European Patent Office

European Patent Bulletin

EP 2 511 212 B1

European Patent Specification

Date of publication and mention of the grant of the patent:
30.03.2016 Bulletin 2016/13

Application number: 09852062.0

Date of filing: 10.12.2009

Inventors:
• WATANABE, Shinya
 Takashima-shi
 Shiga 520-1501 (JP)
• IDA, Tatsuaki
 Takashima-shi
 Shiga 520-1501 (JP)
• MATSUMOTO, Tsuyoshi
 Takashima-shi
 Shiga 520-1501 (JP)
• YOKOGI, Takehito
 Takashima-shi
 Shiga 520-1501 (JP)

Representative: Gritschneder, Martin et al
Abitz & Partner
Patentanwälte mbB
Postfach 86 01 09
81628 München (DE)

References cited:
JP-A- 10 258 966
JP-A- 10 265 124
JP-A- 2006 069 763
JP-A- 10 258 966
JP-A- 2008 143 637

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Int Cl.:
B65H 45/18 (2006.01)

International application number:
PCT/JP2009/070695

International publication number:
WO 2011/070666 (16.06.2011 Gazette 2011/24)

KNIFE FOLDING DEVICE
MESSERZUSAMMENKLAPPVORRICHTUNG
DISPOSITIF DE PLIAGE DE COUTEAU

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a knife folding machine for folding a sheet, a sheet bundle and the like with a knife blade.

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a knife folding machine for folding a sheet, a sheet bundle and the like with a knife blade.

TECHNICAL FIELD OF THE INVENTION

[0002] A conventional knife folding machine generally comprises a table on which a sheet bundle is placed; a positioning means for positioning the sheet bundle at a predetermined folding position on the table; a knife blade; a pair of folding rollers opposed to the knife blade with the table therebetween at the folding position; and a slider crank mechanism. The slide crank mechanism reciprocates the knife blade between a first position and a second position through an opening for passing the knife blade. The opening is formed on the table. The first position is opposed to the rollers with the table therebetween and spaced from the table. The second position is disposed adjacent a gap between the rollers.

[0003] The knife blade has one end fixed to a rod which is connected with a crank of the slider crank mechanism. During one revolution of the crank, the knife blade reciprocates between the first position (upper dead point) and the second position (lower dead point) so as to cause a folding operation. While the knife blade moves from the first position to the second position, the sheet bundle on the table is folded in two by the knife blade, then an edge of the folded portion thereof is pushed out of the opening and inserted into the gap between the folding rollers so that the sheet bundle can be folded by the folding rollers.

[0004] By the way, the sheet bundle consists of several sheets, and the thickness of each sheet and the number of sheets respectively varies depending on the kind of the sheet bundle so that the thickness of the sheet bundle varies. The second position of the knife blade should be adjusted in such a way that a distance between the second position and the gap is optimized. Because when the second position is too far away from the gap, the sheet bundle cannot be inserted into the gap. When the second position is too close to the gap, the knife blade enters the gap and stops the knife folding machine.

[0005] In the case of the conventional knife blade machine, the second position of the knife blade is adjusted by changing the position of the upper dead point of the slider crank mechanism. In this case, the change of the second position of the knife blade automatically effects the change of the first position since the stroke of the slider crank mechanism between the upper and lower dead points is constant.

[0006] In order to achieve a high-speed folding operation, it is preferable that the stroke of the reciprocal movement of the knife blade is changeable depending on the kind of the sheet bundle, that is, the first and second positions of the knife blade are separately changeable. However, in the conventional knife blade, the first and second positions of the knife blade cannot be separately changeable.

[0007] In addition, a rod is constantly subjected to an offset load in a direction away from the axis thereof during the folding operation since the slider crank mechanism transforms a rotary movement of a crank into a reciprocal linear movement of a rod, which leads to the deterioration of the durability of the knife folding machine.

[0008] In the conventional knife folding machine, when each sheet bundle is sequentially fed to the fold position every time each of the folding operations is completed, an overload of the knife blade cannot be detected during the folding operation even if a plurality of sheet bundles are accidentally fed at a time. As a result, the movement of the knife blade cannot be stopped but continued to cause a paper jam between the folding rollers, and the folding operation is interrupted for a long time.

JP 10258966 discloses a folding device for booklet folding machine according to the preamble of claim 1. The device is provided with a pair of paper guides on which a booklet is fed, a pair of folding rollers disposed below the paper guides so as to be capable of rotating, a stopper which is fixed at the prescribed position of the paper guide to stop the book. The device further comprises a sensor which is disposed at the stopper and detects the reach of the booklet, a control motor which actuates a screw feeding mechanism which is disposed above the opposing clearance of the paper guides, and a knife which is supported by the screw feeding mechanism and press the book in the opposing clearance of the folding rollers.

SUMMARY OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0010] It is an object of the present invention to provide a knife folding machine which can separately change the positions of the opposite ends of the reciprocal movement of the knife blade, and achieve a high-speed folding operation and an excellent durability.

[0011] It is another object of the present invention to provide a knife folding machine having the function of detecting the overload of the knife blade during the folding operation.

SOLUTION TO THE PROBLEMS

[0012] In order to achieve the objects, the present invention provides a knife folding machine, comprising:

a frame having a support surface to support a lower
surface of a sheet or a sheet bundle;
a positioning means attached to the frame to position
the sheet or the sheet bundle at a fold position on
the support surface;
a knife blade;
a pair of folding rollers opposed to the knife blade
with the support surface therebetween at the fold
position, the folding rollers being attached to the
frame, the knife blade and the folding rollers being
disposed in parallel to each other, an edge of the
knife blade being opposed to a gap between the fold-
ing rollers, the support surface having a opening
through which the knife blade passes;
a knife drive unit for reciprocating the knife blade in
a direction perpendicular to the support surface
through the opening between a first position and a
second position, the first position being opposed to
the folding rollers with the support surface therebe-
tween and spaced from the support surface, the sec-
ond position being disposed adjacent the gap be-
tween the folding rollers;
a support arm attached to the frame to support the
knife drive unit; and
a control unit for controlling the knife drive unit;
wherein
the reciprocal movement of the knife blade between
the first and second positions effects a folding oper-
ation, wherein
while the knife blade moves from the first position to
the second position, the sheet or the sheet bundle
on the support surface being folded in two by the
knife blade, an edge of the folded portion thereof
being pushed out of the opening and inserted to the
gap between the folding rollers so that the sheet or
the sheet bundle can be folded by the folding rollers;
and wherein
the knife drive unit comprises:

[0013] According to a preferred embodiment of the
present invention, the control unit comprises:
a first input portion for receiving input of both a data
of a distance (d1) from the support surface to the
first position and a data of a distance (d2) from the
support surface to the second position; and
a first memory for storing the datum of the distances
(d1, d2) inputted through the first input portion; and
wherein
the control unit controls the servomotor based on the
datum of the distances (d1, d2) stored in the first
memory.

[0014] According to further preferred embodiment of
the present invention, the knife folding machine further
comprising:
a feed means attached to the frame to sequentially
feed the sheet or the sheet bundle to the fold position
in a direction parallel or perpendicular to the knife
blade on the support surface; wherein
the positioning means comprises a stopper disposed
on a downstream side of the knife blade and extend-
ing in a direction perpendicular to a feed path of
the sheet or the sheet bundle on the support surface,
the stopper positioning the sheet or the sheet bundle
at the fold position by the abutment of the front end
of the sheet or the sheet bundle against the stopper.

[0015] According to further preferred embodiment of
the present invention, the knife folding machine further
comprising:
a sensor disposed in the middle way of the feed path
of the sheet or the sheet bundle to detect a passage
of a tail end of the sheet or the sheet bundle; wherein
the stopper is movable along the feed path in a di-
rection of toward and away from the sensor and dis-
posed away from the sensor a distance (r) summed
up in both of a distance (p) along the feed path of
the sheet or the sheet bundle and a predetermined
distance (q); wherein
the control unit comprises:

a second input portion for receiving input of a
data of a delay time from when the tail end of
the sheet or the sheet bundle (S) passes through
the sensor till when the folding operation of the
knife blade (5) starts; and
a second memory for storing the data of the de-
lay time (t) inputted through the second input
portion; and wherein
According to further preferred embodiment of the present invention, the feed means comprises:

- a drive roller and an idle roller attached to the frame and spaced from and in parallel to each other;
- at least one conveyor belt extending between the drive roller and idle roller; and
- a second servomotor attached to the frame to rotate the drive roller; wherein

a part of the support surface is formed by a feed surface of the conveyor belt, each of rotation shafts of the drive roller and idle roller being disposed in parallel or vertical to the knife blade.

EFFECT OF THE INVENTION

The knife folding machine of the present invention comprises the rod supported to reciprocate in a direction perpendicular to the support surface for supporting the lower surface of the sheet or the sheet bundle, and the feed screw disposed in parallel to the rod and supported to rotate around an axis thereof. The rod and the feed screw are operatively connected with each other by the block. The rod is fixed to the knife blade at its one end and reciprocated by the feed screw. The feed screw is rotated by the servomotor. Thus the knife blade reciprocates between the first and second positions. As a result, it is possible to easily adjust the stroke of the reciprocal movement of the knife blade, and separately adjust the first and second positions thereof by controlling the amount of the rotation of the servomotor.

Further in the present invention, the rod is not subjected to the offset load in a direction away from the axis thereof during the folding operation because the rod and the feed screw are disposed in parallel to each other, so that the durability of the knife folding machine improves. Since the rod, or the knife blade is reciprocated by the feed screw which is rotated by the servomotor, the overload subjected to the knife blade can be detected by the servomotor. As a result, when each sheet bundle is sequentially fed to the fold position every time each of the folding operations is finished, the paper jam is avoided by stopping the knife blade in the course of its folding operation even if a plurality of sheet bundles are accidently fed at a time.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a perspective view showing a knife folding machine according to the first embodiment of the present invention, in which no sheet is set at a fold position of the knife folding machine. Fig. 2 is a perspective view showing the knife folding machine according to the first embodiment of the present invention, in which a sheet is set at the fold position of the knife folding machine. Fig. 3 is a perspective view showing a knife drive unit of the knife folding machine of Fig. 1. Fig. 4A is a front view showing the knife drive unit of the knife folding machine of Fig. 1 when a knife blade is disposed at a first position. Fig. 4B is a front view showing the knife drive unit of the knife folding machine of Fig. 1 when the knife blade is disposed at a second position. Fig. 5 is a plan view showing a touch screen as a first and second input portions of the knife folding machine of Fig. 1.

DETAILED EXPLANATION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of the present invention will be explained below with reference to the accompanying drawings. Fig. 1 is a perspective view showing a knife folding machine according to the first embodiment of the present invention, in which no sheet is not set at a fold position of the knife folding machine. Fig. 2 is a perspective view showing the knife folding machine according to the first embodiment of the present invention, in which a sheet is set at the fold position of the knife folding machine. As shown in Figs. 1 and 2, the knife folding machine of the present invention comprises a frame 1. A plurality of elongated plates 2, 2a are attached to the upper surface of the frame 1 and spaced from each other widthwise. The upper surfaces of these plates 2, 2a construct a part of a support surface 4 for supporting a lower surface of a sheet or a sheet bundle (hereinafter generically referred to as “a sheet S”).

A pair of folding rollers 6a, 6b are opposed to a knife blade 5 with the support surface 4 therebetween at the fold position on the support surface 4. In this embodiment, the knife blade 5 is disposed above the center plate 2a (the support surface 4) and the folding rollers 6a, 6b are disposed below the center plate 2a. In another embodiment, the knife blade 5 may be disposed below the center plate 2a and the folding rollers 6a, 6b may be disposed above the center plate 2a.

The folding rollers 6a, 6b are attached to the frame 1. The knife blade 5 and the folding rollers 6a, 6b are disposed in parallel to each other and the center plate 2a. A opening 3 is formed on the center plate 2a and extends longitudinally thereof. The knife blade 5 passes through the opening 3 and one end of the knife blade 5 is opposed to a gap between the folding rollers 6a, 6b.

The knife folding machine comprises a knife drive unit 7. The knife drive unit 7 reciprocates the knife blade 5 between first and second positions through the opening 3 in a direction perpendicular to the support surface 4. The first position is spaced from and above the
support surface 4. The second position is disposed adjacent the gap between the folding rollers 6a, 6b. The knife drive unit 7 is supported on a support arm 8 attached to the frame 1.

[0024] Fig. 3 is a perspective view showing a knife drive unit of the knife folding machine of Fig. 1. Fig. 4A is a front view showing the knife drive unit of the knife folding machine of Fig. 1 when a knife blade is disposed at the first position. Fig. 4B is a front view showing the knife drive unit of the knife folding machine of Fig. 1 when the knife blade is disposed at the second position.

[0025] As shown in Figs. 3 and 4, the knife drive unit 7 comprises a holder 9 attached to the support arm 8. The holder 9 has horizontal upper and lower support walls 9a, 9b which are vertically spaced from each other. A rod 10 extends through the upper and lower support walls 9a, 9b in a direction vertical or perpendicular to the support surface 4. The rod 10 is attached to the holder 9 via bearings (not shown) disposed in the upper and lower support walls 9a, 9b so as to be reciprocated in an axial direction thereof. The knife blade 5 is fixed on the lower end of the rod 10. A block 11 is fixed on a center portion of the rod 10 (the portion extends between the upper and lower support walls 9a, 9b).

[0026] A feed screw 12 is attached to rotate around an axis thereof and extends in parallel to the rod 10 between the upper and lower support walls 9a, 9b of the holder 9. The block 11 has a through hole which provided with thread grooves corresponding to the feed screw 12. The feed screw 12 is engaged with the through hole. While the feed screw 12 rotates, the rod 10 reciprocates in a direction perpendicular to the support surface 4 through the block 11.

[0027] The knife drive unit 7 further comprises a first pulley 13 attached to an upper end of the feed screw 12, a servomotor 14 attached to holder 9 and having a drive shaft 14a in parallel to the feed screw 12, a second pulley 15 attached to the drive shaft 14a of the servomotor 14, and a timing belt 16 extended between the first and second pulleys 13, 15.

[0028] In this embodiment, the first pulley 13 is attached to the upper end of the feed screw 12 and driven by the servomotor 14, but the first pulley 13 may be attached to the lower end of the feed screw 12 and driven by the servomotor 14.

[0029] The servomotor 14 is controlled by a control unit 22.

[0030] The control unit 22 comprises a first input portion 23 for receiving input of both a data of a distance d1 (see Fig. 4A) from the support surface 4 to the first position and a data of a distance d2 (see Fig. 4B) from the support surface 4 to the second position. The control unit 22 comprises a first memory 24 for storing the datum of the distances d1, d2 through the first input portion 23.

[0031] In this embodiment, as shown in Fig. 5, the first input portion 23 is formed by a lower input area 29a of a touch screen 29. In this embodiment, the lower input area 29a receives input of values corrected for default values respectively corresponding to distances from the support surface 4 to the first and second positions. Thus the distance d1 from the support surface 4 to the first position and the distance d2 from the support surface 4 to the second position are inputted. In the lower input area 29a there are upper and lower numerical value columns 30a, 30b. The upper numerical value column 30a indicates the corrected value of the distance from the first position to the support surface 4 by 0.1 mm. The lower numerical value column 30b indicates the corrected value of the distance from the second position to the support surface 4 by 0.1 mm.

[0032] At the right side of the numerical value columns 30a, 30b, there are a "+" button for increasing the corrected value, a "-" button for decreasing the corrected value, and a "D" button for changing the corrected value to zero. Each of the corrected values can easily be inputted by depressing these buttons.

[0033] The control unit 22 calculates an amount of the rotation of the servomotor 14 corresponding to the distance from the first position to the second position based on the datum of the distances d1, d2 stored in the first memory 24 and controls the servomotor 14.

[0034] The servomotor 14 rotates the feed screw 12 to reciprocate the rod 10 or the knife blade 5 between the first position (see Fig. 4A) and the second position (see Fig. 4B) via the block 11.

[0035] The reciprocal movement of the knife blade 5 between the first and second positions effects a folding operation. While the knife blade 5 moves from the first position to the second position, the sheet S on the support surface 4 is folded in two by the knife blade 5, and an edge of the folded portion thereof is pushed out of the opening 3 and inserted to the gap between the folding rollers 6a, 6b so that the sheet S can be folded by the folding rollers 6a, 6b.

[0036] According to the present invention, the servomotor 14 rotates the feed screw 12 to reciprocate the rod 10 or the knife blade 5 between the first and second positions. As a result, the stroke of reciprocal movement of the knife blade S can easily be adjusted, and the first and second positions of the knife blade 5 can separately be adjusted by controlling the amount of the rotation of the servomotor 14.

[0037] Further in the present invention, the rod 10 is not subjected to the offset load in a direction away from the axis thereof during the folding operation because the rod 10 and the feed screw 12 are disposed in parallel to each other, so that the durability of the knife folding machine can be improved. Since the rod 10 or the knife blade 5 is reciprocated by the feed screw 12 which is rotated by the servomotor 14, the overload subjected to the knife blade 5 is detected by the servomotor 14. As a result, when each sheet S is sequentially fed to the fold position every time each of the folding operations is finished, the paper jam between the folding rollers 6a, 6b can be avoided by stopping the knife blade 5 in the course of its folding operation even if a plurality of sheets S are
accidentally fed at one time.

[0038] The knife folding machine further comprises a feed means attached to the frame 1 to sequentially feed the sheet S to the fold position in a direction parallel to the knife blade 5 on the support surface 4.

[0039] In this embodiment, the feed means comprises a drive roller 17 and an idle roller 18 which are attached to the frame 1 and respectively disposed on one and the other end sides of the frame 1 below the support surface 4 (plates 2, 2a). Each of rotation shafts of the drive roller 17 and the idle roller 18 is disposed in parallel to each other and extends in a direction perpendicular to the knife blade 5. The drive roller 17 is driven by a second servomotor 19 fixed to the frame 1. The second servomotor 19 is controlled by the control unit 22.

[0040] A plurality of conveyer belts 20 extend between the drive roller 17 and the idle roller 18. Two conveyer belts 20 are arranged for each of the plates 2, 2a and spaced from each other. Each of upper side portions of the conveyer belts 20 is disposed above the plates 2, 2a. As a result, a part of the support surface 4 is formed by a feed surface of the conveyer belt 20.

[0041] The knife folding machine further comprises a positioning means attached to the frame 1 to position the sheet S at the fold position on the support surface 4. In this embodiment, the positioning means comprises a stopper 21 disposed at a downstream side of the knife blade 5 and extending in a direction perpendicular to a feed path of the sheet S on the support surface 4. The stopper 21 positions the sheet S at the fold position by the conveyer belts 20. When the sensor 28 detects the passage of the tail end of the sheet S through the sensor 28, and at the same time gradually slows the feed speed of the sheet S, the sheet S abuts against and rebounds from the stopper 21 and stops. By use of the delay time (t) the knife blade 5 can work the sheet S only when the sheet S completely stops after its abutment against the stopper 21 and rebound, so that the sheet S can be correctly folded.

[0042] A horizontal support bar 27 is attached to the frame 1 at its opposed ends and extends in a direction perpendicular to the feed path of the sheet S at an upstream side of the opening 3 of the plate 2a. A sensor 28 is attached to the center of the support bar 27 to detect a passage of a tail end of the sheet S.

[0043] The stopper 21 is movable along the feed path of the sheet S in a direction of toward and away from the sensor 28. The stopper 21 is disposed away from the sensor 28 by a distance (r) summed up in both of a distance (p) along the feed path of the sheet S and a predetermined distance (q).

[0044] After the passage of the tail end of the sheet S, the control unit 22 controls the second servomotor 19 by lowering the rotary speed of the second servomotor 19 in such a way that the feed speed of the sheet S gradually lowers so as to become the slowest speed just before the abutment of the sheet S against the stopper 21.

[0045] The control unit 22 comprises a second input portion 25 for receiving input of a data of a delay time (t) from when the tail end of the sheet S passes through the sensor 28 till when the folding operation of the knife blade 5 starts, and a second memory 26 for storing the data of the delay time (t) inputted through the second input portion 25.

[0046] In this embodiment, as shown in Fig. 5, the second input portion 25 is formed by an upper input area 29b of a touch screen 29. In the upper input area 29b there is a display portion for indicating a set value of the delay time (t) in a step-by-step manner. At the right side of the display portion there is a "+" button for increasing the set value, meanwhile, at the left side thereof there is a "-" button for decreasing the set value. The set values can easily be inputted by depressing these buttons on the microsecond time scale.

[0047] The delay time (t) is a time from when the tail end of the sheet S passes through the sensor 28 till when the sheet S rebounds from the stopper 21 and stops. By use of the delay time (t) the knife blade 5 can work the sheet S only when the sheet S completely stops after its abutment against the stopper 21 and rebound, so that the sheet S can be correctly folded.

[0048] Thus before the folding operation of the knife blade machine starts, the stopper 21 is disposed away from the sensor 28 by a distance (r) summed up in both of a distance (p) along the feed path of the sheet S and a predetermined distance (q). The set value of the distance (d1) from the support surface 4 to the first position, the set value of the distance (d2) from the support surface 4 to the second position and the set value of the delay time (t) are inputted through the touch screen 29, respectively. The knife blade 5 moves to the first position based on the set value of the distance (d1) so as to be kept in a standby condition.

[0049] Then the folding operation of the knife folding machine starts. The first sheet S is conveyed to the fold position by the conveyer belts 20. When the sensor 28 detects the passage of the tail end of the sheet S, the control unit 22 starts the time measurement after the passage of the sheet S through the sensor 28, and at the same time gradually slows the feed speed of the sheet S. The sheet S abuts against and rebounds from the stopper 21, and then stops at the fold position (see Fig. 2). Soon after that, the control unit 22 detects the delay time (t) after the passage of the sheet S through the sensor 28 and the folding operation starts, so that the knife blade 5 is moved from the first position to the second position.

[0050] During the movement, the sheet S on the support surface 4 is folded in two by the knife blade 5, and the edge of the folded portion of the sheet S is pushed out of the opening 3 and inserted to the gap between the folding rollers 6a, 6b so that the sheet S can be folded by the folding rollers 6a, 6b. Then the knife blade 5 returns from the second position to the first position. During the reciprocal movement of the knife blade 5 between the first and second positions, the folding operation is caused. The next sheet S is conveyed by the conveyer belts 20 to be fed to the fold position every time each of the folding operations is completed.

DESCRIPTION OF THE REFERENCE CHARACTERS
1. A knife folding machine, comprising:

- a frame (1) having a support surface (4) to support a lower surface of a sheet (S);
- a positioning means attached to the frame (1) to position the sheet (S) at a fold position on the support surface (4);
- a knife blade (5);
- a pair of folding rollers (6a, 6b) opposed to the knife blade (5) with the support surface (4) therebetween at the fold position, the folding rollers (6a, 6b) being attached to the frame (1), the knife blade (5) and the folding rollers (6a, 6b) being disposed in parallel to each other, an edge of the knife blade (5) being opposed to a gap between the folding rollers (6a, 6b), the support surface (4) having a opening (3) through which the knife blade (5) passes;
- a knife drive unit (7) for reciprocating the knife blade (5) in a direction perpendicular to the support surface (4) through the opening (3) between a first position and a second position, the first position being opposed to the folding rollers (6a, 6b) with the support surface (4) therebetween and spaced from the support surface (4), the second position being disposed adjacent the gap between the folding rollers (6a, 6b);
- a support arm (8) attached to the frame (1) to support the knife drive unit (7); and
- a control unit (22) for controlling the knife drive unit (7); wherein

- the reciprocal movement of the knife blade (5) between the first and second positions effects a folding operation, wherein

- while the knife blade (5) moves from the first position to the second position, the sheet (S) on the support surface (4) being folded in two by the knife blade (5), an edge of the folded portion thereof being pushed out of the opening (3) and inserted to the gap between the folding rollers (6a, 6b) so that the sheet (S) or the sheet bundle (S) can be folded by the folding rollers (6a, 6b); and wherein

- the knife drive unit (7) comprises:

 - a holder (9) attached to the support arm (8);
 - a rod (10) extending in a direction perpendicular to the support surface (4) and attached to the holder (9) to reciprocate in an axial direction thereof, the rod (10) having one end attached to the knife blade (5);
 - a block (11) attached to a center portion of the rod (10);
 - a feed screw (12) extending in parallel to the rod (10) and attached to the holder (9) to rotate around an axis thereof, the block (11) having a thorough hole which has thread grooves corresponding to the feed screw (12), the feed screw (12) engaging with the through hole, the rod (10) being reciprocated by the rotation of the feed screw (12);

 characterized by

- a first pulley (13) attached to an upper or lower end of the feed screw (12);
- a servomotor (14) attached to the holder (9) and having a drive shaft (14a), the drive shaft (14a) extending in parallel to the feed screw (12);
- a second pulley (15) attached to the drive shaft (14a) of the servomotor (14); and
- a timing belt (16) extended between the first
2. The knife folding machine according to claim 1, wherein

the control unit (22) comprises:

a first input portion (23) for receiving input of both a data of a distance (d1) from the support surface (4) to the first position and a data of a distance (d2) from the support surface (4) to the second position; and

a first memory (24) for storing the datum of the distances (d1, d2) inputted through the first input portion (23); and wherein

the control unit (22) controls the servomotor (14) based on the datum of the distances (d1, d2) stored in the first memory (24).

3. The knife folding machine according to claim 2, further comprising:

a feed means attached to the frame (1) to sequentially feed the sheet or the sheet bundle (S) to the fold position in a direction parallel or perpendicular to the knife blade (5) on the support surface (4); wherein

the positioning means comprises a stopper (21) disposed on a downstream side of the knife blade (5) and extending in a direction perpendicular to a feed path of the sheet or the sheet bundle (S) on the support surface (4), the stopper (21) positioning the sheet or the sheet bundle (S) at the fold position by an abutment of a front end of the sheet or the sheet bundle against the stopper (21).

4. The knife folding machine according to claim 3, further comprising:

a sensor (28) disposed in the middle way of the feed path of the sheet or the sheet bundle (S) to detect a passage of a tail end of the sheet or the sheet bundle (S); wherein

the stopper (21) is movable along the feed path in a direction of forward and away from the sensor (28) and disposed away from the sensor (28) by a distance (r) summed up in both of a distance (p) along the feed path of the sheet or the sheet bundle (S) and a predetermined distance (q); wherein

the control unit (22) comprises:

a second input portion (25) for receiving input of a data of a delay time (t) from when the tail end of the sheet or the sheet bundle (S) passes through the sensor (28) till when

the folding operation of the knife blade (5) starts; and

a second memory (26) for storing the data of the delay time (t) inputted through the second input portion (25); and wherein

the control unit (22) controls the servomotor (14) of the knife drive unit (7) based on a detecting data from the sensor (28) and the data of the delay time (t) stored in the second memory (26).

5. The knife folding machine according to claim 4, wherein

the feed means comprises:

a drive roller (17) and an idle roller (18) attached to the frame (1) and spaced from and in parallel to each other; at least one conveyer belt (20) extending between the drive roller (17) and idle roller (18); and

a second servomotor (19) attached to the frame (1) to rotate the drive roller (17); wherein

a part of the support surface (4) is formed by a feed surface of the conveyer belt (20), each of rotation shafts of the drive roller (17) and idle roller (18) being disposed in parallel or vertical to the knife blade (5).

Patentansprüche

1. Messerfalzmaschine, umfassend:

einen Rahmen (1) mit einer Trägerfläche (4) zur Aufnahme einer Unterseite eines Bogens oder eines Bogenbündels (S); eine am Rahmen (1) befestigte Positionierungs- einrichtung zur Positionierung des Bogens oder des Bogenbündels (S) in einer Falzposition auf der Trägerfläche (4); eine Messerklinge (5); ein Paar Falzwalzen (6a, 6b) gegenüber der Messerklinge (5) an der Falzposition, mit der Trägerfläche (4) dazwischen, wobei die Falzwalzen (6a, 6b) am Rahmen (1) befestigt sind, die Messerklinge (5) und die Falzwalzen (6a, 6b) sich parallel zueinander befinden, eine Kante der Messerklinge (5) gegenüber einem Spalt zwischen den Falzwalzen (6a, 6b) liegt und die Trägerfläche (4) eine Öffnung (3) besitzt, durch die die Messerklinge (5) hindurchgeführt wird; eine Messerantriebeinheit (7) zum Hin- und Herbewegen der Messerklinge (5) in einer Rich-
tung senkrecht zur Trägerfläche (4) durch die Öffnung (3) zwischen einer ersten Position und einer zweiten Position, wobei die erste Position den Falzwalzen (6a, 6b) gegenüberliegt, mit der Trägerfläche (4) dazwischen und in einem Abstand von der Trägerfläche (4), und die zweite Position sich neben dem Spalt zwischen den Falzwalzen (6a, 6b) befindet; einen am Rahmen (1) befestigten Trägerarm (8) als Halterung für die Messerantriebseinheit (7); und eine Steuereinheit (22) zur Steuerung der Messerantriebseinheit (7); wobei die Hin- und Herbewegung der Messerklinge (5) zwischen der ersten und der zweiten Position einen Falzvorgang bewirkt, wobei während sich die Messerklinge (5) von der ersten Position zur zweiten Position bewegt, der Bogen oder das Bogenbündel (S) auf der Trägerfläche (4) durch die Messerklinge (5) einmal gefaltet wird, eine Kante des gefalteten Bereichs aus der Öffnung (3) heraus und in den Spalt zwischen den Falzwalzen (6a, 6b) geschoben wird, so dass der Bogen oder das Bogenbündel (S) von den Falzwalzen (6a, 6b) gefalzt werden kann; und wobei die Messerantriebseinheit (7) umfasst:

- einen am Trägerarm (8) befestigten Halter (9);
- eine Stange (10), die sich in einer Richtung senkrecht zur Trägerfläche (4) erstreckt und am Halter (9) befestigt ist, so dass sie sich in Achtung hin und her bewegt, wobei ein Ende der Stange (10) an der Messerklinge (5) befestigt ist;
- einen an einem Mittelteil der Stange (10) befestigten Block (11);
- eine Vorschubspindel (12), die parallel zur Stange (10) verläuft und am Halter (9) befestigt ist, so dass sie sich um ihre Achse dreht, wobei der Block (11) ein Durchgangsloch besitzt, welches zur Vorschubspindel (12) passende Gewinderillen besitzt, die Vorschubspindel (12) in das Durchgangsloch eingreift und die Stange (10) durch die Drehung der Vorschubspindel (12) hin und her bewegt wird;

gekennzeichnet durch

- eine erste, an einem oberen oder unteren Ende der Vorschubspindel (12) befestigte Rolle (13);
- einen Servomotor (14), der am Halter (9) befestigt ist und eine Antriebswelle (14a) besitzt, wobei die Antriebswelle (14a) parallel zur Vorschubspindel (12) verläuft;

- eine zweite, an der Antriebswelle (14a) des Servomotors (14) befestigte Rolle (15); und einen Antriebsriemen (16), der sich zwischen der ersten und der zweiten Rolle (13, 15) erstreckt, wobei der Servomotor (14) von der Steuereinheit (22) gesteuert wird.

2. Messerfalzmaschine gemäß Anspruch 1, wobei die Steuereinheit (22) umfasst:

- einen ersten Eingabebereich (23) zur Eingabe eines Werts für einen Abstand (d1) der Trägerfläche (4) von der ersten Position sowie eines Werts für einen Abstand (d2) der Trägerfläche (4) von der zweiten Position; und
- einen ersten Speicher (24) zur Speicherung der Werte für die Abstände (d1, d2), die durch den ersten Eingabebereich (23) eingegeben werden; und wobei die Steuereinheit (22) den Servomotor (14) ba- sierend auf den im ersten Speicher (24) gespei- cherten Werten für die Abstände (d1, d2) steu- ert.

3. Messerfalzmaschine gemäß Anspruch 2, ferner um- fassend:

- eine Zuführerichtung (25) zum fortlaufenden Heranführen des Bogens oder des Bogenbündels (S) an die Falzposition in einer Richtung parallel oder senkrecht zur Messerklinge (5) auf der Trägerfläche (4); wobei die Positionierungseinrichtung einen Stopper (21) umfasst, der sich an einer der Messerklinge (5) nachgelagerten Seite befindet und sich in einer Richtung senkrecht zu einem Zuführungsweg des Bogens oder des Bogenbündels (S) auf der Trägerfläche (4) erstreckt, wobei der Stopper (21) den Bogen oder das Bogenbündel (S) an der Falzposition positioniert, indem das vordere Ende des Bogens oder des Bogenbündels am Stopper (21) anstößt.

4. Messerfalzmaschine gemäß Anspruch 3, ferner um- fassend:

- einen Sensor (28), der sich auf mittlerem Weg des Zuführungswegs des Bogens oder des Bogenbündels (S) befindet, um den Durchgang eines hinteren Endes des Bogens oder des Bogenbündels (S) zu erfassen; wobei der Stopper (21) entlang des Zuführungswegs in ei- ner Richtung zum Sensor (28) hin und vom Sensor (28) weg beweglich ist und sich in einem Abstand (r), der sich zusammenaddiert aus ei- ner Strecke (p) entlang des Zuführungswegs des Bo- gens oder des Bogenbündels (S) und einer vor-
gegebenen Strecke (q), vom Sensor (28) entfernt befindet; wobei die Steuereinheit (22) umfasst:
 einen zweiten Eingabebereich (25) zur Eingabe eines Werts für eine Verzögerungszeit (t) ab dem Durchgang des hinteren Endes des Bogens oder des Bogenbündels (S) durch den Sensor (28) bis zum Beginn des Falzvorgangs mit der Messerklinge (5); und einen zweiten Speicher (26) zur Speich rung des Werts für die Verzögerungszeit (t), der durch den zweiten Eingabebereich (25) eingegeben wird; und wobei die Steuereinheit (22) den Servomotor (14) der Messerantriebseinheit (7) basierend auf den Erfassungsdaten vom Sensor (28) und dem im zweiten Speicher (26) gespeicherten Wert für die Verzögerungszeit (t) steuert.

5. Messerfalzmaschine gemäß Anspruch 4, wobei die Zuführeinrichtung umfasst:
 eine Antriebsrolle (17) und eine Mitläuferrolle (18), die am Rahmen (1) befestigt sind und sich parallel und in einem Abstand zueinander befinden;
 wenigstens ein Förderband (20), das zwischen der Antriebsrolle (17) und der Mitläuferrolle (18) verläuft; und einen am Rahmen (1) befestigten zweiten Servomotor (19), um die Antriebsrolle (17) zu drehen; wobei ein Teil der Trägerfläche (4) von einer Förderfläche des Förderbands (20) gebildet wird und sich die Drehwelle der Antriebsrolle (17) und die der Mitläuferrolle (18) parallel oder vertikal zur Messerklinge (5) befinden.

Revendications

1. Plieuse à couteau, comprenant :
 un cadre (1) ayant une surface de support (4) pour supporter une surface inférieure d’une feuille ou d’un paquet de feuilles (S) ; un moyen de positionnement fixé au cadre (1) pour positionner la feuille ou le paquet de feuilles (S) à une position de pliage sur la surface de support (4) ; une lame de couteau (5) ; une paire de rouleaux de pliage (6a, 6b) opposés à la lame de couteau (5) avec la surface de support (4) entre eux à la position de pliage, les rouleaux de pliage (6a, 6b) étant fixés au cadre (1), la lame de couteau (5) et les rouleaux de pliage (6a, 6b) étant disposés parallèlement l’une par rapport aux autres, un bord de la lame de couteau (5) étant opposé à un espace entre les rouleaux de pliage (6a, 6b), la surface de support (4) ayant une ouverture (3) à travers laquelle passe la lame de couteau (5) ; une unité d’entraînement de couteau (7) pour déplacer selon un mouvement de va-et-vient la lame de couteau (5) parallèlement à la surface de support (4) à travers l’ouverture (3) entre une première position et une seconde position, la première position étant opposée aux rouleaux de pliage (6a, 6b) avec la surface de support (4) entre eux et espacée de la surface de support (4), la seconde position étant disposée adjacente à l’espace entre les rouleaux de pliage (6a, 6b) ; un bras de support (8) fixé au cadre (1) pour supporter l’unité d’entraînement de couteau (7) ; et une unité de commande (22) pour commander l’unité d’entraînement de couteau (7) ; dans laquelle le mouvement de va-et-vient de la lame de couteau (5) entre les première et seconde positions effectue une opération de pliage, dans laquelle pendant que la lame de couteau (5) se déplace de la première position à la seconde position, la feuille ou le paquet de feuilles (S) sur la surface de support (4) est pliée en deux par la lame de couteau (5), un bord de la partie pliée de la feuille ou du paquet de feuilles est poussé en dehors de l’ouverture (3) et inséré dans l’espace entre les rouleaux de pliage (6a, 6b) de telle sorte que la feuille ou le paquet de feuilles (S) puisse être plié par les rouleaux de pliage (6a, 6b) ; et dans laquelle l’unité d’entraînement de couteau (7) comprend :
 un support (9) fixé au bras de support (8) ; une tige (10) s’étendant parallèlement à la surface de support (4) et fixée au support (9) pour se déplacer selon un mouvement de va-et-vient dans un sens axial de celui-ci, la tige (10) ayant une extrémité fixée à la lame de couteau (5) ; un bloc (11) fixé à une partie centrale de la tige (10) ; une vis d’alimentation (12) s’étendant parallèlement à la tige (10) et fixée au support (9) pour tourner autour d’un axe de celui-ci, le bloc (11) ayant un trou débouchant présentant des rainures de filetage correspondant à la vis d’alimentation (12), la vis d’alimentation (12) se mettant en prise avec le trou débouchant, la tige (10) étant déplacée...
selon un mouvement de va-et-vient par la vis d’alimentation (12) ; caractérisée par une première poulie (13) fixée à une extrémité supérieure ou inférieure de la vis d’alimentation (12) ; un servomoteur (14) fixé au support (9) et ayant un arbre d’entraînement (14a), l’arbre d’entraînement (14a) s’étendant parallèlement à la vis d’alimentation (12) ; une seconde poulie (15) fixée à l’arbre d’entraînement (14a) du servomoteur (14) ; et une courroie de distribution (16) étendue entre les première et seconde poulies (13, 15), le servomoteur (14) étant commandé par l’unité de commande (22).

2. Plieuse à couteau selon la revendication 1, dans laquelle :

l’unité de commande (22) comprend :

une première partie d’entrée (23) pour recevoir une entrée à la fois d’une donnée de distance (d1) depuis la surface de support (4) jusqu’à la première position et d’une donnée de distance (d2) depuis la surface de support (4) jusqu’à la seconde position ; et une première mémoire (24) pour mémoriser la référence des distances (d1, d2) entrées par le biais de la première partie d’entrée (23) ; et dans laquelle l’unité de commande (22) commande le servomoteur (14) en fonction de la référence des distances (d1, d2) mémorisées dans la première mémoire (24).

3. Plieuse à couteau selon la revendication 2, comprenant en outre :

un moyen d’alimentation fixé au cadre (1) pour alimenter séquentiellement la feuille ou le paquet de feuilles (S) jusqu’à la position de pliage dans un sens parallèle ou perpendiculaire à la lame de couteau (5) sur la surface de support (4) ; dans laquelle le moyen de positionnement comprend une butée (21) disposée sur un coté aval de la lame de couteau (5) et s’étendant perpendiculairement à un chemin d’alimentation de la feuille ou du paquet de feuilles (S) sur la surface de support (4), la butée (21) positionnant la feuille ou le paquet de feuilles (S) à la position de pliage en faisant butter une extrémité frontale de la feuille ou du paquet de feuilles contre la butée (21).

4. Plieuse à couteau selon la revendication 3, comprenant en outre :

un capteur (28) disposé à mi-chemin du chemin d’alimentation de la feuille ou du paquet de feuilles (S) pour détecter un passage d’une extrémité arrière de la feuille ou du paquet de feuilles (S) ; dans laquelle la butée (21) est déplaçable le long du chemin d’alimentation dans un sens qui la rapproche ou l’écarte du capteur (28) et disposée à une position écartée du capteur (28) par une distance (r) représentant la somme d’une distance (p) le long du chemin d’alimentations de la feuille ou du paquet de feuilles (S) et d’une distance prédéterminée (q) ; dans laquelle l’unité de commande (22) comprend :

une seconde partie d’entrée (25) pour recevoir l’entrée d’une donnée d’un temps de retard (t) depuis l’instant auquel l’extrémité arrière de la feuille ou du paquet de feuilles (S) passe par le capteur (28) jusqu’à l’instant auquel l’opération de pliage de la lame de couteau (5) commence ; et une seconde mémoire (26) pour mémoriser la donnée du temps de retard (t) entrée par le biais de la seconde partie d’entrée (25) ; et dans laquelle l’unité de commande (22) commande le servomoteur (14) de l’unité d’entraînement de couteau (7) en fonction d’une donnée de détection provenant du capteur (28) et de la donnée du temps de retard (t) mémorisée dans la seconde mémoire (26).

5. Plieuse à couteau selon la revendication 4, dans laquelle le moyen d’alimentation comprend :

un rouleau menant (17) et un rouleau mené (18) fixés au cadre (1), espacés l’un de l’autre parallèlement à l’autre ; au moins une bande transporteuse (20) s’étendant entre le rouleau menant (17) et le rouleau mené (18) ; et un second servomoteur (19) fixé au cadre (1) pour faire tourner le rouleau menant (17) ; dans laquelle une partie de la surface de support (4) est formée par une surface d’alimentation de la bande transporteuse (20), chacun des arbres de rotation du rouleau menant (17) et du rouleau mené (18) étant disposé parallèlement ou verticalement à la lame de couteau (5).
Fig. 5
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4568319 A [0009]
- JP 2007091473 A [0009]
- JP 10258966 B [0009]