A polymer composition containing a thermoplastic elastomer, comprising hard segments of a polyester and/or a polyurethane and soft segments of an aliphatic polycarbonate is described. The polymer composition contains polycarbonate. A insulated wire comprising a layer of the polymer composition.
POLYMER COMPOSITION CONTAINING A THERMOPLASTIC ELASTOMER,
COMPRISING HARD SEGMENTS OF A POLYESTER AND/OR A POLYURETHANE
AND SOFT SEGMENTS OF AN ALIPHATIC POLYCARBONATE

The invention relates to a polymer composition containing a thermoplastic elastomer, comprising hard segments of a polyester and/or a polyurethane and soft segments of an aliphatic polycarbonate.

Such a polymer composition is known from EP-A-0 846 712. In EP-A-0 846 712 a polymer composition containing a thermoplastic elastomer containing hard segments of a polyester and soft segments of an aliphatic polycarbonate has been described. A thermoplastic elastomer containing such soft segments shows desirable properties, for instance thermo-oxidative resistance, resistance to hydrolysis etc. For this reason the composition is highly suitable for use in inter alia bellows, seals, pipes, hoses and cable insulations.

Despite the desirable properties there is a need for further improvement of the polymer composition, to make the composition more robust for use in the present developed applications, but also to make it possible to use the composition in even more demanding applications than possible with the known composition.

Surprisingly this object is achieved if the polymer composition contains polycarbonate.

The composition shows improved fire retardancy, even without flame retarders, and also improved resistance to abrasion.

Moreover the composition according to the invention shows an improved electrical resistance, which makes the composition highly suitable for the production of cable insulations.

Surprisingly the flexibility of cable insulation of the composition according to the invention at -50 °C is still at an adequate level, despite the presence of polycarbonate in the composition. Also the mechanical properties at very high temperature of the composition (up to 200 °C) are maintained, while polycarbonate has a glass transition temperature far below that temperature.

The composition according to the invention preferably comprises:

(A) 5-95 parts by weight thermoplastic elastomer, comprising hard segments of a polyester and/or a polyurethane and soft segments of an aliphatic polycarbonate,
(B) 95 - 5 parts by weight polycarbonate,
In one preferred embodiment the composition according to the invention comprises:
(A) 5 - 50 parts by weight thermoplastic elastomer, comprising hard segments of
a polyester and/or polyurethane and soft segments of an aliphatic
polycarbonate,
(B) 50 - 95 parts by weight polycarbonate
Preferably the composition contains 10 - 40 parts by weight of the
thermoplastic elastomer and 60 - 90 parts of the polycarbonate, more preferably the
composition contains 15 - 30 parts by weight of the thermoplastic elastomer and 70 -
85 parts by weight of the polycarbonate,
In the most further preferred embodiment the composition according to the invention
comprises:
(A) 35 - 95 parts by weight thermoplastic elastomer, comprising hard segments of
a polyester or a polyurethane and soft segments of an aliphatic polycarbonate,
(B) 65 - 5 parts by weight polycarbonate.
Preferably the composition contains 85 - 45 parts by weight of the
thermoplastic elastomer and 55 - 15 parts of the polycarbonate, more preferably the
composition contains 50 - 80 parts by weight of the thermoplastic elastomer and 50 -
20 parts by weight of the polycarbonate.
Preferably the composition contains no further polymers. This means
that the polymeric part of the composition according to the invention consists of the
thermoplastic elastomer and the polycarbonate.

Copolycarbonatepolyester thermoplastic elastomer
The thermoplastic elastomer containing hard blocks of a polyester
and soft blocks of an aliphatic polycarbonate is also referred to as
copolycarbonatepolyester thermoplastic elastomer. The copolycarbonatepolyester
thermoplastic elastomer used in the composition according to the invention comprises
(a) hard segments comprising repeating units derived from an aliphatic diol and an
aromatic dicarboxylic acid and (b) soft segments comprising repeating units derived
from an aliphatic carbonate.

Suitable aliphatic diols for the hard segments (a) are inter alia
alkylene glycols. The number of C-atoms in the alkylene glycol may be between 2 - 6.
Ethylene glycol, propylene glycol and butylene glycol are preferred. Butylene glycol is
even most preferred.
Suitable aromatic dicarboxylic acids for the hard segments include isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid and 4,4'-diphenyldicarboxylic acid. Preferably terephthalic acid is used. Most preferably the aromatic dicarboxylic acid in the hard segment consists for at least 80 - 100 mol. % of terephthalic acid.

The soft segments (b) comprise repeating units derived from an aliphatic carbonate. Suitable aliphatic carbonate units are represented by the formula

\[
\begin{align*}
&\text{O} \\
&\text{||} \\
&\text{-0-(CR}_2\text{x-0-C-} \\
&\text{Form. 1}
\end{align*}
\]

where

\[R = \text{H, alkyl or aryl,} \]
\[X=2 - 20. \]

Preferably \(R = \text{H and x = 6}, \) the aliphatic carbonate is therefore hexamethylene carbonate.

The soft segments may also comprise repeating units derived from an aliphatic diol and an aliphatic dicarboxylic acid and/or repeating units derived from a lactone.

The aliphatic diol contains preferably 2 - 20 carbon atoms, more preferably 3 - 15 carbon atoms. Most preferably the aliphatic diol is butylene glycol. The aliphatic dicarboxylic acid preferably contains 2 - 10 carbon atoms, more preferably 4 - 15 carbon atoms. Most preferably the aliphatic dicarboxylic acid is adipic acid.

As lactone preferably caprolactone is used.

Preferably at least 40 wt. % of the soft segments consist of the aliphatic carbonate, more preferably at least 60 wt. %, even more preferably at least 80 wt. %, even more preferably at least 90 wt. %, even more preferably at least 95 wt. %, most preferably at least 99 wt. %.

The weight ratio of hard segments and soft segments may be between 20 : 80 and 90 : 10, preferably between 30 : 70 and 80 : 20, more preferably between 60 : 40 and 70 : 30.

One way of producing the copolycarbonatepolyester thermoplastic elastomer is described in EP-A-1 964 871. According to this method polyester and
aliphatic polycarbonate diols are reacted in the molten state by transesterification.

The hard segments and the soft segments of the copolycarbonatepolyester thermoplastic elastomer are preferably connected by a urethane group.

Usual difunctional urethane groups are derived from paratoluene diisocyanate, diphenylmethane diisocyanate (MDI), xylylene diisocyanate, hexanethylene diisocyanate or isophorone disocyanate. A method for producing the copolycarbonateester by connecting the hard and soft segments by a urethane group is described in EP-A-0 846 712.

Copolycarbonatepolyurethane thermoplastic elastomer

The thermoplastic elastomer containing hard segments of a polyurethane and soft segments of an aliphatic polyester is also referred to as copolycarbonatepolyurethane thermoplastic elastomer. The copolycarbonatepolyurethane thermoplastic elastomer may be formed by the reaction between diisocyanates, short chain diols or diamines and the aliphatic polycarbonate as described above. As diisocyanate normally 4,4'-diphenylmethane diisocyanate is used. As short chain diols ethylene diol, 1,4-butanediol, 1,6-hexanediol and 1,4-di-β-hydroxyethoxybenzene are used.

Polycarbonate

Polycarbonate, also referred to as aromatic polycarbonate is made from at least a divalent phenol and a carbonate precursor, for example by means of an interfacial polymerization process. Suitable divalent phenols that may be applied are compounds having one or more aromatic rings that contain two hydroxy groups, each of which is directly linked to a carbon atom forming part of an aromatic ring. Examples of such compounds are 4,4'-dihydroxybiphenyl, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane,
4,4-bis(4-hydroxyphenyl)heptane, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane,
1,1-bis-(4-hydroxyphenyl)-cyclohexane,
1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane,
2,2-(3,5,3',5'-tetrachloro-4,4'-dihydroxydiphenyl)propane,
2,2-(3,5,3',5'-tetrabromo-4,4'-dihydroxydiphenyl)propane,
(3,3'-dichloro-4,4'-dihydroxyphenyl)methane,
bis-(3,5-dimethyl-4-hydroxyphenyl)sulphon, bis-4-hydroxyphenylsulphon,
bis-4-hydroxyphenylsulphide.

The carbonate precursor may be a carbonyl halogenide, a halogen
formate or carbonate ester. Examples of carbonyl halogenides are carbonyl chloride
and carbonyl bromide. Examples of suitable halogen formates are bis-halogen
formates of divalent phenols such as hydroquinone or of glycols such as ethylene
glycol. Examples of suitable carbonate esters are diphenyl carbonate,
di(chlorophenyl)carbonate, di(bromophenyl)carbonate, di(alkylphenyl)carbonate,
phenyltolylcarbonate and the like and mixtures thereof. Although other carbonate
precursors may also be used, it is preferred to use the carbonyl halogenides and in
particular carbonyl chloride, also known as phosgene.

The aromatic polycarbonates in the composition according to the
invention may be prepared using a catalyst, an acid acceptor and a compound for
controlling the molecular mass.

Examples of catalysts are tertiary amines such as triethylamine,
tripropylamine and Ν,Ν-dimethylaniline, quaternary ammonium compounds such as
tetraethylammoniumbromide and quaternary phosphonium compounds such as
methyltriphenylfosfoniumbromide.

Examples of organic acid acceptors are pyridine, triethylamine,
dimethylaniline and so forth. Examples of inorganic acid acceptors are hydroxides,
carbonates, bicarbonates and phosphates of an alkali metal or earth alkali metal.

Examples of compounds for controlling the molecular mass are
monovalent phenols such as phenol, p-alkylphenols and para-bromophenol and
secondary amines.

Such polycarbonates, their preparation and properties are described
1988) and in Kunststoff Handbuch, 3/1, p. 117-297 (Hanser Verlag, Muenchen, 1992).

The polymer composition according to the invention may further
contain one or more of the usual additives, for example processing aids, fillers, UV
absorbers, thermal stabilisers, colorants, pigments and flame retarders.

Good results are obtained if the composition does not contain a flame retarder. The composition has intrinsically good fire retardancy and without fire retarders the composition shows further improved properties, for instance mechanical properties and electrical properties.

Examples of applications of the composition according to the invention include tubes, hoses, film and plate.

The composition according to the invention is preferably used as an insulation layer for an electrical wire, especially wires used in transportation vehicles, especially in trains.

Preferably the electrical wire contains an insulation comprising an outer layer and an inner layer, the inner layer being produced from the composition according to the invention. The outer layer may be produced from a composition comprising a thermoplastic polyester elastomer comprising a flame retarder. Preferably a halogen free flame retarder is used, such as phosphinate and a polyphosphate.

Examples and comparative experiments

Materials used:
- Arnel™ CM 551, a copolycarbonatepolyester thermoplastic elastomer delivered by DSM, the Netherlands.
- PC17: an aromatic polycarbonate homopolymer, having a weight average molecular weight of about 17000 g/mol.

Tests:

Electrical resistance
The electrical resistance was determined according to British Standard 3rd Generation (BS3G) 230, test 17 at 95 °C, on an American Wire Gauge (AWG) 22 wire. The thickness of the insulation of the wire was 200 microns. The electrical resistance is expressed in Ω/km.

Abrasion
The scrape abrasion was determined according to BS3G 230, test 30 on the same wire as referred under electrical resistance. The scrape abrasion is expressed in number of cycles (−) at 120 °C and 1 N load. The target is to achieve > 500 cycles.
Flexibility
The flexibility (cold bend) was determined according to BS3G 230, test 25, at the same wire as referred to under electrical resistance. The wire was stored for 6 hours at -50 °C and wound around a mandrel of 22 times the outer diameter of the wire. The integrity of the wire is checked by applying a high voltage (2.5kV, for 5 minutes) after immersion of the wire in salt water for 1 hour. Any macro cracks will lead to instant failure, micro cracks lead to failure during the 5 minute period.

Production of insulated wires
Granulate of compositions according to the invention consisting of 100/0, 65/35 and 50/50 wt. % Arnitel CM 551/ wt. % PC 17 were produced by using a Coperion ™ co-rotating twin screw extruder, having a screw diameter of 25 mm. The output was 20 kg/h, the rotational speed of the screws was 300 rpm.
In the same way a granulate was produced of a flame retardant composition consisting of 70 wt. % Arnitel CM 551, 10 wt. % DEPAL, 5 wt. % MPP and 15 wt. % Bohmit.
Insulated wires were produced by feeding the granulates defined above to a standard extruder for the extrusion of insulated wires using a tooling for pressure extrusion of the insulation and a tooling for tube extrusion of the insulation.
The maximum set temperature in the extrusion process was 240 °C.

Comparative experiment A, B
Insulated wires were produced and tested comprising a single insulation layer of 200 microns of the flame retardant composition. The wires were produced by tube extrusion (comparative experiment A) and pressure extrusion (comparative experiment B). Test results are given in the table.

Examples I, II and III
Insulated wires were produced and tested comprising an outer layer of 100 microns of the flame retardant composition and inner layer of 100 microns of the composition consisting of 100/0, 65/35 respectively 50/50 wt. % Arnitel CM 551/ wt. % PC 17. The insulated wire with the inner layer of 100/0 wt. % Arnitel CM 551/ wt. % PC 17 was produced by tube extrusion, the insulated wires with the inner layer of 65/35 and 50/50 wt. % Arnitel CM 551/ wt. % PC 17 were produced by pressure extrusion.
<table>
<thead>
<tr>
<th>Comp. exp.</th>
<th>Example/ Arnitel/PC</th>
<th>electrical resistance [wt%/wt.%]</th>
<th>abrasion [MΩ/km]</th>
<th>cold bend [-]</th>
<th>Tooling [pass/fail]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>n.a.</td>
<td>0.028</td>
<td>321</td>
<td>2pass/1fail</td>
<td>tube</td>
</tr>
<tr>
<td>B</td>
<td>n.a.</td>
<td>0.015</td>
<td>147</td>
<td>fail</td>
<td>pressure</td>
</tr>
<tr>
<td>I</td>
<td>100/0</td>
<td>0.04</td>
<td>396</td>
<td>pass</td>
<td>tube</td>
</tr>
<tr>
<td>II</td>
<td>65/35</td>
<td>0.16</td>
<td>832</td>
<td>pass</td>
<td>tube</td>
</tr>
<tr>
<td>III</td>
<td>50/50</td>
<td>1.55</td>
<td>>1000</td>
<td>pass</td>
<td>tube</td>
</tr>
</tbody>
</table>

Comments on the results
An increase in electrical resistance, abrasion and cold bend was observed when using the composition according to the invention. The best results were obtained with the composition of 50/50 wt. % Arnitel CM 551/ wt. % PC 17. It is very surprising that the compositions according to the invention passed the cold bend test in view of the high amount of polycarbonate in the composition, a rigid polymer.
CLAIMS

1. Polymer composition containing a thermoplastic elastomer, comprising hard segments of a polyester and/or a polyurethane and soft segments of an aliphatic polycarbonate, characterised in that the composition contains polycarbonate.

2. Polymer composition according to claim 1, wherein the composition comprises:
(A) 5-95 parts by weight thermoplastic elastomer, comprising hard segments of a polyester and/or a polyurethane and soft segments of an aliphatic polycarbonate,
(B) 95 - 5 parts by weight polycarbonate.

3. Polymer composition according to claim 1, wherein the composition comprises:
(A) 5 - 50 parts by weight thermoplastic elastomer, comprising hard segments of a polyester and/or polyurethane and soft segments of an aliphatic polycarbonate,
(B) 50 - 95 parts by weight polycarbonate.

4. Polymer composition according to claim 1, wherein the polymer composition comprises:
(A) 35 - 95 parts by weight thermoplastic elastomer, comprising hard segments of a polyester or a polyurethane and soft segments of an aliphatic polycarbonate,
(B) 65 - 5 parts by weight polycarbonate.

5. Polymer composition according to any one of claims 1 - 4, wherein the polymeric part of the composition consists of thermoplastic elastomer, comprising hard segments of a polyester or a polyurethane and soft segments of an aliphatic polycarbonate and the polycarbonate.

6. An insulated wire comprising an insulation layer of the polymer composition as defined in any one of the preceding claims.

7. An insulated wire according to claim 6, having an insulation comprising an outer layer and an inner layer, the inner layer being produced form the composition according to the invention. The outer layer may be produced from a composition comprising a thermoplastic polyester elastomer comprising a flame retarder.
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/056388

A. CLASSIFICATION OF SUBJECT MATTER

International class (IPC) 2006
C 08 L 35/00
C 08 L 75/04
H 01 B 30/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C 08 L C 08 G H 01 B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X LUCA FAMBRI ET AL: "UNCIBLE BLENDS OF POLYCARBONATE WITH POLYURETHANE ELASTOMERS", ANGEWANDTE MAKROMOLEKULARE CHEMIE, APPLIED MACROMOLECULAR SCIENCE AND PHYSICS, WILEY VCH, WEINHEIM, DE, vol. 209, 1 July 1993 (1993-07-01), page 119-130, XP000382859, ISSN 0003-3146, DOI: 10.1002/APMC.1993052090111, page 120-1 page 128; figures 1, 4; examples Pu-Dcb935, Pu-Dcb020, Pu-Dcb870; tables 1-3

1-5

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search
31 May 2013

Date of mailing of the international search report
06/06/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818, Patentlaan 2
NL - 2280 HV, Rijswijk
Tel: (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Ene scu, Șt zi na

Form PCT/ISA/210 (second sheet) (April 2000)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 459 459 AI (FURUKAWA ELECTRIC CO LTD [JP]) 4 December 1991 (1991-12-04) examples 40-50; table 3</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>WD 00/26275 AI (GEN ELECTRIC [US]) 11 May 2000 (2000-05-11) examples 63-67, 71; tables 7, 9</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 4 908 416 A (LEITZ EDGAR [DE] ET AL) 13 March 1990 (1990-03-13) examples 1-3; table 1</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 893 463 AI (DAICEL CHEM [JP]) 27 January 1999 (1999-01-27) examples A-2, B-1, 6; tables 1-5</td>
<td>1-7</td>
</tr>
</tbody>
</table>
Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0459459</td>
<td>A 1 04-12-1991</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 0026275</td>
<td>A 1 11-05-2000</td>
<td>AT 310035 T</td>
<td>15-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1331711 A</td>
<td>16-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69928431 D1</td>
<td>22-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69928431 T2</td>
<td>27-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1124879 A1</td>
<td>22-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2251233 T3</td>
<td>16-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001016626 A 1</td>
<td>23-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003216539 A 1</td>
<td>20-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0332998 A 2</td>
<td>20-09-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H01282249 A</td>
<td>14-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4908416 A</td>
<td>13-03-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9829470 A 1</td>
<td>09-07-1998</td>
</tr>
</tbody>
</table>