426	427	428	430	431	434
	Postemergence														
30	Barley	20	50	50	50	0	35	-	5	45	0	40	0	0	45
	Bermudagrass	85	95	90	90	95	-	-	-	_	-	-	-	80	_
	Blackgrass	40	70	20	25	30	25	30	5	35	5	15	10	20	5
	Bromegrass, Downy	0	30	0	40	5	10	50	5	50	5	45	5	30	20
	Canarygrass	45	90	80	85	10	35	90	35	80	35	85	60	25	60
35	Chickweed	85	80	60	95	100	90	98	75	95	70	98	95	90	98
	Cocklebur	35	50	70	95	95	_	_	_	98	80	100	100	55	90
	Corn	5	40	20	70	75	55	75	65	65	75	65	30	45	75
	Crabgrass, Large	75	80	90	95	90	85	85	70	95	80	95	85	75	90

	Cupgrass, Woolly	75	85	85	90	75	85	85	45	90	45	90	70	10	75
	Deadnettle	85	85	85	90	80	40	_	30	_	20	_	-	65	_
	Foxtail, Giant	70	90	90	90	80	75	85	50	90	75	85	80	65	75
	Foxtail, Green	55	70	90	80	40	60	95	40	80	50	60	80	50	90
5	Galium	85	90	85	90	85	95	90	95	95	95	95	90	90	95
	Goosegrass	70	90	90	90	80	75	80	70	90	60	70	80	75	80
	Johnsongrass	10	85	80	95	70	75	85	45	75	55	55	80	5	85
	Kochia	55	5	40	90	90	80	100	65	85	85	98	98	95	50
	Lambsquarters	95	98	85	98	98	95	100	90	100	98	98	98	100	98
10	Morningglory	85	90	95	95	90	95	100	98	100	100	98	100	98	100
	Nutsedge, Yellow	15	30	85	40	80	65	75	40	75	55	80	70	70	65
	Oat, Wild	25	50	20	60	15	10	50	0	40	0	5	25	10	25
	Pigweed	95	95	75	98	98	98	100	98	100	100	100	98	100	98
	Ragweed	85	70	85	90	95	85	85	75	95	80	85	80	75	75
15	Ryegrass, Italian	10	10	50	15	25	0	10	0	10	0	0	5	0	5
	Soybean	85	90	70	95	98	65	100	80	95	90	100	80	90	95
	Surinam Grass	45	65	60	85	75	65	75	55	80	75	80	70	70	75
	Velvetleaf	90	50	85	90	95	85	90	80	95	90	85	80	95	70
	Wheat	30	55	35	35	25	25	50	5	70	10	20	5	5	25
20	Windgrass	15	40	35	80	10	40	80	30	85	30	60	50	15	10
	Table B1						Comp	pound	ds						
	62 g ai/ha	437	441	442	443	444	445	448	450	452	453	456	457	458	459
	Postemergence														
	Barley	50	15	0	_	20	10	30	30	35	5	0	30	5	5
25	Bermudagrass	85	_	75	_	_	_	85	95	90	80	75	85	80	85
	Blackgrass	10	10	0	5	10	5	50	30	20	30	0	25	25	5
	Bromegrass, Downy	30	10	0	10	60	10	35	5	5	5	0	5	5	0
	Canarygrass	70	50	10	5	80	10	75	35	5	50	0	50	20	55
	Chickweed	100	100	80	80	100	90	90	80	98	90	85	95	60	80
30	Cocklebur	95	75	85	95	100	_	_	_	_	90	5	90	5	55
	Corn	65	70	15	5	75	40	80	65	75	75	5	30	10	45
	Crabgrass, Large	85	80	75	65	98	75	85	95	90	85	55	90	55	75
	Cupgrass, Woolly	75	75	5	10	85	50	70	90	80	80	0	75	55	65
	Deadnettle	45	55	50	50	_	80	70	85	60	50	50	90	65	55
35	Foxtail, Giant	85	65	50	20	95	75	95	85	85	90	20	80	75	80
	Foxtail, Green	60	60	5	10	65	85	80	40	85	50	0	60	45	60
	Galium	100	95	80	90	95	85	95	95	85	80	85	90	50	85
	Goosegrass	80	65	65	75	90	80	85	85	90	75	55	85	70	75

	Johnsongrass	98	15	0	5	85	50	90	40	60	95	0	55	45	55
	Kochia	95	70	85	85	98	80	15	65	98	5	50	100	5	10
	Lambsquarters	100	98	98	98	100	98	100	100	100	98	98	100	85	98
	Morningglory	100	100	98	100	98	65	100	95	100	90	85	100	95	90
5	Nutsedge, Yellow	65	75	20	55	65	65	65	65	65	55	25	75	50	40
	Oat, Wild	80	15	5	0	40	20	80	5	5	50	0	30	5	10
	Pigweed	100	100	95	98	95	95	100	98	100	98	80	100	98	100
	Ragweed	100	85	75	75	85	75	98	98	98	95	95	98	65	90
	Ryegrass, Italian	20	10	0	0	15	5	10	20	0	25	0	10	0	0
10	Soybean	100	85	75	95	95	95	100	95	98	100	95	98	15	75
	Surinam Grass	70	60	55	65	75	55	75	80	75	75	10	75	70	60
	Velvetleaf	95	80	70	80	75	70	90	85	98	70	75	98	75	80
	Wheat	15	15	0	0	45	5	45	30	35	5	0	25	5	0
	Windgrass	50	5	10	5	40	20	55	15	40	50	0	15	5	50
15	Table B1						Comp	pound	ds						
	62 g ai/ha	461	462	463	464	465	466	467	468	469	471	472	475	477	478
	Postemergence														
	Barley	30	40	5	5	20	40	60	20	0	35	0	60	50	0
	Bermudagrass	75	80	65	75	90	80	90	85	15	75	90	90	90	55
20	Blackgrass	10	40	5	15	5	20	20	20	0	5	45	5	25	0
	Bromegrass, Downy	0	15	5	10	10	5	-	-	5	5	0	50	30	0
	Canarygrass	15	35	20	40	35	20	50	5	25	35	15	85	85	0
	Chickweed	55	45	75	75	95	95	90	90	80	90	75	98	100	80
	Cocklebur	0	0	-	85	-	100	100	95	40	98	60	95	70	55
25	Corn	25	45	65	10	65	75	65	80	25	65	70	85	85	5
	Crabgrass, Large	60	65	60	80	80	70	65	70	75	75	90	95	80	25
	Cupgrass, Woolly	65	80	25	45	70	100	50	85	5	55	70	90	100	0
	Deadnettle	50	55	70	50	40	50	70	60	60	50	35	40	60	65
	Foxtail, Giant	80	75	65	75	75	98	90	98	55	75	95	95	98	10
30	Foxtail, Green	45	20	30	25	80	80	80	80	40	45	85	80	85	0
	Galium	45	65	80	85	90	85	90	70	70	60	90	85	80	65
	Goosegrass	55	65	70	75	75	90	85	85	75	70	80	85	85	20
	Johnsongrass	5	65	10	45	50	65	65	75	0	5	75	90	100	0
	Kochia	0	5	85	10	10	100	0	45	98	75	45	90	5	5
35	Lambsquarters	85	90	100	98	98	100	100	100	95	100	100	100	100	90
	Morningglory	80	70	65	95	100	100	100	100	98	100	75	95	65	85
	Nutsedge, Yellow	0	25	40	45	60	10	40	10	45	60	45	65	15	20
	Oat, Wild	5	30	20	40	15	5	60	40	5	40	10	40	90	5

	Pigweed	65	95	100	95	95	90	100	90	95	100	80	100	100	98
	Ragweed	60	40	25	90	100		100		60	75	98	98	100	90
	Ryegrass, Italian	5	5	5	15	5	0	0	5	0	5	0	0	25	0
	Soybean	75	25	75	100	100		100	100			85	100	85	95
5	Surinam Grass	65	60	50	65	65	70	70	70	35	65	70	80	70	5
3	Velvetleaf	70		65	90	95	75	98	80	80	95	100	95	70	85
	Wheat	5	30	5	5	93	5	20	25	0	35	100	5	65	0
			20	10	30	50	10	50	35	0	30	5	70	85	0
	Windgrass	15	20	10	30	50	10	50	33	U	30	5	70	0.3	U
	Table B1	Com	pound	ds											
	62 g ai/ha	479	483	485	486	62	g ai	L/ha			479	483	485	486	
	Postemergence					Pos	steme	erger	ice						
	Barley	15	10	15	35	Joh	nsor	ngras	SS		30	75	65	80	
	Bermudagrass	95	90	85	85	Koc	chia				100	100	100	98	
	Blackgrass	10	10	35	60	Lan	nbsqu	ıarte	ers		100	100	100	100	
	Bromegrass, Downy	10	20	30	80	Moı	ning	ggloi	ĵУ		80	100	100	100	
	Canarygrass	15	50	60	80	Nut	sedo	ge, Y	/ello	W	70	70	65	75	
	Chickweed	100	98	95	95	Oat	, Wi	lld			5	45	40	90	
	Cocklebur	-	-	-	-	Pig	gweec	ŀ			98	98	100	100	
	Corn	85	65	30	60	Rag	gweec	ŀ			98	95	98	98	
	Crabgrass, Large	95	95	80	85	Rye	egras	ss,]	Itali	.an	25	0	0	50	
	Cupgrass, Woolly	85	80	50	95	Soy	ybear	l			100	100	100	100	
	Deadnettle	60	60	45	70	Sur	rinam	n Gra	ass		70	80	80	80	
	Foxtail, Giant	98	85	85	80	Ve]	Lvet]	Leaf			100	95	90	98	
	Foxtail, Green	65	90	90	90	Whe	eat				35	10	15	45	
	Galium	90	95	95	90	Wir	ndgra	ass			40	60	50	65	
	Goosegrass	85	90	80	85										
	Table B1						Comp	pound	ds						
10	31 g ai/ha	264	276	295	298	306	307	308	309	310	312	316	317	321	327
	Postemergence														
	Barley	20	0	60	0	25	70	5	0	85	0	0	20	0	5
	Bermudagrass	85	75	85	20	75	90	85	75	80	85	90	80	60	80
	Blackgrass	40	0	25	0	40	50	5	45	50	0	30	5	0	5
15	Bromegrass, Downy	0	0	30	0	0	30	30	30	40	0	0	0	5	10
	Canarygrass	5	0	80	0	10	45	5	35	70	0	10	10	0	25
	Chickweed	90	75	85	95	5	65	80	10	85	5	70	5	60	_
	Cocklebur	100	85	95	100	65	100	95	70	90	95	60	70	95	_
	Corn	85	0	25	0	5	90	5	35	80	5	55	5	0	45

	Crabgrass, Large	85	85	90	20	60	85	75	75	85	75	70	60	50	80
	Cupgrass, Woolly	95	70	95	0	50	75	65	85	75	75	75	0	40	80
	Deadnettle	80	65	80	50	80	65	65	65	60	60	80	85	85	80
	Foxtail, Giant	85	75	98	25	60	85	70	70	85	75	70	70	50	85
5	Foxtail, Green	15	5	80	20	5	40	40	40	45	30	40	40	40	55
	Galium	60	80	90	70	80	75	50	50	_	75	60	65	75	85
	Goosegrass	85	75	90	5	45	75	75	65	75	75	70	45	50	85
	Johnsongrass	85	70	75	0	15	90	65	55	80	75	40	0	30	60
	Kochia	70	75	35	98	20	20	10	5	10	5	5	5	85	50
10	Lambsquarters	100	95	85	100	80	98	98	85	95	98	98	45	80	90
	Morningglory	95	95	98	90	70	100	95	70	90	5	65	90	80	80
	Nutsedge, Yellow	65	0	55	25	5	40	75	65	45	40	60	20	85	80
	Oat, Wild	25	0	55	0	15	30	30	20	60	5	20	20	0	30
	Pigweed	95	95	98	85	85	85	95	85	80	80	90	30	80	90
15	Ragweed	98	70	95	80	5	90	80	20	75	75	70	60	90	90
	Ryegrass, Italian	0	0	10	0	10	30	5	5	45	0	5	0	0	0
	Soybean	95	80	85	20	15	98	55	10	85	90	65	45	90	95
	Surinam Grass	80	60	95	15	25	75	65	55	75	65	70	25	45	60
	Velvetleaf	85	85	95	100	20	85	75	65	70	85	80	5	75	85
20	Wheat	5	0	55	0	20	60	10	30	80	10	15	5	0	25
	Windgrass	50	0	35	0	0	50	30	10	35	10	5	5	5	30
	Table B1						Com	ooun	ds						
	31 g ai/ha	328	329	333	334	336	337	344	345	349	351	352	353	356	357
	Postemergence														
25	Barley	10	0	25	0	0	45	35	35	40	40	60	55	25	5
	Bermudagrass	80	90	65	80	75	98	95	95	95	85	90	95	90	80
	Blackgrass	0	50	35	5	10	15	40	60	5	25	40	45	50	10
	Bromegrass, Downy	5	35	0	0	0	25	50	55	35	20	30	30	30	5
	Canarygrass	0	30	35	0	20	70	50	80	70	50	90	65	50	40
30	Chickweed	75	90	5	-	85	98	100	100	95	65	60	20	98	98
	Cocklebur	65	98	0	85	-	98	-	100	80	85	60	95	95	60
	Corn	0	0	5	30	15	75	40	100	65	65	85	75	60	0
	Crabgrass, Large	60	95	65	70	75	98	90	95	95	80	80	90	85	85
	Cupgrass, Woolly	55	80	20	45	25	90	75	100	80	95	75	90	25	65
35	Deadnettle	50	85	85	90	40	85	100	85	80	75	50	85	90	80
	Foxtail, Giant	65	90	70	60	75	95	95	100	95	90	80	85	75	80
	Foxtail, Green	25	40	40	35	75	85	85	90	70	65	85	65	75	40
	Galium	30	50	80	80	85	80	80	80	65	70	90	80	85	70

	Goosegrass	65	90	45	40	70	98	98	100	80	80	75	75	85	45
	Johnsongrass	60	70	70	30	30	85	75	100	95	65	65	60	65	65
	Kochia	5	85	5	5	20	80	90	85	5	10	35	5	5	65
	Lambsquarters	90	98	45	50	90	100	100	100	100	95	85	100	100	85
5	Morningglory	70	80	65	85	100	90	75	100	75	80	85	95	60	60
	Nutsedge, Yellow	10	55	30	80	70	40	80	100	0	5	15	5	60	40
	Oat, Wild	10	60	20	25	35	75	60	80	55	55	40	55	40	20
	Pigweed	80	95	80	20	98	100	100	100	98	85	85	95	98	98
	Ragweed	60	95	5	85	75	98	95	100	80	85	80	90	90	60
10	Ryegrass, Italian	0	35	5	0	0	20	30	25	40	30	5	30	45	5
	Soybean	70	90	5	55	98	98	98	100	90	80	85	95	90	75
	Surinam Grass	65	45	45	45	65	75	65	100	75	75	75	80	55	70
	Velvetleaf	80	85	10	85	80	95	85	100	85	70	80	80	80	85
	Wheat	5	45	30	10	0	40	15	45	10	40	60	30	30	5
15	Windgrass	5	55	5	5	35	45	70	65	35	45	40	45	40	30
	Table B1						Comp	ooun	ds						
	31 g ai/ha	359	361	362	363	365	366	367	368	369	370	371	372	376	379
	Postemergence														
	Barley	0	0	10	5	0	0	5	0	10	5	40	5	30	0
20	Bermudagrass	75	85	75	85	80	80	80	95	75	85	95	80	75	95
	Blackgrass	0	40	35	35	5	20	10	50	30	40	45	30	40	30
	Bromegrass, Downy	0	5	40	10	0	5	20	20	15	30	10	30	10	0
	Canarygrass	25	50	55	30	20	40	40	80	70	60	70	70	40	20
	Chickweed	95	75	98	95	90	75	95	95	90	98	95	100	98	95
25	Cocklebur	0	-	70	60	0	55	65	-	-	85	95	95	98	85
	Corn	0	5	20	0	0	0	0	20	50	0	75	75	65	5
	Crabgrass, Large	65	85	85	85	75	85	80	95	95	85	85	85	30	80
	Cupgrass, Woolly	40	80	75	70	60	75	80	85	60	65	85	75	65	75
	Deadnettle	75	80	70	60	80	70	70	75	80	60	70	80	85	80
30	Foxtail, Giant	75	80	95	75	80	75	85	95	85	85	85	95	70	75
	Foxtail, Green	35	40	80	45	30	50	80	70	75	60	85	80	45	45
	Galium	45	55	80	60	60	70	55	80	65	65	80	85	65	85
	Goosegrass	40	75	85	60	20	75	75	85	55	75	80	80	25	80
	Johnsongrass	65	75	85	60	65	85	75	70	100	90	85	75	40	55
35	Kochia	5	75	65	20	5	45	75	65	65	5	65	75	75	85
	Lambsquarters	90	98	100	98	90	100	98	100	98	98	98	100	100	98
	Morningglory	85	20	95	55	50	70	45	95	85	90	95	85	80	80
	Nutsedge, Yellow	15	25	5	40	20	55	5	65	0	55	45	5	65	65

	Oat, Wild	0	30	30	25	0	30	40	35	5	0	45	45	30	15
	Pigweed	95	98	95	100	95	100	80	100	90	100	98	100	98	98
	Ragweed	60	75	80	80	70	75	80	95	95	85	95	98	98	85
	Ryegrass, Italian	0	15	5	5	0	15	20	15	5	30	40	30	25	10
5	Soybean	25	70	90	60	45	35	65	95	80	90	70	95	95	80
	Surinam Grass	55	75	75	75	65	75	70	80	75	85	75	80	45	75
	Velvetleaf	70	80	80	70	55	80	70	95	70	70	85	85	80	98
	Wheat	0	25	40	5	0	30	15	30	10	5	45	40	25	5
	Windgrass	10	25	45	5	5	10	25	40	60	35	45	55	35	10
10	Table B1						Comp	pound	ds						
	31 g ai/ha	381	382	384	385	386	387	388	389	393	394	395	396	397	398
	Postemergence														
	Barley	10	10	20	0	10	0	10	0	5	0	0	5	0	0
	Bermudagrass	95	85	90	65	85	60	95	95	85	95	75	80	70	95
15	Blackgrass	15	15	25	10	25	25	50	0	5	0	0	0	5	15
	Bromegrass, Downy	10	20	5	0	0	20	35	0	5	5	5	55	20	10
	Canarygrass	35	45	25	25	20	70	85	30	0	5	0	80	30	5
	Chickweed	75	95	70	70	98	65	90	98	85	80	65	100	98	90
	Cocklebur	20	90	20	0	45	0	95	85	95	80	75	-	95	98
20	Corn	65	45	20	80	20	55	80	60	75	80	20	70	75	40
	Crabgrass, Large	90	85	80	70	90	85	90	90	80	80	65	95	85	95
	Cupgrass, Woolly	65	20	60	40	65	80	90	70	80	75	10	75	50	75
	Deadnettle	60	80	70	60	65	60	80	60	60	60	35	70	60	55
	Foxtail, Giant	85	80	75	60	85	75	85	85	85	80	70	98	75	85
25	Foxtail, Green	30	60	5	5	55	5	65	30	75	45	55	85	30	70
	Galium	80	50	70	50	75	85	80	65	90	50	90	85	85	85
	Goosegrass	75	75	60	65	70	20	80	80	80	80	70	95	75	80
	Johnsongrass	75	45	65	-	80	75	80	85	65	80	10	-	80	85
	Kochia	85	20	75	5	15	20	10	80	70	75	65	100	98	80
30	Lambsquarters	95	98	90	95	98	75	98	95	98	98	95	98	98	98
	Morningglory	75	5	85	55	80	45	75	70	98	95	95	95	100	80
	Nutsedge, Yellow	65	20	10	35	10	45	10	5	65	10	60	5	70	75
	Oat, Wild	15	35	20	5	10	35	50	10	10	5	0	50	5	5
	Pigweed	85	100	90	85	95	75	98	95	100	90	85	100	98	100
35	Ragweed	95	85	85	65	80	65	95	90	98	80	75	95	90	85
	Ryegrass, Italian	10	5	10	0	20	25	0	5	0	0	0	10	0	0
	Soybean	95	95	70	55	98	80	98	100	98	85	98	98	100	98
	Surinam Grass	70	25	60	60	75	75	60	75	75	65	50	80	65	70

	Velvetleaf	85	70	75	70	80	75	80	85	95	80	70	75	75	85
	Wheat	10	5	10	0	10	30	30	0	10	5	0	30	0	10
	Windgrass	5	15	5	5	10	20	50	0	30	0	5	5	40	25
	Table B1						Comp	pound	ds						
5	31 g ai/ha	399	400	401	402	403	404	405	406	407	409	410	412	413	414
	Postemergence														
	Barley	80	10	35	10	35	10	0	5	0	0	0	25	0	0
	Bermudagrass	95	75	75	85	90	-	65	90	80	60	85	-	-	-
	Blackgrass	30	5	30	10	45	10	5	10	5	0	10	5	0	5
10	Bromegrass, Downy	20	5	30	20	40	5	0	5	0	5	0	10	0	0
	Canarygrass	60	20	45	50	60	35	0	25	25	0	25	30	35	5
	Chickweed	75	60	85	70	90	80	45	85	100	75	80	70	80	70
	Cocklebur	_	_	20	90	90	_	0	75	60	55	_	-	-	-
	Corn	60	0	40	10	65	15	45	80	80	25	45	65	45	40
15	Crabgrass, Large	85	80	75	60	90	75	45	85	95	65	85	75	80	75
	Cupgrass, Woolly	95	65	40	80	85	65	10	70	55	10	70	45	70	45
	Deadnettle	70	60	40	70	80	50	50	65	70	60	70	55	40	-
	Foxtail, Giant	95	80	70	80	90	75	70	70	75	60	80	75	65	65
	Foxtail, Green	40	25	80	10	85	50	10	5	5	25	75	80	85	55
20	Galium	70	60	85	75	90	95	50	85	85	70	70	90	85	90
	Goosegrass	90	75	75	90	90	70	65	70	25	65	80	75	70	65
	Johnsongrass	-	-	25	70	50	5	5	98	-	5	55	65	70	65
	Kochia	65	20	65	0	0	60	75	45	98	70	65	55	80	25
	Lambsquarters	100	95	98	90	85	95	85	98	95	80	95	95	95	95
25	Morningglory	60	65	85	85	95	98	20	100	100	85	85	95	95	85
	Nutsedge, Yellow	5	20	65	0	40	65	5	5	5	20	60	70	65	65
	Oat, Wild	60	25	20	10	30	10	5	5	5	5	5	35	5	5
	Pigweed	98	80	95	85	90	85	75	100	100	85	90	95	98	95
	Ragweed	75	45	75	85	80	70	5	80	80	70	70	75	70	70
30	Ryegrass, Italian	20	0	0	25	5	0	0	0	5	0	5	0	0	0
	Soybean	100	70	90	90	90	85	75	95	80	80	80	98	80	70
	Surinam Grass	80	70	70	40	70	70	45	65	75	50	65	75	70	65
	Velvetleaf	95	80	85	50	40	85	70	85	80	80	85	85	75	70
	Wheat	40	0	20	25	50	0	0	10	0	0	5	30	0	5
35	Windgrass	60	5	55	20	50	45	0	5	10	5	5	20	5	15
	Table B1						Comp	pound	ds						
	31 g ai/ha	416	417	418	421	422	423	424	425	426	427	428	430	431	434

	Postemergence														
	Barley	20	35	30	45	0	5	_	0	45	0	10	0	0	35
	Bermudagrass	60	90	85	90	95	65	_	-	_	_	_	-	75	-
	Blackgrass	35	65	10	10	25	0	10	5	10	5	5	0	5	5
5	Bromegrass, Downy	0	30	0	20	0	0	25	0	30	0	35	0	5	20
	Canarygrass	30	80	60	70	10	5	85	5	80	5	75	40	10	60
	Chickweed	85	70	50	90	85	70	95	60	85	70	60	90	85	80
	Cocklebur	20	30	40	95	85	80	-	-	98	75	100	60	40	60
	Corn	5	20	5	35	10	5	5	10	40	40	20	20	45	70
10	Crabgrass, Large	45	75	80	90	85	75	85	70	90	75	85	80	70	85
	Cupgrass, Woolly	60	70	80	90	65	65	80	40	70	25	45	60	5	20
	Deadnettle	80	80	80	90	65	-	-	30	-	-	100	20	60	30
	Foxtail, Giant	50	75	80	90	75	75	75	35	85	70	75	70	65	75
	Foxtail, Green	50	70	70	70	10	45	85	30	75	30	50	5	50	85
15	Galium	85	80	85	90	70	85	90	90	95	95	95	90	70	90
	Goosegrass	40	85	80	85	75	70	80	70	85	35	45	75	75	75
	Johnsongrass	5	70	60	85	70	55	75	45	65	55	45	45	0	80
	Kochia	55	0	5	55	75	65	98	60	80	80	85	45	85	45
	Lambsquarters	80	98	50	90	95	95	98	90	95	95	98	95	98	95
20	Morningglory	85	85	90	95	80	75	98	85	98	95	98	90	90	-
	Nutsedge, Yellow	10	20	15	35	75	60	65	10	65	40	65	65	65	55
	Oat, Wild	25	40	20	40	5	10	40	0	40	0	0	5	5	20
	Pigweed	90	80	50	95	98	95	100	95	95	100	100	95	98	98
	Ragweed	80	60	80	90	85	75	75	75	85	70	85	65	75	70
25	Ryegrass, Italian	10	10	0	10	15	0	5	0	5	0	0	5	0	0
	Soybean	50	60	40	95	85	40	100	40	95	55	90	65	85	95
	Surinam Grass	30	50	45	80	65	65	70	45	80	70	75	45	60	70
	Velvetleaf	85	45	70	90	95	75	85	75	90	85	85	80	80	60
	Wheat	20	50	25	20	0	0	10	5	50	0	10	0	0	20
30	Windgrass	0	30	30	60	5	30	60	5	60	5	55	30	5	10
	Table B1						Comp	pound	ds						
	31 g ai/ha	437	441	442	443	444	445	448	450	452	453	456	457	458	459
	Postemergence														
	Barley	30	0	0	0	5	5	30	5	10	0	0	0	5	0
35	Bermudagrass	75	_	75	-	-	-	80	90	85	80	60	85	70	70
	Blackgrass	0	5	0	0	5	5	45	5	5	20	0	10	20	5
	Bromegrass, Downy	20	0	0	0	20	0	20	0	0	0	0	5	0	0
	Canarygrass	40	5	0	0	60	0	55	15	0	15	0	5	0	30

	Chickweed	98	85	75	45	90	70	80	75	80	80	70	95	45	70
	Cocklebur	75	75	60	90	100	80	85	_	_	75	0	90	0	15
	Corn	45	20	0	5	5	5	75	15	70	75	0	25	0	20
	Crabgrass, Large	75	70	70	65	85	70	85	80	80	80	35	80	35	65
5	Cupgrass, Woolly	70	15	0	5	65	45	70	65	75	75	0	55	50	50
	Deadnettle	40	_	50	40	20	80	70	55	55	50	40	80	65	50
	Foxtail, Giant	80	30	50	10	80	75	95	75	75	75	0	65	65	70
	Foxtail, Green	60	20	5	5	65	50	80	40	80	10	0	50	45	10
	Galium	95	90	55	70	95	70	90	80	80	60	50	80	45	65
10	Goosegrass	75	45	65	75	80	75	85	80	85	70	25	80	65	75
	Johnsongrass	80	10	0	0	60	5	85	20	10	25	0	35	5	45
	Kochia	75	15	75	75	85	65	5	20	80	0	45	95	0	5
	Lambsquarters	98	98	98	98	95	98	98	98	98	98	90	100	85	90
	Morningglory	98	65	90	98	98	45	98	80	98	75	70	95	95	75
15	Nutsedge, Yellow	65	65	10	55	45	60	65	65	65	45	5	65	40	20
	Oat, Wild	45	5	5	0	20	5	55	5	5	10	0	15	0	0
	Pigweed	98	98	90	95	95	70	100	98	100	98	65	98	95	98
	Ragweed	100	75	75	70	85	60	98	95	95	75	55	85	20	70
	Ryegrass, Italian	5	5	0	0	10	5	5	5	0	15	0	5	0	0
20	Soybean	100	75	75	80	80	95	100	85	95	90	70	95	10	70
	Surinam Grass	70	45	45	60	65	40	70	75	70	75	5	65	65	45
	Velvetleaf	90	75	70	80	75	70	90	85	95	65	75	98	-	80
	Wheat	5	5	0	0	20	0	30	10	25	0	0	5	0	0
	Windgrass	50	0	5	0	40	20	50	5	5	10	0	0	5	5
25	Table B1						Comp	pound	ds						
	31 g ai/ha	461	462	463	464	465	466	467	468	469	471	472	475	477	478
	Postemergence														
	Barley	0	10	0	0	0	30	35	10	0	20	0	45	35	0
	Bermudagrass	60	60	5	70	75	70	85	80	10	65	75	85	90	25
30	Blackgrass	0	5	5	0	0	10	0	15	0	5	40	0	20	0
	Bromegrass, Downy	0	0	0	0	0	0	30	10	0	0	0	40	-	0
	Canarygrass	0	20	0	25	10	20	40	0	5	10	10	80	60	0
	Chickweed	10	10	60	75	85	85	80	75	70	90	55	98	100	65
	Cocklebur	0	_	-	65	100	100	95	75	40	-	35	65	15	-
35	Corn	20	5	5	0	45	55	25	70	15	45	20	85	70	0
	Crabgrass, Large	40	40	45	75	65	70	65	60	75	70	75	85	65	10
	Cupgrass, Woolly	60	25	15	5	60	80	45	80	0	55	50	75	100	0
	cupgrass, woorry	00			_					ŭ	0.0				

	Foxtail, Giant	65	10	55	75	70	85	80	75	40	65	75	85	80	0
	Foxtail, Green	0	10	25	20	60	55	70	50	15	40	80	70	70	0
	Galium	40	50	80	75	80	80	80	70	65	30	50	70	50	60
	Goosegrass	25	0	0	70	65	75	80	75	70	55	60	85	85	0
5	Johnsongrass	5	60	5	5	40	-	65	75	0	5	65	75	100	0
	Kochia	0	0	10	5	5	80	0	25	80	65	5	85	0	0
	Lambsquarters	70	90	85	85	98	100	90	98	95	98	98	100	100	85
	Morningglory	0	65	60	95	100	98	95	98	95	100	70	95	65	65
	Nutsedge, Yellow	0	5	10	25	45	5	25	5	15	40	40	65	5	10
10	Oat, Wild	0	10	0	20	15	0	30	0	0	20	5	35	70	0
	Pigweed	65	70	90	85	85	90	100	85	90	85	80	100	100	85
	Ragweed	15	0	5	70	70	100	75	100	0	75	75	95	98	85
	Ryegrass, Italian	0	0	0	5	0	0	0	0	0	5	0	0	20	0
	Soybean	40	5	20	85	100	100	98	95	100	90	75	100	85	80
15	Surinam Grass	55	45	45	15	25	65	70	65	20	50	65	75	60	5
	Velvetleaf	70	60	60	90	90	70	85	70	70	95	80	95	70	80
	Wheat	0	5	5	0	0	5	5	10	0	20	0	5	40	0
		10	1.0	^		1 -	^	45	15	0	10	0	50	80	0
	Windgrass	10	10	0	5	15	0	43	10	U	10	U	50	00	O
	Table B1		oounc		5		U Tabl		10	U			unds	00	Ü
	-	Comp	oound			ı		e B1		O	Сс	ompo			
	Table B1	Comp	oound	ds		1	Tabl	e B1 ai/	ha		Сс	ompo	unds		
	Table B1 31 g ai/ha	Comp	oound	ds		,	Table	e B1 ai/ emer	ha genc		C 6	ompo 794	unds 83 4	85 4	
	Table B1 31 g ai/ha Postemergence	Comp 479	oound 483	ds 485	486	,	Table 31 g Poste	e B1 ai/ emer	ha genc		C 6	ompo 79 4 30	unds 83 4 70	85 4 55	86
	Table B1 31 g ai/ha Postemergence Barley	Comp 479	90und 483 5	ds 485 10	486 35		Table 31 g Poste John:	e B1 ai/ emeresong	ha genc rass	е	C d 4 7	ompo 79 4 30	unds 83 4 70 98	85 4 55 75	86
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass	Comp 479 10 85	483 5 85	ds 485 10 75	486 35 80		Table 31 g Poste Johns Koch	e B1 ai/ emeresong ia squa	ha genc rass rter	e	Cc 47.	ompo 79 4 30 00	unds 83 4 70 98	85 4 55 75	86 70 95 98
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass	Comp 479 10 85 5	483 5 85	ds 485 10 75 30	486 35 80 20		Table 31 g Poste John: Koch Lamb:	e B1 ai/ emersong ia squa ingg	ha gencerass rter	e	3 10 10	ompo 79 4 30 00 00	unds 83 4 70 98 95	85 4 55 75 98 98 1	86 70 95 98
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy	Comp 479 10 85 5	5 85 0	ds 485 10 75 30	486 35 80 20 30		Table 31 g Poste John: Koch Lamb:	e B1 ai/ emeresong ia squa ingg edge	ha gence rass rter lory	e	3 10 10	ompo 79 4 30 00 70	unds 83 4 70 98 98 95	85 4 55 75 98 98 1	86 70 95 98
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass	Comp 479 10 85 5 0	5 85 0 5 40	10 75 30 5	486 35 80 20 30 65		Table 31 g Poste John: Koch Lamb: Morn Nutse	e B1 ai/ emersong ia squa ingg edge Wil	ha gence rass rter lory	e	Cc 45	ompo 79 4 30 00 70 55	unds 83 4 70 98 95 65 40	85 4 55 75 98 98 1 65	86 70 95 98 00 65
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed	Comp 479 10 85 5 0 5	5 85 0 5 40	10 75 30 5 10 80	486 35 80 20 30 65		Table 31 g Poste John: Koch: Lamb: Morn: Nutse Oat,	e B1 ai/ emersong ia squa ingg edge Willeed	ha gence rass rter lory	e	Cc 47	30 30 00 70 55 5	unds 83 4 70 98 95 65 40	85 4 55 75 98 98 1 65 15	86 70 95 98 00 65 60
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur	Comp 479 10 85 5 0 5 100 98	5 85 0 5 40 98	ds 485 10 75 30 5 10 80	486 35 80 20 30 65 80		Table 31 g Poste John: Koch Lamb: Morn Nutse Oat, Pigwe	e B1 ai/ emero song ia squa ingg edge Will eed eed	ha gence rass rter lory , Yea	e	C d 4 5 1 () 1 () 5 () 6 () 6 () 6 () 6 () 6 () 7 (30 30 00 70 55 5	unds 83 4 70 98 95 65 40	85 4 55 75 98 98 1 65 15 95	86 70 95 98 00 65 60 85
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn	Comp 479 10 85 5 0 5 100 98	5 85 0 5 40 98 -	ds 485 10 75 30 5 10 80 -	486 35 80 20 30 65 80 -		Table 31 g Poste John: Koch Lamb: Morn Nutse Oat, Pigwe	e B1 ai/ emeresong ia squa ingg edge Willeed eed rass	ha gence rass rter lory , Yea	e s	C d 4 5 1 () 1 () 5 () 6 () 6 () 6 () 6 () 6 () 7 (ompo 79 4 30 00 70 55 5 98 98	unds 83 4 70 98 95 65 40 95 95	85 4 55 75 98 98 1 65 15 95 80 0	86 70 95 98 00 65 60 85 75
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large	Comp 479 10 85 5 0 5 100 98 85 95	5 85 0 5 40 98 - 65 85	ds 485 10 75 30 5 10 80 - 20 75	486 35 80 20 30 65 80 - 40 75		Table 31 g Poste John: Koch: Lamb: Morn: Nutse Oat, Pigwe Ragwe	e B1 ai/ emeresong ia squa ingg edge Wile eed rass ean	ha gence rass rter lory , Ye d	e s llow alian	Cc 45 10 10 10 10 10 10 10 10 10 10 10 10 10	ompo 79 4 30 00 70 55 5 88 20	unds 83 4 70 98 95 65 40 95 95 0	85 4 55 75 98 98 1 65 15 95 80 0	86 70 95 98 00 65 60 85 75 30
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly	Comp 479 10 85 5 0 5 100 98 85 95 75	5 85 0 5 40 98 - 65 85	ds 485 10 75 30 5 10 80 - 20 75 50	486 35 80 20 30 65 80 - 40 75 75		Table 31 g Poste John: Koch: Lamb: Morn: Nutse Oat, Pigwe Ragwe Ryeg:	e B1 ai/ emersong ia squa ingg edge Will eed eed rass ean nam	ha gence rass rter lory , Ye d	e s llow alian	Cc 45 10 10 10 10 10 10 10 10 10 10 10 10 10	mpo 79 4 30 00 70 55 5 98 20 00	unds 83 4 70 98 95 65 40 95 0 90 75	85 4 55 75 98 1 65 15 95 80 0 98 75	86 70 95 98 00 65 60 85 75 30
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle	Comp 479 10 85 5 100 98 85 95 75	5 85 0 5 40 98 - 65 85	ds 485 10 75 30 5 10 80 - 20 75 50	486 35 80 20 30 65 80 - 40 75 75 50		Table 31 g Poste John: Koch: Lamb: Morn: Nutse Oat, Pigwe Ragwe Ragwe Soybe Surin	e B1 ai/ emerorsong ia squa ingg edge Will eed eed rass ean nam etle	ha gence rass rter lory , Ye d	e s llow alian	Cc 45 10 10 10 10 10 10 10 10 10 10 10 10 10	mpo 79 4 30 00 70 55 5 98 20 00	unds 83 4 70 98 98 95 65 40 95 90 75	85 4 55 75 98 1 65 15 95 80 0 98 75 80	86 70 95 98 00 65 60 85 75 30 98 75
	Table B1 31 g ai/ha Postemergence Barley Bermudagrass Blackgrass Bromegrass, Downy Canarygrass Chickweed Cocklebur Corn Crabgrass, Large Cupgrass, Woolly Deadnettle Foxtail, Giant	Comp 479 10 85 5 100 98 85 95 75 10	5 85 0 5 40 98 - 65 85 65 30	ds 485 10 75 30 5 10 80 - 20 75 50 0 75	486 35 80 20 30 65 80 - 40 75 75 50 75		Table 31 g Poste John: Koch. Lamb: Morn. Nutse Oat, Pigwe Ragwe Ryeg: Soybe Surin	e B1 ai/semers song ia squa ingg edge Wilded eed rass ean nam etle	ha gencerass rter lory , Ye d	e s llow alian	Co 45 10 10 10 10 10 10 10 10 10 10 10 10 10	ompo 79 4 30 00 70 55 5 8 8 20 00 55	unds 83 4 70 98 95 65 40 95 90 75 95	85 4 55 75 98 1 65 15 95 80 98 75 80	86 70 95 98 00 65 60 85 75 30 98 75 95

	Table B1				Comp	pound	ds				
	16 g ai/ha	351	352	356	376	393	406	410	448	477	478
	Postemergence										
	Barley	20	60	10	5	0	0	0	10	5	0
5	Bermudagrass	45	90	_	50	80	80	75	80	80	15
	Blackgrass	15	40	45	10	5	10	5	10	10	0
	Bromegrass, Downy	5	30	15	5	0	0	0	5	0	0
	Canarygrass	40	80	35	15	0	15	5	35	30	0
	Chickweed	20	45	75	75	80	70	75	80	100	60
10	Cocklebur	75	60	_	90	90	20	0	75	5	5
	Corn	20	80	45	30	45	0	25	75	65	0
	Crabgrass, Large	75	75	75	25	80	75	75	80	60	10
	Cupgrass, Woolly	70	75	25	65	65	50	45	40	100	0
	Deadnettle	60	50	80	60	60	65	70	60	60	50
15	Foxtail, Giant	75	75	70	60	75	65	75	85	80	0
	Foxtail, Green	55	65	50	20	75	5	50	80	35	0
	Galium	50	80	85	60	90	75	60	75	50	35
	Goosegrass	55	75	85	0	75	65	65	80	75	0
	Johnsongrass	45	60	65	5	25	65	5	80	75	0
20	Kochia	5	25	5	45	45	10	5	5	0	0
	Lambsquarters	95	85	100	100	98	75	85	90	98	80
	Morningglory	75	85	60	60	95	95	10	95	0	0
	Nutsedge, Yellow	0	10	20	45	55	0	40	60	0	0
	Oat, Wild	40	20	40	20	5	5	5	15	40	0
25	Pigweed	75	80	95	98	98	80	80	98	80	75
	Ragweed	65	70	85	95	85	70	5	85	65	80
	Ryegrass, Italian	15	5	40	20	0	0	0	5	20	0
	Soybean	75	80	90	95	90	70	60	98	65	70
	Surinam Grass	65	70	55	25	70	60	45	70	55	0
30	Velvetleaf	70	65	80	75	85	85	75	80	20	65
	Wheat	20	50	10	5	5	0	0	30	5	0
	Windgrass	40	40	25	30	20	5	5	30	40	0
	Table B1		С	ompou	ınds						
	250 g ai/ha	307	308	344	345	395	401	404			
35	Preemergence										
	Bermudagrass	100	100	100	100	100	100	100			
	Blackgrass	60	80	70	40	0	30	30			
	Bromegrass, Downy	90	90	20	60	0	0	5			

	Cocklebur	_	_	100	98	80	85	85	
	Corn	95	5	60	65	20	0	0	
	Crabgrass, Large	100	100	100	100	100	100	100	
	Cupgrass, Woolly	98	90	95	95	45	90	75	
5	Foxtail, Giant	95	90	98	100	65	90	75	
	Foxtail, Green	100	100	95	95	98	95	35	
	Galium	98	100	98	95	100	100	95	
	Goosegrass	100	100	100	100	100	100	100	
	Johnsongrass	100	98	95	95	15	85	70	
10	Kochia	0	95	100	95	85	85	90	
	Lambsquarters	100	100	100	100	98	100	100	
	Morningglory	98	90	75	90	70	55	80	
	Nightshade	100	100	100	100	100	100	100	
	Nutsedge, Yellow	90	98	98	98	98	95	95	
15	Oat, Wild	0	55	60	50	0	0	0	
	Pigweed	100	100	100	100	98	98	98	
	Ragweed	100	100	100	100	90	90	85	
	Russian Thistle	_	-	90	100	95	90	90	
	Ryegrass, Italian	65	40	0	5	0	5	0	
20	Soybean	95	20	98	95	65	65	50	
	Sunflower	90	90	95	95	85	90	85	
	Surinam Grass	95	98	95	95	98	98	95	
	Velvetleaf	100	100	100	100	100	100	100	
	Wheat	50	40	5	5	0	0	0	
25	Table B1			Comp	pound	ds			
	125 g ai/ha	307	308	344	345	352	395	401	404
	Preemergence								
	Bermudagrass	100	100	100	100	100	100	100	100
	Blackgrass	45	80	10	15	70	0	5	10
30	Bromegrass, Downy	70	60	5	10	50	0	0	0
	Cocklebur	_	_	80	_	0	75	85	75
	Corn	85	0	5	5	35	0	0	0
	Crabgrass, Large	100	100	100	100	100	98	100	100
	Cupgrass, Woolly	95	85	75	85	98	0	70	45
35	Foxtail, Giant	90	75	95	98	98	45	85	60
	Foxtail, Green	100	50	45	70	98	80	95	35
	Galium	98	98	95	80	100	95	98	95
	Goosegrass	100	100	100	100	100	98	100	100

	Johnsongrass	95	85	85	90	98	10	85	55	
	Kochia	0	65	75	85	55	85	85	80	
	Lambsquarters	100	100	100	100	98	98	100	100	
	Morningglory	95	65	0	0	0	40	0	45	
5	Nightshade	100	100	100	100	100	98	100	100	
	Nutsedge, Yellow	75	95	98	98	75	95	95	95	
	Oat, Wild	_	0	30	35	45	0	0	0	
	Pigweed	98	100	98	100	98	98	98	98	
	Ragweed	100	100	100	100	75	90	85	85	
10	Russian Thistle	_	_	80	100	90	95	90	90	
	Ryegrass, Italian	35	10	-	0	20	0	5	0	
	Soybean	75	15	90	95	0	55	55	45	
	Sunflower	80	80	90	-	65	80	85	75	
	Surinam Grass	80	98	85	85	100	85	95	95	
15	Velvetleaf	100	100	100	100	100	95	100	100	
	Wheat	35	20	0	0	25	0	0	0	
	Table B1			Comp	pound	ds				
	62 g ai/ha	307	308	344	345	352	395	401	404	
	Preemergence									
20	Bermudagrass	100	100	100	100	100	98	100	100	
	Blackgrass	45	10	5	10	45	0	0	10	
	Bromegrass, Downy	45	40	0	5	5	0	0	0	
	Cocklebur	_	-	65	98	0	0	75	0	
	Corn	15	0	0	0	0	0	0	0	
25	Crabgrass, Large	98	100	100	100	100	95	98	98	
	Cupgrass, Woolly	65	70	10	45	65	0	55	20	
	Foxtail, Giant	60	60	80	85	80	25	75	45	
	Foxtail, Green	40	45	10	10	85	0	30	0	
	Galium	80	98	95	80	98	95	98	95	
30	Goosegrass	100	100	100	100	100	98	98	98	
	Johnsongrass	85	80	65	75	90	5	75	25	
	Kochia	0	0	45	40	50	45	60	20	
	Lambsquarters	100	100	100	100	98	98	100	98	
	Morningglory	-	15	0	0	0	0	0	0	
35	Nightshade	98	100	98	100	100	95	100	100	
	Nutsedge, Yellow	70	90	90	90	35	95	90	90	
	Oat, Wild	_	0	0	20	20	0	0	0	
	Pigweed	95	100	98	100	98	95	98	95	

	Ragweed	98	100	100	100	65	80	80	80
	Russian Thistle	_	100	80	85	90	90	90	90
	Ryegrass, Italian	30	10	-	0	20	0	5	0
	Soybean	0	0	80	85	0	45	0	45
5	Sunflower	80	80	80	85	55	60	75	65
	Surinam Grass	60	80	70	70	100	35	80	70
	Velvetleaf	95	100	100	100	98	80	100	100
	Wheat	0	0	0	0	10	0	0	0
						1			
10	Table B1	205	200		pound		205	407	101
10	31 g ai/ha	307	308	344	345	352	395	401	404
	Preemergence	7.00	400		100	400	0.0	400	4.00
	Bermudagrass	100	100	_	100	100	98	100	100
	Blackgrass	15	0	5	5	5	0	0	0
1.5	Bromegrass, Downy	20	40	0	0	0	0	0	0
15	Cocklebur	_	_	65	75	_	0	20	0
	Corn	0	0	0	0	0	0	0	0
	Crabgrass, Large	90	98	80	95	100	85	98	85
	Cupgrass, Woolly	0	10	0	10	50	0	0	0
20	Foxtail, Giant	10	15	60	80	55	20	70	10
20	Foxtail, Green	20	20	5	5	85	0	-	0
	Galium	80	60	0	30	95	95	85	95
	Goosegrass	98	95	98	100	100	90	98	95
	Johnsongrass	65	65	5	70	85	0	70	0
25	Kochia	0	0	0	0	40	0	55	20
25	Lambsquarters	100			100	95	95	98	95
	Morningglory	65	0	0	0	0	0	0	0
	Nightshade	98	100	98	98	95	90	100	100
	Nutsedge, Yellow	50	80	60	80	0	80	60	90
20	Oat, Wild	0	0	0	0	5	0	0	0
30	Pigweed	40	95	98	100	65	95	95	85
	Ragweed	75	95	100	98	65	70	0	80
	Russian Thistle	-	-	20	80	1.0	90	85	85
	Ryegrass, Italian	0	0	0	0	10	0	0	0
25	Soybean	0	-	75	65	0	0	0	0
35	Sunflower	70	65	60	70	15	0	55	10
	Surinam Grass	20	50	0	65	98	0	65	50
	Velvetleaf	70	75	95	90	65	80	98	85
	Wheat	0	0	0	0	5	0	0	0

373

Table B1	Compound		
16 g ai/ha	352	16 g ai/ha	352
Preemergence		Preemergence	
Bermudagrass	100	Lambsquarters	95
Blackgrass	0	Morningglory	0
Bromegrass, Do	owny 0	Nightshade	0
Cocklebur	0	Nutsedge, Yellow	0
Corn	0	Oat, Wild	0
Crabgrass, Lar	rge 98	Pigweed	60
Cupgrass, Wool	.ly 45	Ragweed	20
Foxtail, Giant	50	Ryegrass, Italian	0
Foxtail, Green	n 20	Soybean	0
Galium	90	Sunflower	0
Goosegrass	98	Surinam Grass	80
Johnsongrass	60	Velvetleaf	20
Kochia	20		

TEST C

5

10

15

Seeds of plant species selected from bluegrass (annual bluegrass, *Poa annua*), blackgrass (*Alopecurus myosuroides*), canarygrass (*Phalaris minor*), chickweed (common chickweed, *Stellaria media*), galium (catchweed bedstraw, *Galium aparine*), bromegrass (downy bromegrass, *Bromus tectorum*), field poppy (*Papaver rhoeas*), field violet (*Viola arvensis*), green foxtail (*Setaria viridis*), deadnettle (henbit deadnettle, *Lamium amplexicaule*), Italian ryegrass (*Lolium multiflorum*), kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), oilseed rape (*Brassica napus*), pigweed (*Amaranthus retroflexus*), Russian thistle (*Salsola iberica*), spring barley (*Hordeum vulgare*), spring wheat (*Triticum aestivum*), buckwheat (wild buckwheat, *Polygonum convolvulus*), wild mustard (*Sinapis arvensis*), wild oat (*Avena fatua*), wild radish (*Raphanus raphanistrum*), windgrass (*Apera spica-venti*), winter barley (*Hordeum vulgare*), and winter wheat (*Triticum aestivum*) were planted and treated postemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage).

Treated plants and controls were maintained in a controlled growth environment for 14 days after which time all test plants were visually evaluated and compared to controls. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

20 Table C Compounds
125 g ai/ha 2 4 8 11 12 33

	Postemergence												
	Barley, Spring	0	15	30	30	0	0						
	Barley, Winter	30	35	40	60	0	5						
	Blackgrass	30	40	35	35	40	35						
5	Bluegrass	65	50	75	80	40	40						
	Bromegrass, Downy	50	40	40	65	20	20						
	Buckwheat, Wild	70	100	65	80	50	75						
	Canarygrass	_	90	10	10	-	5						
	Chickweed	_	100	98	100	-	100						
10	Deadnettle	100	100	100	100	100	100						
	Field Poppy	_	50	60	70	-	98						
	Field Violet	50	60	65	35	40	95						
	Foxtail, Green	95	95	98	95	90	95						
	Galium	70	90	90	65	80	60						
15	Kochia	98	95	90	98	75	70						
	Lambsquarters	98	100	100	100	95	100						
	Mustard, Wild	-	100	98	100	95	100						
	Oat, Wild	25	50	30	70	15	10						
	Oilseed Rape	90	100	100	100	95	100						
20	Pigweed	90	100	98	98	75	98						
	Radish, Wild	95	95	100	95	90	98						
	Russian Thistle	95	95	95	95	70	90						
	Ryegrass, Italian	30	15	35	30	0	10						
	Wheat, Spring	0	20	20	40	0	10						
25	Wheat, Winter	30	20	30	35	10	5						
	Windgrass	40	95	60	95	50	40						
	Table C	Comp	ound	S			Table C		Com	poun	ds		
	62 g ai/ha	2			12		62 g ai,	/ha	2	. 8	11	12	33
	Postemergence						Posteme:						
	Barley, Spring	0	20 2	20	0	0	Kochia		75	85	95	35	60
	Barley, Winter	10	20 4	40	0	0	Lambsqua	arters	80	98	98	80	100
	Blackgrass	20	35 3	35	30	35	Mustard	, Wild	98	98	98	95	98
	Bluegrass	25	50 (65	30	15	Oat, Wil	ld	25	30	50	15	5
	Bromegrass, Downy	30	35 (65	15	15	Oilseed	Rape	70	98	98	80	100
	Buckwheat, Wild	40	65 8	80	50	75	Pigweed		75	98	95	75	95
	Canarygrass	_	10 :	10	_	5	Radish,	Wild	95	98	95	90	95
	Chickweed	-	95 9	98	- !	98	Russian	Thistle	70	95	95	60	90
	Deadnettle	100	98 10	00 1	00	98	Ryegras:	s, Italian	15	20	30	0	10

	Field Poppy		40	40	-	90	Wheat,	Spring	0	5	35	0	10
	Field Violet	40	65	35	40	95	Wheat,	Winter	0	25	30	0	5
	Foxtail, Green	95	95	95	80	95	Windgr	ass	25	20	85	-	25
	Galium	50	90	65	60	50							
	Table C	(Comp	ound	s								
	31 g ai/ha	2	4	8	11	12	33						
	Postemergence												
	Barley, Spring	0	10	10	15	O	0						
5	Barley, Winter	0	5	20	20	O	0						
	Blackgrass	0	20	30	20	20	5						
	Bluegrass	25	35	25	35	20	0						
	Bromegrass, Downy	20	35	25	50	10	10						
	Buckwheat, Wild	20	95	65	70	15	65						
10	Canarygrass	_	0	5	5	_	. 0						
	Chickweed	_	98	95	95	_	90						
	Deadnettle	95	98	95	98	100	98						
	Field Poppy	_	30	20	30	_	80						
	Field Violet	40	40	65	0	35	90						
15	Foxtail, Green	75	70	95	95	60	95						
	Galium	30	65	75	30	50	40						
	Kochia	70	90	70	90	10	50						
	Lambsquarters	75	100	98	98	80	98						
	Mustard, Wild	98	98	95	98	95	98						
20	Oat, Wild	15	20	20	25	15	0						
	Oilseed Rape	60	90	90	95	70	98						
	Pigweed	40	95	95	95	65	95						
	Radish, Wild	80	80	95	95	80	95						
	Russian Thistle	60	70	90	80	60	80						
25	Ryegrass, Italian	0	10	0	5	O	0						
	Wheat, Spring	0	15	5	20	O	10						
	Wheat, Winter	0	0	10	30	O	0						
	Windgrass	20	35	10	70	20	20						
	Table C	Compo	ound	.s			Table (C	Com	poun	.ds		
	16 g ai/ha	2	8	11	12	33	16 g a:	i/ha	2	8	11	12	33
	Postemergence						Posteme	ergence					
	Barley, Spring	0	0	0	0	0	Kochia		65	65	70	0	35
	Barley, Winter	0	0	0	0	0	Lambsq	uarters	70	98	98	70	98

Blackgrass	0	20	20	0	0	Mustard, Wild	98	_	98	80	98
Bluegrass	0	5	-	10	0	Oat, Wild	0	20	25	0	0
Bromegrass, Downy	10	10	30	0	0	Oilseed Rape	60	80	90	50	90
Buckwheat, Wild	15	65	65	10	60	Pigweed	35	95	75	65	75
Canarygrass	-	0	5	_	0	Radish, Wild	65	85	95	60	90
Chickweed	-	95	95	_	90	Russian Thistle	35	90	80	60	80
Deadnettle	95	85	95	100	95	Ryegrass, Italian	0	0	0	0	0
Field Poppy	-	0	20	_	80	Wheat, Spring	0	5	5	0	10
Field Violet	0	10	0	35	65	Wheat, Winter	0	10	0	0	0
Foxtail, Green	65	95	95	50	80	Windgrass	5	0	60	5	0
Galium	5	50	20	5	35						

Table C Comp	ounds	3	Table C Compo	unds	
125 g ai/ha	2	12	62 g ai/ha	2	12
Preemergence			Preemergence		
Barley, Spring	0	0	Barley, Spring	0	0
Barley, Winter	0	0	Barley, Winter	0	0
Blackgrass	0	0	Blackgrass	0	0
Bluegrass	0	35	Bluegrass	0	20
Bromegrass, Downy	0	0	Bromegrass, Downy	0	0
Buckwheat, Wild	0	40	Buckwheat, Wild	0	0
Canarygrass	10	20	Canarygrass	0	-
Chickweed	98	50	Chickweed	98	-
Deadnettle	98	100	Deadnettle	95	90
Field Poppy	100	98	Field Poppy	95	98
Field Violet	0	0	Field Violet	0	0
Foxtail, Green	0	0	Foxtail, Green	0	0
Galium	50	35	Galium	0	35
Kochia	90	25	Kochia	30	5
Lambsquarters	100	100	Lambsquarters	0	70
Mustard, Wild	35	-	Mustard, Wild	5	5
Oat, Wild	0	0	Oat, Wild	0	0
Oilseed Rape	65	40	Oilseed Rape	35	30
Pigweed	85	65	Pigweed	65	50
Radish, Wild	0	0	Radish, Wild	0	0
Ryegrass, Italian	0	0	Russian Thistle	0	0
Wheat, Spring	0	0	Ryegrass, Italian	0	0

377

Wheat, Winter	0	0	Wheat, Spring	0	0
Windgrass	25	40	Wheat, Winter	0	0
			Windgrass	25	40
Table C Comp	ounds		Table C Compo	ounds	
31 g ai/ha	2	12	16 g ai/ha	2	12
Preemergence			Preemergence		
Barley, Spring	0	0	Barley, Spring	0	0
Barley, Winter	0	0	Barley, Winter	0	0
Blackgrass	0	0	Blackgrass	0	0
Bluegrass	0	0	Bluegrass	0	0
Bromegrass, Downy	0	0	Bromegrass, Downy	0	0
Buckwheat, Wild	0	0	Buckwheat, Wild	0	0
Canarygrass	0	_	Canarygrass	0	-
Chickweed	98	_	Chickweed	75	-
Deadnettle	75	50	Deadnettle	0	35
Field Poppy	75	80	Field Poppy	_	50
Field Violet	0	0	Field Violet	0	0
Foxtail, Green	0	0	Foxtail, Green	0	0
Galium	_	0	Galium	_	0
Kochia	5	5	Kochia	5	5
Lambsquarters	0	20	Lambsquarters	0	0
Mustard, Wild	0	-	Mustard, Wild	0	0
Oat, Wild	0	0	Oat, Wild	0	0
Oilseed Rape	20	20	Oilseed Rape	0	0
Pigweed	20	0	Pigweed	0	0
Radish, Wild	0	0	Radish, Wild	0	0
Russian Thistle	0	0	Russian Thistle	0	0
Ryegrass, Italian	0	0	Ryegrass, Italian	0	0
Wheat, Spring	0	0	Wheat, Spring	0	0
Wheat, Winter	0	0	Wheat, Winter	0	0
Windgrass	15	20	Windgrass	0	20

TEST D

5

Seeds of plant species selected from bermudagrass (*Cynodon dactylon*), Surinam grass (*Brachiaria decumbens*), large crabgrass (*Digitaria sanguinalis*), green foxtail (*Setaria viridis*), goosegrass (*Eleusine indica*), johnsongrass (*Sorghum halepense*), kochia (*Kochia scoparia*), morningglory (pitted morningglory, *Ipomoea lacunosa*), nutsedge (purple

378

nutsedge, Cyperus rotundus), ragweed (common ragweed, Ambrosia elatior), black mustard (Brassica nigra), guineagrass (Panicum maximum), dallisgrass (Paspalum dilatatum), barnyardgrass (Echinochloa crus-galli), sandbur (southern sandbur, Cenchrus echinatus), sowthistle (common sowthistle, Sonchus oleraceous), prickly sida (Sida spinosa), Italian ryegrass (Lolium multiflorum), purslane (common purslane, Portulaca oleracea), signalgrass (broadleaf signalgrass, Brachiaria platyphylla), groundsel (common groundsel, Senecio vulgaris), chickweed (common chickweed, Stellaria media), dayflower (Virginia (VA) dayflower, Commelina virginica), bluegrass (annual bluegrass, Poa annua), naked crabgrass (Digitaria nuda), itchgrass (Rottboellia cochinchinensis), quackgrass (Elytrigia repens), field bindweed (Convolvulus arvensis), spanishneedles (Bidens bipinnata), mallow (common mallow, Malva sylvestris) and Russian thistle (Salsola kali), were planted into a blend of loam soil and sand and treated preemergence with test chemicals formulated in a nonphytotoxic solvent mixture which included a surfactant. At the same time, plants from these weed species were treated with postemergence applications of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Treated plants and controls were maintained in a greenhouse for 14 to 21 days, after which time all species were visually evaluated and compared to controls. Plant response ratings, summarized in Table D, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

	Table D		С	ompou	ınds			
	250 g ai/ha	226	235	238	240	243	244	245
	Postemergence							
	Barnyardgrass	95	95	95	95	90	90	90
25	Bermudagrass	98	95	95	95	95	95	80
	Black Mustard	85	98	98	98	98	98	98
	Bluegrass	30	50	40	35	35	20	35
	Chickweed	85	70	50	70	70	60	50
	Crabgrass, Large	85	80	80	70	85	75	75
30	Crabgrass, Naked	75	-	-	-	-	-	-
	Dallisgrass	35	80	75	75	90	80	85
	Dayflower, VA	65	75	75	75	75	70	75
	Field Bindweed	80	70	50	70	70	70	70
	Foxtail, Green	98	98	95	98	98	100	95
35	Goosegrass	75	75	75	80	75	70	75
	Groundsel	100	100	100	100	100	100	100
	Guineagrass	80	75	75	80	85	75	85
	Itchgrass	90	90	80	80	85	75	75

5

10

15

Johnsongrass	90	85	80	95	75	75	75							
Kochia	70	85	75	70	75	65	75							
Mallow	65	70	60	60	70	70	70							
Morningglory	80	95	90	95	85	75	80							
Nutsedge, Purple	5	40	20	20	50	35	20							
Prickly Sida	75	75	65	75	80	60	70							
Purslane	70	70	60	50	50	50	30							
Quackgrass	35	70	40	50	75	65	65							
Ragweed	98	80	75	90	75	85	75							
Russian Thistle	70	60	50	35	60	65	70							
Ryegrass, Italian	15	35	5	35	65	60	50							
Sandbur	75	75	85	90	80	75	75							
Signalgrass	65	95	65	85	95	35	75							
Sowthistle	98	98	95	98	98	100	95							
Spanishneedles	80	85	75	75	70	75	75							
Surinam Grass	90	85	85	95	85	80	75							
Table D						Comp	ound	ds						
125 g ai/ha	47	51	52	59	66	85	87	113	128	226	228	233	235	238
Postemergence														
Barnyardgrass	70	70	80	75	75	70	70	80	90	95	80	85	95	85
Bermudagrass	90	85	80	80	65	90	85	80	90	95	70	70	95	95
Bermudagrass Black Mustard	90 100	85 100	80 98	80 98	65 98	90 85	85 100	80 100	90 95	95 80	70 50	70 100	95 98	95 98
_														
Black Mustard	100	100	98	98	98 0	85	100	100	95	80	50	100	98	98
Black Mustard Bluegrass	100	100	98 35	98 5	98 0	85 5	100	100	95 0	80 10	50 5	100	98 35	98 20
Black Mustard Bluegrass Chickweed	100 0 65	100 0 70	98 35 100	98 5 -	98 0 95	85 5 100	100	100	95 0 70	80 10 35	50 5 75	100 0 60	98 35 60	98 20 40
Black Mustard Bluegrass Chickweed Crabgrass, Large	100 0 65 65	100 0 70 35	98 35 100 70	98 5 - 70	98 0 95 35	85 5 100 75	100 0 100 75	100 0 - 70	95 0 70 70	80 10 35 75	50 5 75 75	100 0 60 60	98 35 60	98 20 40
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked	100 0 65 65 65	100 0 70 35 65	98 35 100 70 95	98 5 - 70 70	98 0 95 35 70	85 5 100 75 80	100 0 100 75 75	100 0 - 70 75	95 0 70 70 75	80 10 35 75 70	50 5 75 75 -	100 0 60 60 70	98 35 60 75	98 20 40 75
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass	100 0 65 65 65 15	100 0 70 35 65 70	98 35 100 70 95 75	98 5 - 70 70 50	98 0 95 35 70 60	85 5 100 75 80	100 0 100 75 75 75	100 0 - 70 75 70	95 0 70 70 75 60	80 10 35 75 70 30	50 5 75 75 - 5	100 0 60 60 70 35	98 35 60 75 -	98 20 40 75 - 70
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA	100 0 65 65 65 15 30	100 70 35 65 70 20	98 35 100 70 95 75 60	98 5 - 70 70 50	98 0 95 35 70 60 30	85 5 100 75 80 80	100 0 100 75 75 75 70	100 0 - 70 75 70 60	95 0 70 70 75 60	80 10 35 75 70 30	50 5 75 75 - 5 85	100 0 60 60 70 35 60	98 35 60 75 - 80 75	98 20 40 75 - 70
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed	100 0 65 65 65 15 30	100 70 35 65 70 20	98 35 100 70 95 75 60 70	98 5 - 70 70 50 - 60	98 0 95 35 70 60 30	85 5 100 75 80 80 80	100 0 100 75 75 75 70 40	100 0 -70 75 70 60	95 0 70 75 60 70	80 10 35 75 70 30 -	50 5 75 75 - 5 85 70	100 0 60 70 35 60 70	98 35 60 75 - 80 75 65	98 20 40 75 - 70 70
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green	100 0 65 65 65 15 30 65 95	100 70 35 65 70 20 60 65	98 35 100 70 95 75 60 70	98 5 - 70 70 50 - 60 35	98 0 95 35 70 60 30 0 80	85 5 100 75 80 80 80 75 65	100 0 100 75 75 75 70 40	100 0 -70 75 70 60 -	95 0 70 75 60 70 65 70	80 10 35 75 70 30 - 70 80	50 5 75 75 - 5 85 70 80 70	100 0 60 70 35 60 70 35	98 35 60 75 - 80 75 65 98 75	98 20 40 75 - 70 70
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green Goosegrass	100 0 65 65 65 15 30 65 95	100 70 35 65 70 20 60 65 65	98 35 100 70 95 75 60 70 95 80	98 5 - 70 70 50 - 60 35 65	98 0 95 35 70 60 30 0 80 75	85 5 100 75 80 80 75 65 75	100 0 100 75 75 75 70 40 60	100 0 -70 75 70 60 - 90 65	95 0 70 75 60 70 65 70	80 10 35 75 70 30 - 70 80 70	50 5 75 75 - 5 85 70 80 70	100 0 60 70 35 60 70 35 65	98 35 60 75 - 80 75 65 98 75	98 20 40 75 - 70 70 - 80 75
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green Goosegrass Groundsel	100 0 65 65 15 30 65 95 65	100 70 35 65 70 20 60 65 65 100	98 35 100 70 95 75 60 70 95 80	98 5 - 70 70 50 - 60 35 65	98 0 95 35 70 60 30 0 80 75 80	85 5 100 75 80 80 75 65 75	100 0 100 75 75 75 70 40 60 65	100 0 -70 75 70 60 - 90 65 100	95 0 70 75 60 70 65 70 70	80 10 35 75 70 30 - 70 80 70 95	50 5 75 75 - 5 85 70 80 70	100 0 60 70 35 60 70 35 65	98 35 60 75 - 80 75 65 98 75	98 20 40 75 - 70 70 - 80 75 100
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green Goosegrass Groundsel Guineagrass	100 0 65 65 15 30 65 95 65 100 30	100 70 35 65 70 20 65 65 100 50	98 35 100 70 95 75 60 70 95 80 100 75	98 5 - 70 70 50 - 60 35 65 100 20	98 0 95 35 70 60 30 0 80 75 80 30	85 5 100 75 80 80 75 65 75 100 60	100 0 100 75 75 70 40 60 65 100 30	100 0 70 75 70 60 - 90 65 100 70	95 0 70 75 60 70 65 70 70 100 35	80 10 35 75 70 30 - 70 80 70 95 80	50 5 75 75 - 5 85 70 80 70 100	100 0 60 70 35 60 70 35 65 100	98 35 60 75 - 80 75 65 98 75 100 75	98 20 40 75 - 70 70 - 80 75 100 65
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green Goosegrass Groundsel Guineagrass Itchgrass	100 0 65 65 15 30 65 95 65 100 30	100 70 35 65 70 20 65 65 100 50 80	98 35 100 70 95 75 60 70 95 80 100 75 65	98 5 - 70 70 50 - 60 35 65 100 20 75	98 0 95 35 70 60 30 0 80 75 80 30 40	85 5 100 75 80 80 75 65 75 100 60 70	100 0 100 75 75 70 40 65 100 30	100 0 70 75 70 60 - 90 65 100 70 70	95 0 70 75 60 70 65 70 100 35 65	80 10 35 75 70 30 - 70 80 70 95 80 70	50 5 75 75 - 5 85 70 80 70 100 15 65	100 0 60 70 35 60 70 35 65 100 50 80	98 35 60 75 80 75 98 75 100 75 80	98 20 40 75 - 70 70 - 80 75 100 65 75
Black Mustard Bluegrass Chickweed Crabgrass, Large Crabgrass, Naked Dallisgrass Dayflower, VA Field Bindweed Foxtail, Green Goosegrass Groundsel Guineagrass Itchgrass Johnsongrass	100 0 65 65 15 30 65 95 65 100 30 10	100 70 35 65 70 20 65 65 100 50 80 70	98 35 100 70 95 75 60 70 95 80 100 75 65	98 5 - 70 70 50 - 60 35 65 100 20 75 60	98 0 95 35 70 60 30 0 80 75 80 30 40 60	85 5 100 75 80 80 75 65 75 100 60 70 80	100 0 100 75 75 70 40 65 100 30 30 60	100 0 70 75 70 60 - 90 65 100 70 75	95 0 70 75 60 70 65 70 100 35 65 65	80 10 35 75 70 30 - 70 80 70 95 80 70 80	50 5 75 75 5 85 70 80 70 100 15 65 70	100 0 60 70 35 60 70 35 65 100 50	98 35 60 75 - 80 75 65 98 75 100 75 80 85	98 20 40 75 - 70 70 - 80 75 100 65 75 75
	Morningglory Nutsedge, Purple Prickly Sida Purslane Quackgrass Ragweed Russian Thistle Ryegrass, Italian Sandbur Signalgrass Sowthistle Spanishneedles Surinam Grass Table D 125 g ai/ha Postemergence	Morningglory 80 Nutsedge, Purple 5 Prickly Sida 75 Purslane 70 Quackgrass 35 Ragweed 98 Russian Thistle 70 Ryegrass, Italian 15 Sandbur 75 Signalgrass 65 Sowthistle 98 Spanishneedles 80 Surinam Grass 90 Table D 125 g ai/ha 47 Postemergence	Morningglory 80 95 Nutsedge, Purple 5 40 Prickly Sida 75 75 Purslane 70 70 Quackgrass 35 70 Ragweed 98 80 Russian Thistle 70 60 Ryegrass, Italian 15 35 Sandbur 75 75 Signalgrass 65 95 Sowthistle 98 98 Spanishneedles 80 85 Surinam Grass 90 85 Table D 125 g ai/ha 47 51 Postemergence	Morningglory 80 95 90 Nutsedge, Purple 5 40 20 Prickly Sida 75 75 65 Purslane 70 70 60 Quackgrass 35 70 40 Ragweed 98 80 75 Russian Thistle 70 60 50 Ryegrass, Italian 15 35 5 Sandbur 75 75 85 Signalgrass 65 95 65 Sowthistle 98 98 95 Spanishneedles 80 85 75 Surinam Grass 90 85 85 Table D 125 g ai/ha 47 51 52 Postemergence	Morningglory 80 95 90 95 Nutsedge, Purple 5 40 20 20 Prickly Sida 75 75 65 75 Purslane 70 70 60 50 Quackgrass 35 70 40 50 Ragweed 98 80 75 90 Russian Thistle 70 60 50 35 Ryegrass, Italian 15 35 5 35 Sandbur 75 75 85 90 Signalgrass 65 95 65 85 Sowthistle 98 98 95 98 Spanishneedles 80 85 75 75 Surinam Grass 90 85 85 95 Table D 125 g ai/ha 47 51 52 59 Postemergence 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9	Morningglory 80 95 90 95 85 Nutsedge, Purple 5 40 20 20 50 Prickly Sida 75 75 65 75 80 Purslane 70 70 60 50 50 Quackgrass 35 70 40 50 75 Ragweed 98 80 75 90 75 Russian Thistle 70 60 50 35 60 Ryegrass, Italian 15 35 5 35 65 Sandbur 75 75 85 90 80 Signalgrass 65 95 65 85 95 Sowthistle 98 98 95 98 98 Spanishneedles 80 85 75 75 70 Surinam Grass 90 85 85 95 85 Table D 125 9ai/ha 47 51 52 59 66 Postemergence 75 75 75	Morningglory 80 95 90 95 85 75 Nutsedge, Purple 5 40 20 20 50 35 Prickly Sida 75 75 65 75 80 60 Purslane 70 70 60 50 50 50 Quackgrass 35 70 40 50 75 65 Ragweed 98 80 75 90 75 85 Russian Thistle 70 60 50 35 60 65 Ryegrass, Italian 15 35 5 35 65 60 Sandbur 75 75 85 90 80 75 Signalgrass 65 95 65 85 95 35 Sowthistle 98 98 95 98 98 100 Spanishneedles 80 85 75 75 70 75 Surinam Grass 90 85 85 95 85 80 Table	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 60 65 70 Ryegrass, Italian 15 35 5 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D Compound 125 g ai/ha 47 51 52 59 66 85 87 Postemergence	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 60 65 70 Ryegrass, Italian 15 35 5 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 60 65 70 Ryegrass, Italian 15 35 5 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Surinam Grass 90 85 85 95 85 8	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 65 70 Ryegrass, Italian 15 35 5 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 65 65 Ryegrass, Italian 15 35 5 35 65 60 50 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D Table D Compounts Compounts Compounts Postemergence	Morningglory 80 95 90 95 85 75 80 Nutsedge, Purple 5 40 20 20 50 35 20 Prickly Sida 75 75 65 75 80 60 70 Purslane 70 70 60 50 50 50 30 Quackgrass 35 70 40 50 75 65 65 Ragweed 98 80 75 90 75 85 75 Russian Thistle 70 60 50 35 65 65 Ryegrass, Italian 15 35 5 35 65 65 Sandbur 75 75 85 90 80 75 75 Signalgrass 65 95 65 85 95 35 75 Sowthistle 98 98 95 98 98 100 95 Spanishneedles 80 85 75 75 70 75 75 Surinam Grass 90 85 85 95 85 80 75 Table D

	Nutsedge, Purple	20	20	40	25	30	65	50	50	50	0	15	0	30	20
	Prickly Sida	90	75	90	70	98	98	95	70	80	70	65	60	70	50
	Purslane	30	35	75	50	75	90	35	75	50	65	35	40	60	60
	Quackgrass	5	0	20	0	5	20	5	30	5	20	5	25	40	30
5	Ragweed	95	85	95	80	5	100	98	80	90	90	75	98	80	75
	Russian Thistle	_	_	_	65	_	_	35	20	_	40	65	10	50	50
	Ryegrass, Italian	30	0	35	5	15	20	5	50	5	0	5	5	5	5
	Sandbur	35	60	80	25	90	95	35	60	35	75	5	75	75	75
	Signalgrass	20	50	90	20	30	75	60	75	35	65	20	35	90	60
10	Sowthistle	100	100	100	100	90	100	100	100	100	98	98	100	98	95
	Spanishneedles	70	70	80	70	80	95	70	60	65	75	70	60	80	70
	Surinam Grass	70	80	90	60	90	85	40	_	50	90	70	60	75	75
	Table D	Comp	oound	ds		Ta	ble	D			Com	poun	ds		
	125 g ai/ha	240	243	244	245	12	5 g	ai/h	ıa		240	243	244	245	
	Postemergence					Ро	stem	erge.	nce						
	Barnyardgrass	95	80	85	85	Ко	chia				65	70	50	70	
	Bermudagrass	95	95	95	80	Ма	llow	•			60	70	60	50	
	Black Mustard	98	98	95	98	Мо	rnin	gglc	ry		90	85	75	80	
	Bluegrass	35	35	10	35	Nu	tsed	ge,	Purp	le	5	25	10	5	
	Chickweed	60	60	40	50	Pr	ickl	y Si	.da		75	70	40	50	
	Crabgrass, Large	65	85	75	75	Pu	rsla	ne			-	50	50	30	
	Crabgrass, Naked	-	-	-	-	Qu	ackg	rass			35	70	50	40	
	Dallisgrass	75	90	75	80	Ra	gwee	d			80	75	80	75	
	Dayflower, VA	70	70	65	65	Ru	ssia	n Th	istl	е	-	30	60	60	
	Field Bindweed	70	70	65	60	Ry	egra	ss,	Ital	ian	35	30	35	20	
	Foxtail, Green	98	90	95	95	Sa	ndbu	r			90	75	75	75	
	Goosegrass	80	70	70	70		gnal	_			75	75	25	50	
	Groundsel	100	100				wthi				98	95	100	95	
	Guineagrass	80	75	75	75				dles		75		75	70	
	Itchgrass	80	75	75	75	Su	rina	m Gr	ass		95	75	80	75	
	Johnsongrass	95	70	75	75										
	Table D						Comp	ound	ds						
	62 g ai/ha	47	51	52	59	66	85	87	113	128	226	233	235	238	240
15	Postemergence														
	Barnyardgrass	70	70	75	60	70	65	60	80	70	85	85	80	80	95
	Bermudagrass	70	80	75	70	65	80	70	80	80	95	70	95	90	95
	Black Mustard	100	-	98	65	50	75	100	100	95	80	50	80	95	80

	Bluegrass	0	0	35	0	0	5	0	0	0	10	0	20	5	35
	Chickweed	_	_	98	70	35	100	75	_	65	35	_	30	35	50
	Crabgrass, Large	60	35	70	50	25	75	70	70	60	75	50	75	70	65
	Crabgrass, Naked	35	-	95	50	65	75	70	70	70	65	60	-	-	_
5	Dallisgrass	15	30	70	20	35	65	50	60	30	20	10	75	65	70
	Dayflower, VA	20	10	30	60	0	60	60	60	60	50	35	70	65	60
	Field Bindweed	50	20	70	30	0	75	25	65	65	70	50	65	50	70
	Foxtail, Green	50	40	85	20	65	35	35	70	65	70	30	95	80	98
	Goosegrass	65	65	75	50	65	75	65	65	65	70	60	75	70	70
10	Groundsel	100	100	100	100	80	100	100	100	100	90	90	100	100	100
	Guineagrass	20	30	75	20	10	35	20	50	30	80	40	75	50	65
	Itchgrass	5	40	65	15	35	65	30	65	40	70	70	75	70	75
	Johnsongrass	35	60	85	40	50	80	40	65	50	80	50	70	70	90
	Kochia	20	5	0	20	25	20	35	50	30	60	30	60	50	65
15	Mallow	65	0	65	5	60	70	70	0	40	50	0	50	35	40
	Morningglory	-	20	70	50	90	75	40	90	70	70	70	75	80	80
	Nutsedge, Purple	10	15	35	20	20	50	20	35	35	0	0	5	10	5
	Prickly Sida	80	65	80	70	98	95	80	70	65	65	50	65	30	65
	Purslane	30	35	65	35	75	90	35	50	30	50	30	60	60	35
20	Quackgrass	0	0	15	0	5	15	0	20	0	0	10	30	5	30
	Ragweed	80	80	95	-	0	80	95	75	90	90	75	70	75	75
	Russian Thistle	20	-	-	-	-	-	-	20	20	-	-	30	40	35
	Ryegrass, Italian	20	0	15	5	0	15	0	35	0	0	5	5	5	35
	Sandbur	20	25	75	5	35	65	20	60	5	75	70	75	75	70
25	Signalgrass	15	50	80	10	30	60	60	60	35	40	25	90	35	75
	Sowthistle	100	100	98	100	70	100	98	100	100	98	-	98	95	98
	Spanishneedles	65	60	80	70	80	90	60	50	50	75	50	70	70	65
	Surinam Grass	60	70	80	50	90	75	40	80	30	70	50	75	75	70
	Table D	Compo	unds		T	able	D			Compo	unds				
	62 g ai/ha	243	244	245	6.	2 g	ai/h	a		243	244	24.	5		
	Postemergence				P	oste	merg	ence							
	Barnyardgrass	80	80	85	K	ochi	a			60	50	6	5		
	Bermudagrass	85	80	80	M	allo	W			60	50	5	0		
	Black Mustard	75	75	95	M	orni	nggl	ory		85	70	7.	5		
	Bluegrass	5	10	20	N.	utse	dge,	Pur	ple	25	0		5		
	Chickweed	50	20	25	Р	rick	ly S	ida		65	35	5	0		
	Crabgrass, Large	80	75	70	P.	ursl	ane			50	50		5		
	Crabgrass, Naked	-	-	-	Q.	uack	gras	S		40	40	3.	5		

	Dallisgrass	80	75	75	Ra	agwe	ed			7	0 7	0 7	5		
	Dayflower, VA	65	50	35	Rı	ıssi	an T	hist	le	3	0 4	0 6	0		
	Field Bindweed	70	35	50	R	yegr	ass,	Ita	lian	. 2	0 1	5	5		
	Foxtail, Green	85	90	90	Sa	andb	ur			7	5 7	0 7	0		
	Goosegrass	70	60	70	S	igna	lgra	SS		7	5 2	0 4	0		
	Groundsel	100	100	100	So	owth	istl	е		9	0 9	5 9	5		
	Guineagrass	75	75	75	Sı	pani	shne	edle	S	6	5 6	5 7	0		
	Itchgrass	75	70	70	Sı	ırin	am G	rass		7	5 7	5 7	5		
	Johnsongrass	70	70	75											
	Table D						Comp	ound	ds						
	31 g ai/ha	47	51	52	59	66	85	87	113	128	226	228	233	235	238
	Postemergence														
	Barnyardgrass	70	70	75	60	65	50	50	75	70	85	20	75	80	75
5	Bermudagrass	50	75	75	40	50	75	65	70	70	90	70	70	80	80
	Black Mustard	100	95	90	40	20	60	65	_	95	65	20	50	80	80
	Bluegrass	0	0	25	0	0	0	0	0	0	0	0	0	5	0
	Chickweed	65	_	90	70	-	80	75	70	_	20	35	50	5	30
	Crabgrass, Large	50	35	70	35	25	60	65	60	50	65	65	40	70	50
10	Crabgrass, Naked	35	50	75	30	50	50	60	65	65	60	_	50	_	-
	Dallisgrass	10	20	65	10	35	25	25	10	20	15	0	10	70	10
	Dayflower, VA	15	10	5	_	0	30	35	40	50	50	35	35	60	35
	Field Bindweed	40	5	70	5	0	75	15	65	50	70	65	50	60	35
	Foxtail, Green	35	20	70	5	35	25	30	60	40	65	70	10	70	75
15	Goosegrass	65	65	75	20	50	65	35	50	40	70	50	50	75	50
	Groundsel	100	98	100	90	60	100	98	90	100	80	100	50	100	100
	Guineagrass	20	30	70	10	5	20	20	25	30	80	0	30	75	25
	Itchgrass	5	20	50	15	15	35	0	10	40	50	40	65	70	70
	Johnsongrass	15	35	75	35	20	50	30	40	40	50	65	35	70	60
20	Kochia	10	5	0	5	25	10	35	40	30	60	65	20	20	20
	Mallow	50	0	65	5	30	65	60	0	5	35	40	0	10	25
	Morningglory	5	20	65	40	70	70	40	60	65	50	50	60	75	70
	Nutsedge, Purple	0	0	20	0	5	30	10	10	10	0	5	0	5	5
	Prickly Sida	70	50	65	40	98	95	80	60	60	40	40	50	65	30
25	Purslane	20	20	65	35	50	80	25	30	30	50	-	30	60	60
	Quackgrass	0	0	10	0	5	0	0	0	0	0	0	0	5	5
	Ragweed	75	75	95	70	0	80	80	70	75	80	75	75	70	70
	Russian Thistle	_	-	-	-	-	-	-	0	0	-	20	-	30	30

	Ryegrass, Italian	10	0	0	0	0	0	0	20	0	0	0	0	5	5
	Sandbur	5	25	65	5	35	50	5	10	5	60	5	65	75	50
	Signalgrass	5	35	60	5	10	35	30	40	30	35	15	5	65	20
	Sowthistle	100	98	95	100		100	98	95	100	90		100	98	95
5	Spanishneedles	40	50	75	50	70	75	60	35	50	70	65	35	65	65
J	Surinam Grass	50	60	65	35	60	75	40	75	25	65	5	-	75	75
	Sullitam Glass	50	00	03	33	00	75	40	13	23	63	J		7.5	7.5
	Table D	Comp	pound	ds		Ta	ble 1	D			Com	ooun	ds		
	31 g ai/ha	240	243	244	245	31	g a:	i/ha			240	243	244	245	
	Postemergence					Ро	steme	erge	nce						
	Barnyardgrass	80	75	80	80	Ко	chia				20	50	25	50	
	Bermudagrass	85	75	80	80	Ма	llow				10	50	50	35	
	Black Mustard	70	50	50	75	Мо	rning	gglo	ry		65	75	65	70	
	Bluegrass	5	5	0	5	Nu	tsed	ge,	Purp	le	0	20	0	5	
	Chickweed	25	35	15	5	Pr	ickl	y Si	da		35	60	25	30	
	Crabgrass, Large	40	75	70	70	Pu	rslaı	ne			0	35	25	0	
	Crabgrass, Naked	_	-	-	_	Qu	ackg:	rass			25	35	20	20	
	Dallisgrass	5	75	40	65	Ra	gweed	b			70	65	65	70	
	Dayflower, VA	35	35	30	20	Ru	ssiaı	n Th	istl	е	35	20	20	25	
	Field Bindweed	60	65	20	50	Ry	egras	ss,	Ital	ian	0	0	5	5	
	Foxtail, Green	95	80	75	85	Sa	ndbu:	r			70	75	70	65	
	Goosegrass	70	65	50	70	Si	gnal	gras	S		20	50	20	10	
	Groundsel	100	98	100	95	So	wthi	stle			98	90	75	95	
	Guineagrass	40	70	70	75	Sp	anisl	nnee	dles		65	60	65	65	
	Itchgrass	75	75	60	70	Su	rinar	n Gr	ass		70	75	75	75	
	Johnsongrass	70	70	70	70										
	Table D				Comm	01100	1 ~								
		47	E 1	E 0	Comp			07	112	100	222				
	16 g ai/ha	47	51	52	59	66	85	0/	113	128	233				
10	Postemergence	7.0	C.E.	7.5	4.0	2.5	2.0	2.5	C.F.	2.5	C.F.				
10	Barnyardgrass	70	65	75	40	35	30	35	65	35	65				
	Bermudagrass	50	65	75	35	5	65	65	65	70	70				
	Black Mustard	95	70	65	10	0	35		100	95	20				
	Bluegrass	0	0	15	0	0	0	0	0	0	0				
1.7	Chickweed	50	_	75	_	_	_	75	_	60	_				
15	Crabgrass, Large	20	25	65	35	20	60	40	60	40	20				
	Crabgrass, Naked	20	35	70	20	-	-	50	50	35	30				
	Dallisgrass	5	20	60	10	35	15	25	10	10	0				
	Dayflower, VA	10	10	5	25	0	20	10	20	50	15				

	Field Bindweed	35	5	50	5	0	65	0	50	50	10
	Foxtail, Green	5	10	70	0	20	20	5	25	25	5
	Goosegrass	40	35	65	20	50	40	30	40	35	40
	Groundsel	100	85	100	70	-	100	98	90	100	30
5	Guineagrass	10	20	50	10	5	10	10	25	20	20
	Itchgrass	0	0	25	0	10	30	0	0	0	50
	Johnsongrass	5	20	65	30	0	35	20	40	35	20
	Kochia	0	5	0	5	-	0	25	25	20	10
	Mallow	35	0	50	0	25	60	40	0	5	0
10	Morningglory	5	0	50	0	65	70	40	50	65	50
	Nutsedge, Purple	0	0	0	0	0	5	0	0	0	0
	Prickly Sida	60	50	65	40	-	-	70	50	50	30
	Purslane	20	10	65	35	-	75	10	30	30	30
	Quackgrass	0	0	5	0	0	0	0	0	0	0
15	Ragweed	75	60	90	70	0	80	70	70	-	65
	Russian Thistle	20	0	-	-	-	-	-	0	0	0
	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0
	Sandbur	5	5	65	5	-	10	5	5	5	30
	Signalgrass	0	5	50	5	0	20	20	5	0	0
20	Sowthistle	90	95	80	70	35	100	90	90	100	90
	Spanishneedles	35	35	75	30	65	75	60	35	35	35
	Surinam Grass	35	50	-	30	-	-	30	60	_	30
	Table D Comp	ound				ŗ	Table	D		Con	mpound
	250 g ai/ha	243				:	250 g	ai/	/ha		243
	Preemergence						Preeme	erge	ence		
	Barnyardgrass	100]	Kochia	a			100
	Bermudagrass	100				I	Mallo	N			98
	Black Mustard	100				I	Morni	ngg]	ory		100
	Bluegrass	100]	Nutse	dge,	Pu	rple	100
	Crabgrass, Large	100				:	Prick	ly S	Sida		100
	Crabgrass, Naked	100				:	Pursla	ane			100
	Dallisgrass	100				(Quack	gras	ss		98
	Dayflower, VA	100]	Ragwe	ed			100
	Field Bindweed	100]	Russia	an I	his	tle	100
	Foxtail, Green	100]	Ryegra	ass,	Ita	aliar	n 100
	Goosegrass	100					Sandbı	ır			100
	Guineagrass	100					Signal	lgra	ass		100
	Itchgrass	100				:	Spania	shne	eedl	es	100

	Johnsongrass	100					Suri	nam (Gras	S	1	00
	Table D				Сс	ompoi	ınds					
	125 g ai/ha	47	51	52	59	66	85	87	113	128	233	243
	Preemergence											
	Barnyardgrass	5	10	10	10	75	98	95	35	15	40	100
5	Bermudagrass	100	30	100	90	5	100	98	85	75	85	100
	Black Mustard	100	100	100	100	80	100	100	100	95	65	100
	Bluegrass	35	0	20	30	0	15	35	0	25	40	95
	Chickweed	_	_	95	_	98	100	-	-	-	_	_
	Crabgrass, Large	95	5	98	65	98	100	100	95	-	90	100
10	Crabgrass, Naked	98	0	80	95	25	98	100	100	75	65	100
	Dallisgrass	75	90	95	75	95	98	98	100	98	35	100
	Dayflower, VA	50	0	40	35	5	95	65	65	25	100	100
	Field Bindweed	35	0	50	60	20	98	70	90	98	85	100
	Foxtail, Green	0	0	15	0	5	70	10	20	0	0	100
15	Goosegrass	75	40	98	80	50	98	100	95	90	100	100
	Guineagrass	0	75	_	0	65	75	75	100	0	0	100
	Itchgrass	0	0	5	20	0	50	20	0	20	20	50
	Johnsongrass	75	70	95	35	30	95	70	10	65	65	100
	Kochia	100	50	35	0	90	95	100	100	50	80	100
20	Mallow	98	65	-	65	75	98	100	90	100	60	80
	Morningglory	65	100	100	80	95	100	95	90	90	95	98
	Nutsedge, Purple	35	5	40	80	70	95	75	80	70	5	100
	Prickly Sida	100	35	100	65	90	100	100	90	30	70	100
	Purslane	100	100	100	100	100	100	100	100	100	100	100
25	Quackgrass	0	0	20	0	0	20	0	0	0	0	85
	Ragweed	100	95	98	100	0	100	98	98	100		100
	Russian Thistle	100	75	-	100	-	-	100			100	
	Ryegrass, Italian	0	0	15	20	0	20	30	20	0	20	98
2.0	Sandbur	90	75	98	0	80	98	95	90	20		100
30	Signalgrass	90	10	90	5	5	95	75	90	5	35	95
	Sowthistle		100	100	100	0	100	100		100	100	_
	Spanishneedles	95	98	98	90	95	100	98	95	100		100
	Surinam Grass	-	-	98	100		100	100	95	90	100	100
2.5	Table D	_	_	_		ompoi		_				
35	62 g ai/ha	47	51	52	59	66	85	87	113	128	233	243
	Preemergence											

	Barnyardgrass	5	0	0	0	5	95	50	0	5	5	100	
	Bermudagrass	50	0	90	40	5	100	98	70	65	85	100	
	Black Mustard	80	75	80	60	35	98	100	80	85	20	100	
	Bluegrass	0	0	0	15	0	0	25	0	25	25	40	
5	Chickweed	_	_	_	_	90	100	_	_	_	_	_	
	Crabgrass, Large	5	5	75	35	50	100	95	95	60	25	100	
	Crabgrass, Naked	60	0	20	65	10	95	100	90	0	65	100	
	Dallisgrass	65	10	50	65	5	95	80	50	65	0	100	
	Dayflower, VA	50	_	0	35	0	90	65	50	10	100	100	
10	Field Bindweed	0	0	20	20	0	70	40	65	35	85	100	
	Foxtail, Green	0	0	0	0	0	40	0	0	0	0	35	
	Goosegrass	5	40	80	20	30	75	95	75	65	98	100	
	Guineagrass	0	0	50	0	0	70	50	100	0	0	100	
	Itchgrass	0	0	0	0	0	35	20	0	0	0	25	
15	Johnsongrass	0	20	75	10	0	80	20	10	15	20	100	
	Kochia	100	0	25	0	65	75	100	100	50	20	80	
	Mallow	65	0	-	65	5	95	80	5	70	0	50	
	Morningglory	20	30	0	0	90	90	80	60	0	95	_	
	Nutsedge, Purple	10	5	30	20	35	95	50	20	0	0	20	
20	Prickly Sida	65	20	50	5	5	100	100	70	25	0	100	
	Purslane	95	65	90	100	60	100	100	100	100	100	95	
	Quackgrass	0	0	0	0	0	15	0	0	0	0	35	
	Ragweed	100	65	70	90	0	100	98	80	90	95	100	
	Russian Thistle	50	75	-	90	-	-	90	100	95	75	100	
25	Ryegrass, Italian	0	0	0	0	0	10	0	0	0	0	60	
	Sandbur	5	5	5	0	10	60	50	65	20	50	100	
	Signalgrass	10	0	50	0	5	75	75	0	0	10	75	
	Sowthistle	100	98	80	100	0	100	100	100	100	100	-	
	Spanishneedles	95	90	95	0	85	98	85	-	90	85	100	
30	Surinam Grass	0	100	98	100	95	100	95	-	80	65	100	
	Table D				Сс	ompoi	ınds						
	31 g ai/ha	47	51	52	59	66	85	87	113	128	233	243	
	Preemergence												
	Barnyardgrass	0	0	0	0	0	75	5	0	0	0	60	
35	Bermudagrass	25	0	70	0	0	100	65	50	0	5	75	
	Black Mustard	65	50	20	40	5	60	75	0	60	0	80	
	Bluegrass	0	0	0	0	0	0	20	0	0	0	10	
	Chickweed	-	-	-	-	20	100	-	-	-	-	-	

	Crabgrass, Large	0	5	20	35	30	98	75	30	25	5	100
	Crabgrass, Naked	0	0	0	0	0	95	80	0	0	0	100
	Dallisgrass	25	10	10	0	5	80	50	50	20	0	75
	Dayflower, VA	35	0	0	0	0	10	0	50	0	80	90
5	Field Bindweed	0	0	_	0	0	70	0	20	0	0	100
J	Foxtail, Green	0	0	0	0	0	5	0	0	0	0	20
	Goosegrass	0	20	60	5	0	75	35	25	5	95	100
	Guineagrass	0	0	-	0	0	10	0	65	0	0	100
	Itchgrass	0	0	0	0	0	15	20	0	0	0	10
10	Johnsongrass	0	0	0	0	0	65	5	0	0	0	95
10	Kochia	50	_	25	0	65	20	98	70	0	0	_
	Mallow	0	0	_	65	0	_	-	5	70	0	0
	Morningglory	0	0	0	0	0	70	_	60	0	80	90
	Nutsedge, Purple	0	0	5	20	0	75	5	10	0	0	5
15	Prickly Sida	50	20	0	0	0	100	60	35	0	0	85
10	Purslane	0	50	60	100	0	100	100	100	0	0	75
	Quackgrass	0	0	0	0	0	0	0	0	0	0	0
	Ragweed	50	50	50	50	0	95	98	50	75	70	100
	Russian Thistle	_	_	_	90	_	_	75	65	0	65	100
20	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	50
_ •	Sandbur	0	0	0	0	5	5	25	0	0	0	75
	Signalgrass	0	0	0	0	5	60	0	0	0	0	_
	Sowthistle	65	75	80	95	0	100	100	75	80	50	_
	Spanishneedles	95	0	70	0	60	98	65	0	0	50	100
25	Surinam Grass	_	98	98	90		100	50	40	35	5	100
	Table D				Comp	\alpha\land	10					
	16 g ai/ha	47	51	52	59	66	85	Ω7	113	128	233	
	Preemergence	4/	JI	52	33	00	03	07	113	120	233	
	Barnyardgrass	0	0	0	0	0	60	0	0	0	0	
30	Bermudagrass	10	0	30	0	0	80	65	50	0	5	
30	Black Mustard	0	0	0	20	0	50	75	0	60	0	
	Bluegrass	0	0	0	0	0	0	20	0	0	0	
	Chickweed	_	_	_	_	0	90	_	_	_	_	
	Crabgrass, Large	0	0	0	0	15	95	50	20	0	0	
35	Crabgrass, Naked	0	0	0	0	0	0	-	0	0	0	
	Dallisgrass	0	0	5	0	0	50	50	5	0	0	
	Dayflower, VA	35	0	0	_	0	5	0	50	_	0	
	Field Bindweed	0	0	20	0	0	50	0	0	0	0	
	I I CIG DILIGMEEG	U	J	20	U	O	50	U	U	U	U	

388

	Foxtail, Green	0	0	0	0	0	0	0	0	0	0
	Goosegrass	0	20	5	0	0	65	35	25	0	70
	Guineagrass	0	0	0	0	0	0	0	0	0	0
	Itchgrass	0	0	0	0	0	10	0	0	0	0
5	Johnsongrass	0	0	0	0	0	50	0	0	0	0
	Kochia	0	0	-	0	0	5	65	-	0	0
	Mallow	0	0	-	0	0	80	-	0	_	0
	Morningglory	0	0	0	0	0	-	10	60	_	0
	Nutsedge, Purple	0	0	0	0	0	70	0	0	0	0
10	Prickly Sida	0	0	0	0	0	90	50	0	0	0
	Purslane	0	0	0	65	0	80	70	90	0	0
	Quackgrass	0	0	0	0	0	0	0	0	0	0
	Ragweed	0	35	30	0	0	90	30	0	0	50
	Russian Thistle	0	_	0	_	-	-	50	0	-	50
15	Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0
	Sandbur	0	0	0	0	0	5	0	0	0	0
	Signalgrass	0	0	0	0	0	5	0	0	0	0
	Sowthistle	65	40	0	0	0	100	98	50	80	0
	Spanishneedles	0	0	35	0	0	90	0	0	0	0
20	Surinam Grass	0	90	0	5	0	98	0	_	0	0

TEST D1

25

30

35

Seeds of plant species selected from bermudagrass (Cynodon dactylon), Surinam grass (Brachiaria decumbens), large crabgrass (Digitaria sanguinalis), green foxtail (Setaria viridis), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), kochia (Kochia scoparia), morningglory (pitted morningglory, Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), ragweed (common ragweed, Ambrosia elatior), black mustard (Brassica nigra), guineagrass (Panicum maximum), dallisgrass (Paspalum dilatatum), barnyardgrass (Echinochloa crus-galli), sandbur (southern sandbur, Cenchrus echinatus), sowthistle (common sowthistle, Sonchus oleraceous), prickly sida (Sida spinosa), Italian ryegrass (Lolium multiflorum), purslane (common purslane, Portulaca oleracea), signalgrass (broadleaf signalgrass, Brachiaria platyphylla), groundsel (common groundsel, Senecio vulgaris), chickweed (common chickweed, Stellaria media), dayflower (Virginia (VA) dayflower, Commelina virginica), bluegrass (annual bluegrass, Poa annua), naked crabgrass (Digitaria nuda), itchgrass (Rottboellia cochinchinensis), quackgrass (Elytrigia repens), field bindweed (Convolvulus arvensis), spanishneedles (Bidens bipinnata), mallow (common mallow, Malva sylvestris), and Russian thistle (Salsola kali) were planted into a blend of loam soil and sand and treated preemergence with test chemicals formulated in a nonphytotoxic solvent mixture which included a surfactant. At the same time, plants from these

389

weed species were treated with postemergence applications of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Treated plants and controls were maintained in a greenhouse for 14 to 21 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D1, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table D1	Comp	pound	ds		Table D1	Comp	oounc	ds	
250 g ai/ha	264	295	337	345	125 g ai/ha	264	295	337	345
Postemergence					Postemergence				
Barnyardgrass	80	80	85	90	Barnyardgrass	80	75	80	90
Bermudagrass	75	75	75	75	Bermudagrass	75	75	75	75
Black Mustard	100	98	100	100	Black Mustard	95	95	98	100
Bluegrass	20	10	0	25	Bluegrass	20	10	0	25
Chickweed	75	95	90	90	Chickweed	75	95	90	90
Crabgrass, Large	70	75	75	75	Crabgrass, Large	65	70	75	_
Crabgrass, Naked	70	65	70	70	Crabgrass, Naked	65	60	70	70
Dallisgrass	70	70	75	75	Dallisgrass	70	65	75	75
Dayflower, VA	75	75	75	70	Dayflower, VA	75	75	65	70
Field Bindweed	40	50	70	50	Field Bindweed	40	50	65	50
Foxtail, Green	100	98	98	100	Foxtail, Green	95	98	98	98
Goosegrass	70	60	60	75	Goosegrass	65	60	60	50
Groundsel	100	-	-	100	Groundsel	100	-	-	100
Guineagrass	75	65	75	75	Guineagrass	75	40	75	65
Itchgrass	75	60	70	65	Itchgrass	75	60	60	50
Johnsongrass	75	75	70	80	Johnsongrass	75	70	70	75
Kochia	25	25	35	25	Kochia	25	15	35	25
Mallow	35	70	80	75	Mallow	30	70	75	70
Morningglory	75	95	90	95	Morningglory	-	95	75	75
Nutsedge, Purple	35	35	65	65	Nutsedge, Purple	35	35	50	60
Prickly Sida	95	90	95	90	Prickly Sida	75	90	95	90
Purslane	30	35	65	65	Purslane	20	35	50	60
Quackgrass	30	35	50	35	Quackgrass	30	35	40	35
Ragweed	95	98	98	95	Ragweed	95	95	98	95
Russian Thistle	35	-	-	35	Russian Thistle	35	-	-	-
Ryegrass, Italian	10	20	20	10	Ryegrass, Italian	5	5	5	5
Sandbur	75	75	70	70	Sandbur	70	75	70	70
Signalgrass	80	80	75	80	Signalgrass	75	75	75	75

Sowthistle	98	100	100	100	Sowthistle 98 100 100 1	100
Spanishneedles	95	95	100	95	Spanishneedles 95 85 100	95
Surinam Grass	65	70	70	70	Surinam Grass 65 65 70	70
Table D1	Comp	pound	ds		Table D1 Compounds	
62 g ai/ha	264	295	337	345	31 g ai/ha 264 295 337 3	345
Postemergence					Postemergence	
Barnyardgrass	75	70	75	75	Barnyardgrass 70 70 75	75
Bermudagrass	75	75	70	70	Bermudagrass 75 70 70	70
Black Mustard	90	95	98	100	Black Mustard 90 70 95 1	100
Bluegrass	5	0	0	25	Bluegrass 5 0 0	15
Chickweed	70	65	75	_	Chickweed 70 60 -	75
Crabgrass, Large	65	65	75	70	Crabgrass, Large - 65 60	50
Crabgrass, Naked	65	50	65	40	Crabgrass, Naked 60 - 50	40
Dallisgrass	70	35	60	75	Dallisgrass 50 35 60	75
Dayflower, VA	75	30	25	_	Dayflower, VA 60 30 25	25
Field Bindweed	35	35	35	40	Field Bindweed 35 25 35	40
Foxtail, Green	95	95	98	95	Foxtail, Green 80 70 95	90
Goosegrass	50	50	40	50	Goosegrass 35 40 40	35
Groundsel	100	100	-	_	Groundsel 98 100 - 1	100
Guineagrass	70	35	75	40	Guineagrass 70 - 70	35
Itchgrass	65	60	60	50	Itchgrass 65 50 50	40
Johnsongrass	70	70	60	50	Johnsongrass 70 70 60	50
Kochia	25	10	25	25	Kochia 25 5 20	25
Mallow	30	60	-	70	Mallow 5 50 30	35
Morningglory	75	90	70	70	Morningglory 70 80 70	70
Nutsedge, Purple	25	35	40	50	Nutsedge, Purple 10 10 25	35
Prickly Sida	40	40	75	90	Prickly Sida 35 40 65	90
Purslane	10	0	0	30	Purslane 0 0 0	30
Quackgrass	20	30	35	35	Quackgrass 5 10 20	35
Ragweed	85	95	85	95	Ragweed 75 60 -	80
Russian Thistle	25	-	-	-	Russian Thistle 20	-
Ryegrass, Italian	5	5	5	0	Ryegrass, Italian 0 0 5	0
Sandbur	70	60	65	60	Sandbur 50 50 65	40
Signalgrass	65	75	30	65	Signalgrass 65 60 5	65
Sowthistle	98	100	100	-	Sowthistle 98 100 100	90
Spanishneedles	80	85	100	-	Spanishneedles 70 70 80	90
Surinam Grass	65	50	60	60	Surinam Grass 50 50 50	50

TEST E

5

10

15

20

25

Three plastic pots (ca. 16-cm diameter) for each application were partially filled with sterilized Tama silt loam soil comprising a 35:50:15 ratio of sand, silt and clay and 2.6% organic matter. Separate plantings for each of the three pots were as follows. Seeds from the U.S. of ducksalad (*Heteranthera limosa*), sedge (smallflower umbrella sedge, *Cyperus difformis*), ricefield bulrush (*Scirpus mucronatus*) and redstem (purple redstem, *Ammannia coccinea*), were planted into one 16-cm pot for each rate. Seeds from the U.S. of flatsedge (rice flatsedge, *Cyperus iria*), sprangletop (bearded (i.e. Brdd.) sprangletop, *Leptochloa fascicularis*), one stand of 9 or 10 water seeded rice seedlings (*Oryza sativa* cv. 'Japonica – M202'), and two stands of 3 or 4 transplanted rice seedlings (*Oryza sativa* cv. 'Japonica – M202') were planted into one 16-cm pot for each rate. Seeds from the U.S. of barnyardgrass (*Echinochloa crus-galli*), late watergrass (*Echinochloa oryzicola*), early watergrass (*Echinochloa oryzicolas*) and junglerice (*Echinochloa colona*) were planted into one 16-cm pot for each rate. Plantings were sequential so that crop and weed species were at the 2.0 to 2.5-leaf stage at time of treatment.

Potted plants were grown in a greenhouse with day/night temperature settings of 30/27 °C, and supplemental balanced lighting was provided to maintain a 16-hour photoperiod. Test pots were maintained in the greenhouse until test completion.

At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Effects of treatments on rice and weeds were visually evaluated by comparison to untreated controls after 21 days. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table E	Compounds	Table E	Com	npoun	ds
500 g ai/ha	4 19	250 g ai/ha	4	19	28 218
Flood		Flood			
Barnyardgrass	60 85	Barnyardgras	ss 60	70	0 95
Bulrush, Ricefie	ld 80 75	Bulrush, Ric	cefield 80	70	65 100
Ducksalad	100 100	Ducksalad	100	100	100 100
Flatsedge, Rice	90 100	Flatsedge, R	Rice 40	95	45 75
Junglerice	50 80	Junglerice	25	65	0 100
Redstem	85 85	Redstem	80	90	90 80
Rice, Transplant	ed 15 65	Rice, Transp	planted 0	40	15 10
Rice, Water Seed	ed 50 95	Rice, Water	Seeded 20	70	85 35
Sedge, Umbrella	100 100	Sedge, Umbre	ella 95	100	100 100

392

Sprangletop, Brdd.	_	100		Sp	rangletop, Brdd	100	-	95
Watergrass, Early	65	85		Wa	tergrass, Early 60	65	20	60
Watergrass, Late	60	55		Wa	tergrass, Late 15	60	0	70
Table E	Cor	npoun	ıds		Table E	Compo	unds	
125 g ai/ha	4	19	28	218	64 g ai/ha	19	28	218
Flood					Flood			
Barnyardgrass	0	60	0	30	Barnyardgrass	60	0	0
Bulrush, Ricefield	40	70	35	90	Bulrush, Ricefield	50	30	80
Ducksalad	90	95	80	95	Ducksalad	85	0	85
Flatsedge, Rice	0	40	0	70	Flatsedge, Rice	40	0	70
Junglerice	0	50	0	65	Junglerice	0	0	0
Redstem	80	90	50	75	Redstem	0	40	65
Rice, Transplanted	0	35	15	0	Rice, Transplanted	0	15	0
Rice, Water Seeded	10	40	65	20	Rice, Water Seeded	0	60	0
Sedge, Umbrella	90	100	90	100	Sedge, Umbrella	90	85	95
Sprangletop, Brdd.	-	95	-	70	Sprangletop, Brdd.	75	-	70
Watergrass, Early	0	45	0	20	Watergrass, Early	20	0	20
Watergrass, Late	0	45	0	40	Watergrass, Late	0	0	40
Table E Com	pour	nds			Table E C	ompou	ınds	
32 g ai/ha	28	218			32 g ai/ha	28	3 21	3
Flood					Flood			
Barnyardgrass	0	0			Rice, Transplante	d ()	C
Bulrush, Ricefield	20	80			Rice, Water Seede	d 45	5 1	5
Ducksalad	0	80			Sedge, Umbrella	() 8.	5
Flatsedge, Rice	0	75			Sprangletop, Brdd		- 6	5
Junglerice	0	0			Watergrass, Early)	0
Redstem	0	65			Watergrass, Late	() 2	0

TEST F

5

10

Test F evaluated the effect of combining compound 2 with bromoxynil. The test species for this experiment was Russian thistle (*Salsola iberica*), which was prepared by sowing seeds into a blend of loam soil and sand. Test chemicals were formulated in a non-phytotoxic solvent mixture that included a surfactant and applied postemergence to plants ranging in height from 12 to 20 cm.

Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of 16 hours; day and night temperatures ranged between 24–30 °C and 19–21

°C, respectively. Treatments consisted of Compound 2, bromoxynil, or their combination, using a spray volume of 457 L/ha. Each treatment was replicated three times. Treated plants and untreated controls were maintained in a greenhouse for 15 days, after which time all plants were visually evaluated and compared to the untreated controls. Plant responses were calculated as the mean of the three replicates and summarized in Table F. Visual evaluations were based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. Colby's Equation was used to determine the herbicidal effects expected from the mixtures. Colby's Equation (Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations," *Weeds*, 15(1), pp 20–22 (1967)) calculates the expected additive effect of herbicidal mixtures, and for two active ingredients is of the form:

5

10

15

20

25

$$P_{a+b} = P_a + P_b - (P_a P_b / 100)$$

wherein P_{a+b} is the percentage effect of the mixture expected from additive contribution of the individual components:

P_a is the observed percentage effect of the first active ingredient at the same use rate as in the mixture, and

P_b is the observed percentage effect of the second active ingredient at the same use rate as in the mixture.

The results and additive effects expected from Colby's Equation are listed in Table F1.

Table F1 – Observed and Expected Results from Compound 2, Bromoxynil, or their combination.

Postemergence	Application Rate	Russian	Thistle
((g a.i./ha)*		
Cmpd 2	Bromoxynil	Obsd.	Exp.
62	_	42	-
125	_	52	_
-	70	8	_
-	140	13	-
62	70	93	47
125	140	95	58

^{*}Application rates are grams of active ingredient per hectare (g a.i./ha).

The results in Table D1 suggest the combination of Compound 2 and bromoxynil have a synergistic action based on the observed injury being greater than the expected values as calculated by the Colby Equation for an additive effect.

[&]quot;Obsd." is observed effect. "Exp." is expected effect calculated from Colby's Equation.

TEST G

5

10

15

20

25

Test species for this experiment was rice, japonica transplanted (*Oryza sativa var. japonica* ORYSA or RYX) common barnyardgrass (*Echinochloa crus-galli ECHCG or BYG*), smallflower umbrella sedge (*Cyperus difformis CYPDI or CPD*), and ducksalad (*Heteranthera limosa HTLI or DSA*). Transplanted rice plugs were planted in 11-cm (4-inch) commercial grade pots filled with steam pasteurized Tama soil. Two additional pots were filled with broadleaf, sedge and grass weed seeds and grown to the 2.0 leaf stage. The pots were watered from the top with domestic tap water, to keep the soil saturated until plants reached the 2.0 – 2.5 leaf stage. Water levels were brought up to 3 cm over the soil surface before treatment with test compounds. The maximum/minimum temperatures were maintained at 85°F/78°F in a day/night cycle to provide sufficient supplemental light to maintain a photoperiod of approximately 16 hours.

Test chemicals were formulated in a non-phytotoxic solvent mixture that included a surfactant to obtain a stock solution. Appropriate volumes of the stock solution were then transferred to individual pots to obtain the desired rate of application. Compund 118 was tested at 4 rates (32, 64, 125 and 250 grams of active ingredient per hectare (gai/ha)] and dimethametryne was tested at 4 rates [64, 125, 250 and 500 grams of active ingredient per hectare (gai/ha)], alone and in a mixture. Experimental controls were not treated.

Following treatment application, permanent flood conditions (i.e. water depth of 3 cm) were maintained until 14 days after treatment (DAT). All treatment effects were compared to untreated controls by visual rating. Rice plant response and weed control was evaluated at 14 days after treatment (DAT) by visual observation. A visual rating scale of 0 to 100 percent in 5% increments was used. Zero (0%) indicates no visual plant response and 100% indicates plant death. The visual rating for each treatment, expressed numerically as percent effect of crop response or weed control, combines into one value all of the effects observed such as growth reduction, chlorosis, and abnormal growth.

Table G1 – Observed and Expected Results from Compound 118, Dimethametryne (DMA), or their Combination.

Treatment	Rate (g ai/ha)	RYX Mean	RYX Colby's	BYG Mean	BYG Colby's	CPD Mean	CPD Colby's	DSA Mean	DSA Colby's
Cmpd. 118	32	0	•••	0	•••	10	•••	7	
	64	0	•••	10	•••	42	•••	30	
	125	0	•••	25	•••	72	•••	33	
	250	7	•••	53	•••	85	•••	77	
DMA	64	0	•••	0	•••	0	•••	0	
	125	0	•••	0	•••	10	•••	0	
	250	12	•••	0	•••	77	•••	10	
	500	12		13		92		93	

395

Cmpd. 118	32+64	10	0	0	0	27	10	25	7
+DMA	32+125	8	0	7	0	67	19	63	7
	32+250	7	12	18	0	97	79	91	16
	32+500	18	12	0	13	98	93	95	94
	64+64	3	0	18	10	75	42	63	30
	64+125	0	0	10	10	88	48	75	30
	64+250	7	12	23	10	99	86	98	37
	64+500	18	12	7	22	100	95	100	95
	125+64	7	0	32	25	90	72	78	33
	125+125	0	0	28	25	87	75	82	33
	125+250	15	12	33	25	98	93	98	40
	125+500	22	12	27	35	100	98	97	96
	250+64	13	7	68	53	97	85	95	77
	250+125	15	7	38	53	100	87	100	77
	250+250	22	18	77	53	100	97	100	79
	250+500	28	18	80	60	100	99	100	98

TEST H

5

10

15

20

Seeds of test plants consisting of winter wheat (TRZAW, Triticum aestivum), winter barley (HORVW, *Hordeum vulgare*), and green foxtail (SETVI, *Seteria viridis*) were planted into a soil-less medium and treated postemergence using the test chemicals formulated in a non-phytotoxic solvent mixture that included a surfactant. Plants ranged in height from 6 to 10 cm at the time of application.

Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of about 14 hours; daytime and nighttime temperatures were about 23–26 °C and 16–19 °C, respectively. Balanced fertilizer was applied through the watering system. Treatments consisted of Compound 59 or 75 and herbicide safeners alone and in combination using a spray volume of 458 L/ha. Each treatment was replicated three times. Treated plants and controls were maintained in a greenhouse and treated plants were visually evaluated and compared to controls at 6 or 12 days after treatment (DAT). Plant response ratings were calculated as the means of the three replicates based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. Colby's Equation was used to determine the herbicidal effects expected from the mixtures as described in Test F above.

The observed effects ("Obsd.") and additive effects expected from Colby's Equation ("Exp.") are listed in Tables F1 through F4. Application rates in these tables are expressed in units of grams of active ingredient per hectare (g a.i./ha). The application rate of each safener was tested alone to confirm the absence of herbicidal activity on the test species when applied postemergence at 62 g ai/ha.

396

Table H1 – Observed and Expected Results from Compound 59 Alone and in Combination with Cloquintocet-mexyl

Postem	Postemergence		TRZAW		HORVW		ΓVI
Application Rate (g a.i./ha)		6 DAT		6 DAT		12 DAT	
Cmpd 59	cloquintocet	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
125	-	1	1	3	1	73	-
250	-	8	1	30	-	80	-
-	62	0	ı	0	1	0	-
125	62	0	1	0	3	77	73
250	62	1	8	1	30	87	80

Table H2 – Observed and Expected Results from Compound 59 Alone and in Combination with Mefenpyr-diethyl

Postemergence		TRZ	TRZAW		RVW	SE	ΓVI
Application Rate (g a.i./ha)		6 DAT		6 DAT		12 DAT	
Cmpd 59	mefenpyr	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
125	-	1	1	3	1	73	-
250	-	8	1	30	1	80	-
-	62	0	1	0	1	0	-
125	62	0	1	0	3	77	73
250	62	0	8	0	30	87	80

Table H3 – Observed and Expected Results from Compound 75 Alone and in Combination with Cloquintocet-mexyl

Postem	Postemergence			HOF	RVW	SE	ΓVI
Application Rate (g a.i./ha)		6 DAT		6 DAT		12 DAT	
Cmpd 75	cloquintocet	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
125	-	8	1	17	-	83	1
250	-	18	1	18	1	88	-
-	62	0	ı	0	1	0	-
125	62	2	8	3	17	85	83
250	62	7	18	7	18	87	88

397

Table H4 – Observed and Expected Results from Compound 75 Alone and in Combination with Mefenpyr-diethyl

Postemergence		TRZ	TRZAW		RVW	SE	ΓVI
Application Rate (g a.i./ha)		6 DAT		6 DAT		12 DAT	
Cmpd 75	mefenpyr	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
125	-	8	1	17	1	83	-
250	-	18	1	18	-	88	-
-	62	0	ı	0	1	0	-
125	62	1	8	1	17	83	83
250	62	8	18	10	18	88	88

Table H5 – Observed and Expected Results from Compound 344 Alone and in Combination with Cloquintocet-mexyl

Postemergence		TRZ	TRZAW		HORVW		EFA
Application Rate (g ai/ha)		6 DAT		6 DAT		12 DAT	
Cmpd 344	cloquintocet	Obsd.	Exp.	Obsd.	Obsd. Exp.		Exp.
62	-	23	1	45	-	78	-
125	-	33	1	55	-	88	-
-	62	0	1	0	-	0	-
62	62	13	23	23	45	85	78
125	62	23	33	38	55	93	88

Table H6 – Observed and Expected Results from Compound 344 Alone and in Combination with Mefenpyr-diethyl

Postem	Postemergence			HORVW		AVEFA	
Application Rate (g ai/ha)		6 DAT		6 DAT		12 DAT	
Cmpd 344	mefenpyr	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	23	1	45	-	83	1
125	-	33	1	55	1	88	1
-	62	0	ı	0	-	0	i
62	62	10	23	13	45	78	83
125	62	23	33	25	55	83	88

PCT/US2011/027737

TEST I

5

10

15

20

25

30

Seeds of winter wheat (TRZAW, Triticum aestivum) were placed into individual wells of a 96-well tray (22 cm x 14.5 cm x 3 cm) containing glasswool as an inert growth medium. One day after sowing, individual wells containing wheat seeds were treated with a 225 microliter dispersion containing a test compound at a rate of 1000 g ai/ha and dimethenamid-P (formulated as Outlook®) at 200 g ai/ha or metsulfuron-methyl (formulated as Ally®) at 600 g ai/ha. Test compounds were initially dissolved in dimethylsulfoxide, with a final treatment concentration of dimethylsulfoxide at 2.45% (v/v). Herbicide rates for dimethenamid-P and metsulfuron-methyl were selected based on experiments shown to induce 80% injury to wheat plants when applied alone. Experimental controls included plants not treated with either test compound or herbicide (untreated controls) or plants treated with herbicide only (treated controls). Treated controls included the application of multiple doses of dimethenamid-P at 1.6, 8, 40, 200, or 1000 g ai/ha or metsulfuron-methyl at 4.8, 24, 120, 600, or 3000 g ai/ha. Each test compound and herbicide combination was treated with two replications. Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of 14 hours; day and night temperatures were 22–26 °C and 19–21 °C, respectively. Plants were sub-irrigation twice daily with water containing a balanced fertilizer. Wheat plants were rated visually based on symptoms of injury five days after treatment, and given a rating of "active" or "not active". A rating of "active" was defined as a treatment combination resulting in \leq 50% injury to wheat, whereas a rating of "not active" was defined as >50% injury.

The following compounds showed a rating of "active" in this test when safening dimethenamid-P: 32Q, 15S, 545S, 29R, 31R, 25S, 35S, 35R, 256Q, 87S, 2S, 9S, 7S, 17S, 32R, 50R, 101S, 206S, 212S, 546S, 547R, 79R, 81Q, 89Q, 103S, 107S, 130S, 549S, 344R, 470S, 356S, 550S, 551S, 552S, 553Q, 554R, 555S, 163Q, 338S, 339R, 377S, 503Q, 374S, 551R, 552Q, 558S, 339S, 376Q, 344S, 344Q, 345R, 337S, 336R, 339Q, 355S and 341S.

The following compounds of showed a rating of "active" in this test when safening metsulfuron-methyl: 32Q, 15S, 545S, 29R, 31R, 25S, 35S, 35R, 256Q, 87S, 2S, 11S, 9S, 17S, 18Q, 20Q, 32R, 50R, 101S, 206S, 212S, 546S, 547R, 79R, 81R, 81Q, 89S, 89Q, 89R, 103S, 94S, 107S, 121R, 125R, 146R, 162R, 189R, 198R, 130S, 130R, 203S, 207S, 209S, 218S, 218R, 546R, 271R, 559R, 548S, 549S, 344R, 470S, 356S, 550S, 551S, 552S, 553Q, 554R, 555S, 163Q, 338S, 339R, 377S, 503Q, 374S, 556S, 557S, 550R, 551R, 551Q, 550Q, 552Q, 558S, 376Q, 344S, 344Q, 324S, 345R, 345Q, 337S, 336R, 341R, 377R, 339Q, 355S, 180R, 341S and 355R.

35 TEST J

Seeds of winter wheat (TRZAW, *Triticum aestivum*), winter barley (HORVW, *Hordeum vulgare*), maize (ZEAMD, *Zea mays*), and rice (ORYSA, *Oryza sativa*) were planted into a mixture of soil and sand. Test compounds were applied either preemergence

(PRE) or postemergence (POST) at 500 g ai/ha to the soil or plants, respectively, which were formulated in a non-phytotoxic solvent mixture that included a surfactant. For POST applications, plants ranged in height from 8 to 12 cm. Immediately after treatment, each test unit was separated and treated a second time with herbicides specific to each plant species as follows: maize was treated with rimsulfuron (provided by Matrix[®]1) at 100 g ai/ha or dimethenamid-P (provided by Outlook[®]2) at 2500 g ai/ha either POST or PRE, respectively; winter wheat was treated with flupyrsulfuron-methyl (provided by Lexus[®]3) at 500 g ai/ha or dimethenamid-P at 250 g ai/ha either POST or PRE, respectively; winter barley was treated with flupyrsulfuron-methyl at 100 g ai/ha or dimethenamid-P at 400 g ai/ha either POST or PRE, respectively; and rice was treated with azimsulfuron (provided by Gullivertm 4) at 60 g ai/ha or flufenacet (provided by Define^{tm 5}) at 250 g ai/ha either POST or PRE, respectively. Experimental controls included plants not treated with either test compound or herbicide (untreated controls) or plants treated with herbicide only (treated controls).

5

10

15

20

25

Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of 14 hours; day and night temperatures were 22–26 °C and 19–21 °C, respectively. Balanced fertilizer was applied through the watering system. Plants were maintained in a greenhouse and visually evaluated and compared to controls 14 days after treatment (DAT). Plant response ratings were calculated as the mean of the two replicates based on a scale of 0 to 100 where 0 is no effect and 100 is complete injury. Herbicide safening is noted when the test compound reduces the injury to plants caused by the herbicide when compared with control plants treated with herbicide only.

¹E.I DuPont de Nemours and Company, Crop Protection, 1007 Market Street, Wilmington, DE 19898. ²BASF Corporation, 26 Davis DR, Research Triangle Park, NC 27709. ³DuPont (UK) Limited, Crop Protection Products, Wedgwood Way, Stevenage, Herts. SG1 4QN. ⁴DuPont (Australia) Limited, 7 Eden Park Drive, Macquarie Park NSW 2113. ⁵Bayer CropScience Inc., Suite 100, 3131 114th Avenue SE, Calgary, Alberta T2Z3X2.

Table J – Observed results of plants 14 DAT identifying safener responses.

			Treated Control	Cmpd. 15S	Cmpd. 32Q				
Plant	Placement	Herbicide	Percent visual injury						
ZEAMD	POST	Rimsulfuron	65	50*	65				
	PRE	Dimethenamid-P	50	25*	50				
TRZAW	POST	Flupyrsulfuron-methyl	30	0*	0*				
	PRE	Dimethenamid-P	35	20*	35				
HORVW	POST	Flypyrsulfuron	60	15*	20*				

4	Ŋ.	n
_	.,	٠,

	PRE	Dimethenamid-P	60	40*	65
ORYSA	POST	Azimsulfuron	75	50*	50*
	PRE	Flufenacet	85	30*	90

An asterisk (*) indicates reduction of herbicide injury through prior application of test compounds when compared with plants treated with herbicides only (treated controls).

TEST K

5

10

15

20

Seeds of plant species selected from wheat (Triticum aestivum), corn (Zea mays), soybean (Glycine max), velvetleaf (Abutilon theophrasti), lambsquarters (Chenopodium album), wild poinsettia (Euphorbia heterophylla), palmer pigweed (Amaranthus palmeri), common waterhemp (Amaranthus rudis), ladysthumb smartweed (Polygonum persicaria), surinam grass (Brachiaria decumbens), large crabgrass (Digitaria sanguinalis), Brazilian crabgrass (Digitaria horizontalis), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), ragweed (common ragweed, Ambrosia elatior), pigweed (Amaranthus retroflexus), barnyardgrass (Echinochloa crus-galli), sandbur (southern sandbur, Cenchrus echinatus), arrowleaf sida (Sida rhombifolia), Italian ryegrass (Lolium multiflorum), dayflower (Virginia (VA) dayflower, Commelina virginica), field bindweed (Convolvulus arvensis), and hairy beggarticks (Bidens pilosa) were treated postemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Treated plants and controls were maintained in a greenhouse for 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table K, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table K	Compound	S		Table K	Compo	ounds	5	
250 g ai/ha	295 2	98	345	125 g ai/ha	295	298	328	345
Postemergence				Postemergence				
Arrowleaf Sida	98	-	_	Arrowleaf Sida	95	-	65	-
Barnyardgrass	100	-	_	Barnyardgrass	98	-	75	-
Corn	70	15	75	Corn	30	-	0	75
Crabgrass, Brazi	.1 100	-	-	Crabgrass, Brazil	98	-	80	-
Crabgrass, Large	· –	80	100	Crabgrass, Large	-	65	-	98
Dayflower, VA	98	-	_	Dayflower, VA	98	-	95	-
Field Bindweed	80	-	_	Field Bindweed	75	-	50	-
Foxtail, Giant	-	35	100	Foxtail, Giant	-	30	-	100
Goosegrass	_	80	98	Goosegrass	-	75	-	98
Hairy Beggartick	s 100	_	_	Hairy Beggarticks	100	_	80	_

Johnsongrass	_	40	100		Johnsongrass	_	40	_	10	0
Lambsquarters	_	100			Lambsquarters	_	100		10	
Palmer Amaranth	98		_		Palmer Amaranth	95		75		_
Panicum, Fall	100	_	_		Panicum, Fall	98	_	25		_
Pigweed		98	100		Pigweed	_	98		10	0
Poinsettia, Wild	100	_	_		Poinsettia, Wild	90	_	25		_
Ragweed	_	100	100		Ragweed	_	98	_	10	0
Ryegrass, Italian	60	_	_		Ryegrass, Italian	30	_	0		_
Sandbur	85	_	_		Sandbur	85	_	15		_
Smartweed	100	_	_		Smartweed	98	_	40		_
Soybean	90	75	95		Soybean	65	60	40	9	5
Surinam Grass	_	20	98		Surinam Grass	_	10	_	9	5
Velvetleaf	_	100	100		Velvetleaf	_	100	_	10	0
Waterhemp	100	_	_		Waterhemp	98	_	75		_
Wheat	_	10	50		Wheat	_	0	_	3	5
Table K	Compo	ounds	3		Table K	Cor	npou:	nds		
62 g ai/ha	295	298	328	345	31 g ai/ha	29	95 2	98 3	328	345
Postemergence					Postemergence					
Arrowleaf Sida	80	-	50	_	Arrowleaf Sida		75	-	50	-
Barnyardgrass	98	-	75	_	Barnyardgrass	(95	-	35	-
Corn	10	5	0	70	Corn	-	10	5	0	70
Crabgrass, Brazil	98	-	70	_	Crabgrass, Brazil	(95	-	65	-
Crabgrass, Large	_	25	-	95	Crabgrass, Large		-	5	-	95
Dayflower, Va	98	-	25	_	Dayflower, VA	(95	_	20	-
Field Bindweed	75	-	40	_	Field Bindweed	(65	_	5	-
Foxtail, Giant	-	5	-	98	Foxtail, Giant		-	0	-	98
Goosegrass	-	60	-	98	Goosegrass		-	0	-	98
Hairy Beggarticks	98	_	70	_	Hairy Beggarticks	8	30	_	50	-
Johnsongrass	-	0	-	100	Johnsongrass		-	0	-	80
Lambsquarters	-	98	-	100	Lambsquarters		-	98	-	100
Palmer Amaranth	95	_	65	_	Palmer Amaranth	-	70	_	50	-
Panicum, Fall	95	_	0	_	Panicum, Fall	-	75	_	0	-
Pigweed	-	95	-	100	Pigweed		-	75	-	100
Poinsettia, Wild	85	-	15	-	Poinsettia, Wild	(65	-	10	-
Ragweed	-	85	-	100	Ragweed		-	70	-	100
Ryegrass, Italian	25	-	0	-	Ryegrass, Italian	-	10	-	0	-
Sandbur	65	-	5	-	Sandbur	(35	-	5	-

402

Smartweed	98	-	25	-	Smartweed	20	-	25	-
Soybean	50	40	40	95	Soybean	40	20	30	95
Surinam Grass	-	5	-	90	Surinam Grass	_	0	-	75
Velvetleaf	-	100	-	100	Velvetleaf	_	98	-	-
Waterhemp	95	-	75	_	Waterhemp	75	-	65	-
Wheat	-	0	-	35	Wheat	-	0	-	25
Table K	Compo	ounds	3						
16 g ai/ha	295	298	328	345	16 g ai/ha	295	298	328	345
Postemergence					Postemergence				
Arrowleaf Sida	65	_	35	_	Panicum, Fall	30	-	0	-
Barnyardgrass	75	_	10	_	Pigweed	_	75	_	100
Corn	0	0	0	35	Poinsettia, Wild	15	-	5	-
Crabgrass, Brazil	90	_	15	_	Ragweed	_	65	_	100
Crabgrass, Large	-	5	_	75	Ryegrass, Italian	5	-	0	-
Dayflower, VA	75	_	0	_	Sandbur	15	-	0	-
Field Bindweed	60	_	0	_	Smartweed	_	-	10	-
Foxtail, Giant	-	0	-	95	Soybean	40	10	20	90
Goosegrass	_	0	-	95	Surinam Grass	_	0	-	-
Hairy Beggarticks	80	-	20	_	Velvetleaf	_	98	-	-
Johnsongrass	-	0	-	75	Waterhemp	75	-	35	-
Lambsquarters	_	95	-	98	Wheat	_	0	-	20
Palmer Amaranth	70	-	30	_					

Test L

5

10

15

Seeds of smallflower umbrella sedge (CYPDI *Cyperus difformis*) and ducksalad (HETLI *Heteranthera limosa*) were sown on the soil surface in two separate quadrants of 11-cm (4-inch) tubs filled with steam pasteurized Tama soil. Simultaneously, plantings of japonica rice (ORYSA *Oryza sativa*) and barnyardgrass (ECHCG *Echinochloa crus-galli*) were established in separate "plug" flats. Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of approximately 16 hours; daytime and nighttime temperatures were approximately 27-30 °C and 19-22 °C, respectively. After 8 days, the japonica rice and barnyardgrass were transplanted to the two remaining quadrants of the tub, and the water level was adjusted to a final depth of 3-cm. Herbicide application timing was targeted at the 2.0 to 2.5 leaf stage in both crop and weeds and the plants were treated with test chemicals formulated in a non-phytotoxic solvent. Treated plants and controls were maintained in a greenhouse for 10 days, after which time all species were compared to controls and visually evaluated. Plant response ratings are summarized in Tables L1 through L15, and are based on a scale of 0 to 100 where 0 is no effect and 100 is

403

complete control. A dash (–) response means no test result. Colby's Equation was used to determine the herbicidal effects expected from the mixtures as described in Test F above. In Tables L1 through L15 below, the application rates are in grams of active ingredient per hectare (g a.i./ha). "Obsd." is the observed effect. "Exp." is expected effect calculated from Colby's Equation. "Cmpd." refers to the test compound listed in Index Table A.

Table L1 – Observed and Expected Results from Compound 304 Alone and in Combination with Dimethametryn

5

Application l	Rate (g a.i./ha)	OR	YSA	ECH	ICG	CY.	PDI	HE	TLI
Cmpd. 304	Dimethametryn	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	-	40	-	75	-	80	-
125	-	10	1	80	-	80	1	85	-
-	250	0	1	40	-	95	1	95	1
62	250	0	10	55	64	100	99	100	99
125	250	10	10	80	88	100	99	100	99

Table L2 – Observed and Expected Results from Compound 218 Alone and in Combination with Dimethametryn

Application	on Rate (g a.i./ha)	ORY	SA	ECH	CG	CYF	DI	НЕТ	CLI
Cmpd. 218	Dimethametryn	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	-	30	-	70	-	75	-
125	-	30	-	85	-	75	1	80	-
-	250	0	-	40	-	95	-	95	-
62	250	10	10	60	58	100	99	100	99
125	250	10	30	90	91	100	99	100	99

Table L3 – Observed and Expected Results from Compound 496 Alone and in Combination with Dimethametryn

Application l	Rate (g a.i./ha)	OR	YSA	ECH	ICG	CYPDI		HE	TLI
Cmpd. 496	Dimethametryn	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	60	-	80	-	90	-
125	-	0	1	80	1	85	1	95	-
-	250	0	1	40	1	95	1	95	-
62	250	0	0	40	76	100	99	100	100
125	250	0	0	85	88	100	99	100	100

404

Table L4– Observed and Expected Results from Compound 91 Alone and in Combination with Dimethametryn

Application 1	Rate (g a.i./ha)	ORY	YSA	ECHCG		CY.	PDI	HE'	TLI
Cmpd. 91	Dimethametryn	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	62	0	-	30	-	70	-	70
125	-	125	0	1	40	-	75	1	75
-	250	0	1	40	-	95	1	95	-
62	250	0	0	50	58	100	99	100	99
125	250	0	0	80	64	100	99	100	99

5 Table L5 – Observed and Expected Results from Compound 464 Alone and in Combination with Dimethametryn

Application l	Rate (g a.i./ha)	OR	ORYSA		ECHCG CYPDI		HE'	ΓLI	
Cmpd. 464	Dimethametryn	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	20	-	60	-	60	-
125	-	30	-	30	-	70	1	70	-
-	250	0	1	40	-	95	1	95	-
62	250	0	0	55	52	100	98	100	98
125	250	0	30	60	58	100	99	100	99

Table L6 – Observed and Expected Results from Compound 304 Alone and in Combination with Bensulfuron-methyl

Application	Rate (g a.i./ha)	ORY	YSA	ECH	HCG	CY.	PDI	HE	TLI
Cmpd. 304	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	-	40	-	75	-	80	-
125	-	10	1	80	-	80	-	85	-
-	16	0	1	30	-	80	-	80	-
62	16	0	10	55	58	90	95	95	96
125	16	20	10	80	86	90	96	95	97

405

Table L7 – Observed and Expected Results from Compound 218 Alone and in Combination with Bensulfuron-methyl

Application	Rate (g a.i./ha)	ORY	YSA	ECH	HCG	CY.	PDI	HE'	TLI
Cmpd. 218	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	-	30	-	70	-	75	-
125	-	30	1	85	-	75	1	80	-
-	16	0	1	30	-	80	1	80	1
62	16	0	10	30	51	75	94	95	95
125	16	20	30	80	90	100	95	95	96

Table L8 – Observed and Expected Results from Compound 496 Alone and in Combination with Bensulfuron-methyl

5

Application	Rate (g a.i./ha)	ORYSA		ECH	łCG	CY	PDI	HE'	ΓLI
Cmpd. 496	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	60	-	80	-	90	-
125	-	0	1	80	-	85	-	95	-
-	16	0	1	30	-	80	1	80	-
62	16	0	0	30	72	80	96	85	98
125	16	0	0	50	86	90	97	98	99

Table L9 – Observed and Expected Results from Compound 91 Alone and in Combination with Bensulfuron-methyl

Application 1	Rate (g a.i./ha)	ORY	YSA	ECH	ICG	CY.	PDI	HE	TLI
Cmpd. 91	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	30	-	70	-	70	-
125	-	0	1	40	1	75	1	75	1
-	16	0	-	30	-	80	1	80	-
62	16	0	0	40	51	80	94	85	94
125	16	0	0	60	58	80	95	85	95

Table L10 – Observed and Expected Results from Compound 464 Alone and in Combination with Bensulfuron-methyl

I	Application	Rate (g a.i./ha)	OR	YSA	ECH	łCG	CY.	PDI	HE'	TLI
	Cmpd. 464	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.

406

Application	Rate (g a.i./ha)	ORY	YSA	ECH	łCG	CY.	PDI	HE'	ΓLI
Cmpd. 464	Bensulfuron-methyl	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	20	-	60	-	60	-
125	-	30	1	30	-	70	1	70	-
-	16	0	-	30	-	80	1	80	-
62	16	0	0	30	44	75	92	80	92
125	16	0	30	55	51	85	94	98	94

Table L11 – Observed and Expected Results from Compound 304 Alone and in Combination with Azimsulfuron

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 304	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	-	40	-	75	-	80	-
125	-	10	1	80	-	80	1	85	-
-	16	0	1	80	-	80	1	80	-
62	16	40	10	80	88	85	95	90	96
125	16	40	10	90	96	85	96	90	97

Table L12 – Observed and Expected Results from Compound 218 Alone and in Combination with Azimsulfuron

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 218	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	10	1	30	-	70	1	75	-
125	-	30	1	85	-	75	1	80	-
-	16	0	ı	80	-	80	1	80	-
62	16	0	10	90	86	80	94	90	95
125	16	10	30	90	97	85	95	95	96

Table L13 – Observed and Expected Results from Compound 496 Alone and in Combination with Azimsulfuron

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 496	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	60	-	80	-	90	-
125	-	0	-	80	-	85	-	95	-

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 496	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
-	16	0	ı	80	-	80	1	80	-
62	16	0	0	90	92	85	96	90	98
125	16	0	0	90	96	98	97	95	99

Table L14 – Observed and Expected Results from Compound 91 Alone and in Combination with Azimsulfuron

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 91	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	1	30	-	70	1	70	-
125	-	0	1	40	1	75	1	75	-
-	16	0	1	80	-	80	1	80	-
62	16	0	0	90	86	90	94	95	94
125	16	0	0	90	88	90	95	98	95

5 Table L15 – Observed and Expected Results from Compound 464 Alone and in Combination with Azimsulfuron

Application Rate (g a.i./ha)		ORYSA		ECHCG		CYPDI		HETLI	
Cmpd. 464	Azimsulfuron	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
62	-	0	-	20	-	60	-	60	-
125	-	30	1	30	-	70	1	70	-
-	16	0	-	80	-	80	-	80	-
62	16	0	0	85	84	88	92	95	92
125	16	0	30	90	86	99	94	99	94

CLAIMS

What is claimed is:

1. A compound selected from Formula 1, N-oxides and salts thereof,

5 wherein

10

X is CH;

Y is C(O);

A is a radical selected from the group consisting of

$$R^{3}$$
 R^{3}
 R^{3}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{3}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{12}
 R^{10}
 R^{10}

 \mathbf{B}^1 and \mathbf{B}^3 are each independently a radical selected from the group consisting of

$$R^{14}$$
 R^{15}
and
 R^{20}
 N
 $C-1$
 $C-2$

B² is a radical selected from the group consisting of

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, 5 -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ haloalkyl, C₂-C₁₀ haloalkenyl, C₂-C₁₂ haloalkynyl, C₃-C₁₂ cycloalkyl, C₃-C₁₂ halocycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ cycloalkylalkyl, C₆-C₁₈ cycloalkylcycloalkyl, C₄-C₁₄ halocycloalkylalkyl, C₅-C₁₆ alkylcycloalkylalkyl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ halocycloalkenyl, 10 C₂-C₁₂ alkoxyalkyl, C₃-C₁₂ alkoxyalkenyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ alkoxycycloalkyl, C₄-C₁₄ cycloalkoxyalkyl, C₅-C₁₄ cycloalkoxyalkoxyalkyl, $C_3\text{-}C_{14} \text{ alkoxyalkoxyalkyl, } C_2\text{-}C_{12} \text{ alkylthioalkyl, } C_2\text{-}C_{12} \text{ alkylsulfinylalkyl, } \\$ C₂-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₄ dialkylaminoalkyl, C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂ 15 alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂ alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl, C₂-C₁₂ alkylaminocarbonyl, C₃-C₁₄ dialkylaminocarbonyl, C₄-C₁₄ cycloalkylaminocarbonyl, C2-C9 cyanoalkyl, C1-C10 hydroxyalkyl, C4-C14 cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂ 20 haloalkoxyhaloalkyl, C₄-C₁₄ halocycloalkoxyalkyl, C₄-C₁₄ cycloalkenyloxyalkyl, C₄-C₁₄ halocycloalkenyloxyalkyl, C₃-C₁₄ dialkoxyalkyl, C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl, C₂-C₁₂ haloalkoxycarbonyl, C₁-C₁₀ alkoxy, C₁-C₁₀ haloalkoxy, C₃-C₁₂ cycloalkoxy, C₃-C₁₂ halocycloalkoxy, C₄-C₁₄ cycloalkylalkoxy, C₂-C₁₀ alkenyloxy, C₂-C₁₀ 25 haloalkenyloxy, C₂-C₁₀ alkynyloxy, C₃-C₁₀ haloalkynyloxy, C₂-C₁₂ alkoxyalkoxy, C₂-C₁₂ alkylcarbonyloxy, C₂-C₁₂ haloalkylcarbonyloxy, C₄-C₁₄ cycloalkylcarbonyloxy, C₃-C₁₄ alkylcarbonylalkoxy, C₁-C₁₀ alkylthio, C₁-C₁₀ haloalkylthio, C₃-C₁₂ cycloalkylthio, C₁-C₁₀ alkylsulfinyl, C₁-C₁₀ haloalkylsulfinyl, C₁-C₁₀ alkylsulfonyl, C₁-C₁₀ haloalkylsulfonyl, C₃-C₁₂ 30 cycloalkylsulfonyl, C₂-C₁₂ alkylcarbonylthio, C₂-C₁₂ alkyl(thiocarbonyl)thio, C₃-C₁₂ cycloalkylsulfinyl, C₁-C₁₀ alkylaminosulfonyl, C₂-C₁₂ dialkylaminosulfonyl, C₁-C₁₀ alkylamino, C₂-C₁₂ dialkylamino, C₁-C₁₀ haloalkylamino, C₂-C₁₂ halodialkylamino, C₃-C₁₂ cycloalkylamino, C₂-C₁₂ alkylcarbonylamino, C₂-C₁₂ haloalkylcarbonylamino, C₁-C₁₀ 35 alkylsulfonylamino, C₁-C₁₀ haloalkylsulfonylamino or C₄-C₁₄ cycloalkyl(alkyl)amino; W¹ is C₁-C₆ alkylene, C₂-C₆ alkenylene or C₂-C₆ alkynylene;

W¹ is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene W² is C_1 - C_6 alkylene;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W⁴G; or H, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -SF₅, -NHCHO, -NHNH₂, -NHOH, -NHCN, -NHC(=O)NH₂, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 5 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_8 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, 10 C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C2-C8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C₂-C₈ alkylaminoalkyl, C₃-C₁₀ dialkylaminoalkyl, C₂-C₈ haloalkylaminoalkyl, C₄-C₁₀ cycloalkylaminoalkyl, C₂-C₈ alkylcarbonyl, C₂-C₈ haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ 15 cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₄-C₁₀ cycloalkenylalkyl, C_2 - C_8 haloalkoxyalkyl, C_2 - C_8 alkoxyhaloalkyl, C_2 - C_8 haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ 20 cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl, C₂-C₈ haloalkoxycarbonyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ 25 cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ 30 halocycloalkenyloxy, C₂-C₈ haloalkoxyalkoxy, C₂-C₈ alkoxyhaloalkoxy, C₂-C₈ haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C2-C8 alkylcarbonylthio, C2-C8 alkyl(thiocarbonyl)thio, C₃-C₈ cycloalkylsulfinyl, C₁-C₆ alkylaminosulfonyl, C₂-C₈ dialkylaminosulfonyl, C₃-C₁₀ halotrialkylsilyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 halodialkylamino, C_3 - C_8 35 cycloalkylamino, C2-C8 alkylcarbonylamino, C2-C8 haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino, C₁-C₆ haloalkylsulfonylamino or C₄-C₁₀ cycloalkyl(alkyl)amino; or

10

15

20

25

30

35

 R^1 and R^2 are taken together along with the atoms to which they are attached to make a 5-, 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted on carbon atom ring members selected from halogen, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl and C_2 - C_8 alkoxyalkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy; and optionally substituted on nitrogen ring members selected from H and C_1 - C_6 alkyl; and phenyl optionally substituted with up to 5 substituents selected from cyano, nitro, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkylene; W^4 is C_1 - C_6 alkylene;

R³ is H, halogen, cyano, hydroxy, -O⁻M⁺, amino, nitro, -CHO, -C(=O)OH, $-C(=O)NH_2$, $-C(=S)NH_2$, -SH, $-SO_2NH_2$, $-SO_2NHCN$, $-SO_2NHOH$, -OCN, -SCN, -SF₅, -NHNH₂, -NHOH, -N=C=O, -N=C=S, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C2-C6 alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkyl
carbonylalkoxy, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkylthio, $\mathrm{C}_1\text{-}\mathrm{C}_6$ halo
alkylthio, $\mathrm{C}_3\text{-}\mathrm{C}_8$ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylsulfonyloxy, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino, C₃-C₈ cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino or C₁-C₆ haloalkylsulfonylamino; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy, benzylsulfonyloxy, phenylthio, benzylthio, phenylsulfinyl, benzylsulfinyl, phenylsulfonyl or benzylsulfonyl, each optionally substituted on ring members with up to five substituents selected from R^{21} ;

M⁺ is an alkali metal cation or an ammonium cation;

 R^4 , R^5 , R^6 and R^7 are each independently H, halogen, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_8 cycloalkoxy or C_3 - C_8 halocycloalkoxy; or phenyl or benzyl, each optionally substituted on ring members with up to five substituents selected from R^{21} :

20

25

30

- R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl or C₃-C₈ halocycloalkyl; or benzyl optionally substituted on ring members with up to five substituents selected from R²¹;
- 5 R⁹ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkyl or C₂-C₈ alkylthioalkyl;
 - R¹⁰ is H, halogen, cyano, hydroxy, amino, nitro, SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, -NHCHO, -NHNH₂, -N₃, -NHOH, -NHCN, -NHC(=O)NH₂, -N=C=O, -N=C=S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl or C₂-C₈ alkylthioalkyl;
 - R¹¹ is H, halogen, cyano, hydroxy, amino, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl; or phenyl optionally substituted with up to five substituents selected from R²¹;
 - R¹² is H, halogen, cyano, hydroxy, amino, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl or C₂-C₈ alkoxycarbonylamino;
 - R^{13} is H, halogen, cyano, hydroxy, amino, nitro or C_2 - C_8 alkoxycarbonyl; n is 0, 1, or 2;
 - each $\rm R^{14}, R^{15}, R^{18}$ and $\rm R^{19}$ is independently H, halogen, cyano, hydroxy or $\rm C_1\text{-}C_6$ alkyl; or
 - a pair of R¹⁴ and R¹⁸ is taken together as C₂-C₆ alkylene or C₂-C₆ alkenylene; R²⁰ is H, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₈ cycloalkyl;

10

15

20

30

35

T is C_1 - C_6 alkylene or C_2 - C_6 alkenylene;

each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, $-C(=O)NH_2$, $-C(=S)NH_2$, -C(=O)NHCN, -C(=O)NHOH, -SH, $-SO_2NH_2$, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkoxyhaloalkyl, C2-C5 cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C2-C6 haloalkenyloxy, C2-C8 alkoxyalkoxy, C2-C8 alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, $C_1\text{-}C_6 \text{ alkylsulfinyl}, C_1\text{-}C_6 \text{ haloalkylsulfinyl}, C_1\text{-}C_6 \text{ alkylsulfonyl}, C_1\text{-}C_6$ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino or C₃-C₈ cycloalkylamino; and

each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.

2. The compound of Claim 1 wherein

25 A is A-1, A-3, A-4, A-5 or A-6;

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ haloalkyl, C₂-C₁₀ haloalkenyl, C₂-C₁₂ haloalkynyl, C₃-C₁₂ cycloalkyl, C₃-C₁₂ halocycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ cycloalkylalkyl, C₃-C₁₂ cycloalkylalkyl, C₃-C₁₂ cycloalkylalkyl, C₃-C₁₂ alkoxyalkyl, C₃-C₁₂ alkoxyalkyl, C₃-C₁₂ alkoxyalkenyl, C₃-C₁₄ alkylcycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄ alkoxyalkyl, C₃-C₁₂ alkoxyalkyl, C₃-C₁₂ alkylsulfinylalkyl, C₃-C₁₂ alkylsulfinylalkyl, C₂-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₄ dialkylaminoalkyl,

10

C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂ alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂ alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl, C₂-C₁₂ alkylaminocarbonyl, C₃-C₁₄ dialkylaminocarbonyl, C₄-C₁₄ cycloalkylaminocarbonyl, C₂-C₉ cyanoalkyl, C₁-C₁₀ hydroxyalkyl, C₄-C₁₄ cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂ haloalkoxyhaloalkyl, C₄-C₁₄ halocycloalkoxyalkyl, C₄-C₁₄ cycloalkenyloxyalkyl, C₄-C₁₄ halocycloalkenyloxyalkyl, C₃-C₁₄ dialkoxyalkyl, C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl or C₂-C₁₂ haloalkoxycarbonyl;

 W^1 is C_1 - C_6 alkylene;

 W^2 is -CH₂-;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R^{21} ; or -G; C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_8 15 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ cycloalkoxyalkyl, C₄-C₁₀ 20 cycloalkoxylalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfonylalkyl, C₂-C₈ alkylcarbonyl, C₄-C₁₀ cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C_4 - C_{10} halocycloalkenyloxyalkyl, C_3 - C_{10} dialkoxyalkyl, 25 C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ 30 cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C₂-C₈ haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C₃-C₈ 35 cycloalkylsulfinyl or C₃-C₁₀ halotrialkylsilyl;

> W^3 is -CH₂-; W^4 is -CH₂-;

10

R¹ and R² are taken together along with the atoms to which they are attached to make a 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 1 oxygen atoms, 1 nitrogen atoms or 1 sulfur atoms or up to one -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted on carbon atom ring members selected from halogen, cyano, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl and C₂-C₈ alkoxyalkyl; and optionally substituted on nitrogen ring members selected from H and C₁-C₆ alkyl;

R³ is hydroxy, -O⁻M⁺, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy or C₃-C₁₀ alkylcarbonylalkoxy; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy or benzylsulfonyloxy, each optionally substituted on ring members with up to two substituents selected from R²¹;

M⁺ is a sodium or potassium metal cation;

15 R^9 is C_1 - C_6 alkyl;

 R^{10} is H, halogen or C_1 - C_6 alkyl;

 R^{11} is H or C_1 - C_6 alkyl;

 R^{12} is H, halogen, cyano, hydroxy, amino or C_1 - C_6 alkyl;

R¹³ is cyano or nitro;

20 each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H or CH₃;

 R^{14} and R^{18} are taken together as -CH₂CH₂CH₂- or -CH=CHCH₂-;

 R^{20} is H or CH_3 ;

T is -CH₂CH₂- or -CH=CH-;

each G is G-1 through G-23

416

$$(R^{21})_r$$
, $(R^{21})_r$,

and r is 0, 1, 2 or 3;

5

10

15

20

25

each R²¹ is independently halogen, cyano, hydroxy, nitro, -CHO, -SH, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ alkoxyalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl; and each R²² is independently C₁-C₆ alkyl or C₁-C₆ haloalkyl.

3. A compound of Claim 2 wherein

X is CH:

A is A-3 or A-5;

 B^2 is C-3;

R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C6 alkyl, C₂-C6 alkenyl, C₂-C6 alkynyl, C₁-C6 haloalkyl, C₂-C6 haloalkenyl, C₃-C8 cycloalkyl, C₄-C₁0 cycloalkylalkyl, C₅-C₁2 alkylcycloalkylalkyl, C₃-C8 cycloalkenyl, C₃-C8 halocycloalkenyl, C₂-C8 alkoxyalkyl, C₃-C10 alkoxyalkoxyalkyl, C₂-C8 alkylthioalkyl or C₂-C8 alkylsulfonylalkyl;

417

 R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio or C_1 - C_6 alkylsulfonyl;

R³ is hydroxy or -O⁻M⁺; or phenylsulfonyloxy optionally substituted on ring members with up to two substituents selected from R²¹;

 R^9 is CH_2CH_3 ;

 R^{10} is H or CH_3 ;

 W^1 is -CH₂-;

 W^3 is -CH₂-;

10 G is G-13, G-14, G-15, G-16 or G-17; and

each R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

4. A compound of Claim 2 wherein

A is A-1, A-3 or A-5;

15 B^1 is C-1;

5

20

25

30

 B^2 is C-3;

 B^3 is C-1;

R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C6 alkyl, C₂-C6 alkenyl, C₂-C6 alkynyl, C₁-C6 haloalkyl, C₂-C6 haloalkenyl, C₃-C8 cycloalkyl, C₄-C₁0 cycloalkylalkyl, C₅-C₁2 alkylcycloalkylalkyl, C₃-C8 cycloalkenyl, C₃-C8 halocycloalkenyl, C₂-C8 alkoxyalkyl, C₃-C10 alkoxyalkenyl, C₄-C10 alkylcycloalkyl, C₄-C10 alkoxyalkoxyalkyl, C₃-C8 alkylcycloalkyl, C₃-C8 alkylsulfinylalkyl, C₃-C8 alkylsulfonylalkyl;

 W^1 is -CH₂-;

R² is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl;

R¹ and R² are taken together along with the atoms to which they are attached to make a 7-membered partially unsaturated ring

 R^3 is hydroxy or C_2 - C_8 alkylcarbonyloxy;

 R^9 is CH_2CH_3 ;

 R^{10} is H or CH_3 ;

G is G-2, G-3, G-9, G-15, G-18, G-19 or G-20; and

R²¹ is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.

5. A compound of Claim 4 wherein

418

A is A-1 or A-3;

R¹ is phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methylphenyl, 4-ethylphenyl, 2-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 2,3-dimethylphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl or 5-chloro-2-methylphenyl;

R² is phenyl, 2-methylphenyl, 3-methylphenyl, 3-bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl;

 R^3 is hydroxy or $-OC(=O)CH_2CH(CH_3)_2$;

10 each R^{14} , R^{15} , R^{18} and R^{19} is H or CH_3 ; and T is $-CH_2CH_2$ -.

6. A compound of Claim 5 wherein

A is A-1;

5

15

R¹ is phenyl, 4-ethylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,4-dimethoxyphenyl, 3-fluoro-2-methylphenyl, 4-fluoro-3-methylphenyl; 5-chloro-2-methylphenyl;

R² is phenyl, 3-chlorophenyl, or 2-methylphenyl;

 R^3 is hydroxy or -OC(=O)CH₂CH(CH₃)₂; and each R^{14} , R^{15} , R^{18} and R^{19} is H.

7. A compound of Claim 4 wherein

A is A-3;

 R^1 is *n*-Pr or -CH₂CH₂OCH₃;

R² is phenyl, 2-methylphenyl, 3-methylphenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl;

25 R^3 is hydroxy; and each R^{14} , R^{15} , R^{18} and R^{19} is H.

8. A compound of Claim 4 wherein

A is A-1;

R¹ is -G or -W²G; C₁-C₆ alkyl, C₃-C₈ cycloalkyl, or C₂-C₈ alkoxyalkyl;

30 G is G-19 or G-20;

R² is phenyl, 2-methylphenyl, 3-methylphenyl, 4-chlorophenyl, 3-fluorophenyl or 3,5-difluorophenyl;

R³ is hydroxy; and

each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H.

35 9. A compound of Claim 4 wherein

 R^1 is n-Pr, c-hexyl, $-CH_2CH_2OCH_3$ or $-CH_2CH_2CH_2OCH_3$;

R² is 3-thienyl or 2-thienyl;

```
R<sup>3</sup> is hydroxy; and each R<sup>14</sup>, R<sup>15</sup>, R<sup>18</sup> and R<sup>19</sup> is H.
```

- 10. A compound of Formula 1 in Claim 1 that is
- 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2,3-diphenyl-4(3H)-pyrimidinone,
- 5 5-[(2-hydroxy-6-oxo-1-cyclohexane-1-yl)carbonyl]-3-(3-methoxypropyl)-2-(3-methylphenyl)-4(3*H*)-pyrimidinone,
 - 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3*H*)-pyrimidinone,
 - 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(4-methoxyphenyl)-2-phenyl-4(3*H*)-pyrimidinone,
 - 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(3-methoxypropyl)-2-phenyl-4(3*H*)-pyrimidinone or
 - 3-cyclohexyl-5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-2-phenyl-4(3*H*)-pyrimidinone.
- 15 11. A compound of Claim 2 wherein

A is A-1 or A-3;

 B^1 is C-1;

10

 B^2 is C-3;

 B^3 is C-1;

- R¹ is phenyl optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₈ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylcycloalkyl, C₂-C₈ alkylsulfinylalkyl or C₂-C₈ alkylsulfonylalkyl;
 - R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to two substituents selected from R^{21} ; or -G or; or C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl;

 R^3 is hydroxy or C_2 - C_8 alkylcarbonyloxy;

30 G is G-9 or G-15;

T is -CH₂CH₂-;

each R¹⁴, R¹⁵, R¹⁸ and R¹⁹ is H;

- R^{21} is independently halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or C_1 - C_6 alkylthio.
- 35 12. A compound of Formula 1 in Claim 11 wherein

420

 R^1 is phenyl optionally substituted with up to two substituents selected from C_1 - C_6 alkoxy; or -W²G; or C_1 - C_6 alkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl or C_3 - C_{10} alkoxyalkoxyalkyl.

R² is phenyl, 3-pyridyl, 3,5-dimethylphenyl, 3,5-difluorophenyl, 3-methylphenyl, 3-methoxyphenyl;

R³ is hydroxy; and

G is G-9 or G-15.

5

10

15

25

- 13. A compound of Formula 1 in Claim 12 wherein
- R¹ is phenyl, 3,4-dimethoxyphenyl, 3,4-diethoxyphenyl, -CH₂(tetrahydro-2-furanyl), n-Pr, -CH₂CH₂OCH₃, -CH₂CH₂CH₂OCH₃, cis-4-methoxycyclohexane or trans-4-methoxycyclohexane or -CH₂CH₂OCH₂CH₂CH₂OCH₃ and R² is phenyl or 3-pyridyl.
 - 14. A compound of Formula 1 in Claim 13 selected from
- 3-(3,4-diethoxyphenyl)-5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl)-4(3*H*)-pyrimidinone,
- 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-propyl-4(3*H*)-pyrimidinone,
- 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-phenyl-3-[(tetrahydro-2-furanyl)methyl]-4(3*H*)-pyrimidinone,
- 5-[(2-hydroxy-6-oxo-cyclohexen-1-yl)carbonyl]-3-(2-methoxyethyl)-2-(3-thienyl)-4(3*H*)-pyrimidinone,
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-propyl-2-(3-pyridinyl)-4(3*H*)-pyrimidinone,
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*cis*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone, and
 - 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-3-(*trans*-4-methoxycyclohexyl)-2-phenyl-4(3*H*)-pyrimidinone.
 - 15. A compound Claim 11 wherein

A is A-3;

- R^1 is $-CH_2CH_2OCH_3$; and R^2 is phenyl.
 - 16. A compound of Claim 15 that is
 - 5-[(2-hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-yl)carbonyl]-3-(2-methoxyethyl)-2-phenyl-4(3*H*)-pyrimidinone.

- 17. A herbicidal mixture comprising (a) a compound of Claim 1 and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) AHAS inhibitors, (b3) ACCase inhibitors, (b4) auxin mimics and (b5) EPSP inhibitors.
- 18. The herbicidal mixture of Claim 17 comprising (a) a compound of Claim 1 and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors.
 - 19. The herbicidal mixture of Claim 18 wherein (b) is bromoxynil.

- 20. The herbicidal mixture of Claim 17 wherein (b) is dimethametryn.
- 21. The herbicidal mixture of Claim 17 comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b2) AHAS inhibitors.
- 10 22. The herbicidal mixture of Claim 21 wherein the at least one additional active ingredient is selected from azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron and thifensulfuron-methyl.
 - 23. The herbicidal mixture of Claim 22 wherein the at least one additional active ingredient is selected from azimsulfuron and bensulfuron-methyl.
- 15 24. A herbicidal mixture comprising (a) a compound of Formula 1 and (b) at least one additional active ingredient selected from (b15) herbicide safeners.
 - 25. The herbicidal mixture of Claim 24 wherein the at least one additional active ingredient is selected from cloquintocet-mexyl and mefenpyr-diethyl.
- 26. A herbicidal composition comprising a compound of Claim 1 and at least one
 20 component selected from the group consisting of surfactants, solid diluents and liquid diluents.
 - 27. A herbicidal composition comprising a compound of Claim 1, at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners, and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.
 - 28. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 29. A compound of Formula **1Q** (including all stereoisomers), *N*-oxides, and salts 30 thereof:

$$\begin{array}{c}
422 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & R^1 \\
 & R^2 \\
 & \mathbf{1Q}
\end{array}$$

wherein A' is a radical selected from the group consisting of

B¹ and B³ are each independently a radical selected from the group consisting of

$$R^{14}$$
 R^{15}
 R^{15}
 R^{20}
 R

 B^2 is a radical selected from the group consisting of

R¹ is phenyl, phenylsulfonyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl),
-W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring
members with up to five substituents selected from R²¹; or -G or -W²G; or

cyano, hydroxy, amino, -C(=O)OH, -C(=O)NHCN, -C(=O)NHOH, -SO₂NH₂,
-SO₂NHCN, -SO₂NHOH, -NHCHO, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀
alkynyl, C₁-C₁₀ haloalkyl, C₂-C₁₀ haloalkenyl, C₂-C₁₂ haloalkynyl, C₃-C₁₂
cycloalkyl, C₃-C₁₂ halocycloalkyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄
cycloalkylalkyl, C₀-C₁₀ cycloalkylcycloalkyl, C₃-C₁₂ halocycloalkylalkyl,

C₅-C₁₀ alkylcycloalkylalkyl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ halocycloalkenyl,
C₂-C₁₂ alkoxyalkyl, C₃-C₁₂ alkoxyalkenyl, C₄-C₁₄ alkylcycloalkyl, C₄-C₁₄
alkoxycycloalkyl, C₄-C₁₄ cycloalkoxyalkyl, C₅-C₁₂ alkylsulfinylalkyl,
C₃-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylthioalkyl, C₃-C₁₂ alkylsulfinylalkyl,
C₂-C₁₂ alkylsulfonylalkyl, C₂-C₁₂ alkylaminoalkyl, C₃-C₁₄ dialkylaminoalkyl,

C₂-C₁₂ haloalkylaminoalkyl, C₄-C₁₄ cycloalkylaminoalkyl, C₂-C₁₂ alkylcarbonyl, C₂-C₁₂ haloalkylcarbonyl, C₄-C₁₄ cycloalkylcarbonyl, C₂-C₁₂ alkoxycarbonyl, C₄-C₁₆ cycloalkoxycarbonyl, C₅-C₁₄ cycloalkylalkoxycarbonyl, C₂-C₁₂ alkylaminocarbonyl, C₃-C₁₄ dialkylaminocarbonyl, C₄-C₁₄ 5 cycloalkylaminocarbonyl, C₂-C₉ cyanoalkyl, C₁-C₁₀ hydroxyalkyl, C₄-C₁₄ cycloalkenylalkyl, C₂-C₁₂ haloalkoxyalkyl, C₂-C₁₂ alkoxyhaloalkyl, C₂-C₁₂ haloalkoxyhaloalkyl, C₄-C₁₄ halocycloalkoxyalkyl, C₄-C₁₄ cycloalkenyloxyalkyl, C₄-C₁₄ halocycloalkenyloxyalkyl, C₃-C₁₄ dialkoxyalkyl, C₃-C₁₄ alkoxyalkylcarbonyl, C₃-C₁₄ alkoxycarbonylalkyl, C₂-C₁₂ 10 haloalkoxycarbonyl, C₁-C₁₀ alkoxy, C₁-C₁₀ haloalkoxy, C₃-C₁₂ cycloalkoxy, C₃-C₁₂ halocycloalkoxy, C₄-C₁₄ cycloalkylalkoxy, C₂-C₁₀ alkenyloxy, C₂-C₁₀ haloalkenyloxy, C₂-C₁₀ alkynyloxy, C₃-C₁₀ haloalkynyloxy, C₂-C₁₂ alkoxyalkoxy, C2-C12 alkylcarbonyloxy, C2-C12 haloalkylcarbonyloxy, C4-C14 cycloalkylcarbonyloxy, C₃-C₁₄ alkylcarbonylalkoxy, C₁-C₁₀ alkylthio, C₁-C₁₀ 15 haloalkylthio, C₃-C₁₂ cycloalkylthio, C₁-C₁₀ alkylsulfinyl, C₁-C₁₀ haloalkylsulfinyl, C₁-C₁₀ alkylsulfonyl, C₁-C₁₀ haloalkylsulfonyl, C₃-C₁₂ cycloalkylsulfonyl, C₂-C₁₂ alkylcarbonylthio, C₂-C₁₂ alkyl(thiocarbonyl)thio, C₃-C₁₂ cycloalkylsulfinyl, C₁-C₁₀ alkylaminosulfonyl, C₂-C₁₂ dialkylaminosulfonyl, C₁-C₁₀ alkylamino, C₂-C₁₂ dialkylamino, C₁-C₁₀ 20 haloalkylamino, C₂-C₁₂ halodialkylamino, C₃-C₁₂ cycloalkylamino, C₂-C₁₂ alkylcarbonylamino, C_2 - C_{12} haloalkylcarbonylamino, C_1 - C_{10} alkylsulfonylamino, C₁-C₁₀ haloalkylsulfonylamino or C₄-C₁₄ cycloalkyl(alkyl)amino;

 W^1 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;

W² is C_1 - C_6 alkylene;

30

35

 R^2 is phenyl or -W³(phenyl), each optionally substituted on ring members with up to five substituents selected from R^{21} ; or -G or -W⁴G; or H, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH2, -C(=S)NH2, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO2NH2, -SO2NHCN, -SO2NHOH, -SF5, -NHCHO, -NHNH2, -NHOH, -NHCN, -NHC(=O)NH2, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, C_4 - C_{10} alkylcycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_6 - C_{14} cycloalkylcycloalkyl, C_4 - C_{10} halocycloalkylalkyl, C_5 - C_{12} alkylcycloalkylalkyl, C_3 - C_8 cycloalkenyl, C_3 - C_8 halocycloalkylalkyl, C_3 - C_8 alkoxyalkyl, C_3 - C_8 alkylalkyl, C_3 - C_8 alkylsulfinylalkyl, C_3 - C_8 alkylsulfinylalkyl, C_2 - C_8 alkylsulfonylalkyl, C_2 - C_8 alkylaminoalkyl, C_3 - C_8 alkylaminoalkyl, C_2 - C_8

haloalkylcarbonyl, C₄-C₁₀ cycloalkylcarbonyl, C₂-C₈ alkoxycarbonyl, C₄-C₁₀ cycloalkoxycarbonyl, C₅-C₁₂ cycloalkylalkoxycarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₄-C₁₀ cycloalkylaminocarbonyl, C2-C5 cyanoalkyl, C1-C6 hydroxyalkyl, C4-C10 5 cycloalkenylalkyl, C₂-C₈ haloalkoxyalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₈ haloalkoxyhaloalkyl, C₄-C₁₀ halocycloalkoxyalkyl, C₄-C₁₀ cycloalkenyloxyalkyl, C₄-C₁₀ halocycloalkenyloxyalkyl, C₃-C₁₀ dialkoxyalkyl, C₃-C₁₀ alkoxyalkylcarbonyl, C₃-C₁₀ alkoxycarbonylalkyl, C₂-C₈ haloalkoxycarbonyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, 10 C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C2-C6 alkynyloxy, C3-C6 haloalkynyloxy, C2-C8 alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₂-C₈ haloalkylcarbonyloxy, C₄-C₁₀ cycloalkylcarbonyloxy, C₃-C₁₀ alkylcarbonylalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ 15 haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₃-C₈ trialkylsilyl, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, C2-C8 haloalkoxyalkoxy, C2-C8 alkoxyhaloalkoxy, C2-C8 haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxycarbonylalkoxy, C₂-C₈ alkyl(thiocarbonyl)oxy, C2-C8 alkylcarbonylthio, C2-C8 alkyl(thiocarbonyl)thio, 20 C₃-C₈ cycloalkylsulfinyl, C₁-C₆ alkylaminosulfonyl, C₂-C₈ dialkylaminosulfonyl, C₃-C₁₀ halotrialkylsilyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 halodialkylamino, C_3 - C_8 cycloalkylamino, C₂-C₈ alkylcarbonylamino, C₂-C₈ haloalkylcarbonylamino, C₁-C₆ alkylsulfonylamino, C₁-C₆ haloalkylsulfonylamino or C₄-C₁₀ 25 cycloalkyl(alkyl)amino; or

R¹ and R² are taken together along with the atoms to which they are attached to make a 5-, 6- or 7-membered unsaturated, partially unsaturated or fully unsaturated ring along with members consisting of up to 2 oxygen atoms, 2 nitrogen atoms or 2 sulfur atoms or up to two -S(O)-, -S(O)₂-, -C(O)- groups optionally substituted with halogen, cyano, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl or C₂-C₈ alkoxyalkyl on carbon atom ring members and H or C₁-C₆ alkyl on nitrogen ring members;

 W^3 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkylene; W^4 is C_1 - C_6 alkylene;

R³ is H, halogen, cyano, hydroxy, -O-M+, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, -NHNH₂, -NHOH, -N=C=O, -N=C=S, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀

425

cycloalkylalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 haloalkynyloxy, C_2 - C_8 alkoxyalkoxy, C_2 - C_8 alkylcarbonyloxy, C_2 - C_8 haloalkylcarbonyloxy, C_4 - C_{10} cycloalkylcarbonyloxy, C_3 - C_{10} alkylcarbonylalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_8 cycloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylamino, C_2 - C_8 dialkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 halodialkylamino, C_3 - C_8 cycloalkylamino, C_2 - C_8 alkylcarbonylamino, C_1 - C_6 alkylsulfonylamino or C_1 - C_6 haloalkylsulfonylamino; or benzyloxy, phenyloxy, benzylcarbonyloxy, phenylcarbonyloxy, phenylsulfonyloxy, phenylsulfonyloxy, phenylsulfonyloxy, phenylsulfonyloxy, phenylsulfonyl, each optionally substituted on ring members with up to five substituents selected from R^{21} ;

15 M⁺ is an alkali metal cation or an ammonium cation;

5

10

20

25

30

35

R⁴, R⁵, R⁶ and R⁷ are each independently H, halogen, hydroxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy or C₃-C₈ halocycloalkoxy; or phenyl or benzyl, each optionally substituted on ring members with up to five substituents selected from R²¹;

 R^8 is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkynyl, C_3 - C_8 cycloalkyl or C_3 - C_8 halocycloalkyl; or benzyl optionally substituted on ring members with up to five substituents selected from R^{21} ;

R⁹ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkyl or C₂-C₈ alkylthioalkyl;

R¹⁰ is H, halogen, cyano, hydroxy, amino, nitro, SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, -NHCHO, -NHNH₂, -N₃, -NHOH, -NHCN, -NHC(=O)NH₂, -N=C=O, -N=C=S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₆-C₁₄ cycloalkylcycloalkyl, C₄-C₁₀ halocycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl or C₂-C₈ alkylthioalkyl;

n is 0, 1, or 2;

5

10

15

20

25

30

each R^{14} , R^{15} , R^{18} and R^{19} is independently H, halogen, cyano, hydroxy or C_1 - C_6 alkyl; or

a pair of R¹⁴ and R¹⁸ is taken together as C₂-C₆ alkylene or C₂-C₆ alkenylene;

 $R^{20} \text{ is H, C$_1$-C$_6$ haloalkyl, C$_2$-C$_6$ haloalkenyl, C$_1$-C$_6$ alkoxy, C$_1$-C$_6$ haloalkoxy, C$_3$-C$_8$ cycloalkoxy, C$_1$-C$_6$ alkyl, C$_2$-C$_6$ alkenyl, C$_2$-C$_6$ alkynyl or C$_3$-C$_8$ cycloalkyl; }$

T is C_1 - C_6 alkylene or C_2 - C_6 alkenylene;

each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, $-C(=O)NH_2$, $-C(=S)NH_2$, -C(=O)NHCN, -C(=O)NHOH, -SH, $-SO_2NH_2$, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C3-C8 cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C_4 - C_{10} cycloalkoxyalkyl, C_3 - C_{10} alkoxyalkoxyalkyl, C_2 - C_8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkoxyhaloalkyl, C2-C5 cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C2-C6 haloalkenyloxy, C2-C8 alkoxyalkoxy, C2-C8 alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₃-C₈ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino or C₃-C₈ cycloalkylamino; and

each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.

30. A compound of Formula **1R** (including all stereoisomers), N-oxides, and salts thereof

HO
$$R^1$$

1R

wherein

 R^1 is phenyl substituted with up to two substituents selected from C_1 - C_6 alkoxy; or -W²G; or C_1 - C_6 alkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl or C_3 - C_{10} alkoxyalkoxyalkyl;

 W^2 is -CH₂-;

R² is phenyl or 3-pyridinyl; and each G is G-9 or G-15.

31. A compound of Formula **1S** (including all stereoisomers), N-oxides, and salts thereof as a herbicide safener:

$$R^{23}$$
 N
 R^{1}
 R^{2}
 R^{2}

wherein

20

 R^1 is phenyl substituted with up to two substituents selected from C_1 - C_6 alkoxy; or -W²G; or C_1 - C_6 alkyl, C_2 - C_8 alkoxyalkyl, C_4 - C_{10} alkoxycycloalkyl or C_3 - C_{10} alkoxyalkoxyalkyl.;

 W^2 is -CH₂-;

15 R² is phenyl or 3-pyridinyl; and

each G is G-9 or G-15; and

 R^{23} is C_1 - C_{16} alkyl; or phenyl or benzyl optionally substituted with halogen, nitro, cyano or hydroxy on ring members.

- 32. A method of using a compound of Formula **1Q** in Claim 30 as a herbicide safener.
- 33. The method of Claim 32 wherein the compound of Formula **1Q** is 3-oxo-1-cyclohexen-l-yl 1-(3,4-dimethylphenyl)-l,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate.
- 34. A method of using a compound of Formula **1R** (including all stereoisomers), N-oxides, and salts thereof as a herbicide safener:

HO
$$R^1$$

1**R**

wherein

15

20

25

- $\rm R^1$ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO_2-phenyl), -W²(SO_2CH_2-phenyl) or -W²(SCH_2-phenyl), each optionally substituted on ring members with up to five substituents selected from $\rm R^{21}$; or -G or -W²G; or $\rm C_1$ -C_6 alkyl, $\rm C_2$ -C_6 alkynyl, $\rm C_1$ -C_6 haloalkyl, $\rm C_2$ -C_6 haloalkenyl, $\rm C_3$ -C_8 cycloalkyl, $\rm C_4$ -C_{10} cycloalkylalkyl, $\rm C_5$ -C_{12} alkylcycloalkylalkyl, $\rm C_3$ -C_8 cycloalkenyl, $\rm C_3$ -C_8 halocycloalkenyl, $\rm C_2$ -C_8 alkoxyalkyl, $\rm C_3$ -C_{10} alkoxyalkenyl, $\rm C_4$ -C_{10} alkylcycloalkyl, $\rm C_4$ -C_{10} alkoxycycloalkyl, $\rm C_3$ -C_8 alkylsulfinylalkyl, $\rm C_3$ -C_8 alkylsulfonylalkyl;
- W^1 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene;
- 10 W^2 is C_1 - C_6 alkylene;
 - R² is phenyl or -W³(phenyl), each substituted on ring members with up to two substituents selected from R²¹; or -G or; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl
 - each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;
 - each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, $-C(=O)NH_2, -C(=S)NH_2, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO_2NH_2, \\$ -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, $\rm C_3\text{-}C_8$ halocycloalkyl, $\rm C_4\text{-}C_{10}$ alkyl
cycloalkyl, $\rm C_4\text{-}C_{10}$ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₈ alkylthioalkyl, $\rm C_2\text{-}C_8$ alkylsulfinylalkyl, $\rm C_2\text{-}C_8$ alkoxyhaloalkyl, $\rm C_2\text{-}C_5$ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C2-C6 haloalkenyloxy, C2-C8 alkoxyalkoxy, C2-C8 alkyl
carbonyloxy, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkylthio, $\mathrm{C}_1\text{-}\mathrm{C}_6$ halo
alkylthio, $\mathrm{C}_3\text{-}\mathrm{C}_8$ cycloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₈ cycloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈ dialkylamino, C₁-C₆ haloalkylamino, C₂-C₈ halodialkylamino or C₃-C₈ cycloalkylamino; and
 - each R^{22} is independently C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl or C_2 - C_8 alkoxyalkyl.
- 35. A method of using a compound of Formula **1S** (including all stereoisomers), N-oxides, and salts thereof as a herbicide safener:

wherein

5

10

15

20

25

30

R¹ is phenyl, -W¹(phenyl), -W¹(S-phenyl), -W¹(SO₂-phenyl), -W²(SO₂CH₂-phenyl) or -W²(SCH₂-phenyl), each optionally substituted on ring members with up to five substituents selected from R²¹; or -G or -W²G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₂ alkylcycloalkylalkyl, C₃-C₆ cycloalkenyl, C₃-C₆ halocycloalkenyl, C₂-C₆ alkoxyalkyl, C₃-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkoxyalkenyl, C₄-C₁₀ alkylcycloalkyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl or C₂-C₆ alkylsulfonylalkyl;

 W^1 is C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkylene; W^2 is C_1 - C_6 alkylene;

R² is phenyl or -W³(phenyl), each substituted on ring members with up to two substituents selected from R²¹; or -G; or C₁-C₆ alkyl or C₃-C₈ cycloalkyl; W³ is C₁-C₆ alkylene, C₂-C₆ alkenylene or C₂-C₆ alkynylene;

each G is independently a 5- or 6-membered heterocyclic ring or an 8-, 9- or 10-membered fused bicyclic ring system, each ring or ring system optionally substituted with up to five substituents selected from R²¹ on carbon ring members and R²² on nitrogen ring members;

each R²¹ is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH₂, -C(=S)NH₂, -C(=O)NHCN, -C(=O)NHOH, -SH, -SO₂NH₂, -SO₂NHCN, -SO₂NHOH, -OCN, -SCN, -SF₅, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, C₄-C₁₀ alkylcycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₈ cycloalkenyl, C₃-C₈ halocycloalkenyl, C₂-C₈ alkoxyalkyl, C₄-C₁₀ cycloalkoxyalkyl, C₃-C₈ alkoxyalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkoxyhaloalkyl, C₂-C₅ cyanoalkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₈ cycloalkoxy, C₃-C₈ halocycloalkoxy, C₄-C₁₀ cycloalkylalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₈ alkoxyalkoxy, C₂-C₈ alkylcarbonyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₈

- dialkylamino, C_1 - C_6 haloalkylamino, C_2 - C_8 halodialkylamino or C_3 - C_8 cycloalkylamino;
- each R^{22} is independently $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ cycloalkyl or $C_2\text{-}C_8$ alkoxyalkyl; and
- 5 R²³ is C₁-C₁₆ alkyl; or phenyl or benzyl optionally substituted with halogen, nitro, cyano or hydroxy on ring members.
 - 36. The method of Claim 35 wherein the compound of Formula **1R** is ethyl 1,6-dihydro-1-(2-methoxyphenyl)-6-oxo-2-phenyl-5-pyrimidinecarboxylate.