woO 2009/055754 A2 |10 00 OO0 0 0 0 O

(19) World Intellectual Property Organization f 11”11

52 IO O O R 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
30 April 2009 (30.04.2009)

(10) International Publication Number

WO 2009/055754 A2

(51)

21

(22)
(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GOGF 15/16 (2006.01) GOGF 17/00 (2006.01)

International Application Number:
PCT/US2008/081234

International Filing Date: 26 October 2008 (26.10.2008)
English
English

Filing Language:
Publication Language:

Priority Data:
11/925,591

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: SEDUKHIN, Igor; c/o Microsoft Corpo-
ration, LCA, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). ESHNER,
Daniel; c/o Microsoft Corporation, LLCA, International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). SWARTZ, Stephen T.; c/o Microsoft

26 October 2007 (26.10.2007) US

(74)

(81)

(34)

Corporation, LCA, International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Agent: ALLEN, Michael, B.; Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: MODELING AND MANAGING HETEROGENEOUS APPLICATIONS

Tools 125

Declarative Apglication Model 153
.

\
|
/

{ Parts 161

\

|

\ Application
|

Exscutive Module

Work Bregkdown
Moduie 716

/ Detailed Application Model 1530
®

{ 16140
Vs)

Hosts Environments 13§

| i

i

i | Composite Distributed | 1

'''' i Application 107 !
i

i |

! 1

! i

! !

(
S%lﬁQ_B&Label T_ESA,ESPayload zom%\

{Basad On 1530)

FiG. 1A

(57) Abstract: The present invention extends to methods,
systems, and computer program products for modeling
and managing heterogeneous applications. Application
intent can be described in a relatively straight forward
manner that abstracts underlying implementation details.
Thus, application developers can develop applications
without necessarily having to know extensive details
of an underlying implementation environment. In
any event, an application can be executed in different
implementation environments without requiring changes to
the corresponding model.

WO 2009/055754 A2 | NI DA 000 0T R0 1000 00 0 O

FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, — as to the applicant’s entitlement to claim the priority of the
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, earlier application (Rule 4.17(iii))
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted a — without international search report and to be republished

patent (Rule 4.17(ii)) upon receipt of that report

WO 2009/055754 PCT/US2008/081234

MODELING AND MANAGING HETEROGENEOUS APPLICATIONS

\

BACKGROUND

[0001] 1. Background and Relevant Art

[0002] Computer systems and related technology affect many aspects of society.
Indeed, the computer system’s ability to process information has transformed the way
we live and work. Computer systems now commonly perform a host of tasks (e.g.,
word processing, scheduling, accounting, etc.) that prior to the advent of the computer
system were performed manually. More recently, computer systems have been
coupled to one another and to other electronic devices to form both wired and wireless
computer networks over which the computer systems and other electronic devices can
transfer electronic data. Accordingly, the performance of many computing tasks are
distributed across a number of different computer systems and/or a number of
different computing components.

[0003] As computerized systems have increased in popularity, so have the
complexity of the software and hardware employed within such systems. In general,
the need for seemingly more complex software continues to grow, which further tends
to be one of the forces that push greater development of hardware. For example, if
application programs require too much of a given hardware system, the hardware
system can operate inefficiently, or otherwise be unable to process the application
program at all. Recent trends in application program development, however, have
removed many of these types of hardware constraints at least in part using distributed
application programs. In general, distributed application programs comprise
components that are executed over several different hardware components, often on

different computer systems in a tiered environment.

S 1-

WO 2009/055754 PCT/US2008/081234

[0004] With distributed application programs, the different computer systems may
communicate various processing results to each other over a network. Along these
lines, an organization will employ a distributed application server to manage several
different distributed application programs over many different computer systems. For
example, a user might employ one distributed application server to manage the
operations of an ecommerce application program that is executed on one set of
different computer systems. The user might also use the distributed application server
to manage execution of customer management application programs on the same or
even a different set of computer systems.

[0005] Of course, each corresponding distributed application managed through
the distributed application server can, in turn, have several different modules and
components that are executed on still other different (and potentially differently
configured) computer systems over different (and potentially differently configured)
network connections. Thus, while this ability to combine processing power through
several different computer systems can be an advantage, there are various
complexities associated with distributing application program modules.

[0006] In many environments, there is multiple diverse implementation
technologies composed into a distributed application. Nonetheless, the components of
a distributed application operating in such an environment must behave coherently
and reliably. Thus, an administrator or other user typically deals with each part of a
distributed application individually and manually to make then work together. For
example, to implement a distributed application an administrator or other user can be
required to program individual parts of the distributed applications (e.g., Web sites,
Web services, Workflows, Databases, etc.) using multiple different frameworks and

hosting technologies (e.g., Web services, App servers, Database servers, etc.). The

-

WO 2009/055754 PCT/US2008/081234

implementation-specific parts of the distributed application are then manually
configured to connect and exchange data.

[0007] Subsequently, the administrator or other user can create text documents
that describe how and when to deploy and activate parts of an application and what to
do when failures occur. It is generally a manual task to act on what is described in
these text documents. Accordingly the process of creating and executing a distributed

application is typically expensive, error prone and not change-friendly.

BRIEF SUMMARY

[0008] The present invention extends to methods, systems, and computer program
products for modeling and managing heterogeneous applications. The components of
a composite distributed application are described in a declarative model. The
declarative model includes a description of a plurality of different application parts of
the composite distributed application. One or more abstractions are inserted into the
declarative model. Each abstraction describes the intended behavior of a
corresponding application part in an implementation independent manner. Thus, the
abstractions extend the declarative model to make the declarative model executable.

[0009] In some embodiments, an implementation attribute is set on at least one
abstraction. The implementation attribute expressly indicates how the abstraction is
to be tagged. In other embodiments, no implementation attributes are set. However,
in either of the embodiments, each of the one or more abstractions is tagged with a
label. Each label includes implementation specific details that indicate how a
plurality of different technologies are to be used to implement the corresponding

application part.

WO 2009/055754 PCT/US2008/081234

[0010] When an abstraction includes an implementation attribute, the abstraction
can be tagged with a label in accordance with the express indication in the
implementation attribute. On the other hand, when an abstraction does not include an
implementation attribute, a label can be inferred (e.g., based on available resources of
different technologies, from prior system settings, from default values, etc.) and then
tagged to the abstraction.

[0011] The declarative model is interpreted to implement an executable instance
of the composite distributed application. The executable instance of the composite
distributed application is implemented using the plurality of technologies in
accordance with the implementation specific details included in the labels.

[0012] This summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter.

[0013] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention
may be realized and obtained by means of the instruments and combinations
particularly pointed out in the appended claims. These and other features of the
present invention will become more fully apparent from the following description and
appended claims, or may be learned by the practice of the invention as set forth

hereinafter.

WO 2009/055754 PCT/US2008/081234

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] In order to describe the manner in which the above-recited and other
advantages and features of the invention can be obtained, a more particular
description of the invention briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the appended drawings.
Understanding that these drawings depict only typical embodiments of the invention
and are not therefore to be considered to be limiting of its scope, the invention will be
described and explained with additional specificity and detail through the use of the
accompanying drawings in which:

[0015] Figures 1A illustrates an example computer architecture that facilitates
modeling and managing heterogeneous applications.

[0016] Figure 1B illustrates an example declarative model for a composite
distributed application.

[0017] Figure 1C illustrates an example declarative model for a composite
distributed application including intended behaviors.

[0018] Figure 1D illustrates an example declarative model for a composite
distributed application including intended behaviors with labels indicating
implementation details.

[0019] Figure 1E illustrates another view of some of the components from the
computer architecture of Figure 1A interpreting a declarative application model.
[0020] Figure 2 illustrates a flow chart of an example method for implementing a
composite distributed application.

[0021] Figure 3 illustrates an example computer architecture for translating

declarative application models.

WO 2009/055754 PCT/US2008/081234

DETAILED DESCRIPTION

[0022] The present invention extends to methods, systems, and computer program
products for modeling and managing heterogeneous applications. The components of
a composite distributed application are described in a declarative model. The
declarative model includes a description of a plurality of different application parts of
the composite distributed application. One or more abstractions are inserted into the
declarative model. Each abstraction describes the intended behavior of a
corresponding application part in an implementation independent manner. Thus, the
abstractions extend the declarative model to make the declarative model executable.
[0023] In some embodiments, an implementation attribute is set on at least one
abstraction. The implementation attribute expressly indicates how the abstraction is
to be tagged. In other embodiments, no implementation attributes are set. However,
in either of the embodiments, each of the one or more abstractions is tagged with a
label. Each label includes implementation specific details that indicate how a
plurality of different technologies are to be used to implement the corresponding
application part.

[0024] When an abstraction includes an implementation attribute, the abstraction
can be tagged with a label in accordance with the express indication in the
implementation attribute. On the other hand, when an abstraction does not include an
implementation attribute, a label can be inferred (e.g., based on available resources of
different technologies, from prior system settings, from default values, etc.) and then
tagged to the abstraction.

[0025] The declarative model is interpreted to implement an executable instance

of the composite distributed application. The executable instance of the composite

WO 2009/055754 PCT/US2008/081234

distributed application is implemented using the plurality of technologies in
accordance with the implementation specific details included in the labels.

[0026] Embodiments of the present invention may comprise or utilize a special
purpose or general-purpose computer including computer hardware, as discussed in
greater detail below. Embodiments within the scope of the present invention also
include physical and other computer-readable media for carrying or storing computer-
executable instructions and/or data structures. Such computer-readable media can be
any available media that can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store computer-executable
instructions are physical storage media. Computer-readable media that carry
computer-executable instructions are transmission media. Thus, by way of example,
and not limitation, embodiments of the invention can comprise at least two distinctly
different kinds of computer-readable media: physical storage media and transmission
media.

[0027] Physical storage media includes RAM, ROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store desired program code means in the form
of computer-executable instructions or data structures and which can be accessed by a
general purpose or special purpose computer.

[0028] A “network” is defined as one or more data links that enable the transport
of electronic data between computer systems and/or modules and/or other electronic
devices. When information is transferred or provided over a network or another
communications connection (either hardwired, wireless, or a combination of
hardwired or wireless) to a computer, the computer properly views the connection as a

transmission medium. Transmissions media can include a network and/or data links

-7 =

WO 2009/055754 PCT/US2008/081234

which can be used to carry or desired program code means in the form of computer-
executable instructions or data structures and which can be accessed by a general
purpose or special purpose computer. Combinations of the above should also be
included within the scope of computer-readable media.

[0029] Further, it should be understood, that upon reaching various computer
system components, program code means in the form of computer-executable
instructions or data structures can be transferred automatically from transmission
media to physical storage media. For example, computer-executable instructions or
data structures received over a network or data link can be buffered in RAM within a
network interface module (e.g., a “NIC”), and then eventually transferred to computer
system RAM and/or to less volatile physical storage media at a computer system.
Thus, it should be understood that physical storage media can be included in computer
system components that also (or even primarily) utilize transmission media.

[0030] Computer-executable instructions comprise, for example, instructions and
data which cause a general purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or group of functions. The
computer executable instructions may be, for example, binaries, intermediate format
instructions such as assembly language, or even source code. Although the subject
matter has been described in language specific to structural features and/or
methodological acts, it is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[0031] Those skilled in the art will appreciate that the invention may be practiced

in network computing environments with many types of computer system

-8 —

WO 2009/055754 PCT/US2008/081234

configurations, including, personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor systems, microprocessor-
based or programmable consumer -electronics, network PCs, minicomputers,
mainframe computers, mobile telephones, PDAs, pagers, routers, switches, and the
like. The invention may also be practiced in distributed system environments where
local and remote computer systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and wireless data links) through
a network, both perform tasks. In a distributed system environment, program
modules may be located in both local and remote memory storage devices.

[0032] Figure 1A illustrates an example computer architecture 100 that facilitates
modeling and managing heterogencous applications. Depicted in computer
architecture 100 are tools 125, repository 120, executive module 115, driver manager
130, drivers 142, and host environments 135. Each of the depicted components can
be connected to one another over a network, such as, for example, a Local Area
Network ("LAN"), a Wide Area Network (“WAN”), and even the Internet.
Accordingly, each of the depicted components as well as any other connected
components, can create message related data and exchange message related data (e.g.,
Internet Protocol (“IP”’) datagrams and other higher layer protocols that utilize 1P
datagrams, such as, Transmission Control Protocol (“TCP”), Hypertext Transfer
Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc.) over the network.
[0033] As depicted, tools 125 can be used to write declarative models for
applications and store declarative models, such as, for example, declarative
application model 153, in repository 120. Declarative models are used to describe the

structure and behavior of real-world running (deployed) applications. Thus, a user

WO 2009/055754 PCT/US2008/081234

(e.g., distributed application program developer) can use one or more of tools 125 to
create declarative application model 153.

[0034] Generally, declarative models include one or more sets of high-level
declarations expressing application intent for a distributed application. Thus, the
high-level declarations generally describe operations and/or behaviors of one or more
modules in the distributed application program. However, the high-level declarations
do not necessarily describe implementation steps required to deploy a distributed
application having the particular operations/behaviors (although they can if
appropriate). For example, declarative application model 153 can express the
generalized intent of a workflow, including, for example, that a first Web service be
connected to a database. However, declarative application model 153 does not
necessarily describe how (e.g., protocol), nor where (e.g., address) the Web service
and database are to be connected to one another. In fact, how and where is determined
based on which computer systems the database and the Web service are deployed.
[0035] In some embodiments, a composite distributed application is described
using different application parts within a declarative application model. Each
application part describes a portion of a distributed application, which can be
composited together to provide desired functionality. For example, declarative
application model 153 includes application part 161A and application part 161B.
Application part 161A and application part 161B each describe a different portion of a
composite distributed application modeled by declarative application model 153. For
example, application part 161A can describe a Web service and application part 161B
can describe a database.

[0036] Each application part can also include an abstraction that indicates the

intended behavior of the described application part. For example, abstraction 162A

10—

WO 2009/055754 PCT/US2008/081234

and abstraction 162B can indicate the intended behavior of application part 161A and
application part 161B respectively. However, abstractions do not necessarily indicate
how intended behavior is to be implemented. For example, abstraction 162A can
indicate a Web service internal behavior as a workflow, but not the environment
where nor the technology with which the workflow is to be implemented.

[0037] Although in some embodiments, an abstraction also includes an attribute
that expressly indicates implementation details for implementing intended behavior.
For example, abstraction 162A can optionally include attribute 163A indicating
implementation details for the intended behavior of application part 161A. Likewise,
abstraction 162B can optionally include attribute 163B indicating implementation
details for the intended behavior of application part 161B.

[0038] To deploy an application based on a declarative model, the declarative
model can be sent to executive module 115. Executive module 115 can refine the
declarative model until there are no ambiguities and the details are sufficient for
drivers to consume. Thus, executive module 115 can receive and refine declarative
model 153 so that declarative model 153 can be translated by drivers 142 (e.g., one or
more technology-specific drivers) into a deployed application.

[0039] In general, “refining” a declarative model can include some type of work
breakdown structure, such as, for example, progressive elaboration, so that the model
declarations are sufficiently complete for translation by drivers 142. Since declarative
models can be written relatively loosely by a human user (i.c., containing generalized
intent instructions or requests), there may be different degrees or extents to which
executive module 115 modifies or supplements a declarative model for deploying an
application. Work breakdown module 116 can implement a work breakdown

structure algorithm, such as, for example, a progressive eclaboration algorithm, to

-11 -

WO 2009/055754 PCT/US2008/081234

determine when an appropriate granularity has been reached and instructions are
sufficient for drivers.

[0040] Executive module 115 can also account for dependencies and constraints
included in a declarative model. For example, executive module 115 can be
configured to refine declarative model 153 based on semantics of dependencies
between elements in the declarative model 153 (e.g., one web service connected to
another). Thus, executive module 115 and work breakdown module 116 can
interoperate to output detailed application model 153D that provides driver 130 with
sufficient information to deploy distributed application 107.

[0041] In additional or alternative implementations, executive module 115 can
also be configured to refine the declarative model 153 based on some other contextual
awareness. For example, executive module 115 can refine the declarative model
based on the inventory of host environments 135 that may be available in the
datacenter where a distributed application program will be deployed. Executive
module 115 can reflect contextual awareness information in detailed application
model 153D.

[0042] In addition, executive module 115 can be configured to fill in missing data
regarding computer system assignments. For example, executive module 115 might
identify a number of different distributed application program modules in declarative
model 153 that have no requirement for specific computer system addresses or
operating requirements. Thus, executive module 115 can assign distributed
application program modules to an available host environment on a computer system.
Executive module 115 can reason about the best way to fill in data in a refined
declarative model 153. For example, as previously described, executive component

115 may determine and decide which transport to use for an endpoint based on

-12 -

WO 2009/055754 PCT/US2008/081234

proximity of connection, or determine and decide how to allocate distributed
application program modules based on factors appropriate for handling expected
spikes in demand. Executive module 115 can then record missing data in detailed
declarative model 153D (or segment thereof).

[0043] In addition or alternative implementations, executive module 115 can be
configured to compute dependent data in the declarative model 153. For example,
executive module 115 can compute dependent data based on an assignment of
distributed application program modules to host environments on computer systems.
Thus, executive module 115 can calculate URI addresses on the endpoints, and
propagate the corresponding URI addresses from provider endpoints to consumer
endpoints. In addition, executive module 115 may evaluate constraints in the
declarative model 153. For example, the executive component 115 can be configured
to check to see if two distributed application program modules can actually be
assigned to the same machine, and if not, executive module 115 can refine detailed
declarative model 153D to accommodate this requirement.

[0044] Accordingly, after adding appropriate data (or otherwise
modifying/refining) to declarative model 153 (to create detailed application model
153D), executive component 115 can finalize the refined detailed application model
153D so that it can be translated by platform-specific drivers 130. To finalize or
complete the detailed application model 153D, executive module 115 can, for
example, partition a declarative application model into segments that can be targeted
by any one or more platform-specific drivers 142. Thus, executive module 115 can
tag each declarative application model (or segment thereof) with its target driver (e.g.,
the unique ID or an address of a platform-specific driver). Furthermore, executive

module 115 can verify that a detailed application model (e.g., 153D) can actually be

-13 -

WO 2009/055754 PCT/US2008/081234

translated by one or more platform-specific drivers, and, if so, pass the detailed
application model (or segment thereof) to a particular platform-specific driver for
translation.

[0045] For example, executive module 115 can be configured to tag application
parts with labels indicating an intended implementation for an application part. As
depicted, detailed application model 153D includes application parts 161AD and
161BD that have been refined to remove ambiguities. Corresponding abstractions
162A and 162B have been associated with labels 164A and 164B respectively. Label
164A indicates an intended implementation for the intended behavior indicated in
abstraction 162A. Likewise, label 164B indicates an intended implementation for the
intended behavior indicated in abstraction 162B.

[0046] When appropriate, implementation specific payloads can also be added to
compliment the description of the intended behavior after an abstraction has been
labeled with an intended implementation. For example, payload 107B can be added
to application part 161BD. Implementation specific payloads can be used to leverage
implementation specific features not represented in abstractions. For example,
payload 107B can be used to leverage an intended implementation indicated by label
164B.

[0047] After refining a model, executive module 115 can forward the model to
driver manger 130 or store the refined model back in repository 120 for later use.
Thus, executive module 115 can forward detailed application model 153D to driver
manager 130 or store detailed application model 153D in repository 120. When
detailed application model 153D is stored in repository 120, it can be subsequently

provided to driver manger 130 without further refinements.

- 14—

WO 2009/055754 PCT/US2008/081234

[0048] Driver manager 130 can then take actions (e.g., actions 133) to implement
a composite distributed application (e.g., composite distributed application 107,
including executable application parts 107A and 107B) based on detailed application
model 153D. Driver manager 130 interoperates with one or more drivers and
translators to translate detailed application module 153D (or declarative application
model 153) into one or more (e.g., platform-specific) actions 133. Actions 133 can be
used to realize the intended behavior indicated in abstractions within corresponding
implementation host environments indicated in associated labels.

[0049] Accordingly, composite distributed application 107 can be implemented in
host environments 153. Each application part can be implemented in a separate host
environment (indicated in an associated label) and connected to other application
parts via corresponding consumer and provider endpoints. Interconnected consumer
and provider endpoints can also be modeled.

[0050] For example, Figure 1B illustrates a first alternate view of declarative
application model 153. In Figure 1B, declarative application model 153 models a
Distributed Application named ‘“MyBusinessProcessService”. The distributed
application model 153 models application part 161A and 161B. External provider
endpoint 171 is configured to receive requests and delegate requests to provider
endpoint 165A (a provider endpoint for application part 161A). Consumer endpoint
166A (a consumer endpoint for application part 161A) is connected to provider
endpoint 165B (the provider endpoint for application part 161B). Accordingly, the
first alternate view of declarative application model 153 in Figure 1B indicates an
intent to have a composite distributed application that receives requests and is

composed of two application parts: process and data.

-15-

WO 2009/055754 PCT/US2008/081234

[0051] Figure 1C illustrates a second alternate view of declarative model 153
including intended behaviors. In Figure 1C, application part 161A indicates that
“MyProcess” is a Web service. Abstraction 162A indicates that the intended behavior
of the Web service is a Work Flow including a flow (e.g., trivially, a sequence) of
activities, long-running state, and activities themselves. Optionally, abstraction 162A
can include attribute 163A expressly indicating an implementation environment for
implementing Work Flow behavior.

[0052] Likewise, application part 162A indicates that “MyData” is a Database.
Abstraction 162B indicates that the intended behavior of “MyData” is Data Entities
including schema, relationships, and a static data. Optionally, abstraction 162B can
include attribute 163B expressly indicating an implementation environment for
implementing Data Entities behavior.

[0053] Figure 1D illustrates an alternate view of detailed application model 153D
including intended behaviors with labels indicating implementation details. The
alternate view of detailed application model 153D can result from executive module
115 refining the second alternate view of descriptive application model 153. In
Figure 1D, label 166A indicates that the Work Flow behavior indicated in abstraction
162A is to be implemented in a “WCE/WF-WAS” (Windows® Workflow
Foundation/Windows® Communication Foundation environment in a Windows®
Activation Service host) environment. Likewise, label 166B indicates that the Data
Entities behavior indicated in abstraction 162B is to be implemented in a “SQL”
environment in a Microsoft SQL Server host.

[0054] An application part is further associated with a host indicator which can
indicate a host (e.g., a specified computer system) that is to provide required

implementation environment for the application part. For example, host indicator

16—

WO 2009/055754 PCT/US2008/081234

167A indicates that WASHost 135B” is to provide a “WEF/WCF-WAS” environment
for implementing the intended Work Flow behaviors of abstraction 162A. Likewise,
host indicator 167B indicates that “MySQLServer” is to provide an “SQL”
environment for the intended Data Entities behaviors of abstraction 162B. The
corresponding drivers can then process corresponding abstractions to implement the
intended behavior in the indicated implementation environment in the indicated host.
For example, WASHost 135B can be configured by the corresponding driver to
provide a “WF/WCF-WAS” environment for implementing the intended Work Flow
behaviors of abstraction 162A.

[0055] For example, Figure 1E illustrates another view of some of the
components from computer architecture 100 interpreting declarative application
model 153. As depicted, drivers 142 include a plurality of drivers including Axis-
Tomcat driver 142A (for implementing intended behavior based on Apache Axis
framework hosted in Apache Tomcat), WF/WCF-WAS driver 142B (for
implementing intended behavior based on WF/WCF frameworks hosted in WAS),
and ASMX-IIS Driver 142C (for implementing intended behavior based on Microsoft
ASP.NET framework hosted in Microsoft Internet Information Server).

[0056] Host environments 135 depict resulting host environments that can be
utilized by corresponding drives. For example, Axis-Tomcat driver 142A can
translate intended behavior (e.g., from an abstraction) into actions for execution based
on Apache Axis Framework 136A within Apache Tomcat Host 135A. Similarly,
WEF/WCF-WAS driver 142B can translate intended behavior into actions for
execution based on WF/WCF Framework 136B within WASHost 135B. Likewise,
ASMX-IIS Driver 142C can translate intended behavior into actions for execution

based on ASP Net framework 136C within IIS Host 135C.

-17 -

WO 2009/055754 PCT/US2008/081234

[0057] Figure 2 illustrates a flow chart of an example method 200 for
implementing a composite distributed application. Method 200 will be described with
respect to the components and data of computer architecture 100.

[0058] Method 200 includes an act of describing the components of a composite
distributed application in a declarative model, including describing a plurality of
different application parts of the composite distributed application (act 201). For
example, referring to Figure 1A, tools 125 can be used to describe components of
composite distributed application 107 in declarative application model 153. As
depicted, declarative application model 153 describes a plurality of application parts
161, including application parts 161A (a first application part) and 161B (a second
application part). As previously described, application parts 161A and 161B can be
different types of application parts, such as, for example, process and data.

[0059] Describing a composite distributed application can also include describing
corresponding provider and consumer endpoints for the composite distributed
application and provider endpoints as well as connections there between. For
example, in the alternate view of declarative application model in Figures 1B and/or
1C, tools 125 can be used to describe external provider endpoint 171, provider
endpoint 165A, consumer endpoint 165B, and provider endpoint 166A as well as the
connection between consumer endpoint 165B and provider endpoint 166A.

[0060] Describing a composite application can also include setting
implementation attributes on abstractions to expressly indicate the technologies that
are to be used to implement application parts. For example, tools 125 can be used to
set attributes 163A and/or 163B on application parts 161A and 161B respectively. As

previously described, attribute 163A can expressly indicate an implementation

-18 -

WO 2009/055754 PCT/US2008/081234

environment for application part 161A and attribute 163B can expressly indicate an
implementation environment for application part 161B.

[0061] Method 200 includes an act of inserting one or more abstractions into the
declarative model, ecach abstraction describing the intended behavior of a
corresponding application part in an implementation independent manner, the
abstractions extending the declarative model to make the declarative model
executable (act 202). For example, tools 125 can be used to insert abstractions 162A
and 162B into declarative application model 153. Abstractions 162A and 162B
described the intended behavior of application parts 161A and 161B respectively in an
implementation independent manner. Accordingly, abstractions 162A and 162B
extend declarative application model 153 to make declarative application model 153
executable.

[0062] Method 200 includes an act of tagging cach of the one or more
abstractions with a label, each label including implementation specific details that
indicate how the plurality of different technologies are to be used to implement the
corresponding application part (act 203). For example, executive module 115 can tag
application part 161AD (a refined application part 161A) and application part 161BD
(a refined application part 161B) with labels 164A and 164B respectively. Labels
164A and 164B include implementation specific details that indicate how
technologies, such as, for example, Axis-Tomcat, WF/WCF-WAS, ASMX-IIS, SQL,
etc., are to be used to implement corresponding application parts 161A and 161B
respectively.

[0063] Executive module 115 can determine how to tag an application part in a
variety of different ways. When an abstraction includes an implementation attribute,

executive module 115 can tag the abstraction in accordance with the express

-19 —

WO 2009/055754 PCT/US2008/081234

indication in the implementation attribute. For example, when abstraction 162A
includes attribute 163A (e.g., expressly indicating WF/WCF-WAS implementation),
executive module 155 can configure label 164A in accordance with implementation
details of attribute 163A (e.g., indicating that abstraction 162A is to be implemented
using WEF/WCF-WAS in WASHost). On the other hand, when an abstraction does
not include an implementation attribute, a label can be inferred (e.g., based on
available resources of different technologies, from prior system settings, from default
values, etc.) and then tagged to the abstraction. For example, based on the level of
available SQL resources compared to other types of database resources, executive
module 115 can configure label 164B to indicate that abstraction 162B is to be
implemented using SQL in MySQLServer host.

[0064] Method 200 includes an act of interpreting the declarative model to
implement an executable instance of the composite distributed application, the
executable instance of the composite distributed application implemented using the
plurality of technologies in accordance with the implementation specific details
included in the labels (act 204). For example, driver manager 130 can transfer the
various application parts of detailed application model 153D to appropriate drivers in
accordance with corresponding labels. Referring again to Figure 1E, driver manager
can transfer application part 161A to WF/WCF-WAS driver 142B based on label
164A indicating WF/WCF-WAS as the host environment for abstraction 162A.
WE/WCF-WAS driver 142B can translate intended behavior represented in
abstraction 162A into actions 133A (a subset of actions 133). Performance of actions
113A result in executable application part 107A being configured and later executed

in WF/WCF framework environment 136B within WAS Host 135B.

-20—

WO 2009/055754 PCT/US2008/081234

[0065] Driver manager 130 can similarly transfer application part 161B to an SQL
driver based on label 164B indicating SQL as the host environment for abstraction
162B. The SQL driver can translate intended behavior represented in abstraction
162B into another subset of actions 133. Performance of the other subset of actions
results in application part 107B (see Figure 1A) being configured and later executed
in SQL environment within an SQL host. If appropriate, payload 107B can also be
delivered to the SQL environment (e.g. static data).

[0066] Driver manager 130 can also interoperate with any utilized drivers to
maintain provider and consumer endpoints to and from a resulting composite
distributed application and to, from, and between various executable application parts
of a composite distribute application.

[0067] In some embodiments, a declarative application model includes a plurality
of interrelated model elements (e.g., within an application part, abstraction, etc.) that
declare how a composite distributed application is to be configured and executed.
Tools 125 can be used to create and modify declarative application models including
model elements in accordance with the principles of the present invention. When a
declarative application model is received, a driver manager can map included model
clements to corresponding drivers and translators that can interpret them. From
resulting interpretations, the driver manager can formulate an execution plan for
actions to be performed on the host environment to configure and activate a
distributed application.

[0068] Thus, a model interpreter can be configured to parse a received model and
generate a corresponding execution plan. To generate an execution plan from a
received model, the model interpreter can identify a model’s constituent model

clements and their relationships to one another. The model interpreter 243 can then

-21 -

WO 2009/055754 PCT/US2008/081234

call correspond model element interpreters (translators) to retrieve a sequence of
actions for each model element. The model interpreter then combines the sequence of
actions for each model element into a single sequence of actions for inclusion in an
execution plan.

[0069] An action can include a variety of different properties. For example, an
item can be Idempotent. That is, the same action successfully executed again on the
same model element will result in the same output. An action can have a unique
identifier that identifies an operation. If two actions are to do the same thing, the two
actions can have same identifiers. For example, two activities that install a file can
have the same identifier when the file has the same absolute path.

[0070] An action can also be associated with a corresponding reverse action. The
reverse action can reverses the effects of the action. For example, the reverse of a
CopyFile would be a procedure that removes a file or restores an original file that was
copied over. An action can be associated with a corresponding update action that
applies a newer version of a resource over an existing resource.

[0071] Figure 3 illustrates an example computer architecture 300 for translating
declarative application models. As depicted, computer architecture 300 includes
driver manager 330. Driver manager 330 can be configured similarly to (or even the
same as) driver manger 130 depicted in computer architecture 100. Driver manager
330 hosts drivers and translators and receives inputs. For example, driver manager
300 hosts a plurality of drivers, such as, for example, wct-IIS driver 342 and Aspx-IIS
driver 352.

[0072] Each driver can include a model interpreter (e.g., model interpreters 343
and 353 respectively) configured to parse a model and generate an execution plan.

Thus, upon receiving a model, each driver can identify constituent resources and their

-22 -

WO 2009/055754 PCT/US2008/081234

relationships to one another, call appropriate resource interpreters to retrieve
sequences of actions, and assemble sequences of actions into an execution plan.
[0073] Driver manager 300 also hosts a plurality of translators, such as, for
example, operating system technology translator 361, IIS technology translator 371,
and WCF technology translator 381. Each translator can include a resource
interpreter (e.g., resource interpreters 362, 372, and 382 respectively) for parsing
model elements describing a resource and assembling a sequence of actions that can
be executed on what the resource represents. Each translator can correspond to a
portion of the environment. For example, operating system technology translator 361
corresponds to operating system 391, IIS technology translator 371 corresponds to IIS
392, and WCEF technology transfer 381 corresponds to WCF 393.

[0074] Accordingly, when a translator receives a model element describing a
resource, the resource represents some object within the corresponding portion of the
environment. For example, when operating system technology translator 361 receives
a resource the resource corresponds to an object in operating system 391 (e.g., a
service.sve file). Similarly, when IIS technology translator 371 receives a resource
the resource corresponds to an object in IIS 392 (e.g., the location of a user’s Web
service — “/myservice”). Likewise, when WCF technology translator 381 the resource
corresponds to an object in WCF 393 (e.g., a Web.config).

[0075] Generally, dispatcher 371 is configured to receive a model and dispatch
the model to the appropriate driver. Thus, upon receiving a model, dispatcher 371 can
forward the model to type locator 341. Type locator 341 can receive the model and
based on the model locate the appropriate type of driver for processing the model
(e.g., based on a corresponding label, such as, for example, label 164A or label 164B).

Type locator 341 can return a driver ID identifying the appropriate type of drive back

-23 —

WO 2009/055754 PCT/US2008/081234

to dispatcher 371. Dispatcher 371 can then use the driver ID to dispatch the model to
the identified appropriate driver.

[0076] Drivers can also utilize type locator 341 to locate appropriate translators
for model element describing resources included in a model. For each resource in a
model, a driver can submit the resource to type locator 341. Type locator 341 can
receive the resource and based on the resource locate the appropriate type of translator
for translating the resource. Type locator 341 can return a translator ID identifying the
appropriate type of translator back to the driver. The driver can then use the translator
ID to dispatch the resource to the identified appropriate translator

[0077] The appropriate translator parses the received resource to assemble a
sequence of actions for a received command and returns the sequence of actions back
to the driver. The driver then assembles the different sequences of actions into a
single execution plan. The driver then executes the execution plan. Actions in the
execution plan are executed in sequence, operating directly on the environment (e.g.,
on one or more of operating system 391, IIS 391, and WCF 392), to realize the intent
collectively represented in model 353 and command 329.

[0078] Thus, for example, dispatcher 371 can receive detailed application model
353D, including a plurality of interrelated model elements declaring how to configure
and execute an application. Dispatcher 371 can send detailed application model 353D
to type locator 341. Type locator 341 can detailed application model 353D. Type
locator 341 can process detailed application model 353D to determine the type of
driver appropriate for processing detailed application model 353D. In response to the
determination, type locator 341 can send driver ID 384 (an identifier for driver 342) to

dispatcher 371.

24—

WO 2009/055754 PCT/US2008/081234

[0079] Dispatcher 371 can utilize driver ID 384 to forward detailed application
model 353D to Wcf-IIS driver 342. Model interpreter 343 can parse detailed
application model 353D to identify model elements within detailed application model
353D and the model elements’ relationships to one another. For example, model
interpreter 343 can identify model element 354A, 354B, 354C, etc. (e.g., within
application parts, abstractions, etc). Wcf-1IS driver 342 can send identified model
elements, such as, for example, model element 354A, to type locator 341. Type
locator 341 can receive model element 354A. Type locator can process model
element 354A to determine the type of translator appropriate for translating model
clement 354A.

[0080] Determining the type of translator can be based on a specified technology
(e.g., one of an operating system, network protocol, data type, etc.) indicated in and/or
related to model element 354A. For example, type locator 341 can determine that
operating system technology translator 361 is the appropriate driver for translating
model element 354A based on model element 354A indicating or being related to
operating system 391. In response to the determination, type locator 341 can send
translator ID 355 (an identifier for translator 361) to Wcf-1IS driver 342. Similar
determinations can be made for model elements 354B, 354C, etc. included in model
353.

[0081] Wct-1IS driver 342 can utilize translator ID 355 to forward model element
354A to operating system technology translator 361. Resource interpreter 362 can
translate model element 354A into action sequence 363. Action sequence 363
includes a plurality of actions, such as, for example, actions 363A, 363B. etc, that are
to be executed in operating system 391 to implement the intent of detailed application

model 353D.

-25—

WO 2009/055754 PCT/US2008/081234

[0082] Similarly, Wcf-1IS driver 342 can utilize an appropriate translator ID to
forward model element 354B to IIS technology translator 371. Resource interpreter
372 can translate model element 354B into action sequence 373. Action sequence 373
includes a plurality of actions, such as, for example, actions 373A, 373B. etc, that are
to be executed in IIS 392 to implement another portion of the intent of detailed
application model 353D.

[0083] Likewise, Wcf-1IS driver 342 can utilize an appropriate translator ID to
forward model element 354C to WCF technology translator 381. Resource interpreter
382 can translate model element 354C into action sequence 383. Action sequence 383
includes a plurality of actions, such as, for example, actions 383A, 383B. etc, that are
to be executed in WCF 393 to implement further portion of the intent of detailed
application model 353D.

[0084] Further model elements can also be sent to any of operating system
technology translator 361, IIS technology translator 371, WCF technology translator
381, as well as to other appropriate technology translators (not shown), based on a
model element indicating and/or being related to a specified technology.

[0085] Model interpreter 343 can receive action sequence 363 from operating
system technology translator 361, action sequence 373 IIS technology translator 371,
action sequence 383 WCF technology translator 381, etc. Each action sequence is a
subset of the total actions that are to be performed to fully implement the intent of
detailed application model 353D. Model interpreter 343 can assemble action
sequences 363, 373, 383, etc. into execution plan 344. Action sequences 363, 373,
383, etc., are assembled in a designated order based on the relationship between
corresponding model elements in detailed application model 353D. Wct-IIS driver

342 can execute execution plan 344 to implement a composite distributed application

-26 —

WO 2009/055754 PCT/US2008/081234

based on the intent for detailed application model 353D that is to use portions of
operating system 391, 1IS 392, and WCF 393, etc.

[0086] Accordingly, embodiments of the present invention facilitate modeling and
managing heterogenecous applications. Application intent can be described in a
relatively straight forward manner that abstracts underlying implementation details.
Thus, application developers can develop applications without necessarily having to
know extensive details of an underlying implementation environment. In any event,
an application can be executed in different implementation environments without
requiring changes to the corresponding model.

[0087] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are
to be considered in all respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims rather than by the
foregoing description. All changes which come within the meaning and range of

equivalency of the claims are to be embraced within their scope.

-27 —

WO 2009/055754 PCT/US2008/081234

CLAIMS

What is claimed:

1. At a computer system within a computing environment (100), the
computing environment (100) including a plurality of different technologies
(391,392,393) for implementing distributed applications, a method for implementing a
composite distributed application (107), the method comprising;:

an act of describing the components of a composite distributed application
(107) in a declarative model (153), including describing a plurality of different
application parts (107A, 107B) of the composite distributed application (107);

an act of inserting one or more abstractions (162A, 162B) into the declarative
model, each abstraction describing the intended behavior of a corresponding
application part (107A, 107B) in an implementation independent manner, the
abstractions (162A, 162B) extending the declarative model (107) to make the
declarative model (153) executable;

an act of tagging each of the one or more abstractions (162A, 162B) with a
label (164A, 164B), each label (164A, 164B) including implementation specific
details that indicate how the plurality of different technologies (391,392,393) are to be
used to implement the corresponding application part (107A, 107B) ; and

an act of interpreting the declarative model (153) to implement an executable
instance of the composite distributed application (107), the executable instance of the
composite distributed application (107) implemented using the plurality of
technologies (391,392,393) in accordance with the implementation specific details

included in the labels (164A, 164B).

-28—

WO 2009/055754 PCT/US2008/081234

2. The method as recited in claim 1, further comprising:

an act of setting an implementation attribute on at least one inserted
abstraction, the implementation attribute including implementation details
expressly indicating how the abstraction is to be tagged to indicate an intended

implementation.

3. The method as recited in claim 2, wherein the act of tagging each of
the one or more abstractions with a label comprises an act of tagging the at least one
inserted abstraction for implementation based on the implementation details in the

implementation attribute.

4. The method as recited in claim 1, wherein the act of describing the
components of a composite distributed application in a declarative model comprises
an act of describing a process application part and a data application part of the

composite distributed application.

5. The method as recited in claim 4, wherein the act of describing a
process application part and a data application part of the composite distributed

application comprises an act of describing a Web Services and Databases.

6. The method as recited in claim 1, wherein the act of describing the
components of a composite distributed application in a declarative model comprises:
an act of describing endpoints connecting the plurality of different

application parts to one another; and

-29_

WO 2009/055754 PCT/US2008/081234

an act of describing an external provider endpoint for communicating

with the composite distributed application.

7. The method as recited in claim 1, wherein the act of tagging each of
the one or more abstractions with a label comprises an act of inferring how an
abstraction is to be tagged based on one or more of: available system resources of

different technologies, prior system settings, and default system values.

8. The method as recited in claim 1, wherein the act of interpreting the
declarative model to implement an executable instance of the composite distributed
application comprises an act of implementing different application parts of the

composite distributed application in different host environments.

9. The method as recited in claim 1, wherein the computer system further
includes one or more drivers, each driver configured to process abstractions for a
specified combination of different technologies, the computer system further
including one or more translators, ecach translator configured to process model
elements representing objects within a specified technology from among the plurality
of different technologies, and wherein the act of interpreting the declarative model to
implement an executable instance of the composite distributed application comprises:

for each abstraction:
an act of identifying a driver that is configured to process a
described application part corresponding to the combination of

technologies indicated for the abstraction;

-30 -

WO 2009/055754

PCT/US2008/081234

an act of forwarding the application part to the identified driver;
and

an act of the identified driver parsing the application part to
identify model elements and their relationship to one another;
for each identified model element:

an act of identifying a translator configured to translate model
elements for the specified technology corresponding to the identified
model element;

an act of sending the model element to the translator;

an act of receiving a sequence of actions that are to be
performed within the specified technology to partially implement the
composite distributed application, the sequence of actions being a
subset of the total actions that are to be performed to fully implement
the composite distributed application; and

an act of assembling the received sequence of actions for the
model element into an execution plan, the received sequence of actions
assembled into the execution plan in a designated order with respect to
sequences of actions received for other model elements based on the
model element’s relationship to other model elements in the received
declarative model; and

an act of executing the execution plan to implement the composite

distributed application, execution of the execution plan including executing

the sequences of actions received for each model element in the designated

order.

-31 -

WO 2009/055754 PCT/US2008/081234

10. A computer program product for use at a computer system within a
computing environment, the computing environment including a plurality of different
technologies for implementing distributed applications, the computer program product
for implement a method for implementing a composite distributed application, the
computer program product comprising one or more physical storage media having
stored thercon computer-executable instructions that, when executed at a processor,
cause the computer system to perform the method including the following:

describe the components of a composite distributed application in a
declarative model, including describing a plurality of different application
parts of the composite distributed application;

insert one or more abstractions into the declarative model, each
abstraction describing the intended behavior of a corresponding application
part in an implementation independent manner, the abstractions extending the
declarative model to make the declarative model executable;

tag each of the one or more abstractions with a label, each label
including implementation specific details that indicate how the plurality of
different technologies are to be used to implement the corresponding
application part; and

interpret the declarative model to implement an executable instance of
the composite distributed application, the executable instance of the composite
distributed application implemented using the plurality of technologies in

accordance with the implementation specific details included in the labels.

11. The computer program product as recited in claim 10, further

comprising computer-executable instructions that, when executed, cause the computer

-32 —

WO 2009/055754 PCT/US2008/081234

system to set an implementation attribute on at least one inserted abstraction, the
implementation attribute including implementation details expressly indicating how

the abstraction is to be tagged to indicate an intended implementation.

12. The computer program product as recited in claim 11, wherein
computer-executable instructions that, when executed, cause the computer system to
tag each of the one or more abstractions with a label comprises computer-executable
instructions that, when executed, cause the computer system to tag the at least one
inserted abstraction for implementation based on the implementation details in the

implementation attribute.

13. The computer program product as recited in claim 10, wherein
computer-executable instructions that, when executed, cause the computer system to
describe the components of a composite distributed application in a declarative model
comprises comprise computer-executable instructions that, when executed, cause the
computer system to describe a process application part and a data application part of

the composite distributed application.

14. The computer program product recited in claim 10, wherein computer-
executable instructions that, when executed, cause the computer system to describe
the components of a composite distributed application in a declarative model
comprise computer-executable instructions that, when executed, cause the computer
System to:

describe endpoints connecting the plurality of different application

parts to one another; and

-33 —

WO 2009/055754 PCT/US2008/081234

describe an external provider endpoint for communicating with the

composite distributed application.

15. The computer program product as recited in claim 10, wherein
computer-executable instructions that, when executed, cause the computer system to
tag each of the one or more abstractions with a label comprises computer-executable
instructions that, when executed, cause the computer system to infer how an
abstraction is to be tagged based on one or more of: available system resources of

different technologies, prior system settings, and default system values.

16. The computer program product as recited in claim 10, wherein
computer-executable instructions that, when executed, cause the computer system to
interpret the declarative model to implement an executable instance of the composite
distributed application comprises computer-executable instructions that, when
executed, cause the computer system to implement different application parts of the

composite distributed application in different host environments.

17. At a computer system, a method for describing the intended executable
behavior of a composite distributed application (107) in an implementation-
independent manner, the method comprising:

an act of describing a composite distributed application (107) in a declarative
model (153), the declarative model having a plurality of model elements, each model

element representing a portion of the intended executable behavior of the composite

-34 -

WO 2009/055754 PCT/US2008/081234

distributed application (107), description of the composite distributed application
including at least:

an act of describing a first application part (107A) of the composite distributed
application (107), the first application part being a first specified type of application
part, including:

an act of declaring a first abstraction (162A) for the first application part
(107A), the first abstraction (162A) describing the intended execution behavior of the
first application part (107A) ; and

an act of describing a second part (107B) of the composite distributed
application (107), the second part (107B) being a second different specified type of
application part, including:

an act of declaring a second abstraction (162B) for the second application part
(107B), the second abstraction (162B) describing the intended execution behavior of

the second application part (107B).

18. The method as recited in claim 17, wherein the act of describing a
composite distributed application in a declarative model comprises an act of
describing a composite distributed application, wherein the first application part is

process and the second application part is data.

19. The method as recited in claim 17, wherein the act of describing a first
application part of the composite distributed application comprises an act of setting a
first implementation attribute on the first abstraction to expressly indicate the

technologies that are to be used to implement the first application part.

-35—

WO 2009/055754 PCT/US2008/081234

20. The method as recited in claim 17, further comprising:
an act of describing an external provider endpoint for the composite
distributed application , the external provider endpoint configured to:
receive requests from components external to the composite
distributed application; and
delegate the requests to the first part provider endpoint for

processing.

21. The method as recited in claim 17, wherein the act of describing a first
application part of the composite distributed application further includes:
an act of declaring a first application part provider endpoint that
provides information processed at the first application part to external
components;
an act of declaring a first part consumer endpoint that consumes
information from external components; and
wherein an act of describing a second part of the composite distributed
application further includes:
an act of declaring a second application part provider endpoint that
provides information to external components, the second application part
provider endpoint connectable to consumer endpoints including the first
application part consumer endpoint; and
an act of declaring a second application part consumer endpoint that
consumes information from external components, the second application part

consumer endpoint connectable to provider endpoints.

-36 —

WO 2009/055754 PCT/US2008/081234

1/6

Tools 125
E

Declarative Application Model
&

153

2

_Application
" Parts 167

Application Part 1618 {

Abstraction 1628
{Attroute 1638

Executive Module
115

Work Breakdown
Module 116

/ » Driver Manager 130

Detailed Application Mode! 153D ¥
® Drivers 142
* ¥
T61AD ,
S Actions 133 g
\ 1624 Label 1644 -

[

. Hosts Environmenis 135

161BD { Composite Distributed
ST@EB%LabeE 164BSPayioad 1075% o 07

a
s
|

Application 107 g
|
|
s

®
]

(Based On 1530)

FIG. 1A

WO 2009/055754

PCT/US2008/081234

2/6

//"*Bﬂ'*

153

by

Distributed Application: My Business Process Service

Application Part: My Data

Application Part: My Process|

External
Provider

End Point (\\

171) /
Provider Application Consumer Provider Application
End Point Part End Point End Point Part
1654 161A 166A 1658 1618
FiG. 1B
Distributed Application: My Business Process Service
//"'-—i!w
153~
\ Web Service: My Process Database: My Dala
> Work Flow E > Data Enfities os
{Flow Of Activities} {Schema}
{Long-Running State} {Relationships}
171 {Activities} {Static Data}
(L__.ff\ﬁfi?ﬁt?;lﬁﬁ_é_,__a \ﬁ@@u.&al.@.@éﬂ
i { 3 3 i
/ / 1
165A > 166A 1658
Application Application _
Abstraction Part 1674 Part 1618 ™ Abstraction

1624

1628

FIG. 1C

WO 2009/05575

1830 —.

.

Host
Indicaior
167A

171~/E

4

3/6

PCT/US2008/081234

Distributed Application. My Business Process Service

Web Service: My Process Database: My Data
> Work Flow) > | Data Entities .
{Flow Of Activities} {Schema}
{Long-Running State} {Relationships}
{Activities} {Static Data}
7 R vy t
: \ { e ! 5
1654 1664 16358 //
Abstraction { | Application Application Abstraction
1624 Part 1614 Fart 1618 1628
NS N
Host: WASHost 1358 Host: My SQL Server
Himplementation: “WFMWCF-WAS” implementation: “SQL” \\\in

FiG. 1D

Host
dicator
1678

PCT/US2008/081234

4/6

WO 2009/055754

4} Old

0 muqm% / %.%%Sm,
UOHEBDHGOY SIgEINISK] T
| OSELOHSI 1 | €9EL ISOHSYM | 1 VEEL ISOH 1eauiol atedy | ¢l
s M mmmw SIOMBUWEL M M FOST yiomauiel M w VOS] yiomaues 4 M w + » 3 SJUSWIIOIALS
fboOLANdSY gy A0M/ M by sixysyoedy 1 150H
mim.,..........ah.......ah.......! iiiiii ol VEWHHHHHHHHHHHMEE@
YEEL SUCHIY -~ 2
. Jeri 1BAl(gopl lenl(d Yepl Joni] ool CPL
SIFXWSY SYAM-dOM/EAM JEQUID] -SIXy S1aAl(]

i
\ 7Z57 uompeisay |
ViG] ved uojeoddy

O¢T 1ebeuep Jsaug

B

Yrol
[2ge]

.o \ vZar uompeisay \

\ vigs ey |-SYM-IWIOM. UoREIUAlsdwH

\ uoneoyddy 5580014 AN 180IAS oM

/QE

1 desi
] 90IA19G 852004 SSBUISNY AW uonesddy peInguIsig

0i)
Aicysoday

WO 2009/055754 PCT/US2008/081234

5/6

}/7 EGG‘E\\

Describing The Components Of A Composite Distributed
Application In A Declarative Model, including Describing 201
A Plurality Of Different Application Parts Of The e
Composite Distributed Application

.

Inserting One Or More Abstractions Inte The Declarative
Model, Each Abstraction Describing The Intended
Behavior Of A Corresponding Application Part InAn - L 202
implementation Independent Manner, The Abstractions
Extending The Declarative Model To Make The
Declarative Model Executable

k2

Tagging Each Of The One Or More Abstractions With A
Label, Each Label Including Implementation Specific
Details That indicate How The Plurality Of Different v 203
Technologies Are To Be Used To Implement The
Corresponding Application Part

¥

interpreting The Declarative Model To Implement An

Executabie Instance Of The Composite Distributed

Application, The Executable Instance Of The Composite L opa

Distributed Application Implemented Using The Plurality

Of Technologies In Accordance With The Implementation
Specific Details Included In The Labels

FIG. 2

PCT/US2008/081234

WO 2009/055754

6/6

£ Oid

00E ~

X
268
i

R

T6E wepsAg
Buneiadn

£08 souenbeg uonoy

W geoe mw VEeE m .o w geit w
e UonoY UonoY uooy

J¢ eousnbag uonoy

268 Jspudis
S0IN0SSN

Tor Joejsusl |
ABojouoa) oM

2/ wmpidien
80IN0SEY

/€ loyesuel]
ABojouydal S

W%m w
uolOY |

W geoe ww Veoe m
Loy uonDY e

£o¢ aousnbeg uonoy

e &

20¢ 1apsudisy
BOINOSBYN

1% Joepsuel] ABojouysa)
wisjsAg Bugeisdo

L]

. FEL e T
LSE
Lm“wm.muﬂwmwcm | S e Esouoss w. .howmw.g.i:mwﬁ. ._Ouﬁv
! F uw VFGE m \ GCEQl
£G Janu(Sii-xdsy ¢PE IBMIQ SHHOM | Huaws|d jepopy) 4 JojejsuBi]
ggese (grE Jomiq 104)
y6E Qf Bl i¥e
018007
0ce hmmmwhmw}h JBAUC 78 muoedsig . maxﬂrm,

%,

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings

