

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2015298469 B2

(54) Title
Modified nucleotide linkers

(51) International Patent Classification(s)
C07H 19/14 (2006.01)

(21) Application No: **2015298469** (22) Date of Filing: **2015.08.06**

(87) WIPO No: **WO16/020691**

(30) Priority Data

(31) Number **1414098.2** (32) Date **2014.08.08** (33) Country **GB**

(43) Publication Date: **2016.02.11**
(44) Accepted Journal Date: **2018.12.06**

(71) Applicant(s)
Illumina Cambridge Limited

(72) Inventor(s)
Wu, Xiaolin;Liu, Xiaohai

(74) Agent / Attorney
WRAYS PTY LTD, L7 863 Hay St, Perth, WA, 6000, AU

(56) Related Art
WO 02088381 A2
WO 2013044018 A1
WO 2005044836 A2
US 20070166705 A1
WO 03048387 A2
CN 103087131 A
WO 0036152 A1
WO 2004090154 A2
WO 02086088 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/020691 A1

(43) International Publication Date
11 February 2016 (11.02.2016)

WIPO | PCT

(51) International Patent Classification:

C07H 19/14 (2006.01)

(21) International Application Number:

PCT/GB2015/052282

(22) International Filing Date:

6 August 2015 (06.08.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1414098.2 8 August 2014 (08.08.2014) GB

(71) Applicant: ILLUMINA CAMBRIDGE LIMITED [GB/GB]; Little Chesterford, Chesterford Research Park, Nr Saffron Walden Essex CB10 1XL (GB).

(72) Inventors: WU, Xiaolin; c/o Illumina Cambridge Limited, Little Chesterford, Chesterford Research Park, Nr Saffron Walden, Essex CB10 1XL (GB). LIU, Xiaohai; c/o Illumina Cambridge Limited, Little Chesterford, Chesterford Research Park, Nr Saffron Walden, Essex CB10 1XL (GB).

(74) Agents: RUTHERFORD, Claire et al.; Murgitroyd & Company, European Patent and Trade Mark Attorneys, 165 - 169 Scotland Street, Glasgow, G5 8PL (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: MODIFIED NUCLEOTIDE LINKERS

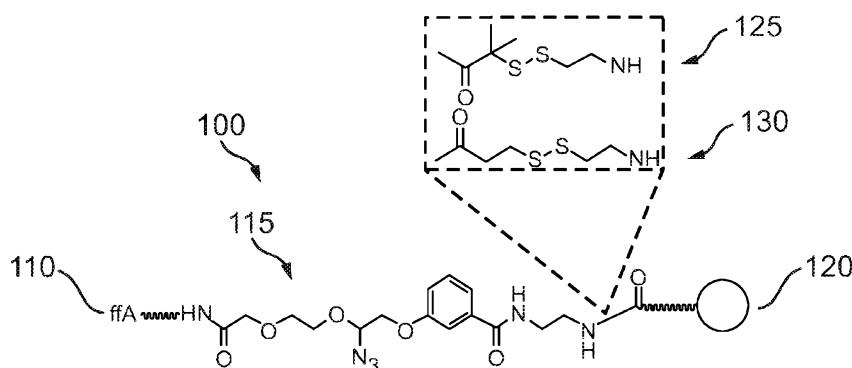


Fig. 1B

(57) Abstract: Some embodiments of the present application relate to novel modified nucleotide linkers for increasing the efficiency of nucleotide incorporation in Sequencing by Synthesis applications. Methods of preparing these modified nucleotide linkers are also provided herewith.

WO 2016/020691 A1

MODIFIED NUCLEOTIDE LINKERS

FIELD

[0001] Some embodiments of the present application relate to novel nucleoside or nucleotide linkers for increasing incorporation of nucleotides in DNA sequencing and other diagnostic applications, for example, sequencing by synthesis.

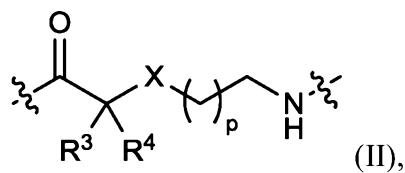
BACKGROUND

[0002] Advances in the study of molecules have been led, in part, by improvement in technologies used to characterize the molecules or their biological reactions. In particular, the study of the nucleic acids DNA and RNA has benefited from developing technologies used for sequence analysis and the study of hybridization events.

[0003] An example of the technologies that have improved the study of nucleic acids is the development of fabricated arrays of immobilized nucleic acids. These arrays typically have a high-density matrix of polynucleotides immobilized onto a solid support material. *See, e.g., Fodor et al., Trends Biotech. 12: 19-26, 1994*, which describes ways of assembling different nucleic acids using a chemically sensitized glass surface protected by a mask, but exposed at defined areas to allow attachment of suitably modified nucleotide phosphoramidites. Fabricated arrays can also be manufactured by the technique of "spotting" known polynucleotides onto a solid support at predetermined positions (e.g., *Stimpson et al., Proc. Natl. Acad. Sci. 92: 6379-6383, 1995*).

[0004] One way of determining the nucleotide sequence of a nucleic acid bound to an array is called "sequencing by synthesis" or "SBS". This technique for determining the nucleotide sequence of DNA ideally requires the controlled (*i.e.*, one at a time) incorporation of the correct complementary nucleotide opposite the nucleic acid being sequenced. This allows for accurate sequencing by adding nucleotides in multiple cycles as each nucleotide residue is sequenced one at a time, thus preventing the incorporation of an uncontrolled series of nucleotides. Each incorporated nucleotide is read using an appropriate label attached thereto before removal of the label moiety and the subsequent next round of sequencing.

14 Nov 2018


2015298469

[0005] Accordingly, in the context of nucleic acid sequencing reactions it would be desirable to be able to increase the rate of nucleotide incorporation during sequencing by synthesis so that the efficiency of the sequencing method can be improved.

5

SUMMARY

[0006] In accordance with the present invention, there is provided a nucleoside or nucleotide covalently attached to a fluorophore through a linker, wherein said linker comprises a structure of formula (II):

each

R^3 is selected from optionally substituted C_{1-6} alkyl, $-NR^5-C(=O)R^6$, or $-NR^7-C(=O)-OR^8$;

R^4 is selected from hydrogen or optionally substituted C_{1-6} alkyl;

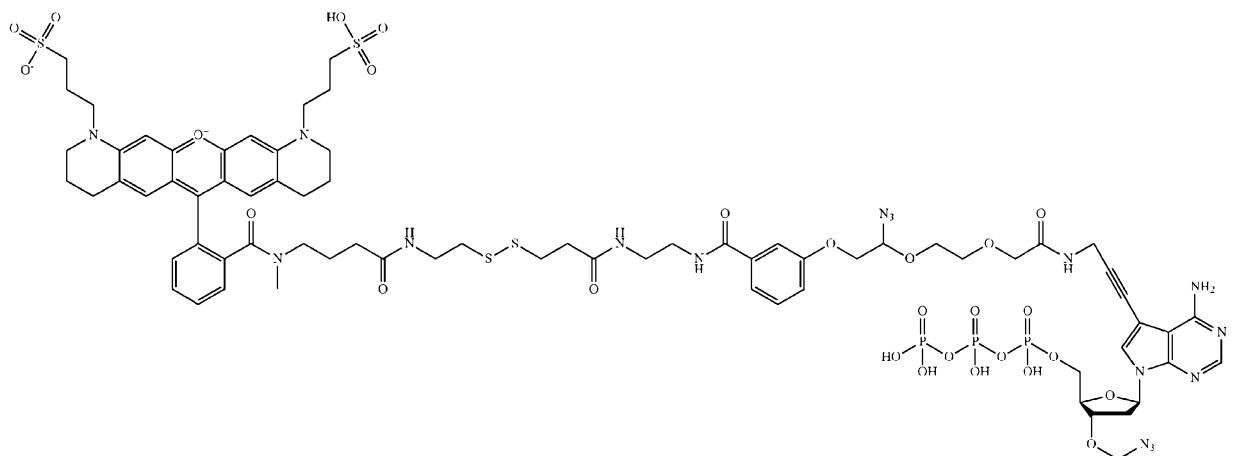
each R^5 and R^7 is independently selected from hydrogen, optionally substituted C_{1-6} alkyl;

each R^6 and R^8 is independently optionally substituted C_{1-6} alkyl;

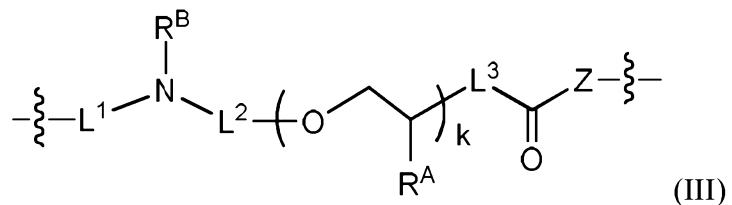
each of the methylene repeating unit in is optionally substituted;

X is selected from methylene (CH_2), oxygen (O), or sulfur (S);

and


p is an integer of 1 through 20.

10


15

20

[0007] In some embodiments, the fluorophore labeled nucleoside or nucleotide comprises a structure of formula (I) does not have the structure:

[0008] Some embodiments disclosed herein relate to a nucleoside or nucleotide covalently attached to a fluorophore through a linker, wherein said linker comprises a structure of formula (III):

wherein L^1 is absent or comprises a linker of any one described in formula (I) or (II), or a protecting moiety, or combinations thereof; L^2 is selected from optionally substituted C_{1-20} alkylene, optionally substituted C_{1-20} heteroalkylene, optionally substituted C_{1-20} alkylene interrupted by a substituted aromatic group, or optionally substituted C_{1-20} heteroalkylene interrupted by a substituted aromatic group; L^3 is selected from optionally substituted C_{1-20} alkylene, or optionally substituted C_{1-20} heteroalkylene; R^A is selected from hydrogen, cyano, hydroxy, halogen, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} haloalkyl, C_{1-6} haloalkoxy, or azido, and wherein at least one of the

repeating units of $\begin{array}{c} \text{R}^A \\ | \\ -\xi-\left(\text{O}-\text{C}(\text{R}^A)-\text{C}\right)_k\text{L}^3-\text{C}(=\text{O})-\text{Z}-\xi- \end{array}$ comprises an azido group; Z is selected from oxygen (O) or NR^B ; each R^B and R^C is independently selected from hydrogen or optionally substituted C_{1-6} alkyl; and k is an integer of 1 through 50.

[0009] Some embodiments disclosed herein relate to kits comprising a labeled nucleoside or nucleotide comprising a linker between the fluorophore and the nucleoside or nucleotide, wherein the linker comprises a structure of any one of formula (I), (II) or (III), or combinations thereof.

5 **[0010]** Some embodiments disclosed herein relate to reagents for modifying a nucleoside or a nucleotide comprising a fluorophore and a linker, wherein the linker comprises a structure of any one of formula (I), (II) or (III), or combinations thereof.

10 **[0011]** Some embodiments disclosed herein relate to methods for detecting a nucleoside that has been incorporated into a polynucleotide, comprising: (a) incorporating a labeled nucleoside or nucleotide comprising a linker into a polynucleotide; and (b) detecting a fluorescent signal from said labeled nucleoside or nucleotide that was incorporated in step (a), wherein the linker comprises a structure of any one of formula (I), (II) or (III), or combinations thereof. In some 15 embodiments, the method further comprises: providing a template nucleic acid strand and a partially hybridized nucleic acid strand, wherein step (a) incorporates into the hybridized strand at least one nucleoside or nucleotide that is complementary to a nucleoside or nucleotide at the corresponding position of the template strand, and wherein step (b) identifies the base of the incorporated nucleoside or nucleotide, 20 thereby indicating the identity of the complementary nucleoside or nucleotide of the template strand.

25 **[0012]** Some embodiments disclosed herein relate to methods of sequencing a template nucleic acid molecule, comprising: incorporating one or more labeled nucleotides into a strand of nucleic acid complementary to the template nucleic acid; determining the identity of the base present in one or more incorporated labeled nucleotides in order to determine the sequence of the template nucleic acid molecule; wherein the identity of the base present in the one or more labeled nucleotides is determined by detecting a fluorescent signal produced by said labeled nucleotides; and wherein at least one incorporated labeled nucleotide comprising a 30 linker as described above, wherein the linker comprises a structure of any one of formula (I), (II) or (III), or combinations thereof. In some embodiments, the identity

of the base present in the one or more nucleotides is determined after each nucleotide incorporation step.

BRIEF DESCRIPTION OF THE DRAWINGS

5 [0013] **FIG. 1A** illustrates a partial linking group structural of a standard labeled nucleotide.

[0014] **FIG. 1B** illustrates the labeled nucleotide of **FIG. 1A** with two possible linkers **125** and **130** to be inserted into the standard linking group of **FIG. 1A**.

10 [0015] **FIG. 2** demonstrates a plot of the nucleotide incorporation rate using the labeled nucleotide of **FIG. 1A** and the modified labeled nucleotides of **FIG. 1B**.

[0016] **FIGs. 3A-3E** illustrate the structural formulae of additional linkers to be inserted into the standard linking group of **FIG. 1A**.

15 [0017] **FIG. 4** shows a data table of a two dye sequencing run used to evaluate the effect of **125** insert of **FIG. 1B** and the **315** insert of **FIG. 3B** on sequencing quality.

[0018] **FIGs. 5A** and **5B** show a plot of error rate for read 1 and a plot of error rate for read 2 of the sequencing run of **FIG. 4** using linkers insert **125** and **315**.

20 [0019] **FIG. 6** shows a data table a sequencing run used to evaluate the effect of the **125** insert of **FIG. 1B** and the **310** insert of **FIG. 3A** on sequencing quality.

[0020] **FIGs. 7A** and **7B** show a plot of error rate for read 1 and a plot of error rate for read 2 of the sequencing run of **FIG. 6** using linker insert **125**.

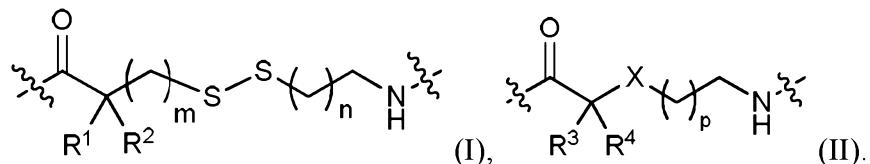
25 [0021] **FIG. 8A** shows an example of a standard LN_3 linker structure.

[0022] **FIGs. 8B, 8C** and **8D** show three examples of modified structures of the LN_3 linker of **FIG. 8A**.

[0023] **FIG. 8E** illustrates the insertion of a protecting moiety into the linker **FIG. 8D**.

30 [0023A] **FIG 9A** is a chromatogram showing the appearance of an impurity in an ffa with SS-linker. **FIG 9B** is a table comparing the stability of ffAs with SS-linker and AEDI-linker. **FIG 9C** is a chromatogram showing a comparison of SS-

linker and AEDI-linker ffAs in IMX 60° for 22 hours, again showing an impurity with the SS linker.

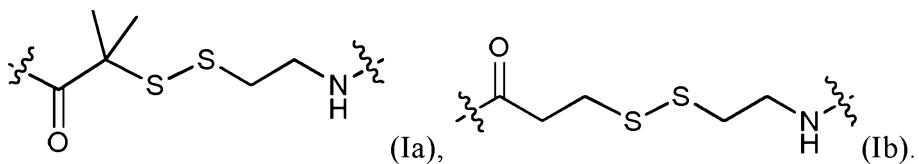

[0023B] FIGS 10A, 10B and 10C show the unexpected increase of nucleotide incorporation speed in solution with linker changes. FIG 10A is a graph showing the rate of incorporation at 1uM with FIG 10B showing the tabulated results. FIG 10C diagrammatically shows the AEDI and SS linkers with NR550S0.

[0023C] FIG 11A shows scatter plots for V10 combinations with different A-550S0 (same concentration). FIG 11B shows Kcat FFA Linkers in solution.

[0023D] FIGS 12A and 12B show sequencing metrics on M111, Human550, 2x151 cycles.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0024] Some embodiments disclosed herein relate to a nucleoside or nucleotide covalently attached to a fluorophore through a linker, wherein the linker comprises a structure of formula (I) or (II) below, or combination of both, wherein the definitions of the variables are defined above.


[0025] In some embodiments of the structure of formula (I), R¹ is hydrogen. In some other embodiments, R¹ is optionally substituted C₁₋₆ alkyl. In some such embodiments, R¹ is methyl.

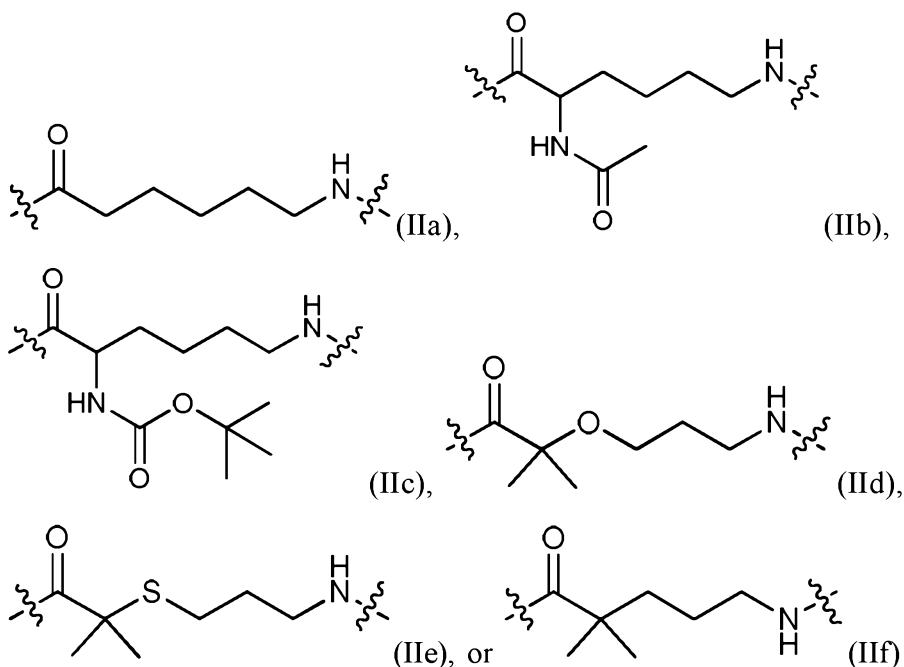
[0026] In any embodiments of R¹ as described herein of formula (I), R² is hydrogen. In some other embodiments, R² is optionally substituted C₁₋₆ alkyl. In some such embodiments, R² is methyl. In one embodiment, both R¹ and R² are methyl. In another embodiment, both R¹ and R² are hydrogen.

[0027] In some embodiments of the structure of formula (I), m is 0. In some other embodiments, m is 1.

[0028] In some embodiments of the structure of formula (I), n is 1.

[0029] In some embodiments of the structure of formula (I), the structure of formula (I) can also be represented by formula (Ia) or (Ib):

[0030] In some embodiments described herein, formula (Ia) is referred to as “AEDI” and formula (Ib) is referred to as “SS.”

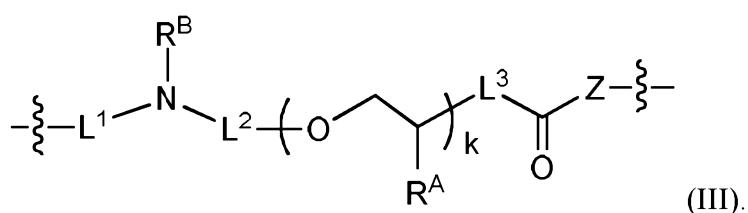

[0031] In some embodiments of the structure of formula (II), R^3 is 5 hydrogen. In some other embodiments, R^3 is optionally substituted C_{1-6} alkyl. In some such embodiments, R^3 is methyl. In some embodiments, R^3 is $-NR^5-C(=O)R^6$. In some such embodiments, R^5 is hydrogen. In some such embodiments, R^6 is 10 optionally substituted C_{1-6} alkyl, for example, methyl. In some embodiments, R^3 is $-NR^7-C(=O)OR^8$. In some such embodiments, R^7 is hydrogen. In some such embodiments, R^8 is optionally substituted C_{1-6} alkyl, for example, *t*-butyl.

[0032] In any embodiments of R^3 as described herein of formula (II), R^4 is hydrogen. In some other embodiments, R^4 is optionally substituted C_{1-6} alkyl. In some such embodiments, R^4 is methyl. In one embodiment, both R^3 and R^4 are methyl. In another embodiment, both R^3 and R^4 are hydrogen. In one embodiment, 15 R^3 is $-NH(C=O)CH_3$ and R^4 is hydrogen. In another embodiment, R^3 is $-NH(C=O)O^tBu$ (Boc) and R^4 is hydrogen.

[0033] In some embodiments of the structure of formula (II), X is methylene, which can be optionally substituted. In another embodiment, X is oxygen (O). In yet another embodiment, X is sulfur (S).

[0034] In some embodiments of the structure of formula (II), p is 1. In some other embodiments, p is 2.

[0035] In some embodiments of the structure of formula (II), the structure of formula (II) can also be represented by formula (IIa), (IIb), (IIc), (IId), (IIe) or (IIf):

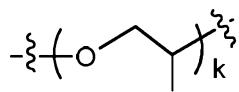


[0036] In some embodiments described herein, formula (IIa) is referred to

5 as “ACA,” formula (IIb) is referred to as “AcLys,” formula (IIc) is referred to as “BocLys,” formula (IId) is referred to as “dMeO,” formula (IIe) is referred to as “dMeS,” and formula (IIf) is referred to as “DMP.”

10 **[0037]** In any embodiments of the fluorophore labeled nucleoside or nucleotide through a linker comprising a structure of formula (I) or (II) as described herein, the nucleoside or nucleotide can be attached to the left side of the linker, either directly, or through additional linking moiety.

15 **[0038]** Some embodiments disclosed herein relate to a nucleoside or nucleotide covalently attached to a fluorophore through a linker, said linker comprising a structure of formula (III), and wherein the definitions of the variables are defined above.

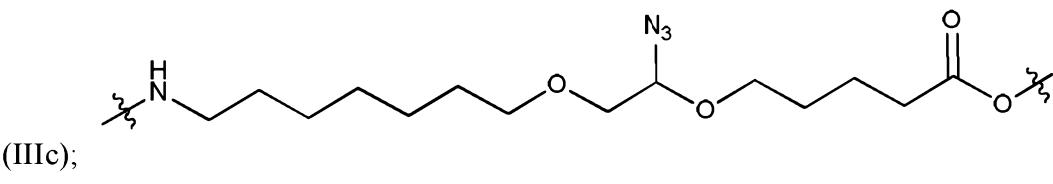
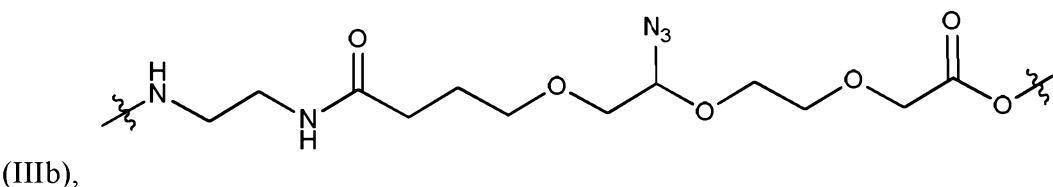
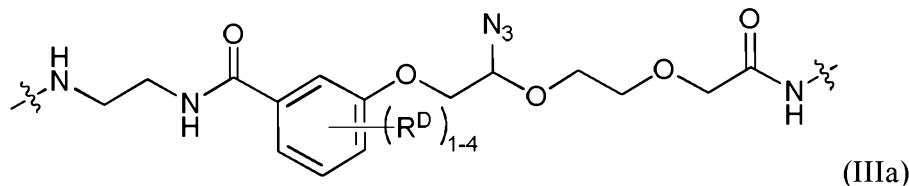

[0039] In some embodiments of the structure of formula (III), L¹ is absent.

In some other embodiments, L¹ is a linker described above comprising the structure of formula (I) or (II), in particular formula (Ia), (Ib), (II), (IIa), (IIb), (IIc), (IId), (IIe) or

(IIf). In some other embodiments, L^1 can be a protecting moiety comprising molecule that protects against DNA damage. In some such embodiments, protecting moiety comprises Trolox, gallic acid, p-nitro-benzyl (pNB), or ascorbate, or combinations thereof.

5 [0040] In some embodiments of the structure of formula (III), L^2 is optionally substituted C_{1-20} alkylene. In some further embodiments, L^2 is optionally substituted C_{4-10} alkylene. In some such embodiments, L^2 is heptylene. In some other embodiments, L^2 is optionally substituted C_{1-20} heteroalkylene. In some such embodiments, the optionally substituted C_{1-20} heteroalkylene comprises one or more 10 nitrogen atoms. In some such embodiments, at least one of the carbon atom of the C_{1-20} heteroalkylene is substituted with oxo (=O). In some further embodiments, L^2 is optionally substituted C_{3-6} heteroalkylene. In some embodiments, L^2 is interrupted by 15 a substituted aromatic group, such as a substituted C_{6-10} aryl group, or 5 to 10 membered substituted heteroaryl groups comprising one to three heteroatoms. In some such embodiments, L^2 is interrupted by a substituted phenyl group. In some such embodiments, the phenyl group is substituted with one or more (up to four) 20 substituents selected from nitro, cyano, halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} haloalkyl, C_{1-6} haloalkoxy or sulfonyl hydroxide. In some further such embodiments, the phenyl group is substituted with one to four substituents selected from nitro, cyano, halo, or sulfonyl hydroxide (i.e., $-S(=O)_2OH$).

[0041] In some embodiments of the structure of formula (III), R^A in

R^A is selected from hydrogen or azido. In some such embodiments, k is 2 with one R^A being azido and the other being hydrogen.

25 [0042] In some embodiments of the structure of formula (III), L^3 is optionally substituted C_{1-20} alkylene. In some further embodiments, L^3 is optionally substituted C_{1-6} alkylene. In some such embodiments, L^3 is ethylene. In some other embodiments, L^3 is optionally substituted C_{1-20} heteroalkylene. In some such embodiments, the optionally substituted C_{1-20} heteroalkylene comprises one or more oxygen atoms. In some such embodiments, L^1 is optionally substituted C_{1-6} alkylene 30 oxide, for example, C_{1-3} alkylene oxide.

[0043] In some embodiments of the structure of formula (III), R^B is hydrogen. In some embodiments, R^C is hydrogen. In some further embodiments, both R^B and R^C are hydrogen.

[0044] In some embodiments of the structure of formula (III), the structure of formula (III) can also be represented by formula (IIIa), (IIIb) or (IIIc):

wherein R^D is selected from nitro, cyano, halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} haloalkyl, C_{1-6} haloalkoxy or sulfonyl hydroxide. In some further embodiments, R^D is selected from nitro, cyano, halo, or sulfonyl hydroxide.

[0045] In any embodiments of the fluorophore labeled nucleoside or nucleotide through a linker comprising a structure of formula (III) as described herein, the fluorophore can be attached to the left side of the linker, either directly, or through additional linking moiety.

[0046] In any embodiments described herein with respect to a linker comprising a structure of formula (I), (II) or (III), when the term “optionally substituted” is used to define a variable, such variable can be unsubstituted.

Definitions

[0047] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. The use of the term “including” as well as other forms, such as “include”, “includes,” and “included,” is not limiting. The use of the term “having” as well as

other forms, such as “have”, “has,” and “had,” is not limiting. As used in this specification, whether in a transitional phrase or in the body of the claim, the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the above terms are to be interpreted synonymously with the 5 phrases “having at least” or “including at least.” For example, when used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound, composition, or device, the term “comprising” means that the compound, composition, or device includes at least the recited features or components, but may 10 also include additional features or components.

[0048] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

[0049] As used herein, common organic abbreviations are defined as follows:

15	Ac	Acetyl
	Ac ₂ O	Acetic anhydride
	aq.	Aqueous
	Bn	Benzyl
	Bz	Benzoyl
20	BOC or Boc	tert-Butoxycarbonyl
	Bu	n-Butyl
	cat.	Catalytic
	°C	Temperature in degrees Centigrade
	CHAPS	3-[(3-Cholamidopropyl)dimethylammonio]-1-
25		propanesulfonate
	dATP	Deoxyadenosine triphosphate
	dCTP	Deoxycytidine triphosphate
	dGTP	Deoxyguanosine triphosphate
	dTTP	Deoxythymidine triphosphate
30	ddNTP(s)	Dideoxynucleotide(s)
	DCM	Methylene chloride
	DMA	Dimethylacetamide

	DMAP	4-Dimethylaminopyridine
	DMF	N,N'-Dimethylformamide
	DMSO	Dimethylsulfoxide
	DSC	N,N'-Disuccinimidyl carbonate
5	EDTA	Ethylene diamine tetra-acetic acid
	Et	Ethyl
	EtOAc	Ethyl acetate
	ffN	Fully functional nucleotide
	ffA	Fully functionalized adenosine nucleotide
10	g	Gram(s)
	GPC	Gel permeation chromatography
	h or hr	Hour(s)
	Hunig's base	N,N-Diisopropylethylamine
	iPr	Isopropyl
15	KPi	10 mM potassium phosphate buffer at pH 7.0
	IPA	Isopropyl Alcohol
	LCMS	Liquid chromatography-mass spectrometry
	LDA	Lithium diisopropylamide
	m or min	Minute(s)
20	MeCN	Acetonitrile
	mL	Milliliter(s)
	PEG	Polyethylene Glycol
	PG	Protecting group
	Ph	Phenyl
25	pNB	p-nitro-benzyl
	ppt	Precipitate
	rt	Room temperature
	SBS	Sequencing by Synthesis
	-S(O) ₂ OH	Sulfonyl Hydroxide
30	TEA	Triethylamine
	TEAB	Tetraethylammonium bromide
	TFA	Trifluoracetic acid

Tert, t	tertiary
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TSTU	O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium

5 tetrafluoroborate

 μL Microliter(s)

[0050] As used herein, the term “array” refers to a population of different probe molecules that are attached to one or more substrates such that the different probe molecules can be differentiated from each other according to relative location.

10 An array can include different probe molecules that are each located at a different addressable location on a substrate. Alternatively or additionally, an array can include separate substrates each bearing a different probe molecule, wherein the different probe molecules can be identified according to the locations of the substrates on a

15 surface to which the substrates are attached or according to the locations of the substrates in a liquid. Exemplary arrays in which separate substrates are located on a surface include, without limitation, those including beads in wells as described, for example, in U.S. Patent No. 6,355,431 B1, US 2002/0102578 and PCT Publication No. WO 00/63437. Exemplary formats that can be used in the invention to

20 distinguish beads in a liquid array, for example, using a microfluidic device, such as a fluorescent activated cell sorter (FACS), are described, for example, in US Pat. No. 6,524,793. Further examples of arrays that can be used in the invention include, without limitation, those described in U.S. Pat Nos. 5,429,807; 5,436,327; 5,561,071;

25 5,583,211; 5,658,734; 5,837,858; 5,874,219; 5,919,523; 6,136,269; 6,287,768; 6,287,776; 6,288,220; 6,297,006; 6,291,193; 6,346,413; 6,416,949; 6,482,591;

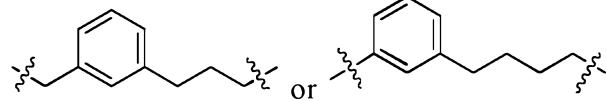
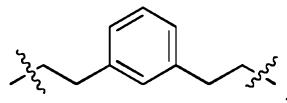
6,514,751 and 6,610,482; and WO 93/17126; WO 95/11995; WO 95/35505; EP 742 287; and EP 799 897.

[0051] As used herein, the term “covalently attached” or “covalently bonded” refers to the forming of a chemical bonding that is characterized by the sharing of pairs of electrons between atoms. For example, a covalently attached polymer coating refers to a polymer coating that forms chemical bonds with a functionalized surface of a substrate, as compared to attachment to the surface via other means, for example, adhesion or electrostatic interaction. It will be appreciated

that polymers that are attached covalently to a surface can also be bonded via means in addition to covalent attachment.

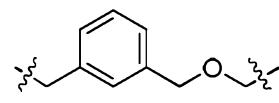
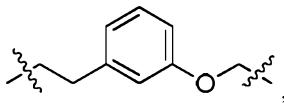
[0052] As used herein, “C_a to C_b” or “C_{a-b}” in which “a” and “b” are integers refer to the number of carbon atoms in the specified group. That is, the group can contain from “a” to “b”, inclusive, carbon atoms. Thus, for example, a “C₁ to C₄ alkyl” or “C₁₋₄ alkyl” group refers to all alkyl groups having from 1 to 4 carbons, that is, CH₃-, CH₃CH₂-, CH₃CH₂CH₂-, (CH₃)₂CH-, CH₃CH₂CH₂CH₂-, CH₃CH₂CH(CH₃)- and (CH₃)₃C-.

[0053] The term “halogen” or “halo,” as used herein, means any one of the radio-stable atoms of column 7 of the Periodic Table of the Elements, *e.g.*, fluorine, chlorine, bromine, or iodine, with fluorine and chlorine being preferred.

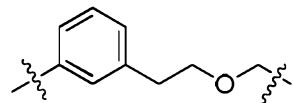


[0054] As used herein, “alkyl” refers to a straight or branched hydrocarbon chain that is fully saturated (*i.e.*, contains no double or triple bonds). The alkyl group may have 1 to 20 carbon atoms (whenever it appears herein, a numerical range such as “1 to 20” refers to each integer in the given range; *e.g.*, “1 to 20 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, *etc.*, up to and including 20 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated). The alkyl group may also be a medium size alkyl having 1 to 9 carbon atoms. The alkyl group could also be a lower alkyl having 1 to 4 carbon atoms. The alkyl group may be designated as “C₁₋₄ alkyl” or similar designations. By way of example only, “C₁₋₄ alkyl” indicates that there are one to four carbon atoms in the alkyl chain, *i.e.*, the alkyl chain is selected from the group consisting of methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl, hexyl, and the like. The alkyl group may be substituted or unsubstituted.

[0055] As used herein, “alkoxy” refers to the formula —OR wherein R is an alkyl as is defined above, such as “C₁₋₉ alkoxy”, including but not limited to methoxy, ethoxy, n-propoxy, 1-methylethoxy (isopropoxy), n-butoxy, iso-butoxy, sec-butoxy, and tert-butoxy, and the like.

[0056] As used herein, “heteroalkyl” refers to a straight or branched hydrocarbon chain containing one or more heteroatoms, that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur, in the chain backbone. The heteroalkyl group may have 1 to 20 carbon atom, although the present definition also covers the occurrence of the term “heteroalkyl” where no numerical range is designated. The heteroalkyl group may also be a medium size heteroalkyl having 1 to 9 carbon atoms. The heteroalkyl group could also be a lower heteroalkyl having 1 to 4 carbon atoms. The heteroalkyl group may be designated as “C₁₋₄ heteroalkyl” or similar designations. The heteroalkyl group may contain one or more heteroatoms. By way of example only, “C₁₋₄ heteroalkyl” indicates that there are one to four carbon atoms in the heteroalkyl chain and additionally one or more heteroatoms in the backbone of the chain.



[0057] As used herein, “alkylene” means a branched, or straight chain fully saturated di-radical chemical group containing only carbon and hydrogen that is attached to the rest of the molecule via two points of attachment (i.e., an alkanediyl). The alkylene group may have 1 to 20 carbon atoms, although the present definition also covers the occurrence of the term alkylene where no numerical range is designated. The alkylene group may also be a medium size alkylene having 1 to 9 carbon atoms. The alkylene group could also be a lower alkylene having 1 to 4 carbon atoms. The alkylene group may be designated as “C₁₋₄ alkylene” or similar designations. By way of example only, “C₁₋₄ alkylene” indicates that there are one to four carbon atoms in the alkylene chain, i.e., the alkylene chain is selected from the group consisting of methylene, ethylene, ethan-1,1-diyl, propylene, propan-1,1-diyl, propan-2,2-diyl, 1-methyl-ethylene, butylene, butan-1,1-diyl, butan-2,2-diyl, 2-methyl-propan-1,1-diyl, 1-methyl-propylene, 2-methyl-propylene, 1,1-dimethyl-ethylene, 1,2-dimethyl-ethylene, and 1-ethyl-ethylene. As used herein, when an alkylene is interrupted by an aromatic group, it refers to the insertion of an aromatic group between one carbon-carbon bond of the alkylene chain via two point of attachment or the attachment of an aromatic group to one terminal of the alkylene chain via one point of attachment. For example, when a n-butylene is interrupted by

a phenyl group, exemplary structures include



[0058] As used herein, the term "heteroalkylene" refers to an alkylene chain in which one or more skeletal atoms of the alkylene are selected from an atom other than carbon, *e.g.*, oxygen, nitrogen, sulfur, phosphorus or combinations thereof. The heteroalkylene chain can have a length of 2 to 20,000. Exemplary heteroalkylenes include, but are not limited to, -OCH₂-, -OCH(CH₃)-, -OC(CH₃)₂-, -OCH₂CH₂-, -CH(CH₃)O-, -CH₂OCH₂-, -CH₂OCH₂CH₂-, -SCH₂-, -SCH(CH₃)-, -SC(CH₃)₂-, -SCH₂CH₂-, -CH₂SCH₂CH₂-, -NHCH₂-, -NHCH(CH₃)-, -NHC(CH₃)₂-, -NHCH₂CH₂-, -CH₂NHCH₂-, -CH₂NHCH₂CH₂-, and the like. As used herein, when a heteroalkylene is interrupted by an aromatic group, it refers to the insertion of an aromatic group between one carbon-carbon bond or carbon-heteroatom bond of the heteroalkylene chain via two point of attachment or the attachment of an aromatic group to one terminal of the heteroalkylene chain via one point of attachment. For example, when a n-propylene oxide is interrupted by a phenyl group, exemplary

structures include

or

[0059] As used herein, "alkenyl" refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more double bonds. An alkenyl group may be unsubstituted or substituted.

[0060] As used herein, "alkynyl" refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more triple bonds. An alkynyl group may be unsubstituted or substituted.

[0061] As used herein, "cycloalkyl" refers to a completely saturated (no double or triple bonds) mono- or multi- cyclic hydrocarbon ring system. When composed of two or more rings, the rings may be joined together in a fused fashion.

Cycloalkyl groups can contain 3 to 10 atoms in the ring(s). In some embodiments, cycloalkyl groups can contain 3 to 8 atoms in the ring(s). A cycloalkyl group may be unsubstituted or substituted. Typical cycloalkyl groups include, but are in no way limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

[0062] The term “aromatic” refers to a ring or ring system having a conjugated pi electron system and includes both carbocyclic aromatic (e.g., phenyl) and heterocyclic aromatic groups (e.g., pyridine). The term includes monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of atoms) groups provided that the entire ring system is aromatic.

[0063] As used herein, “aryl” refers to an aromatic ring or ring system (i.e., two or more fused rings that share two adjacent carbon atoms) containing only carbon in the ring backbone. When the aryl is a ring system, every ring in the system is aromatic. The aryl group may have 6 to 18 carbon atoms, although the present definition also covers the occurrence of the term “aryl” where no numerical range is designated. In some embodiments, the aryl group has 6 to 10 carbon atoms. The aryl group may be designated as “C₆₋₁₀ aryl,” “C₆ or C₁₀ aryl,” or similar designations. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, azulenyl, and anthracenyl.

[0064] An “aralkyl” or “arylalkyl” is an aryl group connected, as a substituent, via an alkylene group, such as “C₇₋₁₄ aralkyl” and the like, including but not limited to benzyl, 2-phenylethyl, 3-phenylpropyl, and naphthylalkyl. In some cases, the alkylene group is a lower alkylene group (i.e., a C₁₋₄ alkylene group).

[0065] As used herein, “heteroaryl” refers to an aromatic ring or ring system (i.e., two or more fused rings that share two adjacent atoms) that contain(s) one or more heteroatoms, that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur, in the ring backbone. When the heteroaryl is a ring system, every ring in the system is aromatic. The heteroaryl group may have 5-18 ring members (i.e., the number of atoms making up the ring backbone, including carbon atoms and heteroatoms), although the present definition also covers the occurrence of the term “heteroaryl” where no numerical range is designated. In some embodiments, the heteroaryl group has 5 to 10 ring members or 5 to 7 ring members.

The heteroaryl group may be designated as “5-7 membered heteroaryl,” “5-10 membered heteroaryl,” or similar designations. Examples of heteroaryl rings include, but are not limited to, furyl, thienyl, phthalazinyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, triazolyl, thiadiazolyl, pyridinyl, 5 pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, indolyl, isoindolyl, and benzothienyl.

10 [0066] A “heteroaralkyl” or “heteroarylalkyl” is heteroaryl group connected, as a substituent, via an alkylene group. Examples include but are not limited to 2-thienylmethyl, 3-thienylmethyl, furylmethyl, thienylethyl, pyrrolylalkyl, pyridylalkyl, isoxazollylalkyl, and imidazollylalkyl. In some cases, the alkylene group is a lower alkylene group (i.e., a C₁₋₄ alkylene group).

15 [0067] As used herein, “cycloalkyl” means a fully saturated carbocyclyl ring or ring system. Examples include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

15 [0068] An “O-carboxy” group refers to a “-OC(=O)R” group in which R is selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein.

20 [0069] A “C-carboxy” group refers to a “-C(=O)OR” group in which R is selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein. A non-limiting example includes carboxyl (i.e., -C(=O)OH).

[0070] A “cyano” group refers to a “-CN” group.

[0071] A “azido” group refers to a “-N₃” group.

25 [0072] An “O-carbamyl” group refers to a “-OC(=O)NR_AR_B” group in which R_A and R_B are each independently selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein.

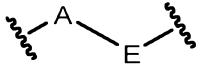
30 [0073] An “N-carbamyl” group refers to an “-N(R_A)OC(=O)R_B” group in which R_A and R_B are each independently selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein.

[0074] A “C-amido” group refers to a “-C(=O)NR_AR_B” group in which R_A and R_B are each independently selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein.

5 [0075] An “N-amido” group refers to a “-N(R_A)C(=O)R_B” group in which R_A and R_B are each independently selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein.

10 [0076] An “amino” group refers to a “-NR_AR_B” group in which R_A and R_B are each independently selected from hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ carbocyclyl, C₆₋₁₀ aryl, 5-10 membered heteroaryl, and 5-10 membered heterocyclyl, as defined herein. A non-limiting example includes free amino (i.e., -NH₂).

15 [0077] As used herein, the term “Trolox” refers to 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.


[0078] As used herein, the term “ascorbate” refers to the salt of ascorbic acid.

[0079] As used herein, the term “gallic acid” refers to 3,4,5-trihydroxybenzoic acid.

20 [0080] As used herein, a substituted group is derived from the unsubstituted parent group in which there has been an exchange of one or more hydrogen atoms for another atom or group. Unless otherwise indicated, when a group is deemed to be “substituted,” it is meant that the group is substituted with one or more substituents independently selected from C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, C₁-C₆ heteroalkyl, C₃-C₇ carbocyclyl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), C₃-C₇-carbocyclyl-C₁-C₆-alkyl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), 5-10 membered heterocyclyl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), 5-10 membered heterocyclyl-C₁-C₆-alkyl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), aryl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-

C₆ haloalkoxy), aryl(C₁-C₆)alkyl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), 5-10 membered heteroaryl (optionally substituted with halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), 5-10 membered heteroaryl(C₁-C₆)alkyl (optionally substituted with 5 halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkoxy), halo, cyano, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkoxy(C₁-C₆)alkyl (i.e., ether), aryloxy, sulfhydryl (mercapto), halo(C₁-C₆)alkyl (e.g., -CF₃), halo(C₁-C₆)alkoxy (e.g., -OCF₃), C₁-C₆ alkylthio, arylthio, amino, amino(C₁-C₆)alkyl, nitro, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, 10 C-carboxy, O-carboxy, acyl, cyanato, isocyanato, thiocyanato, isothiocyanato, sulfinyl, sulfonyl, and oxo (=O). Wherever a group is described as “optionally substituted” that group can be substituted with the above substituents.

[0081] It is to be understood that certain radical naming conventions can include either a mono-radical or a di-radical, depending on the context. For example, 15 where a substituent requires two points of attachment to the rest of the molecule, it is understood that the substituent is a di-radical. For example, a substituent identified as alkyl that requires two points of attachment includes di-radicals such as -CH₂-, -CH₂CH₂-, -CH₂CH(CH₃)CH₂-, and the like. Similarly, a group identified as amino that requires two points of attachment includes di-radicals such as -NH-, -N(CH₃)-, 20 and the like. Other radical naming conventions clearly indicate that the radical is a di-radical such as “alkylene” or “alkenylene.”

[0082] Wherever a substituent is depicted as a di-radical (i.e., has two points of attachment to the rest of the molecule), it is to be understood that the substituent can be attached in any directional configuration unless otherwise indicated. Thus, for example, a substituent depicted as -AE- or 25 includes the substituent being oriented such that the A is attached at the leftmost attachment point of the molecule as well as the case in which A is attached at the rightmost attachment point of the molecule.

[0083] Where the compounds disclosed herein have at least one stereocenter, they may exist as individual enantiomers and diastereomers or as 30 mixtures of such isomers, including racemates. Separation of the individual isomers

or selective synthesis of the individual isomers is accomplished by application of various methods which are well known to practitioners in the art. Unless otherwise indicated, all such isomers and mixtures thereof are included in the scope of the compounds disclosed herein.

5 [0084] As used herein, a “nucleotide” includes a nitrogen containing heterocyclic base, a sugar, and one or more phosphate groups. They are monomeric units of a nucleic acid sequence. In RNA, the sugar is a ribose, and in DNA a deoxyribose, *i.e.* a sugar lacking a hydroxyl group that is present in ribose. The nitrogen containing heterocyclic base can be purine or pyrimidine base. Purine bases 10 include adenine (A) and guanine (G), and modified derivatives or analogs thereof. Pyrimidine bases include cytosine (C), thymine (T), and uracil (U), and modified derivatives or analogs thereof. The C-1 atom of deoxyribose is bonded to N-1 of a pyrimidine or N-9 of a purine.

15 [0085] As used herein, a “nucleoside” is structurally similar to a nucleotide, but is missing the phosphate moieties. An example of a nucleoside analogue would be one in which the label is linked to the base and there is no phosphate group attached to the sugar molecule. The term “nucleoside” is used herein 20 in its ordinary sense as understood by those skilled in the art. Examples include, but are not limited to, a ribonucleoside comprising a ribose moiety and a deoxyribonucleoside comprising a deoxyribose moiety. A modified pentose moiety 25 is a pentose moiety in which an oxygen atom has been replaced with a carbon and/or a carbon has been replaced with a sulfur or an oxygen atom. A “nucleoside” is a monomer that can have a substituted base and/or sugar moiety. Additionally, a nucleoside can be incorporated into larger DNA and/or RNA polymers and oligomers.

30 [0086] As used herein, the term “polynucleotide” refers to nucleic acids in general, including DNA (e.g. genomic DNA cDNA), RNA (e.g. mRNA), synthetic oligonucleotides and synthetic nucleic acid analogs. Polynucleotides may include natural or non-natural bases, or combinations thereof and natural or non-natural backbone linkages, e.g. phosphorothioates, PNA or 2'-O-methyl-RNA, or combinations thereof.

[0087] As used herein, the term “phasing” refers to phenomena in SBS that is caused by incomplete removal of the 3' terminators and fluorophores, and failure to complete the incorporation of a portion of DNA strands within clusters by polymerases at a given sequencing cycle. Pre-phasing is caused by the incorporation 5 of nucleotides without effective 3' terminators and the incorporation event goes 1 cycle ahead. Phasing and pre-phasing cause the extracted intensities for a specific cycle to consist of the signal of the current cycle as well as noise from the preceding and following cycles. As the number of cycles increases, the fraction of sequences per cluster affected by phasing increases, hampering the identification of the correct base. 10 Pre-phasing can be caused by the presence of a trace amount of unprotected or unblocked 3'-OH nucleotides during sequencing by synthesis (SBS). The unprotected 3'-OH nucleotides could be generated during the manufacturing processes or possibly during the storage and reagent handling processes. Accordingly, the modifications of nucleotide analogues or the linking groups that result in faster SBS cycle time, lower 15 phasing and pre-phasing values, and longer sequencing read length provide greater advantages in SBS applications.

[0088] As used herein, the term “protecting moiety” includes, but not limited to molecules that can protect against DNA damages (e.g., photo damage or other chemical damages). Some specific examples include antioxidants, such as 20 vitamin C, vitamin E derivatives, phenolic acid, polyphenols, and derivatives and analogs thereof. It is to be understood that in certain contexts where the term “protecting moiety” is defined, it refers to the moiety resulted from the reaction between one or more functional groups of the protecting moiety with the corresponding functional group of the linker as described herein. For example, when 25 the protecting moiety is “gallic acid,” it may refer to the amides and esters of the gallic acid rather than gallic acid itself with the free carboxyl group.

Detectable Labels

[0089] Some embodiments described herein relate to the use of 30 conventional detectable labels. Detection can be carried out by any suitable method, including fluorescence spectroscopy or by other optical means. The preferred label is a fluorophore, which, after absorption of energy, emits radiation at a defined

wavelength. Many suitable fluorescent labels are known. For example, Welch *et al.* (*Chem. Eur. J.* 5(3):951-960, 1999) discloses dansyl-functionalised fluorescent moieties that can be used in the present invention. Zhu *et al.* (*Cytometry* 28:206-211, 1997) describes the use of the fluorescent labels Cy3 and Cy5, which can also be used 5 in the present invention. Labels suitable for use are also disclosed in Prober *et al.* (*Science* 238:336-341, 1987); Connell *et al.* (*BioTechniques* 5(4):342-384, 1987), Ansorge *et al.* (*Nucl. Acids Res.* 15(11):4593-4602, 1987) and Smith *et al.* (*Nature* 321:674, 1986). Other commercially available fluorescent labels include, but are not 10 limited to, fluorescein, rhodamine (including TMR, texas red and Rox), alexa, bodipy, acridine, coumarin, pyrene, benzanthracene and the cyanins.

[0090] Multiple labels can also be used in the present application, for example, bi-fluorophore FRET cassettes (*Tet. Let.* 46:8867-8871, 2000). Multi-fluor 15 dendrimeric systems (*J. Am. Chem. Soc.* 123:8101-8108, 2001) can also be used. Although fluorescent labels are preferred, other forms of detectable labels will be apparent as useful to those of ordinary skill in the art. For example, microparticles, 20 including quantum dots (Empodocles *et al.*, *Nature* 399:126-130, 1999), gold nanoparticles (Reichert *et al.*, *Anal. Chem.* 72:6025-6029, 2000) and microbeads (Lacoste *et al.*, *Proc. Natl. Acad. Sci USA* 97(17):9461-9466, 2000) can all be used.

[0091] Multi-component labels can also be used in the present application. 25 A multi-component label is one which is dependent on the interaction with a further compound for detection. The most common multi-component label used in biology is the biotin-streptavidin system. Biotin is used as the label attached to the nucleotide base. Streptavidin is then added separately to enable detection to occur. Other multi-component systems are available. For example, dinitrophenol has a commercially available fluorescent antibody that can be used for detection.

[0092] Unless indicated otherwise, the reference to nucleotides is also intended to be applicable to nucleosides. The present application will also be further described with reference to DNA, although the description will also be applicable to RNA, PNA, and other nucleic acids, unless otherwise indicated.

Sequencing methods

[0093] The nucleosides or nucleotides described herein can be used in conjunction with a variety of sequencing techniques. In some embodiments, the process to determine the nucleotide sequence of a target nucleic acid can be an automated process.

[0094] The nucleotide analogues presented herein can be used in a sequencing procedure, such as a sequencing-by-synthesis (SBS) technique. Briefly, SBS can be initiated by contacting the target nucleic acids with one or more labeled nucleotides, DNA polymerase, etc. Those features where a primer is extended using the target nucleic acid as template will incorporate a labeled nucleotide that can be detected. Optionally, the labeled nucleotides can further include a reversible termination property that terminates further primer extension once a nucleotide has been added to a primer. For example, a nucleotide analog having a reversible terminator moiety can be added to a primer such that subsequent extension cannot occur until a deblocking agent is delivered to remove the moiety. Thus, for embodiments that use reversible termination, a deblocking reagent can be delivered to the flow cell (before or after detection occurs). Washes can be carried out between the various delivery steps. The cycle can then be repeated n times to extend the primer by n nucleotides, thereby detecting a sequence of length n. Exemplary SBS procedures, fluidic systems and detection platforms that can be readily adapted for use with an array produced by the methods of the present disclosure are described, for example, in Bentley et al., *Nature* 456:53-59 (2008), WO 04/018497; WO 91/06678; WO 07/123744; US Pat. Nos. 7,057,026; 7,329,492; 7,211,414; 7,315,019 or 7,405,281, and US Pat. App. Pub. No. 2008/0108082 A1, each of which is incorporated herein by reference.

[0095] Other sequencing procedures that use cyclic reactions can be used, such as pyrosequencing. Pyrosequencing detects the release of inorganic pyrophosphate (PPi) as particular nucleotides are incorporated into a nascent nucleic acid strand (Ronaghi, et al., *Analytical Biochemistry* 242(1), 84-9 (1996); Ronaghi, *Genome Res.* 11(1), 3-11 (2001); Ronaghi et al. *Science* 281(5375), 363 (1998); US Pat. Nos. 6,210,891; 6,258,568 and 6,274,320, each of which is incorporated herein

by reference). In pyrosequencing, released PPi can be detected by being converted to adenosine triphosphate (ATP) by ATP sulfurylase, and the resulting ATP can be detected via luciferase-produced photons. Thus, the sequencing reaction can be monitored via a luminescence detection system. Excitation radiation sources used for 5 fluorescence based detection systems are not necessary for pyrosequencing procedures. Useful fluidic systems, detectors and procedures that can be used for application of pyrosequencing to arrays of the present disclosure are described, for example, in WIPO Pat. App. Ser. No. PCT/US11/57111, US Pat. App. Pub. No. 2005/0191698 A1, US Pat. No. 7,595,883, and US Pat. No. 7,244,559, each of which 10 is incorporated herein by reference.

[0096] Sequencing-by-ligation reactions are also useful including, for example, those described in Shendure et al. *Science* 309:1728-1732 (2005); US Pat. No. 5,599,675; and US Pat. No. 5,750,341, each of which is incorporated herein by reference. Some embodiments can include sequencing-by-hybridization procedures 15 as described, for example, in Bains et al., *Journal of Theoretical Biology* 135(3), 303-7 (1988); Drmanac et al., *Nature Biotechnology* 16, 54-58 (1998); Fodor et al., *Science* 251(4995), 767-773 (1995); and WO 1989/10977, each of which is incorporated herein by reference. In both sequencing-by-ligation and sequencing-by- 20 hybridization procedures, nucleic acids that are present in gel-containing wells (or other concave features) are subjected to repeated cycles of oligonucleotide delivery and detection. Fluidic systems for SBS methods as set forth herein, or in references cited herein, can be readily adapted for delivery of reagents for sequencing-by-ligation or sequencing-by-hybridization procedures. Typically, the oligonucleotides are fluorescently labeled and can be detected using fluorescence detectors similar to 25 those described with regard to SBS procedures herein or in references cited herein.

[0097] Some embodiments can utilize methods involving the real-time monitoring of DNA polymerase activity. For example, nucleotide incorporations can be detected through fluorescence resonance energy transfer (FRET) interactions between a fluorophore-bearing polymerase and γ -phosphate-labeled nucleotides, or 30 with zeremode waveguides. Techniques and reagents for FRET-based sequencing are described, for example, in Levene et al. *Science* 299, 682-686 (2003); Lundquist

et al. *Opt. Lett.* 33, 1026–1028 (2008); Korlach et al. *Proc. Natl. Acad. Sci. USA* 105, 1176–1181 (2008), the disclosures of which are incorporated herein by reference.

[0098] Some SBS embodiments include detection of a proton released upon incorporation of a nucleotide into an extension product. For example, sequencing based on detection of released protons can use an electrical detector and associated techniques that are commercially available from Ion Torrent (Guilford, CT, a Life Technologies subsidiary) or sequencing methods and systems described in US Pat. App. Pub. Nos. 2009/0026082 A1; 2009/0127589 A1; 2010/0137143 A1; or 2010/0282617 A1, each of which is incorporated herein by reference.

10

Exemplary modified linkers

[0099] Additional embodiments are disclosed in further detail in the following examples, which are not in any way intended to limit the scope of the claims.

15

[0100] **FIG. 1A** illustrates a partial structural formula of a labeled nucleotide **100**. Labeled nucleotide **100** includes a fully functionalized adenosine nucleotide (ffA) **110**, a standard linker moiety **115**, and a fluorescent dye **120**. Standard linker moiety **115** may be a linker moiety typically used in the synthesis of labeled nucleotides for sequencing by synthesis (SBS). In one example, fluorescent dye **120** is NR550S0. In this example, labeled nucleotide **100** may be described as “ffA-NR550S0”. In another example, fluorescent dye **120** is SO7181 and the labeled nucleotide **100** may be described as “ffA-SO7181”.

20

[0101] **FIG. 1B** illustrates labeled nucleotide **100** of **FIG. 1A** with two possible structural modifications to standard linker moiety **115**. In one example, standard linker moiety **115** includes an AEDI insert **125** between the carbonyl (i.e., -C(=O)-) and the amino (i.e., -NH-) portion of the amido moiety. In this example, the modified labeled nucleotide may be described as “ffA-AEDI-NR550S0”. In another example, standard linker moiety **115** includes an SS insert **130** and the modified labeled nucleotide may be designated “ffA-SS-NR550S0”.

25

[0102] **FIG. 2** shows a plot of the nucleotide incorporation rate using labeled nucleotide **100** of **FIG. 1A** and modified labeled nucleotides **100** of **FIG. 1B**. The assay was carried out at 55°C, in 40mM ethanolamine (pH 9.8), 9 mM MgCl₂,

40mM NaCl, 1 mM EDTA, 0.2 % CHAPS with 20nM primer:template DNA and 30ug/ml Polymerase 812 (MiSeq Kit V2), 1 mM nucleotide. The enzyme is bound to DNA and then rapidly mixed with nucleotide in a quench flow machine for a short time (up to 10s) before quenching with 500mM EDTA. Several time points are taken for each nucleotide. The samples generated are then analyzed on a denaturing gel and the percentage of DNA being converted to DNA+1 is determined and plotted against time to determine the first order rate constant for each nucleotide. The data is summarized in Table 1 below. The data show that the incorporation rate for a labeled nucleotide comprising SS insert **130** (ffa-SS-NR550S0) was about 2 times faster compared to the incorporation rate for a labeled nucleotide comprising a standard linker **115** (ffa-NR550S0). The incorporation rate for a labeled nucleotide comprising an AEDI insert **125** (ffa-AEDI-NR550S0) was about 4 times faster compared to the incorporation rate of ffa-NR550S0. The data also show that the incorporation rate for a labeled nucleotide comprising standard linker **115** and the fluorescent dye SO7181 (ffa-SO7181) was about 4 times faster compared to the incorporation rate of ffa-NR550S0.

Table 1.	
ffa	K (μM/min)
ffa-NR550S0	22 (1X)
ffa-SS-NR550S0	54 (2X)
ffa-AEDI-NR550S0	97 (4X)
ffa-SO7181	99 (4X)

[0103] FIGs. 3A-3F illustrate the structural formulae of additional inserts **310**, **315**, **320**, **325**, **330** and **335** for standard linker moiety **115** of FIG. 1A. In an ACA insert **310**, the dimethyl substitutions are removed and the sulfur-sulfur (S-S) bond are replaced with carbon-carbon bond compared to insert **125**. The sulfur-sulfur bond is not necessary for SBS (e.g., 2-dye or 4-dye SBS).

[0104] In an AcLys insert **315**, acetyl protected lysine is used to replace insert **125**.

[0105] In a BocLys insert **320**, tert-butoxycarbonyl protected lysine is used to replace insert **125**.

[0106] In a dMeO insert **325**, the sulfur-sulfur (S-S) bond are replaced with oxygen-carbon (O-CH₂) bond compared to insert **125**.

[0107] In a dMeS insert **330**, the sulfur-sulfur (S-S) bond are replaced with sulfur-carbon (S-CH₂) bond compared to insert **125**.

[0108] In a DMP insert **335**, the sulfur-sulfur (S-S) bond are replaced with sulfur-carbon (CH₂) bond compared to insert **125**.

5 [0109] In various examples described herein, inserts including a dimethyl substitution pattern (e.g., AEDI insert **125**, dMeO insert **325**, and dMeS insert **330**) were found to have an increased rate of nucleotide incorporation during SBS.

[0110] In various examples described herein, the length of the carbon chains in the inserts may also be varied.

10 [0111] **FIG. 4** shows a data table of a two dye sequencing run used to evaluate the effect of AEDI insert **125** of **FIG. 1B** and AcLys insert **315** of **FIG. 3B** on sequencing quality. The sequencing was run on a Miseq hybrid platform with Human 550bp template and 2 times 150 cycles. The new set of dyes, V10/cyan-peg4 A-AEDI550S0, V10/cyan-peg4 A-AcLys550S0, and V10/cyan A-AcLys 550S0 were compared to the standard commercial dye set V4 and an improved dye set of Nova platform V5.75. For each of V10/cyan-peg4 A-AEDI550S0, V10/cyan-peg4 A-AcLys550S0, and V10/cyan A-AcLys 550S0 samples, the phasing value (Ph R1) was lower than the phasing values of samples without the AEDI or AcLys inserts. Therefore, labeled nucleotides comprising additional inserts **125** and **315** demonstrated improvements in sequencing quality.

15 [0112] **FIG. 5A and 5B** show a plot of error rates for read 1 and a plot of error rates for read 2 of the sequencing run of **FIG. 4** respectively. For read 1, the error rates of V10/cyan-peg4 A-AEDI550S0 and V10/cyan-peg4 A-AcLys550S0 were lower than the same set of dye V10/Cyan-peg4 without the insert. For read 2, it is even more pronounced when AcLys insert **315** is used, where the final error rate was reduced by 30% compare to the no-insert dye set. Therefore, inserts **125** and **315** have proven to improve the sequencing quality significantly.

20 [0113] **FIG. 6** shows a data table of a sequencing run used to evaluate the effect of AEDI insert **125** and ACA insert **310** on sequencing quality. The sequencing was run on a Miseq hybrid platform with Human 550bp template and 2 times 150 cycles. The new set of dyes, V10/cyan-peg4 A-AEDI550S0, V10/cyan-peg4 A-ACALys550S0, were compared to the standard commercial dye set V4 and an

improved dye set of Nova platform V5.75. Again, each of V10/cyan-peg4 A-AEDI550S0 and V10/cyan-peg4 A-ACA550S0 samples has a lower phasing value (Ph R1) compared to samples without the AEDI or ACA inserts and thus showed improvement in sequencing quality.

5 [0114] **FIG. 7A and 7B** show a plot of error rates for read 1 and a plot of error rates for read 2 of the sequencing run of **FIG. 6** respectively. The error rates for read 1 for the set comprising the new insert AEDI (V10/cyan-peg4 A-AEDI550S0), was lower than the same set of dye without the insert, V10/Cyan-peg4. The insert ACA (V10/Cyan-peg4 ACA550S0) gave a similar error rate plot in both read to the 10 standard V10/Cyan-peg4. AEDI showed again to improve the quality of sequencing. Those data showed also the structure of insert itself is having an influence on the improvement of the sequencing quality.

15 [0115] **FIG. 8A** shows the structural formula of a standard LN_3 linker **800**. LN_3 linker **800** includes a first substituted amido functional moiety **810**, a second azido-substituted PEG functional moiety **815**, and a third ester functional moiety **820** that may be desired in a linker structure for linking a dye molecule **825** to a nucleotide **830**. First functional moiety **810** may, for example, be used to attach dye molecule **825** to LN_3 linker **800**. Second functional moiety **815** may, for example, be a cleavable functional group that may be used to cleave dye molecule **825** from LN_3 linker **800**. Third functional moiety **820** may, for example, be used to attach nucleotide **830** to LN_3 linker **800**. **FIG. 8B** illustrates some modification to the standard LN_3 linker where the phenoxy moiety **850** is substituted with one to four substituents selected from $-\text{NO}_2$, $-\text{CN}$, halo or $-\text{SO}_3\text{H}$. In addition, the ester moiety **820** is replaced with an amido moiety **855**.

25 [0115A] Figure 9A is a graph showing the appearance of an impurity in an ffA with SS-linker. With ffA-SS-NR550S0 after HPLC purification: impurity appeared overnight in a slightly basic condition (pH8-9). R.t. overnight in 0.1M TEAB/CH3CN. Figure 9B compares the stability of ffAs with SS-linker and AEDI-linker, with the AEDI-linker showing significantly improved stability compared to SS linkers. ffA-LN3-NR550S0 was used as internal reference. The disulfide side product: (NR550S0-S-)2. Figure 9C shows a comparison of SS-linker and AEDI-

linker ffAs in IMX 60° for 22 hours, again showing an impurity with the SS linker. The internal control is ffa-LN3-NR550S0. Di-P: diphosphate.

5 [0115B] Figures 10A, 10B and 10C show the unexpected increase of nucleotide incorporation speed in solution with linker changes. Fig 10A shows the rate of incorporation at 1uM. The results show that the dye and linker had a significant effect on incorporation kinetics with table 10B clearly showing the benefit of the AEDI linker in incorporation kinetics. Figure 10C diagrammatically shows the AEDI and SS linkers with NR550S0.

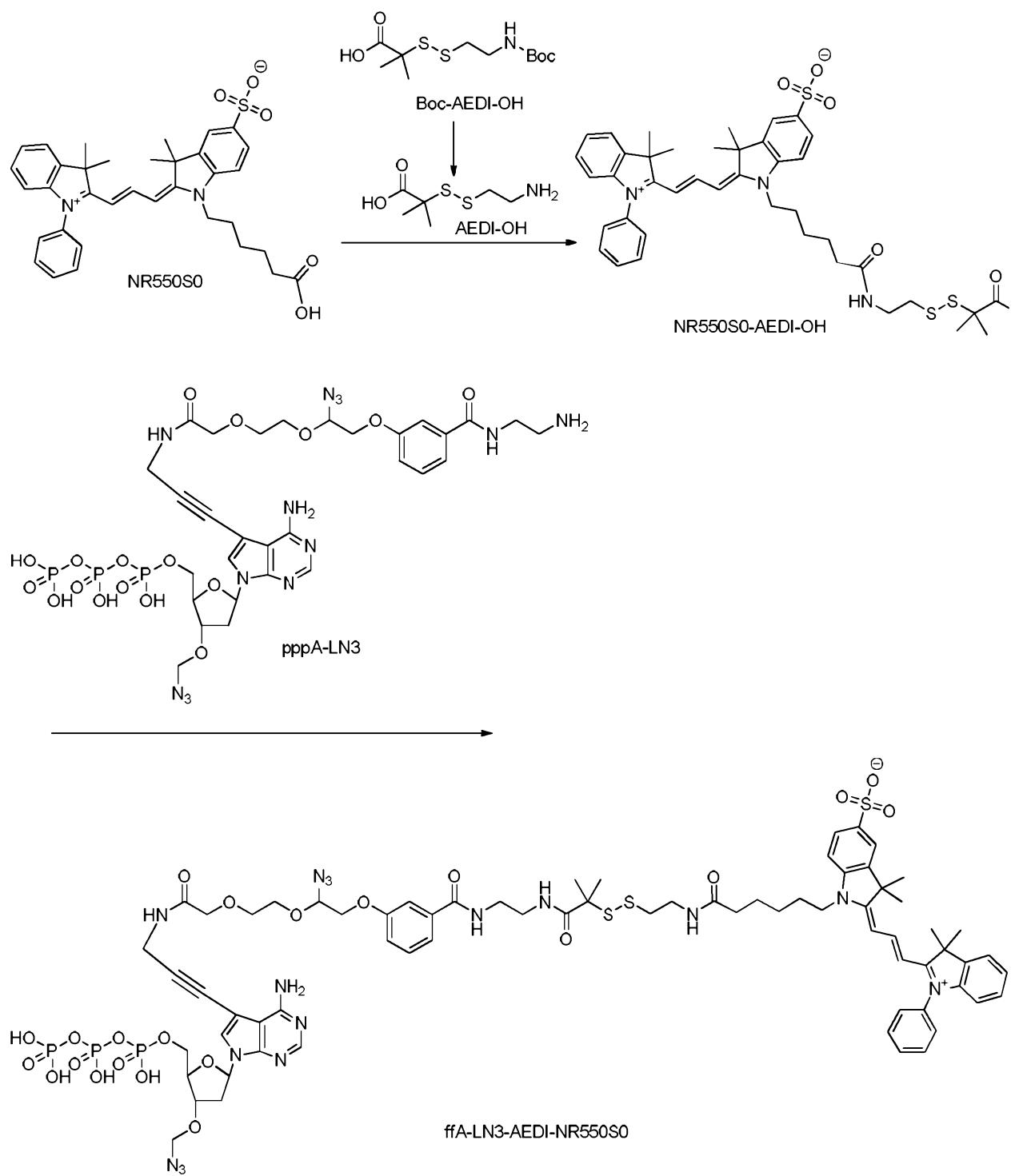
10 [0115C] Figure 11A shows scatter plots for V10 combinations with different A-550S0 (same concentration). Scatter plots are for tile 1 cycle 2. Figure 11B shows Kcat FFA Linkers in solution. It can be seen that on surface in terms of incorporation rate the AEDI linker is faster than no linker: ‘A’-cloud (on the scatter plot) slightly moving towards center. AcLys linker is slower than AEDI and no linker: ‘A’-cloud moving towards x axis. BocLys linker looks similar to no linker and not far from the AEDI linker. In solution it can be seen that the ACA-linker was 15 slowest, whilst AEDI and ACLys have similar Kcat, followed by BocLys.

20 [0115D] Figure 12A and 12B show sequencing metrics on M111, Human550, 2x151 cycles. Use ffNs in combination with different A-550S0 (same concentration). It can be seen that both AEDI and BocLys linker gave similar good sequencing results. Although the solution Kcat of AEDI and AcLys are similar, the sequencing result of AEDI is slightly better.

25 [0116] LN₃ linker **800** includes an optional phenoxy moiety **835** that may be removed from LN₃ linker **800** as shown in **FIG. 8C**. LN₃ linker **800** also includes an optional amido moiety **840** and an optional ether moiety **845**, both of which may be removed from LN₃ linker **800** as shown **FIG. 8D**. The purpose to remove certain functional groups like amido moiety **810**, phenoxy moiety **835** is to test if they have negative interactions with the enzyme during the nucleotide incorporation, which might reduce the incorporation efficiency.

30 [0117] **FIG. 8E** illustrates the insertion or addition of a protecting moiety **860** into the linker. Protecting moiety **860** is inserted between functional moiety **810** (or can be attached to the phenoxy moiety **835** or **850** in **FIG. 8A-8C**) and dye molecule **825**. Protecting moiety **860** may, for example, be a molecule that protects

against DNA damage. DNA damage including photo damage or other chemical damages is one of the cumulative effects (i.e., cycle by cycle) of SBS. Substantially reducing or eliminating DNA damage may provide for more efficient SBS and longer sequencing reads. In some embodiments, protecting moiety **860** can be selected from a triplet state quencher such as Trolox, gallic acid, 2-mercaptoethanol (BME), etc. In some other embodiments, protecting moiety **860** can be selected from quenching or protective reagent such as 4-nitrobenzyl alcohol or a salt of ascorbic acid, such as sodium ascorbate. In some other embodiments, a protecting agent can be physically mixed into the buffer rather than forming covalent bonding with the labeled nucleoside or nucleotide. However, this approach may require higher concentration of the protecting agent and may be less efficient. As an alternative, protecting moiety covalently attached to the nucleosides or nucleotides may provide better protection against DNA damage. In some further embodiments of **FIG. 8C, 8D** and **8E**, the ester moiety **820** can also be replaced with the amido moiety **855** and the phenoxy moiety **835** be further substituted.


[0118] In any of the examples demonstrated in **FIG. 8A-8E**, AEDI insert **125** and SS insert **130** of **FIG. 1B** and inserts **300** of **FIGs. 3A-3F** may, for example, be inserted between first functional moiety **810** and dye molecule **825** of linker **800**.

20

EXAMPLES

[0119] Additional embodiments are disclosed in further detail in the following examples, which are not in any way intended to limit the scope of the claims.

General Reaction Procedure for Preparing ffA-LN₃-AEDI-NR550S0:

[0120] In a 50 ml round-bottom flask, Boc-AEDI-OH (1 g, 3.4 mmol) was dissolved in DCM (15 ml) and TFA (1.3 ml, 17 ml) was added to the solution at rt. The reaction mixture was stirred for 2 hours. TLC (DCM:MeOH=9:1) indicated complete consumption of Boc-AEDI-OH. The reaction mixture was evaporated to

dryness. TEAB (2 M, ~15 ml) was then added to the residue and pH was monitored until to neutral. The mixture was then dissolved in H₂O/CH₃CN (1:1, ~15 ml) and evaporated to dryness. The procedure was repeated for 3 times to remove excess of TEAB salt. The white solid residue was treated with CH₃CN (20 ml) and stirred for 5 0.5 hour. Filtrated off the solution and washed the solid with CH₃CN, pure AEDI-OH-TFA salt was obtained (530 mg, 80 %). ¹H NMR (400 MHz, D₂O, δ(ppm)): 3.32 (t, J=6.5 Hz, 2H, NH₂-CH₂); 2.97 (t, J=6.5 Hz, 2H, S-CH₂); 1.53 (s, 6H, 2x CH₃). ¹³C NMR (400 MHz, D₂O, δ(ppm)): 178.21 (s, CO); 127.91, 117.71 (2s, TFA); 51.87 (s, C-(CH₃)₂); 37.76 (t, CH₂-NH₂); 34.23 (t, S-CH₂); 23.84 (q, 2x CH₃). ¹⁹F NMR (400 10 MHz, D₂O, δ(ppm)): -75.64.

[0121] In a 50 ml round-bottom flask, dye NR550S0 (114 mg, 176 umol) was dissolved in DMF (anhydrous, 20 mL) and evaporated to dry. The procedure was repeated for 3 times. Anhydrous DMA (10 mL) and Hunig's base (92 μL, 528 μmol, 3 equivalents) was then pipetted into the round bottom flask. TSTU (69 mg, 228 15 umol, 1.3 equivalents) was added in one portion. The reaction mixture was kept at rt. After 30 min, TLC (CH₃CN:H₂O=85:15) analysis indicated that the reaction completed. AEDI-OH (68 mg, 352 μmol, 2 equivalents) in 0.1 M TEAB was added to the reaction mixture and stirred at rt for 3 h. TLC (CH₃CN:H₂O=8:2) showed complete consumption of the activated ester and a red spot appeared below the 20 activated ester. Meanwhile, the analytic HPLC also indicated complete consumption of the activated ester and formation of the product. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and the volatile solvent was removed by by reduced pressure evaporation (HV) and purified on Axia column to obtain NR550S0-AEDI-OH. Yield: 60%.

[0122] In a 25 ml round-bottom flask, NR550S0-AEDI-OH (10 umol) was dissolved in DMF (anhydrous, 5 mL) and evaporated to dry. The procedure was repeated for 3 times. Anhydrous DMA (5 mL) and DMAP (1.8 mL, 15 μmol, 1.5 equivalents) was then added into the round bottom flask. DSC (5.2 mg, 20 μmol, 2 equivalents) was added in one portion. The reaction mixture was kept at room 30 temperature. After 30 min, TLC (CH₃CN:H₂O=8:2) analysis indicated that the reaction completed. Hunig's Base (3.5 ul, 20 umol) was pipetted in to the reaction mixture. Then a solution of pppA-LN₃ (20 μmol in 0.5 ml H₂O, 2 equivalent) and

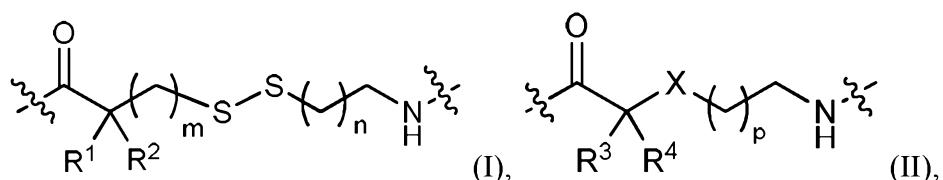
Et_3N (5 μl) was added to the reaction mixture and stirred at rt over-night. TLC ($\text{CH}_3\text{CN}:\text{H}_2\text{O}=8:2$) showed complete consumption of the activated ester and a red spot appeared on the baseline. Meanwhile, the analytic HPLC also indicated complete consumption of the activated ester and formation of the final product. The reaction was quenched with TEAB buffer (0.1M, 10 ml) and loaded on a DEAE Sephadex column (25 g Biotage column). The column was eluted with gradient as shown in Table 2 below.

A: 0.1 M TEAB buffer (10% CH_3CN)

B: 1 M TEAB buffer (10% CH_3CN).

10

Gradient:


Table 2

STEP	Solvents Mix (B%)	Length (ml)
1	0	100
2	0 - 45	50
3	45	100
4	45 - 100	50
5	100	100

[0123] The desired product was eluted out from 45% to 100% 1 M TEAB buffer. The fraction containing the product were combined, evaporated and purified by HPLC (YLC column, 8ml/min). Yield: 53%.

15

[0124] In summary, the present invention may relate to a nucleoside or nucleotide covalently attached to a fluorophore through a linker, wherein said linker comprises a structure of formula (I) or (II), or combination of both:

wherein

20

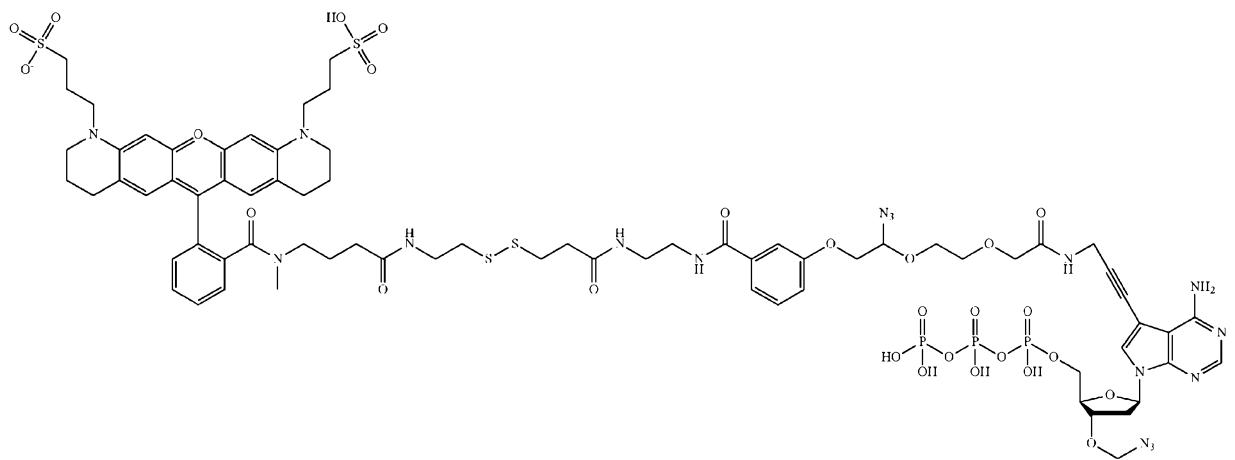
each R^1 and R^2 is independently selected from hydrogen or optionally substituted C_{1-6} alkyl;

R^3 is selected from hydrogen, optionally substituted C_{1-6} alkyl, $-NR^5-C(=O)R^6$, or $-NR^7-C(=O)-OR^8$;

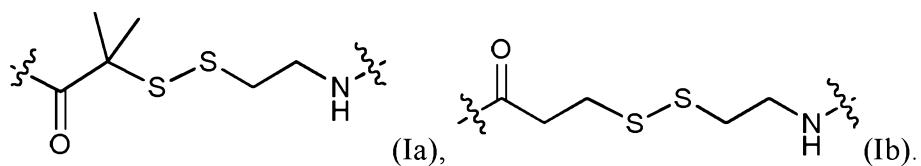
R^4 is selected from hydrogen or optionally substituted C_{1-6} alkyl;

each R^5 and R^7 is independently selected from hydrogen, optionally substituted C_{1-6} alkyl, optionally substituted phenyl, or optionally substituted C_{7-12} aralkyl;

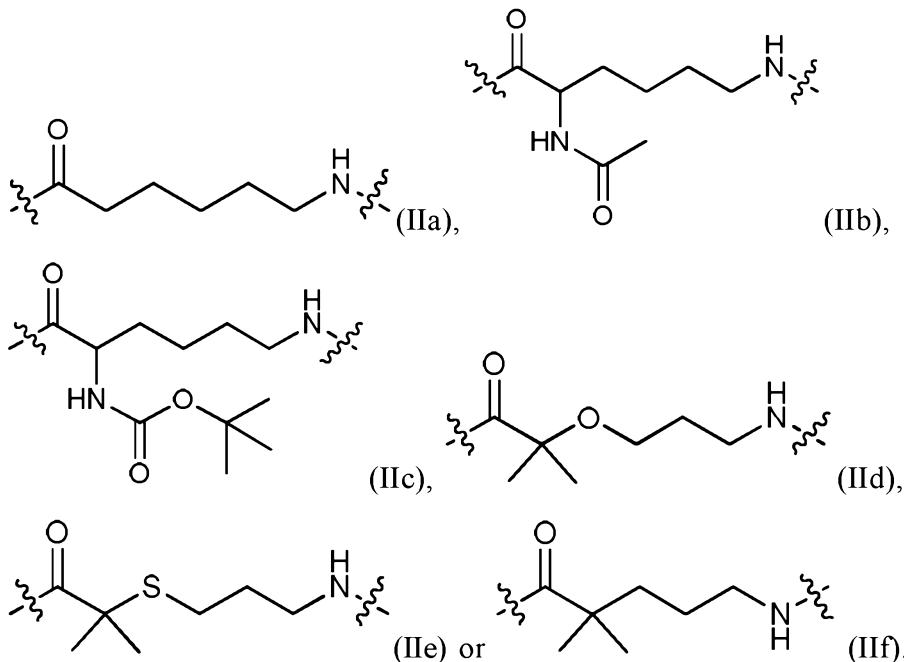
each R^6 and R^8 is independently selected from optionally substituted C_{1-6} alkyl, optionally substituted phenyl, optionally substituted C_{7-12} aralkyl, optionally substituted C_{3-7} cycloalkyl, or optionally substituted 5 to 10 membered heteroaryl;

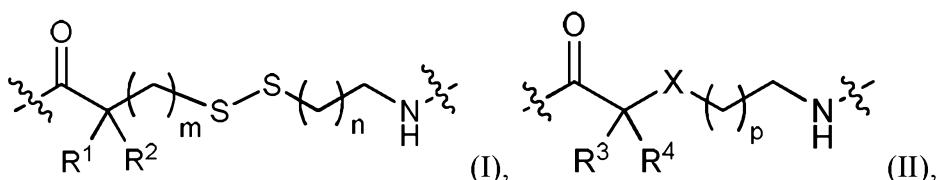

10 each of the methylene repeating unit in $\begin{array}{c} \text{---} \\ \text{X} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{m} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{X} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{n} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{X} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{p} \\ \text{---} \end{array}$ is optionally substituted;

X is selected from methylene (CH_2), oxygen (O), or sulfur (S);


m is an integer of 0 through 20;

n is an integer of 1 through 20; and


15 p is an integer of 1 through 20, provided that the fluorophore labeled nucleoside or nucleotide does not have the structure:


20 [0125] In some cases the nucleoside or nucleotide referenced above, the structure of formula (I) is also represented by formula (Ia) or (Ib):

Further, the structure of formula (II) may also be represented by formula (IIa), (IIb), (IIc), (IId), (IIe) or (IIf):

[0126] More particularly, the present invention may relate to a nucleoside or 10 nucleotide covalently attached to a fluorophore through a linker, wherein said linker comprises a structure of formula (I) or (II), or combination of both:

wherein

R^1 is selected from optionally substituted C_{1-6} alkyl;

R^2 is selected from hydrogen or optionally substituted C_{1-6} alkyl;

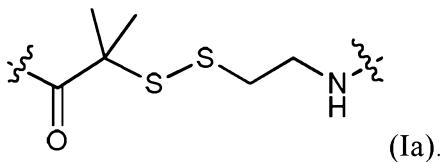
R^3 is selected from optionally substituted C_{1-6} alkyl, $-NR^5-C(=O)R^6$, or $-NR^7-C(=O)-OR^8$;

R^4 is selected from hydrogen or optionally substituted C_{1-6} alkyl;

each R^5 and R^7 is independently selected from hydrogen, optionally substituted C_{1-6} alkyl, optionally substituted phenyl, or optionally substituted C_{7-12} aralkyl;

5 each R^6 and R^8 is independently selected from optionally substituted C_{1-6} alkyl, optionally substituted phenyl, optionally substituted C_{7-12} aralkyl, optionally substituted C_{3-7} cycloalkyl, or optionally substituted 5 to 10 membered heteroaryl;

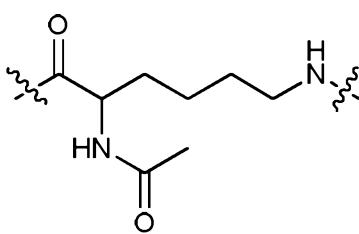
each of the methylene repeating unit in $-(CH_2)_m-$, $-(CH_2)_n-$ or $-(CH_2)_p-$ is optionally substituted;

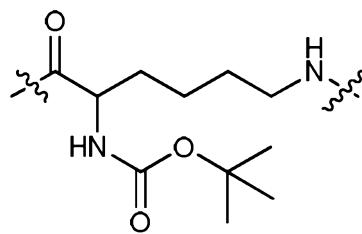

X is selected from methylene (CH_2), oxygen (O), or sulfur (S);

10 m is an integer of 0 through 20;

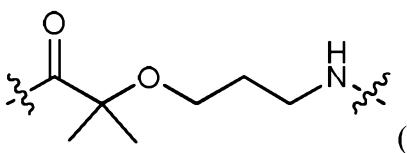
n is an integer of 1 through 20; and

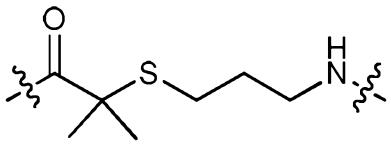
p is an integer of 1 through 20.

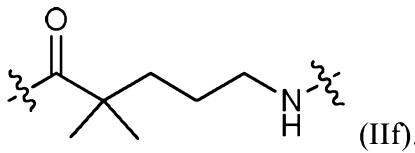

[0127] It is preferred that the structure of formula (I) is also represented by formula (Ia):


15

(Ia).


Further, the structure of formula (II) is also represented by formula (IIb), (IIc), (IId), (IIe) or (IIf):


(IIb),


(IIc),

(IId),

(IIe) or

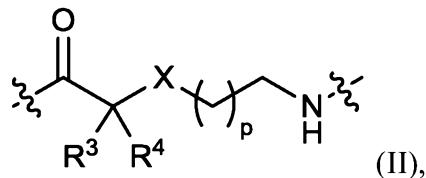
(IIf).

20

2015298469 14 Nov 2018

[0128] Throughout the specification, unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers

5 **[0129]** Each document, reference, patent application or patent cited in this text is expressly incorporated herein in their entirely by reference, which means that it should be read and considered by the reader as part of this text. That the document, reference, patent application, or patent cited in this text is not repeated in this text is merely for reasons of conciseness.


10 **[0130]** Reference to cited material or information contained in the text should not be understood as a concession that the material or information was part of the common general knowledge or was known in Australia or any other country.

14 Nov 2018

2015298469

WHAT IS CLAIMED IS:

1. A nucleoside or nucleotide covalently attached to a fluorophore through a linker, wherein said linker comprises a structure of formula (II):

5 wherein

R^3 is selected from optionally substituted C_{1-6} alkyl, $-NR^5-C(=O)R^6$, or $-NR^7-C(=O)-OR^8$;

R^4 is selected from hydrogen or optionally substituted C_{1-6} alkyl;

each R^5 and R^7 is independently selected from hydrogen, optionally substituted C_{1-6} alkyl

each R^6 and R^8 is independently optionally substituted C_{1-6} alkyl,;

each of the methylene repeating unit in is optionally substituted;

X is selected from methylene (CH_2), oxygen (O), or sulfur (S);

and

p is an integer of 1 through 20.

20 2. The nucleoside or nucleotide of Claim 1, wherein R^3 is optionally substituted C_{1-6} alkyl.

3. The nucleoside or nucleotide of Claim 2, wherein R^3 is methyl.

4. The nucleoside or nucleotide of Claim 1, wherein R^3 is $-NH-C(=O)R^6$.

5. The nucleoside or nucleotide of Claim 4, wherein R^6 is methyl.

25 6. The nucleoside or nucleotide of Claim 1, wherein R^3 is $-NH-C(=O)OR^8$.

7. The nucleoside or nucleotide of Claim 6, wherein R^8 is *t*-butyl.

8. The nucleoside or nucleotide of any one of Claims 1, 2 to 7, wherein R^4 is hydrogen.

14 Nov 2018

2015298469

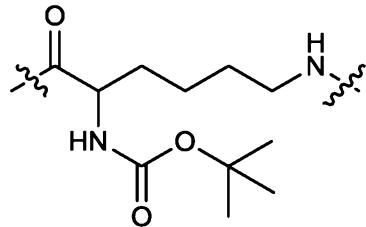
9. The nucleoside or nucleotide of any one of Claims 1, 2 to 7, wherein R⁴ is optionally substituted C₁₋₆ alkyl.

10. The nucleoside or nucleotide of Claim 9, wherein R⁴ is methyl.

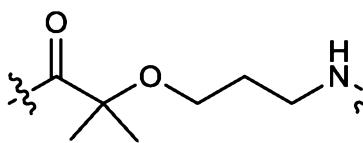
11. The nucleoside or nucleotide of any one of Claims 1, 2 to 10, wherein X is 5 methylene.

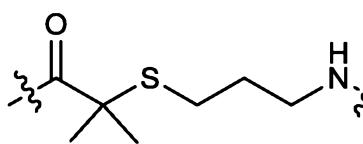
12. The nucleoside or nucleotide of any one of Claims 1, 2 to 10, wherein X is O.

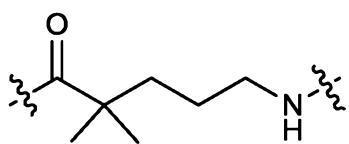
13. The nucleoside or nucleotide of any one of Claims 1, 2 to 10, wherein X is S.


14. The nucleoside or nucleotide of any one of Claims 1, 2 to 13, wherein p is 10 1.

15. The nucleoside or nucleotide of any one of Claims 1, 2 to 13, wherein p is 2.


16. The nucleoside or nucleotide of Claim 1, wherein the structure of formula 15 (II) is also represented by formula (IIb), (IIc), (IId), (IIe) or (IIf):


(IIb),


(IIc),

(IId),

(IIe) or

(IIIf).

17. The nucleoside or nucleotide of any one of Claims 1 to 16, wherein the 20 nucleoside or nucleotide is attached to the left side of the linker.

18. A kit comprising a nucleoside or nucleotide according to any one of Claims 1 to 17.

2015298469
14 Nov 2018

19. A reagent for modifying a nucleoside or a nucleotide, comprising a fluorophore and a linker according to any one of Claims 1 to 17.

20. A method for detecting a nucleoside or nucleotide that has been incorporated into a polynucleotide, comprising:

5 (a) incorporating a nucleoside or nucleotide according to any one of Claims 1 to 17 into a polynucleotide; and

(b) detecting a fluorescent signal from said nucleoside or nucleotide that was incorporated in step (a).

21. The method of Claim 20, further comprising providing a template nucleic acid strand and a partially hybridized nucleic acid strand, wherein step (a) incorporates into the hybridized strand at least one nucleoside or nucleotide that is complementary to a nucleoside or nucleotide at the corresponding position of the template strand, and wherein step (b) identifies the base of the incorporated nucleoside or nucleotide, thereby indicating the identity of the complementary nucleoside or nucleotide of the template strand.

15 22. A method of sequencing a template nucleic acid molecule, comprising:

incorporating one or more labeled nucleotides into a strand of nucleic acid complementary to the template nucleic acid;

20 determining the identity of the base present in one or more incorporated labeled nucleotides in order to determine the sequence of the template nucleic acid molecule;

25 wherein the identity of the base present in said one or more labeled nucleotides is determined by detecting a fluorescent signal produced by said labeled nucleotides; and wherein at least one incorporated labeled nucleotide is a nucleotide according to any one of Claims 1 to 17.

23. The method of Claim 22, wherein the identity of the base present in said one or more nucleotides is determined after each nucleotide incorporation step.

1 / 17

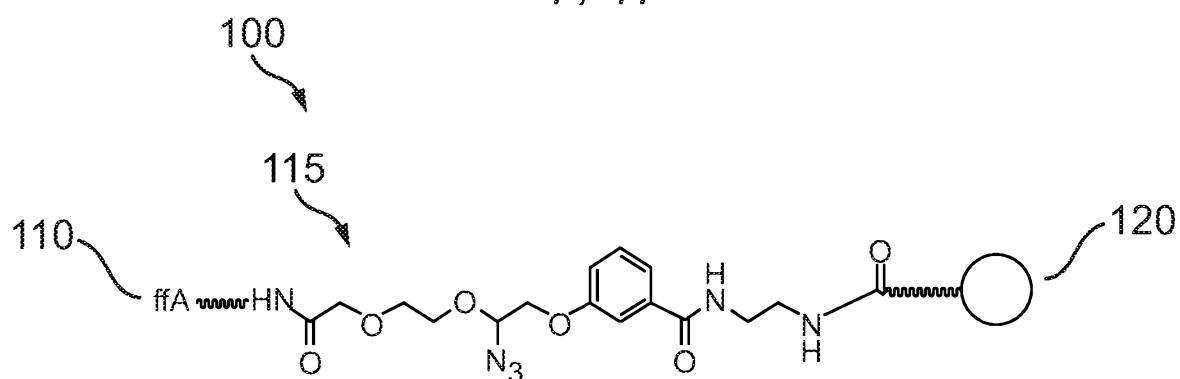


Fig. 1A

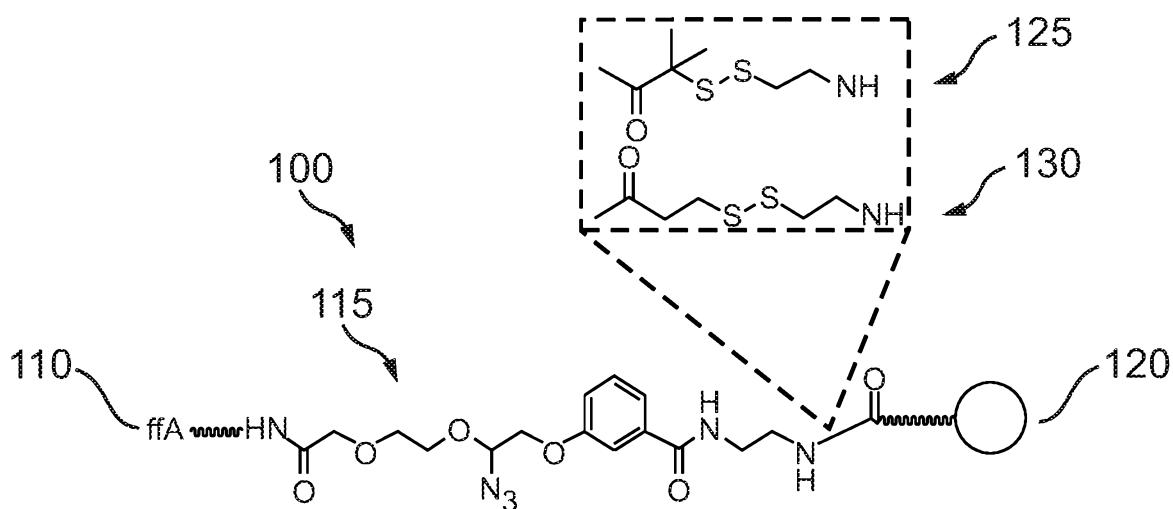


Fig. 1B

2 / 17

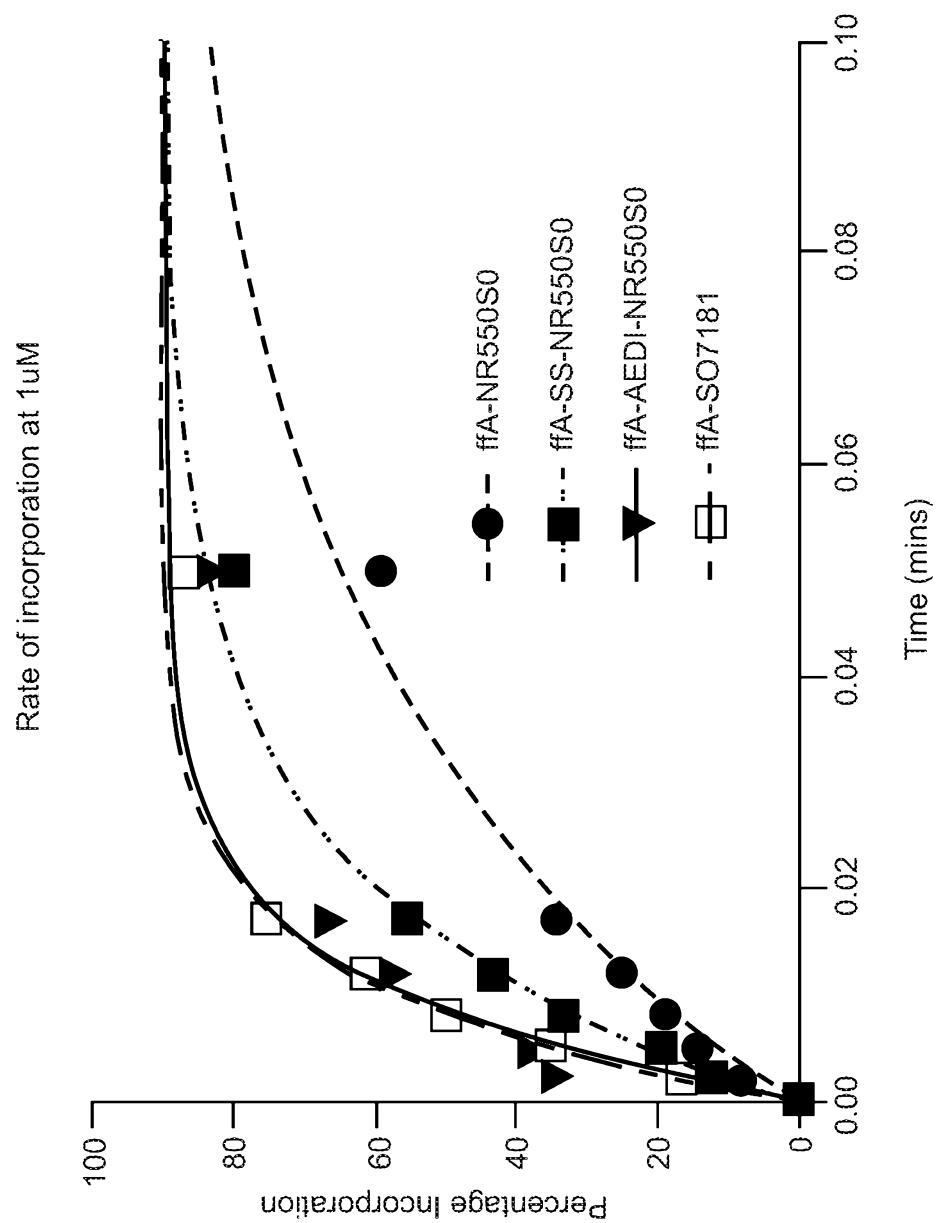


Fig. 2

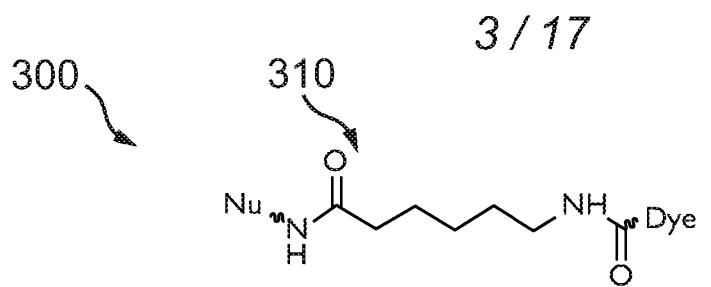


Fig. 3A

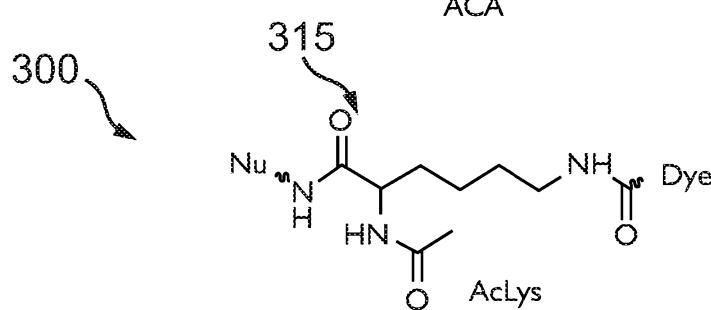


Fig. 3B

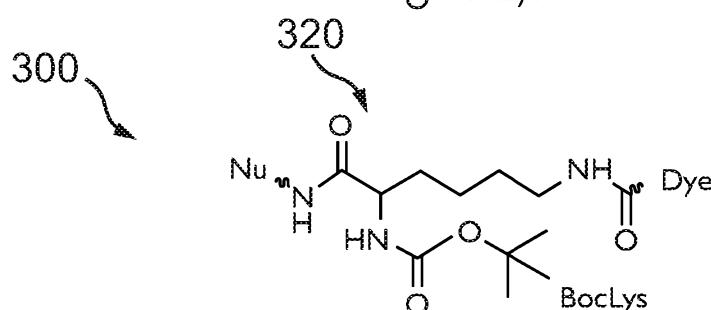


Fig. 3C

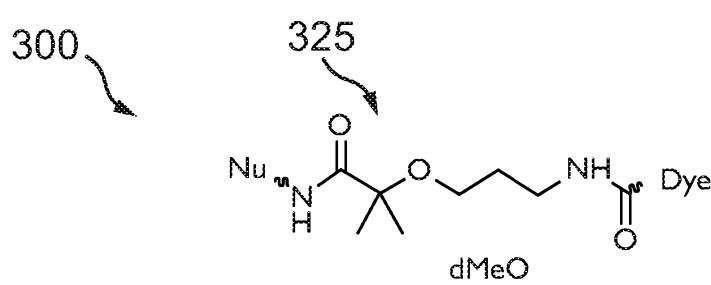


Fig. 3D

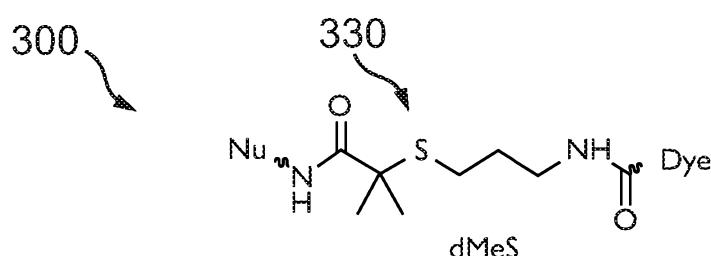


Fig. 3E

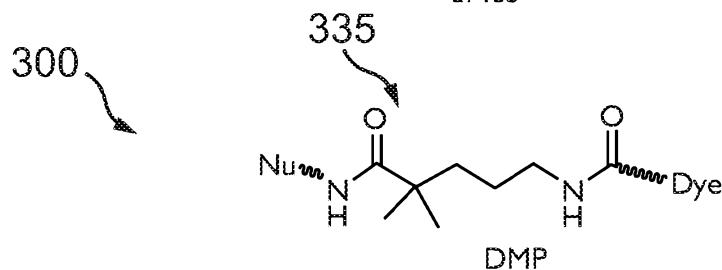


Fig. 3F

4 / 17

Dye set	Density	%PF	Ph R1	PPh R1	Ph R2	PPh R2	%Align R1	%Align R2	error R1	error R2
V4	230	79.6	0.205	0.111	0.35	0.149	82.2	79.3	1.41	3.19
V5.75	187	77.65	0.371	0.048	0.442	0.164	80.06	79.99	2.16	3.94
V10/cyan-peg4	222	79.88	0.305	0.084	0.53	0.179	81.89	79.45	1.42	3.48
V10/cyan-peg4, A- AED1550S0	223	81.83	0.14	0.123	0.294	0.197	81.61	67.12	0.85	5.84
V10/cyan-peg4, A- AcLyss550S0	227	78.52	0.2	0.128	0.319	0.272	82.23	78.52	1.44	3.48
V10/cyan, A- AcLyss550S0	145	86.27	0.178	0.211	0.283	0.29	82.4	79.84	1.33	3.33

Fig. 4

5 / 17

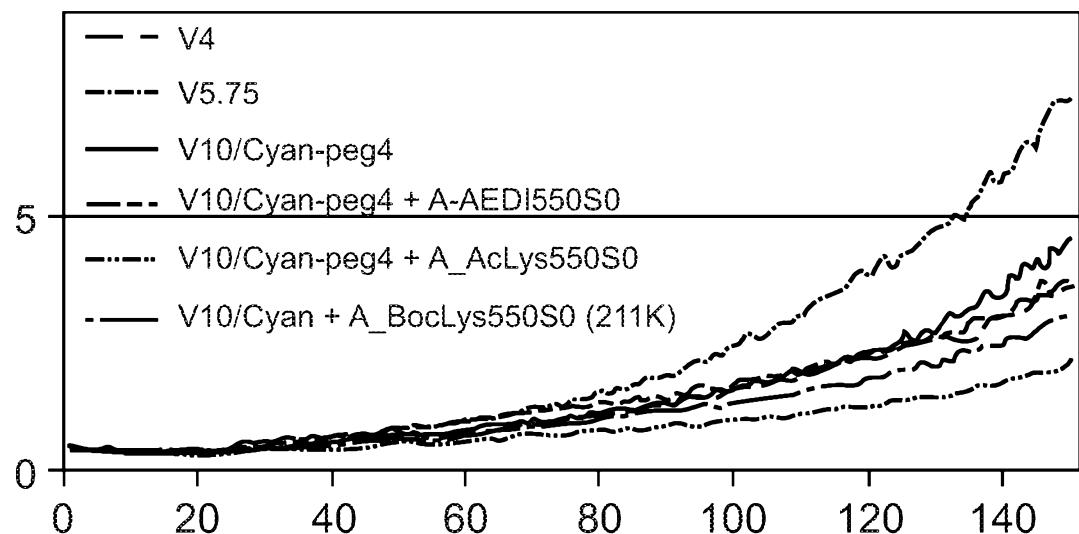


Fig. 5A

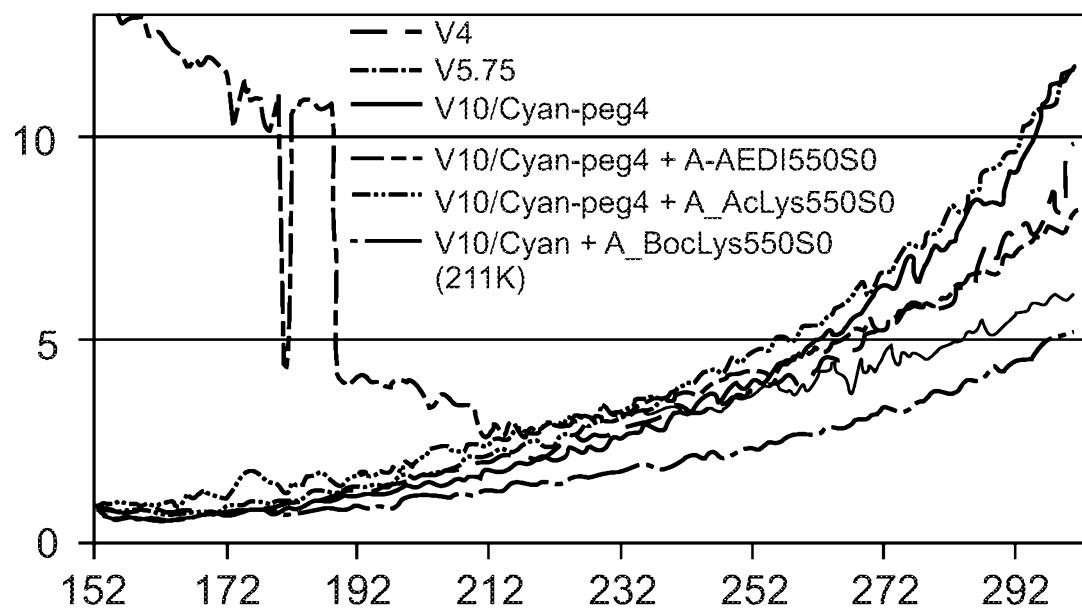


Fig. 5B

6 / 17

Dye set	Density	%PF	Ph R1	PPh R1	Ph R2	PPh R2	%Align R1	%Align R2	error R1	error R2
V4	191	82.62	0.132	0.151	0.242	0.163	81.91	79.59	1.34	2.43
V5.75	235	79.02	0.212	0.05	0.304	0.187	82.54	78.74	1.4	4.2
V10/Cyan-peg4	213	84.7	0.2	0.063	0.348	0.179	83.3	81.19	0.96	2.02
V10/Cyan-peg4	220	83.03	0.188	0.115	0.317	0.207	82.92	80.9	1.11	2.16
V10/Cyan-peg4, A-AED ^I -550S0	252	76.37	0.102	0.097	0.132	0.412	80.1	34.9	0.84	25.58
V10/Cyan-peg4, A-ACA550S0	204	85.88	0.145	0.076	0.271	0.222	83.21	80.58	0.96	2.39

Fig. 6

7 / 17

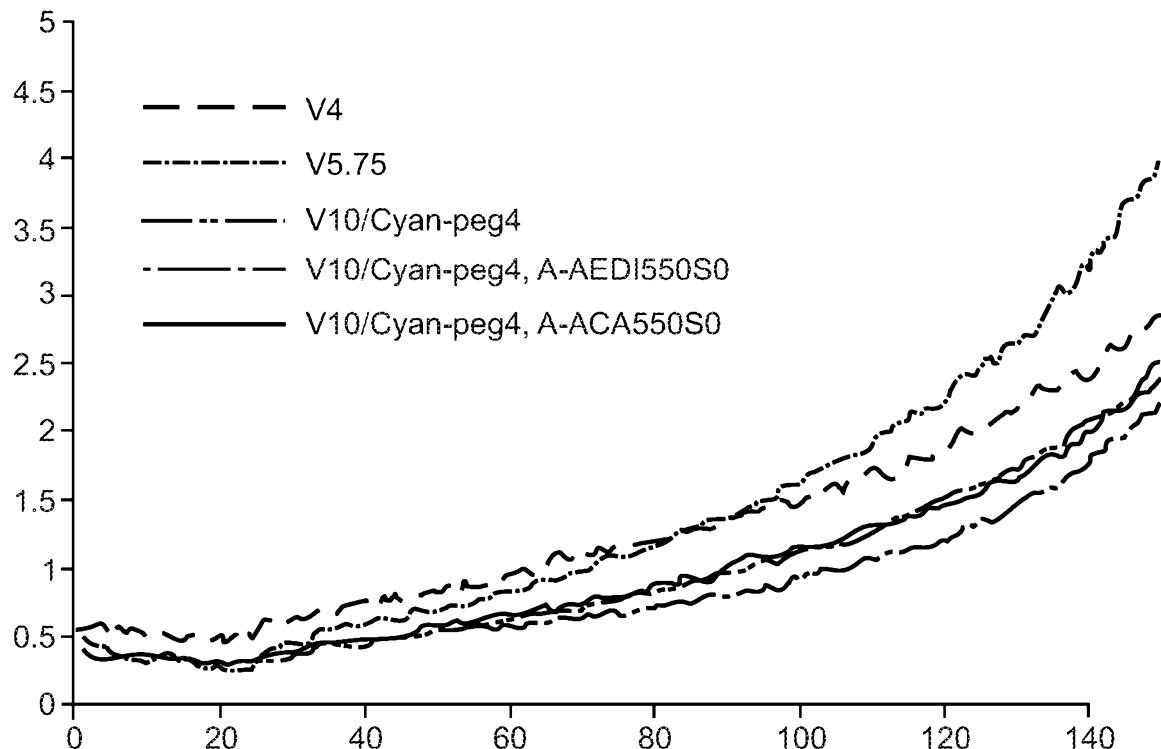


Fig. 7A

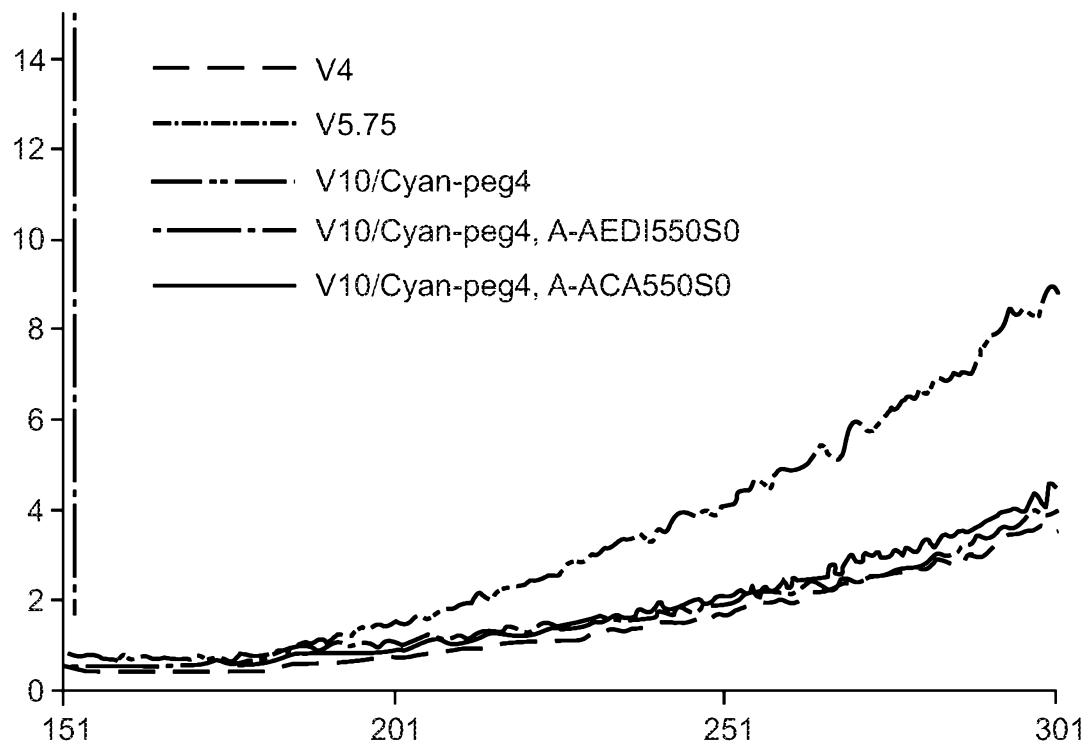


Fig. 7B

8 / 17

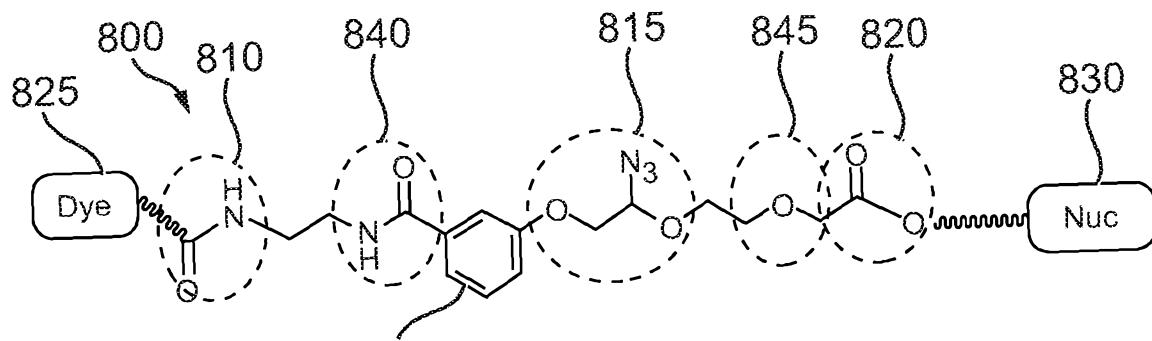


Fig. 8A

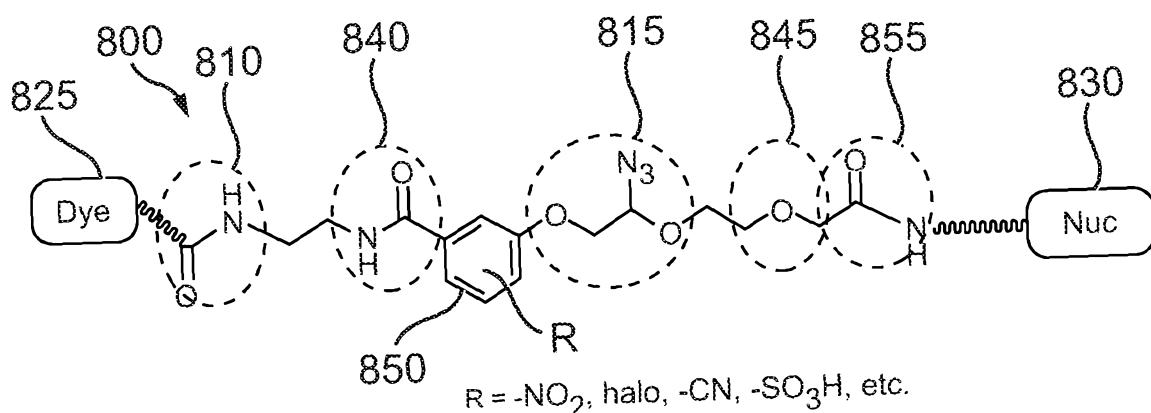


Fig. 8B

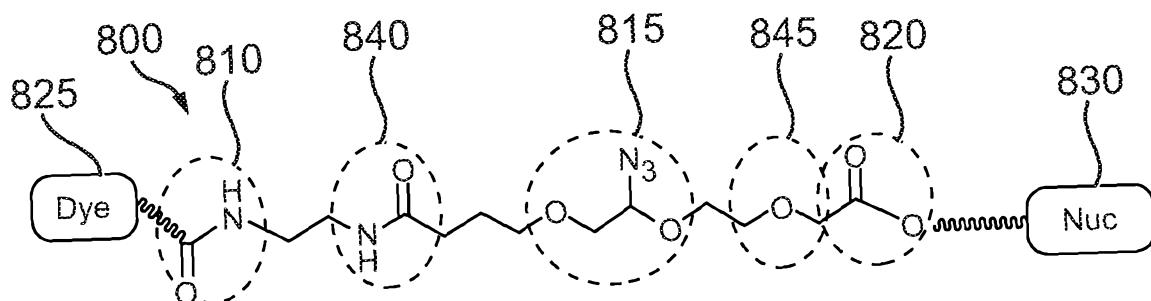


Fig. 8C

9 / 17

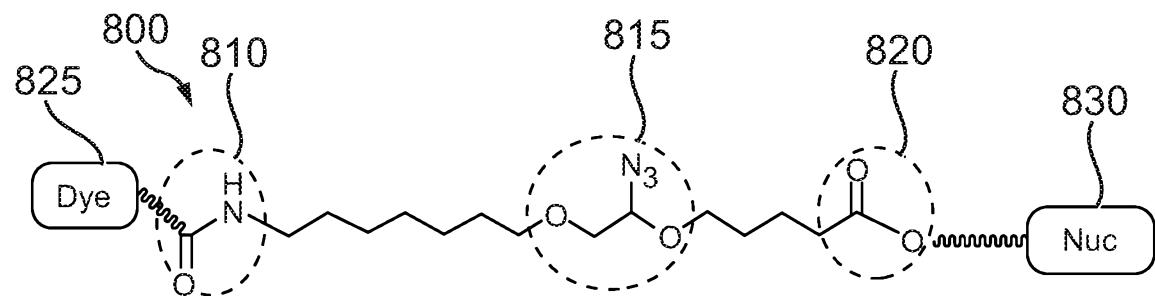


Fig. 8D

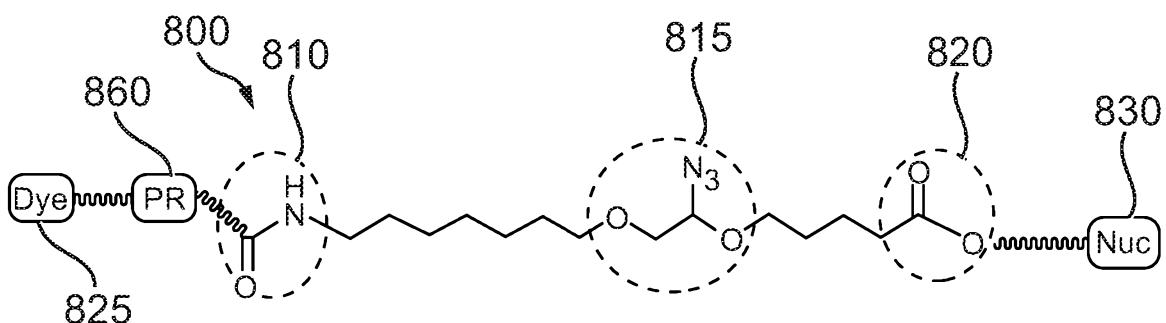


Fig. 8E

10 / 17

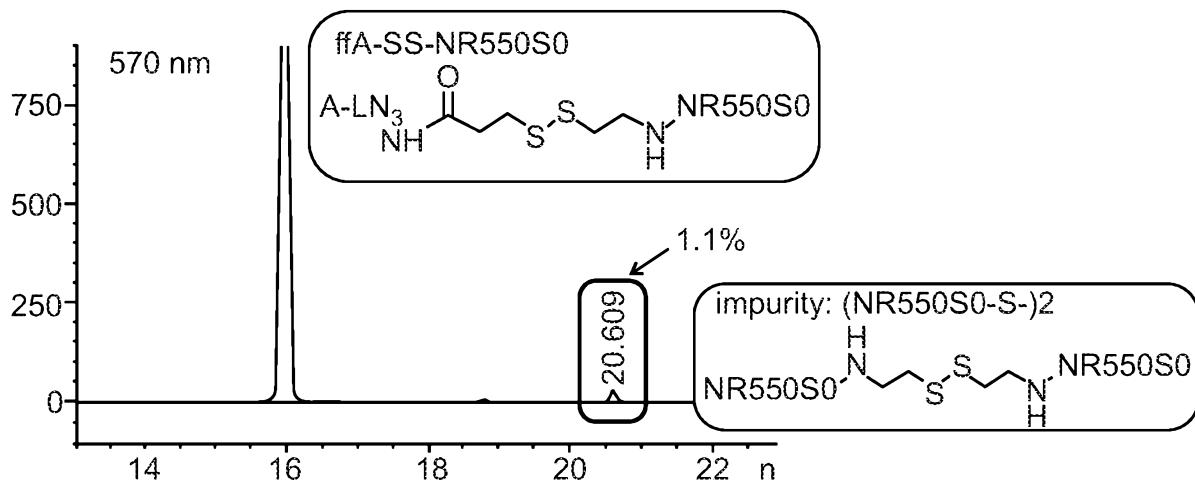


Fig. 9A

	Buffers	Results*	
	21 hours @ 60°C	ffA-SS-NR550S0	ffA-AEDI-NR550S0
1	PR2 buffer	~50% disulfide side-product	~6% disulfide side-product
2	Incorporation buffer (pH 9.9) (no Mg ²⁺ , no Chaps)	~10% disulfide side-product	No disulfide side-product
3	IMX	~38% disulfide side-product	No disulfide side-product
4	IMX + Pol 812	~34% disulfide side-product	No disulfide side-product
5	SRE	No disulfide side-product	No disulfide side-product
6	TEAB (0.1M): CH ₃ CN (1:1)	~20% disulfide side-product	No disulfide side-product

Fig. 9B

11 / 17

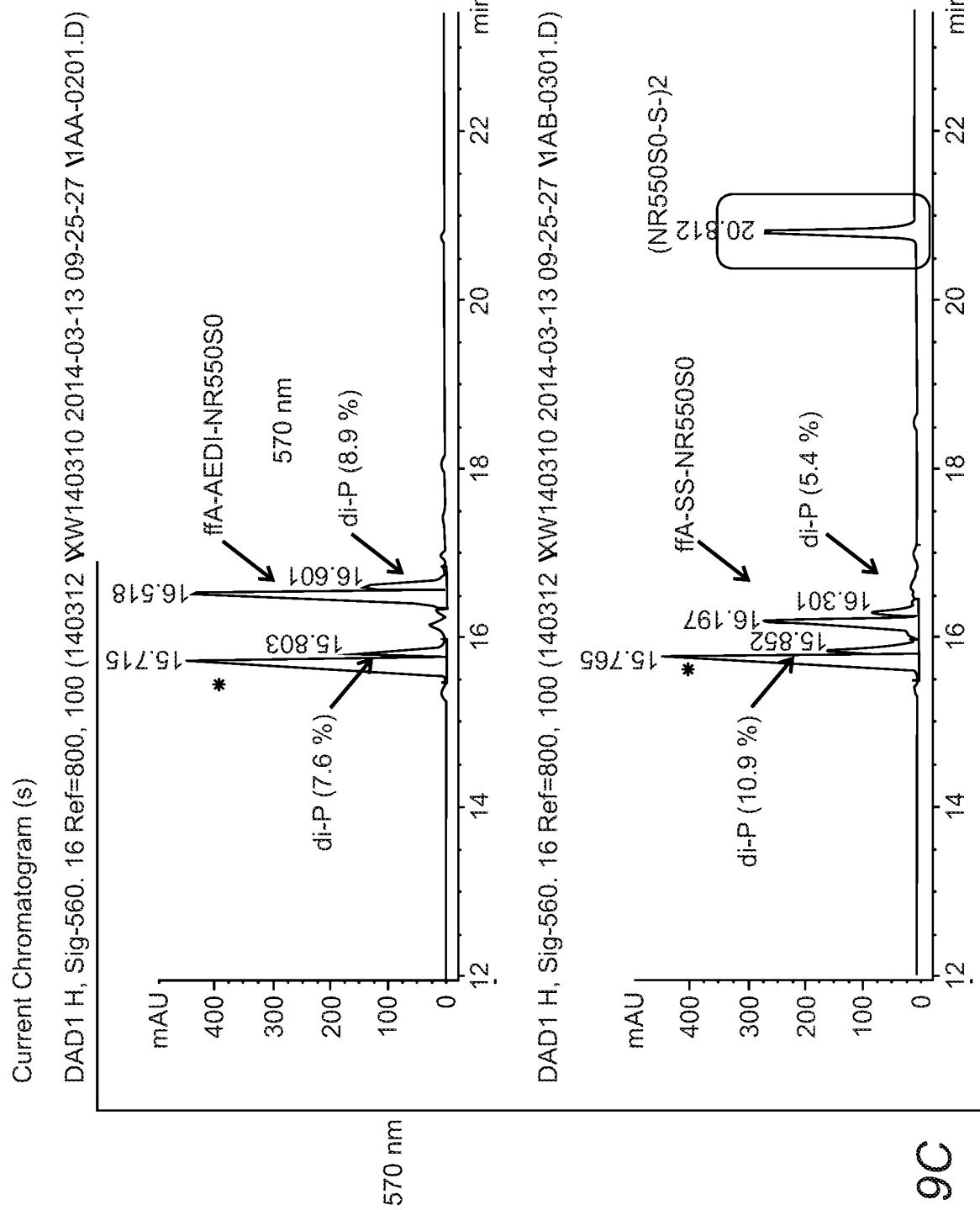


Fig. 9C

12 / 17

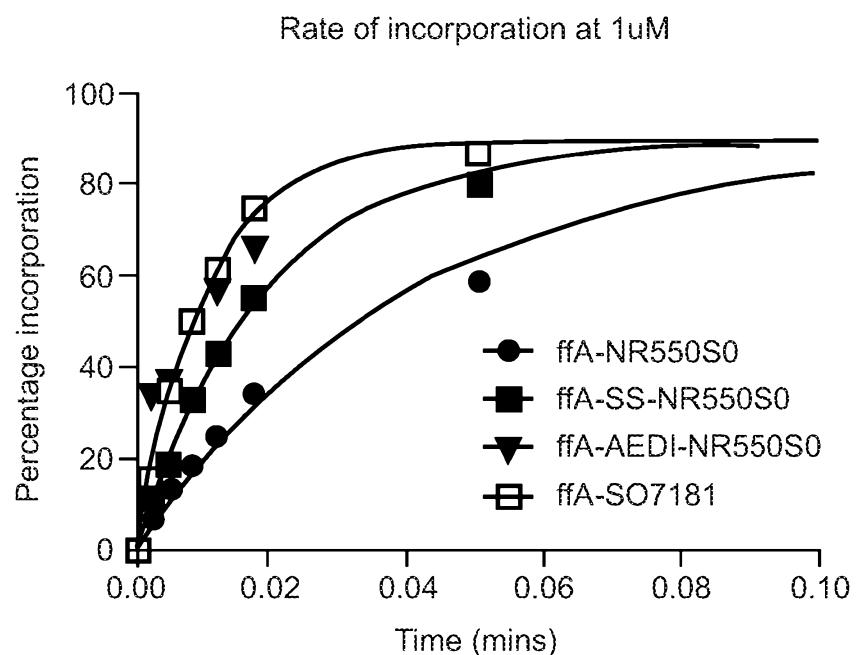


Fig. 10A

ffA	K (uM/min)
NR550S0	22 (1X)
-SS-NR550S0	54 (2X)
-AEDI-NR550S0	97 (4X)
Std -SO7181	99 (4X)

Fig. 10B

13 / 17

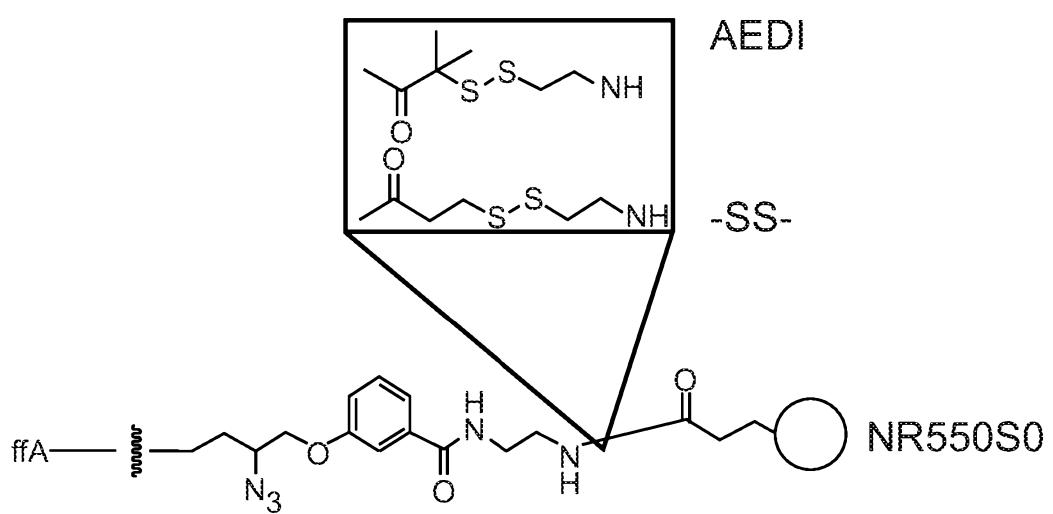


Fig. 10C

14 / 17

V10 combination with different A-550S0
(same concentration)
Scatter plot for tile 1 cycle2

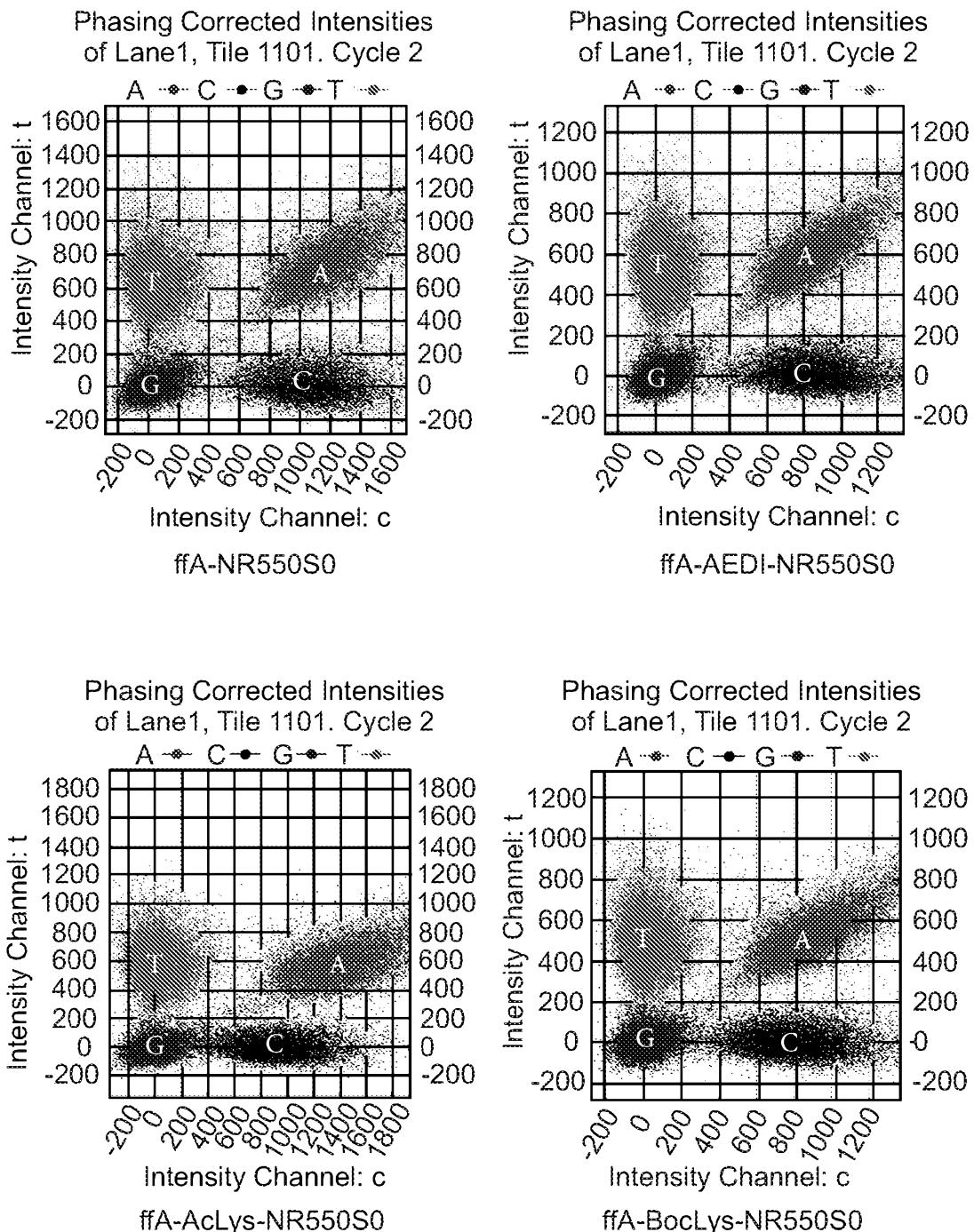


Fig. 11A

15 / 17

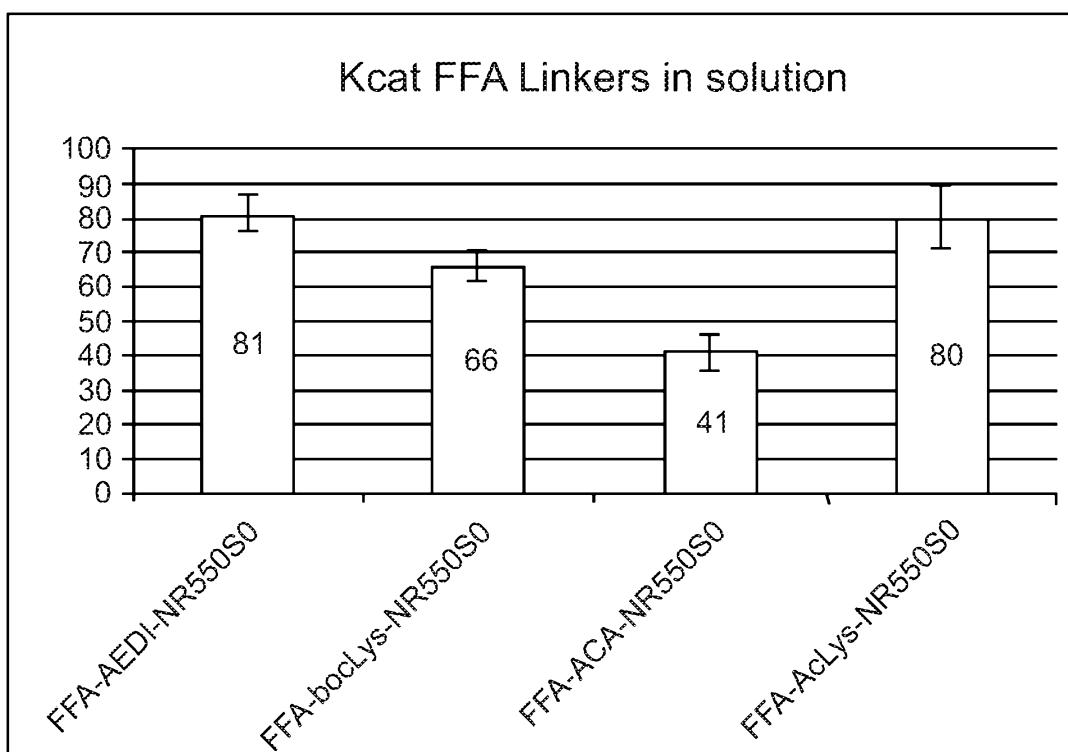


Fig. 11B

16 / 17

Dye set	Density	%PF	Ph R1	PPh R1	Ph R2	PPh R2	%Align R1	%Align R2	error R1	error R2
ffNs + ffA-NR550S0	222	79.88	0.305	0.084	0.53	0.179	81.89	79.45	1.42	3.48
ffNs + ffA-AEDI-NR550S0	223	81.83	0.14	0.123	0.294	0.197	81.61	67.12*	0.85	5.84*
ffNs + ffA-AcLys-NR550S0	227	78.52	0.2	0.128	0.319	0.272	82.23	78.52	1.44	3.48
ffNs + ffA-BocLys-NR550S0	211	82.97	0.126	0.146	0.226	0.249	82.54	80.45	1.17	1.99

Fig. 12A

17 / 17

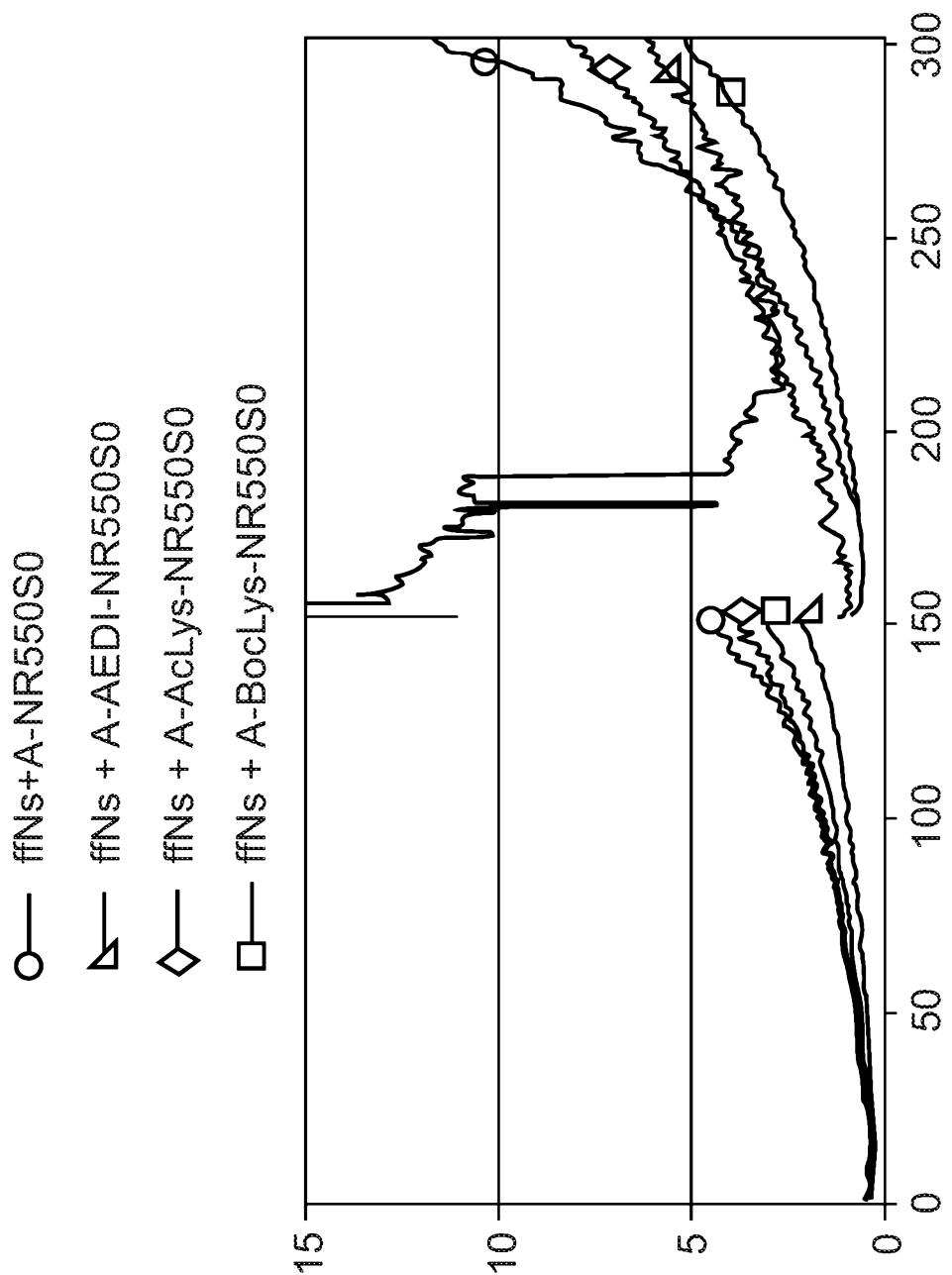


Fig. 12B