The invention also relates to the preparation of such compounds and of pharmaceutically acceptable salts thereof.

Abstract:

A61K 31/506 (2006.01)
A61K 31/4178 (2006.01)
A61K 31/4192 (2006.01)

Priority Data:
PCT/IB2013/066530 4 December 2013 (04.12.2013) IB

Applicant: ACTELION PHARMACEUTICALS LTD [CH/CH]; Gewerbestrasse 16, CH-4123 Allschwil (CH).

Inventors: BOSS, Christoph; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).
BRISBARE-ROCH, Catherine; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).

DEWIS, Markus; Grabenring 9, CH-4123 Allschwil (CH).
HED3MANN, Bibia; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).
JENCK, Francois; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).
SUFFERLEN, Thierry; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).
STEINER, Michel; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).

Williams, Jodi; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).

Agent: VELKER, Jörg; c/o Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil (CH).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(1)(H))
— with international search report (Art. 21(3))
Use of benzimidazole-proline derivatives

The present invention relates to novel benzimidazole-proline derivatives of formula (I) and their use as pharmaceuticals for the treatment of sundown syndrome. The invention also concerns related aspects including processes for the preparation of the compounds and pharmaceutical compositions containing one or more compounds of formula (I).

Sundown syndrome is a late-day circadian syndrome of increased confusion and restlessness, generally in a patient with some form of dementia. Cardinal clinical signs include increased agitation, general confusion and mood swings that typically develop as natural light begins to fade. This disruptive behavior worsening in the late afternoon or early evening among dementia patients or elderly institutionalized patients has been reported in the medical literature for more than 60 years (Bachman & Rabins, Annu. Rev. Med. 2006. 57:499-511). Terms used to describe this phenomenon include sundowning, afternoon sundowning, sundowner syndrome, or sundowning syndrome.

In contrast to delirium which is generally acute in onset and fluctuating in the course of the day, sundown syndrome is defined by its temporal pattern (late-day onset and termination).

Sundown syndrome seems to occur more frequently during the middle stages of Alzheimer dementia. Patients are generally able to understand that this behavioral pattern is abnormal. Sundown syndrome seems to subside with the progression of a patient’s dementia.

About half of dementias (44%) are of Alzheimer's type including Alzheimer dementia (presenile dementia or senile dementia), subcortical dementia, diffuse Lewy body dementia, and frontotemporal dementia. About 20-45% of Alzheimer type patients will experience some sort of sundowning confusion. Further 47% of dementias are of vascular type including vascular dementia, multi-infarct dementia, Binswanger’s dementia, boxer’s dementia, and arteriosclerotic dementia. Remaining types of dementia (9%) are of other etiologies such as paralytic dementia, substance-induced persisting dementia, dialysis dementia, hydrocephalic dementia, tumors, subdural hematoma, normal pressure hydrocephalus, vasculitis, Vitamin deficiency, or endocrine and metabolic disease.

Possible etiology of sundown syndrome includes the particular histopathological signs of degeneration that are reported into Ventro Lateral Pre-Optic area (VLPO) and Suprachiasmatic Nucleus (SCN) in dementias. The SCN pacemaker is severely affected in Alzheimer disease, whereas pineal is essentially unaffected (Swaab DF, Fliers E, Partiman TS. “The suprachiasmatic nucleus of the human brain in relation to sex, age and senile

The most widely prescribed pharmacological treatments for sundown syndrome - atypical antipsychotics - have a modest but significant beneficial effect in the short-term treatment (over 6-12 weeks) of aggression, less so on symptoms of agitation, and have limited benefits in longer term therapy. Concerns are growing over the potential for serious adverse outcomes with these treatments, including stroke and death (Ballard et al., Nat. Rev. Neurol. 5, 245-255, 2009).

Previous clinical work has been published and describes medical technology with protocols for evaluating drug effects in sundown syndrome patients; a review on trials and methodology in agitation and aggression in dementia can be found in Ballard et al., Nat. Rev. Neurol. 5, 245-255, 2009 (see especially table 1). Published studies are for example:

d) Falsetti AE. Risperidone for control of agitation in dementia patients. Am J Health Syst Pharm. 2000 May 1;57(9):862-70.

Partial effectiveness of melatonin or bright light exposure has been reported to decrease behavioral symptoms in sundown syndrome. Consistent sleeping schedule and daily routine can also reduce confusion and agitation. Reduction of daytime napping is recommended as unintentionally getting too much sleep will affect nighttime sleep. Reduction of caffeine intake is recommended to sundown syndrome patients.
Neuronal afferences and efferences connect hypothalamic orexin neurons to brain areas involved in circadian rhythm regulation (receiving day-night signals) and in cortical activation (inducing and maintaining alertness); orexin neurons also receive afferent physiological and emotional inputs of limbic and metabolic origin. Activated orexin neurons thus regulate alertness for adapting the organism to environmental and circadian requirements and for accurate maintenance of homeostatic balance (Saper et al., Nature 437: 1257, 2005). The Ventro Lateral Pre-Optic area (VLPO) and the Supra-Chiasmatic Nucleus (SCN) are important brain clock regions that exert major inhibition on activity of orexin neurons during the nocturnal phase. It is hypothesized that abnormally hyperactive orexin neurons significantly contribute to cortical overdrive mediating hyperalertness at a given time point in the circadian cycle. Pathological orexin hyperactivity may result from deficient inhibitory input from VLPO and SCN that should start to gradually establish in late afternoon.

Caffeine administration increases orexin levels in rat brain. Caffeine may be used as a tool to experimentally simulate deficient inhibitory VLPO-SCN input to hypothalamic orexin neurons.

The pharmacological action of caffeine, an adenosine A1 and A2A receptor antagonist, is to block adenosinergic inhibition exerted by adenosinergic neurons upon orexin neurons.

The orexin receptor antagonists of the present invention may reverse late-day agitation simulated in animals by afternoon caffeine administration. Electroencephalographic recordings confirm the behavioral symptoms of agitation which were reduced by two of the exemplified compounds when administered orally to rats and / or dogs.

Short description of the figures:

Figure 1 shows the effect of the compound of example 7 in a caffeine-induced agitation model in the rat.

Figure 2 shows the effect of the compound of example 11 in a caffeine-induced agitation model in the rat.

Figure 3 shows the effect of the compound of example 7 in a caffeine-induced agitation model in the dog.

A particular pyrrolidine derived compound is disclosed in Langmead et. al, Brit. J. Pharmacol. 2004, 141, 340-346 as being highly orexin-1 selective. WO2003/002561 discloses certain N-aroyl cyclic amine derivatives, encompassing benzimidazol-2-yl-methyl substituted pyrrolidine derivatives, as orexin receptor antagonists. There is no mention of sundown syndrome in WO2003/002561. Despite the great number of prior art orexin receptor antagonist compounds and their high structural variability, all compounds share a common structural feature, i.e. in position 2 of the saturated cyclic amide a linker group such as at least a methylene group (or longer groups such as -CH₂-NH-CO-, -CH₂-NH-, -CH₂-O-, -CH₂-S-, etc.) link the cyclic amide to the respective aromatic ring system substituent. It has now surprisingly been found that, despite the substantial conformational changes that may be expected from the removal of a linker between two rigid structural elements, the present compounds, that have a benzimidazole ring directly attached to a pyrrolidine amide in position 2, are potent orexin receptor antagonists.

The present invention now provides certain benzimidazole-proline derivatives, which are potent non-peptide antagonists of human orexin receptors for use in the prevention or treatment of sundown syndrome.

1) A first aspect of the invention relates to compounds of the formula (I):

\[
\text{Ar}^1 \text{Ar}^2
\]

\[
\text{Ar}^1
\]

\[
\text{Formula (I)}
\]

for use in the prevention or treatment of sundown syndrome;

wherein the compounds of formula (I) are in absolute configuration (S);

\[
\text{Ar}^1 \text{represents}
\]

\[
\text{or}
\]

2) A second embodiment relates to compounds of formula (I) according to embodiment 1) for use according to embodiment 1), wherein the compound is:

\[
[(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl](5-methyl-2-pyrimidin-2-yl-phenyl)-methanone;
\]

\[
[(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl](5-methyl-2-[1,2,3]triazol-2-yl-phenyl)-methanone;
\]

\[
[(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl](5-methoxy-2-[1,2,3]triazol-2-yl-phenyl)-methanone;
\]

\[
[(S)-2-(6-Bromo-5-fluoro-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl](5-methyl-2-pyrazol-1-yl-phenyl)-methanone;
\]

\[
[(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl](5-methyl-2-pyrazol-1-yl-phenyl)-methanone;
\]

3) A third embodiment relates to compounds according to embodiment 1) for use according to embodiment 1), wherein the compound is:
((S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl)-(5-methyl-2-pyrimidin-2-yl-phenyl)-methanone.

4) A fourth embodiment relates to compounds according to embodiment 1) for use according to embodiment 1), wherein the compound is:

[(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-(5-methoxy-2-1,2,3)triazol-2-yl-phenyl)-methanone.

The compounds of formula (I) contain at least one stereogenic center which is situated in position 2 of the pyrrolidine moiety. The absolute configuration of the pyrrolidine moiety of the present compounds is as depicted in formula (I); i.e. said chiral center is in absolute (S) configuration.

In addition, it is well understood that the benzimidazole moiety Ar2 of the present compounds represents tautomeric forms. Thus, substituents of the benzimidazole moiety may be attached in the position(s) ortho to the bridgehead atoms (i.e. attached in position(s) 4 and/or 7), and/or in the position(s) meta to the bridgehead atoms, (i.e. attached in position(s) 5 and/or 6). It is understood that the two ortho, and, respectively, the two meta positions are considered equivalent. For example, the group 5-chloro-4-methyl-1/-/benzoimidazol-2-yl is understood to signify the same group as 6-chloro-7-methyl-1/-/benzoimidazol-2-yl, 5-chloro-4-methyl-3/-/benzoimidazol-2-yl and 6-chloro-7-methyl-3/-/benzoimidazol-2-yl.

In this patent application, a dotted line shows the point of attachment of the radical drawn. For example, the radical drawn below

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N}
\end{array}
\]

represents a 5-methyl-2-(2-triazolyl)-phenyl group.

Where the plural form is used for compounds, salts, pharmaceutical compositions, diseases and the like, this is intended to mean also a single compound, salt, or the like.

Any reference to compounds of formula (I) is to be understood as referring also to the salts (and especially the pharmaceutically acceptable salts) of such compounds, as appropriate and expedient.

The term "pharmaceutically acceptable salts" refers to salts that retain the desired biological activity of the subject compound and exhibit minimal undesired toxicological effects. Such salts include inorganic or organic acid and/or base addition salts depending on the presence
of basic and/or acidic groups in the subject compound. For reference see for example "Handbook of Pharmaceutical Salts. Properties, Selection and Use.", P. Heinrich Stahl, Camille G. Wermuth (Eds.), Wiley-VCH, 2008; and "Pharmaceutical Salts and Co-crystals", Johan Wouters and Luc Quere (Eds.), RSC Publishing, 2012. A preferred pharmaceutically acceptable salt is the hydrochloric acid salt.

Sundown syndrome is defined as a late-day (i.e. afternoon and/or evening hours, especially afternoon hours) circadian syndrome of increased confusion and restlessness in a patient, wherein in general said patient has some form of dementia. Cardinal clinical signs include increased agitation, general confusion and mood swings that typically develop as natural light begins to fade. The term "late day" referred to herein relates to the afternoon and evening, notably the time about sunset and later (but not including the night/the sleep time); for example the time from about 4 pm to about 10 pm, especially from about 4 pm to about 9 pm. In one sub-embodiment, the term relates to the afternoon, especially from about 4 pm to about 7 pm; in another sub-embodiment the term relates to the evening, especially from about 7 pm to about 10 pm.

Dementias include notably dementias of Alzheimer's type including: Alzheimer dementia (presenile dementia or senile dementia), subcortical dementia, diffuse Lewy body dementia, and frontotemporal dementia. Dementias further include dementias of vascular type such as: vascular dementia, multi-infarct dementia, Binswanger's dementia, boxer's dementia, arteriosclerotic dementia. Remaining types of dementia (9%) are of other etiologies such as paralytic dementia, substance-induced persisting dementia, dialysis dementia, hydrocephalic dementia, and dementias due to tumors, subdural hematoma, normal pressure hydrocephalus, vasculitis, Vitamin deficiency, or endocrine or metabolic disease. In the context of the present invention, the term preferably refers to dementias of Alzheimer's type, especially Alzheimer dementia. It is understood that the term dementia also includes any combination of the above listed types of dementias.

In a sub-embodiment, dementia especially refers to middle stages of dementias of Alzheimer's type (especially to middle stages of Alzheimer dementia) in which stages sundown syndrome appears to occur more frequently and/or of mixed dementia [a form of dementia combining neuropathological protein deposits (associated with Alzheimer dementia) with a dementia of vascular type]. In a preferred sub-embodiment, dementia refers to middle stages of dementias of Alzheimer's type (especially to middle stages of Alzheimer dementia).
Stages of dementias of Alzheimer’s type may be defined as follows (wherein the above-mentioned middle stages of dementias of Alzheimer’s type (especially middle stages of Alzheimer dementia) refer to stages 3 to 6, preferably stages 3 to 5, in particular to stages 3 and 4 as defined below, and wherein pre-senile dementia may be defined as corresponding to stages 1 to 4, in particular to stages 3 and 4, below):

Stage 1: No impairment (normal function); The person does not experience any memory problems. An interview with a medical professional does not show any evidence of symptoms of dementia. Stage 2: Very mild cognitive decline (may be normal age-related changes or earliest signs of a dementia, e.g. of Alzheimer’s type): The person may feel as if he or she is having memory lapses (e.g. forgetting familiar words or the location of everyday objects). But at this stage, no symptoms of dementia can be detected during a medical examination or by friends, family or co-workers. Stage 3: Mild cognitive decline (dementia, e.g. of Alzheimer’s type can be diagnosed in some, but not all individuals with these symptoms): Friends, family or co-workers begin to notice difficulties. During a detailed medical interview, doctors may be able to detect problems in memory or concentration. Common stage 3 difficulties include: noticeable problems coming up with the right word or name; trouble remembering names when introduced to new people; having noticeably greater difficulty performing tasks in social or work settings; forgetting material that one has just read; losing or misplacing a valuable object; increasing trouble with planning or organizing. Stage 4: Moderate cognitive decline: At this point, a careful medical interview should be able to detect clear-cut symptoms in several areas: forgetfulness of recent events; impaired ability to perform challenging mental arithmetic; greater difficulty performing complex tasks, such as planning dinner for guests, paying bills or managing finances; forgetfulness about one’s own personal history; becoming moody or withdrawn, especially in socially or mentally challenging situations. Stage 5: Moderately severe cognitive decline: gaps in memory and thinking are noticeable, and individuals begin to need help with day-to-day activities. At this stage, those with a dementia, e.g. of Alzheimer’s type may be unable to recall their own address or telephone number or the high school or college from which they graduated; become confused about where they are or what day it is; have trouble with less challenging mental arithmetic; need help choosing proper clothing for the season or the occasion; still remember significant details about themselves and their family; still require no assistance with eating or using the toilet. Stage 6: Severe cognitive decline: Memory continues to worsen, personality changes may take place and individuals need extensive help with daily activities. At this stage, individuals may lose awareness of recent experiences as well as of their surroundings; remember their own name but have difficulty with their
personal history; distinguish familiar and unfamiliar faces but have trouble remembering the
name of a spouse or caregiver; need help dressing properly and may, without supervision,
make mistakes such as putting pyjamas over daytime clothes or shoes on the wrong feet;
experience major changes in sleep patterns (e.g. sleeping during the day and becoming
restless at night); need help handling details of toileting; have increasingly frequent trouble
controlling their bladder or bowels; experience major personality and behavioral changes,
including suspiciousness and delusions (such as believing that their caregiver is an imposter)
or compulsive, repetitive behavior like hand-wringing or tissue shredding; tend to wander or
become lost. Stage 7: Very severe cognitive decline: In the final stage of e.g. Alzheimer
dementia, individuals lose the ability to respond to their environment, to carry on a
conversation and, eventually, to control movement. They may still say words or phrases. At
this stage, individuals need help with much of their daily personal care, including eating or
using the toilet. They may also lose the ability to smile, to sit without support and to hold their
heads up. Reflexes become abnormal, muscles grow rigid, swallowing impaired.

5) A fifth embodiment thus relates to compounds according to any one of embodiments 1) to
4) for use according to embodiment 1), wherein the compound is used for the prevention or
treatment of sundown syndrome in a patient who has some form of dementia.

Medical factors which may contribute to the development of sundown syndrome said patients
expressing some form of dementia may be chronic pain (e.g. due to arthritis or malignancy)
organ systemic disorders (e.g. congestive heart failure, ischemic heart disease, asthma,
chronic obstructive pulmonary disease, gastroesophageal reflux, incontinence, benign
prostatic hypertrophy), psychiatric conditions (e.g. depression, anxiety, psychosis), and
effects of medication.

6) A further embodiment relates to compounds according to any one of embodiments 1) to 4)
for use according to embodiment 5), wherein said patient has a dementia of Alzheimer's
type.

7) A further embodiment relates to compounds according to any one of embodiments 1) to 4)
for use according to embodiment 5), wherein said patient has Alzheimer dementia.

8) A further embodiment relates to compounds according to any one of embodiments 1) to 4)
for use according to embodiment 5), wherein said patient has middle stage dementia of
Alzheimer's type (especially middle stage Alzheimer dementia).

9) A further embodiment relates to compounds according to any one of embodiments 1) to 4)
for use according to any one of embodiments 1) to 8), wherein said sundown syndrome is
afternoon sundown syndrome (wherein afternoon is especially defined as the intervall from about 4 pm to about 7 pm).

10) A further embodiment relates to compounds according to any one of embodiments 1) to 4) for use according to any one of embodiments 1) to 8), wherein said sundown syndrome is evening sundown syndrome (wherein afternoon is especially defined as the intervall from about 7 pm to about 10 pm).

The invention thus relates to compounds of the formula (I) as defined in embodiment 1), or to such compounds further limited by the characteristics of any one of embodiments 2) to 4), under consideration of their respective dependencies; to pharmaceutically acceptable salts thereof; and to the use of such compounds as medicaments in the treatment of sundown syndrome according to any one of embodiments 1) to 10). For avoidance of any doubt, the following embodiments are thus possible and intended and herewith specifically disclosed in individualized form:

\[1, 2+1, 3+1, 4+1, 5+1, 6+2+1, 7+5+1, 8+5+1, 9+5+2+1, 10+5+2+1, 10+5+3+1, 10+5+4+1, 10+7+5+2+1, 10+7+5+3+1, 10+7+5+4+1, 10+8+5+2+1, 10+8+5+3+1, 10+8+5+4+1. \]

In the list above the numbers refer to the embodiments according to their numbering provided hereinafter whereas "+" indicates the dependency from another embodiment. The different individualized embodiments are separated by commas. In other words, "10+7+5+1" for example refers to embodiment 10) depending on embodiment 7), depending on embodiment 5), depending on embodiment 1), i.e. embodiment "10+7+5+1" corresponds to the compounds of formula (I) according to embodiment 1) further limited by all the features of the embodiments 5), 7), and 10).

The compounds of formula (I) according to any one of embodiments 1) to 4) and their pharmaceutically acceptable salts can be used as medicaments for the prevention or treatment of sundown syndrome, e.g. in the form of pharmaceutical compositions for enteral (such especially oral) or parenteral administration (including topical application or inhalation).

The production of the pharmaceutical compositions can be effected in a manner which will be familiar to any person skilled in the art (see for example Remington, *The Science and Practice of Pharmacy*, 21st Edition (2005), Part 5, "Pharmaceutical Manufacturing"
[published by Lippincott Williams & Wilkins]) by bringing the described compounds of formulae (I), (II) and (III) or their pharmaceutically acceptable salts, optionally in combination with other therapeutically valuable substances, into a galenical administration form together with suitable, non-toxic, inert, therapeutically compatible solid or liquid carrier materials and, if desired, usual pharmaceutical adjuvants.

The present invention also relates to a method for the treatment of a disorder mentioned herein comprising administering to a subject a pharmaceutically active amount of a compound of formula (I) as defined in any one of embodiments 1) to 4).

In a preferred embodiment of the invention, the administered amount of such a compound of formula (I) according to any one of embodiments 1) to 4) is comprised between 1 mg and 1000 mg per day, particularly between 5 mg and 400 mg per day, more particularly between 5 mg and 200 mg per day.

Whenever the word "between" is used to describe a numerical range, it is to be understood that the end points of the indicated range are explicitly included in the range. For example: if a temperature range is described to be between 40 °C and 80 °C, this means that the end points 40 °C and 80 °C are included in the range; or if a variable is defined as being an integer between 1 and 4, this means that the variable is the integer 1, 2, 3, or 4.

The term "about" placed before a numerical value "X" refers in the current application to an interval extending from X minus 10% of X to X plus 10% of X, and preferably to an interval extending from X minus 5% of X to X plus 5% of X. In the particular case of temperatures, the term "about" placed before a temperature Y refers in the current application to an interval extending from the temperature Y minus 10°C to Y plus 10°C, and preferably to an interval extending from Y minus 5°C to Y plus 5°C. Besides, the term "room temperature" as used herein refers to a temperature of about 25°C. In the particular case of time points, the term "about" placed before a certain time point Y refers in the current application to an interval extending from the time point Y minus 1 hour to Y plus 1 hour, and preferably to an interval extending from Y minus 30 minutes to Y plus 30 minutes.

For avoidance of any doubt, if compounds are described as useful for the prevention or treatment of certain diseases, such compounds are likewise suitable for use in the preparation of a medicament for the prevention or treatment of said diseases.

Preparation of compounds of formula (I):

The compounds of formula (I) can be prepared by the methods given below, by the methods given in the experimental part below or by analogous methods. Optimum reaction conditions
may vary with the particular reactants or solvents used, but such conditions can be
determined by a person skilled in the art by routine optimisation procedures. In some cases
the final product may be further modified, for example, by manipulation of substituents to give
a new final product. These manipulations may include, but are not limited to, reduction,
oxidation, alkylation, acylation, and hydrolysis reactions which are commonly known to those
skilled in the art. In some cases the order of carrying out the following reaction schemes,
and/or reaction steps, may be varied to facilitate the reaction or to avoid unwanted reaction
products.

Compounds of formula (I) of the present invention can be prepared according to the general
sequence of reactions outlined below wherein Ar\(^1\) and Ar\(^2\) are as defined for formula (I). The
generic substituent (R)\(_n\) refers to the substituents of the benzimidazole group Ar\(^2\) as defined
for the compounds of formula (I).

There are two general synthetic approaches towards the compounds of formula (I).

A first synthetic approach 1 may start with a Boc-protection of the respective proline
derivative a under standard conditions, e.g. by dissolving the proline a in a solvent such as
DCM or THF and adding a base to the solution, for example DIPEA, TEA or aq. Na\(_2\)CO\(_3\)
followed by the addition of Boc\(_2\)O. The reaction is performed at RT and is usually complete
within a few hours and results in the Boc-protected proline derivative b. The protected proline
derivative b (which is also commercially available) is then coupled under standard amide
coupling conditions with the appropriate phenylene-diamine derivative, e.g. in a solvent such
as THF, DCM or DMF in the presence of a coupling agent such as HBTU or TBTU or the like
and a base, for example DIPEA or TEA to give compound c. Ring closure to obtain the
benzimidazole derivative d is achieved for example by dissolving the precursor c in AcOH
and heating at 100°C for 1 h. Compound d is Boc-deprotected under standard acidic
conditions such as 4M HCl in dioxane, or TFA in DCM, to give precursor e which is
converted into the final compound \(f \) by an amide coupling reaction with \(\text{Ar}^1\text{-COOH} \), e.g. in a solvent such as THF, DMF or DCM in the presence of a coupling agent such as TBTU, HBTU, HATU, EDC or the like and a base such as DIPEA, TEA or N-methylmorpholine.

An alternative synthetic approach 2 may start with an esterification (usually methyl ester formation) of the proline derivative \(a \), e.g. by dissolving the starting material in THF and adding 5 equivalents of the respective alcohol (usually MeOH) followed by the addition of EDC and DMAP. The methyl-ester derivative \(g \) (which is also commercially available) is then acylated with \(\text{Ar}^1\text{-COOH} \) using standard amide coupling conditions such as those described above to result in intermediate \(h \). Ester hydrolysis under standard conditions, e.g. by dissolving the ester derivative \(h \) in THF / MeOH = 1 / 1 followed by the addition of 2 eq of aq. 1M NaOH solution results in the carboxylic acid derivative \(i \). The final compounds \(f \) are obtained via precursor \(j \) by applying the same conditions as described for the amide-coupling and the cyclization in synthetic approach 1.

Whenever compounds of formula (I) are obtained in the form of mixtures of stereoisomers such as especially enantiomers, the stereoisomers can be separated using methods known to one skilled in the art: e.g. by formation and separation of diastereomeric salts or by HPLC over a chiral stationary phase such as a Daicel ChiralPak AD-H (5 \(\mu \eta \)) column, a Daicel ChiralCel OD-H (5 \(\mu \eta \)) column, a Daicel ChiralCel OD (10 \(\mu \eta \)) column, a Daicel ChiralPak IA (5 \(\mu \eta \)) column, a Daicel ChiralPak IB (5 \(\mu \eta \)) column, a Daicel ChiralPak IC (5 \(\mu \eta \)) column, or a (R,R)-Whelk-01 (5 \(\mu \eta \)) column. Typical conditions of chiral HPLC are an isocratic mixture of eluent A (EtOH, in presence or absence of a base like TEA and/or diethylamine or of an acid like TFA) and eluent B (heptane).

The following examples are provided to illustrate the invention. These examples are illustrative only and should not be construed as limiting the invention in any way.
Experimental Part

Abbreviations (as used herein and in the description above):

- **Ac**: Acetyl (such as in OAc = acetate)
- **AcOH**: Acetic acid
- **anh.**: Anhydrous
- **aq.**: Aqueous
- **atm**: Atmosphere
- **Boc**: fe/f-Butoxycarbonyl
- **B0C2O**: di-fer/Butyl dicarbonate
- **BSA**: Bovine serum albumine
- **Bu**: Butyl such as in tBu = ferf-butyl = tertiary butyl
- **CC**: Column Chromatography over silica gel
- **CHO**: Chinese Hamster Ovary
- **cone.**: Concentrated
- **DCE**: 1,2-Dichloroethane
- **DCM**: Dichloromethane
- **DEA**: Diethylamine
- **DIPEA**: Diisopropylethylamine
- **DMF**: N,N-Dimethylformamide
- **DMSO**: Dimethyl sulfoxide
- **EDC**: 3-(Ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine
- **ELSD**: Evaporative Light-Scattering Detection
- **eq**: Equivalent(s)
- **ES**: Electron spray
- **Et**: Ethyl
- **Et₂O**: Diethyl ether
- **EtOAc**: Ethyl acetate
- **EtOH**: Ethanol
- **Ex.**: Example (compound of example)
- **FC**: Flash Column Chromatography on silica gel
- **FCS**: Foetal calf serum
- **FLIPR**: Fluorescent imaging plate reader
- **h**: Hour(s)
- **HATU**: 1-[Bis(dimethylamino)methylene]-1'H-1,2,3-triazolo[4,5-f]pyridinium 3-oxid hexafluorophosphate
HBSS Hank's balanced salt solution
HBTU \(N,N,N',N'\text{-Tetramethyl-0-(1/-/-benzotriazol-1-yl)uronium}\) hexafluorophosphate
HEPES 4-(2-Hydroxyethyl)-piperazine-1-ethanesulfonic acid
\(^1\text{H}-\text{NMR}\) Nuclear magnetic resonance of the proton
HPLC High performance liquid chromatography
LC-MS Liquid chromatography - Mass Spectroscopy
Lit. Literature
M Exact mass (as used for LC-MS)
Me Methyl
MeCN Acetonitrile
MeOH Methanol
Mel Methyl iodide
MHz Megahertz
\(\mu\)l microliter
min Minute(s)
MS Mass spectroscopy
N Normality
\(\text{Pd(OAc)}_2\) Palladium diacetate
\(\text{Pd(PPh}_3)_4\) Tetrakis(triphenylphosphine)palladium(0)
PL-HCO\(_3\) Polymer supported hydrogen carbonate
Ph Phenyl
PPh\(_3\) Triphenylphosphine
prep. Preparative
RT Room temperature
sat. Saturated
TBTU \(0-(\text{Benzotriazol-1-yl})-\text{N,N,N',N'-tetramethyluronium}\) tetrafluoroborate
TEA Triethylamine
TFA trifluoroacetic acid
Tf Trifluoromethansulfonyl
THF Tetrahydrofuran
\(t_R\) Retention time
UV Ultra violet
l-Chemistry

All temperatures are stated in °C. The commercially available starting materials were used as received without further purification. Compounds are purified by flash column chromatography over silica gel (FC), column chromatography over silica gel (CC), or by preparative HPLC. Compounds described in the invention are characterized by LC-MS (retention time t_R is given in min.; molecular weight obtained from the mass spectrum is given in g/mol, using the conditions listed below). If the mass is not detectable the compounds are also characterized by 1H-NMR (400 MHz: Bruker; chemical shifts are given in ppm relative to the solvent used; multiplicities: s = singlet, d = doublet, t = triplet; p = pentuplet, hex = hexet, hept = heptet, m = multiplet, br = broad, coupling constants are given in Hz).

Preparative HPLC for purification of compounds (conditions C)
Column: Waters XBridge (10 µm, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% NH$_3$OH (25% aq.) [eluent B]; Gradient: 90% B → 5% B over 6.5 min. (flow: 75 ml/min.). Detection: UV + ELSD.

Preparative HPLC for purification of compounds (conditions D)
Column: Waters Atlantis T3 OBD (10 µm, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% HCOOH [eluent B]; Gradient: 90% B → 5% B over 6.4 min. (flow: 75 ml/min.). Detection: UV + ELSD.

LC-MS with acidic conditions
Apparatus: Agilent 1100 series with mass spectroscopy detection (MS : Finnigan single quadrupole). Column: Agilent Zorbax SB-Aq, (3.5 µm, 4.6 x 50mm). Conditions: MeCN [eluent A]; water + 0.04% TFA [eluent B]. Gradient: 95% B → 5% B over 1.5 min. (flow: 4.5 ml/min.). Detection: UV + MS.

1) Synthesis of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid

2-lodo-5-methoxy benzoic acid (15.0 g; 53.9 mmol) is dissolved in anhydrous DMF (45 ml) followed by the addition of 1H-1,2,3-triazole (7.452 g; 108 mmol) and cesium carbonate (35.155 g; 108 mmol). By the addition of cesium carbonate the temperature of the reaction mixture increases to 40°C and gas evolved from the reaction mixture. Copper(I)iodide (51.4 mg; 2.7 mmol) is added. This triggers a strongly exothermic reaction and the temperature of the reaction mixture reaches 70°C within a few seconds. Stirring is continued for 30 minutes. Then the DMF is evaporated under reduced pressure followed by the addition of water (170 ml) and EtOAc (90 ml). The mixture is vigorously stirred and by the addition of citric acid monohydrate the pH is adjusted to 3-4. The precipitate is filtered off and washed with water and EtOAc and discarded. The filtrate is poured into a separation funnel and the phases are
separated. The water phase is extracted again with
EtOAc. The combined organic layers are
dried over MgSO\textsubscript{4}, filtered and the solvent is evaporated to give 7.1 g of 5-methoxy-2-(2H-
1,2,3-triazol-2-yl)benzoic acid as a white powder of 94% purity (6 % impurity is the regioisomerically
N1-linked triazole-derivative); \textit{t} \textsubscript{R} [min] = 0.60; [M+H]+ = 220.21.

2) Synthesis of (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid

2-Methyl-L-proline hydrochloride (99.7 g; 602 mmol) is dissolved in a 1/1-mixture of MeCN and
water (800 ml) and triethylamine (254 ml; 18.10 mmol) is added. The temperature of the
reaction mixture slightly rises. The reaction mixture is cooled to 10°C to 15°C followed by
careful addition of a solution of Boc\textsubscript{2}O (145 g; 662 mmol) in MeCN (200 ml) over 10 minutes.

Stirring at RT is continued for 2 hours. The MeCN is evaporated under reduced pressure and
aq. NaOH solution (2M; 250 ml) is added to the residual aq. part of the reaction mixture. The
water layer is washed with Et\textsubscript{2}O (2x 300 ml) then cooled to 0°C followed by slow and careful
addition of aq. HCl (25%) to adjust the pH to 2. During this procedure a suspension forms.
The precipitate is filtered off and dried at HV to give 110.9 g of the title compound as a beige
powder; \textit{t} \textsubscript{R} [min] = 0.68; [M+H]+ = 230.14.

3) Synthesis of (S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-
methylpyrrolidine-1-carboxylate

(S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid (60 g; 262 mmol) and
HATU (100 g; 264 mmol) is suspended in DCM (600 ml) followed by the addition of DIPEA
(84.6 g; 654 mmol) and 6-chloro-2,3-diaminotoluene (41 g; 262 mmol). The reaction mixture
is stirred at rt for 14 hours then concentrated under reduced pressure and to the residue is
added water followed by the extraction of the product with EtOAc (3x). The combined organic
layers are washed with brine, dried over MgSO\textsubscript{4}, filtered and the solvent is evaporated under
reduced pressure to give 185 g of the title compound as a dark brownish oil, which is used in
the next step without further purification; \textit{t} \textsubscript{R} [min] = 0.89; [M+H]+ = 368.01.

4) Synthesis of (S)-tert-butyl 2-(5-chloro-4-methyl-1H-benzo[d]imidazol-2-yl)-2-
methylpyrrolidine-1-carboxylate

(S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-
carboxylate (185 g; 427 mmol) are dissolved in AcOH (100%; 611 ml), heated to 100°C and
stirring continued for 90 minutes. The AcOH is evaporated under reduced pressure and the
residue is dissolved in DCM followed by careful addition of saturated sodium bicarbonate
solution. The phases are separated, the aq. phase is extracted once more with DCM, the
combined aq. phases are dried over MgSO\textsubscript{4}, filtered and the solvent is evaporated under
reduced pressure to give 142.92 g of the title compound as a dark brown oil which is used in the next step without further purification; $t_R\ [\text{min}] = 0.69$; [M+H]$^+$ = 350.04.

5) Synthesis of (S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1 H-benzo[d]imidazole hydrochloride

(S)-tert-butyl 2-(5-chloro-4-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate (355.53 g; 1.02 mol) are dissolved in dioxane (750 ml) followed by careful addition of HCl solution in dioxane (4M; 750 ml; 3.05 mol). The reaction mixture is stirred for 3 hours followed by the addition of Et$_2$O (800 ml) which triggered precipitation of the product. The solid is filtered off and dried at high vacuum to give 298.84 g of the title compound as a redish powder; $t_R\ [\text{min}] = 0.59$; [M+H]$^+$ = 250.23.

6) Synthesis of [(S)-2-(5-chloro-4-methyl-1 H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methoxy-2-[1,2,3]triazol-2-yl-phenyl]-methanone

(S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1 H-benzo[d]imidazole hydrochloride (62.8 g; 121 mmol) is dissolved in DCM (750 ml) followed by the addition of 5-methoxy-2-[2H-1,2,3-triazol-2-yl]benzoic acid (62.8 g; 121 mmol) and DIPEA (103 ml; 603 mmol). Stirring is continued for 10 minutes followed by the addition of HATU (47 g; 124 mmol). The reaction mixture is stirred for 16 hours at RT. The solvents are evaporated under reduced pressure and the residue is dissolved in EtOAc (1000 ml) and washed with water (3x 750 ml). The organic phase is dried over MgSO$_4$, filtered and the solvent is evaporated under reduced pressure. The residue is purified by CC with EtOAc / hexane = 2 / 1 to give 36.68 g of the title compound as an amorphous white powder. $t_R\ [\text{min}] = 0.73$; [M+H]$^+$ = 450.96. The title compound can be transferred to the corresponding hydrochloric acid salt using standard conditions such as isopropanol / HCl in isopropanol.

7) Synthesis of methyl 2-iodo-5-methylbenzoate

2-Ido-5-methylbenzoic acid (101 g; 387 mmol) is dissolved in MeOH (700 ml) followed by the addition of concentrated sulfuric acid (97%; 10.4 ml; 193 mmol). The reaction mixture is heated to 83°C for 16 hours, cooled again to RT followed by slow and careful addition of aq. 1M NaOH solution until pH 8 is reached. The MeOH is evaporated under reduced pressure and the remaining aq. phase is extracted with DCM (2x 350 ml). The combined organic layers are washed with water (400 ml), dried over MgSO$_4$, filtered and the solvent is evaporated under reduced pressure to give 104.13 g of the title compound as a yellow liquid. $t_R\ [\text{min}] = 0.89$; [M+H]$^+$ = not detected.
8) Synthesis of methyl 5-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate
Methyl 2-iodo-5-methylbenzoate (104.13 g; 358 mmol) is dissolved in THF (500 ml) under an inert nitrogen atmosphere followed by the addition of triethylamine (150 ml; 1.07 mol) and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (68.8 g; 537 mmol). The mixture is additionally degassed by bubbling nitrogen gas in for 5 min. Then tri-(o-tolyl)-phosphine (5.45 g; 17.9 mmol) and palladium(l)-acetate (2.01 g; 8.96 mmol) is added and the mixture is heated to 75°C for 1 hour. The reaction mixture is cooled to 0°C followed by careful addition of sat. aq. NH₄Cl solution (to the point where no further gas evolution occurs). The black suspension is filtered, the filtrate is concentrated under reduced pressure and water is added to the residue. The product is extracted with EtOAc (2x 200 ml). The combined EtOAc layers are dried over MgSO₄; filtered and the solvent is evaporated under reduced pressure. The residue is purified by CC with heptane / EtOAc = 95 / 5, to give 82.7 g of the title compound as a slightly orange solid; t_R [min] = 0.92; [M+H]+ = 277.22.

9) Synthesis of methyl 5-methyl-2-(pyrimidin-2-yl)benzoate
Methyl 5-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (165.45 g; 599 mmol) is dissolved in 2-methyl-tetrahydrofurane (900 ml). 2-Chloropyrimidine (82.3 g; 719 mmol), solid sodium carbonate (159 g, 1.5 mol) and water (275 ml) are added and the reaction mixture is degassed by bubbling nitrogen gas in for 5 minutes followed by the addition of [1,1'-bis(diphenylphosphino) ferrocene]dichloropalladium(l II), complex with DCM (CAS: 95464-05-4; Pd(dppf)Cl2 x DCM; 39.1 mg; 47.9 mmol). The reaction mixture is heated to 75°C internal temperature for 40 hours, then cooled to RT, filtered and to the filtrate is added water followed by the extraction of the product with EtOAc (2x 700 ml). The combined organic layers are dried over MgSO₄, filtered and the solvent is evaporated under reduced pressure. The residue is purified by CC with heptane / EtOAc = 2 / 1 to give 86.13 g of the title compound as a slightly yellow solid; t_R [min] = 0.72; [M+H]+ = 229.17.

10) Synthesis of 5-methyl-2-(pyrimidin-2-yl)benzoic acid
Methyl 5-methyl-2-(pyrimidin-2-yl)benzoate (86.1 g; 377 mmol) are dissolved in THF (350 ml) followed by the addition of water (350 ml) and aq. NaOH (190 ml; 4M). The reaction mixture is heated to 70°C for 4 hours. The organic solvent is distilled off under reduced pressure and the aq. phase is extracted with DCM. Then the aq. phase is cooled to 0°C and the pH is adjusted to pH = 1 by careful addition of aq. 2M hydrochloric acid solution which results in the formation of a suspension. The solid is filtered off and dried at high vacuum to give 59.98 g of the title compound as a beige solid; t_R [min] = 0.58; [M+H]+ = 215.14.
11) Synthesis of (S)-tert-butyl 2-((2-amino-5-bromo-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate

(S)-1-{(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid (2.5 g; 10.9 mmol) is dissolved in DCM (25 ml) and HATU (4.2 g; 11 mmol) is added. To this mixture DIPEA (5.6 ml, 32.7 mmol) and 5-bromo-3-methylbenzene-1,2-diamine is added. The reaction mixture is stirred at RT for 16 hours. The solvents are evaporated under reduced pressure and the residue is dissolved in EtOAc (200 ml) and washed with water (3x 150 ml). The organic layer is dried over MgSO$_4$, filtered and the solvent is evaporated under reduced pressure. The residue is dried at high vacuum to give 5 g of the title compound; t_R [min] = 0.90; [M+H]$^+$ = 394.27.

12) Synthesis of (S)-tert-butyl 2-(5-bromo-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate

(S)-tert-butyl 2-((2-amino-5-bromo-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate (4.97 g; 12.1 mmol) are dissolved in AcOH (100%; 41 ml) and the mixture is heated to 100°C and stirring is continued for 1 h. The AcOH is evaporated under reduced pressure and to the residue is slowly and carefully added sat. aq. NaHCO$_3$ solution (250 ml). The product is extracted with EtOAc (2x 250 ml). The combined organic layers are dried over MgSO$_4$, filtered and the solvent is evaporated under reduced pressure. The residue is dried at high vacuum to give 4.3 g of the title compound; t_R [min] = 0.71; [M+H]$^+$ = 394.27.

13) Synthesis of (S)-5-bromo-7-methyl-2-(2-methylpyrrolidin-2-yl)-1 H-benzo[d]imidazole hydrochloride

(S)-tert-butyl 2-(5-bromo-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate (4.26 g; 10.8 mmol) are dissolved in dioxane (31 ml) and a solution of hydrochloric acid in dioxane (4M; 31 ml; 130 mmol) is added followed by the addition of MeOH (5 ml). Stirring is continued for 2 hours followed by the addition of Et$_2$O (250 ml) which leads to the precipitation of a white powder which is filtered off and is washed with Et$_2$O (25 ml). The brownish powder is dissolved in MeOH (50 ml) and 1 g of activated charcoal (Norit) is added and stirring is continued for 5 minutes then the charcoal is filtered off over celite and the solvent is evaporated under reduced pressure and the residue is dried at high vacuum to give 3.9 g of the title compound as a slightly reddish powder; t_R [min] = 0.61; [M+H]$^+$ = 294.09.
14) Synthesis of \[(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-\((5-methyl-2-pyrimidin-2-yl-phenyl)\)-methanone

5-Methyl-2-(pyrimidin-2-yl)benzoic acid (1.47 g; 6.86 mmol) is dissolved in DCM (50 ml) and dimethylaminopyridine (168 mg, 1.37 mmol) and EDC (1.45 g; 7.55 mmol) are added. Stirring is continued for 30 minutes followed by the addition of (S)-5-bromo-7-methyl-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole hydrochloride (2.27 g; 6.86 mmol). Stirring at RT is continued for 16 hours. Ethylacetate (150 ml) and sat. sodium hydrogencarbonate solution (100 ml) are added to the reaction mixture. The phases are separated and the aq. phase is extracted with EtOAc (50 ml). The combined organic layers are dried with MgSO₄, filtered and the solvent is evaporated under reduced pressure. The product is purified by preparative HPLC (conditions C) to give 2.07 g of the title compound as a white powder; \(t_R \text{[min]} = 0.73\); \([M+H]^+ = 492.14\).

In analogy to the procedures described herein before, the following examples are prepared.

Table 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Compound name. LC-MS data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((5\text{-Methyl-2-[1,2,3]triazol-2-yl-phenyl]}-{(S)-2\text{-methyl-2-(5-trifluoromethyl-1H-benzoimidazol-2-yl)}\text{-pyrrolidin-1-yl]})\text{-methanone. LC-MS: }t_R = 0.83; \ [M+H]^+ = 455.3</td>
</tr>
<tr>
<td>2</td>
<td>{(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methyl2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.82; \ [M+H]^+ = 479.2</td>
</tr>
<tr>
<td>3</td>
<td>((5\text{-Methyl-2-[1,2,3]triazol-2-yl-phenyl]}-{(S)-2\text{-methyl-2-(5-trifluoromethoxy-1H-benzoimidazol-2-yl)}\text{-pyrrolidin-1-yl]})\text{-methanone. LC-MS: }t_R = 0.82; \ [M+H]^+ = 471.2</td>
</tr>
<tr>
<td>4</td>
<td>{(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methyl2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.68; \ [M+H]^+ = 447.4</td>
</tr>
<tr>
<td>5</td>
<td>{(S)-2-(6-Bromo-5-fluoro-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methyl-2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.82; \ [M+H]^+ = 483.2</td>
</tr>
<tr>
<td>6</td>
<td>{(S)-2-(6-Chloro-5-trifluoromethyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methyl-2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 1.01; \ [M+H]^+ = 489.2</td>
</tr>
<tr>
<td>7</td>
<td>{(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methoxy-2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.78; \ [M+H]^+ = 451.3</td>
</tr>
<tr>
<td>8</td>
<td>{(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methoxy-2-[1,2,3]triazol-2-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.64; \ [M+H]^+ = 463.3</td>
</tr>
<tr>
<td>9</td>
<td>{(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]}\text{-}(5-methyl-2-pyrazol-1-yl-phenyl)\text{-methanone. LC-MS: }t_R = 0.67; \ [M+H]^+ = 446.3</td>
</tr>
</tbody>
</table>
II-Biological assays

Antagonistic activities on both orexin receptors have been measured for each example compound using the following procedure:

In vitro assay: Intracellular calcium measurements:

Chinese hamster ovary (CHO) cells expressing the human orexin-1 receptor and the human orexin-2 receptor, respectively, are grown in culture medium (Ham F-12 with L-Glutamine) containing 300 μg/ml G418, 100 U/ml penicillin, 100 μg/ml streptomycin and 10 % heat inactivated fetal calf serum (FCS). The cells are seeded at 20000 cells / well into 384-well black clear bottom sterile plates (Greiner). The seeded plates are incubated overnight at 37°C in 5% CO₂.

Human orexin-A as an agonist is prepared as 1 mM stock solution in MeOH: water (1:1), diluted in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO₃: 0.375g/l and 20 mM HEPES for use in the assay at a final concentration of 3 nM.

Antagonists are prepared as 10 mM stock solution in DMSO, then diluted in 384-well plates using DMSO followed by a transfer of the dilutions into in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO₃: 0.375g/l and 20 mM HEPES. On the day of the assay, 50 μl of staining buffer (HBSS containing 1% FCS, 20 mM HEPES, NaHCO₃: 0.375g/l, 5 mM probenecid (Sigma) and 3 μM of the fluorescent calcium indicator fluo-4 AM (1 mM stock solution in DMSO, containing 10% pluronic) is added to each well. The 384-well cell-plates are incubated for 50 min at 37°C in 5% CO₂ followed by equilibration at RT for 30 min before measurement.

Within the Fluorescent Imaging Plate Reader (FLIPR Tetra, Molecular Devices), antagonists are added to the plate in a volume of 10 μl/well, incubated for 120 min and finally 10 μl/well of agonist is added. Fluorescence is measured for each well at 1 second intervals, and the height of each fluorescence peak is compared to the height of the fluorescence peak induced by an approximate EC₅₀ (for example 5 nM) of orexin-A with vehicle in place of antagonist. The IC₅₀ value (the concentration of compound needed to inhibit 50 % of the agonistic
response) is determined and may be normalized using the obtained IC$_{50}$ value of a on-plate reference compound. Optimized conditions are achieved by adjustment of pipetting speed and cell splitting regime. The calculated IC$_{50}$ values may fluctuate depending on the daily cellular assay performance. Fluctuations of this kind are known to those skilled in the art. Average IC$_{50}$ values from several measurements are given as mean values.

Antagonistic activities of example compounds with respect to the OX$_1$ and the OX$_2$ receptor are displayed in Table 2.

<table>
<thead>
<tr>
<th>Example Number</th>
<th>IC$_{50}$ Ox1 [nM]</th>
<th>IC$_{50}$ Ox2 [nM]</th>
<th>Example Number</th>
<th>IC$_{50}$ Ox1 [nM]</th>
<th>IC$_{50}$ Ox2 [nM]</th>
<th>Example Number</th>
<th>IC$_{50}$ Ox1 [nM]</th>
<th>IC$_{50}$ Ox2 [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1</td>
<td>8</td>
<td>81</td>
<td>Ex. 2</td>
<td>9</td>
<td>20</td>
<td>Ex. 3</td>
<td>19</td>
<td>161</td>
</tr>
<tr>
<td>Ex. 4</td>
<td>22</td>
<td>18</td>
<td>Ex. 5</td>
<td>15</td>
<td>80</td>
<td>Ex. 6</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Ex. 7</td>
<td>2</td>
<td>3</td>
<td>Ex. 8</td>
<td>27</td>
<td>23</td>
<td>Ex. 9</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>Ex. 10</td>
<td>2</td>
<td>4</td>
<td>Ex. 11</td>
<td>6</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Effect of exemplified compounds on agitation induced by caffeine in rats and dogs

Neurobiological and neuropharmacological rationales:

Caffeine is used as a tool to simulate deficient inhibitory VLPO-SCN input to hypothalamic orexin neurons. Adenosine receptors (mainly adenosine A1 and A2A receptors) negatively regulate the firing of orexin neurons that mediate wakefulness by reinforcing the ascending arousal monoaminergic medio-cortical system. Throughout the day, endogenous adenosine builds up from ATP metabolism and gradually contributes, with Gaba and melatonin, to increase sleep pressure through VLPO-mediated inhibition of midbrain orexin and monoamine neurons. Caffeine, an adenosine A1 and A2A receptor antagonist, blocks adenosinergic inhibition on orexin neurons, thereby reinforcing orexinergic activation and increasing alertness. This essentially represents one of the neurobiological mechanism of caffeine's alerting and awakening properties.

Late day acute oral caffeine (in diurnal species) is used to experimentally simulate VLPO and SCN deafferentation leading to sundown agitation; this has elicited orexinergic activation and increased alertness. High dose caffeine is typically needed to induce agitation and hyperalertness in healthy animals with normal adenosine tone and receptors.

Caffeine consumption is contraindicated in elderly patients suffering from sundown syndrome. Caffeinated beverages are suspected to exacerbate agitation symptoms in sundown syndrome patients. VLPO and SCN deafferentation as well as low endogenous
adenosine tone (due to diminished ATP metabolism) may lead to upregulated (hypersensitized) adenosine receptors.

Protocols for agitation induced by caffeine in rats and dogs:

Electroencephalography (EEG) and Electromyography (EMG) signals were measured by telemetry using radiotelemetric implants (Data Science Int.).

(1) in rats (nocturnal species): The compound of Ex. 7, the compound of Ex 11 and caffeine were dosed p.o. by gavage at the indicated dose and time point.

Conditions are as follows: Lights off at 11 am, drug or vehicle at 4:30 pm, caffeine or vehicle at 5 pm, lights on at 11 pm, online continuous radiotelemetric recording of EEG, EMG, thermoregulation and locomotor activity over several circadian cycles. The attenuating effects of orexin receptor antagonists are quantified for potency, efficacy, onset of effects on electrophysiological markers.

Figure 1 show the activity (counts per minute, n=8 animals) over time (the grey zone representing the night active period). Dosing of drug or vehicle is indicated at (1), 30 minutes before dosing of caffeine or vehicle, indicated at (2). Curves show: (A): vehicle at (1) and vehicle at (2); (B): compound of Ex. 7 - HCl salt (108 mg/kg p.o.) at (1) and vehicle at (2); (C): vehicle at (1) and caffeine at (2); and (D): compound of Ex. 7 - HCl salt (108 mg/kg p.o.) at (1) and caffeine at (2).

Figure 2 show activity (count per minute, n=8 animals) over time (the grey zone representing the night active period). Dosing of drug or vehicle is indicated at (1), 30 minutes before dosing of caffeine or vehicle indicated at (2). Curves show: (A): vehicle at (1) and vehicle at (2); (B): compound of Ex. 11 (100 mg/kg p.o.) at (1) and vehicle at (2); (C): vehicle at (1) and caffeine at (2); and (D): compound of Ex. 11 (100 mg/kg p.o.) at (1) and caffeine at (2).

(2) in dogs (diurnal species): The compound of Ex. 7 and caffeine were dosed p.o. by gavage at the indicated dose and time point.

Conditions are as follows: Lights on at 7 am, drug or vehicle at 1:30 pm, caffeine or vehicle at 2 pm, lights off at 7 pm, online 24 h radiotelemetric recording (10 am -10 am) of EEG, EMG, thermoregulation and locomotor activity. The effects of the tested compound are quantified for potency, efficacy, onset and duration of effects on canine electrophysiological and clinical markers of caffeine agitation and hyperalertness.
Figure 3 show the time spent in active wake (% of total time, n=8 animals) over time (from 1 pm to 7 am, grey zone representing the night inactive period from 7 pm to 7 am). Dosing of drug or vehicle is indicated at (1), 30 minutes before dosing of caffeine or vehicle indicated at (2). Curves show: (A): vehicle at (1) and vehicle at (2); (B): compound of Ex. 7 (90 mg/dog) at (1) and vehicle at (2); (C): vehicle at (1) and caffeine at (2); and (D): compound of Ex. 7 (90 mg/dog) at (1) and caffeine at (2).
Claims

1. A compound of the formula (I):

 ![Formula (I)](attachment:image)

 or a pharmaceutically acceptable salt thereof, for use in the prevention or treatment of sundown syndrome; wherein the compound of formula (I) is in absolute configuration (S);

 Ar¹ represents

 ![R₁ alternatives](attachment:image)

 and Ar² represents

 ![R₂ alternatives](attachment:image)

2. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, for use according to claim 1, wherein the compound is:

 [(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-5-phenyl-methanone;

 [(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-5-phenyl-methanone;

 [(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-5-phenyl-methanone;

 [(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-5-phenyl-methanone;
[(S)-2-(6-Bromo-5-fluoro-1H-benzoimidazol-2-yl)methanone;
[(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2\(\gamma\)-pyrrolidin-1-yl]-[5-methyl-2-[1,2,3]triazol-2-yl-phenyl]-methanone;
[(S)-2-(5,6-Dimethoxy-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methyl-2-[1,2,3]triazol-2-yl-phenyl]-methanone;
[(S)-2-(6-Chloro-5-trifluoromethyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methyl-2-[1,2,3]triazol-2-yl-phenyl]-methanone;
[(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methyl-2-[1,2,3]triazol-2-yl-phenyl]-methanone;
(5-Methyl-2-[1,2,3]triazol-2-yl-phenyl)-[(S)-2-methyl-2-(5-trifluoromethyl-1H-benzoimidazol-2-yl)-pyrrolidin-1-yl]-methanone; or
(5-Methyl-2-[1,2,3]triazol-2-yl-phenyl)-[(S)-2-methyl-2-(5-trifluoromethoxy-1H-benzoimidazol-2-yl)-pyrrolidin-1-yl]-methanone.]

3. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, for use according to claim 1, wherein the compound is:

[(S)-2-(5-Bromo-7-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methyl-2-[1,2,3]triazol-2-yl-phenyl]-methanone.

4. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, for use according to claim 1, wherein the compound is:

[(S)-2-(5-Chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methoxy-2-[1,2,3]triazol-2-yl-phenyl]-methanone.

5. The compound according to any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, for use according to claim 1, wherein the compound is used for the prevention or treatment of sundown syndrome in a patient who has a dementia of Alzheimer’s type.

6. The compound according to any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, for use according to claim 5, wherein said patient has middle stage Alzheimer dementia.

7. The compound according to any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, for use according to any one of claims 1 to 4, 5, or 6; wherein said sundown syndrome is afternoon sundown syndrome.
8. A compound as defined in any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, for use in the preparation of a medicament for use in the prevention or treatment of sundown syndrome.

9. A method to treat sundown syndrome; comprising administering to a patient in need thereof, the compound defined in any one of claims 1 to 4, in free or pharmaceutically acceptable salt form.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INT.</th>
<th>A61K31/4178</th>
<th>A61K31/4192</th>
<th>A61K31/506</th>
<th>A61P25/00</th>
</tr>
</thead>
</table>

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. MINIMUM DOCUMENTATION SEARCHED

<table>
<thead>
<tr>
<th>Citation (classification system followed by classification symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07D A61K</td>
</tr>
</tbody>
</table>

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

- **X** Further documents are listed in the continuation of Box C.
- **K** See patent family annex.

Date of the actual completion of the international search

9 February 2015

Date of mailing of the international search report

27/02/2015

Name and mailing address of the ISA/IB

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2380 HV Riswick
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Bi smi re, Stewart
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/150364 Al (MERCK & co INC [US]; COLEMAN PAUL J [US]; MERCER SWATI P [US]; ROECKER) 11 December 2008 (2008-12-11) cited in the application on page 1, line 5 - page 2, line 33 claim 1 -----</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 275 421 Al (RÖTAPHARM SPA [IT]) 19 January 2011 (2011-01-19) page 1, paragraph 3 - paragraph 10 claim 1 -----</td>
<td>1-9</td>
</tr>
<tr>
<td>X,P</td>
<td>WO 2013/182972 Al (ACTELION PHARMACEUTICALS LTD [CH]) 12 December 2013 (2013-12-12) page 1, line 1 - page 6, line 3 claims 1, 10 -----</td>
<td>1-9</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2008150364</td>
<td>11-12-2008</td>
<td>AU 2008260647 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2687230 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2150115 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010528007 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010152191 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008150364 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2768329 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102471314 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2275421 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2454252 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532916 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120038487 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012105284 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012115882 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011006960 Al</td>
</tr>
<tr>
<td>WO 2013182972</td>
<td>12-12-2013</td>
<td>CA 2873341 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104334544 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201400476 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013182972 Al</td>
</tr>
</tbody>
</table>