Abstract: Disclosed is a carbon nanotube film production method comprising the steps of: forming a carbon nanotube layer by growing a plurality of carbon nanotubes in the upward direction on a first substrate; forming a carbon nanotube sheet by attaching an adhesive member onto a side surface of the carbon nanotube layer and then pulling in the lateral direction; covering a second substrate with the carbon nanotube sheet; and adhering the covering carbon nanotube sheet to the second substrate by processing with alcohol.

요약: 본 발명은 제1기판상의 다수의 탄소나노튜브를 성장시키여 탄소나노튜브층을 형성하는 단계와, 상기 탄소나노튜브층의 측면에 접착성 무게를 부착시킨 후 횡방향으로 잡아당겨 탄소나노튜브 시트를 형성하는 단계와, 상기 탄소나노튜브 시트를 얇고 둥글게 하여 제2기판에 폐착하는 단계와, 상기 폐착된 탄소나노튜브 시트를 알고서 제2기판에 접착하는 단계로 포함하는 탄소나노튜브 필름 제조방법을 개시한다.
공개:
— 국제조사보고서와 함께 (조약 제 21 조(3))
명세서
탄소나노튜브 필름 및 그 제조방법

기술분야

본 발명은 탄소나노튜브 필름의 제조방법에 관한 것으로, 더욱 자세하게는 탄소나노튜브 간의 반테르 발스 힘(van der Waals force)을 이용하여 형성된 탄소나노튜브 시트를 포함하는 탄소나노튜브 필름 및 그 제조방법에 관한 것이다.

배경기술

발명의 상세한 설명

기술적 과제

[8] 본 발명은 상기와 같은 문제를 해결하기 위하여 안출된 것으로서 탄소나노튜브 간의 반테르 발스 힘을 이용하여 형성한 탄소나노튜브 시트에 의하여 제조하는 탄소나노튜브 필름 및 그 제조방법을 제공한다.
상기와 같은 목적을 달성하기 위하여 본 발명의 탄소나노튜브 필름의 제조방법은 제1기판상에 다수의 탄소나노튜브를 상향으로 성장시키며
탄소나노튜브층을 형성하는 단계와, 상기 탄소나노튜브층의 측면에 접착성
부재를 부착시킨 후 형광형으로 잠아내기 탄소나노튜브 시트를 형성하는
단계와, 상기 탄소나노튜브 시트를 제2기판에 뿌리하는 단계와, 상기 제2기판에
뿌리된 탄소나노튜브 시트를 알코올 처리하여 접착하는 단계를 포함한다.

유리한 효과

상기와 같은 구성에 의하여 본 발명은 탄소나노튜브 필름을 간단한 공정으로
제조하여 기존의 ITO 전극을 대체할 수 있으며, 저전력 헤터로도 응용할 수 있는
장점이 있다.

do면의 간단한 설명

도 1은 본 발명의 실시예에 따른 탄소나노튜브 필름의 제조과정을 나타내는
 순서도로,
도 2는 본 발명의 실시예에 따른 탄소나노튜브 시트를 형성하는 개략도,
도 3은 본 발명의 실시예에 따른 탄소나노튜브 층에서 탄소나노튜브 시트가
 형성되는 사진,
도 4는 본 발명의 실시예에 따른 탄소나노튜브 시트를 제2기판에 뿌리하여
알코올 처리하는 사진,
도 5는 본 발명의 실시예에 따른 탄소나노튜브 필름의 사진,
도 6은 본 발명의 실시예에 따른 탄소나노튜브 필름의 확대 사진,
도 7은 본 발명의 실시예에 따른 탄소나노튜브 필름을 구부린 사진,
도 8은 본 발명의 실시예에 따른 탄소나노튜브 필름에 전압을 가하면서
휘었을 때 전류 현황 변화를 측정한 그래프,
도 9는 본 발명의 실시예에 따른 탄소나노튜브 필름에 전류를 흐리면서 휘었을
때 시간의 경과에 따른 전류 현황 변화를 측정한 그래프,
도 10은 본 발명의 실시예에 따른 탄소나노튜브 필름을 담가한 다음 두께를
보여주는 사진,
도 11은 도 10의 탄소나노튜브 필름에 전압을 가하하고 20초 경과 후의
두께를 보여주는 사진,
도 12는 도 10의 탄소나노튜브 필름에 전압을 가하하고 60초 경과 후의
두께를 보여주는 사진.

발명의 실시를 위한 형태

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바,
특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본
발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을
포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다.

상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.

예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급될 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.

반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급될 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다른 뜻이 없는 한, 복수의 표현을 포함한다.

본 출원에서, "포함한다" 또는 "가거나" 등의 용어는 명세서상에 기재된 특정 표, 표, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 표, 표, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들이 존재 또는 부가 가능성을 제거 하지 않는 것으로 이해되어야 한다.

또한, 본 출원에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.

이제 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.

도 1은 본 발명의 실시예에 따른 탄소나노튜브 필름의 제조과정을 나타내는 순서도이고, 도 2는 본 발명의 실시예에 따른 탄소나노튜브 시트를 형성하는 개략도이다.

본 발명의 탄소나노튜브 필름의 제조방법은 제1 기판(100)상에 다수의 탄소나노튜브(201)를 상향으로 상장시켜 탄소나노튜브층(200)을 형성하는 단계와, 상기 탄소나노튜브층(200)의 측면에 접착 부재(400)를 부착시킨 후 형방향으로 잡아당겨 탄소나노튜브 시트(300)를 형성하는 단계와, 상기 탄소나노튜브 시트(300)를 제2기판에 파복하는 단계 및 상기 제2기판에 파복된 탄소나노튜브 시트(300)를 압출을 처리하여 접착하는 단계를 포함한다.

먼저 제1기판(100)상에 탄소나노튜브(201)를 형성하는 단계(S1)에 대하여 살펴보면, 일반적으로 탄소나노튜브 필름의 제조 방법은
전기방전법(Arc-discharge), 레이저 증착법 (Laser vaporization), 플라즈마화학기상증착법(Plasma Enhanced Chemical Vapor Deposition), 열화학기상증착법(Thermal Chemical Vapor Deposition) 등이 있고, 본 실시예에서는 열화학기상증착법 (Thermal Chemical Vapor Deposition)으로 설명한다. 그러나 이러한 방법에 한정되는 것은 아니고 상기 언급한 다양한 제조 방법에 의하여 탄소나노튜브(201)를 형성할 수도 있다.

먼저 제1기판(100) 위에 촘촘층으로서 Fe, Ni, Co, 또는 세가지 촘촘층의 함금을 충분한 후, 이 촘촘층을 충전시킨 제1기판(100)을 식각 처리를 한 다음, 이 시료를 적층 보트(미도시)에 장착시킨 후, 이어져서 적층 보트를 CV로 침지의 반응료(미도시)에 절여넣은 후, 750 ~ 1050 ºC의 온도에서 NH3 또는 H2 가스를 사용하여 이 촘촘 금속막을 추가적으로 식각하여 나노 크기의 미세한 촘촘층파티클들을 형성시킨다.

이와 같이 제1기판(100)에 촘촘층을 패턴형태로 만든 후, NH3, H2, He, Ar, N2 등의 가스와 CH4, C2H2 와 같은 탄화수소 가스를 혼합하여 750 ~1050 ºC의 온도 탄소나노튜브(201)를 형성시키면 촘촘층의 형태를 따라서 다수개의 탄소나노튜브(201)가 성장되어 탄소나노튜브 촘(200)을 이루게 된다.

이때, 상기 탄소나노튜브(201)는 제1기판(100)의 촘촘을 따라 수직 방향으로 성장되고 계개의 탄소나노튜브(201)가 반데르발스의 힘(Vanderwaals force)에 의해서 링어리(bundle) 형태로 통치지게 된다.

이렇게 형성된 탄소나노튜브(201)에 대하여 더욱 자세하게 살펴보면 각각의 탄소나노튜브(201)의 직경은 약 5~100 nm 정도이고, 튜브의 가운데가 비어있으며 그레파이트 면이 수개에서 수십 개 정도로 구성된 다중액 탄소나노튜브가 형성될 수 있다.

이러한 열화학기상증착법(Thermal Chemical Vapor Deposition)은 반복 재현성이 높으며 촘촘의 크기를 제어하여 직경을 쉽게 제어할 수 있고 대면적 기판의 함성이 가능함과 장점이 있다.

그러나 반드시 앞서 언급한 제조 과정에 한정되는 것은 아니며 실시 태양에 맞게 다양한 조건을 변경하여 탄소나노튜브(201)를 형성할 수도 있다.

또한 상기 탄소나노튜브(201)는 실시 목적에 따라 단일액 탄소나노튜브, 이중액 탄소나노튜브 또는 다중액 탄소나노튜브를 형성할 수도 있다.

다음으로 탄소나노튜브 시트(300)를 형성하는 단계(S2)에 대하여 살펴보면 상기 제1기판(100) 위에 형성된 탄소나노튜브 촘(200)의 측면에 접착 무게(400)를 부착한다.

이때 상기 접착 부재(400)는 봉이나 막대 또는 평평한 판의 표면(400a)에 접착제 또는 접착테이프를 코팅하여 형성된다. 이때 접착제 또는 접착 테이프는 상기 접착 부재(400)에 부착된 탄소나노튜브(201)를 제1기판(100)에서 빠져내도 정도의 접착도를 갖고 있으면 종류에 관계없이 사용가능하다.

상기 접착 부재(400)의 길이는 상기 탄소나노튜브 촘(200)의 측면의 길이와
동일하거나 길게 형성되어 황방향으로 접착 부재(400)를 잡아당길 때, 길이방향으로 많은 양의 상기 탄소나노튜브(201)가 제1기판(100)에서 떨어질 수 있도록 구성되어 바람직하다.

[47] 이러한 과정을 통하여 황방향으로 다수의 탄소나노튜브(201)가 제1기판에서 이탈하게 되고 앞서 설명한 바와 같이 탄소나노튜브(201) 사이에는 반테르 방스의 힘이 작용하고 있으므로 도 2와 같이 최외측의 탄소나노튜브가 이탈될 때 이탈한 탄소나노튜브(201)가 상기 반테르방스의 힘에 의하여 연속적으로 제1기판(100)에서 떨어지게 된다.

[48] 따라서 탄소나노튜브(201)는 순차적으로 제1기판(100)에서 이격되고 떨어진 탄소나노튜브(201) 사이에는 반테르 방스 힘에 의하여 붙어 있게 되므로 연속적인 탄소나노튜브 시트(300)를 형성하게 된다. 이를 도 3을 참고하여 살펴보면 탄소나노튜브 중(200)에서 탄소나노튜브 시트(300)가 마치 실과 같이 연속적으로 형성되는 것을 볼 수 있다.

[49] 이러한 구조의 탄소나노튜브 시트(300)는 기존의 코팅방식의 탄소나노튜브 필름이 각각의 탄소나노튜브가 무질서하게 배열되어 있는 것과 달리 각각의 탄소나노튜브가 연속적으로 형성되어 전기 전도도가 높아지는 효과가 있다.

[50] 이때 접착 부재(400)를 제1기판(100)을 기준으로 너무 높은 각도로 잡아당기거나 너무 빠르게 잡아당기면 탄소나노튜브(201) 간의 인력이 끊여져 탄소나노튜브 시트(300)가 연속적으로 형성되지 않는 문제가 있으므로 제1기판(100)을 기준으로 1~60°의 각도와 0.1m/s이하의 속도로 잡아당기는 것이 바람직하다.

[51] 상기 탄소나노튜브(201)의 길이가 0.2mm이하인 경우에는 탄소나노튜브(201) 간의 반테르 방스 힘이 쉽게 끊어지므로 상기 탄소나노튜브 시트(300)가 연속적으로 형성되지 않으므로 탄소나노튜브(201)의 길이는 0.2mm이상인 것이 바람직하다.

[52] 이후 형성된 탄소나노튜브 시트(300)를 제2기판에 피복하는 단계(53)에 대하여 도 4를 참조하여 살펴보면 상기 제2기판(500)은 두명한 제작이 없이 재활용 가능하다. 예를 들면, 유리, PET, 석영 섬유, OHP 필름 또는 페이퍼 등이 사용 가능하다.

[53] 이후, 제2기판(500)에 피복된 탄소나노튜브 시트(300)의 표면에 접착을 위하여 알코올 처리하는 단계를 거치게 되는데 상기 알코올 처리 단계는 탄소나노튜브 시트(300)에 알코올을 분사하거나 제2기판(500)을 알코올에 넣었다가 subsequently 건조하는 방법으로 이루어진다.

[54] 이때 상기 알코올은 에탄올이나 메탄올 등이 사용될 수 있으나 반드시 이에 한정되는 것은 아니고 제2기판(500)에 상기 탄소나노튜브 시트(300)가 접착되는 기능을 수행하도록 적절히 변형하여 사용될 수 있다.

[55] 상기 알코올 처리에 의하면 도 4와 같이 최초 제2기판(500)의 표면에 25~30㎛의 두께로 피복되어 있던 탄소나노튜브 시트(300)는 알코올 처리 후 100nm이하로
두께가 줄어들면서 제2기판(500)에 접착되게 되어 탄소나노튜브 필름을 형성하게 된다.

[56] 이때, 추가적으로 탄소나노튜브 시트(300)의 표면의 손상을 방지하기 위하여 바인더(binder)나 탑 코팅(Top coating)을 수행할 수 있는데 이러한 코팅 방식은 일반적인 코팅 방식에 의하여 다양하게 구현될 수 있다.

[57] 이러한 일련의 과정에 의하여 제조된 탄소나노튜브 필름은 도 5 내지 도 7을 참조하여 자세히 살펴보면 탄소나노튜브 필름은 투명한 형태를 갖게 되며 도 6과 같이 각각의 탄소나노튜브가 망(Net) 형상을 이루고 있음을 알 수 있다.

[58] 따라서 본 발명에 따른 탄소나노튜브 필름은 연속적인 시트로 구성되어 투과도에 따른 전기전도도 제어가 쉬우며, 필름의 두께, 전기 전도도 및 투과율이 일정한 장점을 있다.

[59] 또한, 도 7과 같이 쉽게 휘어지고 탄상에 의하여 험을 제거한 경우 원상태로 복귀하여 플렉시블 터치 패널 등과 같은 연성 기판이나 전극으로 다양하게 응용될 수 있다.

[60] 도 8과 도 9는 본 발명의 실시예에 따른 탄소나노튜브 필름에 전압을 인가하면서 휘었을 때 전압과 시간의 함수에 대하여 전류 흐름 변화를 측정한 그래프이다.

[61] 본 발명의 실시예에 따른 탄소나노튜브 필름에 전압을 인가했을 때 전압의 비례하여 전류가 일정하게 상승되는 것을 알 수 있으며, 탄소나노튜브 필름을 구부렸을 때에도 일정하게 전류가 상승하는 것을 확인할 수 있다. 또한, 동일하게 전류가 흐르는 상태에서 탄소나노튜브 필름을 구부려도 전류는 일정하게 놀리 ITO 전극을 대체하여 플렉시블한 터치 패널에서도 안정적인 전류가 통합될 수 있음을 확인할 수 있다.

[62] 도 10 내지 도 12는 본 발명의 실시예에 따른 탄소나노튜브 필름을 난각한 다음 전압을 인가하였을 때 시간의 경과에 따른 투과율을 보여주는 사진이다.

[63] 도 10과 같이 탄소나노튜브 필름을 -4~ -5°C로 난각한 경우 난각에 의하여 투과율이 현저하게 낮아진 것을 확인할 수 있다. 그러나 상기 탄소나노튜브 필름에 15V의 전압을 인가하고 15초 정도가 경과한 뒤에는 도 11과 같이 탄소나노튜브 필름이 다시 투명해진 것을 확인할 수 있고, 약 60초가 경과한 이후에는 난각 전의 투과율을 회복되었음을 확인할 수 있다.

[64] 이때, 상기 탄소나노튜브 필름이 코팅되지 않은 제2기판 부분은 여전히 불투명한 상태인 것을 자명하게 확인할 수 있다.

[65] 상기 실험 결과는 다중막 탄소나노튜브 필름의 전압을 인가하는 경우 면전하량이 200~700 Ω로 높아 표면 온도가 급속하게 증가하기 때문이며, 실제 측정 결과 5V 인가시에는 27~28°C, 10V인가시에는 40~41°C, 15V인가시에는 60~61°C로 표면온도가 높아짐이 측정되었다.

[66] 이러한 실험값에 의하여 낮은 전압에서 탄소나노튜브 필름의 표면 온도가 순간적으로 높아져 자동차 유리의 히터로서 유용하게 응용될 수 있음을
자명하게 알 수 있다.

[67] 이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또는 본 발명의 권리범위에 속하는 것이다.
청구범위

[1] 제1기판상에 다수의 탄소나노튜브를 상향으로 성장시켜 탄소나노튜브층을 형성하는 단계;
상기 탄소나노튜브층의 측면에 접착 부재를 부착시킨 후 횡방향으로 잡아당겨 탄소나노튜브 시트를 형성하는 단계;
상기 탄소나노튜브 시트를 제2기판에 폐복하는 단계;
상기 제2기판에 폐복된 탄소나노튜브 시트를 알코올 처리하여 접착하는 단계를 포함하는 탄소나노튜브 필름 제조 방법.

[2] 제1항에 있어서,
상기 탄소나노튜브는 기판상에 열 화학기상증착법에 의해 제1기판에 상향으로 성장되는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[3] 제1항에 있어서,
상기 탄소나노튜브는 단일, 이중 또는 다중력 탄소나노튜브 중 어느 하나 이상인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[4] 제1항에 있어서,
상기 탄소나노튜브의 길이는 0.2mm 이상인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[5] 제1항에 있어서,
상기 접착 부재를 잡아당기는 방향은 제1기판을 기준으로 1~60°의 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[6] 제5항에 있어서,
상기 접착 부재를 잡아당기는 속도는 0.1m/s이하인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[7] 제1항에 있어서,
상기 알코올은 에탄올 또는 메탄올인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[8] 제1항에 있어서,
상기 알코올을 처리하는 상기 탄소나노튜브 시트에 알코올을 분사하거나 침전 후 건조시키는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[9] 제1항에 있어서,
상기 알코올을 처리 후 탄소나노튜브 시트의 표면에 밴더(Binder)나 탑 코팅(Top Coating) 하는 단계를 더 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[10] 제1항에 있어서,
상기 제2기판은 유리, OHP 필름 또는 웨이퍼 중 어느 하나 이상인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.

[11] 제1항에 있어서,
상기 접착 부재의 길이는 상기 탄소나노튜브의 측면 길이와 동일하거나 긴 것을 특정으로 하는 탄소나노튜브 필름 제조 방법.

[12] 제1항의 제조 방법에 의하여 제조되는 탄소나노튜브 필름.
[Fig. 1]

시 작

제1 기판 상에 탄소나노튜브층을 형성하는 단계

S1

상기 탄소나노튜브층의 측면에서 탄소나노튜브 시트를 형성하는 단계

S2

상기 탄소나노튜브 시트를 제2 기판에 패복하는 단계

S3

상기 탄소나노튜브를 알코올 처리하는 단계

S4

상기 탄소나노튜브의 표면을 코팅하는 단계

S5

종 료
Fig. 11

15V 인가 20초 후

Fig. 12

15V 인가 60초 후
A. CLASSIFICATION OF SUBJECT MATTER

B02B 3/00(2006.01)i, C01B 31/02(2006.01)i, C08J 5/18(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B02B 3/00; D01C 5/00; H01L 21/28; B29C 41/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: carbon nanotube, growth, substrate, sheet, pulling and film

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2008-0018012 A1 (ALEXANDER LEMAIRE et al.) 24 January 2008 See FIG. 1C and paragraphs [88], [89], [92].</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2009-0055191 A (THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY (IAC)) 02 June 2009 See abstract and claims 1 to 13.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2009-0050014 A (CHEIL INDUSTRIES INC. et al.) 19 May 2009 See abstract and claims 1 to 17.</td>
<td>1-12</td>
</tr>
</tbody>
</table>

□ Further documents are listed in the continuation of Box C. ■ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 NOVEMBER 2010 (24.11.2010)

Date of mailing of the international search report

26 NOVEMBER 2010 (26.11.2010)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonam-ro, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008-0018012 A1</td>
<td>24.01.2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-2009-0055191 A</td>
<td>02.06.2009</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0218979 A1</td>
<td>02.09.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-064133 A2</td>
<td>22.05.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-064133 A3</td>
<td>22.05.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2613203 A1</td>
<td>18.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101365830 A</td>
<td>11.02.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1904670 A2</td>
<td>02.04.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007-055744 A2</td>
<td>18.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007-055744 A3</td>
<td>18.05.2007</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분류(국제특허분류(IPC))

B82B 3/00(2006.01)i, C01B 31/02(2006.01)i, C08J 5/18(2006.01)i

B. 조사된 분야

조사된 최소문헌(국제특허분류를 기제)
B82B 3/00; D01C 5/00, H01L 21/28, B29C 41/02

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국등록실명신안공보 및 한국공개실명신안공보: 조사된 최소문헌관에 기재된 IPC
일본등록실명신안공보 및 일본공개실명신안공보: 조사된 최소문헌관에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 커뮤드: carbon nanotube, growth, substrate, sheet, pulling and film

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2008-0018012 A1 (ALEXANDER LEMAIRE 외 3명) 2008.01.24 FIG. 1C 및 [88], [89], [92] 문단 참조.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2009-0055191 A (중앙대학교석학협력단) 2009.05.02 요약 및 정구항 제1항 내지 제13항 참조.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2009-0050014 A (제일모직주식회사 외 1명) 2009.05.19 요약 및 정구항 제1항 내지 제17항 참조.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2008-0048884 A (더 보드 오브 리벤즈 오브 더 유니버시티 오브 오릴라호미) 2008.10.27 요약 및 도면 도 4 참조.</td>
<td>1-12</td>
</tr>
</tbody>
</table>

□ 추가 문헌이 C(계속)에 기재되어 있습니다. □ 대응특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
“X” 인용된 문헌의 특별 카테고리

나라별 기초데이터

1. 국가출원일 또는 우선일 후에 공개된 문헌으로, 출원일과 상충하지 않으며 발명의 기초가 되는 것이라 인용된 문헌

2. 특별한 관련이 있는 문헌으로, 해당 문헌 혼자만으로 정구필 발명의 성
규성 또는 진보성이 없는 것으로 본다.

3. 특별한 관련이 있는 문헌으로, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로, 그 조합이 당업자에게 자명한 경우 정구필 발명

국제조사의 실천 민요일

국제조사 및 대응발명

2010년 11월 26일 (26.11.2010)

발명의 변경 및 우려사항

대한민국 특허청

210-701) 대전광역시 서구 선사로 139, 정부대전청사

(FALSE) 82-42-472-7140

식사 PCT/ISA/210 (무현 제지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008-0018012 A1</td>
<td>2008.01.24</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2009-0055191 A</td>
<td>2009.06.02</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2009-0050014 A</td>
<td>2009.05.19</td>
<td>TW 2009-35454 A</td>
<td>2009.08.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0218979 A1</td>
<td>2010.08.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-064133 A2</td>
<td>2009.05.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-064133 A3</td>
<td>2009.05.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2613203 A1</td>
<td>2007.05.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101365830 A</td>
<td>2009.02.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1904670 A2</td>
<td>2008.04.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007-055744 A2</td>
<td>2007.05.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007-055744 A3</td>
<td>2007.05.18</td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가요지) (2009년 7월)