发明名称 多线绕制的鞍形偏转线圈及其绕制法

显像管的一种鞍形偏转线圈，其端部向外张开，两端的各连接部分都呈弧形，其窗口两边有两个处于前后两端之间的线圈侧面。线圈利用两束同时（借助于两绕制臂或翼臂）送入的线束绕制成。在绕制过程中的一定时刻，两翼臂能彼此分开，从而可在两线束之间插上一个销子。制成的线圈在侧面部分有许多（三角形的）缝隙，其中一个线束沿各缝隙的一侧延伸，另一线束沿另一侧延伸。
1. 一种鞍形偏转线圈，线圈从后端向前端张开，前端的连接部分呈弧形，后端部分也呈弧形，线圈窗口两边两个处于前后两端之间的线圈侧面纵向延着，所述线圈的特征在于，各线匝由多条同时绕制的导线组成。

2. 如权利要求1所述的偏转线圈，其特征在于，起始一匝线匝和导线分开成起始两束沿窗口两侧两位置处的一个缝隙两侧延伸的线束。

3. 制造鞍形偏转线圈的一种方法，该线圈从后端向前端张开，线圈窗口两边有两个处于前后两端之间的线圈侧面纵向延伸着，所述线圈制造方法包括下列步骤：
 a. 配备一个夹具，夹具的两部分之间有一个下凹的绕制空间，其形状与所要求的线圈形状相当，供容纳连续供给的线圈导线；
 b. 连续将线圈导线提供到所述下凹空间，以形成线圈的多圈线匝；其特征在于，形成线束的多根导线是连续地送述所述凹口中。

4. 如权利要求3所述的方法，其特征在于，用多个绕制臂将相应的多束线同时送到所述绕制空间中。

5. 制造鞍形偏转线圈的一种方法，该线圈的端部从后端向前端张开，前端的连接部分呈弧形，后端部分也呈弧形，线圈窗口的两边有两个处于前后两端之间的线圈侧面纵向延着，所述线圈的制造方法包括下步骤：
 a. 配备一个夹具，夹具的两部分之间有一个下凹的绕制空间，其形状与所要求的线圈形状相当，供容纳连续供给的线圈导线；
 b. 连续将线圈导线提供所述下凹空间，以形成线圈的多圈线匝；
 c. 在步骤b的过程中，在形成预定数量的线圈线匝之后，将一个
凸件插入绕制空间中形成线圈侧面各部分的预定位置中；
其特征在于，形成线束的多根导线连续送入所述凹口中。
6. 如权利要求5所述的方法，其特征在于，插入一个凸件后，线束
的一部分沿凸件的一侧引导，线束的另一部分沿凸件的另一侧引导。
7. 如权利要求6所述的方法，其特征在于，用一分立的绕制转臂送
入各子线束的绕制线。
8. 如权利要求7所述的方法，其特征在于，两绕制臂以第一小角偏
差转动，只是当插入凸件时，两绕制臂则以（其因彼此分开而形成的
）第二更大的角偏差转动。
9. 如权利要求8所述的方法，其特征在于，两绕制臂以第一较商的
转速转动，只是当插入凸件时，两绕制臂以第二较低的转速转动。
10. 如权利要求7所述的方法，其特征在于，两绕制臂偏心装设。
多线绕制的鞍形偏转线圈及其绕制法

本发明涉及一种鞍形偏转线圈，该线圈从后端向前端展开，前端的连接部分呈弧形，后端部分也呈弧形，线圈窗口两边有现代化个处于前后两端之间的线圈侧面纵向延伸着。线圈通常制造的方法包括下列步骤:

a. 配备一个夹具，夹具的两部分之间有一个下凹的绕制空间，其形状与所要求的线圈形状相当，供容纳连续供来的线圈导线；

b. 连续将线圈导线提供到所述下凹空间，以形成线圈的多圈线匝。通常，线圈的纵横线匝是在多个分段上铺开绕制的，一个分段的各线匝绕制在前面各分段的线匝上，各对毗邻分段有部分长度为起始一个缝隙所分隔，该缝隙形成得使其中在沿两者分段之间的界面的线圈窗口两侧的起始两个位置在该两分段的第一分段绕上所要求的匝数之后可以插入一个销子，然后将第二段绕制在这些销子上。

通常的作法是将一套鞍形行偏转线圈与一套鞍形场偏转线圈，或者环形地卷绕在铁心上的场偏转线圈结合起来，形成电磁偏转装置。线圈通常系设计得使其满足偏转装置在显像管的显像屏上所扫描的光栅的几何条件方面和/或电子束在显像屏上的会聚程度方面的各项要求。

在上述方法中，设计过程中敞开空间位置的确定和绕制过程中每分段匝数的选定都会影响线圈的性能。在许多情况下，这可能需要使导线的分布，从而使线圈所产生的磁通量都满足所提出的要求。最近
有这样的倾向，即不是用单导线而是用多根（并联）导线同时绕制（叫做多线绕制）成鞍形线圈。如此绕制成偏转线圈可用于较高（行）频率的场合。用在32千赫或更高的频率时，铜的电阻必须减小，而同时维持匝数不变。这就是说，必须同同时绕制多根导线（并将其并联配置）（例如绕制成4、8或16根导线绕成的线束）。从而使各线匝由多个同时绕制的导线组成。

按本发明，本说明书前端所述的那种鞍形线圈，即线圈的纵线匝是在多个分段一铺开绕制，一个分段的各段匝绕制在前面各分段的线匝上，且各段分段对有部分长度为起码一个缝隙所分隔，因而具有这样的特点，即各线匝由多根同时绕制的导线组成。

然而，现在看来要达到能满足对例如光栅特性和/或会聚特性提出的各项要求的标准设计有困难。

在传统的电视接收机或监视机中，光栅是通过电子束扫描显像管的荧光屏形成的。可能产生光栅（几何）误差为南北光栅误差（光栅上下侧的误差）和东西光栅误差（光栅左右侧的误差）。在电子枪系“一字”排列式的彩色显像管中，东西光栅误差明显地呈为显像屏上扫描出的光栅边缘左右侧出现的枕形或桶形畸变。

本发明的具体目的是设计出一种具有影响偏转线圈所产生的磁通量的独特功能的多线绕制的偏转线圈。

为达到上述目的，本发明的偏转线圈具有这样的特征：起码一个线匝的导线分开成两束，沿线圈窗口两侧两处的一个缝隙的不同时侧上延伸。

本发明适宜绕制行偏转线圈和场偏转线圈。

在按上述方式绕制鞍形线圈的方法中，多根线是呈线束的形式同时而连续地送入绕制空间（绕制间隙）中的。

按照本发明的另一方面，用多个绕制臂（也叫做翼臂）同时将相应
的多个子导线束放到绕制空间中，看来可以更精确地使导线在线圈侧面中就位（绞扭现象少了，分布误差也小了）。

采用一个以上的绕制臂，尤其是必须在线圈绕制空间预定位置插入一些凸件时，特别有好处。

这时，整个线束的一部分可以沿凸件的一侧送入，线束的另一部分可沿凸件的另一侧送入。这样，只有整个线束的一部分位移，因而线圈设计中就有更大的自由度。此外，还可以校正不对称情况。

参看下面说明的一些实施例即可清楚理解本发明的上述和其它各方面。

附图中：

图1是显像管的一部欠连同其一个可用以绕制鞍形成圈的翼臂的剖面示意图；

图2是传统的鞍形偏转线圈的透视图；

图3是绕制装置连同其一个可用以绕制鞍形线圈的翼臂的剖面示意图；

图4A、B和C是分别绕制单线束、双线束和双分开线束的线匝的示意图；

图5是绕制装置连同两个翼臂F和F'的正视图。

图1示出了彩色显像管1，该显像管有一个电子枪系统2，用以产生三束电子束射向具有重复的红、绿、蓝荧光素图形的显示屏3。电磁偏转系统4与显像管共轴线围绕电子束在电子枪系统2与显示屏3之间的通路配置。偏转系统4有一个合成材料制成的漏斗状线圈支架5，其内侧支撑着用以使电子枪系统2在水平方向上产生的电子束偏转的行偏转线圈6、7。端部张开的行偏转线圈6、7是鞍形式的，其最宽的端部有一个前凸缘8、9基本上配置在与显像管的轴线10成一定角度形成的一个平面中。线圈6、7的最狭端有连接导线束11、
12 将各线圈6、7的纵侧面部分彼此连接起来，且横贯显像管1的表面配置。因此，图中所示的那种情况的线圈6、7是后凸缘“平卧”、前凸缘“竖起”的那种线圈。不然，这些线圈也可以是后凸缘“竖起”、前凸缘也“竖起”的那一种，或后凸缘“平卧”、前面缘也“平卧”的那一种。

线圈支架5在其外侧支撑着两个以偏转电子枪系统3在垂直方向上产生的电子束的鞍形场偏线圈14、15。环形铁芯氧铁心13围绕着两套线圈。在图中所示的情况下，场偏转线圈是前凸缘16、17竖起、后凸缘平卧的那一种。也可以是后凸缘竖起，前凸缘也竖起的那一种，或后凸缘平卧、前凸缘也平卧的那一种。

图2示出了传统的行偏转线圈6的透视图。线圈的多个线匝是铜线制成的，线圈的后端部分18与前端部分17之间有两个侧面部分21、22在窗口19两侧延伸着。从图中可以看到，前端部分17和后端部分18“向上”弯曲。后端部分18并不总是这样。显然，端部部分只有一个或两者都向上弯曲或不弯曲都是设计参数，与本发明的措施无关。所有这些实施例方案总称为“鞍形偏转线圈”。线圈6的端部从后端向前端张开，从而与显像管部分5的漏斗形相适应。

使电子偏转的磁通基本上全部在侧面部分21、22的扩大(张开)部分处可以有许多缝隙，在形成许多分段的圆柱形(颈部)部分亦然。从图中可以看到，图中举例示出的偏转线圈在张开的部分分成第一分段I和第二分段II。第二分段有各线匝围绕着位于内侧(靠近窗口19)的第一分段的线匝。通过选择靠近前端的缝隙I、II的数目、位置和形状以及各分段中线匝的数目，设计人员能影响有效部分21、22中所产生的磁通的规定分布情况。现在参照图3、4和5说明本发明本身的内容。图3是绕线过程中使用的绕制装置的示意视图。绕线过程是在图3中所示的构成绕线机的一部分的夹具50中形成的凹口(绕
制空间) 53 中进行的。为使示意图简明起见，图中没有画出绕线机的细节。夹具50有两个部分 51 和 52，绕制空间 53 就在该两部分 51 与 52 之间下凹形成，以壁 54 和 55 为界，壁 54 和 55 的形状与待绕制线圈的外界面相对应。

上述绕线机在静止的夹具中借助于引导导线用的绕制臂 F(翼臂)绕制偏转线圈。在绕制过程中，在许多处往具中插入销子，从而在线圈体中形成许多缝隙。

当发现线圈设计得不令人满意时，可应用下成面的方法校正：可以将销子早一回或晚一回插人，从而使导线束移动，使磁场变化。

线圈供高干 32 千赫的行频使用时，维持线匝 (即多根“并联”的导线) 数不变时，必须减小铜的电阻。这时校正起来更困难。这是因为大量导线 (线束) 在一次操作中偏移所致。整个线束如此偏移会过分影响例如会聚情况。

若绕结机有两个翼臂 (图5)，则只有一部分线束位移，因为整个线束已分开成两个 (相等或不相等) 子线束，一个子线束能位移，而另一个子线束不能。两个翼臂同转速不同方向地转动，角偏差为 0 度。销子要插入两线束之间时，转速会大大下降，其中一个翼臂与另一个翼臂彼此之间的角偏差约为 90 度，而当插入销子时，角偏差再次为 0 度，转数再次提高到预定值，若销子不插入两线束 (两线束束位移) 之间，则上述工序按一般方式进行。

必要时，也可以用 3 个翼臂进行绕制。下面参照图4说明这一点。

图4A示出了用一个翼臂和一个线束 23 进行绕线的传统方法。销子 24 插入绕制空间之后，绕制其后的导线组。如此线组中的导线数等于线束 23 中的导线数乘匝数。这些销子可以插在许多不同的纵向位置处 (不同的 Z 高度)。

图4B和4C示出了用两个翼臂和两个子线束 25、26 进行绕线的方法。
每一个翼臂一个子线束。通常，两个翼臂取向相同。两翼臂之间的间距很小。两个子线束的导线分布情况可自由选择。

在图4B所示的情况下，销子30插入子线束28与29之间。为达到目的，临时降低各翼臂的转速，并使它们彼此偏移(直到角差约为90度为止)。在此工序过程中，子线束29绕在(旧)销子31上，子线束28则绕在(新)销子30上。线束一分开成两个线束，就可以按这种方式进行“有节制”的位移。

采用现两个(或以上的)翼臂并不是没有问题的。最简单的解决办法是在第一翼臂的同一个轴上加第二翼臂。但静止的送线器通过非转动式的引线通道送线。只要这种系统只有一个翼臂，就不会发生任何特殊情况。实际上，各种导线是通过翼臂轮纹扭送到绕制工位上的。若在同一轴上放上第二个翼臂，则导线会绞扭然后被拉开，因为导线的一通过左侧的轮组引导，导线的另一半则通过双翼臂的右侧轮组引导。这可能会有导线断裂、线圈不能完成的危险。

若第二翼臂放在距第一根轴很小一段距离的第二根轴上，则这种系统能对导线进行加工，但这时又有另外一个问题。两个翼臂必须同转速同方向转动。这样做是完全可能的，只要彼此的夹角不太大。角偏差为7度时，两个翼臂会在上侧或下侧彼此接触。这样的角偏差太小，不能在各导线之间插销子。要解决这个问题可以在即将插入销子之前和插入销子的过程中把转速从数百转/分降低到10到20转/分，翼臂组趋近销子位置一定距离时，翼臂的角度增加到90度，插入销子，于是角度再次减小到0。这之后可再次提高转速。

各翼臂可以载大量等数量的导线，例如每个翼臂4根或8根导线，或载不等量的导线，例如一个翼臂可载三根导线，另一翼臂可载四根导线；或者一个翼臂可载四根导线；另一个翼臂可载六根导线，等等。
可采用单根导线。但也可以采用并联或绞扭式的多根导线。

图5是绕线装置的正视图，两个翼臂F和F'配置在彼此相邻的两个轴上。两翼臂转向相同。它们的相对位置每隔90度被显示一次。

综上所述，本发明提供了显像管的一种端总张开的鞍形偏转线圈，线圈两端的连接部分呈弧形，线圈窗口两侧之间有线圈侧面。绕制线圈时（借助于两个翼臂）同时送入两个线束。在绕制序的给定时刻，绕制臂可彼此偏离，从而可以在线束之间插入销子。于是制成的线圈在其侧面部分中有许多（三角形的）缝隙，其中一束线束沿各缝隙的一侧延伸，另一束线束沿另一侧延伸。