PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burcau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(30) Priority Data:
9526096.4 20 December 1995 (20.12.95) GB

@1) International Patent Classification 6 ; (11) International Publication Number: WO 97/22939
GO6F 17/30 Al . o
(43) International Publication Date: 26 June 1997 (26.06.97)
(21) International Application Number: PCT/GB96/03102 | (81) Designated States: AU, CA, CN, JP, KR, MX, NO, NZ, SG.
US, European patent (AT, BE, CH, DE, DK, ES, Fl, FR,
(22) International Filing Date: 16 December 1996 (16.12.96) GB, GR, [E, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 10 be republished in the event of the receipt of

(71) Applicant (for all designated States excepl /S): BRITISH amendmenis.
TELECOMMUNICATIONS PLC [GB/GBJ; 81 Newgate
Street, London EC1A 7AJ (GB).
(72) Inventor; and
(75) Inventor/Applicant (for US only): LENZIE, Robert, S.
[GB/GB];, 129 Westfield Road, Harpenden, Hertfordshire
ALS 4)Z (GB).
(74) Agent: ATKINSON, Ralph; Atkinson & Co., The Technology
Park, Sheffield S9 3SP (GB).
(54) Title: SPECIFYING INDEXES FOR RELATIONAL DATABASES
(57) Abstract
An index set for a database is specified by analysing a sample «
(718) of SQL statements applied to the database (701). Indexes 715 "? 704 797
g;lgz:nacﬁsx(iirénlfgi 1;h2:‘ icr(;uld as(sj'lst in the execution of the analysed DATA saL Wy) rerere
proved operation are evaluated for each of QUERIES | EXECUTION ABLE b a!
said indexes. The evaluated levels are then processed (708) to specify , Q K e :
an index set for inclusion on the database. The database may not 718 DE "{.“'r" "r-'r',
include sufficient storage (702) for all of the specified indexes to be 703 g !'J g
included, therefore the available storage space is allocated and indexes
are selected on a prioritized basis. 700 N2
~718 | 70T 705
sak (
TRACEW 7 1"' rrrr “
t
TABLE Freaa !
daaaal!
i
710 7 707
B ? rr W r :
TABLE [I |)
T I
P
724 2} 712
)
702 DATA STORE
: 708 el 721
INDEXSET [+ L
SPECIFIER PRINTER

applications under the PCT.

AM
AT
AU
BB
BE

CH

GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’'Tvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN

HU
IE

JP

KE
KG
KP

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/22939 PCT/GBY96/03102

10

15

20

25

30

SPECIFYING INDEXES FOR RELATIONAL DATABASES

Introduction

The present invention relates to specifying indexes for relational
databases. The present invention also relates to a relational database
including processes for specifying indexes.

Data processing environments are known in which executabie
instructions are arranged to produce a data set derived from data
contained within a database in response to a data enquiry. Data may be
accessed directly from data tables, where it may be necessary to
search all entries within the table in order to obtain the information .
required. Alternatively, searching procedures may also make use of
indexes in order to substantially increase the speed of a searching
process.

Designing index structures for large and heavily used databases
is presently an extremely difficult exercise and highly susceptible to the
introduction of errors. This problem exists because the technical
demands and constraints are such that it is not possible for a human
database administrator to simultaneously perceive the indexing
requirements for, typically, hundreds or thousands of different
structured query language (SQL) statements, that run against the
database on a day-to-day basis, and then to convert these
requirements into a preferred set of indexes defined over the whole
database. However, poorly specified index designs will result in SQL
statements that consume far too much of the processor facility, that run
for far longer than they should and result in a machine that is heavily

overioaded.

WO 97/22939 PCT/GB96/03102

10

15

20

25

2

For a long time, there has been a requirement for procedures
that globally specify index structures defined over a given database
design, for a typical SQL workload, which may be referred to as a target
workload. However, this technical problem has persisted given the
inherent difficulties of realizing a technical solution, implemented and
taking advantage of the processing capability available, without

requiring intuitive mental processes on the part of human operators.

Summary of the Invention

According to a first aspect of the present invention, there is
provided a method of specifying an index set for a database stored in
machine readable form, comprising steps of: analyzing a piurality of
statements supplied to said database; identifying indexes derived from
tables of said database; evaluating levels of improved operation
achievable when said indexes are available; and processing said
evaluated levels to specify an index set for said database.

In a preferred embodiment levels of improved operation are
evaluated by creating a scaled-down model of database tables derived
from information relating to the nature of said tables. Typically, the
scaled-down model may include in the region of 5000 data entries per
table. Preferably, the model database is populated with representative
data entries taken from the live database being modelled and said
model may be populated by considering the cardinality of an existing
index of the live database. In addition, the database model may be
populated by considering the distribution of entries within an existing
index of the live database.

In a preferred embodiment, database statistics are copied from
the live database to the database model. Preferably, a base level cost is

calculated for executing statements without additional indexes being

WO 97/22939 PCT/GB96/03102

10

15

20

25

3

present. Preferably, cost levels are obtained by estimating execution
time. In addition, cost levels may be estimated by assessing index
maintenance overheads.

According to a second aspect of the present invention, there is
provided index set specifying means, arranged to specify a set of
indexes for a relational database, comprising analyzing means for
analyzing a plurality of statements supplied to said database; identifying
means for identifying indexes derived from tables of said database;
evaluating means for evaluating levels of improved operation
achievable when said indexes are available; and processing means for
processing said evaluated levels to specify an index set for said
database.

In a preferred embodiment possible indexes are identified from
predicate sets defined by said statements.

According to a third aspect of the present invention, there is
provided data processing apparatus arranged to specify an index set for
a database, said apparatus comprising data storage means, data
processing means and program instructions readable from said data
storage means, wherein said processing means is configured, in
response to said instructions, to provide means for: analyzing a plurality
of statements supplied to said database; identifying indexes derived
from tables of said database; evaluating levels of improved operation
achievable when said indexes are available; and processing said
evaluated levels to specify a set of preferred indexes for said database.

In a preferred embodiment, cost savings are calculated by
processing cost values of the old SQL statement costs and of the new
SQL statement costs with a possible index. Cost saving may be
calculated by subtracting the new costs from the old costs. Preferably,

cost savings are calculated for tables by considering each new possible

WO 97/22939 PCT/GB96/03102

10

15

20

25

4

index in turn with reference to its respective table.

In a preferred embodiment, possible indexes are ordered in
terms of potentiality for being specified as preferred indexes. Index
combinations may be identified by randomly combining existing
potential indexes and processing said evaluated levels to specify a set
of preferred indexes.

According to a fourth aspect of the present invention, there is
provided a relational database comprising a plurality of data tables
stored in machine readable form, processing means for processing said
qata tables in response to statements and for generating indexes to
facilitate the processing of said data tables, further comprising
instructions executable by said processing means for specifying a
preferred index set, wherein said instructions are configured to analyze
a plurality of statements supplied to the database, identify indexes
derived from tables of said database, evaluate levels of improved
operation achievable when said indexes are available, and processing

said evaluated levels to specify a preferred index set for said database.

Brief Description of the Drawings

Figure 1 shows a telecommunications environment including a
data analysis system,;

Figure 2 details the data analysis system identified in Figure 1
having a plurality of large disc storage devices arranged to store data
tables;

Figures 3A 3B, 4A and 4B illustrate examples of data tables, of
the type stored on data storage devices shown in Figure 2.

Figures 5 and 6 illustrate examples of indexes derived from the
data contained within the table shown in Figure 3A;

Figure 7 illustrates a database structure implemented within the

WO 97/22939 PCT/GB96/03102

10

15

20

25

5

environment shown in Figure 2, including a process for specifying
indexes;

Figure 8 illustrates processes performed within the environment
shown in Figure 7, including a process for a specifying index sets;

Figure 9 illustrates the process for specifying index sets identified
in Figure 8, including a process for modelling a live database, a process
for analzsing typical SQL statements, a process for base cost
calculation, a process for identifying potential indexes and a process for
specifying preferred indexes;

Figure 10 details the process for modeliing the live database,
identified in Figure 9;

Figure 11 details the process for analysing SQL statements
identified in Figure 9;

Figure 12 illustrates a table of data created using the process
identified in Figure 11;

Figure 13 details the process for calculating a base cost,
identified in Figure 9;

Figure 14 details the process for identifying and ordering potential
indexes illustrated in Figure 9;

Figure 15 details the process for specifying a preferred set of
indexes, identified in Figure 9;

Figure 16 details an example of data produced during the
process illustrated in Figure 15;

Figure 17 illustrates the generation of new combination indexes
using the process detailed in Figure 15; and

Figure 18 illustrates a procedure for establishing indexes within a

live database.

A Preferred Embodiment

WO 97/22939 PCT/GBY96/03102

10

15

20

25

6

The invention will now be described by way of example only, with
reference to the accompanying drawings identified above.

A telecommunications environment is illustrated in Figure 1 in
which a plurality of telecommunications user-equipments 101, such as
telephone handsets, fax machines and modems etc, are connected to
local exchanges 102 via respective local analog lines 103. At the local
exchanges 102 analog signals are digitized, with subsequent switching
and re-routing being performed within the digital domain. This results in
many calls being routed over a digital time division multiplexed channel
104 to a trunk telecommunication network 105.

The local exchanges 102 and trunk network 105 provide
conventional telecommunications switching and allow calls to be
connected in a conventional way. In addition, more advanced services
are provided by an advanced service node 106, allowing customers to
gain access to advanced services such as store and forward facilities
and personal number identification etc. Customers gain access to the
advanced service node 106 via a digital multiplex 107 connected to the
trunk network 105. Thus, calls may be routed via the trunk network 105
to the advanced service node 106, whereafter information may be sent
back to a calling customer and calls may be re-routed, via the trunk
network 105 to terminal equipment 101, elsewhere. Alternatively, the
functionality of the advanced service node 106 may be distributed
throughout the trunk telecommunication network 105.

When a call is made, charging details relating to the call are
stored at the associated local exchange 102. Subsequently, this calling
information, representing chargeable usage made by connected
customers, is supplied to a central administration unit 108 via a
communications channel 109. In this way, all charging information is

directed towards the central administration unit 108 that is in turn

WO 97/22939 PCT/GB96/03102

10

15

20

25

7

responsible for the generation and distribution of customer accounts.

In operation, the system consisting of the terminal equipment
101, the local exchanges 102, the trunk network 105 and the advanced
service node 106 connect a very large number of calls resulting in the
generation of a very large corpus of operational data. Primarily, this
data will identify details concerning the nature of the originating call, the
nature of the destination call and the call type. Call type information
may identify the call as being a straightforward local call, alternatively
the call may be long distance, international or may involve the use of
the services provided by the advanced service node 106. Analysis of
this data may provide at least two significant benefits. Firstly, in
response to data being collected representing the operational nature of
the system, it may be possible to make alterations to the way in which
the system operates. Thus, if it has been found that a particular region
makes substantially more use of advanced services than that or
another region, it may be possible to redirect the allocation of these
services so as to optimize their availability. Similarly, an assessment of
network usage may aiso be made available to the designers of
marketing strategies, particularly when efforts are being made to make
better use of the available capacity during off peak periods.

In practice, substantially similar queries will tend to be executed
upon the database at regular intervals. Operational divisions may have
particular interests and require their interests to be up-dated on a
regular basis. A very large number of users may be given access to the
database thus, over a period of time, hundreds and possibly thousands
of SQL queries may be executed upon the data contained within the
database and a large proportion of these queries will be executed many
times, in order to produce up-dated results as new data is included.

The system shown in Figure 1 includes a data analysis unit 110

WO 97/22939 PCT/GB96/03102

10

15

20

25

8

arranged to receive data from the trunk network 105, the advanced
service node 106 and the central administration unit 108. In turn, the
data analysis unit may provide data back to the trunk network 105, the
advanced service node 106 and the central administration unit 108.
Within the trunk network 105 and the advanced service node 106,
modifications may be made to the technical operation of these systems
in response to data received back from the data analysis unit. Similarly,
data supplied back to the central administration unit 108 may result in
changes being made to the way in which customers are invoiced;
generally in an attempt to modify the way in which customers make
use of the network.

Data will be collected at the data analysis unit 110 and stored in a
form specified by original system designers. These designers will
endeavour to anticipate the types of query that will be required later,
although it is not be possible for them to anticipate all queries that may
become of interest. The data therefore tends to be stored at the data
analysis unit in relational database terms, thereby facilitating
subsequent manipulation in response to particular queries. These
queries may in turn result in modifications being made to the trunk
network 105, the advanced service node 106 or the central
administration procedures 108. In addition, data generated in response
to specific queries may be collated at the data collation unit 111 for
reference or subsequent use.

The data analysis unit 110 is detailed in Figure 2 and is
substantially based around a mainframe computer 201, such as an IBM
ES9000, configured with ten processors operable at 50 (million
instructions per second) MIPS. Users are given access to the database
system via a plurality of networked user terminals 202 and data, in the

form of data tables, are stored on disc drives 203, capable of storing

WO 97/22939 PCT/GB96/03102

10

15

20

25

9

data volumes measured in terabytes.

Operational data sources, such as the trunk network 105, the
advanced service node 106 and the central administration unit 108 are
illustrated as operational data sources 204. In addition, data may be
received from other external sources, illustrated by external data source
205. A flow of operational control signals back to the trunk network 105,
advanced service node 106 or the central administration unit is
illustrated by data being suppiied to operational control devices 206 and
the collation and printing of data is illustrated at 207. Data is stored in
the system on the disc storage devices 203 and output data may be
obtained in response to a query. set up by a user using a network user
terminal 202. The data retained on the disc storage device 203 may be
collected on an ongoing basis in response to operation of the trunk
network or other devices as shown in Figure 1. In addition,
administrative data may also be retained on the storage devices and
queries may be set up so as to relate operational data to administrative
data.

Examples of database tables of the type stored on the disc
storage devices 203 are illustrated in Figures 3A, 3B, 3C and 3D.
Information is received from the central administration unit 108
representing each telecommunications event. Each event is given a
unique sequence number thereby creating a new record in the
database, as illustrated in Figure 3A. A record is completed by
identifying the day of the event, the start time, the end time, the
telephone number of the customer initiating the event and the call type.
Thus, at one minute past midnight on 01 December 1995, a customer
with telephone number 404 7241 made a call of type A which
terminated at twenty-five minutes past midnight. Arbitrary designations

are given to call types in this example, wherein call type A represents

WO 97/22939 PCT/GBY6/03102

10

15

20

25

10

local calls, call type B represents long distance calls, call type C
represents long distance calls instigated by an operator and call type G
represents calls making use of advanced services. The event identified
above has been recorded under event number 12345, with the next
event being identified under event number 12346. This was initiated by
a customer having telephone number 386 4851 at one minute passed
midnight on 01 December 1995 and again this has been identified as a
call of type A.

The database within the data analysis system 110 also includes
administrative data such as that identified in Figure 3B. The table
shown in Figure 3B maps customer identifications onto customer
telephone numbers. It will be appreciated that a particular customer
may have a plurality of telephone lines with different telephone numbers
such that it is necessary, given a particular telephone number, to
identify the associated customer. Thus, in the example shown, the
customer with telephone number 404 7241 has been allocated
customer identification number 012836 within record 303. Similarly,
record 304 shows that telephone number 404 7242 has been allocated
to a customer identified with customer identification number 057896.

A table illustrated in Figure 4A relates customer identification
numbers to customer addresses. Thus, it can be seen from record 305
that the customer with identification number 0074895 is resident at 52
High Holborn, London.

Generally, it is not necessary to provide wider geographical data,
given that a particular town would always be located within a particular
geographical region. However, geographical regions may be adjusted
by a particular operator so as to reflect changes in commercial
environments. A further table is provided mapping towns and cities to

particular regional areas. Thus, as identified by record 306, London has

WO 97/22939 PCT/GB96/03102

10

15

20

25

11

been mapped onto the South East region with Loughborough being
mapped to the East Midlands region in record 307. Adjustments could
be made to regional boundaries to reflect the location of regional
offices, such that, for example, the East Midlands region could be
combined with a West Midlands region to provide a Midlands region.
Under such circumstances, it would only be necessary to modify the
table shown in Figure 4B without requiring modifications to the table
shown in Figure 4A, the table shown in Figure 4B having substantially
fewer records than the table shown in Figure 4A.

It will be appreciated that the data table shown in Figure 3A
allows dafa records to be read very' quickly if an enquiry is made with
reference to the event number. The data table shown in Figure 3A is
sequenced in terms of event number, where each event number is
unique to a particular record. Thus, given event number 1345 the
database could quickly respond to the effect that the customer with
telephone number 404 7241 made a call of type A. Similarly, by
referring to the table shown in Figure 3B, it would be possible to relate
this telephone number to a customer identification with an address and
a region being identified for the query with reference to the tables
shown in Figure 4A and 4B respectively.

However, a problem would arise if queries are made with
reference to other fields within the record shown in the table of Figure
3A. For example, a query may require a list to be produced of all events
initiated by a particular telephone number. Alternatively, a query may be
made concerning all events of a particular call type. More complex
queries may be made using entries of this type, for example, a query
may be made requesting details of all calls initiated from the South East
region and lasting for a duration of more than ten minutes.

Referring to the earlier example, a simple query may be made

WO 97/22939 PCT/GB%6/03102

10

15

20

25

12

requesting details of all events initiated by a particular telephone
number. The table shown in Figure 3A has not been indexed under
telephone number entries, therefore it would be necessary for the
processor to search the telephone number data field of all records
within the table. Clearly, this requires substantially more processor
resources than reading records with reference to the event number.
The table shown in Figure 3A has been sequenced under event
number so that, given an event number, a particular record may be
identified very quickly. However, without being indexed under any other
field, it is necessary to perform a search in order to identify particular
fields of interest. Referring to the more complex example identified
above, it may be necessary to satisfy a particular query by making
several searches of different fields, thru all of the records contained
within the table.

in order to improve the speed at which searching may be
performed, it is possible to create indexes for particular tables such that
rapid searching may be executed with reference to other data fields. As
shown in Figure 5, the data contained within table 3A has been used to
develop an index based on telephone numbers. Each telephone
number is considered one by one and an index is created identifying
each particular event initiated by that particular telephone number.
Thus, record 301 has been identified for telephone number 404 7241
and event 12345 has been recorded against this telephone number.
Subsequently, further events were initiated by this telephone number,
represented as 14876, 15739, 15928 and 16047. The index continues
until all events relating to the telephone number under consideration
have been recorded. Thereafter, the index continues with the next
telephone number, 404 7242 in this example, against which events
13728, 14937, 15821 and 14723 etc have been recorded.

WO 97/22939 PCT/GB96/03102

10

fa
(2]

20

25

13

Thereafter, telephone number 404 7243 is considered with
events being recorded against this telephone number and so on until all
of the telephone number entries within the data table shown in Figure 3
have been considered. In the index shown in Figure 5 the number of
records present is equivalent to the number of records present in the
original table shown in Figure 3A. However, the table of Figure 5 is only
an index, thus, for a particular telephone number, the index points back
to particular event numbers within the main table shown in Figure 3A.
Thus, the index allows searches to be performed quickly based on
telephone number, whereafter the remaining data contained within the
record of the table shown in Figure 3A may be derived.

An index similar to that shown in Figure 5 is shown in Figure 6, in
which the data contained within the table shown in Figure 3A has been
indexed in terms of event type. Record 301 has been reproduced as
record 601 in the index shown in Figure 6. The event identified as event
number 12345 was created due to a call of type A occurring thereafter
and this event number has been listed against the entry for event type
A. Thereafter, event numbers 13856, 14024, 15752 and 14831 were
events evoking call type A.

Thereafter, as shown in Figure 6, events for call type B are
recorded, including event 12348, placed in record 602, with subsequent
events being recorded for event type B. Once all events for event type
B have been recorded, the table continues with events of type C,
initiated by event number 12350.

Once the index for telephone numbers shown in Figure 5 and the
index for event types shown in Figure 6 have been produced, it is
possible to use these indexes to quickly access records within the table
shown in Figure 3A based on event number, telephone number and

event type. Clearly, when responding to queries, it is desirable to have

WO 97/22939 PCT/GB96/03102

10

15

20

25

14

these indexes available. However, the advantages of index availability
must be compared against the cost involved in terms of creating and,
perhaps more significantly, updating the indexes; in combination with
the additional requirement for storage space. Thus, in many practical
realisations, it would not be possible to create all possible indexes given
that insufficient disc storage space is available. Sometimes, it is
possible to increase disc storage space but in the majority of practical
realisations an upper bound exists in terms of total storage space and
the total amount of storage space that can be allocated for the creation
of indexes.

The system shown in Figure 2 is arranged to store very large
volumes of data. Furthermore, a relatively high demand is made of this
data from users executing queries in order to produce new data sets.
Some of these queries will be of a one-off nature but a high proportion
of the queries will be repeated enquiries made at relatively regular
intervals in order to assess modifications to the required data set in
response to additions and modifications made to the source data.
Under these situations, it becomes virtually impossible for database
administrators to accurately perceive indexing requirements in order to
achieve optimum performance in response to hundreds or possibly
thousands of different SQL statements executed against the database.
However, if optimum indexes are not provided, queries will tend to
impose excessive demands upon the central processing unit.
Furthermore, such queries will tend to run for far longer than they
should, thereby creating delays. As these problems persist, the
machine will become heavily over-loaded and a limit will be placed
upon the number of queries that can be executed in unit time. This

results in poor machine utilisation, effectively increasing the system cost

per enquiry.

WO 97/22939 PCT/GBY6/03102

10

15

20

15

The present system is arranged to specify indexing structures in
an attempt to overcome the technical problems identified above. The
system is configured to analyze SQL statements applied to the
database to specify a preferred set of possible indexes that could be
used to improve the execution of SQL statements that reference the
database. An estimation is made of the level of improved operation that
could be achieved if possible indexes were actually available within the
database system. From these estimations a preferred list of indexes is
specified. Thus, subjective constraints placed on database
administrators are removed, in that numerical indications are calculated,
by a machine, describing the extent to which it would be desirable to
include a particular index within the system, prior to resources being
allocated for the actual creation of that index. These numerical
indications are derived substantially from estimates of improved
performance when the index is in place.

The database hardware illustrated in Figure 2 is represented
schematically in Figure 7, along with associated processes
implemented by said hardware. The database system may be
configured in accordance with database instructions licensed by IBM
under the Trade Mark "DB2". The resulting DB2 environment is
ilustrated as 710 in Figure 7, consisting of a data store 702 and an SQL
execution process 703.

In the example shown, three tables have been defined within the
data store, shown as a first table 704, a second table 705 and a third
table 706. Within the database system illustrated, a total of six indexes
may be created for each table (this being a variable dependent upon
implementation), represented by ghosted regions 707. Thus, each table
may have an associated index set and the actual indexes included

within the index set will be determined in accordance with procedures

WO 97/22939 PCT/GB96/03102

10

15

20

25

16

performed by an index set specifier, as defined by the preferred aspects
of the present invention. The database also includes a catalog 709
arranged to store database definitions and catalog statistics.

Within DB2 a utility is provided identified as "RUNSTATS",
configured to derive statistics about the tables, columns and indexes
within the database. The catalog provides information detailing the size
of tables, allowing empty tables to be created before a data transfer is
effected from the live data store to a similar data store copy. In addition,
the SQL execution process includes a process known as an "optimizer”
that is configured to analyze the catalog statistics so as to optimize the
execution of particular SQL statements.

In addition to defining the size of tables, the catalog statistics also
records column cardinality, second highest and second lowest values,
cluster ratio and data distribution.

Column cardinality defines the number of different values in a
particular column while the full key cardinality identifies the total number
of distinct values in an index defined over a table. A customer table may
have a cardinality in excess of one million rows, each being distinct
customers, but a column identifying the sex of these customers would
only have a cardinality of two. Similarly, the cardinality of an index
identifying geographical regions may be in the low hundreds.

The second highest value, identified as HIGH2KEY represents
the second highest value within a particular column. Similarly, the value
identified as LOW2KEY represents the second lowest value for a
particular column and with this information it is possible to provide an
indication of the range of possible values within a column, particularly
when considered in combination with the column cardinality.

Cluster ratio provides an indication of how well the ordering of

data in an index follows the ordering of the data in the originating table.

WO 97/22939 PCT/GB96/03102

10

15

20

25

17

When a clustering index is defined over a table and the data in that
table is reorganised, every row in the table will be in clustered sequence
and the cluster ratio may be considered as being one hundred per cent.
Other indexes with different columns and column ordering to the
clustering index may not have their data so well clustered in relation to
the clustering index and will therefore tend to have a lower cluster ratio
value. As rows are inserted and deleted from a table the cluster ratio of
an index will gradually decline as more and more rows become out of
clustering sequence. Thus, cluster ratio provides an indication of how
well the data is ordered within a particular data index and is generated
from a sample of live data within the respective table, in this
embodiment. The data distribution statistics define the ten most
frequently occurring values in a column along with their percentage
occurrence.

Input information is supplied to the live database system in
substantially two forms. First, new data is supplied to the system, as
ilustrated by input line 715 and, secondly, SQL statement queries are
supplied to the database, illustrated by input line 716. Input queries on
line 716 are executed by the SQL execution process 703 to produce an
output, shown on output line 717. New data received on input line 715,
results in tables within the data store 702 being updated and this
updating process is performed in accordance with SQL commands.
Thus, both input data and SQL modifications, deletions and queries are
supplied to the SQL execution process 703 and are both implemented
under the control of said process.

Generally, SQL statements in the form of queries or enquiries
supplied on input line 716 will tend to be implemented more quickly if
the SQL processor 703 has access to many indexes in addition to the

primary data from the respective tables. Consequently, if the database

WO 97/22939 PCT/GB96/03102

10

15

20

25

18

system is required primarily to respond to enquiries of this type, it is
desirable to include many indexes within the system. However, when
the tables require updating in response to new data being received on
input line 715, or in response to data being modified or deleted, a
greater processing overhead is placed on the SQL execution process
703 if a large number of indexes are present. Thus, if the database
system is primarily required as a data archive, with minimal enquiries
being made to the system, it is desirable to minimize the number of
indexes within the system, so as to reduce the housekeeping overhead.
In most practical systems, both types of inputs are received, therefore
the number of indexes present within the system will be minimized, in
order to reduce the housekeeping overhead, however the choice of
indexes present should be optimized, to provide optimum performance,
subject to the availability of storage space.

The extent to which the specification of table indexes may
approach an ideal solution will depend upon the nature of SQL
enquiries supplied on input line 716. The system may be provided with
many indexes but these indexes will be of little benefit if they do not
relate to the predicates specified within typical SQL enquiries. Similarly,
maximum benefit will be gained from available indexes if they are
configured to satisfy regularly occurring SQL enquiries in preference to
the less frequent SQL enquiries. However, it must also be appreciated
that some SQL enquiries, although not particularly common, may be
extremely important to the operation concerned (perhaps being the
justification for the system existing) such that a higher priority must be
given to enquiries of this type. It can therefore be seen that a number of
conflicting constraints are placed upon the index set specifier 708,
which endeavours to provide optimum sets of table indexes. The SQL

execution process 706 includes an optimizer process arranged to

w0 97/22939 PCT/GB96/03102

10

20

25

19

assess the optimum way for obtaining and manipulating data contained
within the data store 702 in order to satisfy an SQL statement. The
optimizer examines each SQL statement to be executed against the
database and evaluates each of the many access paths by which the
statement could be satisfied. Each possible access path is assigned a
cost that represents the amount of processing and the amount of disc
access that is required for the particular path to be implemented. The
optimizer is then arranged to choose the access path having the lowest
cost as the actual path for implementing the required functions within
the SQL statement.

Statement optimization may be performed at the time of
execution, known as dynamic SQL, where the contents of each SQL
statement usually change from one execution to the next. Alternatively,
optimization may be performed once, in advance of a statement
actually being executed, with results stored within a DB2 plan. This type
of optimization is known as static SQL and is used when the SQL
statements are known in advance of execution. Static SQL is more
efficient from the system's perspective, given that the optimization
process is performed only once for the SQL statements, with results
being stored for repeated execution later.

The preferred index set specifier 708 takes the provision of an
optimization processes a stage further in that it is arranged to specify
which indexes should actually be created, prior to the optimizer within
the SQL execution process 703 making an on-line decision as to which
index of the available indexes to use. However, in addition to optimizing
execution, the specifier 708 should also take account of index
housekeeping, execution frequency and statement priority.

The specifier 708 specifies a preferred set of indexes in response

to a sample of typical SQL statements executed by the system. In order

WO 97/22939 PCT/GB96/03102

10

15

20

25

20

to obtain this information, an SQL trace process 718 keeps track of
queries supplied on input line 716 such that, after a suitable period of
time, a representative sample of SQL statements may be supplied to
the specifier 708 over line 719. The specifier 708 reads catalog
statistics and a sample of table data from the data store, resulting in
table data being supplied over line 720. After an index set specification
process has been implemented, output signals are supplied over an
output line 721, enabling specification data to be generated in eye-
readable form by means of a printer 722. In addition, SQL instructions
are supplied to the SQL execution process 703 over line 723, resulting
in preferred sets of indexes being created within the data store.
Furthermore, the information generated by printer 722 may inform
operators to the effect that additional storage is required within the data
store in order to allow preferred sets of indexes to be implemented.

An overview of optimum index set specification procedures 708
are shown in Figure 8. Firstly, at step 801 the SQL trace 718 is
activated so that, over a period of time, SQL statements used to access
the database are recorded by the SQL trace process. Eventually, a
sample of SQL statements will have been collected and a decision will
be made to the effect that the table indexes are to be re-specified.

At this stage, it is possible that the database would effectively be
taken off line, such that no further queries could be implemented until
the new table indexes had been specified. Under these circumstances,
it is preferable for the index set specifier process to be executed on a
hardware platform common to the database itself. Alternatively, in other
embodiments, the index set specifier procedures may be executed
independently on a separate platform with data being received from and
transmitted to the database platform.

Index set specifier instructions may be supplied to an external

WO 97/22939 PCT/GB96/03102

10

15

20

25

21

platform, using a suitable data-carrying medium, such as a magnetic
disc, an optical disc or a opto-magnetic disc. Alternatively, instructions
may be supplied to the additional platform via a networking capability.
The loading of instructions to the index set specifier process 708 is
illustrated by removable disc 724.

At step 802 the catalog statistics for each table space of the live
database are updated, using RUNSTATS, to ensure that updated data
is available from the catalog when information is supplied to the index
set specifier 708.

At step 803 an index set specification process is executed to
specify index sets. At step 804 a question is asked as to whether more
disc space is to be provided such that, when answered in the
affirmative, the disc storage allocation for the creation of indexes is
increased. Alternatively, the question asked at step 804 may be
answered in the negative, resulting in control being directed to step 806.

At step 806 a question is asked as to whether the specified set
details are to be printed and if answered in the affirmative, printing
signals are supplied to printer 722 over printer connection 721, possibly
in the form of a conventional parallel interface connection. Alternatively,
the question asked at step 806 may be answered in the negative,
resulting in control being directed to step 808.

At step 808 a question is asked as to whether the specification
generated at step 803 is to be implemented on the live system and if
answered in the affirmative the implementation is effected, subject to
disc space constraints, at step 809. Alternatively, control is directed to
step 810, resuiting in the database being placed back on-line.

Procedures 803 for preferred index set specification are shown in
Figure 9. At step 901 the live database is modelled within the specifier

process 708, in accordance with procedures detailed in Figure 10.

WO 97/22939 PCT/GB96/03102

10

15

20

25

22

Thereafter, the SQL statements traced by the SQL trace process 718
are analyzed by the specifier 708, in accordance with procedures
detailed in Figure 11.

The modelling of the live database results in tables being
generated, similar to the tables shown in Figure 7, but being
substantially smaller than the tables present in the on-line live system.
Within the specification process, it would be possible to run the catalog
statistics procedure, resulting in catalog statistics being generated
which reflect the size of entries within the modelled tables. However,
the specifier process 708 is concerned with the efficient operation of the
live system, therefore it is more concerned with the catalog statistics
contained within the live system, as stored in the live catalog 702. Thus,
at step 903 the live statistics from said catalog are copied to the index
set specification process, along with default sets of live indexes,
consisting of the primary key index and clustering indexes for each
table.

At step 904 an evaluation of base level costs are calculated, as
detailed in Figure 12, to provide a reference so that cost improvements
may be deduced when potentially optimum indexes have been added.
This cost differential provides an objective function for subsequent
processing concerning the specification of index sets.

Most of the calculations performed to identify index sets are
carried out on a table-by-table basis, whereafter the tables are only
considered in combination again when an assessment is being made
as to which particular indexes may be created on the live system, given
the availability of disc space for index creation. Consequently, a table is
selected at step 905, candidate indexes are identified at step 906,
eligible indexes are ordered in accordance with their objective function

at step 907 and an optimum set of indexes is produced at step 908.

WO 97/22939 PCT/GB96/03102

10

15

20

25

23

Thereafter, a question is asked at step 909 as to whether another table
is available and if answered in the affirmative control is returned to step
905. Eventually, the question asked at step 909 will be answered in the
negative, resulting in control being directed to step 910, whereupon the
optimum set of indexes is specified possibly for application to the live
system.

Procedures 901 for modelling the live database, in order to
generate a scaled-down model of the database within the index set
specifying process, are shown in Figure 10. At step 1001 the catalog
statistics are read from the catalog 702 whereafter empty tables are
created in the model, copying the nature of the live tables 704, 705 and
706, as described by their respective catalog definitions. The size of
each table is restricted to five thousand rows, this being substantially
smaller than the number of rows present in the live database tables.

In order to ensure that the scaled-down model of the tables within
the index set specifying process 708 accurately reflect the live tables in
the data store 702, it is necessary for the empty tables created at step
1002 to be populated with a representative sample of data entries read
from their respective live tables. At step 1003 a live table, along with its
respective catalog, is selected.

At step 1004 the indexes already associated with the selected
table and operational within the live database are considered to identify
the specific index having the highest firstkey card value, representated
as the HFI. At step 1005 the HIGH2KEY, LOW2KEY and COLCARD for
the first column of the HF! are identified and at step 1006 the data
distribution for said first column is determined.

Thereafter, at step 1007 a set of random values are generated
for the first column of the HFI within the range defined by LOW2KEY
and HIGH2KEY. The availability of values is weighted in accordance

WO 97/22939 PCT/GB96/03102

10

15

20

25

24

with frequency distributions, as determined at step 1006 such that,
when the model table has been populated by up to five thousand
entries derived from the live table, the distribution of values in the model
is sufficient to allow processes to be performed on the model, in terms
of its processing requirements, which substantially reflect similar
requirements made when implemented on the respective live table. At
step 1008 the randomly selected values identified at step 1007 are read
from the live table entries and at step 1009 the entries read at step
1008 are sequentially written to the model table at step 1009.

At step 1010 the model data is processed such that, firstly, in the
data tables the entries are re-organised in accordance with the cluster
key. Potential indexes are created for each table and statistics are
collected relating to the nature of these indexes. The index statistics
obtained are scaled up to production size allowing the scaled-up values
to be saved and the originating table data to be deleted.

The question asked at step 1011 will be answered in the
affirmative, until all of the modelled tables have been populated with
entries randomly selected, weighted in accordance with frequency, from
the live tables held within the data store 702.

Procedures 902 for analysing captured SQL statements are
detailed in Figure 11. At step 1101 an SQL statement is processed to
determine whether it is the first occurrence of a particular statement or
whether the statement has been seen before. Thus, each unique SQL
statement is given a unique label and if the same SQL statement is
identified again, the number of occurrences is recorded in a frequency
column.

At step 1102 a table is selected and at step 1103 an SQL
statement, labelled at step 1101, is identified. Thus, procedures 1103 to

1106 are only performed for each unique occurrence of a captured

WO 97/22939 PCT/GB96/03102

10

15

20

25

25

statement.

At step 1104 a question is asked as to whether the statement
selected at step 1103 makes use of the table selected at step 1102. If
the question is answered in the affirmative, the statement label is added
to the appropriate table list at step 1105. Alternatively, if the question
asked at step 1104 is answered in the negative, step 1105 is bypassed,
with control being directed to step 1106.

At step 1106, a question is asked as to whether another
statement is to be considered and if answered in the affirmative control
is returned to step 1103, allowing the next labelled statement to be
selected. Alternatively, if answered in the negative, to the effect that no
further statements are available, a statement identifying pointer is reset
and control is directed to step 1107. At step 1107 a question is asked
as to whether another table is present and if answered in the
affirmative, control is returned to step 1102 for the next table to be
selected.

Eventually, all of the tables will have been considered resulting in
the question asked at step 1107 being answered in the negative.

The table list generated at step 1105 is detailed in Figure 12. The
list consists of a first column 1201 identifying an originating table, a
second column 1202 identifying SQL statements, in terms of their labels
as specified at step 1101 and a third column 1203 identifying statement
frequency, that is, the number of times a particular SQL statement
occurs within the traced set.

As shown in Figure 12, table 1 has been selected first at step
1102, resulting in SQL statements A, B, C etc to SQL Z being added to
the table list in response to repeated operations at step 1005.
Thereafter, table 2 has been selected, resulting in SQL labels being

identified with this table and, finally, table 3 has been selected resulted

WO 97/22939 PCT/GB96/03102

10

15

20

25

26

in statement labels being associated with that table. In the present
example, three tables are present but it should be appreciated that any
number of tables may be present as used within large relational
databases.

In the third column 1203 the frequency of occurrences have been
recorded which, typically, would be measured in thousands. Thus, x
occurrences have been recorded against statement A, y occurrences
have been recorded against statement B and z occurrences have been
recorded against statement C, etc.

Procedures 904 for evaluating base level costs are detailed in
Figure 13. At step 1301 a table is selected and at step 1302 an SQL
statement is selected. At step 1303 the cost of executing the SQL
statement selected at step 1302 is estimated, when applied to the table
selected at step 1301. Costing may be effected using timeron values
derived from the optimizer present within the SQL execution process
703. However, timeron values only take account of using an index and
do not take account of index maintenance. Consequently, in a preferred
embodiment, instructions developed by Innovation Management
Solutions of Florida, USA under the Trade Mark "QCF" are
implemented to provide a cost value for the index, in terms of CPU use
and elapsed time for the SQL statement to be executed, in combination
with an estimation of index maintenance. These cost values do not
represent any absolute cost measurement but by performing similar
procedures when additional indexes are present, it is possible to obtain
relative cost values which, when compared with the requirement for
additional disk space, provide an objective function by which a
particular index may be selected in preference to a more expensive
index.

At step 1304 the cost value calculated at step 1303 for each

WO 97/22939 PCT/GB96/03102

10

20

27

statement is multiplied by a frequency of execution factor and at step
1305 the resulting product is muiltiplied by a priority factor. Thereafter, at
step 1306 the cost is added to a base cost sum for the particular table
and at step 1307 a question is asked as to whether another statement
is present. When answered in the affirmative, control is returned to step
1302, resulting in the next SQL statement being selected and the
costing procedures being repeated.

Eventually, the question asked at step 1307 will be answered in
the negative, resulting in a question being asked at step 1308 as to
whether another table is present. If answered in the affirmative, another
table sum is created at step 1309 and control is returned to step 1301,
allowing the next table to be selected. Eventually, the question asked at
step 1308 will be answered in the negative, thereby directing control to
step 905.

Procedures for costing candidate indexes to identify eligible
indexes are detailed at Figure 14. At step 1401 candidate indexes are
identified from predicate sets derived from SQL statements associated
with the table under consideration, defined by the selection made at
step 905, in accordance with the list shown in Figure 12. Thus, analysis
of the SQL statements associated with the table under consideration
allows indexable predicates to be identified. The identified indexable
predicates reference particular columns and these columns are
grouped by table and SQL statement to form predicate sets. These
predicate sets provide a starting point for identifying the candidate
indexes (ie from which candidate indexes are built) that could be of
possible benefit when satisfying the associated SQL statements. in
addition, catalog statistics are generated for each of the identified
indexes.

At step 1402 a candidate index is selected and at step 1403 the

WO 97/22939 PCT/GB96/03102

190

15

20

25

28

index selected at step 1302 is created as part of the table model held
within the index set specification process 708. After the new index has
been created at step 1403, the associated catalog entries within the
model are updated at step 1404, so that the index appears full size.

Candidate indexes are created against the model database. The
DB2 recover index utility is run against the table to populate the
indexes, and the DB2 Runstats utility is run against the database to
collect the statistics. The statistics are collected for each Iindex, they are
stored in a database and are scaled up to live volumes for use
throughout the process.

The possible indexes identified at step 1401 will include all
possible combinations of indexes using particular column entries. Thus,
the columns may be placed in different orders and all possible orders
are included. Similarty, the entries within each column may be
ascending and descending and again all possible combinations of these
will be present. Not all of these combinations are actually required as
candidate indexes, therefore a selection process occurs at step 1402 in
order to identify candidate indexes. The column position is referred to
as column sequencing and the possibilities of being ascending or
descending are referred to as ordering. Indexes sharing the same
column sequencing are grouped together, exhibiting only differences in
terms of their ordering. Now, within the model, all of the indexes defined
within the group, that is all of the indexes having the same column
sequence, are generated. The catalog statistics for each of these
indexes is also generated and then all of the trapped SQL that
references the table is targeted upon the indexes. The explain function
within the database is then exercised in order to identify the particular
indexes within the group that are actually employed. These indexes

then become the selected candidate indexes and the remaining indexes

WO 97/22939 PCT/GB96/03102

10

20

25

29

from the possible set are rejected. Thereafter, the created indexes are
deleted and the next group is considered until all of the groups have
been considered resulting in the finally created indexes again being
deleted before control is directed to the loop initiated at step 1402.

Thus, as previously stated, a candidate index is selected at step
1402, a candidate index is created at step 1403 and the catalog is
updated, in response to the newly created index, at step 1404.

Now that the new index has been created within the model, the
SQL statements which reference the respective tables are costed in
accordance with procedures substantially similar to those detailed in
Figure 13, where the base cost levels were calculated. After the SQL
statements have been costed, with the new index in place, at step
1405, a new cost value is stored at step 1406, whereatfter the index
created at step 1303 is deleted at step 1407.

At step 1408 a question is asked as to whether another index is
present and when answered in the affirmative control is returned to step
1402, resulting in the next possible index being selected. Eventually, all
of the SQL statements will have been costed for all of the possible
indexes, resulting in the question asked at step 1408 being answered in
the negative.

The cost values calculated at step 1406, and stored in a table,
define a new cost for each of the possible indexes identified at step
1401. For each of these indexes a cost saving is calculated by
subtracting the new cost from the base cost calculated at step 904. This
cost saving value represents the objective function in that indexes
having a lower cost saving will be considered as being more optimum
than indexes having a higher cost saving. The cost saving values are
stored for each index at step 1410 and at step 1411 a question is asked

as to whether another index is present. When answered in the

WO 97/22939 PCT/GB96/03102

10

15

20

25

30

affirmative, the cost saving for the next index is calculated at step 1409,
until cost savings have been calculated for all of the possible indexes,
resulting in the question asked at step 1411 being answered in the
negative.

As a result of storing cost saving values at step 1410, a list of
indexes will have been created with a cost saving value assigned to
each. This represents the objective function, therefore at step 907 the
eligible indexes are ordered in accordance with this objective function,
such that indexes having a high cost saving are placed towards the top
of the eligibility list.

Process 908, shown in Figure 9, for processing the ordered
potential indexes, is detailed in Figure 15 and an example of the
operations performed in accordance with the procedures of Figure 15 is
shown in Figures 16 and 17.

Figure 16 shows eleven potential indexes that are represented by
unique identification numerals 1625, 1616, 1604, 1673, 1612, 1646,
1635, 1691, 1622, 1683 and 1617. The procedures previously identified
defined cost savings for these indexes, representing a degree of
preference for inclusion in the specified set of optimum indexes. Thus,
the eligible indexes represented in Figure 16 have been ordered in
terms of their preference for being specified with relative cost savings
being recorded against each index. These cost saving values have no
absolute meaning but provide relative indications of cost savings
calculated in accordance with the previously described procedures.
Thus, index 1625 has been identified as providing a cost saving of 73,
with index 1616 providing a cost saving of 72, index 1604 providing a
cost saving of 68 and so on until index 1617 which has been identified
as providing a cost saving of 4. Thus, the information required for

ordering the indexes 1625 to 1617 in terms of their cost saving eligibility

WO 97/22939 PCT/GB96/03102

10

15

20

25

31

has been calculated in accordance with the procedures detailed at step
803.

At step 1501 of Figure 15 the cost savings are considered and
normalized to facilitate subsequent processing. Normalization allows
the cost saving values to be considered within a predetermined range
which, in the present example, has been selected as 0 to 9999. A total
cost saving is calculated, as shown at 1681 in Figure 16, which, in this
example, has been calculated to a value of 500. The total range is
divided by this cost saving total 1681 to provide unit range values which
are then muiltiplied by the cost saving values to provide distribution
values. The calculation of dist'ribution values is performed at step 1502
resulting in normalized cost savings being calculated. Thus, in
accordance with the procedures implemented at step 1502, the cost
saving for index 1625 is normalized to a value of 1660, with index 1616
being normalized (from a cost saving value of 72) to a normalized value
of 1440. Similarly, normalized values are calculated for all of the
indexes under consideration such that, when totalled, the normalized
values equal the full range of values within the distribution, that is 9999
in this example.

At step 1503 a question is asked as to whether another genetic
iteration is required which, on the first iteration, will be answered in the
affirmative. A pre-selection is made as to the number of genetic
iterations required and a counting operation will be established at step
1503.

When answered in the affirmative a random number is generated
at step 1504 lying within the range 0 to 9999. This random number is
used at step 1505 to select a particular index. Thus, a random index
selection is made at step 1505 weighted in terms of the cost saving

provided by the particular index. Thus, numbers lying between 0 and 80

WO 97/22939 PCT/GB96/03102

10

15

20

25

32

will result in index 1617 being selected, with numbers lying within the
range 81 to 400 resulting in index 1683 being selected, numbers within
the range 401 to 820 resulting in index 1622 being selected and so on
until numbers lying within the range 8540 to 9999 will result in index
1625 being selected. Thus, the number of distribution numbers
allocated for a particular index is proportional to its relative cost saving,
such that, over a large number of iterations, indexes having a higher
cost saving will be selected, on average, in preference to indexes
having a lower cost saving. However, the indexes of lower cost saving
still remain in the pool and it is ‘possible, in accordance with the genetic
procedures, for these indexes to be selected.

On each iteration, new combinations of indexes will be produced
and these index combinations will in turn provide a particular cost
saving. This allows the index combination to be given its own index
identification and for the compound index to be included within the table
shown in Figure 16, ordered in terms of the objective function.

Thus, at step 1505 a particular index is selected and at step 1506
the selected index is written to an index buffer. An index buffer 1791 is
shown in Figure 17 consisting of six buffer locations representing the
maximum number of allowed indexes for the particular table under
consideration. Referring to Figure 7, it was shown that each table may
have a maximum of six indexes within the particular embodiment,
although this figure may be adjusted in order to satisfy particular local
operating conditions. Thus, buffer 1791 has six locations and a selected
index identification, such as index 1625 may be placed in any of these
locations, selected on a random basis. Thus, as shown in Figure 17, an
identification of index 1625 has been placed in the second buffer
location of index buffer 1791.

At step 1507 a second random number is generated, within the

WO 97/22939 PCT/GB96/03102

20

25

33

range 0 to 9999, resulting in a second parent index being selected at
step 1508. An indication of the selected index is written to a second
index buffer, shown as 1792 in Figure 17. In this example, the random
number generated at step 1507 resulted in index 1604 being selected
and positioned, randomly, at the fourth location within buffer 1792.

At step 1510 a buffer-cut position is selected randomly at any
interface between locations within the particular buffers. In this
example, the cut has been positioned between the second location and
the third location, as indicated by arrows 1793 in Figure 17. This cut
position allows a mating of buffer 1791, a first parent, with buffer 1792,
that may be considered as the second parent. The result of this
exchange is shown in buffers 1794 and 1795. In buffer 1794 index 1625
has been placed in a second position, derived from the first parent 1791
and index identification 1604 has been placed in the fourth location,
derived from parent 1792. As shown by buffer 1795, the other off-spring
of this mating does not contain any index identifications and therefore
may be considered as a void child and is not considered any further.
Thus, at step 1511 in Figure 15 a "breeding” of the two parents takes
place resulting in a generation of child 1794, containing indexes 1625
and 1604.

In order to add further interest to the availability of potentially
optimum indexes, a further stage of genetic manipulation occurs in that
the child defined by the contents of buffer 1794 is mutated. A further
random number is generated, resulting in the selection of a further
index. As a result of this mutation process at step 1512, buffer 1796 has
been loaded with index indications derived from child 1794 plus the
random addition of index 1635 at the sixth location. At step 1513 cost
savings for the children created at step 1511 and cost savings for the

mutants created at step 1512 are evaluated.

WO 97/22939 PCT/GB96/03102

10

15

20

25

34

New indexes 1794 and 1796 are now added to the pool of
potential indexes at step 1514, in order of eligibility. A cost saving is
calculated for each index, with reference to the table under
consideration, allowing the indexes to be added to the list shown in
Figure 16 ranked in accordance with the resuiting cost saving. The total
cost saving is now recalculated, whereafter new normalized cost
savings are recalculated for all of the indexes, including the newly
added indexes. From this normalized cost saving distribution, values
are calculated for each of the indexes at step 1502 and a question is
again asked as to whether another genetic iteration is required.

When the question asked at step 1503 is again answered in the
affirmative, a random number within the range 0 to 9999 is generated
and a new index is selected at step 1505 whereafter an indication of
this index is written to the first index parent buffer 1791 at step 1506.
Again, a second random number is generated at step 1507 allowing a
second parent to be selected at step 1508 with an indication of this
parent written to buffer 1792 at step 1509.

A cut position is again randomly selected at step 1510, the
parents are bred at step 1511, with their offspring being written to
buffers 1794 and 1795, whereafter mutations are generated from valid
children. Thus, each iteration may add up to four new indexes to the
index mating pool.

Eventually, the question asked at step 1503 will be answered in
the negative resulting in control being directed to step 805 of Figure 8.
While the process shown in Figure 15 is repeated, new index
calculations will be identified in a substantially random way. However,
each new index will be tested to determine its resulting cost saving and
indexes having high cost savings are placed towards the top of the list

shown in Figure 16. Furthermore, by having a relatively high cost

WO 97/22939 PCT/GBY96/03102

10

15

20

25

35

saving, the distribution range of selecting numbers will also be larger,
thereby giving these indexes a greater probability of being selected for
mating. However, relatively low probability indexes remain in the pool
and it is therefore possible that such indexes could be selected. With
sufficient iterations, index combinations providing very high cost savings
will be identified and these indexes will be placed towards the top of the
list shown in Figure 16. Consequently, when the process shown in
Figure 15 terminates, the indexes, including newly-bred indexes, will be
listed for production in the specification, in descending order of cost
saving.

Procedures identified at step 910 in Figure 9 for configuring the
database to include specified indexes are detailed in Figure 18. The
objective function, specifying relative cost savings, has been considered
for indexes only in relation to their associated table. However, in the
working database system, a plurality of tables must work together.
Therefore, for a given availability of storage space, storage space must
be allocated for indexes associated with all of the tables present.

At step 1801 the total amount of disc space used by each table
present within the live database is calculated and at step 1802 the
values calculated at step 1801 are added together to give the total disk
space requirement for all of the tables. At step 1803 the disk space
required by each table is divided by the total disk space to provide a
percentage allocation of disk space on a table-by-table basis. This
percentage allocation is used to allocate index space as shown at step
1804, such that the relative amount of storage allocated for the creation
of indexes is substantially equal to the relative allocation of storage
space for the tables. Thus, when a table takes up a large amount of
disk space, a similarly large allocation of disk space is made for indexes

operating over this table.

W0 97/22939 PCT/GB96/03102

10

15

20

25

36

At step 1805 a table is selected and at step 1806 the most
eligible index obtained for that table is selected. At step 1807 a
question is asked as to whether sufficient disk space has been
allocated for the preferred indexes selected at step 1806 to be created
on the live system. If this question is answered in the affirmative, the
indexes selected at step 1806 are specified for creation, at step 1808.
Alternatively, if insufficient disk space is available, resulting in the
question asked at step 1807 being answered in the negative, step 1808
is by-passed and control is directed to step 1809.

At step 1809 a question is asked as to whether another table is
present and when answered in the affirmative control is returned to step
1805, resulting in the next table being selected and eligible indexes for
this table being considered at steps 1806 and 1807. Eventually all of the
indexes for the selected table will have been considered, resulting in the
question asked at step 1809 being answered in the negative.

The procedures detailed in Figure 18 would be implemented
subject to the question asked at step 808 being answered in the
affirmative. Thus, the new index structure may be created within the live
database, whereafter the database, with its new indexes in place, would
be placed on-line at step 810.

Referring to Figure 14, the process performed at step 1401 may
become very time consuming if the predicate sets result in indexes
being identified which may require more than four columns. Under
these circumstances, the first four preferred columns are selected and
remaining columns are provisionally rejected. A selection is made on
the basis of filter factor and the four columns having the lowest filter
factor are selected. These four columns, with all possible ordering
possibilities, are processed to select the candidate indexes as

previously described.

WO 97/22939 PCT/GB96/03102

10

15

20

25

37

After all of the eligible indexes have been determined, the large
indexes, provisionally rejected, are assembled by adding the fifth
preferred column, sixth preferred column and seventh preferred column
etc to create a new five column index, a new six column index, a new
seven column index etc. These indexes are built upon the most cost-
effective candidate index containing the necessary four columns.These
columns are only added to the four column candidate indexes in
ascending order, the catalog statistics are calculated for these new
indexes and thereafter these new indexes are costed so that they may
in turn be added to the ordered eligibility list, placed in order of eligibility
with the previously costed indexes.

Referring to Figure 15, the number of eligible indexes considered
for the genetic process, initiated at step 1505, may be considerable,
resulting in the processing time being relatively large. Under these
circumstances, it may be preferable to place an upper bound upon the
size of the “mating pool” before the genetic process is implemented.
Typically, the size of the mating pool may be restricted to a maximum of
thirty eligible indexes prior to performing the genetic operations.

The purpose of the genetic process is essentially to allow
composite indexes to be found which, when implementing the typical
SQL query set, may significantly reduce processing overhead. In order
to reduce processing time, it may be preferable to perform some “pool
priming”, by adding index sets that are considered to be particularly
advantageous.

A first stage of pool priming may consist of investigating the
existing live database system to determine which indexes are actually
being used in the live system. These index sets may then be added to
the collection of eligible indexes as previously described.

A second process for pool priming may consist of reconsidering

WO 97/22939 PCT/GB96/03102

10

38

the eligibility ranking after the most eligible index has been assumed to
be present within the live system. Thus, the cost factors are
reconsidered from a starting position in which the most eligible index, as
previously calculated, is placed as belonging to the live system. With
this live index added to the system, some of the cost savings of the
remaining eligible indexes may vary considerably, thereby effectively re-
ordering the indexes within the eligibility list. Again the most cost
effective remaining eligible index is added to the system and cost
savings are recalculated, based on this new index being present. This
process may be repeated, iteratively, providing, say, up to a set of six
new indexes. Each of these sets of indexes are added to the mating

pool at the appropriate time.

WO 97/22939 PCT/GB96/03102

ul

10

15

20

25

39

Claims

1. A method of specifying an index set for a database stored
in machine readable form, comprising steps of:

analyzing a plurality of statements supplied to said database;

identifying indexes derived from tables of said database;

evaluating levels of improved operation achievable when said
indexes are available; and

processing said evaluated levels to specify an index set for said

database.

2. A method according to Claim 1, wherein levels of improved
operation are evaluated by creating a scaled-down model of database

tables derived from information relating to the nature of said tables.

3. A method according to Claim 2, wherein said model
database is populated with representative data entries taken from the

live database being modelled.

4. A method according to Claim 3, wherein said model is
populated by considering the cardinality of an existing index of the live

database.

5. A method according to Claim 3, wherein said model
database is populated by considering the distribution of entries within

an existing index of the live database.

6. A method according to any of Claims 2 to 5, wherein

database statistics are copied from the live database to the database

WO 97/22939 PCT/GB96/03102

10

15

20

25

40

model.

7. A method according to any of Claims 1 to 6, wherein a
base level cost is calculated for executing statements without additional

indexes being present.

8. A method according to Claim 7, wherein cost levels are

obtained by estimating execution time.

9. A method according to Claim 7 or Claim 8, wherein cost

levels are estimated by assessing index maintenance overheads.

10. A method according to any of Claims 1 to 9, wherein
possible indexes are identified from predicate sets defined by said

statements.

11. A method according to any of Claims 1 to 10, wherein
processing cost savings are calculated by processing cost values for an

old cost, a new cost with a possible index.

12. A method according to Claim 11, wherein cost savings are

calculated by subtracting the new cost from the old cost.

13. A method according to Claim 11, wherein cost savings are
calculated for tables by considering each new possible index in turn

with reference to its respective table.

14. A method according to any of Claim 1 to 13 wherein

possible indexes are ordered in terms of potentiality for being specified

WO 97/22939 PCT/GB96/03102

10

15

20

25

41

as preferred indexes.

15. A method according to Claim 14, wherein index
combinations are identified by radomly combining existing possible
indexes and measuring cost savings for said potential index

combinations to produce a revised list of preferred indexes.

16. A method according to Claim 15, wherein said random

selection is weighted in terms of previously calculated cost savings.

17. A method according to Claim 16, wherein weighting values

are recalculated when new indexes are added to the preferred list.

18. Index set specifying apparatus, arranged to specify a set of
indexes for a relational database, comprising
analyzing means for analyzing a plurality of statements supplied to said
database;

identifying means for identifying indexes derived from tables of
said database;

evaluating means for evaluating levels of improved operation
achievable when said indexes are available; and

processing means for processing said evaluated levels to specify

an index set for said database.

19. Data processing apparatus arranged to specify a index set
for a database, said apparatus comprising data storage means, data
processing means and program instructions readable from said data
storage means, wherein said processing means is configured, in

response to said instructions, to provide means for:

WO 97/22939 PCT/GB96/03102

10

20

25

42

analyzing a plurality of statements supplied to said database;

identifying indexes derived from tables of said database;

evaluating levels of improved operation achievable when said
indexes are available; and

processing said evaluated levels to specify a set of preferred

indexes for said database.

20. A relational database comprising a plurality of data tables
stored in machine readable form, processing means for processing said
data tables in response to statements and for generating indexes to
facilitate the processing of said data tables, further comprising
instructions executable by said processing means for specifying a
preferred index set, wherein said instructions are configured to analyze
a plurality of statements supplied to said database, identify indexes
derived from tables of said database, evaluate levels of improved
operation achievable when said indexes are available, and process said

evaluated levels to specify a preferred index set for said database.

21. A method of specifying an index set for a database

substantially as herein described with reference to Figures 8 to 18.

22. Index set specifying apparatus substantially as herein

described with reference to Figures 7.

23. A relational database substantially as herein described

with reference to the accompanying Figures.

WO 97/22939 PCT/GB96/03102

1/18

103

LOCAL ~ LocAL | ~| _LocAL
EXCHANGE EXCHANGE EXCHANGE

109/

105

TRUNK
TELECOMMUNICATION
NETWORK

,(106 ,(108
ADVANCED CENTRAL
SERVICES ADMINISTRATION

N A

111
(

v \L
DATA DATA
_ ANALYSIS COLLATION

1107

Figure 1

WO 97/22939 PCT/GB96/03102

2/18
202
(205
J
EXTERNAL
DATA (:_]
(204
7
OPERATIONAL
DATA v LJ
SOURCES
> NETWORKED
/206 O USER
{ O 201 TERMINALS
OPERATIONAL |
CONTROL [€
207
(
o 203
COLLATION MAINFRAME
AND pa—
PRINTING COMPUTER @ A4 4

TERABYTE DISC STORAGE

Figure 2

WO 97/22939 PCT/GB96/03102

3/18

EVENT DAY START | END | TELEPHONE | CALL
301 | NUMBER TIME | TIME NUMBER TYPE

-

N 12345 | 01-12-95 | 00:01 | 00:25 404 7247 A
~{ 12346 | 01-12:85 | 00:01 | 00:10 386 4851 A
3021 42347 | 01-12-95 | 00:01 | 00:53 339 1234 G
12348 | 01-12-95 | 00:01 | 00:14 586 1495 B

12349 | 01-12-95 | 00:02 | 00:15 833 1497 B

12350 | 01-12-95 | 00:02 | 00:36 947 8281 C

12351 |01-12-95 | 00:02 | 00:05 321 4875 C

Figure 3A

TSRO | ousomenin |
404 7241 0074895 -
404 7242 057896 N\

404 7243 86149 _3\04
404 7244 83176

404 7245 3238561

404 7246 33987

404 7247 3398762

Figure 3B

WO 97/22939 PCT/GB96/03102

4/18
CUSTISMER STSSET STREET TOWN
74 893 16 SHEPPARD IPSWITCH
f—/ 74 894 47 LIGHTFOOT LIVERPOOL
305| 74895 52 HIGH HOLBORN LONDON
74 896 195 SHIRLAND SHEFFIELD
74 897 10 DOWNING LONDON
74 898 85 ABBEY LONDON
74 899 198 BAKER LONDON
Figure 4A
TOWN REGION
306 LIVERPOOL NORTH WEST
&,\ LONDON SOUTH EAST
/"‘/ LOUGHBOROQUGH | EAST MIDLANDS

307 i I
i I

Figure 4B

WO 97/22939

5/18

PCT/GB96/03102

TELEPHONE
NUMBER

EVENT NUMBER

404 7241

12 345

14 876

15739

15928

16 047

404 7242

13728

14 937

15 821

17 423

404 7243

13 846

15736

16 842

501

Figure 5

WO 97/22939 PCT/GB96/03102

6/18

EVENT TYPE EVENT NUMBER

601

A 12 345 /

13 856
14 024

14 572
14 831

602

B 13728 /

14 937
15 821

I 17 423

C 12 350

13 896
14 742

| 14 937

Figure ©

WO 97/22939

7118

PCT/GB96/03102

A

75 Ty 704 707
DATA S); (— _S_._ — 4
» sqQL / T T |
QUERIES =EXECUTION TABLE : : : : : I
S I B
716 703 CATALOG e o1 T’l
g ! _lg_l_l_l_
\ 4 709 712
701~ 705
TRACE / TT 00 l_‘I
N
TABLE oo !
I R
————— 1
CATALOG : : :%; : :
7?0 706 707
72 __A__
3—\-)] I I_Sl [1|
N
| 719 TABLE Lo !
T O I I
T T i
??JALOG -I_I%J_l_l_l
711 712
/
3 DATA STORE
702
! 720" |
708 721
INDEX SET l‘v g
SPECIFIER | »| PRINTER

Figure 7

722

WO 97/22939

PCT/GB96/03102

8/18

(START '

Y 801
TRACE SQL STATEMENTS

UPDATE CATALOG STATISTICS FOR 802
EACH TABLE SPACE OF LINE DATABASE

\ 4

INDEX SET SPECIFICATION /l-/ 803

Y

NO
—(MORE DISC SPACE ? >/ 004

lYES
INCREASE DISC STORAGE ,l,/ 805

ALLOCATION

e ———

v

___NO 806
PRINT SPECIFIED SET DETAILS ?

YES
4

SUPPLY SIGNALS TO PRINTER 7

| 807

A 4

808
IMPLEMENT SPECIFICATION ?

IMPLEMENT SUBJECT TO 809
DISC SPACE CONSTRAINTS

A 4

PLACE DATABASE ON-LINE /1

| 810

A

Figure 8 END

WO 97/22939 PCT/GB96/03102

9/18

v

—_—t MODEL LIVE DATABASE :I 201
902
> ANALYSE TRACED SQL :I

903
COPY LIVE STATISTICS :I

I

EVALUATE BASE LEVEL COSTS j" 904

Y

SELECT A TABLE /I/ 905
I

IDENTIFY CANDIDATE INDEXES "‘/

906

A

y
)i ORDER ELIGIBLE INDEXES __} 907

v

DETERMINE OPTIMUM INDEX
SET

909
— ANOTHER TABLE ? 5/

YES

Lo

910
CONFIGURE DATABASE j

{
|)
80

908

3

Figure 9

WO 97/22939

PCT/GB96/03102

10/18

1/

—+—/

A 4

READ CATALOG STATISTICS

Y.

CREATE BLANK TABLES IN MODEL 1002
WITH 1000 ROWS

A

y

SELECT TABLE IN DATABASE

\

IDENTIFY INDEX

FIRSTKEYCARD VALUE (HFI)

Yy
WITH HIGHEST

A

4

HIGH2KEY, LOW2KEY, COLCARD FOR 1005
FIRST COLUMN OF HFI

A
DATA DISTRIBUTION FOR
FIRST COLUMN

| ,1006

A

y

1007
WEIGHTED RANDOM SELECTIONS :I

3

READ SELECTED

y
TABLE ENTRIES —"19%®

A

WRITE TO MOD

y 1009
ELLED TABLE :I

d

1010
RE-ORGANISE TO CLUSTER KEY j

<

A
ANOTHER TABLE ?

1011
71< YES |

NO
AN

Figure 10

(

901

WO 97/22939 PCT/GB96/03102

11/18

\4

1101
LABEL EACH UNIQUE SQL
STATEMENT AND RECORD FREQUENCY

\ 4

y

‘ 1102
SELECT A TABLE) ol

y 1103
SELECT LABELLED STATEMENT 1—/

A 4

NO 1104
‘ DOES SELECTED STATEMENT
USE SELECTED TABLE ?)\

YES
v

Y 1105
ADD STATEMENT LABEL TO
TABLE LIST

Y

ANOTHER STATEMENT ? 106 |
(RESET IF NO) VES

NO

v

1107
ANOTHER TABLE ? ot

Figure 11

WO 97/22939 PCT/GB96/03102

12/18
1201 1202 1203
s (s
TABLE STATEMENT LABEL FREQUENCY
TABLE 1 SQL A X
SQLB y
SQLC z
!
I
I
SQLZ a
TABLE 2 SQLB y
SQLD m
SQLF p
I
I
|
SQLY b
TABLE 3 SQL A X
SQLD m
SQL F p
I
!
I
SQL X C

Figure 12

WO 97/22939 PCT/GB96/03102

13/18

1301
SELECT A TABLE A
SELECT SQL 4 1302

A

y
COST SQL FOR TABLE :I 1303

AVAILABLE
- 1304
MULTIPLY BY FREQUENCY A
\ 4
A MULTIPLY BY PRIORITY /|-/1305

T

ADD TO BASE COST FOR TABLE 4’1306

A 4

< ANOTHER STATEMENT ? }%

A\ 4 NO NO
< ANOTHER TABLE ?)\——
YES 1308
h 4
ANOTHER TABLE SUM 4
1309

Figure 13 904

WO 97/22939 PCT/GB96/03102

14/18
IDENTIFY CANDIDATE INDEXES 1401
FROM PREDICATE SETS
v
SELECT A CANDIDATE INDEX /|-/ 1402
" 1403
CREATE CANDIDATE INDEX ON MODEL /lr/
» 1404
UPDATE CATALOG /
F 3 \ 4
14
COST SQL STATEMENTS d-/ 05
v
STORE COST AGAINST INDEX :I-/ 1406
- 1407
DELETE INDEX d/
YES Y 1408
__Q_ ANOTHER INDEX ? y
NO
v

1409
OLD COST - NEW COST
COST SAVING = AP TIONAL DISC SPACE

1 v

1410
SAVE COST SAVING AGAINST INDEX j"
e
YES Y 1411
L ANOTHER INDEX ? ;*‘

NO D)

Figure 14 sbs

WO 97/22939 PCT/GB96/03102

15/18

1501
NORMALIZE COST SAVINGS)

v

1502
CALCULATE DISTRIBUTIONIYALUES 1-/

NO v 1503
—& ANOTHER GENETIC ITERATION ? j
vy 5 1504
GENERATE RANDOM NUMBER "
l 1505

[SELECT INDEX USING RANDOM NUMBER 4~

3 1506
| WRITE TO FIRST INDEX BUFFER J-/

4 1507
| GENERATE SECOND RANDOM NUMBER 4~

h 4 1508
I SELECT INDEX USING RANDOM NUMBER]

A

y
WRITE SECOND INDEX TO SECOND 1509
INDEX BUFFER

y 1510
| SELECT CUT POSITION)

h 4 151
| BREED PARENTS TO CREATE CHILDREN 1

—

1512
| MUTATE CHILDREN f/

1513
| ADD TO INDEX POOL j"

\

A
908

Figure 15

WO 97/22939

16/18

PCT/GB96/03102

INDEX | COST NORMALIZED | DISTRIBUTION
SAVING
1 1625 73 1460 8540 - 9999
2 1616 72 1440 7101 - 8540
3 1604 68 1360 5741 - 7100
4 1673 59 1180 4561 - 5740
5 1612 58 1160 3401 - 4560
6 1646 49 980 2421 - 3400
7 1635 43 860 1561 - 2420
8 1691 37 740 821 - 1560
9 1622 21 420 401 - 820
10 1683 16 320 81 -400
11 1617 4 80 0-80
TOTAL 500
{
)
1681

Figure 16

WO 97/22939 PCT/GB96/03102

l/\/1793
1791

L_

l 1604

PARENT 2

1625 1604

VALID CHILD

1794

| 1 | |

VOID CHILD
e 1766
l l 1625 I 1604 16351/

MUTATION

Figure 17

1795

WO 97/22939

PCT/GB96/03102

18/18

CALCULATE TOTAL DISC SPACE 1801

FOR EACH TABLE

ADD TO GIVE TOTAL DISCSPACE 1802

DIVIDE DISC SPACE BY TOTAL FOR 1803

% AGE ALLOCATION

1804
ALLOCATE INDEX SPACE udl

y

A)
SELECT A TABLE ,}/ 1805

A4

SELECT PREFERRED INDEX(ES) d” 1806

v

{ SUFFICIENT DISC SPACE ALLOCATED ? >__:NO

N
VES 1807

v

SPECIFY INDEX CREATION

1808

\ 4
ANOTHER PREFERRED INDEX(ES) ?

1809

ANOTHER TABLE ?

Figure 18

INTERNATIONAL SEARCH REPORT ational Apphcation No
PCT/GB 96/03102

A. CLASSIFICATION OF SUBJECT MATTER

1PC8 GO6F17/30

According to [nternauonat Patent Classificaton (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Mirumum documentation scarched (classification system followed by classificabon symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are tncluded 1n the fields searched

Electronic data base consulted during the international search (name of data base and, where pracucal, scarch terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citaton of document, with indication, where appropnate, of the relevant passages Relevant to claim No.

X EP 0 351 388 A (IBM) 17 January 1990 1-23
see abstract
see page 2, line 1 - page 3, line 17

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Speaial categories of cited documents : . .
‘T" later document published after the international filing date

or prionty date and not n conflict with the application but

"A° document defining the general state of the art which 1s not ; ;
considered to be of particular relevance ;l::n;oo:ndcmund the principle or theory underlying the
"E” earlier documnent but published on or after the international X" document of particular relevance; the claimed invention
filing date) cannot be considered novel or cannot be considered to
“L° document wh‘xich may l:{lr?\“t’h doubt.'l.' on pnonty claim(s) or involve an invenuave step when the document is taken alone
whuch 1s cited to establis e publicaton date of another “Y* document of .
f parucular relevance; the clasmed invention
atagon or other spcaal reason (as specified) cannot be conuidered to involve an inventve step when the
‘0" document referring to an oral disclosure, use, exhibition or docurnent 1s combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P* document published prior to the international filing date but in the art.
later than the pnorty date claimed “&" document member of the same patent family
Date of the actual completion of the internatonal search Date of mailing of the international search report

. 16. 0497
7 April 1997

Name and mailing address of the [SA Authonzed officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rujswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni,
Fax (+ 31-70) 340.3016 Katerbau, R

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ational Application No
Information on patent fanmuly members

PCT/GB 96/03102

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0351388 A 17-01-90 US 5043872 A 27-08-91
JP 2054347 A 23-02-90
JP 7076936 B 16-08-95

Form PCT/ISA/210 {patant family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

