wo 2013/003482 A2 || 0FV 00000 OO 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/003482 A2

3 January 2013 (03.01.2013) WIPOIPCT
(51) International Patent Classification: (74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
GO6F 17/30 (2006.01) 650 California Street, Fourteenth Floor, San Francisco,
(21) International Application Number: California 94108 (US).
PCT/US2012/044429 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Aéj, BA, BB, BG, B}{, BR, BW, BY, BZ.
27 June 2012 (27.06.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/501,583 27 June 2011 (27.06.2011) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
13/398,538 16 February 2012 (16.02.2012) Us SE, 8G, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN, TR,
13/398,606 16 February 2012 (16.02.2012) Us TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): OR- (84) Designated States (uniess otherwise indicated, for every
ACLE INTERNATIONAL CORPORATION [US/US], kind Of regional p}"Ol@C’ﬁOI’Z available): ARIPO (BW, GH,
500 Oracle Parkway, M/S 5Sop7, Redwood Shores, Califor- GM, KE, LR, LS, MW’ MZ, NA, RW, 8D, SL, 8Z, TZ,
nia 94065 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors; and EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(75) Inventors/Applicants (for US orly): SOMOGYI, Alexan- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SIL, SK, SM,
der [US/US]; 15 Lenape Court, Basking Ridge, New Jer- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
sey 07920 (US). REVANURU, Naresh [US/US]; 38658 ML, MR, NE, SN, TD, TG).
Greenwich Circle, Fremont, California 94536 (US).
Published:

FELTS, Stephen [US/US]; 3 Cedar Gate Road, Denville,
New Jersey 07834 (US). ZHOU, Tong [CN/US]; 1570
Bangs Avenue, Merrick, New York 11566 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SYSTEM AND METHOD FOR PROVIDING SESSION AFFINITY AND IMPROVED CONNECTIVITY IN A
CLUSTERED DATABASE ENVIRONMENT

Web Application e
206

|12

Web Session
208

Gridlink Data Source

ymmmm—m=—a
j Connection Pool 1
) Settings :
" 210 H
ymmmmm————s
) Affinity Setting 1
) = Session Affinity :
Y 212 H

\

Connection
Pool
205

Application Server 201

Web Session
Request 218

——

218,

\ 114

Subsequent Web
Session
Request 220

FIGURE 3

Notification Affinity
Service Context
124 220

Database
Instance: A \

Shared

Database
Instance B |— Storage
116 120

Database /
Instance C
118

Database Cluster 302

(57) Abstract: A clustered database environment (e.g. Oracle Real Application Cluster (RAC)) includes multiple database instances
that appear as one server. An application server (e.g. WebLogic Server (WLS)) can use a data source (e.g. an Oracle GridLink data
source) and connection pools to connect with the clustered database. In accordance with an embodiment, a data source configuration
allows for specification of a preferred affinity policy, such as a data affinity, temporal affinity, and/or session or session-based atfin -
ity policy. In accordance with an embodiment, the system includes a number of features that improve application connectivity in the
clustered database environment, including a select-only case for application continuity, wherein an application-independent infra-
structure, e.g. implemented within a Java Database Connectivity (JDBC) driver, enables recovery of work from an application per -
spective and masks system communications, hardware failures and hangs.



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

SYSTEM AND METHOD FOR PROVIDING SESSION AFFINITY AND IMPROVED
CONNECTIVITY IN A CLUSTERED DATABASE ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Patent Application No.
13/398,538, titled “SYSTEM AND METHOD FOR PROVIDING SESSION AFFINITY IN A
CLUSTERED DATABASE ENVIRONMENT”, filed February 16, 2012 and U.S. Patent
Application No. 13/398,606, titled “SYSTEM AND METHOD FOR IMPROVING CONNECTIVITY
IN A CLUSTERED DATABASE ENVIRONMENT?”, filed February 16, 2012, each of which claim
the benefit of priority to U.S. Provisional Patent Application No. 61/501,583, titled “SYSTEM AND
METHOD FOR PROVIDING IMPROVEMENTS IN USING A DATA SOURCE WITH AN
APPLICATION SERVER AND CLUSTERED DATABASE”, filed June 27, 2011; each of which

above applications are herein incorporated by reference.

Field of Invention:

[0002] The invention is generally related to computer systems and software, such as
databases, middleware, and clustered data sources, and is particularly related to various

improvements in using a data source with an application server and a clustered database.

Related Applications:

[0003] This application is related to U.S. Patent Application No. 13/234,027, titled
“SYSTEM INCLUDING A MIDDLEWARE MACHINE ENVIRONMENT”, filed September 15,
2011, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/383,285,
titled “MIDDLEWARE MACHINE PLATFORM?”, filed September 15, 2010, and U.S. Provisional
Patent Application No. 61/384,227, titled “MIDDLEWARE MACHINE PLATFORM”, filed
September 17, 2010; and U.S. Patent Application No. 13/168,506, titled “SYSTEM AND
METHOD FOR USING A GRIDLINK DATA SOURCE TO CONNECT AN APPLICATION
SERVER WITH A CLUSTERED DATABASE”, filed June 24, 2011, each of which applications

are herein incorporated by reference.

Background:
[0004] Products such as Oracle Real Application Cluster (RAC) can be used to

implement a clustered database environment, which in turn provides scalability and high



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

availability to end-user applications. Clustered databases can also be integrated with other
products, such as WebLogic Server (WLS), to provide an application server / clustered database
environment. These are the general areas that embodiments of the invention are intended to

address.

Summary:
[0005] The invention is generally related to computer systems and software, such as

middleware and clustered data sources, and is particularly related to various improvements in
using a data source with an application server and clustered database.

[0006] A clustered database environment (e.g. Oracle Real Application Cluster (RAC))
includes multiple database instances that appear as one server. An application server (e.g.
WebLogic Server (WLS)) can use a data source (e.g. Oracle GridLink data source) and
connection pools to connect with the clustered database. A notification service broadcasts
notifications describing state changes in the database instances, which are then used by the
data source and connection pools to control access to the database instances.

[0007] In accordance with an embodiment, a data source configuration allows for
specification of a preferred affinity policy, such as a data affinity, temporal affinity, and/or session
or session-based affinity policy. A session affinity policy is used to provide database instance
affinity for database access made under the context of a web session, i.e. session affinity is a
form of temporal affinity whereby database operations are directed to a particular instance for a
period of time when the application may be performing multiple, related updates to a specific
data set. Directing such operations to a single database instance can be used to improve
application performance due to increased local cache utilization.

[0008] In accordance with an embodiment, the system includes a number of features that
improve application connectivity in the clustered database environment, including a select-only
case for application continuity, wherein an application-independent infrastructure, e.g.
implemented within a Java Database Connectivity (JDBC) driver, enables recovery of work from

an application perspective and masks system communications, hardware failures and hangs.

Brief Description of the Figures:

[0009] Figure 1 shows an illustration of a system that includes a data source for
connecting an application server with a clustered database, in accordance with an embodiment.
[00010] Figure 2 shows an illustration of multiple application servers and/or data sources
being used with a clustered database, utilizing affinity settings, in accordance with an
embodiment.

[00011] Figure 3 shows an illustration of a system that includes a web application and
supports web session affinity for use with a data source and a clustered database, in accordance

with an embodiment.



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

[00012] Figure 4 shows an illustration of an example web session affinity interaction, in
accordance with an embodiment.

[00013] Figure 5 shows a flowchart of a method for providing web session affinity, in
accordance with an embodiment.

[00014] Figure 6 shows an illustration of a system that includes a data source for
connecting an application server with a clustered database, together with a driver replay feature,
in accordance with an embodiment.

[00015] Figure 7 shows another illustration of a system that includes a data source for
connecting an application server with a clustered database, together with a driver replay feature
used to replay select data, in accordance with an embodiment.

[00016] Figure 8 shows a flowchart of a method for providing a driver replay feature, in

accordance with an embodiment.

Detailed Description:

[00017] In accordance with an embodiment, a clustered database environment
(sometimes referred to as a database cluster) comprises one or more interconnected computers
or servers, which together appear to end-users and end-user applications as if they are a single
server. Unlike a single-instance database, which generally provides a one-to-one relationship
between a database storage and a database instance, a clustered database can provide a one-
to-many relationship between a database storage and several database instances.

[00018] For example, an Oracle Real Application Cluster (RAC) database system enables
clustering of Oracle databases, using Oracle Clusterware infrastructure to bind multiple servers
together, so that the servers can operate as a single system. The RAC database system can
include many database instances, each of which can access a single database storage. In this
manner, the combined processing power of such multiple servers can provide greater throughput
and scalability than that achievable using a single server.

[00019] In accordance with an embodiment, a data source (which in several examples
described herein is referred to a GridLink data source, although other forms of data source may
be used) can be used to connect an application server, such as a WebLogic Server (WLS)
instance, with a clustered database. A notification service can be used by the clustered
database to broadcast notifications (such as the Fast Application Notification or “FAN”
notifications or events used within the Oracle RAC product) that describe any state changes
within the plurality of its database instances. The data source includes a connection pool, which
manages a set of connections to the plurality of database instances in the clustered database.
The data source can register with the notification service to receive notifications regarding the
change of the clustered database. The application server can then adaptively configure and/or
manage connections to the clustered database, according to any state changes of the clustered

database at runtime.



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

[00020] Figure 1 shows an illustration of a system that includes a data source for
connecting an application server with a clustered database, in accordance with an embodiment.
As shown in Figure 1, a data source 104 (in this example referred to as a GridLink data source,
although again other forms of data source may be used) is associated with an application server
101.

[00021] The data source simplifies the use of a clustered database 102 with or by the
application server, and reduces the configuration and management complexity required to use
the clustered database. The data source includes a connection pool 106, which in turn provides
a set of heterogeneous connections 128, 129 to the different database instances 114, 116, 118
in the database cluster. In turn, the different database instances can connect to a single, or
shared storage 120.

[00022] Management of the connections in the connection pool can be based either on
static settings 112 configured on the connection pool, such as min/max capacity, or timeouts;
and/or on real-time information about the connection pool as described in event messages 126
which are received from the notification service 124 that advises the data sources of state
changes within the database cluster.

[00023] When an application 108, 110 requests a connection from the data source, a
suitable connection can be selected from the connection pool, and supplied to the application
based on, e.g. load balancing information the connection pool has received, and/or the current
distributions of connections in use from the pool.

[00024] In one illustrative example, the above system can be used to provide Oracle
database services, wherein the database services can provide a single system image for, e.qg.
workloads, prioritization of workloads, performance measures for real transactions, and alerts
and actions when performance goals are violated. The database services enable database
administrators to configure, administer, enable/disable, and measure workloads as a single
entity. The database services can be further used to divide workloads into logical groupings,
wherein each service represents a workload with common attributes, service-level thresholds,
and priorities. An application server can receive load-balancing advisory event messages issued
by a clustered database, and adjust database connections to the database nodes or instances
accordingly. The system can then perform load-balancing configurations at runtime on the data
source, enabling the application server to dispatch database connections based on the load-
balancing advisory messages received from the database. Database connections can then be
directed to specific database nodes, to satisfy performance goals set by the database
administrator.

[00025] In another example, the system can support distributed transaction (XA) affinity,
to ensure that all database operations performed on a database cluster within the context of a
global transaction are directed to the same database instance. Such XA affinity can be

established based on a global transaction id, instead of by individual data source, to ensure that



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

connections obtained from different data sources that are configured for the same database
cluster are all associated with the same database instance, or that all the data base operations
for a global transaction performed on a clustered database are directed to the same database
instance. For example, a first connection request for an XA transaction can be load-balanced
and assigned with an affinity context. Subsequent connection requests can be routed to the
same database instance, using the affinity context of the first connection.

[00026] In addition to the above features, the system can employ additional features and
functionality, such as the use of a Universal Connection Pool (UCP) library as a connection
module to connect an application server to a clustered database. Generally, the UCP library
appears as a client-side library from the perspective of the database server, and is logically an
extension of a Java Database Connectivity (JDBC) driver used to connect to the database. The
use of such a database connection module can support high availability and performance
capabilities for a clustered database, in addition to providing generic JDBC connection pooling
implementations.

[00027] Additional descriptions of various embodiments of a data source system,
including some of the above features and functionality, are provided in U.S. Patent Application
No. 13/168,5086, titled “SYSTEM AND METHOD FOR USING A GRIDLINK DATA SOURCE TO
CONNECT AN APPLICATION SERVER WITH A CLUSTERED DATABASE”, filed June 24,

2011, which application is herein incorporated by reference.

Session Affinity in a Clustered Database Environment

[00028] In accordance with an embodiment, the system supports the use of session
affinity, for use with web sessions. As referred to herein, session or session-based affinity is a
form of temporal affinity, whereby database operations requested by an application are directed
to a particular database instance for a period of time when the application may be performing
multiple, related updates to a specific data set. Directing such operations to a single database
instance can be used to take advantage of increased local cache utilization, and improve overall
application performance.

[00029] Figure 2 shows an illustration of an environment in which multiple application
servers and/or data sources are being used with a clustered database, utilizing one or more
affinity settings, in accordance with an embodiment. As shown in Figure 2, an application server
environment 140 can include one or more application server instances 142, 162. Each
application server instance can include one or more data source 144, 164, each with its own
connection pool 146, 166, and connection pool settings 154, 174. Together, the data sources
provide connections 158, 178 for the applications 150, 170 to the clustered database, and
support the consumption of database services in an unrestricted manner in order to provide
deeper integration between the applications and the clustered database.

[00030] In accordance with an embodiment, each data source can also be associated with



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

one or more affinity settings 156, 176 that can be specified on a per-data source level, or across
all or multiple data sources or application servers within the application server environment.
Examples of affinity schemes that can be used include XA affinity, and session or session-based
affinity.

[00031] In the context of a web application, the life of a web session can be a relatively
long-lived interaction between the web application and the database, such as the operation by a
user of an ecommerce shopping cart feature. When session affinity is used, the system
preserves an affinity context for the life of that web session. This provides application
performance benefits, since the system will always be going back to the same database instance
during that particular web session, and taking advantage of the local cache on that database.
Other advantages of using such a session affinity feature include reduced cluster wait time on
the database, and in the context of RAC less reliance on synchronizing RAC cluster datasets.
[00032] In accordance with an embodiment, affinity information, for use in supporting both
session affinity and other affinity schemes, can be pushed out by the notification service within
its FAN notifications or events, together with any load advisories etc, that are intended to be
replicated across the cluster. In some implementations, the system can extract keys from the
data being used by the various applications, and route connections to an appropriate server
based on those keys. In some implementations, the system can also leverage UCP at runtime
to provide an application callback API that the application can implement, and then at runtime
call back the application for it to provide a key that can be used to determine the appropriate
routing.

[00033] In accordance with an embodiment, an affinity policy can be defined globally
across multiple data sources, or individually for each data source. The affinity policy defines
which type of affinity (if any) will be used by that data source at runtime. In accordance with an
embodiment intended for use with web applications, session affinity is set as the default affinity
policy on each data source within the data source environment. Global policy settings take
precedence over per-resource policy settings.

[00034] At runtime, when an application requests a connection from the data source
which has session affinity policy set (specifically, or by default), the system makes a callback to
get any available web session context. If such a web session context is available, the system
can use that to choose the most appropriate connection; otherwise the system can use, e.g.
UCP to choose a connection based on other factors such as runtime load-balancing. Depending
on the system’s configuration, an affinity context can then be set for that web session, so the
next time the application makes a request it has the appropriate session affinity information in its
context.

[00035] In environments such as WebLogic environments, sessions may not be passed
internally. In such environments, the system can instead use functionality such as work context,

which propagates around the system with the request. A servlet container can determine from



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

the work context which is persisted with the web session, whether an affinity policy is set, and if
so0, set the work context as appropriate and retrieve additional information to then choose the
most appropriate connection.

[00036] Figure 3 shows an illustration of a system that includes a web application,
together with a web session, for use with a data source and a clustered database, in accordance
with an embodiment. As shown in Figure 3, each application serverinstance can include one or
more data source 203, each with its own connection pool 205, and connection pool settings 210.
When the web application 206 is executed, and a data source connection is invoked as part of a
request during the web session 208, if session or session-based affinity is being used 212, a
connection is returned to the application 216 for use during the session 218. After the execution
of the application request has finished, and before the servlet container has finished its
response, the container saves any existing session-based affinity context to the session and/or
to a work context map, so that the affinity context is associated with the session for use by
subsequent requests 220 during that same web session.

[00037] Figure 4 shows an illustration of an example web session affinity interaction, in
accordance with an embodiment. In accordance with an embodiment, a set of affinity callback
interfaces can be defined, e.g. in an oracle.ucp package. In accordance with an embodiment,
getConnectionAffinityContext and setConnectionAffinityContext methods are used by the data
source and affinity implementation to manage the affinity context association with the application
context. For each connection reserve request, the getConnectionAffinityContext method
isinvoked to determine whether there is already an affinity context associated with the
application context (e.g. global transaction or web-session). If not, then a connection is selected,
either randomly or according to runtime connection load balancing, and the
setConnectionAffinityContext method is called with a context object that identifies the selected
database (e.g. RAC) instance. The affinity policy implementation then stores the instance
information with the application context for use on the next connection reserve request. As
shown in Figure 4, when a request is received by a servlet container, the servlet container will
init or restore work contexts (work contexts are stored in both session internal attribute and a
map) before executing application servlet/jsp. At 240, the application is executed and a data
source.getConnection() method is invoked. At 242, SessionAffinityCallback.getAffnityContext()
is invoked by the data source (in this example a GridLink data source). At the first time there is
no "AffinityContext" stored, so a null is returned 244. At 246,
SessionAffnityCallback.setAffinityContext(...) is invoked by the data source, and affinityContext is
stored, in this example to the work context map. At 248, a connection is returned to the
application. At 250, if getConnection() is called again by application, the affinityContext can be
fetched from the work context map and then same connection is returned. At 252, after the
execution of the application request is finished and before the servlet container has finished the

response, the servlet container saves any existing "AffinityContext" to the session and map, so



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

that the affinity context is associated with the session, for use by subsequent requests 254, 256.
[00038] In accordance with an embodiment, the affinity context contains the following key
values: service name, and database unique name. These are used to check for the correct
database and service, returning an instance id when aff=true for that instance. If there is one
browser to one context, then the next checkout request should check these attributes to match.
For example, if a different service than the previous context pertained to another service,
another instance can be used. The calculation at RAC is per-service, not cross-service. If there
are many browser windows, each should have its own context information and maintain affinity
to its own database and service.

[00039] In the example of a WebLogic environment, to support a RAC session affinity
feature, the affinity context can be associated to the HTTP session. In this example, the affinity
context contains database name, instance name, service name etc. and is used to get a
connection from RAC. Forrequestsin same HTTP session (same JSESSIONID in URL or query
parameter or cookie header), getConnection() is guaranteed to return same connection. It does
not matter whether the end-user is using one or multiple browsers and multiple browser
windows; session affinity spans multiple data sources for the same database and service.
[00040] Figure 5 shows a flowchart of a method for providing web session affinity
interaction, in accordance with an embodiment. As shown in Figure, at step 260, an application
is executed, and a data source connection is invoked. At step 262, if there is no affinity context
already stored, then a Session-based Affinity Context is stored to the work context map, and a
connection is returned to the application. At step 264, if a connection is called again by the
application, the Session-based Affinity Context is fetched from the work context map, and then
the same connection is returned. At step 266, after the execution of the application finished and
before the servlet container has finished it response, the container saves any existing Session-
based Affinity Context to the session and map, so that the affinity context is associated with the
session for use by subsequent requests.

[00041] In accordance with an embodiment, an API can be defined for use by internal
components to implement the session and data affinity policies. The “Session” affinity policy
(default) indicates that the affinity context should be associated with and used for the duration of
a web application session context. This policy can be used in place of XA affinity and applies to
all transactional data source usage during the web session. When a data source with a session
affinity policy is accessed outside the context of a web session, the affinity policy will fall back to
XA affinity.

[00042] In accordance with an embodiment, the WLS Data source subsystem provides
methods for managing affinity callback registrations that are intended for use by other internal
components that are integrating a particular affinity policy. Callback registrations are global and
apply to all GridLink data sources deployed on the server with an affinity policy. Only one

callback of each type may be registered at any given time. A particular callback will be invoked



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

at connection reserve time for affinity context processing based on the preferred affinity policy of
the data source. Attempting to register a callback implementation with a policy type of
Transaction will result in an exception to prevent the possible override of the current XA affinity
implementation.

[00043] In accordance with an embodiment, affinity processing is only done when a RAC
instance is generating the correct events. This is indicated by an "aff" flag for the RAC instance
in the load-balancing advisory FAN event being set to true. To make it easier to determine when
affinity is enabled for the RAC instance, an AffEnabled property can be added to a runtime
MBean.

Java Programming Interface

[00044] In accordance with an embodiment, provided below is an example of a Java
programming interface for the session affinity feature described above. The example Java
programming interface is provided for the purposes of illustration and description, and is not

intended to be exhaustive or to limit the invention to the precise forms disclosed.

public interface JDBCOracleParamsBean extends SettableBean
Contains the Oracle database-related parameters of a data source. Configuration
parameters for a data source's Oracle-specific behavior can be specified using a Oracle

parameters bean.

public java.lang.String getAffinityPolicy ()
Specifies the affinity policy to be used for the data source. Options can include: Transaction,
which specifies transaction affinity; Session, which specifies web-session affinity (default);

and Data, which specifies data affinity.

public void setAffinityPolicy(String affinityPolicy)

public boolean isAffEnabled()

Returns the affinity property from the latest load-balancing advisory event.

public interface ConnectionAffinityCallback

Callback interface for Oracle RAC affinity.

public boolean setConnectionAffinityContext (Object affinityContext)
Sets the affinity context. Parameters can include affinityContext - an opaque context object.

Returns true if the context object is set successfully, false otherwise.

public java.lang.Object getConnectionAffinityContext ()



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

Returns the affinity context object.

public void

setAffinityPolicy(ConnectionAffinityCallback.AffinityPolicypolicy)
Sets the affinity policy to use for this callback. Parameters can include policy - the affinity

policy to use.

public
oracle.ucp.ConnectionAffinityCallback.AffinityPolicygetAffinityPolicy()

Obtains the current affinity policy from this callback. Returns the affinity policy set for this

callback.

public boolean isApplicationContextAvailable ()
Checks whether an application context exists for this affinity policy. Returns true if an

application context exists for this policy, false otherwise.

public static final class ConnectionAffinityCallback.AffinityPolicy extends

Enum

public static oracle.ucp.ConnectionAffinityCallback.AffinityPolicyl[]

values ()

public static oracle.ucp.ConnectionAffinityCallback.AffinityPolicy

valueOf (String name)

public interface DataBasedAffinityCallback extends AffinityCallback
Callback interface for Oracle RAC Data Affinity

public boolean setDataKey(Object keyObject)
Sets the data key object used by the application inside this callback implementation.
Parameters can include keyObject - data key object. Returns true if data key object is

successfully set; false otherwise.

public int getPartitionId()
Obtains the logical partition identifier for data-based affinity. Returns the logical partition

identifier specific to the data key set inside this callback above.

public interface AffinityCallback extends ConnectionAffinityCallback
Callback interface for Oracle RAC affinity. The AffinityCallback interface is the base interface
used for registering an affinity provider with the data source service. The interface extends

the UCP ConnectionAffinityCallback interface and defines an additional method. An existing

-10-



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

UCP affinity implementation may be subclassed to implement the AffinityCallback interface.

public boolean isApplicationContextAvailable ()
Checks whether an application context exists for this affinity policy. Returns true if an

application context exists for this policy, false otherwise.

public interface DataAffinityCallback extends AffinityCallback,
DataBasedConnectionAffinityCallback

Callback interface for Oracle RAC Data Affinity.

public interface Data sourceService
Internal data source service operations. Components should use this service interface to

obtain information and perform global operations on the data source subsystem.

public void registerAffinityCallback(AffinityCallback callback)
Registers a global affinity callback that will be invoked by all data sources that are configured

for affinity. Parameters can include callback - the callback instance to register.

public boolean unregisterAffinityCallback(AffinityCallback callback)
Unregisters the specified affinity callback. Parameters can include callback - the callback

instance to unregister. Returns true if the callback was registered previously, false otherwise.

public void registerDataAffinityCallback(
DataBasedConnectionAffinityCallback callback)

Registers a global data affinity callback that will be invoked by all data sources that are

configured for affinity. Parameters can include callback - the callback instance to register.

public boolean isAffinityPolicyDeployed/(
ConnectionAffinityCallback.AffinityPolicy policy)

Returns whether a data source is deployed on the current server with the specified affinity
policy.
Parameters can include policy - the affinity policy of a deployed data source. Returns true if a

data source is deployed with the specified policy, false otherwise.

public void registerAffinityPolicylistener (
AffinityPolicylistener listener,

ConnectionAffinityCallback.AffinityPolicy policy)
Register an affinity policy listener callback for the specified affinity policy. The callback will be
invoked whenever there is a change in the deployment status of the specified affinity policy.

The callback will be invoked immediately after first registration. Parameters can include

-11-



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

listener - the callback implementation to register; and policy - the affinity policy to listen for.

public boolean unregisterAffinityPolicylListener (

AffinityPolicylistener listener)
Unregister the specified policy listener callback. Parameters can include listener - the listener

callback to unregister. Returns true if the specified callback was registered, false otherwise.

public interface AffinityPolicylistener
Implementations can be registered with Data sourceService to receive natifications when a

data source with a specific affinity policy is deployed or undeployed.

public void affinityPolicyNotification
ConnectionAffinityCallback.AffinityPolicy policy,
boolean deployed)

Invoked there is a change in the deployment status of a particular affinity policy. Parameters
can include policy - the affinity policy for which the notification applies; and deployed -

whether a data source is deployed with the affinity policy.

Improved Application Connectivity in a Clustered Database Environment

[00045] In accordance with an embodiment, the system includes a driver (e.g. JDBC)
replay feature, which delivers a general purpose, application-independent infrastructure that
enables recovery of work from an application perspective and masks many system,
communication, and hardware failures, and hangs. The semantics help assure that end-user
transactions can be executed on time and at-most-once. The net result is that the only time an
end-user should see an interruption in service is when the outage is such that there is no point in
continuing.

[00046] Figure 6 shows an illustration of a system that includes a data source for
connecting an application server with a clustered database, together with a driver replay feature,
in accordance with an embodiment. As shown in Figure 6, a data source 282 (in this example
referred to as a GridLink data source, although again other forms of data source may be used
provides a single data source associated with an application server 280, for use with a clustered
database 202. The data source again includes a connection pool 284, which in turn provides a
set of heterogeneous connections to different database instances 114, 116, and 118 in the
database cluster; and the different database instances can connect to a single, or shared
storage 120.

[00047] In accordance with an embodiment, the system further comprises a JDBC driver
286 which is used by the various connections to access the database instances. When an
application 290 requests a connection from the data source, a suitable connection can be

selected from the connection pool and supplied to the application based on, e.g. load balancing

-12-



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

information the connection pool has received by way of FAN notifications, and/or the current
distributions of connections in use from the pool. The application session 292 can then issues
requests 294 to the database via the connection pool and the JDBC driver, and receive
corresponding responses or results 295, which are then returned to the application.

[00048] In accordance with an embodiment, during the operation of an application using a
web session, if the connection goes down or fails, the JDBC driver records the state 287 of what
information or data was previously queried by the application from the database, and replays the
session to that point to process the query against the database, so that the application does not
itself see any error or exception.

[00049] In accordance with an embodiment, the feature is particularly useful for non-
transactional read-only or select-only cases, although in accordance with other embodiments
similar techniques could be used for transactional cases and although not intended for use with
transactions but can be extended to support those cases. Depending on the complexity of the
use-case (e.g. read-only versus transactional, and simple versus complex session requests),
there may be a performance and memory hit in using the JDBC driver replay, so there is a
tradeoff in terms of slightly lower performance versus improved application continuity and fewer
application interruptions. (As described above, in accordance with an embodiment, the system
implements a Java-specific application server feature that works with a JDBC driver, such as
the Oracle JDBC driver. In accordance wither other embodiments, other drivers can be used,
e.g., in the context of a Tuxedo system an OCI Oracle driver.)

[00050] Figure 7 shows another illustration of a system that includes a data source for
connecting an application server with a clustered database, together with a driver replay feature
used to replay select data, in accordance with an embodiment. As shown in Figure 7, an
application makes a request to select data from a database instance of the clustered database
via the connection pool and JDBC driver, and the JDBC driver records the results of read-only or
select data from the database instance. If the system subsequently determines the application
has lost its connection 296 to the database instance, the data stored in the JDBC driver in
response to previously-received application requests is used by the JDBC driver to replay 298
the application requests and responses up to that point of the session.

[00051] Figure 8 shows a flowchart of a method for providing a driver replay feature, in
accordance with an embodiment. As shown in Figure 8, at step 302, an application makes a
request to select data from a database instance of the clustered database via the connection
pool and JDBC driver. At step 304, the JDBC driver records the results of read-only or select
data from the database instance, within the driver memory space itself. Atstep 306, the system
subsequently determines that the application has lost its connection to the database instance.
At step 308, the data previously stored in the JDBC driver in response to application request is
used by the JDBC driver to replay application requests and responses up to that point of the

session.

13-



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

[00052] In accordance with an embodiment, the above functionality can be largely
implemented in, e.g. an Oracle database driver and server, or other form of JDBC or database
driver. Application servers, such as WebLogic Server, can then expose interfaces to help control
the driver replay feature and participate in demarcating the work that needs to be recovered.
[00053] In accordance with an embodiment, the normal Oracle driver/data source classes
can be replaced with a “oracle.jdbc.replay.OracleData sourcelmpl” class. The administrative
console will indicate that, if this driver is selected, XA is ignored. An end-user or administrator
can use the console, or a text editor or programmatically (e.g., WLST) to specify the correct
driver and provide further configuration.

[00054] Although the embodiments described above illustrate the use of the driver replay
feature with read-only scenarios, in accordance with other embodiments the driver replay feature
can also be used with data update scenarios.

[00055] To create a connection initialization callback, an application can implement the
oracle.ucp.jdbc.ConnectionlinitializationCallback interface. One callback is created per

connection pool. The interface provides one method as shown below:

void initialize(java.sgl.Connection connection) throws SQLException

If is ignored if a labeling callback is registered for the connection pool. Otherwise, itis executed
at every connection check out from the pool and at each successful reconnect following a
recoverable error at replay. Using the same callback at run time and at replay ensures that
exactly the same initialization that was used when the original session was established, is re-
established at runtime. Itis the implementer of the callback’s responsibility to ensure that this is
the case. If the callback invocation fails, replay is disabled on that connection. The following

example demonstrates a simple initialization callback implementation.

import oracle.ucp.]jdbc.ConnectionInitializationCallback ;
class MyConnectionInitializationCallback implements

ConnectionInitializationCallback {

public MyConnectionInitializationCallback() {

}

public void initialize(java.sgl.Connection connection) throws
SQLException {

// Re-set the state for the connection, if necessary

A WLS data source provides the registerConnectioninitializationCallback
(ConnegctionlnitializationCallback callback) method for registering initialization callbacks. Only

one callback may be registered on a connection pool. The following example demonstrates

-14-



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

registering an initialization callback that is implemented in the MyConnectionInitializationCallback

class:

import weblogic.jdbc.extensions.WLDataSource;
MyConnectionInitializationCallback callback = new
MyConnectionInitializationCallback() ;

((WLDataSource)ds) .registerConnectionInitializationCallback( callback

) ;

The callback can also be configured via the schema via a new connection-initialization-callback
element in the Oracle parameters, A WLS data source provides the
removeConnectionlnitializationCallback() method for removing a Initialization callback. The

following example demonstrates removing an initialization callback.

import weblogic.jdbc.extensions.WLDataSource;
((WLDataSource)ds) .unregisterConnectionInitializationCallback(callbac

k);

In accordance with an embodiment, WeblLogic Server can implement and register
oracle.jdbc.replay.internal.ConnectionlnitializationCallback. The initialize() method will invoke
the ConnectionLabelingCallback implementation if registered. Otherwise, the initialize() method
will invoke the ConnectionlnitializationCallback implementation if registered. The initialization
callback should also be invoked when a connection is given out by the pool if a labeling callback
is not registered. WLS will call beginRequest and endRequest on the connection to bracket
work on the connection. beginRequest returns an error if called with an open transaction or if
there has been no endRequest() since the last beginRequest or returning the connection to the
pool. endRequest is a declaration that the connection could be replaced by a new connection.

Receiving this marker allows the replay driver to take the following actions with respect
to recording for replay: Purge transaction history and accumulated purge-on-close (lazy) cursors.
This only purges recorded Call History. It does not involve altering a connection’s state by re-
executing any JDBC method, SQL, or PL/SQL.; Clear the saved reason for disabling replay
(error code), if replay is disabled.; Disable replay. Replay will be enabled at the next
beginRequest call.; Return an error if called with an open transaction (determined by the
transaction bit).; An error is not returned on repeated endRequest calls, as these may be result
of legitimate errors and sessions closing. Replay can be disabled on a per-connection basis as

follows.

if (connection instanceof oracle.jdbc.replay.ReplayableConnection) {

((oracle.jdbc.replay.ReplayableConnection)connection) .disableReplay () ;

-15-



10

15

20

25

30

35

40

WO 2013/003482 PCT/US2012/044429

Java Programming Interface

[00056] In accordance with an embodiment, provided below is an example of a Java
programming interface for the JDBC driver replay feature described above. The example Java
programming interface is provided for the purposes of illustration and description, and is not

intended to be exhaustive or to limit the invention to the precise forms disclosed.

<element name="connection-initialization-callback” type="string”

nillable="true" minOccurs="0">
The name of the connection initialization callback. This is automatically passed to

registerConnectionlinitializationCallback when the data source is created.

public interface ConnectionInitializationCallback
API that is invoked at every connection check out from the pool, as well as at each

successful reconnect following a recoverable error at replay.

void initialize(java.sqgl.Connection connection) throws SQLException

Invoked at every connection check out from the pool, as well as at each successful
reconnect following a recoverable error at replay. Using the same callback at run time and at
replay ensures that exactly the same initialization that was used when the original session
was established, is re-established at runtime. It is the implementer of the callback’s
responsibility to ensure that this is the case. If the callback invocation fails, replay is disabled

on that connection.

public String getConnectionInitializationCallback();

public void setConnectionInitializationCallback();

[00057] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art. In accordance with some
embodiments, systems and components developed in accordance with the present invention can
include, or can be implemented or provided as, computer hardware, software, firmware, or any
combinations thereof.

[00058] In some embodiments, the present invention includes a computer program
product which is a storage medium or computer readable medium (media) having instructions

stored thereon/in which can be used to program a computer to perform any of the processes of

-16-



10

WO 2013/003482 PCT/US2012/044429

the present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMSs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory |Cs), or any type of media or device
suitable for storing instructions and/or data.

[00059] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical application, thereby enabling others skilled
in the art to understand the invention for various embodiments and with various modifications
that are suited to the particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalence.

17-



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

Claims:

What is claimed is:

1. A system for supporting session affinity in a data source and clustered database
environment, comprising:

a clustered database system, and a notification service associated with a plurality of
database instances therein, wherein the notification service is used to broadcast notifications
that describe state changes in the clustered database;

an application server, and a data source and connection pools associated therewith,
wherein the data source and connection pools are used to manage connections to the plurality of
database instances in the clustered database, and

wherein the data source can use session or session-based affinity, wherein database
operations are directed to a particular database instance for a period of time when the

application may be performing multiple, related updates to a specific data set.

2. The system of Claim 1, wherein an affinity policy can be defined globally across multiple
data sources, or individually for each data source, and wherein the affinity policy defines which

type of affinity will be used by that data source at runtime.

3. The system of Claim 2, wherein at runtime, when an application requests a connection
from the data source which has a session affinity policy set, the system makes a callback to get
any available web session contex, and if such a web session context is available, the system

can use that to choose the most appropriate connection.

4. The system of Claim 3, wherein the system can uses a functionality such as work
context, which propagates around the system with the request, and wherein a servlet container
can determine from the work context which is persisted with the web session, whether an affinity
policy is set, and if so, set the work context as appropriate and retrieve additional information to

then choose the most appropriate connection.

5. A method for supporting session affinity in a data source and clustered database
environment, comprising the steps of:

providing access to a clustered database system, and a notification service associated
with a plurality of database instances therein, wherein the notification service is used to
broadcast notifications that describe state changes in the clustered database;

providing an application server, and a data source and connection pools associated

therewith, wherein the data source and connection pools are used to manage connections to the

-18-



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

plurality of database instances in the clustered database, and
wherein the data source can use session or session-based affinity, wherein database
operations are directed to a particular database instance for a period of time when the

application may be performing multiple, related updates to a specific data set.

6. The method of Claim 5, wherein an affinity policy can be defined globally across multiple
data sources, or individually for each data source, and wherein the affinity policy defines which

type of affinity will be used by that data source at runtime.

7. The method of Claim 6, wherein at runtime, when an application requests a connection
from the data source which has a session affinity policy set, the system makes a callback to get
any available web session contex, and if such a web session context is available, the system

can use that to choose the most appropriate connection.

8. The method of Claim 7, wherein the system can uses a functionality such as work
context, which propagates around the system with the request, and wherein a servlet container
can determine from the work context which is persisted with the web session, whether an affinity
policy is set, and if so, set the work context as appropriate and retrieve additional information to

then choose the most appropriate connection.

9. A non-transitory computer readable medium, including instructions stored thereon which
when read and executed by one or more computers cause the one or more computers to
perform the steps comprising:

providing access to a clustered database system, and a notification service associated
with a plurality of database instances therein, wherein the notification service is used to
broadcast notifications that describe state changes in the clustered database;

providing an application server, and a data source and connection pools associated
therewith, wherein the data source and connection pools are used to manage connections to the
plurality of database instances in the clustered database, and

wherein the data source can use session or session-based affinity, wherein database
operations are directed to a particular database instance for a period of time when the

application may be performing multiple, related updates to a specific data set.

10. A system for providing improved application connectivity in a data source and clustered
database environment, comprising:

a clustered database system, and a notification service associated with a plurality of
database instances therein, wherein the notification service is used to broadcast notifications

that describe state changes in the clustered database;

-10-



10

15

20

25

30

35

WO 2013/003482 PCT/US2012/044429

an application server, and a data source and connection pools associated therewith,
wherein the data source and connection pools are used to manage connections to the plurality of
database instances in the clustered database, and

wherein during the operation of an application using a web session, if the connection
goes down or fails, the database driver records the state of what was previously queried by the
application from the database, and replays the session to that point to process the query or

update against the database, so that the application does not itself see any error or exception.

1. The system of Claim 10, wherein the feature is used for non-transactional read-only or

select-only cases.

12. The system of Claim 1 wherein the database driver is a JDBC driver.

13. The system of Claim 12, wherein the JDBC driver records the results of read-only or

select data from the database instance, within the driver memory space itself.

14. A method for providing improved application connectivity in a data source and clustered
database environment, comprising the steps of:

providing access to a clustered database system, and a notification service associated
with a plurality of database instances therein, wherein the notification service is used to
broadcast notifications that describe state changes in the clustered database;

providing an application server, and a data source and connection pools associated
therewith, wherein the data source and connection pools are used to manage connections to the
plurality of database instances in the clustered database, and

wherein during the operation of an application using a web session, if the connection
goes down or fails, the database driver records the state of what was previously queried by the
application from the database, and replays the session to that point to process the query or

update against the database, so that the application does not itself see any error or exception.

15. The method of Claim 14, wherein the feature is used for non-transactional read-only or

select-only cases.

16. The method of Claim 15, wherein the database driver is a JDBC driver.

17. The method of Claim 16, wherein the JDBC driver records the results of read-only or

select data from the database instance, within the driver memory space itself.

18. A non-transitory computer readable medium, including instructions stored thereon which

-20-



10

WO 2013/003482 PCT/US2012/044429

when read and executed by one or more computers cause the one or more computers to
perform the steps comprising:

providing access to a clustered database system, and a notification service associated
with a plurality of database instances therein, wherein the notification service is used to
broadcast notifications that describe state changes in the clustered database;

providing an application server, and a data source and connection pools associated
therewith, wherein the data source and connection pools are used to manage connections to the
plurality of database instances in the clustered database, and

wherein during the operation of an application using a web session, if the connection
goes down or fails, the database driver records the state of what was previously queried by the
application from the database, and replays the session to that point to process the query or

update against the database, so that the application does not itself see any error or exception.

-21-



PCT/US2012/044429

WO 2013/003482

1/8

<0l J81I8n|D eseqgeled

oclL
obelolg

paleys

8Ll
D aouejsy|

aseqgeleq

9Ll
g soue)jsu|
aseqgeleq

1435

 aoue)sy|

aseqgeleq

y

Vel
20INIBG
UGHEDIION

L 34N9IHH

6cl

LOL Jonieg uonesiddy

{
|
|
|

901
[00d
uonosuu0D

ol
80IN0S Ejeq YUIPUD

e —— — — —

453

oLl

uoneslddy

801

uoneslddy

sbumes |00d |
uoIljpasuuo)

o9&l
sobessa)

usAg




¢ 34N9I4

0¥ sieAlag uoneo||ddy

PCT/US2012/044429

2/8

<0l J81I8n|D eseqgeled
T T T /_
I 9/l |
oLl " sBumes Ajuiy
\I@N_\I /
O SouelsU] // SoooooooC
\ asegele 991l e N
g |0od | Vil |
uoIoBuUL0D ; | sbumes “
I 100d uoposuuoy
ozl L S==mm——— -
6 9Ll
moﬂo“w g souejsu| Vol 0/l
PRIEUS sseqeje( g 801n0S Ejeq YUIIPUD uoneoyjddy
291 g e@ouelsu| Janag uoieolddy

1435

 aoue)sy|
aseqgeleq

WO 2013/003482

Tt M
/ | 961 |
_ I sBumes Ajuy

/ ! \_

Y 85l | N - -
~— vl === .
vl — s _ oo :
80IABg "\ LoI23UU0YD } | sbumeg “
uoneoioN | S« | oo vorano |

A Y 190d ofpauuo; 2

o 1 ISl
~
S \\ 144" oSl
< ~ d ¥ 80iN0g ejeq Jul|puo uoieol|ddy
S e - p 7
oKL -

Z¥L V¥ 9ouejsy| JeAleg uoneolddy




PCT/US2012/044429

WO 2013/003482

3/8

€ 34N9OId

¢0¢g J8I8n|D eseqgeled

8Ll
D souejsu|

asegele(

45
abelio)g

poleys

9Ll
g soue)su|
aseqeleq

14%%
V soue)su|
asegele(

v v

0ce A
XajoD 20INIeS
Auiy UONEOION  +

022 1sonbay
uoIssag

JoM Jusnbasgng

LOZ Joniag uoneolddy

RN

9lLe

S0c
|00d
uonosuUU0D

{
|
|
l

gl¢ 1senbay
uoISSaS gopn

 ___-9z~

10

[4%4

!
“ Aluy uoisseg =
1 Bumes Anuiy

ole
sbupes
0d Uoljosuuo)d

€0¢
80JN0G Ble  Jul|pLD UoISSaS oM

80¢

\\

il

90z
uofeol|ddy gap

/




PCT/US2012/044429

WO 2013/003482

4/8

vy 34N9id4
||||||||||||||||||||||||| »| o
{I®ourlsSUT 03 UOTIOBUUOD}
D et bt
52 {T®90our3sur}
.
() 3x®3u0pA3TUTFFYUOTIOSUUODISL “ YoRqTTRDAI JUTFFY 52
- 0s¢
() uotaosuuonrab
||||||||||||||||||||||||| > 8ve
{I®ourlsSUT 03 UOTIOBUUOD}
g
({ T90UR31SUT }) 3%03U0DAI TUTFFVUOTFOBUUODIOS | YORQT TRILITUTFFY ot
O il ittt
e {TTRU}
P
() 3xe3uopArTUuTFFVUOTIOSUUODISS “ yoeqTTRDAIqUTFFY e
-— (6] 74
() uotazosuuonlsb
eoxnoseileqg uor3zeoTTddY

I9UTRIUOD
18TAISS



PCT/US2012/044429

WO 2013/003482

5/8

99¢

1214

29¢

09¢

S 34N9I4d

—

sjsanba. Jusrbasgns Ag @sn 10} UOISSaS 8Y) YIIM paleloosse
S1 JX81U00 Ajulge sy jey) os ‘dell pue uoissas ayj 0} Ixajuo)) Aluly peseq-uoissag Bulisixe Aue seAes Jaulejuoo
8y ‘esuodsal I paysiul} Sey Jauleluoo JojAles ay) alojeq pue paysiuly uonesidde ay) Jo uonnoaxe sy Jay

pauJin)al s UOIIOBULOD SWes 8y} Uay) pue ‘dew 1Xajuoo 3Jom ay)
WoJ} payole)s! IxsjuoD AlulLy pesed-uoisseg ay) ‘uoneolidde syl Ag urebe pa|jeo s| UOOBUUOD B J|

uoljeoljdde sy} 0} pauin)al I UOIJ0BUUOD B pue ‘dew 1Xa)uoo
3IOM B} 0} PaJ0]s S| IX8jU0D) AJUlLY Peseg-uoISsag e uay) ‘palols Apeale 1xajuoo AjUILe ou si 8iay) j|

Pa)0AUI S| UOOBULIOD 80.N0S Blep e pue ‘painosxs s| uoneolddy




9 34N9I4

Z0g Jasn|D sseqejeq

PCT/US2012/044429

6/8

08¢ Joneg uoneo|ddy

8Ll e ~\

0 doue)su| |
sseqeled g6¢ £8¢

(uonewuoyu) Aejdey)
\ ojels
\ as
\_ JeAuQ@ Dgar Y

oclL
abeloig

paleys

oLl
g soue)jsu|
aseqgeleq

1514

/ 143" |00d
v aouelsu| uonosuuo))
aseqgeleq
: c6¢
(4274 uoIssag
v P 90IN0S eje NUIIPLO uofjesl|ddy
Vel 4 ( i
20INIBG S e (
uonesINo RN -7 o
IedIoN S~ ozl = " uoneol|ddy

WO 2013/003482



PCT/US2012/044429

WO 2013/003482

7/8

Z 34N9I4

¢0¢ J818n|D eseqgele

oclL
abeloig

paleys

8Ll
0 soue)sy|
aseqgeleq

oLl
g soue)jsu|
aseqgeleq

14%%
 aoue)sy|

aseqgeleq

Yy

Vel
20INIBG
UGHEDIION

96¢
Janieg
pajosuuooun
Jo uoiosuo)

palted

08¢ Joneg uoneo|ddy

r ™
182
(uonewuoyu| Aejday)
oels \
%
98¢
\_ 4BAUQ Ogdr )
A 86¢
gjeq
pafe|dey
8¢
|o0d
UoljosuUoD
4314
(4274 uoIssag
, 92IN0g eje  JUlpuo uoneolddy
i\
06¢
uoneol|ddy




PCT/US2012/044429

WO 2013/003482

8/8

80¢

90¢

Yoe

20¢

8 J4N9Id

wiod jey) 0} dn sssuodses pue sysenbal uonjesidde Aejds.
0} JoAup Dgar Aq pasn si 1senbau uonesidde o) asuodsa. Ul JOALIP DEGAr 2y} Ul palos eleq

aoue)jsul aseqejep sy} 0)
uoIOBUUoD S 10| Sey uoljeoldde ssuljwlslep Ajusnbasgns We)sAg

aouejsU| aseqelep ay) WoJ ejep J08es Jo Ajuo-peal Jo s)nsa. spiooal JaALp Dgar

JaALP DEAr pue [ood UonosULIoD 8y} BIA
aseqe)ep palsisn|o 8y JO souE)sUl asegelep e WOl ejep 108(as 0} 1senbal sexew uoneolddy




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

