PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/24090
H04M A2

(43) International Publication Date: 8 September 1995 (08.09.95)
(21) International Application Number: PCT/SE95/00193 | (81) Designated States: AU, BR, CA, CN, FI, JP, KR, MX, NO,
European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,

(22) International Filing Date: 23 February 1995 (23.02.95) IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data: Published

203,277 28 February 1994 (28.02.94) us Without international search report and to be republished

upon receipt of that report.

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON
[SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: LINNERMARK, Nils, Ola, Axel; Rondovigen 19,
S-142 41 Skogis (SE). CARLSSON, Uno; Segelflygsgatan
29, 4 trp, S-122 52 Enskede (SE).

(74) Agents: LOVGREN, Tage et al; Telefonaktiebolaget LM
Ericsson, Patent Dept., S-126 25 Stockholm (SE).

(54) Title: TRACING WITH KEYS AND LOCKS ON A TELECOMMUNICATION NETWORK
(57) Abstract

A method and apparatus for detecting events occurring in a telecommunications network is disclosed which comprises stored program
control (SPC) exchanges (30), each SPC exchange comprising a switch (32) and processors (34) for executing software programs to control
the switch (32). Code sequences, or daemons (46), are implanted in selected portions of the software programs (40, 43, 45), each code
sequence including a conditional statement responsive to certain events and at least one activity resulting from the detection of a certain
event satisfying the conditional statement. A lock value is assigned to each of the code sequences, each lock value uniquely identifying
the corresponding code sequences and being operable to activate the processor (34) for executing the code sequence. A key value (49) is
compared to each lock value for selectively activating the processor (34) to execute the code sequence when the key value (49) equals the
lock value. The processor (34) executes the activity specified in the code sequence if the detected event satisfies the conditional statement
and continues execution of the software program whereby continuous-processing in the SPC exchange (30) is maintained.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/24090

TRACING WITH KEYS AND LOCKS ON A
TELECOMMUNICATION NETWORK

BACKGROUND OF THE INVENTION

A portion of the disclosure of .this patent
document contains material which is subject to
copyright protection. The copyright owner has no
objection to the facsimile reproduction by any one of
the patent documents or the patent disclosure, as it
appears in the patent and trademark office, patent file
or records, but otherwise reserves all copyrights
whatsoever.

Field of the Invention

The invention relates to a telecommunication
network and, more particularly, software for tracing
with keys and locks on a telecommunication network.

Description of Related Art

Telephone service today is provided to a
multiplicity of customers or telephone subscribers
through centralized switching. Referring to FIG. 1, a
centralized switching machine in a central office 10
controlé the switching of calls to and from local
telephone subscribers 12 and communicates with other
central offices 10 in the network via inter-office
trunks 14. Each central office 10, and the subscribers
12 they serve, are linked to other regions by a toll
office 16 via toll-connecting trucks 18 as well known
in the industry. The central offices 10 can also be
connected to customer dedicated switching equipment,
such as for example, private automatic branch exchanges
(PABX) 20 either directly by business trunks 22 or
indirectly by inter-machine trunks 24. The PABX 20
connects other local telephone subscribers 12 to the
network, as well as other user terminals such as, for
example, computers 26 and facsimile machines (not
shown). Such user terminals can also be connected to

the central offices 10. The entire network identified

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

-2~

generally at 28 in FIG. 1, or any portion thereof, is
only one example of a telecommunications network.

Each switch at a central office 10 and toll office
16 and each PABX is typically a stored program control
(SPC) exchange 30 including switching equipment 32 and
a processor 34. for controlling the switching equipment
32 as shown in FIG. 2. The SPC exchange 30 is
connected to the trunks through the switching equipment
32 which services the user terminals as described
above. Each SPC exchange 30 must perform certain
functions in handling a simple telephone call. For
example, the SPC exchange 30 must monitor and sense
that a subscriber desires service when the subscriber’s
telephone goes off-hook to originate a call. Once the
SPC exchange 30 recognizes that an origination has
taken place, i.e., detects the off-hook status of a
given line, the SPC exchange 30 must connect to the
trunks for notifying the subscriber, via a dial tone,
for example, that the SPC exchange 30 is ready to
receive information from the subscriber, and means for
receiving this information. Information, e.g., the
called number, is entered by the subscriber using a
rotary dial or a touch-tone keypad and is received and
recorded at the SPC exchange 30. This information must
then be interpreted by the SPC exchange 30 to identify
the locale of the called line.

If the called party and the calling party are
served by the same central office, e.g., telephone
subscribers 12(a) through central office 10(a), the
call is an intraoffice call. In such case, a busy test
is made of the called line, and if the called line is
idle, the called party is alerted, e.g., rung via an
audible ring tone. The called line is supervised while
awaiting an answer by the called party or abandonment
by the calling party. If the called party answers, a
speech path is established between the parties. The

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

-3-

speech path is then supervised during conversation and
is disconnected when one of the parties hangs up and
the line goes on-hook.

If, on the other hand, the called party is served
by a different central office, e.g., subscribers 12(a)
and 12 (b) through central offices 10(a) and 10(b), the
call is an interoffice call. 1In this case, a search is
made for an idle inter-office trunk 14 to the central
office 10(b) which serves the called party or to the
toll office 16 which is able to further the progress of
the call to the central office 10(b) of the called
party. Information about the called number is
transmitted from the originating central office 10 (a)
and received by the toll office 16 which delivers the
information to the terminating central office 10(b).
If the called party’s line is busy, or the call is
blocked somewhere in the network, or the necessary
interoffice trunks are all busy, the calling party is
informed via an audible busy, fast busy or reorder
tone. :

The work to be performed by the SPC exchange 30
falls into two main categories: (1) the routine
scanning of user terminals 'to detect changes, and
(2) the complex analysis and diagnostics requiring high
computing capacity and large volumes of data. An
example of the first category is the checking performed
to see if a subscriber 12 has lifted his handset off
the telephone. This is done several times every
second. Examples of the second category include the
selection of ongoing routes or various traffic
measurements. As indicated by the examples, the SPC
exchange 30 is designed to be responsive to certain
events which can be either external, e.g., when a
subscriber 1lifts his handset off-hook, or internal,
e.g., instruction steps in the software of the
pirocessor 34. The processor’s 34 software performs

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

-4-

many tasks, including those identified above, which are
initiated by a software signal or software message,
i.e., a software instruction including relevant data
unique to the task. Software signals or software
messages can be traced as part of the diagnostics being
performed by the SPC exchange 30. When an individual
orders the tracing of a software signal, the signal
including its data is stored every time the signal is
sent for later analysis. Obviously, signal tracing
over a long period of time must be avoided, especially
during heavy traffic on the telecommunication network,
to avoid overloading the capacity of the system.

Thus, a telecommunication network conducts many
concurrent tasks in response to events by executing
thousands of software instructions on a number of
different processors, such as the processor 34 shown in
FIG. 2, and storing thousands of software signals by
signal tracing in order to detect faults in or debug
the software. Because the traffic of the
telecommunication network is persistent it requires a
"continuous-processing" capability, i.e., the
processors 34 cannot be shut down for any reason. As
such, this continuous-processing system requires unique
fault detection and debugging techniques. Techniques
useful for other systems do not work in a
telecocmmunication network. For example U.S. Patent
No. 4,937,864 granted on June 26, 1990, discloses
certain debugging techniques used for locating faults
in a copier machine. However, this method can only be
used when the copier is shut down and, therefore, would
not work in a telecommunication network. Normal fault
detection and debugging techniques are not suitable for
use in a telecommunications network.

Even current tracing systems can be useless for
detecting certain categories of faults. Current
systems are not sensitive enough to detect a small

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

-5-

number of instructions being executed on a processor
because the tracing system cannot address certain
short-lived threads of instructions between signals.
When the fault causes a failure that occurs after a
large number of instructions are executed, the same
system is too sensitive because it needs to store a
long-lasting thread of instructions which exceed the
capacity of an SPC exchange. The method and system of
the present invention overcome these and other
disadvantages and provide enhanced tracing enabling
examination of short-lived threads, while at the same
time analyzing long-lasting threads containing a large
volume of tracing information with little loss of
storage capacity by selectively storing such
information.

SUMMARY OF THE INVENTION

In one aspect, the invention relates to discarding
irrelevant tracing information to reduce the amount of
storage required. Because the storage requirements are
reduced, it is possible to view all messages in a
trace-thread and the execution of a dedicated program
sequence showing the connection between the high-level,
application software and the 1low-level, operating
software to solve difficult problems.

This also overcomes the problems associated with
many users conducting traces simultaneously. Many
users can conduct traces over many different processors
without disturbing each other. The invention can also
be used to invoke break points for a source-code
debugger. The invention could be used to debug a
trace-thread at the first phase of the integration
test, or to use the trace mechanisms to detect
particular events related to certain failures, or
identify faults located between high-level and 1low-

level programs.

PCT/SE95/00193

10

15

20

25

30

WO 95/24090

PCT/SE95/00193

-6-

In another more specific aspect, the invention
relates to a method and apparatus for detecting events
occurring in a telecommunications network is disclosed
which comprises stored program control (SPC) exchanges,
each SPC exchange comprising a switch and processors
for executing software programs to control the switch.
Code sequences, or daemons, are implanted in selected
portions of the software programs, each code sequence
including a conditional statement responsive to certain
events and at least one activity resulting from the
detection of a certain event satisfying the conditional
statement. A lock value is assigned to each of the
code sequences, each lock value uniquely identifies the
corresponding code sequences and operates to activate
the processor for executing the code sequence. A key
value is compared to each lock value for selectively
activating the processor to execute the code sequence
when the key value equals the 1lock wvalue. The
processor executes the activity specified in the code
sequence, 1if the detected event satisfies the
conditional statement and continues execution of the
software program whereby continuous-processing in the

SPC exchange is maintained. .

BRIEF DESCRIPTION OF THE DRAWINGS

For a more detailed understanding of the present
invention and for further objects and advantages
thereof, reference can now be made to the following
description taken in conjunction with the accompanying
drawings, in which:

FIG. 1 is a schematic illustration of a
telecommunications network including private and local
exchanges on which the present invention can be

practiced;

10

15

20

25

30

35

WO 95/24090

PCT/SE95/00193

-7-

FIG. 2 is a schematic illustration of an SPC
exchange comprising a switch and processors as used in
the telecommunications network of FIG. 1;

FIG. 2A is a schematic representation of a first
embodiment of the SPC exchange shown in FIG. 2;

FIG. 2B is a schematic representation of a second
embodiment of the SPC exchange shown in FIG. 2;

FIG. 3A is a block diagram showing the software
executed on the processors of the SPC exchange shown in
FIG. 2B;

FIG. 3B is a pictorial representation of the
software for execution on the processors shown in FIG.
3A including a trace-tool in accordance with the
invention;

FIG. 4 is a pictorial representation of a lock and
key technique used by the trace-tool of FIG. 3B for
thread-tracing in accordance with the invention;

FIG. 5 is a schematic representation of the PABX
exchange network of FIG. 1 showing processes used for
a phone call in accordance with the invention;

FIG. 6 is a schematic representation of trace-
threads propagating through processes being executed on
an exchange similar to that disclosed in FIG. 2B;

FIG. 7 is a schematic representation of another
set of trace-threads propagating through processes
being executed on an exchange similar to that disclosed
in FIG. 2B;

FIG. 8 is a schematic representation of vyet
another set of trace-threads propagating through
processes being executed on an exchange similar to that
disclosed in FIG. 2B;

FIG. 9 is a schematic representation of any
portion of the network of FIG. 1 showing processes used
for a phone call in accordance with the invention;

FIG. 10 is a schematic representation of the
access, service and traffic control processes of FIG.

10

15

20

25

30

WO 95/24090

-8-

9 for handling two phone calls in accordance with the
invention;

FIG. 11 is a schematic representation of the
access process of FIG. 9 connected to a simple device
processor in accordance with the invention;

FIG. 12 is a flow chart showing a process for
creating a pre-runtime daemon in accordance with the
invention;

FIG. 13 is a flow chart showing a process for
creating a runtime daemon in accordance with the
invention;

FIG. 14 is a pictorial representation of the
program memory in a processor showing the execution of
the runtime daemon created in FIG. 13;

FIG. 15 is a pictorial representation of the word
method for a single trace;

FIG. 16 is a pictorial representation of the word
method for multiple traces;

FIG. 17 is a flow chart showing the key-lock code
for the word method shown in FIG. 15;

FIG. 18 is a flow chart showing the key-lock code
for the word method shown in FIG. 16;

FIG. 19 is a pictorial representation of the bit
method for a single trace;

FIG. 20 is a pictorial representation of the bit
method for multiple tracers;

FIG. 21 is a flow chart showing the key-lock code
for the bit vector method shown in FIG. 19; and

FIG. 22 is a flow chart showing the key-lock code
for the bit vector method shown in FIG. 20.

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

DETAILED DESCRIPTION

Referring generally to FIGS. 2 and 2A, the SPC
exchange 30 can be, for example, the type manufactured
by Telefonaktiebolaget L M Ericsson (hereinafter
"Ericsson") and referred to as the AXE exchange. The
processor 34 of an AXE is shown in more detail in FIG.
2A as comprising one central processor (CP) 35
connected to a plurality of regional processors (RP) 36
communicating with the switching equipment 32. Each
regional processor (RP) 36 and the central processor
(CP) 35 includes a central processing unit (CPU) and
memory (STR). The regional processors (RP) 36 assist
the central processor (CP) 35 in performing routine
tasks occurring in the SPC exchange 30. All decisions,
however, are made by the central processor (CP) 35.
This hierarchic structure is described in more detail
in a book titled "Getting to Know AXE," EN/LZT 101 548
R2A, published by Ericsson, and incorporated herein by
reference. However, the SPC exchange 30 also can be
one having a plurality of processors 34 in a
distributed, rather than a hierarchic, structure such
as the one shown generally at 37 in FIG. 2B comprising
common-pool processors (CPP) 38 and dedicated device
processor (DP) 39 all communicating directly with the
switching equipment 32.

Each common-pooled processor (CPP) 38 and device
processor (DP) 39 has its own CPU and STR, and all of
them communicate with each other through the switch 32.
All of the common-pooled processors (CPP) 38 are of
equal importance in the telecommunication network. 1In
such a distributed system, software applications 40-42
(FIG. 3A7A) are built on a common operating system 43
loaded on top of the processors 37, all of which appear
to the operating system 43 as having the same memory
core 44. Different applications will require different

processors, but they will all run on the same operating

PCT/SE95/00193

10

15

20

25

30

35

WO 95/24090

-10-

system 43. Execution of all applications 40-42 are
carried out within a number of different processes (not
shown) stored for running on the processors 37. Thus,
a process is an environment for executing an
application program. For example, the execution of the
application 40 might require several processes which
cooperate as their functionality is distributed over
several processors. Typically, thousands of processes
will be running simultaneously on each processor 38,
39.

Referring more specifically to FIG. 3B, the
application 40 running on the operating system 43
communicates with the runtime part of the core 44,
i.e., the kernel 45, when executing in a process.
Thus, the kernel 45 controls the execution of the
processes during runtime. All events of interest
during the execution of an application are monitored by
& trace tool 47 which is a subprogram in the operating
system 43 and the kernel 45. The detection of events
is made possible by the insertion of code sequences,
i.e., daemons 46, at any level in the software as shown
by the small circles distributed through the
application 40, operating system 43, and the kernel 45.
The daemons 46 are located at certain addresses in the
code where analysis is required, and always include a
predefined set of filter conditions and corresponding
actions. An example of such a daemon is as follows:

if (ON)
if (condition 1 = true)
action 1;
if (condition 2 = true)
action 2;

©1993 Telefonaktiebolaget LM Ericsson
where, for example, condition 1 is a first variable or
state and condition 2 is a second variable or state,

and action 1 could be the logging of an event and

PCT/SE95/00193

10

15

20

25

WO 95/24090

-11-

action 2 could be the start of another tracing. The
variables that could be used for these qualifications
could be variables read from the system or variables
belonging to the trace tool 47 itself. 1In the latter
case, those variables could be used for counting the
number of times a particular event occurs, and then
performing the corresponding action only when the count
exceeds some predetermined number. When the
application programs 40-42 start executing, they output
the identity of all stored daemons 46 to the trace tool
47. The trace tool 47 identifies all of the daemons 46
in the network, including those in the code resident on
the other processors forming the telecommunication
network, and outputs a list and description of the
daemons 46 to the designer and certifier.

A daemon 46 will be either in an active state or
inactive state as defined by the stored data. If a
daemon 46 is in an active state, it will be checked
during execution. If the daemon 46 is not active, the
kernel 45 bypasses the daemon 46 and continues
execution. The tracing system is sensitized or
desensitize by wusing the activation state in
conjunction with a "lock and key" technique in
accordance with the invention. Referring more
specifically to FIG. 4, a thread-trace shown at 48
commences at the vertical arrow and continues execution

as shown by the horizontal arrow. This portion of the

PCT/SE95/00193

10

15

20

25

‘WO 95/24090

12

thread-trace 48 comprises several daemons, daemons 1,
2 and 3, implanted in the code and represented again by
small circles; and a "lock" associated with each
daemon, locks 1, 2 and 3 respectively, stored as data.
Each daemon 46 has a name, a short description, and the
address of its "lock-table" stored in the trace tool
47, hereinafter collectively referred to as the "daemon
summary information."

When thread-tracing commences, a key 49 is
attached to all software signals or messages sent
during execution. If the key 49 does not fit the lock,
the daemon is not activated and execution of the code
continues. If, however, the key 49 does fit the lock,
the daemon will be opened, or activated. Referring in
more detail to FIG. 4, the key 49 does not fit lock 1
so that execution of the code continues without
activating daemon 1 as indicated by the open circle.
However, the key 49 does fit lock 2 which activates
daemon 2 as indicated by the solid circle. After the
predetermined filter conditions of daemon 2 are checked
and the corresponding action is performed, execution of
the code continues. Since the key 49 also does not fit
lock 3, execution continues without activating daemon
3 as indicated by the open circle. The information
collected during the thread-tracing operation is first
filtered and then stored in a trace buffer before being

presented to the designer.

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

-13-

The most important difference between the trace
tool 47 and a debugger is that, in the case of the
former, execution of the code always continues after
performing some action or actions; execution is not
completely halted for intervention by a designer as in
a debugger. Thus, a debugger halts execution in the
software while the trace tool 47 continues execution
after completing action(s) because of the requirements
of a continuous processing system. Thus, a daemon 46
controls access to the code without completely halting
execution of the code.

When a daemon 46 is implanted at a specific
address in the code, one can monitor that point or
object independently of which process or thread is
active, i.e., point tracing. Referring to FIG. 4, for
example, every execution passing daemon 2 would be
traced when the activity i§ set for point tracing.
When, however, the designer of the operating system 43
activates or deactivates the key structure to open all
of the daemons 46 in a specific process, this is
process tracing. When process tracing, a designer has
the ability to debug the process. But if in addition
to process tracing the key structure is assigned to all
software signals or messages sent from a process, this
is thread tracing. When another process receives such
‘a message, the key structure is assigned to the

receiving structure and activated when the receiving

WO 95/24090 PCT/SE95/00193

-14-

process is activated. This receiving process could be
allocated to a different processor 37 in the
telecommunication network. Thus, if one wishes to
analyze the application 40 as it executes in many
processes distributed over several processors 37, a
point trace defines the beginning of a trace thread
that propagates from one process to another.

Thread tracing can best be described by another
example related to a telephone call which is a
combination of many processes. Referring generally to
FIG. 1 and more specifically to FIG. 5, User A
commences execution of a trace-thread 50 when the
terminal 12(c) goes off-hook in an attempt to establish
a speech path to User B at the terminal 12(d) from the
origina;ing PBX 20(c) over the trunk 24 to the
terminating PBX 20(d). Assuming that both PBXs 20 (c)
and 20(d) are the type of SPC exchanges shown in FIG.
2B, both include a common-pooled processors (CPP), CPP1
to CPP4, connected to the corresponding terminal 12 (c)
and 12(d). Each PBX 20(¢) and 20(d) includes other
processors (not shown), such as, for example, separate
device processors (DP) 39 connecting the trunk 24. The
application programs associated with call initiation
are executed within a 1large number of different
processes, as described above, some of which are shown
in FIG. 5 as squares with cut-off corners 51-55, which

run on the processors indicated. The trace-thread 50

10

15

20

25

WO 95/24090

_15..
propagates between the processes 51-55 by means of
software signals or messages 56-59.

Users A and B are both serviced by access
processes A and B running on CPP1 and CPP4,
respectively. When a call is made, the access process
51 for the originating side A orders up a traffic
control process 52 which controls traffic handling for
the originating side A on CPP2. When the terminating
side of the call has been determined after a number
analysis, the traffic control process 52 requests the
set up of a similar process for control of the
terminating side B, i.e., traffic control process 54,
which runs on CPP3. The traffic control process 54 on
the terminating side B checks for the availability of
User B by means of the access process 55 running on
CPP4. The processes 51-55 which form the trace-thread
50 are linked by the messages 56-59. The portion of
the trace-thread 50 withir the access process 51 on the
originating side A includes three daemons, shown as
small circles on the trace-thread 50, which are
implanted at specific addresses in the code of the
access process 51. The operation of the thread tracing
therein is identical to that described with respect to
daemons 1, 2 and 3 in FIG. 4 above, except for the
limitation that all the daemons in this case have been
predefined for a single process, access process 51,

rather than being distributed over several processes.

PCT/SE95/00193

10

15

20

25

WO 95/24090

-16-

The same description applies to the daemons shown in
the other processes 52, 54, 55 which have been
activated according to different data. For example,
none of the daemons implanted in the half call process
52 on the originating side A have been activated as
indicated by the open circles, so that execution of
code continues therethrough. However, the first and
second daemon in the half call process 54 on the
terminating side B have been activated, as indicated by
the solid circles, by a key carried on the message sent
to the traffic control process 54.

Referring now to FIG. 6, a number of processes 60,
62, 64, 66, 68 are shown which are used to illustrate
the method of thread tracing in more detail. The
rectangles enclosed within of the processes 60-68 each
represent a block of code containing several lines of
code, represented by the horizontal lines, to be
executed by a processor. The same block of code can be
used by different processes. For example the blocks of
code in processes 62 and 64 could be the same. The
beginning of a trace-thread must be defined by a daemon
used for point tracing, where one of the resulting
actions is to start thread tracing as described above.
The daemon that starts a trace-thread can detect any
event in the system, whether an external event like the
"off-hook" event as described above or an internal

event. An internal event could also define the start

PCT/SE95/00193

10

15

20

25

WO 95/24090

-17-
of another trace-thread. In fact, every instruction
step or line of code could be the start of a trace-
thread. It is noted that all daemons can be used for
point tracing although some are inserted mainly to be
used as start points for thread tracing.

Generally, a trace-thread is a tree of execution
branches as shown in Fig. 6. For example, a first
daemon implanted at line 60(1) of the code in process
60, as indicated by the darker line, starts the thread
tracing and assigns an identity to the trace thread.
The trace-thread propagates through the other processes
forming branches 60a, 60b, 62a, 62b and 64a. Two
branches can pass through the same process independent
of each other as does branch 62a and 64a, both of which
propagate through and terminate at the process 68.
Referring to the same processes in FIG. 7 for another
example, a second daemon implanted at line 60(5) of the
code in process 60 and a third daemon implanted at line
64(2) of the code in process 64 both start thread
tracing and assign an identity to the corresponding
trace-thread. In this example, there aré two separete
trace-threads, one comprising branches 60b, 62a and
62b, and a second comprising only branch 64a. Since
the first daemon did not implant a trace-thread at line
60 (1) of the code in process 60 because it is inactive,
the trace system would not include branch 60a as a

trace-thread because there is no trace-thread identity.

PCT/SE95/00193

10

15

20

25

WO 95/24090

-18-
However, both trace-threads still propagate through and
terminate at process 68.

Referring now to FIG. 8, it is possible to
allocate variables (v) to a trace-thread, i.e., thread-
bound variables. These thread-bound variables can be
used for counting the number of times certain events
occur or for changing the behavior of daemons in the
trace-thread according to previous events. Such
daemons can update any variable as an action based on
some qualification as described above. If a thread-
bound variable is updated in a trace-thread, it is only
valid in that particular branch of the trace-thread.
Thus, although branch 62b has been updated twice (v=2),
branch 62a has been updated only once (v=1). During
the same time, branches 60a and 64a have not been
affected (v=0) by the updating of the other two

branches.

As indicated above, the application programs
associated with a call are executed within a large
number of processes which can run on different
processors. Thus, a call can be describe independently
of processors in a form similar to that shown in FIGS.
6-8. All of the processes required by a call can be
more simply illustrated without referring to the
processors as shown in FIG. 5. A complete call in

terms of processes is shown in FIGS. 9-11. Referring

PCT/SE95/00193

10

15

20

25

‘WO 95/24090

19

more specifically to FIG. 9, a schematic diagram of the
more significant processes required for a call is
shown. These processes comprise access processes (AC)
7i and 72, service processes (SE) 73 and 74, traffic
control processes (TC) 75 and 76, and communication
processes (COM) 77 and 78. A process can be static or
dynamic depending on whether the process is needed all
the time, i.e., a static process, or only during the
execution of a particular activity, i.e., a dynamic
process. Static processes are defined by the
configuration of the network when software is loaded
and a processor commences execution, and include
without limitation the access and service processes.
Another example of a static process is the set-up and
supervision of a call. The traffic control and
communication processes are examples of dynamic
processes.

In operation, there is no difference between the
static process and the dynamic process. Both
subscribers are serviced by the access processes (AP)
71 and 72. When the originating subscriber lifts the
handset to make a call, the following sequence of
messages, represented by arrows 81-96, is initiated.
The access process (AP) 71 orders up a half call by
sending message 81 to create the traffic control
process (TC) 75 (only one step in the half call

process) which in turn sends a message 82 to the

PCT/SE95/00193

10

15

20

25

WO 95/24090

-20-
service process (SE) 73 for obtaining information about
the receiving subscriber, e.g., number analysis,
location determination, routing analysis, charging and
other services. The service process (SE) 73 responds
by sending hessage 83 to the originating traffic
control process (TC) 75 which selects a free outgoing
line in the route and reserves it for transmission of
message 84 to create the terminating traffic control
process (TC) 76. The terminating traffic control
process (TC) 76 receives the destination data and uses
the service process (SE) 74 via messages 85 and 86 to
analyze the information and checks whether the called
subscriber exists. If the called subscriber exists,
the terminating traffic control process (TC) 76 then
sends message 87 to the terminating access process (AC)
72 to determine if the other party is available. If
that party is available, the access process (AC) 72
informs the traffic control process (TC) 76 via message
88 which communicates that information to the
originating traffic control process (TC) 75 via message
89. The originating traffic control process (TC) 75
then orders the communication process (COM) 77 via
message 90 to set up a voice path 91 which it
originally reserved. When the voice path 91 is
connected, the terminating communication process (COM)
78 acknowledges by sending message 92 to the

terminating traffic control process (TC) 76 which

PCT/SE95/00193

10

15

20

25

WO 95/24090

-21_

returns message 93 to set up the return voice path 94.
When the voiée path 94 connects to the originating
communication process (COM) 77, message 95 informs the
originating traffic control process (TC) 75 that the
connection is complete. Finally, the originating
traffic control process (TC) 75 sends message 96 back
to the originating access process (AC) 71 indicating
that a through-connection has been completed.

Focusing on the processes as illustrated above
facilitates analyzing the use of daemons for tracing
according to the invention. Referring more
specifically to FIG. 10, a schematic representation of
the access (AC), service (SE) and traffic control (TC)
processes of FIG. 9 for handling two phone calls, A and
B, in accordance with the invention is shown. Both
calls are serviced by the same access process (AC) 101
which uses code 102 having an implanted daemon, D1.
The access process (AC) 101 sets up half calls by
sending messages 107A and 107B, respectively, to create
separate traffic control processes (TC-A, TC-B) 103A
and 103B. Although the traffic control processes 1033,
103B are separate, they both use the same code 104
containing two daemons, D2 and D3. Both traffic
control processes, TC-A and TC-B, communicate with the
same service process (SE) 105 which uses code 106
containing a fourth'daemon, D4. This example will be

used to describe several different tracings (T1, T2 and

PCT/SE95/00193

10

15

20

25

WO 95/24090

-22-
T3), thread and point tracing, and how the tracings are
grouped into separate trace collections (I, II and
III).

The first tracing Tl is a point tracing wherein
the first daemon D1 initiates a second tracing T2 if
certain conditions are satisfied such as, for example,
that subscriber 1111 is placing a call. The point
tracing Tl would be used for both calls A and B and, if
the first daemon D1 is activated, initiates two thread
tracings T2 propagating through the other processes as
represented by trace-threads 107A/108A/109A and
107B/108B/109B, collectively referred to hereinafter as
trace threads 107-109. It should be noted that both of
the trace threads 107-109 propagate through the same
service process (SE) 105 as described generally above.
The thread tracing T2 comprises three daemons D2, D3
and D4, each one of which if activated stores separate
data X, Y and Z, respectively, as part of the thread
tracing activity. The data can be, for example,
relevant process-related data stored at the time the
daemon is activated and/or relevant system-level data
such as, for example, the identification number of the
process itself. The first trace collection, trace
collection I, comprises tracings Tl and T2 because both
start at the same time.

However, a trace collection may consist only of

one tracing. For example, the third tracing T3 can be

PCT/SE95/00193

10

15

20

25

WO 95/24090

-23-

an independent point tracing initiated by the second
daemon D2 gqualified by a predefined set of filter
conditions with corresponding actions. The
qualification ‘might be, for example, that "if the
calling subscriber is any one of 1111, 2222 or 3333,
then store data XYZ." The second trace collection II
would consist only of the third point tracing T3. This
example illustrates that one daemon can be used for
several independent tracings in a trace collection.
Thus, the second daemon D2 is used in both the second
and third tracings, T2 and T3, as part of trace
collections I and II. All of the tracings, T1-T3, can
be grouped together in a third trace collection III to
collect all the information in one session. A
significant advantage of such thread tracing as
demonstrated by this example is that daemons can be
qualified to store data at the source of a chain of
events for review after the events have occurred.

Daemons can also be implanted in code used by a
device processor (DP) such as, for example, device
processor (DP) 110 showing two examples of a process
111, each one using the same code 112 having a daemon
D5 implanted therein. The device processor (DP) 110
can be, for example, one dedicated to specific terminal
equipment. The device processor (DP) 110 communicates
with an access process (AC) 113 being executed by a

common pooled processor (CPP) 114 via messages 116A,

PCT/SE95/00193

10

15

20

25

WO 95/24090 PCT/SE95/00193

-24-
117A and 116B, 117B. The access process (AC) 113 in
turn communicates via messages 1157, 118A and 115B,
118B with other processes in a manner similar, for
example, to the access process (AC) 101 shown in FIG.
10. Although the daemon D5 shares trace information
with both calls A and B, it is only activated if the
key fits the lock. The first thread tracing activity
for call A is represented by trace-thread
115A/116A/117A/118A. If the key value contained in the
message 115A fits the lock stored in the daemon D5,
thread tracing will occur as represented by the solid
arrows for the trace thread 115A/116A/117A/118A and
relevant data will be stored. If, however, the key
value obtained in the message for the second call B
does not fit the lock of the dagmon D5, there will be
no thread tracing activity as represented by the dashed
arrows for the trace threaq 115B/116B/117B/118B.
Daemons 46 can be implanted in the code at
different times. They can be generated during the
design phase prior to runtime, i.e., pre-runtime
daemons 46, or in connection with the trace session
itself, i.e., runtime daemons 46. Typical pre-runtime
daemons 46 are message daemons, daemons for time slice
and for process creations and deletions, or daemons
catching important general events in the application
programs, such as the "off-hook" event. A flow chart

showing the creation of pre-runtime daemons is shown in

10

15

20

25

WO 95/24090

-25-
FIG. 12 starting at 121. The designer first defines
the daemons 122 and then inserts or implants them in
the application code 123. When the application is
compiled 124, it is linked to the daemons 125 and then
loaded into the main memory or storage used by the
common pooled processor (CPP).

Runtime daemons 46 can be assigned dynamically to
certain code addresses, and have the same features as
the predefined daemons. The runtime daemons are
typically used for more detailed studies of critical
areas. Their capabilities include reading and
qualifying runtime defined variables and states, as
well as 1logging those variables and states. The
runtime defined daemons can also be designed to cover
special circumstances for the application programs at
the location where they are implanted. A flow chart
showing the creation of a runtime daemon is shown in
FIG. 13 at 131. The designer first defines the daemons
132, but then compiles the daemons 133 and loads them
directly into the main memory or storage used by the
common pooled processors (CPF for subsequent use by an
application. The tracetool’s functionality in the
operating system and the kernel inserts -he trap in the
application. See FIG. 14.

Both the runtime daemons and the applications are
stored in program memory as shown at 141 which shows 15

lines of code wherein the daemon is implanted in lines

PCT/SE95/00193

10

15

20

25

WO 95/24090

-26~

2-4 and the application is stored at lines 9-11. After
the process of trap insertion is implemented according
to the invention, the program memory 141 transitions as
indicated by the arrow 142 to the form shown at 143
wherein the execution path is shown by arrows 145-148.
Prior to execution of the épplication, the command
"trap call 2" is inserted at line 10 replacing the Y
code of the application which is inserted at line 5
after the runtime daemon followed by a "trap return 11"
command. When the application is executed, it jumps
from line 10 of the program memory 143 to line 2 as
indicated by the arrow 145 to commence execution of the
daemon. The processor then executes the daemon and the
Y code removed from the application as indicated by the
arrow 146. The processor then continues execution by
returning from line 6 to line 11 as indicated by the
arrow 147 to continue execution of the application as
indicated by the arrow 148. Again, it is important to
recognize that execution of the application program
continues in accordance with the invention. In
operation, runtime daemons 46 work exactly the same as
pre-runtime daemons 46. Therefore, to simplify the
following description, daemons 46 will be referred to
in the context of a pre-runtime daemon 46 unless stated
otherwise.

As indicated above, each daemon has a lock-table

through which the daemon can be activated or

PCT/SE95/00193

WO 95/24090 ' PCT/SE95/00193

10

15

20

25

-27-
deactivated. Accordingly, different methods are used
to assign the lock structure to a daemon. If the
network is small so that the risk for name conflict is
minimized at compile time, each daemon can be assigned
a unique lock structure at compile time. However, if
the software is being designed at different sites,
there is a greater risk for name conflicts requiring
the use of a more sophisticated method. One
possibility is to assign a unique lock at load time.
In that case the loader has to take care of name
conflicts and assign different lock structures for
identical daemons in different load modules. If
tracing takes place in a large network of processors,
the loader must keep track of a common database of
unique lock data structures. Another possibility is to
assign a unique lock to the daemons when the tracing is
prepared by the trace tool 47. This minimizes the
number of simultaneously active locks, since only those
locks that are used for a tracing need to be assigned
to daemons.

When several daemons are needed for one tracing,
they are connected in a group by assigning a lock data
structure common to all daemons in the group. Thus, a
single key connected to a message will open the lock
for all of the daemons in that group. This feature of
being able to connect daemons together in a common

group is important because it makes it possible to

10

15

20

25

WO 95/24090

-28-
trace high-level and low-level events in a single
tracing to determine concurrently the history of the
related events. Other techniques can be used in
conjunction with the lock and key method to 1link
daemons in a single group which will be described below
in more detail.

Each daemon has a name identifier, that identifies
the daemon, uniquely in the SPC exchange 30. If the
daemon is a pre-runtime daemon, the name has to be
unique in the telecommunication network. In order to
optimize the reading and detection of daemon identity
during the tracing, the daemon name is replaced by a
running identity. This identity consists of a word,
easily read by the daemon qualification logic. The
running identity can be assigned to the daemon at
compile time if the risk of name conflicts can be
minimized during compiling. If, however, the software
is designed at different sites, the risk for name
conflicts cannot be managed. Thus, the running
identity has to be assigned to the daemon at load time.
Another possibility is to assign the running identity
to the daemon when the tracing is prepared by the trace
tool 47. The trace tool 47 assigns the running
identity as a number for each daemon 46 in the tracing.
These numeric identities are then used to select the
desired qualifications and actions for each daemon 46

in the tracing. The rationale for selecting one of

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

10

15

20

25

-29-
these methods is similar to those for assigning unique
lock structures as described above. The only
difference is that the running identity is not
optimized to the same degree as the lock, so the number
of available identities is larger.

The keys and locks method also can be used for
debugging which makes it possible to debug a separate
activity or process during runtime without disturbing
other activities in the network. By connecting
breakpoints for a debugger to a trace-thread, debugging
several processes is possible. When a breakpoint is
reached, the execution of that portion or branch of the
trace-thread stops while the remaining portion
continues propagating through the processes. Again,
the feature of continued execution according to the
invention is the difference between tracing and
debugging as described generally above. If execution
stops only where the breakpoint is reached, oth.r
branches of the trace-thread can continue to £finish
their activities. Referring to FIG. 7, for example, a
breakpoint implanted at line at line 62(b) of the code
in the processor 62 and activated would cease execution
of the branch 62b of the trace-thread, but execution of
the branch 62a would continue to completion. The
branch 62b of the trace-thread cannot continue
execution until a "continue" order is sent to the

debugger.

10

15

20

25

WO 95/24090

-30-

All activity of a trace-thread can be stopped, if
the scheduler receives information about the received
breakpoint and corresponding trace-thread identity, and
if that information is sent to all processors in which
the trace—thread can possibly execute. Furthermore,
the trace-thread has to be sent before any normal
message in the system, that is, the debugging system
must have exclusive access to the highest priority in
the communication facility. 1If these conditions are
satisfied, the scheduler can detect the trace-thread
identity for each job that is to be scheduled, and
suspend that process until the "continue" order is
received.

Using these techniques, seldom-occurring failures
can alsp be detected and analyzed. In such case, the
trace-thread is automatically repeated and the
resulting trace information is deleted during each
cycle until the failure occurs. The trace information
for the trace-thread in which the failure occurs is
stored with others to build a history on that failure
which can be analyzed at a later date. These
techniques can also be used to determine the time at
which two branches of a trace-thread arrive at a
particular process or breakpoint. This can be
important information because an improper order of
arrival, which seldom occurs, would also generate a

failure that is difficult to detect. Referring to FIG.

PCT/SE95/00193

10

15

20

25

WO 95/24090 PCT/SE95/00193

-31-
8, for example, a failure might occur during execution
of the code in the process 68 if the branches 62a and
64a arrive out of order. In order to detect these
timing, or race, conditions, a combination of the
thread-bound variables (v) with process-imbedded
variables within the code is used. The thread-bound
variable shows which branch of the trace-thread is
actually executing and the process-imbedded variable is
used to remember which of those branches arrived first.

The keys and locks method is used to select or
deselect daemons based on a conditional statement of
the daemon, such as, for example, the "if (ON)"
statement referred to above. The basic data structure
for the keys and locks can be implemented by one of two
different methods: the word method illustrated in FIGS
15-18 or the bit method illustrated in FIGS. 19-22.
Referring more specifically to FIG. 15, the word method
uses a key 151 comprising a word ("word-key") that can
be, for example, a word having a length of 16 bits
connected to a message 152. The key 151 is compared
with, or "fitted into," the lock associated with each
of the daemons 153 trapped by an application program
during execution. Whenever the worc-key fits into the
lock of one of the daemons 152. that daemon is
activated as a result of the conditional statement 154
being satisfied. Each of the daemons 153 comprising

this single trace-thread has its own table of locks 155

10

15

20

25

30

WO 95/24090

-32-
as shown for the first daemon D1. The table 155
contains a lock unique for each daemon and is updated
for every trace session, depending on the particular
requirements of the designer, when new daemons are
created during pre-runtime or runtime. Typically, a
group of daemons is created, as shown in FIG. 15,
wherein all the daemons 153 have the same lock number,
i.e., the group lock number 156, which permits the
single key 151 connected to the message 152 to open all
the daemons 153 in a single trace as described
generally above. Alternatively, the lock table 155 can
be empty and updated during runtime just prior to
commencing a tracing session which requires certain
daemons. Updating during runtime provides the
advantage of conserving capacity when tracing, because
the locks not selected will not be read.

The in-line portion of the daemon is programmed as
follows:

if (key != 0)

for (i=0; locks [i] != 0; i++)
if (key == locks [i])
daemon_ON call ();
©1993 Telefonaktiebolaget LM Ericsson

Referring more specifically to FIG. 17, a flow chart
showing the key-lock code for a single trace using the
word method is shown starting at 171. Step one is to
determine whether the word-key 151 is currently being

utilized. This is accomplished at 172 by comparing the

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

10

15

20

25

~-33-
value of the word-key to zero. If the wvalue of the
word-key 151 is equivalent to zero it is not in use and
therefore the single trace is stopped at 178. However,
if the word-key 151 is in use (i.e., its value does not
equal zero) then each lock qontained within the table
of locks 155 is compared with the word-key 151 to
determine if the word-key 151 will open the lock to
activate the daemon. The second step at 173 is to
initialize the value of a lock index variable ("LIV")
to zero. A LIV is necessary to access each individual
lock contained within a lock table associated with a
designated daemon. The third step at 174 is to access
the lock table 155 and determine if any of the locks
contained therein can be opened by the word-key 151.
Accessing is accomplished by utilizing the value of the
LIV to correspond with a single lock stored in the lock
table 155 ("accessed lock"). The fourth step is to
determine if the accessed lock is being utilized. This
is accomplished by comparing the value of the accessed
lock with zero at 174. If the value of the accessed
lock equals zero, it is not currently in use and,
therefore, none of the other locks contained within the
lock table are in use. Thus, the single trace stops at
178. If the value of the accessed lock does not equal
zero, then the fifth step at 175 is to determine
whether the word—key 151 will open the lock. This is

accomplished by comparing the value of the word-key 151

10

15

20

25

WO 9524090

-34 -

to the value of the accessed lock. If the value of the
word-key 151 equals the value of the accessed lock,
then the activity associated with the designated daemon
will be performed at 176 and the method will proceed to
the sixth step. If the word-key 151 will not open the
accessed lock, the method will also proceed to the
sixth step. The sixth step at 177 is to increment the
LIV so that it will be able to access a different lock
within the table of locks 155. Steps three through six
are repeated until the value of the accessed lock
equals zero which results in the single tracing being
stopped at 178.

As described above, independent tracings may occur
simultaneously or a trace-thread debugging may occur
contemporaneously with another tracing session.
Referring generally to FIGS. 16 and 18, a pictorial
representation and the corresponding flow chart showing
the key-lock code for multiple traces using the word
method is shown. More specifically, a table of word-
keys 160 is required to store keys for both tracings,
the original word-key 151 for the first tracing and a
new word-key 161 for the second tracing. Each word-key
151, 161 activates the daemons having the corresponding
lock number in its lock table 155. For example, the
word-key 151 may activate all the daemons 153 having
the group lock number, while word key 161 matches a

different lock number found in the lock table of only

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

-35-
two of the daemons. The in-line portion of the daemon

would be programmed as follows:

for (j=0; keys [J] != 0; j++)
for (i=0; locks [i] != 0; i++)
5 if (keys [Jj] == locks [i])

daemon ON_call ();
©1993 Telefonaktiebolaget LM Ericsson

10

15

20

25

WO 95/24090

-36-

Referring more specifically to FIG. 18, the flow
chart showing the key-lock code for a multiple trace is
shown starting at 180. Step one is to initialize the
value of a key index variable ("KIV") to zero at 181.
A KIV is necessary since the word-keys 151, 161 for
both tracings are stored in a key table 160. Step two
at 182 is to compare the word-key stored in the table
that is accessed by the corresponding value of the KIV
("accessed word-key") to see if it is currently being
utilized. If the value of the accessed word-key is
equal to zero, then it is not being used and the
multiple tracing stops at 189. However, if the word-
key is in use (i.e., its value does not equal zero)
then each lock contained within a table of locks 155 is
compared with the accessed word-key to determine if the
word-key 151 will open the lock to activate the daemon.
The second step at 183 is to initialize the value of a
lock index variable ("LIV") to zero. A LIV is
necessary to access each individual lock contained
within a lock table associated with a designated
daemon. The third step at 184 is to access the lock
table 155 and determine if any of the locks contained
therein can be opened by the word-key 151. Accessing
is accomplished by utilizing the value of the LIV to
correspond with a single lock stored in the lock table
155 ("accessed lock"). The fourth step is to determine

if the accessed lock is being utilized. This is

PCT/SE95/00193

‘WO 95/24090 ' PCT/SE95/00193

10

15

20

25

-37-
accomplished by comparing the value of the accessed
lock with zero at 184. If the value of the accessed
lock value equals zero, it is not currently in use and,
therefore, none of the other locks contained within the
lock table are in use. Thus the multiple trace stops
at 189. If the value of the accessed lock does not
equal zero, then the fifth step at 185 is to determine
whether the word-key 151 will open the lock. This is
accomplished by comparing the value of the word-key 151
to the value of the accessed lock. If the value of the
word-key 151 equals the value of the accessed 1lock,
then the activity associated with the designated daemon
will be performed at 186 and the method will proceed to
the sixth step. If the word-key 151 will not open the
accessed lock, the method will also proceed to the
sixth step. The sixth step at 187 is to increment the
LIV so that it will be able to access a different lock
within the table of locks 155. Steps four through six
are repeated until the value of the accessed lock
equals zero which results in the key index variable
being incremented at 188, and the method proceeding to
step two at 182.

FIGS. 19 and 21 are a pictorial representation and
flow chart showing the key-lock code for a single trace
using the bit method wherein the key 191 ("bit-key") is
a bivector comprising a bit pattern 192 and a

corresponding set of index numbers 193 for each daemon

10

15

20

25

30

WO 95/24090

-38-
created. The bit-key 191 is connected to a message 194
and unlocks those daemons 195 have a 1logic 1
("activation bit") in the bit pattern 192 corresponding
to the index number matching the daemon number. For
example, the set of index numbers 193 for the bit-key
191 are compared to the group of daemons 195 as
indicated by the arrows 196. For every match, the
conditional statement 197 activates or deactivates that
daemon in response to the state of the corresponding
bit in the bit pattern 192. Thus, the bit-key 191
activates daemon 7 associated with index number 7 as a
result of the activation bit in the bit pattern 192,
while the other daemons 195 are not activated as a
result of the 1logic ("deactivation bit") in the
corresponding bits of the bit pattern 195. The
bivector nature of the bit-key 191 eliminates the need
for the lock table 155 used in the word method. When
the daemons 195 are grouped for thread-tracing, the
bit-key simply contains an ac£ivation bit for each
daemon on the group. The in-line portion of this
daemon would be programmed as follows:

struct Lock
int offset;
int mask
} lock;
int key[MaxNoOfDaemons/BitsPerInt] ;
if (keyl[lock.offset] & lock.mask)
daemonDoActivations () ;

©1993 Telefonaktiebolaget LM Ericsson

PCT/SE95/00193

‘WO 95/24090 PCT/SE95/00193

10

15

20

25

-39-

Referring more specifically to FIG. 21, the flow chart
showing the key-lock code for a single trace using the
bit method is shown starting at 211. A designated
daemon is comprised of a offset and mask variable. The
offset variable is used to access the corresponding
bit-key associated with the designated daemon. The
mask variable is used to determine if the bit-key will
activate the designated daemon. Step one is to compare
the bit-key associated with the designated daemon at
212. This is accomplished by comparing an
activation/deactivation (a/d) bit contained within the
bit-key to a corresponding mask bit contained within
the designated daemon'’s mask variable. If the a/d bit
which corresponds to the mask bit is activated (equals
one), a daemon is activated at 213 and single tracing
stops at 214. If the a/d bit which corresponds to the
mask bit is deactivated (equals zero), single tracing
is stopped at 214.

As described above, independent tracings may occur
simultaneously or a trace-thread debugging may occur
contemporaneously with another tracing session.
Referring generally to FIGS. 20 and 22, a pictorial
representation and the corresponding flow chart showing
the key-lock code for multiple traces using the key
method is shown. More specifically, a table of bit-
keys 200 is used tb store keys for several tracings,

the original bit-key 191 for the first tracing and a

WO 95/24090 PCT/SE95/00193

10

15

20

25

30

35

-40-
new bit-key 201 for the second tracingz Each bit-key
191, 201 activates the daemons having a corresponding
activation bit in the bit-pattern 192.. For example,
the bit-key 201 may activate all of the daemons 195 if
an activation bit is implanted at index numbers 1, 2
and 7 of the bit pattern 192.

In such case, the in-line portion of the daemon

would be programmed as follows:

struct Lock

int offset;

int mask
} lock;
int keyTable [MaxNoOfTraces] [MaxNoOfDaemons/BitsPerInt];
int index;

int usedIndex;
for (index=0;index<=usedIndex;index++)
if (keyTable[index] [lock.offset] & lock.mask)

daemonDoActivations () ;

é1993 Telefonaktiebolaget LM Ericsson

Referring more specifically to FIG. 22, the flow
chart showing the key-lock code for multiple traces
using the bit-key method is shown starting at 221. A
designated daemon is comprised of a offset and mask
variable. The offset variable is used to access the
corresponding bit-key associated with the designated
daemon. The mask variable is used to determine if a
designated bit-key will activate the designated daemon.
Step one at 222 is to initialize the value of a index

variable to zero. Step two at 223 is to compare the

10

15

20

25

WO 95/24090

-41 -

value of the index variable to the value of a used-
index variable. If the value of the index variable is
less than or equal to the value of the used-index
variable, the method proceeds to step three at 224. If
the value of the index variable is greater than the
value of the used-index variable, multiple tracing is
stopped at 227. Step three 1is to compare a
activation/deactivation(a/d) bit contained within a
bit-key with a mask variable contained within a
designated daemon. The comparison is accomplished by
using the index variable to access a bit-key associated
with a particular trace from a key table ("accessed
bit-key"). A offset variable of the designated daemon
is then used to access the associated a/d bit within
the accessed bit-key ("accessed a/d bit"). If the a/d
bit which corresponds to the mask bit in a designated
daemon is activated {(equals qne), the designated daemon
is activated at 225 and the method proceeds to step
four at 226. If the a/d bit which corresponds to the
mask bit in a designated daemon is deactivated (equals
zero), the method still proceeds to step four. Step
four increments the index variable and proceeds to step
two.

In both methods, several tracings may occur
simultaneously when the key structure is simply
multiplied. This enables several designers working

independently to make tracings and even share part of

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

10

15

20

25

-42-

the trace-thread simultaneously. Both methods permit
the connection of daemons in one tracing by forming a
group of daemons for which one key opens all daemons in
the group. Connecting daemons to a common group is one
of the most important features of the key-lock methods
justidescribed. The grouping makes it possible to
trace high-level (application program) events and low-
level (operating software) events in the same tracing
as shown in FIG. 3B by branches 46a and 46b to
determine the ancestry of operating systems events at
the application level.

The main advantage of the word method is that the
in-line part of the daemon executes faster if the
number of daemons is greater than the normal word-
length‘of the processors used. The reason is that such
processors generally are optimized for working with
words raﬁher than with bits. The main advantage of the
bit method, on the other hand, is that information
about daemon groups doesn’t need to be signalled before
the tracing takes place. Thus the bit method is best
suited for systems where there is no central
administration of the processors in the network, so
that the processors forming part of the trace-thread
will not be known in advance.

When the networks are too large to know or foresee
the number of prdcessors forming part of a trace-

thread, and where there is no general method for

10

15

20

25

WO 95/24090

PCT/SE95/00193

-43-
broadcasting messages, the key as well as the complete
qualifications-and-actions list has to be a part of
every message that derives from the trace-thread. This
would be a serious disadvantage since the traced
messages would require more space than other messages,
and for that reason the behavior for a traced trace-
thread would differ from untraced ones. But for
networks, where that type of implementation is
necessary, the bit method must be used. If, on the
other hand, the participating processors can be
informed of a certain tracing in advance, it is easy to
transmit the group information as well. In that case
the word method is preferred to conserve capacity.

Having described the details of the invention, the

operatipn of the invention is now reviewed, commencing
with the trace session which begins as follows:

(1) The designer decides which daemons that
should be used for the tracing. When using
groups of daemons, depending on whether the
implementation requires it, the system adds
a group lock to those daemons which are
defined to be in the group.

(2) The designer defines the starting point of
the trace-thread by using a point-trace.

(3) When the execution passes the starting point
the trace-thread identity is assigned by a

daemon and the tracing commences.

WO 95/24090 PCT/SE95/00193

-44-
(4) When the tracing is finished the result is

displayed for the designer.
It is believed that the operation and construction
of the present invention will be apparent from the
5 foregoing description. While the method, apparatus and
system shown and described has been characterized as
being preferred, it could be obvious that various
changes and modifications may be made without departing
from the spirit and scope of the invention as defined

10 by the following claims:

10

15

20

25

WO 95/24090

-45-
WHAT IS CLAIMED IS:
1. A method for detecting events occurring in a

telecommunications network comprising stored program
control (SPC) exchanges, each SPC exchange comprising
a switch and processors for executing software programs
to control the switch, comprising the steps of:

implanting code sequences in selected
portions of the software programs, each code sequence
including a conditional statement responsive to certain
events and at least one activity resulting from the
detection of a certain event satisfying the conditional
statement;

assigning a lock value to each of the code
sequences, each lock value uniquely identifying the
corresponding code sequences and being operable to
activate the processor for executing the code sequence;

comparing a key value to each lock value for
selectively activating the processor to execute the
code sequence when the key value equals the lock value;

executing the activity specified in the code
sequence 1if the detected event satisfies the
conditidnal statement; and

continuing execution of the software program
after each activity is executed whereby continuous-

processing in the SPC exchange is maintained.

PCT/SE95/00193

WO 95/24090

10

15

20

25

PCT/SE95/00193

-46-
2. The method of claim 1 wherein each processor
comprises a processing unit and memory, and wherein the
code sequences are created and implanted in the
software program prior to runtime of the SPC exchange
according to the following steps:
defining the code sequence to include the
conditional statement, the resulting activity, and the
corresponding lock value;
implanting the code sequences in selected
portions of the software programs;
compiling the software program and linking
the compiled software program to the code sequences;
and
loading the compiled software program linked
to the code sequences into the memory of the processor
for subsequent execution by the processing unit during

runtime of the SPC exchange.

3. The method of claim 1 wherein each processor
comprises a processing unit and memory, and wherein the
code sequences are created and implanted in the
software program stored in memory during runtime of the
SPC exchange according to the following steps:

defining the code sequence to include the
conditional statement, the resulting activity and the

corresponding lock value;

WO 95/24090 PCT/SE95/00193

10

15

20

25

-47-

compiling the code sequence and loading the

compiled code sequence into the memory of the
processor; and

inserting a trap call in the software program

and a trap return in the code sequence, whereby

execution by the processing unit jumps from the

software program to the code sequence and back to the

software program.

4. The method of claim 1 further comprising the
steps of:
assigning a second lock value to at least two
code sequences for uniquely identifying them in a
group, the second lock value being operable to activate
the processors for executing the code sequences in the
group; comparing the key value to the second
lock value for selectively activating the processors to
execute the code sequences in the group when the key
value equals the second lock value; and
executing the activity specified in each code
sequence of the group if the detected event satisfies

the corresponding conditioned statement.

5. The method of claim 1 further comprising the
steps of:
comparing a second key value to each lock

value for selectively activating the processor to

WO 95/24090 ' PCT/SE95/00193

10

15

20

25

-48-
execute a second code sequence when the second key
value equals the lock value thereof; and

executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

6. The method of claim 5 wherein the first and

second code sequences are the same.

7. The method of claim 1 wherein the key value
comprises a word having a predetermined number of bits

connected to a message.

8. The method of claim 7 further comprising the

steps of:

assigning a second lock value to at least two
code sequences for uniquely identifying them in a
group, the second lock value being operable to activate
the processors for executing the code sequences in the
group;

comparing the key value to the second lock
value for selectively activating the processors to
execute the code sequences in the group when the key
value equals the second lock value; and

executihg the activity specified in each code
sequence of the group if the detected event satisfies

the corresponding conditioned statement.

WO 95/24090 PCT/SE95/00193

10

15

20

25

49
9. The method of claim 8 further comprising the
steps of:
comparing a second key value to each lock
value for selectively activating the processor to
execute a second code sequence when the second key
value equals the lock value thereof; and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

10. The method of claim 1 wherein the key value
is a bivector comprising a bit pattern and a
corresponding set of index numbers for each code
sequence, ahd the lock value for each code sequence is
the cgrresponding bit in the bit pattern being operable

to activate based on the state of the bit.

11. The method of claim 10 further comprising the
steps of:
comparing a second key value to each lock
value for selectively activating the processor to
execute a second code sequence when the second key
value equals the lock value thereof; and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

WO 95/24090

10

15

20

25

PCT/SE95/00193

-50-
12. A method for detecting events occurring in a

telecommunications network comprising stored program
control (SPC) exchanges, each SPC exchange comprising
a switch and processors for executing software programs
to control the switch, comprising the steps of:

implanting code sequences in selected
portions of the software programs, each code sequence
including a conditional statement responsive to certain
events and at least one activity resulting from the
detection of a certain event satisfying the conditional
statement;

assigning a lock value to each of the code
sequences, each lock value uniquely identifying the
corresponding code sequences and being operable to
either gctivate the processor for executing the code
sequence or deactivate the processor for bypassing the
code sequence to continue execution of the software
program;

comparing a key value to each lock value for
selectively activating the processor to execute the
code sequence when the key value equals the lock value
or deactivating the processor to bypass the code
sequence when the key value does not equal the lock
value;

executing the activity specified in the code
sequence if the detected event satisfies the

conditional statement; and

WO 95/24090 , PCT/SE95/00193

10

15

20

25

-51-
continuing execution of the software program
after each activity is executed whereby continuous-

processing in the SPC exchange is maintained.

13. The method of claim 12 wherein each processor

comprises a processing unit and memory, and wherein the

code sequences are created and implanted in the
software program prior to runtime of the SPC exchange
according to the following steps:

defining the code sequence to include the
conditional statement, the resulting activity, and the
corresponding lock value;

implanting the code sequences in selected
wortions of the software programs;

compiling the software program and linking
the compiled software program to the code sequences;
and

loading the compiled software program linked
to the code sequences into the memory of the processor
for subsequent execution by the processing unit during

runtime of the SPC exchange.

14. The method of claiﬁ 12 wherein each processor
comprises a processing unit and memory, and wherein the
code sequences are created and implanted in the
software program stored in memory during runtime of the

SPC exchange according to the following steps:

10

15

20

25

WO 95/24090

-52-

defining the code sequence to include the
conditional statement, the resulting activity and the
corresponding lock value;

compiling the code sequence and loading the
compiled code sequence into the memory of the
processor; and

inserting a trap call in the software program
and a trap return in the code sequence, whereby
execution by the processing unit jumps from the
software program to the code sequence and back to the

software program.

15. The method of claim 12 further comprising the
steps of:
assigning a second lock value to at least two
code sequences for uniquely identifying them in a
group, the second lock value being operable to either
activate the processors for executing the code
sequences in the group or deactivate the processors for
bypassing the code sequences in the group and to
continue execution of the software program;
comparing the key value to the second lock
value for selectively activating the processors to
execute the code sequences in the group when the key
value equals the second lock value or deactivating the

processors to bypass the code sequences in the group

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

10

15

20

25

-53-
when the key value does not equal the second 1lock
value; and

executing the activity specified in each code
sequence of the group if the detected event satisfies

the corresponding conditioned statement.

16. The method of claim 12 further comprising the
steps of:
comparing a second key value to each lock
value for selectively activating the processor to
execute a second code sequence when the second key
value equals the lock value thereof or deactivating the
processor to bypass the second code sequence when the
second key value does not equal the lock value thereof;
and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

17. The method of claim 16 wherein the first and

second code seguences are the same.

18. The method of claim 12 wherein the key value
comprises a word having a predetermined number of bits

connected to a message.

WO 95/24090

10

15

20

25

PCT/SE95/00193

-54 -
19. The method of claim 18 further comprising the

steps of:

assigning a second lock value to at least two
code sequences for uniquely identifying them in a
group, the second lock value being operable to either
activate the ©processors for executing the code
sequences in the group or deactivate the processors for
bypassing the code sequences in the group and to
continue execution of the software program;

comparing the key value to the second lock
value for selectively activating the processors to
execute the code sequences in the group when the key
value equals the second lock value or deactivating the
processors to bypass the code sequences in the group
when the key value does not equal the second lock
value; and

executing the activity specified in each code
sequence of the group if the detected event satisfies

the corresponding conditioned statement.

20. The method of claim 19 further comprising the
steps of:

comparing a second key value to each lock

value for selectively activating the processor to

execute a second code sequence when the second key

value equals the lock value thereof or deactivating the

processor to bypass the second code sequence when the

WO 95/24090 ' PCT/SE95/00193

10

15

20

25

-55-
second key value does not equal the lock value thereof;
and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

21. The method of claim 12 wherein the key wvalue
is a bitvector comprising a bit pattern and a
corresponding set of index numbers for each code
sequence, and the lock value for each code sequence is
the corresponding bit in the bit pattern being operable
to activate or deactivate based on the state of the

bit.

22. The method of claim 21 further comprising the
steps of:
comparing a second key value to each lock
value for selectively activating the processor to
execute a second code sequence when the second key
value equals the lock value thereof or deactivating the
processor to bypass the second code sequence when the
second key value does not equal the lock value thereof;
and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

WO 95/24090

10

15

20

25

PCT/SE95/00193

-56-

23. A method for detecting events occurring in a
telecommunications network comprising stored program
control (SPC) exchanges, each SPC exchange comprising
a switch and a processor for executing software
programs to control the switch, comprising the steps
of:

implanting code sequences in selected
portions of the software programs, each code sequence
including a conditional statement responsive to certain
events and at least one activity resulting from the
detection of a certain event satisfying the conditional
statement;

assigning a lock value to at least two code
sequences for uniquely identifying theﬁ in a group, the
lock value being operable to either activate the
processors for executing the code sequences in the
group or deactivate the processors for bypassing the
code sequences in the group to continue execution of
the software program;

comparing a key value to the lock value for
selectively activating the processors to execute the
code sequences in the group when the key value equals
the lock value or deactivating the processors to bypass
the code sequences in the group when the key value does

not equal the lock value;

WO 95/24090

10

i5

20

25

PCT/SE95/00193

5'7
executing the activity specified in each code
sequence of the group if the detected event satisfies
the corresponding conditional statement; and
continuing execution of the software program
after each activity is executed whereby continuous-

processing in the SPC exchange is maintained.

24. The method of claim 23 further comprising the
steps of:
comparing a second key value to each lock
value for selectively activating another processor to
execute a second code sequence when the second key
value equals the lock value thereof or deactivating the
processor to bypass the second code sequence when the
second.key value does not equal the lock value thereof;
and
executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

25. The method of claim 23 wherein the key value
comprises a word having a predetermined number of bits

connected to a message.

26. The method of claim 25 further comprising the

steps of:

WO 95/24090 ' PCT/SE95/00193

10

15

20

25

-58-

comparing a second key value to each lock
value for selectively activating another processor to
execute a second code sequence when the second key
value equals the lock value thereof or deactivating the
processor to bypass the second code sequence when the
second key value does not equal the lock value thereof;
and

executing the activity specified in the
second code sequence if the detected event satisfies

the conditional statement.

27. Apparatus for detecting events occurring in
a telecommunications network comprising stored program
control (SPC) exchanges, each SPC exchange comprising
a switch and processors for executing software programs
to control the switch, comprising:
means for implanting code sequences in
selected portions of the software programs, each code
sequence including a conditional statement responsive
to certain events and at least one activity resulting
from the detection of a certain event satisfying the
conditional statement;
means for assigning a lock value to each of
the code sequences, each lock value uniquely
identifying the corresponding code sequences and being
operable to activate the processor for executing the

code sequence;

WO 95/24090 PCT/SE95/00193

10

i5

20

25

-59-

means for comparing a key value to each lock
value for selectively activating the processor to
execute the code sequence when the key value equals the
lock value;

means for executing the activity specified in
the code sequence if the detected event satisfies the
conditional statement; and

means for continuing execution of the
software program after each activity is executed
whereby continuous-processing in the SPC exchange is

maintained.

28. The apparatus of claim 27 wherein each
processor comprises a processing unit and memory and
where?n the code sequences are created and implanted in
the software program prior to runtime of the SPC
exchange, further comprising:

means for defining the code sequence to
include the conditional statement, the resulting
activity, and the corresponding lock value;

means for implanting the code sequences in
selected portions of the software programs;

means for compiling the software program and
linking the compiled software program to the code
sequences; and

means for 1loading the compiled software

program linked to the code sequences into the memory of

10

15

20

25

WO 95/24090 PCT/SE95/00193

-60-
the processor for subsequent execution by the

processing unit during runtime of the SPC exchange.

29. The apparatus of claim 27 wherein each
processor comprises a processing unit and memory and
wherein the code sequences are created and implanted in
the software program stored in memory during runtime of
the SPC exchange, further comprising:

means for defining the code sequence to
include the conditional statement, the resulting
activity and the corresponding lock value;

means for compiling the code sequence and
loading the compiled code sequence into the memory of
the processor; and ”

means for inserting a trap call in the
software program and a trap return in the code
sequence, whereby execution by the processing unit

jumps from the software program to the code sequence

and back to the software program.

30. The apparatus of claim 27 further comprising:
means for assigning a second lock value to at

least two code sequences for uniquely identifying them
in a group, the second lock value being operable to
activate the processors for executing the code

sequences in the group;

WO 95/24090 PCT/SE95/00193

10

15

20

25

-61_
means for comparing the key wvalue to the
second lock value for selectively activating the
processors to execute the code sequences in the group
when the key value equals the second lock value; and
means for executing the activity specified in
each code sequence of the group if the detected event

satisfies the corresponding conditioned statement.

31. The apparatus of claim 27 further comprising:

means for comparing a second key value to

each lock wvalue for selectively activating the

processor to execute a second code sequence when the
second key value equals the lock value thereof; and

means for executing the activity specified in

the second code sequence if the detected event

satisfies the conditional statement.

32. The apparatus of claim 31 wherein the first

and second code sequences are the same.

33. The apparatus of claim 27 wherein the key
value comprises a word having a predetermined number of

bits connected to a message.

34. The apparatus of claim 33 further comprising

the steps of:

WO 95/24090

10

15

20

25

PCT/SE95/00193

-62-

means for assigning a second lock value to at
least two code sequences for uniquely identifying them
in a group, the second lock value being operable to
activate the processors for executing the code
sequences in the group;

means for comparing the key value to the
second lock value for selectively activating the
processors to execute the code sequences in the group
when the key value equals the second lock value; and

means for executing the activity specified in
each code sequence of the group if the detected event

satisfies the corresponding conditioned statement.

35. The apparatus of claim 34 further comprising:

means of comparing a second key value to each

lock value for selectively activating the processor to

execute a second code sequence when the second key
value equals the lock value thereof; and

means of executing the activity specified in

the second code sequence if the detected event

satisfies the conditional statement.

36. The apparatus of claim 27 wherein the key
value is a bivector comprising a bit pattern and a
corresponding set of index numbers for each code

sequence, and the lock value for each code sequence is

‘WO 95/24090 PCT/SE95/00193

10

15

20

25

-63-
the corresponding bit in the bit pattern being operable

to activate based on the state of the bit.

37. The apparatus of claim 36 further comprising:

means for comparing a second key value to

each lock value for selectively activating the

processor to execute a second code sequence when the
second key value equals the lock value thereof; and

means for executing the activity specified in

the second code sequence if the detected event

satisfies the conditional statement.

38. A apparatus for detecting events occurring in

a telecommunications network comprising stored program

control (SPC) exchanges, each SPC exchange comprising

a switch and processors for executing software programs
to control the switch, comprising:

means for implanting code sequences in

selected portions of the software programs, each code

sequence including a conditional statement responsive

"to certain events and at least one activity resulting

from the detection of a certain event satisfying the
conditional statement;

means for assigning a lock value to each of
the code sequences, each lock value wuniquely
identifying the corresponding code sequences and being

operable to either activate the processor for executing

WO 95/24090 PCT/SE95/00193

10

15

20

25

-64 -

the code sequence or deactivate the processor for
bypassing the code sequence to continue execution of
the software program;

means for comparing a key value to each lock
value for selectively activating the processor to
execute the code sequence when the key value equals the
lock value or deactivating the processor to bypass the
code sequence when the key value does not equal the
lock value;

means for executing the activity specified in
the code sequence if the detected event satisfies the
conditional statement; and

means for continuing execution of the
software program after each activity is executed
whereby continuous-processing in the SPC exchange is

maintained.

39. The appratus of claim 38 wherein each
processor comprises a processing unit and memory and
wherein the code sequences are created and implanted in
the software program prior to runtime of the SPC
exchange, further comprising:

means for defining the code sequence to
include the conditional statement, the resulting
activity, and the corresponding lock value;

means for implanting the code sequences in

selected portions of the software programs;

WO 95/24090 ' PCT/SE95/00193

10

15

20

25

65
means for compiling the software program and
linking the compiled software program to the code
sequences; and
means for loading the compiled software
program linked to the code sequences into the memory of
the processor for subsequent execution by the

processing unit during runtime of the SPC exchange.

40. The apparatus of claim 38 wherein each
processor comprises a processing unit and memory, and
wherein the code sequences are created and implanted in
the software program stored in memory during runtime of
the SPC exchange according, further comprising:

means for defining the code sequence to
inclu@e the conditional statement, the resulting
activity and the corresponding lock value;

means for compiling the code sequence and
loading the compiled code sequence into the memory of
the processor; and

means for inserting a trap call in the
software program and a trap return in the code
sequence, whereby execution by the processing unit
jumps from the software program to the code sequence

and back to the software program.

41. The apparatus of claim 38 further comprising:

means for assigning a second lock value to at

WO 95/24090 PCT/SE95/00193

10

15

20

25

-66-

least two code sequences for uniquely identifying them
in a group, the second lock value being operable to
either activate the processors for executing the code
sequences in the group or deactivate the processors for
bypassing the code sequences in the group and to
continue execution of the software program;

means for comparing the key value to the
second lock value for selectively activating the
processors to execute the code sequences in the group
when the key value equals the second lock value or
deactivating the ©processors to bypass the code
sequences in the group when the key value does not
equal the second lock value; and

means for executing the activity specified in
each code sequence of the group if the detected event

satisfies the corresponding conditioned statement.

42. The apparatus of claim 38 further comprising:
means for comparing a second key value to

each 1lock wvalue for selectively activating the
processor to execute a second code sequence when the
second key value equals the lock value thereof or
deactivating the processor to bypass the second code
sequence when the second key value does not equal the

lock value thereof; and

WO 95/24090 PCT/SE95/00193

10

15

20

25

-67-
means for executing the activity specified in
the second code sequence 1if the detected event

satisfies the conditional statement.

43. The apparatus of claim 42 wherein the first

and second code sequences are the same.

44. The apparatus of claim 38 wherein the key
value comprises a word having a predetermined number of

bits connected to a message.

45. The apparatus of claim 44 further comprising:
means for assigning a second lock value to at
least two code sequences for uniquely identifying them
in a group, the second lock value being operable to
either activate the processors for executing the code
sequences in the group or deactivate the processors for
bypassing the code sequences in the group and to
continue execution of the software program;
means for comparing the key value to the
second lock value for selectively activating the
processors to execute the code sequences in the group
when the key value equals the second lock value or
deactivating the processors to bypass the code
sequences in the group when the key value does not

equal the second lock value; and

WO 95/24090 PCT/SE95/00193

10

15

20

25

-68-~
means for executing the activity specified in
each code sequence of the group if the detected event

satisfies the corresponding conditioned statement.

46. The apparatus of claim 45 further comprising:

means for comparing a second key value to

each 1lock value for selectively activating the

processor to execute a second code sequence when the

second key value equals the lock value thereof or

deactivating the processor to bypass the second code

sequence when the second key value does not equal the
lock value thereof; and

means for executing the activity specified in

the second code sequence 1if the detected event

satisfies the conditional statement.

47. The apparatus of claim 38 wherein the key
value is a bivector comprising a bit pattern and a
corresponding set of index numbers for each code
sequence, and the lock value for each code sequence is
the corresponding bit in the bit pattern being operable
to activate or deactivate based on the state of the

bit.

48. The apparatus of claim 47 further comprising:
means for comparing a second key value to

each lock value for selectively activating the

10

15

20

25

WO 95/24090

-69-~

processor to execute a second code sequence when the
second key value equals the lock value thereof or
deactivating the processor to bypass the second code
sequence when the second key value does not equal the
lock value thereof; and

means for executing the activity specified in
the second code sequence if the detected event
satisfies the conditional statement.

49. A apparatus for detecting events occurring in

a telecommunications network comprising stored program
control (SPC) exchanges, each SPC exchange comprising
a switch and a processor for executing software
programs to control the switch, comprising:

means for implanting code sequences in
selected portions of the softwarg programs, each code
sequence including a conditional statement responsive
to certain events and at legst one activity resulting
from the detection of a certain event satisfying the
conditional statement;

means for assigning a lock value to at least
two code sequences for uniquely identifying them in a
group, the lock value being operable to either activate
the processors for executing the code sequences in the
group or deactivate the processors for bypassing the
code sequences in the group to continue execution of

the software program;

PCT/SE95/00193

WO 95/24090 PCT/SE95/00193

10

15

20

25

-70-

means for comparing a key value to the lock

value for selectively activating the processors to

execute the code sequences in the group when the key

value equals the lock wvalue or deactivating the

processors to bypass the code sequences in the group
when the key value does not equal the lock value;

means for executing the activity specified in

each code sequence of the group if the detected event

satisfies the corresponding conditional statement; and

means for continuing execution of the

software program after each activity is executed

whereby continuous-processing in the SPC exchange is

maintained.

50. The apparatus of claim 49 further comprising:

means for comparing a second key value to

each lock wvalue for selectively activating another

processor to execute a second code sequence when the

second key value equals the lock wvalue thereof or

deactivating the processor to bypass the second code

sequence when the second key value does not equal the
lock value thereof; and

means for executing the activity specified in

the second code sequence if the detected event

satisfies the conditional statement.

WO 95/24090

10

15

PCT/SE95/00193

-71-
51. The apparatus of claim 49 wherein the key
value comprises a word having a predetermined number of

bits connected to a message.

52. The apparatus of claim 51 further comprising:

means for comparing a second key value to

each lock value for selectively activating another

processor to execute a second code sequence when the

second key value equals the lock value thereof or

deactivating the processor to bypass the second code

sequence when the second key value does not equal the
lock value thereof; and

means for executing the activity specified in

the second code sequence if the detected event

satisfies the conditional statement.

WO 95/24090 | PCT/SE95/00193
1/1

5 120~ T -120)

\ 1{; 28
CENTRAL | ~10(b

— orrice o |

18 ~14

/
2T~ ey 2 21

PABX 8
L

OFFICE -
12(0)\@/ 7 f 2
F[G 7 20(d)f PABX
32
| ------ —';/‘30
USER L
TERMlNALS{——‘ X ﬁ}TRUNKS
T
FIG. 2 -
: PROCESSORS :
|

32
A A A A
RP RP RP RP
[ePu [cPulf eee [[CPU]T|]CPY]
{SR || || SR [SIR|||]|SR |
(
36 . 36
I
STR

FIG. 24

WO 95/24090 PCT/SE9S/00193
2/11
37
39 3 39 F
\ 5 /
USER J— opp > » P [—
TERM]NALS‘[[{__ _}TR“NKS
STR .><_ STR
CPP > > CPP
3] (o] [~38
STR STR
FIG. 2B
r'——] ~42
APPLICATIONS]\41
| 40
OPERATING
SYSTEM |43
I
CORE ™44
|
PROCESSORS |~_ 37
FIG. 34
i DAEMON 1 DAEMON 2 DAEMON 3
< O - Q=" EXECUTION
48
49" L H iL H
KEY LOCK 1 LOCK 2 LOCK 3

FIG. 4

WO 95/24090 PCT/SE95/00193
3/1

ccPt 5ol cop2

CHARGE
5311 “AGENT

ASSIGNING

THREAD,

60(1)

60(1) 600
I /

60

620

FIG. 6 — || U=

|~ 68

62b

WO 95/24090
4/11
ASSIGNING 600 o4
THREAD, —)
60(5) — —
U~ 1= Liweos) | |=—
60b
—_— 62a
62 | —
62b
FIG. 7 6 —
ASSIGN
THREAD,
V=0
60 —
ASSIGN —
THREAD,
V= 60b
ASSIGN —
THREAD, — 620
=2 Seveny
62 _
62b
FIG. 8

V=2

PCTI/SE95/00193

ASSIGNING
THREAD,
64(2

~—r

64a

68

-~ 68

WO 95/24090 PCT/SE95/00193
5/11
75 76
A e 7
n AC(XE)SS "1 CONTROL "1 CcoNTROL i AC(ACSSS 72
7 (ic)y e 7 () e N
/ 89 —\ 88
83 86
907 95 931 P9y
SERVICE SERVICE
73 (SE) N 94 (SE) 74
COMMUNI- le—)_| COMMUNI-
CATION CATION

108A
101 /
109A
D1 /
4
SE
— 105
— D4
106
1078
\
1088

N
109B

WO 95/24090 PCT/SE95/00193
6/11
112 13
T \ 116A | (Y[115A
M~y |=— / /
D5+ >— AC
E— N \
110\ \ / 117A ,l /\\.\ 118A
112) 1168 /f° CcPP I\ 115B
D e I SO W < W
05 ~f— 114
------- - >
111 | = \
) 1178 118B
DP FIG. 11
121\< * CREATION OF (CREATION OF)/131
PRE-RUNTIME DAEMONS) RUNTIME DAEMONS
!
122~ DEFINE THE DAEMON DEFINE THE DAEMON |~ 132
. Y ¥
123~ INSERT THE DAEMON IN 133
™ THE APPLICATION CODE COMPILE THE DAEMON
! !
LOAD THE DAEMON INTO
124 | COMPILE THE APPLICATION MAIN MEMORY (STORAGE) [134
! '
. INSERT A TRAP IN THE
195-] LINK THE APPLICATION APPLICATION TO THE DAEMON [™135
Y
LOAD THE APPLICATION INTO
126~ MAIN MEMORY (STORAGE)

FIG. 12

FIG. 13

WO 95/24090 PCT/SE95/00193
7/11
PROGRAM MEMORY PROGRAM MEMORY
0 0
1 1
) A) A "
3 B DAEMON 3 B | 146
4 C 4 C ;
5 5 Y | 145
6 142 6[TRAP RETURN 11] V.4
7 \ 7
8 8 g \/147
9 X 9 X \
10 Y APPLICATION 10[TRAP CALL 2 | Vi Y144
" 7 " 7 -
12 12 148
13 13
14 14
15 15
1{1 \3
14
FIG. 14
"IF (ON)’ CODE] -154
OF DAEMON |
FIG. 15
—
151 i —
Lock (156) [H_
KEY 11-
155 H
—H
MESSAGE d '/'
159 BGE DAEMONS (153)

WO 95/24090 PCT/SE95/00193

8/11
"IF (ON)’ CODE |- 154
OF DAEMON
FIG. 16
[_'__.___
I S
Ky 161 -
1609 155 H:
— T
|-
MESSAGE D1 -/«
1501 | Key | DAEMONS (153)
START
172
FIG. 17
173~ INDEX=0
174
N&Tocks [INDEX]
=0
VES
KEY=LOCKS™\YES
[INDEX]
DAEMON DO
175 To ACTIVATION 176
4
177 INDEX+1
T

SINGLE TRACE
178 STOP

WO 95/24090 PCT/SE95/00193
9/11

MULTIPLE 180
TRACE START

KEY INDEX = 0 |~ 181

182

KEYS
[KEY INDEX]
1=0

NO

LOCK INDEX = o}~183

[KEY INDEX]=

LOCKS {LoCK
I\DEX] DAEMON DO
NO ACTIVATION |>-186
|
[
LOCK INOEX + 1_457
-
KEY INDEX + 1185

L

MULTIPLE
TRACE STOP 189

FIG. 18

WO 95/24090 PCT/SE95/00193

10/11
197 "IF (ON)" CODE
™ OF THE DAEMON
LOCK-
196
'/r//" 194
MESSAGE MESSAGE /
| KEY‘T:‘E‘E'Z‘E‘; | KEY :._::...:r.::lT>
\
196 194 : 191 191 196
Bnpmmm[mm]dﬂddﬂdddﬂddddddﬂﬂﬂﬂddd'nmmmnm
INDEX NUMBER: 0 1234567 « » - NN
FIG. 19 1924,
193

"IF (ON)" CODE
OF THE DAEMON
KEY_TABLE. LOCKJ

——1]
\Ez/(
DAEMONS (195)

0
2008, " 91
~-201
196 w
MESSAGE MESSAGE

— | , [xkey] |

/ \
196 194 //////// 191 191 ’96

BIT PATTERN:{0{0{ 0] 0] 0} 0] o] 1[ofo]o] 1]o] oo ofofof +f 1] 1] fololo] -+ o]o[o] 1[0]
INDEX NUMBER: 0 1234567« » « N N
FIG. 20 92

193

WO 95/24090 PCT/SE95/00193
1/1

SINGLE TRACE
START

211

212

KEY ™\
[LocK OFFSET]
ANDBIT LOCK

MASK DAEMON DO
NO ACTIVATION 213

J
2 SINGLE TRACE
STOP

FIG. 21

221 MULTIPLE
TRACE START

222 INpEX = 0

YES

ANDByT LOCK
N DAEMON D0 |
NO ACTIVATION [-225

]

L

MULTIPLE
TRACE STOP

FIG. 22

22

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

