wo 2018/039251 A1 | 00000 T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = 0T 0 OO 0
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 2018/039251 Al

01 March 2018 (01.03.2018) WIPOI|PCT

(51) International Patent Classification: 62/378,152 22 August 2016 (22.08.2016) Us
ggg%’j ((22(())(())66(())11)) GO6F 930 (2006.01) (71) Applicant: ORACLE INTERNATIONAL CORPO-
’ RATION [US/US]J; 500 Oracle Parkway, M/S 5op7, Red-

(21) Imternational Application Number: wood Shores, California 94065 (US).
PCT/US2017/048044 (72) Inventors: SEETHARAMAN, Ganesh; 500 Oracle Park-
(22) International Filing Date: way, M/S Sop7, Redwood Shores, California 94065 (US).
22 August 2017 (22.08.2017) STOJANOVIC, Alexander Sasha; 14 W. Central Avenue,

Los Gatos, California 95030 (US). NAMARVAR, Hassan
Heidari; 500 Oracle Parkway, M/S 50p7, Redwood Shores,
(26) Publication Language: English California 94065 (US). ALLAN, David; 500 Oracle Park-
way, M/S 50p7, Redwood Shores, California 94065 (US).

(25) Filing Language: English

(30) Priority Data:

62/378,143 22 August 2016 (22.08.2016) US (74) Agent: MEYER, Sheldon, R. et al.; Tucker Ellis LLP, One
62/378,146 22 August 2016 (22.08.2016) Us Market Plaza, Steuart Tower, Suite 700, San Francisco, Cal-
62/378,147 22 August 2016 (22.08.2016) UsS ifornia 94105 (US).

62/378,150 22 August 2016 (22.08.2016) UsS

(81) Designated States (unless otherwise indicated, for every

62/378,151 22 August 2016 (22.08.2016) Us kind of national protection available). AE, AG, AL, AM,

(54) Title: SYSTEM AND METHOD FOR INFERENCING OF DATA TRANSFORMATIONS THROUGH PATTERN DECOM-
POSITION

Dats A System 150

Design-Tine System 167

Softwares Davelopment Systom HUB 156
Component 162

(6.2, Pipeline Edilor, ,
Lambida Studio) ‘ Daia Lake 167 ‘ Yser

Datafiow Application(s] 190
(&4, Pipeling(s), Lambda

Application(s)} Application Design Development of New Dataflow
Services 164 Application(s}
{e.9. Pipelinets). Lambda
Aaplicationfs)

Dty Al Bubsystem 168

Funslional Decomposition Logle 800 -
i Graphica) User hterface 805

User (e.g., Pineline Editor, Lambca
Stuio (D€}

[Lomputer Resources (8.g., GRU, Memory) 198 } Recommerdatians 804

Functioral Desomposttion 802

\3@

Dt Flow

Pattams of Transhonhation

FIGURE 44

(57) Abstract: In accordance with various embodiments, described herein is a system (Data Artificial Intelligence system, Data AL
system), for use with a data integration or other computing environment, that leverages machine learning (ML, DataFlow Machine
Learning, DFML), for use in managing a flow ot data (dataflow, DF), and building complex dataflow software applications (dataflow
applications, pipelines). In accordance with an embodiment, the system can provide a service to recommend actions and transformations,
on an input data, based on patterns identified from the functional decomposition of a data flow for a software application, including
determining possible transformations of the data flow in subsequent applications. Data flows can be decomposed into a model describing
transformations ot data, predicates, and business rules applied to the data, and attributes used in the data flows.

[Continued on next page]

WO 2018/039251 A1 || /0P OO0 NI A

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KI, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

SYSTEM AND METHOD FOR INFERENCING OF DATA TRANSFORMATIONS
THROUGH PATTERN DECOMPOSITION

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Provisional Patent
Applications titled “SYSTEM AND METHOD FOR AUTOMATED MAPPING OF DATA TYPES
BETWEEN CLOUD AND DATABASE SERVICES”, Application No. 62/378,143, filed August
22,2016; “SYSTEM AND METHOD FOR DYNAMIC, INCREMENTAL RECOMMENDATIONS
WITHIN REAL-TIME VISUAL SIMULATION”, Application No. 62/378,146, filed August 22,
2016; “SYSTEM AND METHOD FOR INFERENCING OF DATA TRANSFORMATIONS
THROUGH PATTERN DECOMPOSITION”, Application No. 62/378,147, filed August 22,
2016; “SYSTEM AND METHOD FOR ONTOLOGY INDUCTION THROUGH STATISTICAL
PROFILING AND REFERENCE SCHEMA MATCHING”, Application No. 62/378,150, filed
August 22, 2016; “SYSTEM AND METHOD FOR METADATA-DRIVEN EXTERNAL
INTERFACE GENERATION OF APPLICATION PROGRAMMING INTERFACES”, Application
No. 62/378,151, filed August 22, 2016; and “SYSTEM AND METHOD FOR DYNAMIC
LINEAGE TRACKING AND RECONSTRUCTION OF COMPLEX BUSINESS ENTITIES WITH
HIGH-LEVEL POLICIES”, Application No. 62/378,152, filed August 22, 2016; each of which

above applications are herein incorporated by reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to methods of integrating
data obtained from various sources, and are particularly related to the inferencing of data

transformations through pattern decomposition.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

Background:
[0003] Many of today’s computing environments require an ability to share large

amounts of data among different types of software applications. However, distributed
applications may be markedly different in their configurations due to, for example, differences
in their types of data supported; or their execution environments. An application’s configuration
may depend, for example, on its application programming interfaces, runtime environment,
deployment scheme, lifecycle management, or security management.

[0004] Software design tools intended for use in developing such distributed
applications tend to be resource-intensive, often requiring the services of a human domain
model expert to curate application and data integrations. Consequently, application
developers who are faced with the task of building complex, scalable, distributed applications,
that will be used to integrate different types of data among different types of execution
environments, must generally expend a substantial amount of manual effort to design, build,

and configure those applications.

Summary:
[0005] In accordance with various embodiments, described herein is a system (Data

Artificial Intelligence system, Data Al system), for use with a data integration or other
computing environment, that leverages machine learning (ML, DataFlow Machine Learning,
DFML), for use in managing a flow of data (dataflow, DF), and building complex dataflow
software applications (dataflow applications, pipelines). In accordance with an embodiment,
the system can provide a service to recommend actions and transformations, on an input data,
based on patterns identified from the functional decomposition of a data flow for a software
application, including determining possible transformations of the data flow in subsequent
applications. Data flows can be decomposed into a model describing transformations of data,

predicates, and business rules applied to the data, and attributes used in the data flows.

Brief Description of the Figures:

[0006] Figure 1 illustrates a system for providing data flow artificial intelligence, in
accordance with an embodiment.

[0007] Figure 2 illustrates an event-driven architecture including an event coordinator
for use with a system, in accordance with an embodiment.

[0008] Figure 3 illustrates the steps in a data flow, in accordance with an embodiment.
[0009] Figure 4 illustrates an example of a data flow that includes multiple sources, in
accordance with an embodiment.

[00010] Figure 5 illustrates an example use of a data flow with a pipeline, in accordance

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

with an embodiment.

[00011] Figure 6 illustrates an example use of an ingest/publish engine and
ingest/publish service with a pipeline, in accordance with an embodiment.

[00012] Figure 7 illustrates the process of ingest and training from a HUB, in

accordance with an embodiment.

[00013] Figure 8 illustrates the process of building models, in accordance with an
embodiment.
[00014] Figure 9 illustrates the process of classifying datasets or entities from newly

added HUBS, in accordance with an embodiment.

[00015] Figure 10 further illustrates the process of classifying datasets or entities, from
newly added HUBSs, in accordance with an embodiment.

[00016] Figure 11 further illustrates the process of classifying datasets or entities, from
newly added HUBSs, in accordance with an embodiment.

[00017] Figure 12 illustrates an object diagram for use in functional type classification,
in accordance with an embodiment.

[00018] Figure 13 illustrates an example of a dimension functional type classification,
in accordance with an embodiment.

[00019] Figure 14 illustrates an example of a cube functional type classification, in
accordance with an embodiment.

[00020] Figure 15 illustrates an example usage of functional type classification to
evaluate a business entity’s functional type, in accordance with an embodiment.

[00021] Figure 16 illustrates an object diagram for use in functional transformation, in
accordance with an embodiment.

[00022] Figure 17 illustrates the operation of a recommendation engine, in accordance
with an embodiment.

[00023] Figure 18 illustrates the use of a data lake, in accordance with an embodiment.
[00024] Figure 19 illustrates the use of a data-driven strategy to manage a data lake,
in accordance with an embodiment.

[00025] Figure 20 illustrates the use of a process-driven strategy to manage a data

lake, in accordance with an embodiment.

[00026] Figure 21 illustrates the use of a pipeline compiler, in accordance with an
embodiment.
[00027] Figure 22 illustrates an example pipeline graph, in accordance with an
embodiment.
[00028] Figure 23 illustrates an example of a data pipeline, in accordance with an
embodiment.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[00029] Figure 24 illustrates another example of a data pipeline, in accordance with an
embodiment.
[00030] Figure 25 illustrates an example of an orchestration pipeline, in accordance

with an embodiment.

[00031] Figure 26 further illustrates an example of an orchestration pipeline, in
accordance with an embodiment.

[00032] Figure 27 illustrates the use of a coordination fabric including a messaging
system, in accordance with an embodiment.

[00033] Figure 28 further illustrates the use of a coordination fabric including a
messaging system, in accordance with an embodiment.

[00034] Figure 29 illustrates an on-premise agent for use with a system, in accordance
with an embodiment.

[00035] Figure 30 illustrates a data flow process, in accordance with an embodiment.
[00036] Figure 31 illustrates an automated mapping of data types, in accordance with
an embodiment.

[00037] Figure 32 illustrates an auto-map service for generation of mappings, in
accordance with an embodiment.

[00038] Figure 33 illustrates an example of mapping between a source schema and
target schema, in accordance with an embodiment.

[00039] Figure 34 illustrates another example of mapping between a source schema
and target schema, in accordance with an embodiment.

[00040] Figure 35 illustrates a process for providing automated mapping of data types,
in accordance with an embodiment.

[00041] Figure 36 illustrates a system that displays one or more semantic actions
enabled for accessed data, in accordance with an embodiment.

[00042] Figure 37 illustrates a graphical user interface that displays one or more
semantic actions enabled for accessed data, in accordance with an embodiment.

[00043] Figure 38 further illustrates a graphical user interface that displays one or more
semantic actions enabled for accessed data, in accordance with an embodiment.

[00044] Figure 39 illustrates a process for displaying one or more semantic actions
enabled for accessed data, in accordance with an embodiment.

[00045] Figure 40 illustrates a means of identifying a pattern of transformation in a data
flow, for one or more functional expressions generated for each of one or more applications,
in accordance with an embodiment.

[00046] Figure 41 illustrates an example of identifying a pattern of transformation in a

data flow, for one or more functional expressions, in accordance with an embodiment.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[00047] Figure 42 illustrates an object diagram for use in identifying a pattern of
transformation in a data flow, for one or more functional expressions generated for each of one
or more applications, in accordance with an embodiment.

[00048] Figure 43 illustrates a process of identifying a pattern of transformation in a
data flow, for one or more functional expressions generated for each of one or more
applications, in accordance with an embodiment.

[00049] Figure 44 illustrates a system for generating functional type rules, in
accordance with an embodiment.

[00050] Figure 45 further illustrates a system for generating functional type rules, in
accordance with an embodiment.

[00051] Figure 46 illustrates an object diagram for use in generating functional type
rules, in accordance with an embodiment.

[00052] Figure 47 illustrates a process for generating a functional type system based
on generated one or more rules, in accordance with an embodiment.

[00053] Figure 48 illustrates a system for identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[00054] Figure 49 further illustrates identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[00055] Figure 50 further illustrates identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[00056] Figure 51 illustrates a process for identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[00057] Figure 52 illustrates managing a sampled data or accessed data, for lineage
tracking across one or more tiers, in accordance with an embodiment.

[00058] Figure 53 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment.

[00059] Figure 54 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment.

[00060] Figure 55 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment.

[00061] Figure 56 further illustrates managing a sampled data or accessed data, for

lineage tracking across one or more tiers, in accordance with an embodiment.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[00062] Figure 57 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment.
[00063] Figure 58 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment.
[00064] Figure 59 illustrates a process for managing a sampled data or accessed data,

for lineage tracking across one or more tiers, in accordance with an embodiment.

Detailed Description:

[00065] The foregoing, together with additional embodiments and features thereof will
become apparent upon referring to the following description including specification, claims,
and accompanying drawings. In the following description, for purposes of explanation, specific
details are set forth in order to provide a thorough understanding of various embodiments of
the invention. However, it will be apparent that various embodiments can be practiced without
these specific details. The following description including specification, claims, and

accompanying drawings are not intended to be restrictive.

Introduction

[00066] In accordance with various embodiments, described herein is a system (Data
Artificial Intelligence system, Data Al system), for use with a data integration or other
computing environment, that leverages machine learning (ML, DataFlow Machine Learning,
DFML), for use in managing a flow of data (dataflow, DF), and building complex dataflow
software applications (dataflow applications, pipelines).

[00067] In accordance with an embodiment, the system can provide support for auto-
mapping of complex data structures, datasets or entities, between one or more sources or
targets of data, referred to herein in some embodiments as HUBs. The auto-mapping can be
driven by a metadata, schema, and statistical profiling of a dataset; and used to map a source
dataset or entity associated with an input HUB, to a target dataset or entity or vice versa, to
produce an output data prepared in a format or organization (projection) for use with one or
more output HUBS.

[00068] In accordance with an embodiment, the system can include a software
development component and graphical user interface, referred to herein in some embodiments
as a pipeline editor, or Lambda Studio IDE, that provides a visual environment for use with the
system, including providing real-time recommendations for performing semantic actions on
data accessed from an input HUB, based on an understanding of the meaning or semantics
associated with the data.

[00069] In accordance with an embodiment, the system can provide a service to

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

recommend actions and transformations, on an input data, based on patterns identified from
the functional decomposition of a data flow for a software application, including determining
possible transformations of the data flow in subsequent applications. Data flows can be
decomposed into a model describing transformations of data, predicates, and business rules
applied to the data, and attributes used in the data flows.

[00070] In accordance with an embodiment, the system can perform an ontology
analysis of a schema definition, to determine the types of data, and datasets or entities,
associated with that schema; and generate, or update, a model from a reference schema that
includes an ontology defined based on relationships between datasets or entities, and their
attributes. A reference HUB including one or more schemas can be used to analyze data
flows, and further classify or make recommendations such as, for example, transformations
enrichments, filtering, or cross-entity data fusion of an input data.

[00071] In accordance with an embodiment, the system provides a programmatic
interface, referred to herein in some embodiments as a foreign function interface, by which a
user or third-party can define a service, functional and business types, semantic actions, and
patterns or predefined complex data flows based on functional and business types, in a
declarative manner, to extend the functionality of the system.

[00072] In accordance with an embodiment, the system can provide data governance
functionality such as, for example, provenance (where a particular data came from), lineage
(how the data was acquired/processed), security (who was responsible for the data),
classification (what is the data about), impact (how impactful is the data to a business),
retention (how long should the data live), and validity (whether the data should be
excluded/included for analysis/processing), for each slice of data pertinent to a particular
snapshot in time; which can then be used in making lifecycle decisions and dataflow
recommendations.

[00073] In accordance with an embodiment, the system can be implemented as a
service, for example as a cloud service provided within a cloud-based computing environment;
and can serve as a single point of control for the design, simulation, deployment, development,
operation, and analysis of data for use with software applications; including enabling data input
from one or more sources of data (for example, in an embodiment, an input HUB); providing a
graphical user interface that enables a user to specify an application for the data; and, scaling
the data depending on an intended destination, use, or target for the data (for example, in an
embodiment, an output HUB).

[00074] In accordance with an embodiment, as used herein, the terms “input’ and
“output” when used with reference to a particular HUB are provided merely as labels to reflect

the apparent flow of data in particular use cases or examples, and are not intended to be

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

restrictive as to the type or function of the particular HUB.

[00075] For example, in accordance with an embodiment, an input HUB that operates
as a source of data can also, at the same or at another time, operate as an output HUB or
target to receive the same, or another data, and vice versa.

[00076] Additionally, while for purposes of illustration, several of the examples
described herein illustrate the use of an input HUB and an output HUB; in accordance with an
embodiment, in practical implementations, a data integration or other computing environment
can include a plurality of such HUBs, at least some of which are acting both as input HUBs
and/or output HUBS.

[00077] In accordance with an embodiment, the system enables rapid development of
software applications in large, e.g., cloud-based, computing environments, where data models
may evolve rapidly, and where features such as, for example, search, recommendations, or
suggestions are valuable business requirements. |n such environments, the combination of
artificial intelligence (Al) and semantic search empowers users to accomplish more with their
existing systems. For example, integration interactions, such as attribute-level mappings, can
be recommended based on an understanding of metadata, data, and a user’s interactions with
the system.

[00078] In accordance with an embodiment, the system can also be used to suggest
complex cases, for example interesting dimensional edges, which can be used to analyze
information, and which enable users to discover hitherto unknown facts within their data.
[00079] In some embodiments, the system provides a graphical user interface that
enables the automation of manual tasks (e.g., recommendations or suggestions), and
leverages machine learning and probabilistic knowledge federation, to provide a useful context
for users, and allow for discovery and semantics-driven solutions, for example, the creation of
a data warehouse, scaling of services, data preparation and enrichment, and design and
monitoring of software applications.

[00080] In accordance with various embodiments, the system can include or utilize
some or all of the following features:

[00081] Design-Time System: In accordance with an embodiment, a computational
environment that enables the design, creation, monitoring, and management of software
applications (for example, a dataflow application, pipeline, or Lambda application), including
the use of an, e.g., data Al subsystem, that provides machine learning capabilities.

[00082] Run-Time System: In accordance with an embodiment, a computational
environment that enables the execution of software applications (for example, a dataflow
application, pipeline, or Lambda application), and that receives input from, and provides

recommendations to, a design-time system.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[00083] Pipeline: In accordance with an embodiment, a declarative means of defining a
processing pipeline, having a plurality of stages or semantic actions, each of which
corresponds to a function such as, for example, one or more of filtering, joining, enriching,
transforming, or fusion of an input data, for preparation as an output data. A dataflow software
application, or dataflow application, representing a data flow in, e.g., DFML. In accordance
with an embodiment, the system supports a declarative pipeline design that can use a same
code base (e.g., with a Spark runtime platform) for both batch (historical) and real time
(streaming) data processing; and also supports the building of pipelines or applications that
can operate on real time date streams, for real time data analytics. Data reprocessing due to
pipeline design changes can be handled through rolling upgrades of deployed pipelines. In
accordance with an embodiment, a pipeline can be provided as a Lambda application that can
accommodate the processing of real time data and batch data within distinct batch and real
time layers.

[00084] HUB: In accordance with an embodiment, a data source or target (cloud or on-
premise) comprising datasets or entities. A data source, that can be introspected, from which
data can be consumed or published to, and which comprises datasets or entities, that have
attributes, semantics or relationships with other datasets or entities. Examples of HUBs
include streaming data, telemetric, batch-based, structured or unstructured, or other types of
data sources. Data can be received from one HUB, associated with a source dataset or entity,
and mapped to a target dataset or entity at the same or another HUB.

[00085] System HUB: In accordance with an embodiment, a system HUB can operate
as a knowledge source to store profile information and other metadata that can be associated
with other HUBs, and datasets or entities, in those HUBs, and can also operate in the manner
of a regular HUB as a source or recipient of data to be processed. A central repository in, e.g.,
DFML where metadata and state of the system is managed.

[00086] Dataset (Entity): In accordance with an embodiment, a data structure
comprising attributes (e.g., columns), that can be owned by or otherwise associated with one
or more HUBs, for example a database table, view, file or APl. In accordance with an
embodiment, one or more business entities, for example customer records, that can function
as a semantic business type, and are stored as data components, such as, for example, tables,
within a HUB. Datasets or entities can have relationships to other datasets or entities; together
with attributes, such as, for example, a column in a table; and a data type, such as, for example,
string or integer. In accordance with an embodiment, the system supports a schema agnostic
processing of all types of data (including for example, structured, semi-structured, or
unstructured data) during, for example, enrichment, preparation, transformation, model

training, or scoring operations.

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[00087] Data Al Subsystem: In accordance with an embodiment, a component of a
system, such as, for example, a Data Al system, responsible for machine-learning and
semantic related functions, including one or more of search, profiling, providing a
recommendation engine, or support for auto-mapping. The data Al subsystem can support,
through an event coordinator, the operations of design-time systems, for example a software
development component, e.g., Lambda Studio, and can provide recommendations based on
the continued processing of data by dataflow applications (e.g., pipelines, Lambda
applications), for example to recommend the modification of an existing, e.g., pipeline, to take
better advantage of the data being processed. A data Al subsystem can analyze amounts of
input data, and continuously update a domain-knowledge model. During the processing of a
dataflow application (e.g., pipeline), each stage of the, e.g., pipeline, can proceed, based on
recommended alternatives or options provided by the data Al subsystem, the updated domain
model, and inputs from users, e.g., to accept or reject a recommended semantic action.
[00088] Event Coordinator: In accordance with an embodiment, an event-driven
architecture (EDA) component that operates between the design-time and run-time systems,
to coordinate events related to the design, creation, monitoring, and management of dataflow
applications (e.g., pipelines, Lambda applications). For example, the event coordinator can
receive a published notification of data from a HUB (e.g., new data conforming to a known data
type), normalize the data from that HUB, and provide the normalized data to a set of
subscribers, for use by, e.g., pipelines, or other downstream consumers. The event
coordinator can also receive notification of state transactions within the system, for use in
logging, or lineage tracking, including the creation of temporal slices; and schema evolution.
[00089] Profiling: In accordance with an embodiment, the operation of extracting a
sample of data from a HUB, in order to profile the data provided by that HUB, and the datasets
or entities, and attributes within that HUB; together with determining metrics associated with
sampling the HUB, and updating the metadata associated with a HUB to reflect a profile of the
data in that HUB.

[00090] Software Development Component (Lambda Studio): In accordance with an
embodiment, a design-time system tool that provides a graphical user interface to enable a
user to create, monitor, and manage the lifecycle of a pipeline or Lambda application as a
pipeline of semantic actions. A graphical user interface (Ul, GUI) or studio that allows users
to design, e.g., pipelines, Lambda applications.

[00091] Semantic Action: In accordance with an embodiment, a data transformation
function, for example a relational algebraic operation. An action that can be performed by
dataflow applications (e.g., pipelines, Lambda applications) on a dataset or entity within a HUB,

for projection onto another entity. A semantic action operates as a higher- order function that

-10-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

can be used across different models, or HUBs, that can receive a dataset input, and produce
a dataset output. Semantic actions can include mappings, and can be continuously updated
by, e.g., the data Al subsystem, in response to processing data as part of an e.g., pipeline, or
Lambda application.

[00092] Mapping: In accordance with an embodiment, a recommended mapping of a
semantic action between a first (e.g., source) dataset or entity, and another (e.g., target)
dataset or entity, provided by, e.g., the data Al subsystem, and made accessible through the
design-time system, e.g., via the software development component, Lambda Studio. For
example, a data Al subsystem can provide auto-mapping as a service, wherein the auto-
mapping can be driven by a metadata, schema, and statistical profiling of a dataset, based on
a machine learning analysis of a metadata associated with a HUB or data input, and a profiling
of the data itself.

[00093] Pattern: In accordance with an embodiment, a pattern of semantic actions that
can be performed by a dataflow application (e.g., a pipeline, Lambda application). A template
can be used to provide a definition of a pattern that can be reused by other applications. A
data flow representing a logical flow of data and associated transformations usually associated
with business semantics and processes.

[00094] Policies: In accordance with an embodiment, a set of policies that control how
dataflow applications (e.g., pipelines, Lambda applications are scheduled, which users or
components can access which HUBs and semantic actions, and how data should be aged, or
other considerations. A configuration setting that defines how an, e.g., pipeline, is, for
example, scheduled, executed, or accessed.

[00095] Application Design Services: In accordance with an embodiment, provides data
flow, e.g., pipeline, Lambda application specific services such as, for example, validation,
compiling, packaging, deployment, to other, e.g., DFML services (e.g., Ul, system facade). A
design-time system component that validates the pipeline of an, e.g., pipeline, or Lambda
application in the software development component, e.g., Lambda Studio (e.g., its inputs and
outputs), persists the pipeline, and controls the deployment of the pipeline, Lambda
application, to the system (e.g., to a Spark cluster) for execution, and thereafter can be used
in managing the lifecycle or state of the application.

[00096] Edge Layer: In accordance with an embodiment, a layer that collects and
forwards data to the scalable I/O layer, e.g., as a store and forward layer. A run-time system
component that includes one or more nodes that can receive data, e.g., via a gateway that is
accessible to the Internet, and that includes security and other features that support secured
access to the, e.g., Data Al system.

[00097] Compute Layer: In accordance with an embodiment, an application execution

-11-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

and data processing layer (e.g., Spark). A run-time system component operating as a
distributed processing component, for example, a Spark cloud service, cluster of compute
nodes, collection of virtual machines, or other components or nodes, for use in the execution
of, e.g., pipelines, Lambda applications. In a multitenant environment, nodes within the
compute layer can be allocated to tenants for use in executing pipelines or Lambda
applications by those tenants.

[00098] Scalable Input/Output (I/0) Layer: In accordance with an embodiment, provides
scalable data persistence and access layer structured as topics and partitions (e.g., Kafka). A
run-time system component providing a queue or other logical storage that allows data to be
moved within the system, and shared between the various components of the system, for
example, a Kafka environment. In a multitenant environment, the scalable 1/O layer can be
shared among multiple tenants.

[00099] Data Lake: In accordance with an embodiment, a repository for the persistence of
information from the system HUB, or other components. A repository of data in, e.g., DFML,
usually normalized or processed by, e.g., pipelines, Lambda applications, and consumed by
other pipelines, Lambda applications or a publish layer.

[000100] Registries: In accordance with an embodiment, one or more repositories of
information, e.g., for storage of functional and business types, that are used in the
decomposition of, e.g., pipelines, Lambda applications into their functional components.
[000101] DataFlow Machine Learning (DFML): In accordance with an embodiment, a
data integration, data flow management system that leverages machine learning (ML) to assist
in the building of complex dataflow applications.

[000102] Metadata: In accordance with an embodiment, an underlying definition,
description of the datasets or entities, and attributes and their relationships. It can also be
descriptive data about an artifact in, e.g., DFML.

[000103] Data: In accordance with an embodiment, an application data represented by
the datasets or entities. They can be batch or stream. For example, customers, orders, or
products.

[000104] System Facgade: In accordance with an embodiment, a unified API Layer to
access the functional capabilities of an e.g., DFML event-driven architecture.

[000105] Data Al subsystem: In accordance with an embodiment, provides artificial
intelligence (Al) services including but not limited to, for example, search, auto-map,
recommendation, or profiling.

[000106] Streaming Entity: In accordance with an embodiment, continuous input of data
and near real time processing and output requirements, which may support an emphasis on

velocity of data.

-12-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000107] Batch Entity: In accordance with an embodiment, scheduled or on-request
ingestion of data, which can be characterized by an emphasis on volume.

[000108] Data Slice: In accordance with an embodiment, a partition of data usually
marked by time.

[000109] Rule: In accordance with an embodiment, represents a directive governing
artifacts in, e.g., DFML, for example data rules, relationship rules, metadata rules and complex
or hybrid rules.

[000110] Recommendation (Data Al): In accordance with an embodiment, a proposed
course of action usually represented by one or more semantic actions or fine grained directives
to assist in the design of, e.g., pipelines, Lambda applications.

[000111] Search (Data Al): In accordance with an embodiment, a semantic search in,
e.g., DFML, characterized by the context and the intent of the user to return relevant artifacts.
[000112] Auto-map (Data Al). In accordance with an embodiment, a type of
recommendation that shortlists the candidate source or target datasets or entities, to be used
in a data flow.

[000113] Data Profiling (Data Al): In accordance with an embodiment, a collection of
several metrics, for example, min value, max value, inter-quartile range, or sparsity, that
characterize data in an attribute belonging to a dataset or entity.

[000114] Action Parameter: In accordance with an embodiment, a reference to datasets
on which the semantic actions are performed. For example, the parameters to an equi-join in
an, e.g., pipeline, Lambda application.

[000115] Foreign Function Interface: In accordance with an embodiment, a mechanism
to register and invoke services (and semantic actions) as part of the, e.g., DFML Lambda
application Framework. It can be used to extend the capabilities or transformation vocabulary
in, e.g., DFML.

[000116] Service: In accordance with an embodiment, an owning artifact in, e.g., DFML,
of a collection of semantic actions that can be characterized by a data integration stage (for
example, preparation, discovery, transformation, or visualization).

[000117] Service Registry: In accordance with an embodiment, a repository of services,
their semantic actions and other instance information.

[000118] Data Lifecycle: In accordance with an embodiment, the stages in the use of data
within, e.g., DFML, starting from ingestion and ending at publication.

[000119] Metadata Harvesting: In accordance with an embodiment, the collection of
metadata and sample data for profiling, usually after the registration of a HUB.

[000120] Normalize Pipelines: In accordance with an embodiment, the standardization of

data in a certain format to facilitate consumption by, e.g., pipelines, Lambda applications.

-13-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000121] Monitoring: In accordance with an embodiment, identifying, measuring and
evaluating the performance of an, e.g., pipeline, Lambda application.

[000122] Ingest: In accordance with an embodiment, the intake of data through the edge
layer in, e.g., DFML.

[000123] Publish: In accordance with an embodiment, the writing data to a target end

point from, e.g., DFML.

Data Al System

[000124] Figure 1 illustrates a system for providing data flow artificial intelligence, in
accordance with an embodiment.

[000125] As illustrated in Figure 1, in accordance with an embodiment, a system, e.g.,
data Al system 150, can provide one or more services for processing and transforming data
such as, for example, business data, consumer data, and enterprise data, including the use of
machine learning processing, for use with a variety of computational assets such as, for
example, databases, cloud data warehouses, storage systems, or storage services.

[000126] In accordance with an embodiment, computational assets can be cloud-based,
enterprise-based, or on-premise or agent-based. Various elements of the system can be
connected by one or more networks 130.

[000127] In accordance with an embodiment, the system can include one or more input
HUBs 110 (e.g., sources of data, data sources), and output HUBs 180 (e.g., targets of data,
data targets).

[000128] In accordance with an embodiment, each input HUB, e.g., HUB 111, can include
a plurality of (source) datasets or entities 192.

[000129] In accordance with an embodiment, examples of input HUBs can include a
database management system (DB, DBMS) 112 (e.g., an on-line transaction processing
system (OLTP), business intelligence system, or an on-line analytical processing system
(OLAP)). In such examples, the data provided by a source such as, for example, a database
management system can be structured or semi-structured.

[000130] In accordance with an embodiment, other examples of input HUBs can include
a cloud store/object store 114 (e.g., AWS S3, or another object store), which can be a click-
stream source or an object bucket with unstructured data; data clouds 116 (e.g., a third-party
cloud); a streaming data source 118 (e.g., AWS Kinesis, or another streaming data source), or
other input sources 119.

[000131] In accordance with an embodiment, input HUBs can include a data source into
which data is received from, e.g., an Oracle Big Data Prep (BDP) service.

[000132] In accordance with an embodiment, the system can include one or more output

-14-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

HUBs 180 (e.g., output destinations). Each output HUB, e.g., HUB 181, can include a plurality
of (target) datasets or entities 194.

[000133] In accordance with an embodiment, examples of output HUBs can include a
public cloud 182, a data cloud 184 (e.g., AWS and Azure), an on-premise cloud 186, or other
output targets 187. Data output provided by the system can be produced for dataflow
applications (e.g., pipelines, Lambda applications) accessible at an output HUB.

[000134] In accordance with an embodiment, examples of public cloud can be, for
example, an Oracle Public Cloud, including services such as, for example, Big Data Prep Cloud
Service, Exadata Cloud Service, Big Data Discovery Cloud Service, and Business Intelligence
Cloud Service.

[000135] In accordance with an embodiment, the system can be implemented as a
unified platform for streaming and on-demand (batch) data processing delivered as a service
(e.g., as a software-as-a-service) to users, providing scalable, multi-tenant data processing for
multiple input HUBs. Data is analyzed in real-time, using machine learning techniques and
visual insights and monitoring provided by a graphical user interface as part of the service.
Data sets can be fused from multiple input HUBs for output to an output HUB. For example,
through data processing services provided by the system, data can be generated for a data
warehouse and population in one or more output HUBS.

[000136] In accordance with an embodiment, the system provides declarative and
programming topologies for transformation, enrichment, routing, classification, and blending of
data; and can include a design-time system 160 and a run-time system 170. Users can create
applications, such as, for example, dataflow applications (e.g., pipelines, Lambda applications)
190, designed to perform data processing.

[000137] In accordance with an embodiment, the design-time system can enable users
to design dataflow applications, define data flows, and define data for data flow processing.
For example, design-time system can provide a software development component 162
(referred to herein in an embodiment as Lambda Studio) that provides a graphical user
interface for creation of dataflow applications.

[000138] For example, in accordance with an embodiment, using the software
development component, a user can specify input HUBs and output HUBs for creating a data
flow for an application. The graphical user interface can present interfaces for services for
data integration, which enables a user to create, manipulate, and manage data flow for an
application, including the ability to monitor and manage a data flow pipeline dynamically, such
as, for example, viewing data lineage and performing forensic analysis.

[000139] In accordance with an embodiment, the design-time system can also include

application design services 164 for deploying dataflow applications into run-time system.

-15-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000140] In accordance with an embodiment, the design-time system can also include
one or more system HUBs 166 (e.g., a metadata repository) for storing metadata for
processing data flows. The one or more system HUBs can store samples of data, such as, for
example, data types including functional and business data types. The information in the
system HUB can be used to perform one or more of the techniques disclosed herein. A data
lake 167 component, can operate as a repository for the persistence of information from the
system HUB.

[000141] In accordance with an embodiment, the design-time system can also include a
data artificial intelligence (Al) subsystem 168 to perform operations for data artificial
intelligence processing. The operations can include the use of ML techniques, for example
search and retrieval. The data Al subsystem can sample data for generating metadata for the
system HUB.

[000142] In accordance with an embodiment, for each input HUB, the data Al subsystem
can perform schema object analysis, metadata analysis, sample data, correlation analysis, and
classification analysis. The data Al subsystem can provide rich data to dataflow applications
by running continuously on data that is input; and can provide recommendations, insights, and
type inductions to, for example, pipelines, Lambda applications.

[000143] In accordance with an embodiment, the design-time system enables a user to
create policies, artifacts and flows that define the functional needs of the use case.

[000144] For example, in accordance with an embodiment, the design-time system can
provide a graphical user interface to create a HUB to ingest data and define the ingest policy
which can be time based or as needed by the related data flows. Upon selecting an input
HUB, data can be sampled from the input HUB to profile the sources, such as, for example,
performing metadata query, obtaining samples, and obtaining user defined input. The profile
can be stored in system HUB. The graphical user interface enables multiple sources to be
joined for defining a dataflow pipeline. This can be done by creating a script or by using the
guided editor by which data can be visualized at each step. The graphical user interface can
provide access to a recommendation service that suggests how the data could be, e.g.,
corrected, enriched, or joined.

[000145] In accordance with an embodiment, during design time, application design
services can suggest a suitable structure to analyze the resulting content. The application
design services can use a knowledge service (functional type classification) to suggest
measures and related dimension hierarchies. Once that is completed, the design-time system
can recommend the data flows needed to take the blended data from earlier pipelines and
populate a dimensional target structure. Based on the dependency analysis it can also derive

and generate the orchestration flow to load / refresh the target schema. For forward-

-16-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

engineering use cases, the design-time system can also generate a HUB to host a target
structure and create the target schema.

[000146] In accordance with an embodiment, the run-time system can perform
processing during run-time of a service for data processing.

[000147] In accordance with an embodiment, in the run-time, or operation mode, the
policy and flow definitions created by the user are applied and/or executed. For example, such
processing can include invoking ingest, transform, model and publish services, to process data
in the pipeline.

[000148] In accordance with an embodiment, the run-time system can include an edge
layer 172, a scalable input/output (I/O) layer 174, and a distributed processing system or
compute layer 176. During run-time (e.g., when data is ingested from one or more input HUBs
110), data can be received by edge layer for events that cause the data to be generated.
[000149] In accordance with an embodiment, an event coordinator 165 operates
between the design-time and run-time systems, to coordinate events related to the design,
creation, monitoring, and management of the dataflow applications (e.g., pipelines, Lambda
applications).

[000150] In accordance with an embodiment, an edge layer sends the data to the
scalable /O layer for routing the data to distributed processing system or compute layer.
[000151] In accordance with an embodiment, a distributed processing system or
compute layer can implement a pipeline process (on a per-tenant basis) to process data for
output. The distributed processing system can be implemented using, for example, Apache
Spark and Alluxio; and can sample data into a data lake before outputting the data to an output
HUB. The distributed processing system can communicate with the scalable 1/O layer for
activation of data for processing.

[000152] In accordance with an embodiment, the data Al system, including some or all
of the above components, can be provided at, or executed by, one or more computers
including, for example, one or more processors (CPU), memory, and persistent storage
devices (198).

Event-Driven Architecture

[000153] As described previously, in accordance with an embodiment, the system can
include an event-driven architecture (EDA) component or event coordinator that operates
between the design-time and run-time systems, to coordinate events related to the design,
creation, monitoring, and management of dataflow applications (e.g., pipelines, Lambda
applications).

[000154] Figure 2 illustrates an event-driven architecture including an event coordinator

-17-

10

15

20

25

30

WO 2018/039251 PCT/US2017/048044

for use with a system, in accordance with an embodiment.

[000155] As illustrated in Figure 2, in accordance with an embodiment, the event
coordinator caninclude an event queue 202 (e.g., Kafka), event bootstrapper service 204 (e.g.,
ExecutorService), and event configuration publisher / event consumer 206 (e.g., DBCS).
[000156] In accordance with an embodiment, events received at a system fagade 208
(e.g., an Events API Extension) can be communicated by one or more event broker(s) 210,
e.g., Kafka consumer(s), to various components of the system. For example, data and/or
events such as, for example, external data 212 (e.g., 83, OSCS, or OGG data), or inputs from
a graphical user interface 214 (e.g., a browser, or DFML Ul) can be communicated via the
event coordinator, to other components such as, for example, an application runtime 216, data
lake, system HUB, data Al subsystem, application design services, as described previously;
and/or to ingest 220, publish 230, scheduling 240, or other components.

[000157] In accordance with an embodiment, event brokers can be configured as
consumers of stream events. The event bootstrapper can start a number of configured event
brokers to process events on behalf of registered subscribers; wherein each event broker
delegates the processing of the event to the registered callback endpoint for processing a
given event. The event coordinator enables registering event types; registering eventing
entities; registering events; and registering subscribers. Table 1 provides an example of

various event objects, including a publish event, and a subscribe event.

Publish Event A 2-tuple (event Type, eventing Entity) object that registers the

publication of an event by an eventing entity.

Subscribe Event | A 2-tuple (event, eventing Entity) object that registers the
subscription to an event published by another eventing entity

(publisher).

Table 1

Event Types

[000158] In accordance with an embodiment, event types define a state change of an
event that has significance for the system, such as, for example, the creation of a HUB,
modification of a dataflow application, e.g., pipeline, Lambda application, ingesting data for a
dataset or entity, or publishing data to a target HUB. An example data format, and examples

of various event types are described below and in Table 2:

-18-

10

15

WO 2018/039251 PCT/US2017/048044

"Id":"" , // generated at the time of creation
"Name": "Hub - Creation"

"Type":"User Event"

POST /eventTypes Creating a new eventType.

PUT /eventType/{eventide} Modify an eventType with the given Id.
GET /eventTypes Retrieve all eventTypes in the system.
GET /eventTypes/{eventTypeld} Retrieve the representation of the

eventType with the given Id.

GET /eventTypes/{eventide}/publishers Retrieve all the publishers for this
eventType. There can be more than one
eventing entity registered to publish events
of this type, in which case all distinct
eventing entities publishing event of this

type will be returned.

GET /eventTypes/{eventide}/subscribers | Retrieve all the subscribers for this
eventType. There can be more than one
eventing entity registered as subscribers to
events of this type, in which case all distinct
eventing entities subscribing to the event of

this type will be returned.

DELETE /eventTypes/{eventide} Delete an event with a given Id.

Table 2

Eventing Entities

[000159] In accordance with an embodiment, an eventing entity can be a publisher and/or
subscriber of events. For example, an eventing entity can register to publish one or more
events and/or be consumers of one or more events, including registering an endpoint or
callback URL that will be used for notifying or sending acknowledgement on publish and
delegating processing for subscribed events. Examples of eventing entities can include the
metadata service, ingest service, system HUB artifacts, and pipelines, Lambda applications.
An example data format, and examples of various eventing entities are described below and
in Table 3:

-19-

10

15

WO 2018/039251

PCT/US2017/048044

"Id":"" , // generated at the time of creation

"Name": "Metadata Service",
"endPointURL":"localhost:9010/processEvent",

"entityType":"DFMLService"

POST /eventingEntities

Creates a new eventing Entity.

PUT /eventingEntities/{entityld}

Modify an existing eventing Entity
identified by Id.

GET /eventingEntities

Retrieve all registered eventing

Entities.

GET /eventingEntities/{entityld}

Retrieve the representation of the

eventing entity with the given Id.

GET /eventingEntities/{entityld}/eventsPublished

Retrieve all events registered for
publication by this eventing
Entity.

GET /eventingEntities/{entityld}/eventsSubscribed

Retrieve all events registered for
subscription by this eventing
Entity.

DELETE /eventingEntities/{entityld}

Delete this evening entity from

the system.

Table 3

Events

[000160] In accordance with an embodiment, an event is an instance of an event type

that is associated with an eventing entity registered as a

(eventing entities). For example, a metadata service can register a HUB creating event for

publication; and can publish one or more of event instances (once each for HUBs created) for

publisher; and can have subscribers

this event. Examples of various events are described in Table 4:

{

POST /events Creates a new event to be published by

an eventing Entity.

llldll:llll ,

-20-

WO 2018/039251

PCT/US2017/048044

"acknowledgeURL":

"locahost:9010/eventAcknowledge"”,

"onProcessingOf":"/eventType/{eventld}

"eventType":"/eventType/{eventld}",

"eventingEntity":"/eventingEntity/{entitld}

}

PUT /events/{eventid}

Modifies an existing event registered for

publication by an eventing entity.

POST /events/{eventid}/publish

Publishes an event instance enqueuing
the event for consumption.
{

"event_type": "data",

"subtype": "publication”,

"state": "ready",

"context™
{*eventContextld”.”{eventld}’,’accessTo
ken”:”"}

"message": {

actual event data goes here

}
}
GET /events Retrieve all events registered in the
system.
GET /events/{eventide} Retrieve the event with the given Id.

GET /events/{eventide}/publisher

Retrieve the publisher of this event.

GET /events/{eventide}/subscribers

Retrieve the subscribers for this event.

POST /events/{eventid}/subscribers

Registering a subscriber for an event.

{

"Id":" , // generated at the time of
creation
"processingURL":

"locahost:9010/eventProcess”,

-21-

10

15

20

25

WO 2018/039251 PCT/US2017/048044

"subscribingEvent":"/events/{eventld}",
"callbackMethod":"REST",

"subscriberentity":"/eventingEntity/{entitl

d}"
}
PUT Modify the properties of the subscriber
/events/{eventid}/subscribers/{subscriberld} | for this event.
DELETE Delete the subscriber for this event.
/events/{eventid}/subscribers/{subscriberld}
DELETE /events/{eventide} Delete the event.
Table 4
Examples
[000161] In accordance with an embodiment, the following examples illustrate creating

an event type; registering a publish event; registering subscribers; publishing an event; getting

event types; getting publishers for an event type; and getting subscribers for an event type.

POST http://den00tnk:9021/dfml/service/eventType

{"name":"DATA INGESTED",
"type":"SystemEvent"
}

[000162] Which returns a universally unique ID (UUID), for example “8e87039b-a8b7-
4512-862c-fdb05b9h8888”. Eventing objects can publish or subscribe to events in the system.
Service endpoints such as, for example, ingest service, metadata service, and application
design service can be publish and subscribe events with static endpoints for acknowledge,
notification, error, or processing. DFML artifacts (e.g., DFMLEntity, DFMLLambdaApp,
DFMLHub) can also be registered as eventing objects; instances of these types can publish

and subscribe to events without registering as eventing objects.

POST http://den00tnk:9021/dfml/service/eventEntity

"name": "DFMLEntity",

-22-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

"endPointURL":"localhost:9010/<publisherURL>",

"notificationEndPointURL":"http://den00tnk:9021/<publisherURL>/notification

"
I

"exceptionEndPointURL": "http://den00tnk:9021/<publisherURL>/exception”,
"errorEndPointURL":"http://den00tnk:9021/<publisherURL>/error",

"entityType":"DFMLEntity"

[000163] The following example registers the DFMLLambdaApps (type) as an eventing
Object.
{

"name": "DFMLLambdaApps",

"endPointURL":"localhost:9010/<publisherURL>",

"notificationEndPointURL":"http://den00tnk:9021/<publisherURL>/notification

"
I

"exceptionEndPointURL": "http://den00tnk:9021/<publisherURL>/exception”,
"errorEndPointURL":"http://den00tnk:9021/<publisherURL>/error",

"entityType":"DFMLLambdaApps"

[000164] For eventing entities that are of type HUB, Entity and LambdaApp, the
<publisherURL> can be annotated in REST endpoint URL’s, and the event-driven architecture
will derive the actual URL by replacing the DFML artifact instance URL. For example, if a
notificationEndpointURL is registered as http://den00tnk:9021/<publisherURL>/notification
and the publisher URL specified as part of the message is hubs/1234/entities/3456, then the
URL invoked for notification will be http://den00tnk:9021/ hubs/1234/entities/3456 /notification.
The POST returns a UUID; for example “185cb819-7599-475b-99a7-65e0bd2ab947”.

Registering a Publish Event

[000165] In accordance with an embodiment, a publish event can be registered as:

POST http://den00tnk:9021/dfml/service/event

"acknowledgeURL":"http://den00tnk:9021/<publisherURL>/acknowledge",

"onProcessingOf":"/eventType/{eventId}",

-23-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

"eventType":"7ea%92c868e8703%b-a8b7-4512-862c-£db05bSb888E8E",
"publishingEntity":"185cb819-7599-475b-9%a7-65e0bd2ab947"

[000166] The eventType refers to the UUID returned for registering the event type
DATA_INGESTED and the publishingEntity refers to the DFMLEntity type registered as
eventing Object. The registration returns a UUID, for example “2c7a4b6f-73ba-4247-a07a-
806ef659def5”.

Registering Subscribers

[000167] In accordance with an embodiment, a subscriber can be registered as:

POST http://den00tnk:9021/dfml/service/event/2c7adb6f-73ba-4247-a07a-
806ef659def5/subscribers

[000168] The UUID returned from the publish event registration is used in the path

segment for registering a subscriber.

"processingURL": "http://den00tnk:9021/dfml/service/eventType/process3”,
"callbackMethod":"SYNC POST",
"subscriberEntity":"7599916b-baab-409c-bfe0-5334f11lef4l",
"publisherURL":"/hubs/1234/entities/3456",
"publishingObjectType":"DFMLEntity",
"subscribingObjectType":"DFMLLambdaApps",
"subscriberURL":"/lambdaRApps/123456"

[000169] The publisherURL and publishingObjectType refers to the instance and type of
the publisher object. Here the dataflow (e.g, Lambda) application, in specifying a URI
/lambdaApps/123456 is interested in subscribing to the DATA_INGESTED event from the
entity /hubs/1234/entities/3456. The registration returns a UUID, for example “1d542da1-
e18e-4590-82c0-7fe1¢c55¢5bc8”.

Publishing an Event

[000170] In accordance with an embodiment, an event can be published as:

-24-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

POST http://den00tnk:9021/dfml/service/event/publish

{
"event type":"DATA AVAILABLE",
"subtype":"publication",
"state":"ready",
"eventTypeId":"2c7a4b6f-73ba-4247-a07a-806ef659defb",
"publisherURL":"dfml/service/eventType",
"message": {"id":"1234",

"descr":"something happened here testing this and this again"

[000171] The publisherURL is used if the publishing object is one of DFMLEntity,
DFMLHub or DFMLLambdaApps, and is used to check the instance of the eventing object
publishing a message for which the subscriber is enlisted. The publisher URL is also used to
derive the notification URL when a subscriber successfully processes the message. The

publication returns a message body that was part of the published event.

Getting Event Types

[000172] In accordance with an embodiment, event types can be determined as:

GET http://den00tnk:9021/dfml/service/eventType

"eventTypes": [
{
"Id": "8e8703%b-a8b7-4512-862c-£fdb05b%b8888",
"name": "DATA INGESTED",

"type": "SystemEvent",

"createdBy": ’

"updatedBy": " ",

"description™: ’
"typeQualifier": ’

"resourceType": ’

"verb": ,
"operationType": ’

"status™": ,

"annotation™:

-25-

WO 2018/039251 PCT/US2017/048044

"Id": "7ea%2c86-8db5-42d6-992a-2578a6d025ce",
"name": "DATA AVAILABLE",
"type": "SystemEvent",
"createdBy": " ",
"updatedBy": " ",
"description": " ",
"typeQualifier": " ",
"resourceType": " ",
"verb"™: " ",
"operationType": " ",
"status": " ",
"annotation": " "
}
]
}
[000173] Getting Publishers for an Event Type

GET http://den00tnk:9021/dfml/service/eventType/7ea92¢c86-8db5-42d6-992a—
2578a6d025ce/publishers

"eventingObjects": [
{
"Id": "185cb819-7599-475b-9%a7-65e0bd2ab947",
"name": "DFMLEntity",
"entityType": "DFMLEntity",
"endPointURL": "localhost:9010/<publisherURL>",
"notificationEndpointURL":
"http://den00tnk:9021/<publisherURL>/notification",
"exceptionEndpointURL":
"http://den00tnk:9021/<publisherURL>/exception",

"errorEndpointURL": "http://den00tnk:9021/<publisherURL>/error",
"acknowledgeEndpointURL": " ",

"description™: " ",

"entityQualifier™: "™ ",

"status": " ",

"annotation": " "

-26-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

Getting Subscribers for an Event Type
[000174] In accordance with an embodiment, subscribers for an event type can be

determined as:

GET http://den00tnk:9021/dfml/service/eventType/7ea92¢c86-8db5-42d6-992a—
2578a6d025ce/subscribers

"eventingObjects": [
{
"Id": "7599916b-baab-408c-bfe0-5334f11lef4l",
"name": "DFMLLambdaApps",
"entityType": "DFMLLambdaApps",
"endPointURL": "localhost:9010/<publisherURL>",
"notificationEndpointURL":
"http://den00tnk:9021/<publisherURL>/notification",
"exceptionEndpointURL":
"http://den00tnk:9021/<publisherURL>/exception",

"errorEndpointURL": "http://den00tnk:9021/<publisherURL>/error",
"acknowledgeEndpointURL": "™ ",
"description": " ",
"entityQualifier": ™ ',
"status": " ",
"annotation": " "
}
]
}
[000175] The illustrations described above are provided by way of example, to illustrate

a particular embodiment of an event coordinator, event types, eventing entities, and events.
In accordance with other embodiments, other types of EDAs can be used to provide
communication within the system operating between the design-time and run-time systems, to
coordinate events related to the design, creation, monitoring, and management of dataflow

applications, and other types of event types, eventing entities, and events can be supported.

27-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

DataFlow Machine Learning (DFML) Flow

[000176] As described previously, in accordance with various embodiments, the system
can be used with a data integration or other computing environment, that leverages machine
learning (ML, DataFlow Machine Learning, DFML), for use in managing a flow of data
(dataflow, DF), and building complex dataflow software applications (e.g., dataflow
applications, pipelines, Lambda applications).

[000177] Figure 3 illustrates the steps in a data flow, in accordance with an embodiment.
[000178] As illustrated in Figure 3, in accordance with an embodiment, the processing of
a DFML data flow 260 can include a plurality of steps, including an ingest step 262, during
which data is ingested from various sources, for example, Salesforce (SFDC), S3, or DBaaS.
[000179] During a data preparation step 264, the ingested data can be prepared, for
example by being de-duplicated, standardized, or enriched.

[000180] During a transform step 266, the system can perform one or more merges,
filters, or lookups at datasets, to transform the data.

[000181] During a model step 268, one or more models are generated, together with
mappings to the models.

[000182] During a publish step 270, the system can publish models, specify policies and
schedules, and populate target data structures.

[000183] In accordance with an embodiment, the system supports the use of a
search/recommend functionality 272 throughout each of its data preparation, transform, and
model steps. A user can interact with the system through a set of well-defined services that
encapsulates the breadth of functional capabilities in data integration frameworks. This set of
services define a logical view of the system. For example, in a design mode, the user can
create policies, artifacts, and flows that define the functional needs of a particular use case.
[000184] Figure 4 illustrates an example of a data flow that includes multiple sources, in
accordance with an embodiment.

[000185] As illustrated in the example data flow 280 shown in Figure 4, in accordance
with an embodiment, the requirement is to take content from a plurality of sources 282, here
indicated as SFDC, and FACS (Fusion Apps Cloud Service), together with some files in OSCS
(Oracle Storage Cloud Service); blend that information together in a manner that can be used
to analyze the desired content; derive a target cube and dimensions; map the blended content
to the target structures; and make this content available along with the dimensional model to
an Oracle Business Intelligence Cloud Service (BICS) environment; including the use of ingest,
transform 266A/266B, model, orchestrate 292, and deploy 294 steps.

[000186] The illustrated example is provided to illustrate the techniques described herein;

the functionality described herein is not limited to use with these particular data sources.

-28-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000187] In accordance with an embodiment, during the ingest step, in order to access
and ingest the SFDC content, a HUB is created in the data lake to receive this content. This
can be performed, for example, by selecting an SFDC adapter for the relevant access mode
(JDBC, REST, SOAP), creating the HUB, providing a name, and defining an ingest policy
which could be time based or as needed by the related data flows.

[000188] In accordance with an embodiment, a similar process can be performed for the
other two sources, the difference being that for the OSCS source, the schema may not be
known at the outset, so that can instead be obtained by some means (for example, metadata
query, sampling, or user defined).

[000189] In accordance with an embodiment, the sources of data can optionally be
profiled to investigate the sources further, which may help in deriving recommendations later
in the integration flow.

[000190] In accordance with an embodiment, the next step is to define how the separate
sources can be joined together around a central item, which is typically the basis (fact) for the
analysis, and which can be accomplished by defining a dataflow pipeline. This can be done
directly by creating a pipeline domain-specific language (DSL) script, or by using the guided
editor where the user can see the effect on the data at each step and can take advantage of
the recommendation service that suggests how the data could be, e.g., corrected, enriched,
joined.

[000191] At this point, the user can request that the system suggest a suitable structure
to analyze the resulting content. For example, in accordance with an embodiment, the system
can use the knowledge service (functional type classification) to suggest measures and related
dimension hierarchies. Once that is completed, the system can recommend the data flows
needed to take the blended data from the earlier pipeline and populate the dimensional target
structure. Based on the dependency analysis it will also derive and generate the orchestration
flow to load / refresh the target schema.

[000192] In accordance with an embodiment, the system can now generate a HUB to
host the target structure and associate it via an adapter to a DBCS generating the data
definition language (DDL) needed to create the target schema and, for example, deploy the
XDML or whatever form BICS can use to generate the models needed to access the newly
created schema. This can be populated by executing the orchestration flow and triggering the
exhaust service.

[000193] Figure 5 illustrates an example use of a data flow with a pipeline, in accordance
with an embodiment.

[000194] As illustrated in Figure 5, in accordance with an embodiment, the system allows

users to define pipelines 302 representative of a data flow, in this example including pipeline

-29-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

steps S1 through S5, to describe the processing of data when built/executed 304 as
applications.

[000195] For example, in accordance with an embodiment, users can invoke ingest,
transform, model and publish services, or other services such as, for example, policy 306,
execution 310, or persistence services 312, to process data in the pipeline. Users can also
define solutions (i.e., a control flow) to specify a unified flow which can integrate related
pipelines together. Typically, solutions model a complete use case, for example the loading

of a sales cube and associated dimensions.

Data Al System Components

[000196] In accordance with an embodiment, adapters enable connection to, and ingest
data from, various end points and are specific to application or source type.

[000197] In accordance with an embodiment, the system can include a predefined set of
adapters, some of which can leverage other SOA adapters, and allow additional adapters to
be registered to the framework. There can be more than one adapter for a given connection
type; in which cases, the ingest engine will choose the adapter most suited based on the
connection type configuration of the HUB.

[000198] Figure 6 illustrates an example use of an ingest/publish engine and
ingest/publish service with a pipeline, in accordance with an embodiment.

[000199] As illustrated in Figure 6, in accordance with an embodiment, an ingest/ publish
engine 330 can be accessed via an ingest / publish service 332 by a pipeline 334, which in this
example is designed to ingest data 336 (e.g., sales data) from an input HUB (e.g., SFDC
HUB1), transform the ingested data 338, and publish the data to an output HUB 340 (e.g.,
Oracle HUB).

[000200] In accordance with an embodiment, the ingest / publish engine supports a
plurality of connection types 331, each of which connection type 342 is associated with one or
more adapter(s) 344 that provides access to a HUB.

[000201] For example, as illustrated in the example of Figure 6, in accordance with an
embodiment, an SFDC connection type 352 can be associated with an SFDC-Adp1 adapter
354, and an SFDC-Adp2 adapter 356, that provide access to SFDC HUBs 358, 359; while an
ExDaaS connection type 362 can be associated with an ExDaaS-Adp adapter 364 that
provides access to an ExDaas HUB 366; and an Oracle Connection type 372 can be

associated with an Oracle Adp adapter 374 that provides access to an Oracle HUB 376.

Recommendation Engine

[000202] In accordance with an embodiment, the system can include a recommendation

-30-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

engine or knowledge service that operates as an expert filtering system that predicts / suggests
the most relevant from among the several possible actions that can be performed on the data.
[000203] In accordance with an embodiment, recommendations can be chained to
facilitate the user to step through them, to achieve the prescribed end goal. For example, the
recommendation engine can guide the user through a set of steps in transforming a data set
into a data cube to be published to the target Bl system.

[000204] In accordance with an embodiment, the recommendation engine utilizes three
aspects: (A) business type classification, (B) functional type classification, and (C) a knowledge
base. Ontology management and Query/Search functionality on datasets or entities can be
provided by, for example, a YAGO3-seeded federated ontology with Query API, MRS and
Audit Repository. Business entity classification can be provided by, for example, a ML pipeline
based classification to identify the business type. Functional type classification can be
provided by, for example, deductive and rule-based functional type classification. Action
recommendation can be provided by, for example, inductive and rule-based data prep,

transform, model, dependencies and related recommendations.

Classification Service
[000205] In accordance with an embodiment, the system provides a classification
service, which can be categorized into business type classification and functional type

classification, each of which are further described below.

Business Type Classification

[000206] In accordance with an embodiment, the business type of an entity is its
phenotype. The observable characteristics of the individual attributes in the entity are as
important as the definition, in identifying the business type of an entity. While the classification
algorithm uses the schematic definition of a dataset or entity, it can also utilize the models built
using data, to classify the datasets or entities business type.

[000207] For example, in accordance with an embodiment, a dataset ingested from a
HUB can be classified as one of existing business types (seeded from the main HUB) that are
known to the system, or can be added as a new type if it cannot be classified into an existing
one.

[000208] In accordance with an embodiment, business type classification is utilized in
making recommendations, either based on inductive reasoning (from transforms defined on
similar business type in pipelines), or simple propositions derived from the classification root
entity.

[000209] Generally described, in accordance with an embodiment, the following set of

-31-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

steps describes the classification process: ingest and seeding from a main (training) hub;
building models and compute col stats and register them for use in classification; classifying
datasets or entities, from newly added hubs, including creating a profile / compute col stats;
and classifying datasets or entities, to provide a short list of entity models to use based on
structure and col stats; and classifying datasets or entities, including muilticlass classification
to compute / predict using the models.

[000210] Figure 7 illustrates the process of ingest and training from a HUB, in
accordance with an embodiment.

[000211] As illustrated in Figure 7, in accordance with an embodiment, the data from a
HUB 382 (e.g., in this example, a RelatedlQ source) can be read by the recommendation
engine 380, as datasets 390 (e.g., as Resilient Distributed Datasets, RDDs), including in this
example an accounts dataset 391, events dataset 392, contacts dataset 393, lists dataset 394,
users dataset 395.

[000212] In accordance with an embodiment, a plurality of type classification tools 400
can be used with an ML pipeline 402, for example GraphX 404, Wolfram/Yago 406, and/or
MLlib Statistics 408, are used in seeding the knowledge graph 440 with entity metadata
(training or seeding data) when a HUB is first registered.

[000213] In accordance with an embodiment, the dataset or entity metadata and data
are ingested from the source HUB and stored in the data lake. During model generation 410,
the entity metadata (attributes and relationship with other entities) is used, for example through
FP-growth logistics regression 412, in generating the models 420 and knowledge graph
representing all the datasets or entities, in this example representing events 422, accounts
424, contacts 426, and users 428. As part of the seeding, regression models are built using
dataset or entity data and attribute statistics (min value, max value, mean, or probability

density) are computed.

[000214] Figure 8 illustrates the process of building models, in accordance with an
embodiment.
[000215] As illustrated in Figure 8, in accordance with an embodiment, when run in, for

example, a Spark environment 430, Spark MLIib statistics can be used to compute column
stats that are added as attribute properties in the knowledge graph. The computed column
stats, along with other dataset or entity metadata, can be used to shortlist the entities whose
regression models will be used in testing the new entities for classification.

[000216] Figure 9 illustrates the process of classifying datasets or entities, from newly
added HUBS, in accordance with an embodiment.

[000217] As illustrated in Figure 9, in accordance with an embodiment, when a new HUB

is added, in this example, an Oracle HUB 442, the datasets or entities provided by that HUB,

-32-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

e.g., party information 444, and customer information 446, are classified by the model as a
party 448 based on the training or seeded data created previously.

[000218] For example, in accordance with an embodiment, the column statistics are
computed from the data of the new datasets or entities, and a set of predicates representing
the entity’s sub graph is created using this information along with other metadata available as
part of the ingest.

[000219] In accordance with an embodiment, the column statistics computation is useful
in maximum likelihood estimation (MLE) methods, while sub graphs as well as in regression
models for the dataset. The set of graph predicates generated for the new entity will be used
to short list candidate entity models for testing and classifying the new entity.

[000220] Figure 10 further illustrates the process of classifying datasets or entities, from
newly added HUBSs, in accordance with an embodiment.

[000221] As illustrated in Figure 10, in accordance with an embodiment, predicates
representing a sub graph of new datasets or entities, to be classified, are compared 450 with
similar sub graphs representing datasets or entities that are already part of the knowledge
graph. A ranking of the matching entities, based on the probability of a match, is used in short-
listing the entity models used in testing for classifying new entities.

[000222] Figure 11 further illustrates the process of classifying datasets or entities, from
newly added HUBSs, in accordance with an embodiment.

[000223] As illustrated in Figure 11, in accordance with an embodiment, the regression
models of the short listed matching datasets or entities are used in testing the data from the
new datasets or entities. The ML pipeline can be extended to include additional classification
methods/models to improve the accuracy of the process. The classification service will classify
452 the new entity if there exists a match within the acceptable threshold, for example, in this
illustration, a probability greater than 0.8. If not, the dataset or entity can be added to the
knowledge graph as a new business type. A user can also validate the classification, by

accepting or rejecting the result.

Functional Type Classification

[000224] In accordance with an embodiment, the functional type of an entity is its
genotype. The functional type can also be described as the interface through which transform
actions are defined. For example, a join transform or filter is defined on a functional type, such
as a relational entity in this case. In summary, all transforms are defined in terms of functional
types as parameters.

[000225] Figure 12 illustrates an object diagram for use in functional type classification,

in accordance with an embodiment.

-33-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000226] As illustrated in Figure 12 by way of object diagram 460, in accordance with an
embodiment, the system can describe the general case (in this example, dimension, level, or
cube) through a set of rules against which a dataset or entity is evaluated to identify its
functional type.

[000227] For example, in accordance with an embodiment, a multidimensional cube can
be described in terms of its measure attributes and dimensionality, each of which can
themselves be defined in terms of their types and other characteristics. The rules engine will
evaluate a business type entity and annotate its functional type based on the evaluation.
[000228] Figure 13 illustrates an example of a dimension functional type classification,
in accordance with an embodiment.

[000229] As illustrated in the example functional type classification 470 hierarchy shown
in Figure 13, in accordance with an embodiment, a level can be defined, for example in terms
of its dimensions, and level attributes.

[000230] Figure 14 illustrates an example of a cube functional type classification, in
accordance with an embodiment.

[000231] As illustrated in the example functional type classification 480 hierarchy shown
in Figure 14, in accordance with an embodiment, a cube can be defined, for example, in terms
of its measure attributes and dimensionality.

[000232] Figure 15 illustrates an example usage of functional type classification to
evaluate a business entity’s functional type, in accordance with an embodiment.

[000233] As illustrated in Figure 15, in this example 490, in accordance with an
embodiment, a sales dataset should be evaluated as a cube functional type by the rules
engine. Similarly the product, customer, and time should be evaluated as dimensions and
levels (for example by age group, gender).

[000234] In accordance with an embodiment, the rules that identify the entity’s functional
types and the dataset or entity elements for this particular example are provided below,
including several rules that can be specified to evaluate the same functional type. For
example, a column of type “Date” can be considered a dimension regardless of whether there
is a reference to a parent level entity. Similarly zip code, gender and age may only require

data rules to identify them as dimensions:

Customer
Id, Name — (Dimension isComposedOf DimensionAttrib)
AgeGroup, Gender — (Dimension isComposedOf IdAttrib, IdAttrib references

Level)

-34-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

Time

Day — (Dimension /Level isComposedOf DimensionAttrib /LevelAttrib)

Month — (Dimension isComposedOf IdAttrib, |dAttrib references Level)

Sales

Qty, Price, Amount — (Cube isComposedOf CubeAttr and Data rule on this
columns, for example numeric min/max values, probability density)
Custid — (DimAttr references Dimension, Cube isComposedOf CubeAttr)

Date — (references Dimension, Cube isComposedOf CubeAttr)

[000235] Figure 16 illustrates an object diagram for use in functional transformation, in
accordance with an embodiment.

[000236] As illustrated in Figure 15, in accordance with this example 500, in accordance
with an embodiment, transform functions can be defined on functional types. Business entities
(business types) are annotated as a functional type; including by default that complex business
types are of functional type “entity”.

[000237] Figure 17 illustrates the operation of a recommendation engine, in accordance
with an embodiment.

[000238] As illustrated in Figure 17, in accordance with an embodiment, the
recommendation engine generates recommendations which are a set of actions defined on a
business type. Each action is a directive to apply a transform on a dataset(s).

[000239] In accordance with an embodiment, a recommendation context 530 abstracts
the sources of the recommendation, and contains metadata to identify the set of propositions
that generated the recommendation. The context allows the recommendation engine to learn
and prioritize recommendations based on user’s response.

[000240] In accordance with an embodiment, a target entity deducer / mapper 512 uses
the definition of the target (and classification service that annotates dataset or entity and
attribute business types) to make transform recommendations that facilitate the current dataset
to map into the target. This is common when the user starts with a known target object (say
sales cube) and builds a pipeline to instantiate the cube.

[000241] In accordance with an embodiment, templates (pipeline/solution) 514 define a
reusable set of pipeline steps and transforms to achieve a desired end result. For example, a
template might contain steps to enrich, transform, and publish to a data mart. The set of
recommendations in this case will reflect the template design.

[000242] In accordance with an embodiment, a classification service 516 identifies the

business type of a dataset or entity ingested from a HUB into the data lake. Recommendations

-35-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

on the entity can be made based on transforms applied on similar entities (business type) or
in conjunction with the target entity deducer/mapper.

[000243] In accordance with an embodiment, a functional type service 518 annotates the
functional type(s) that a dataset or entity can assume based on rules defined. For example,
to generate a cube from a given dataset or join it with dimensional tables, it is important to
evaluate if the dataset meets the rules that define the cube functional type.

[000244] In accordance with an embodiment, a pattern inference from pipelines
component 520 allows the recommendation engine to summarize transforms performed on a
given business type in existing pipeline definitions in similar contexts and suggest similar
transform as recommendation in the current context.

[000245] In accordance with an embodiment, the recommendation context can be used
to process a recommendation 532, including actions 534, transform function 535, action

parameters 536, function parameters 537, and business type 538.

Data Lake / Data Management Strategies
[000246] As described previously, in accordance with an embodiment, a data lake

provides a repository for the persistence of information from the system HUB, or other

components.
[000247] Figure 18 illustrates the use of a data lake, in accordance with an embodiment.
[000248] As illustrated in Figure 18, in accordance with an embodiment, a data lake can

be associated with one or more data access APIs 540, a cache 542, and persistence store
544, that operate together to receive ingested data that has been normalized, for use with a
plurality of pipelines 552, 554, 556.

[000249] In accordance with an embodiment, a variety of different data management
strategies can be used to manage data (performance, scalability) and its life cycle in the data
lake, which can be broadly classified as data-driven or process-driven.

[000250] Figure 19 illustrates the use of a data-driven strategy to manage a data lake,
in accordance with an embodiment.

[000251] As illustrated in Figure 19, in accordance with an embodiment, in a data-driven
approach, the unit of management is derived based on the HUB or data server definitions. For
example, in this approach the data from an Oracle 1 HUB can be stored in a first data center
560 associated with that HUB, while the data from SFHUB1 can be stored in a second data
center 562 associated with that HUB.

[000252] Figure 20 illustrates the use of a process-driven strategy to manage a data
lake, in accordance with an embodiment.

[000253] As illustrated in Figure 20, in accordance with an embodiment, in a process-

-36-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

driven approach, the unit of management is derived based on the related pipelines accessing
the data. For example, in this approach the data associated with a Sales pipeline can be
stored in a first data center 564 associated with that pipeline, while the data from other
pipelines (e.g., pipelines 1, 2, 3) can be stored in a second data center 566 associated with

those other pipelines.

Pipelines
[000254] In accordance with an embodiment, a pipeline defines the transformation or
processing that is to be performed on the ingested data. The processed data can be stored in

the data lake or can be published to another end point, such as, for example, DBCS.

[000255] Figure 21 illustrates the use of a pipeline compiler, in accordance with an
embodiment.
[000256] As illustrated in Figure 21, in accordance with an embodiment, a pipeline

compiler 582 operates between design 570 and execution 580 environments, including
accepting one or more pipeline metadata 572, and a DSL, e.g., Java DSL 574, JSON DSL
576, Scala DSL 578, and providing an output for use with the execution environment e.g., as

a Spark application 584 and/or SQL statements 586.

[000257] Figure 22 illustrates an example pipeline graph, in accordance with an
embodiment.
[000258] As illustrated in Figure 22, in accordance with an embodiment, a pipeline 588

comprises a list of pipeline steps. Different types of pipeline steps represent different kinds of
operations that can be performed in the pipeline. Each pipeline step can have a number of
input data sets and a number of output data sets, generally described by pipeline step
parameters. The processing order of operations in the pipeline is defined by binding the output
pipeline step parameters from a preceding pipeline step to a subsequent pipeline step. In this
manner, pipeline steps and the relationships between pipeline step parameters form a directed
acyclic graph (DAG).

[000259] In accordance with an embodiment, a pipeline can be reused in another
pipeline, if the pipeline contains one or more special pipeline steps (signature pipelines) that
represent the input and output pipeline step parameters of the pipeline. The enclosing pipeline

refers to the pipeline to be reused through a (pipeline usage) pipeline step.

[000260] Figure 23 illustrates an example of a data pipeline, in accordance with an
embodiment.
[000261] As illustrated in the example data pipeline 600 shown in Figure 23, in

accordance with an embodiment, data pipelines perform data transformations. The data flow

in the pipeline is represented as a binding of pipeline step parameters. Various types of

-37-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

pipeline steps are supported for different transformation operations, including, for example:
Entity (retrieve data from data lake or publish processed data to data lake/other HUBS); and

Join (fusion of multiple sources).

[000262] Figure 24 illustrates another example of a data pipeline, in accordance with an
embodiment.
[000263] As illustrated in the example data pipeline 610 shown in Figure 24, in

accordance with an embodiment, a data pipeline P1 can be reused in another data pipeline
P2.

[000264] Figure 25 illustrates an example of an orchestration pipeline, in accordance
with an embodiment.

[000265] As illustrated in the example orchestration pipeline 620 shown in Figure 25, in
accordance with an embodiment, using an orchestration pipeline, pipeline steps can be used
to represent the task or job that needs to be executed in an overall orchestration flow. All of
the pipeline steps in an orchestration pipeline are assumed to have one input pipeline step
parameter and one output pipeline step parameter. The execution dependency between tasks
can be expressed as the binding between pipeline step parameters.

[000266] In accordance with an embodiment, parallel execution of tasks can be
scheduled if the pipeline steps are dependent on the same preceding pipeline step without
conditions (i.e. afork). If a pipeline step is dependent on multiple preceding paths, then the
pipeline step will wait for all the multiple paths to be completed before its own execution (i.e.,
a join). However, this does not always imply the tasks are executed in parallel. The
orchestration engine can decide whether to execute the tasks in serial or in parallel depending
on available resources

[000267] In the example illustrated in Figure 25, in accordance with an embodiment, a
pipeline step 1 is first executed. If a pipeline step 2 and a pipeline step 3 are executed in
parallel, then a pipeline step 4 will be executed only when pipeline step 2 and pipeline step 3
are both finished. The orchestration engine can also execute this orchestration pipeline serially
as (pipeline step 1, pipeline step 2, pipeline step 3, pipeline step 4), or (pipeline step 1, pipeline
step 3, pipeline step 2, pipeline step 4), as long as it satisfies the dependency between pipeline
steps.

[000268] Figure 26 further illustrates an example of an orchestration pipeline, in
accordance with an embodiment.

[000269] As illustrated in the example pipeline 625 shown in Figure 26, in accordance
with an embodiment, each pipeline step can return a status 630, such as, for example, a
success or error status depending on its own semantics. The dependency between two

pipeline steps can be conditional, based on the return status of the pipeline step. In the

-38-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

example shown, pipeline step 1 is first executed; if it completes successfully, then pipeline step
2 will be executed, otherwise pipeline step 3 will be executed. After either pipeline step 2 or
pipeline step 3 is executed, then pipeline step 4 will be executed.

[000270] In accordance with an embodiment, orchestration pipelines can be nested, so
that one orchestration pipeline can refer to another orchestration pipeline through a pipeline
usage. An orchestration pipeline can also refer to a data pipeline as a pipeline usage. The
difference between an orchestration pipeline and a data pipeline is that orchestration pipeline
refers to a data pipeline that does not contain signature pipeline steps, while a data pipeline
can reuse another data pipeline that contains signature pipeline steps.

[000271] In accordance with an embodiment, depending on the types of pipeline steps
and code optimization, a data pipeline can be generated as a single Spark application for
execution in a Spark cluster, as multiple SQL statements for execution in DBCS, or as a
mixture of SQL and Spark code. For an orchestration pipeline, it can be generated for
execution in the underlying execution engine, or in a workflow schedule component such as,

e.g., Oozie.

Coordination Fabric

[000272] In accordance with an embodiment, a coordination fabric or fabric controller
provides the necessary tools to deploy and manage framework components (service provider)
and applications (user designed), manages application execution and resource
requirements/allocation, and provides a integration framework (messaging bus) to facilitate
communication between the various components.

[000273] Figure 27 illustrates the use of a coordination fabric including a messaging
system, in accordance with an embodiment.

[000274] As illustrated in Figure 27, in accordance with an embodiment, a messaging
system (e.g., Kafka) 650 coordinated interactions between a resource manager 660 (e.g.,
Yarn/Mesos), scheduler 662 (e.g., Chronos), application schedulers 664 (e.g., Spark), and a
plurality of nodes, here indicated as nodes 652, 654, 656, 658.

[000275] In accordance with an embodiment, the resource manager is used to manage
the life cycle of data computation tasks/applications including scheduling, monitoring,
application execution, resource arbitration and allocation, load balancing; including managing
the deployment and configuration of components (that are producers and consumers of
messages) in a message-driven component integration framework; upgrade of components
(services) without downtime; and upgrade of infrastructure with minimal or no disruption of
service.

[000276] Figure 28 further illustrates the use of a coordination fabric including a

-39-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

messaging system, in accordance with an embodiment.

[000277] As illustrated in Figure 28, in accordance with an embodiment, the
dependencies across components in the coordination fabric are illustrated through a simple
data-driven pipeline execution use case, where (¢) indicates a consumer, and (p) indicates a
producer.

[000278] In accordance with the embodiment illustrated in Figure 28, a scheduler (p)
starts the process (1) by initiating ingest of data to a HUB. An ingest engine(c) processes the
request (2) ingesting data from the HUB into the data lake. After the ingest process is
completed, the ingest engine (p) communicates (3) the completion status to initiate pipeline
processing. If the scheduler supports data-driven execution, it can automatically initiate (3a)
the pipeline process to execute. The pipeline engine (c) computes (4) the pipelines that are
waiting on the data for execution. The pipeline engine (p) communicates (5) the list of pipeline
applications to schedule for execution. The scheduler gets the execution schedule request (6)
for the pipelines; and initiates execution (6a) of the pipelines. The application scheduler (e.g.,
Spark) arbitrates (7) with the resource manager for resource allocation to execute the
pipelines. The application scheduler sends the pipeline (8), for execution to the executor in

the allocated nodes.

On-Premise Agent

[000279] In accordance with an embodiment, an on-premise agent facilitates access to
local data and in a limited fashion, distributed pipeline execution. The on-premise agent is
provisioned and configured to communicate with, e.g., a Cloud DI service, to process data
access and remote pipeline execution requests.

[000280] Figure 29 illustrates an on-premise agent for use with a system, in accordance
with an embodiment.

[000281] As illustrated in Figure 29, in accordance with an embodiment, a cloud agent
adapter 682 provisions (1) the on-premise agent 680 and configures the agent adapter end
point for communication.

[000282] An ingest service initiates (2) the local data access request for HUB1 through
the messaging system. a cloud agent adapter operates as an intermediary (3) between on-
premise agent and the messaging system by providing access to requests initiated through
the ingest service as well as writing data from on-premise agent into the data lake and notifying
the completion of the task through messaging system.

[000283] A premise agent polls (4) the cloud agent adapter for data access requests to
process or upload data into the cloud. The cloud agent adapter writes data (5) into the data

lake and notifies pipelines through the messaging system.

-40-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

DFML Flow Process

[000284] Figure 30 illustrates a data flow process, in accordance with an embodiment.
[000285] As illustrate in Figure 30, in accordance with an embodiment, during an ingest
step 692, data is ingested from various sources, for example, SFDC, S3, or DBaaS.

[000286] During a data prep step 693, the ingested data is prepared for example by being
de-duplicated, standardized, or enriched.

[000287] During a transform step 694, the system performs merges, filters, or lookups at
datasets, to transform the data.

[000288] During a model step 695, one or more models are generated, together with
mappings to the models.

[000289] During a publish step 696, the system can publish models, specify policies and

schedules, and populate target data structures.

Metadata and Data-driven Auto-Mapping

[000290] In accordance with an embodiment, the system can provide support for auto-
mapping of complex data structures, datasets or entities, between one or more sources or
targets of data (referred to herein in some embodiments as HUBs). The auto-mapping can be
driven by a metadata, schema, and statistical profiling of a dataset; and used to map a source
dataset or entity associated with an input HUB, to a target dataset or entity, or vice versa, to
produce an output data prepared in a format or organization (projection) for use with one or
more output HUBS.

[000291] For example, in accordance with an embodiment, for a user implementing (e.g.,
building) a dataflow, pipeline, or Lambda application, the user may desire to choose data to be
mapped from a source or input dataset or entity, within an input HUB, to a target or output
dataset or entity, within an output HUB.

[000292] In accordance with an embodiment, since generating a map of data from an
input HUB to an output HUB for very large set of HUBs and dataset or entities by hand can be
an extremely time consuming and inefficient task, auto-mapping can enable a user to focus on
simplification of a dataflow application, e.g., pipeline, Lambda application, by providing a user
with recommendations for mapping data.

[000293] In accordance with an embodiment, the data Al subsystem can receive an
auto-map request for an auto-map service via a graphical user interface (e.g., a Lambda Studio
Integrated Development Environment (IDE)).

[000294] In accordance with an embodiment, the request can include a file specified for
an application for which the auto-map service is to be performed, together with information

identifying an input HUB, a dataset or entity, and one or more attributes. The application file

-41-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

can include information about data for the application. The data Al subsystem can process
the application file to extract entity name and other shape characteristics of the entity including
attribute names and data type, which the auto-map service can use in searching to find a
potential candidate set for mapping.

[000295] In accordance with an embodiment, the system can access data for
transformation into a HUB, such as, for example, a data warehouse. The accessed data can
include various types of data including semi-structured and structured data. The data Al
subsystem can perform a metadata analysis on the accessed data, including determining one
or more shapes, features, or structure of the data. For example, the metadata analysis can
determine the types of the data (e.g., business types and functional types), and a columnar
shape of the data.

[000296] In accordance with an embodiment, based on the metadata analysis of the
data, one or more samples of data can be identified, and a machine learning process applied
to the sampled data, to determine a category of data in the accessed data, and update a model.
The category of data, for example, may indicate the relevant portions of the data, such as a
fact table in the data.

[000297] In accordance with an embodiment, the machine learning can be implemented
using, for example, a logistic regression model, or other type of machine learning model that
can be implemented for machine learning. In accordance with an embodiment, the data Al
subsystem can analyze a relationship of one or more data items in the data, based on the
category of data, the relationship indicating one or more fields in the data for the category of
data.

[000298] In accordance with an embodiment, the data Al subsystem can perform a
process for feature extraction, including determining one or more metadata, data type, and
statistical profiles of randomly sampled data for attributes of the accessed data.

[000299] For example, in accordance with an embodiment, the data Al subsystem can
generate a profile of the accessed data based on its category of data. The profile can be
generated for transformation of the data into an output HUB, and, for example, displayed in a
graphical user interface.

[000300] In accordance with an embodiment, as a result of creating such profiles, the
model can support a recommendation, with a degree of confidence, for how a candidate
dataset or entity is similar to an input dataset or entity. The recommendations can be filtered
and sorted and then provided to the user via the graphical user interface.

[000301] In accordance with an embodiment, an auto-map service can dynamically
suggest recommendations based on a stage in which a user is building a dataflow application,

e.g., pipeline, Lambda application.

-42-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000302] An example of a recommendation at an entity level may include, in accordance
with an embodiment, a recommendation for an attribute, for example a column of the entity to
be automatically mapped to another attribute, or another entity. The service can continuously
provide recommendations and guide the user based on user’s previous activities.

[000303] In accordance with an embodiment, the recommendations can be mapped
from, e.g., a source dataset or entity associated with an input HUB, to a target dataset or entity
associated with an output HUB, using an application programming interface (API) (e.g., a
REST API) provided by the auto-map service. The recommendation can indicate a projection
of data, such as, for example, an attribute, a data type, and an expression, wherein the
expression can be a mapping of the attribute for the data type.

[000304] In accordance with an embodiment, the system can provide a graphical user
interface to select an output HUB for transformation of the accessed data based on the
recommendation. For example, the graphical user interface can enable a user to select a

recommendation for transformation of data to an output HUB.

Auto-Mapping
[000305] In accordance with an embodiment, the auto-mapping functionality can be

defined mathematically, in which an entity set E is defined as:

E ={e,e,,..,e,| Ve €S}

Shape: S = {MetaData x DataType X StatisticalProfile}
[000306] Where the shape set S includes metadata, data type and statistical profiling
dimensions. The goal is to find j such that the probability of similarity between e; and g; is the
highest.

e]-* = argjmax p{Sim(ei,e]-) | entity = ei}
[000307] At dataset or entity level, the problem is a binary problem, i.e., whether the
dataset or entity is similar or dissimilar. Let fs, fi, h(fs,f}) denote sets of features for source,
target, and interactive features between source and target. Therefore the goal is to estimate
the probability of similarity:

p=9s foh(fs)i B)

g(): [0,1]2 > [0,1]

-43-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000308] The log-likelihood function is defined as:

Q

£B) = D cq logpy (B) + (1~) log(1 — pg(8))

q=1

[000309] Therefore, in the logistic regression model the unknown coefficients can be

estimated as follows:

1
gG; p) = 1T o Fx

B = argﬁmax £(B)
[000310] In accordance with an embodiment, the auto-map service can be triggered by,
for example, receiving a HTTP POST request from the system facade service. The system
facade API passes the dataflow application, e.g., pipelines, Lambda application JSON file from
Ul to the auto-map REST API, and the parser module processes the application JSON file and
extracts entity name and shape of dataset or entity including attribute names and data type.
[000311] In accordance with an embodiment, the auto-map service uses a search to find
quickly a potential candidate set for mapping. The candidate set needs to be a highly relevant
set, and therefore a special index and query can be used to achieve this. This special index
incorporates a special search field where all attributes of an entity are stored and tokenized
with all N-gram combinations. At query time, the search query builder module leverages a
fuzzy search feature based, for example, on Levenshtein distance, to construct a special query
using both entity name and attribute names of the given entity and leverage the search boost
function to sort results by their relevance in sense of string similarity.
[000312] In accordance with an embodiment, the recommendation engine shows a
number of relevant results to users, for example a selection of top N results in most cases.
[000313] In accordance with an embodiment, in order to achieve a high precision, a
machine learning model compares pairs of source and targets and score similarity of entities
based on extracted features. The feature extraction includes metadata, data type and
statistical profiles of randomly sampled data for each attributes.
[000314] Although the descriptions provided here, in accordance with an embodiment,
generally describes the use of a logistic regression model to learn auto-mapping examples
taken from an Oracle Business Intelligence (OBI) lineage mapping data, other supervised
machine learning models can be used instead.

[000315] In accordance with an embodiment, the output of the logistic regression model

-44-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

represents an overall confidence of how a candidate dataset or entity is similar to an input
dataset or entity in a statistical sense. In order to find an exact mapping one or more other
models can be used to calculate similarity of source attribute with target attribute using similar
features.

[000316] Finally, in accordance with an embodiment, the recommendations are filtered
and sorted and sent back to the system facade and passed to the user interface. The auto-
map service dynamically suggests recommendations based on at what stage the user is during
the dataflow application, e.g., pipeline or Lambda application design. The service can
continuously provide recommendations and guide the user, based on the user’s previous
activities. The auto-mapping can be performed in either forward engineering or reverse
engineering senses.

[000317] Figure 31 illustrates an automated mapping of data types, in accordance with
an embodiment.

[000318] As illustrated in Figure 31, in accordance with an embodiment, a system facade
701 and auto-map API 702 allows for the receipt of a dataflow application, e.g., pipeline or
Lambda application from the software development component, e.g., Lambda Studio. A parser
704 processes the application’s JSON file, and extracts entity names and shapes, including
attribute names and data type.

[000319] In accordance with an embodiment, a search index 708, is used to support a
primary search 710, to find a potential candidate set of datasets or entities, for mapping. A
search query builder module 706 constructs a query using both entity name and attribute
names of the given entity, to determine a selection of datasets or entities 712.

[000320] In accordance with an embodiment, a machine learning (ML) model is used to
compare pairs of sources and targets, and to score similarity of datasets or entities, based on
extracted features. The feature extraction 714 includes metadata, data type and statistical
profiles of randomly sampled data for each attributes.

[000321] In accordance with an embodiment, a logistic regression model 716 provides,
as an output, an overall confidence of how a candidate entity is similar to an input entity. In
order to find a more exact mapping, a column mapping model 718 is used to further evaluate
similarity of source attribute with target attribute.

[000322] In accordance with an embodiment, the recommendations are then sorted as
auto-mappings 720, for return to the software development component, e.g, Lambda Studio.
The auto-map service dynamically suggests recommendations based on at which stage the
user is, during the dataflow application, e.g., pipeline or Lambda application design. The
service can continuously provide recommendations and guide the user, based on the user’s

previous activities.

-45-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000323] Figure 32 illustrates an auto-map service for generation of mappings, in
accordance with an embodiment.

[000324] As illustrated in Figure 32, in accordance with an embodiment, an auto-map
service can be provided for generation of mappings, including wherein a Ul query 728 is
received and passed to a query understanding engine 729, and then to a query decomposition
730 component.

[000325] In accordance with an embodiment, a primary search 710 is performed using a
data HUB 722 to determine candidate datasets or entities 731, for use in subsequent metadata
and stats profile processing 732.

[000326] In accordance with an embodiment, the result are passed to a get stats profile
734 component and the data Al system 724 provide feature extraction 735. Results are used
for synthesis 736, final confidence merging and ranking 739 according to the models 723, and

providing of recommendations and associated confidences 740.

Auto-Map Examples

[000327] Figure 33 illustrates an example of mapping between a source schema and
target schema, in accordance with an embodiment.

[000328] As illustrated in Figure 33, the example 741 shows, in accordance with an
embodiment, a simple auto-mapping example based on, for example, (a) hypernyms, (b)
synonyms, (c) equality, (d) Soundex, and (e) fuzzy matching.

[000329] Figure 34 illustrates another example of mapping between a source schema
and target schema, in accordance with an embodiment.

[000330] As illustrated in Figure 34, an approach solely based on metadata will fail if this
information is irrelevant. In accordance with an embodiment, Figure 34 illustrates an example
742 wherein the source and target attribute names are completely uninformative. When there
is a lack of metadata features, the system can employ models that include statistical profiling

of features to achieve finding similar entities.

Auto-Map Process

[000331] Figure 35 illustrates a process for providing automated mapping of data types,
in accordance with an embodiment.

[000332] As illustrated in Figure 35, at step 744, in accordance with an embodiment, an
accessed data is processed, to perform a metadata analysis of the accessed data.

[000333] At step 745, one or more samples of the accessed data are identified.

[000334] At step 746, a machine learning process is applied to determine a category of

data within the accessed data.

-46-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000335] At step 748, a profile of the accessed data is generated, based on the

determined category of data, for use in auto-mapping the accessed data.

Dynamic Recommendations and Simulation

[000336] In accordance with an embodiment, the system can include a software
development component (referred to herein in some embodiments as Lambda Studio), and
graphical user interface (referred to herein in some embodiments as pipeline editor, or Lambda
Studio IDE), that provides a visual environment for use with the system, including providing
real-time recommendations for performing semantic actions on data accessed from an input
HUB, based on an understanding of the meaning or semantics associated with the data.
[000337] For example, in accordance with an embodiment, the graphical user interface
can provide real-time recommendations for performing operations (also referred to as semantic
actions) on data accessed from an input HUB, including a partial data, shape or other
characteristics of that data. The semantic actions can be performed on the data based on the
meaning, or semantics associated with data. The meaning of the data can be used to select
semantic actions that can be performed on the data.

[000338] In accordance with an embodiment, a semantic action may represent an
operator on one or more datasets, and can reference a base semantic action or function
declaratively defined in the system. One or more processed datasets can be generated by
performing a semantic action. A semantic action can be defined by parameters that are
associated with specific functional or business types. They represent a specific upstream
dataset to be processed. A graphical user interface can be metadata-driven, such that the
graphical user interface is generated dynamically to provide recommendations based on
metadata identified in the data.

[000339] Figure 36 illustrates a system that displays one or more semantic actions
enabled for accessed data, in accordance with an embodiment.

[000340] As illustrated in Figure 36, in accordance with an embodiment, using a graphical
user interface 750 having a user input area 752 a query for semantic actions enabled for the
accessed data is sent to a knowledge source of the system, wherein the query indicates the
classification of the accessed data.

[000341] In accordance with an embodiment, a response to the query is received from
the knowledge source, wherein the response indicates one or more semantic actions enabled
for the accessed data and identified based on the classification of the data.

[000342] In accordance with an embodiment, selected ones of the semantic actions
enabled for the accessed data are displayed, for selection and use with the accessed data,

including automatically providing or updating a list of the selected ones of the semantic actions

47-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

756, or recommendations 758, enabled for the accessed data, during the processing of the
accessed data.

[000343] In accordance with an embodiment, the recommendations can be provided
dynamically rather than being pre-computed based on static data. For example, the system
can provide recommendations in real-time based on data accessed in real-time, taking into
account information such as, for example, a user profile or the user’s experience level. The
recommendations provided by the system for real-time data may be salient, relevant, and
precise for producing dataflow applications, e.g., pipelines, Lambda applications. The
recommendations can be provided based on user behavior with respect to data associated
with particular metadata. The system can recommend semantic actions on information.
[000344] For example, in accordance with an embodiment, the system can ingest data,
transform, integrate and publish the data to an arbitrary system. The system can recommend
that an entity be used to analyze some of its numerical measures in an interesting analytic
manner; pivoting that data on various dimensions, indicating what are the interesting
dimensions even, summarizing the data for those dimension hierarchies and enriching the data
with more insight.

[000345] In accordance with an embodiment, the recommendations can be provided
based on analysis of data using techniques, such as, for example, a metadata analysis of the
data.

[000346] In accordance with an embodiment, the metadata analysis can include
determining a classification of the data, such as, for example, shapes, features, and structure
of the data. The metadata analysis can determine the types of the data (e.g., business types
and functional types). The metadata analysis can also indicate a columnar shape of the data.
In accordance with an embodiment, the data can be compared to the metadata structure (e.g.,
shapes and features) to determine a type of data and attributes associated with the data. The
metadata structure can be defined in a system HUB (e.g., a knowledge source) of the system.
[000347] In accordance with an embodiment, using the metadata analysis, the system
can query a system HUB to identify semantic actions based on the metadata.
Recommendations can be semantic actions determined based on analysis of metadata of data
accessed from an input HUB. Specifically, semantic actions can be mapped to metadata. For
example, semantic actions can be mapped to metadata for which those actions are permitted
and/or applicable. The semantic actions can be user defined, and/or can be defined based on
a structure of data.

[000348] In accordance with an embodiment, the semantic actions can be defined based
on conditions associated with metadata. The system HUB can be modified such that semantic

actions are modified, deleted, or augmented.

-48-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000349] Examples of semantic actions may include, in accordance with an embodiment,
building a cube, filtering data, grouping data, aggregating data, or other actions that can be
performed on data. By defining semantic actions based on metadata, no mapping or scheme
may be needed to determine semantic actions permitted for data. Semantic actions can be
defined as new and different metadata structures are discovered. As such, the system can
dynamically determine recommendations based on identification of semantic actions using
metadata analyzed for data received as input.

[000350] In accordance with an embodiment, semantic actions can be defined by a third
party, such that the third party can supply data, such as, for example, data defining one or
more semantic actions associated with metadata. The system can dynamically query the
system HUB to determine the semantic actions available for metadata. As such, the system
HUB can be modified, such that the system determines the semantic actions permitted at the
time based on such modifications. The system can perform operations (e.g., filter, detect, and
register) to process data obtained from a third party, where the data defines semantic actions;
and can make semantic actions available based on the semantic actions identified by the
processing.

[000351] Figure 37 and Figure 38 illustrate a graphical user interface that displays one
or more semantic actions enabled for accessed data, in accordance with an embodiment.
[000352] As illustrated in Figure 37, in accordance with an embodiment, a software
development component (e.g., Lambda Studio), can provide a graphical user interface (e.g., a
pipeline editor, or Lambda studio IDE) 750, that can display recommended semantic actions,
for use in processing an input data, or simulating the processing of the input data, for projection
onto an output HUB.

[000353] For example, in accordance with an embodiment, the interface in Figure 37
allows a user to display options 752 associated with a dataflow application, e.g., pipeline,
Lambda application, including, for example, an input HUB .definition 754.

[000354] In accordance with an embodiment, during the creation of a dataflow
application, e.g., pipeline, Lambda application, or the simulation of a dataflow application, e.g.,
pipeline, Lambda application, with an input data, one or more sematic actions 756, or other
recommendations 758, can be displayed on the graphical user interface, for review by the user.
[000355] In accordance with an embodiment, in a simulation mode, the software
development component (e.g., Lambda Studio) provides a sandbox-environment that allows
the user to immediately see the results of performing various semantic actions on the output,
including automatically updating a list of semantic actions appropriate to the accessed data,
during the processing of the accessed data.

[000356] For example, as illustrated in Figure 38, in accordance with an embodiment,

-49-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

from a starting point of the user searching for some information, the system can recommend
operations 760 on information, for example that an entity be used to analyze some of its
numerical measures in an interesting analytic manner; pivoting that data on various
dimensions, indicating what are the interesting dimensions even, summarizing the data for
those dimension hierarchies and also enriching the data with more insight.

[000357] In accordance with an embodiment, in the example illustrated, both sources and
dimensions have been recommended for an analyzable entity in the system, making the task
of building a multi-dimensional cube one of almost point and click.

[000358] Typically, such activities require a lot of experience and domain specific
knowledge. Using machine learning to analyze both the data characteristics and the user’s
behavioral patterns for common integration patterns, together with the combination of semantic
search and recommendations from machine learning, allows for an approach that offers state
of the art tooling for application development for building business focused applications.
[000359] Figure 39 illustrates a process for displaying one or more semantic actions
enabled for accessed data, in accordance with an embodiment.

[000360] As illustrated in Figure 39, at step 772, in accordance with an embodiment, an
accessed data is processed, to perform a metadata analysis of the accessed data, wherein
the metadata analysis includes determining a classification of the accessed data.

[000361] At step 774, a query for semantic actions enabled for the accessed data is sent
to a knowledge source of the system, wherein the query indicates the classification of the
accessed data.

[000362] At step 775, a response to the query is received from the knowledge source,
wherein the response indicates one or more semantic actions enabled for the accessed data
and identified based on the classification of the data.

[000363] At step 776, at a graphical user interface, selected ones of the semantic actions
enabled for the accessed data are displayed, for selection and use with the accessed data,
including automatically providing or updating a list of the selected ones of the semantic actions

enabled for the accessed data, during the processing of the accessed data.

Functional Decomposition of Data Flows

[000364] In accordance with an embodiment, the system can provide a service to
recommend actions and transformations, on an input data, based on patterns identified from
the functional decomposition of a data flow for a software application, including determining
possible transformations of the data flow in subsequent applications. Data flows can be
decomposed into a model describing transformations of data, predicates, and business rules

applied to the data, and attributes used in the data flows.

-50-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000365] Figure 40 illustrates support for evaluation of a pipeline, Lambda application,
into its constituent parts, to facilitate pattern detection and inductive learning, in accordance
with an embodiment.

[000366] As illustrated in Figure 40, in accordance with an embodiment, a functional
decomposition logic 800 or software component, which can be provided as software or
program code that is executable by a computer system or other processing device, and can
be used to provide a functional decomposition 802 and recommendations 804, for display 805
(for example, within a pipeline editor, or Lambda Studio IDE). For example, the system can
provide a service to recommended actions and transformations on data based on patterns /
templates identified from functional decomposition of data flows for dataflow applications, e.g.,
pipelines, Lambda applications, i.e., observe, through functional decomposition of data flows,
patterns for determining possible transformations of data flow in subsequent applications.
[000367] In accordance with an embodiment, the service can be implemented by a
framework that can decompose, or break down, data flows into a model describing
transformations of data, predicates, and business rules applied to the data, and attributes used
in the data flows.

[000368] Traditionally, a data flow for applications may represent a series of
transformations on data and the type of transformations applied to data is highly contextual.
In most data integration frameworks, process lineage is usually limited or nonexistent in how
data flows are persisted, analyzed and generated. In accordance with an embodiment, the
system enables deriving contextually relevant patterns from flows or graphs based on
semantically rich entity types and to further learn data flow grammar and models and using it
to generate complex data flow graphs given similar contexts.

[000369] In accordance with an embodiment, the system can generate one or more data
structures defining patterns and templates based on design specification of data flows. Data
flows can be decomposed into data structures defining functional expressions to determine
patterns and templates. The data flows can be used to predict and generate functional
expressions for determining patterns for recommendations of data transformations, wherein
the recommendations are based on the models derived from inductive learning of decomposed
data flows and inherent patterns, and can be finely grained (for example, recommending a
scalar transformation on a particular attribute or the use of one or more attributes in a predicate
for filter or join).

[000370] In accordance with an embodiment, dataflow applications, e.g., pipelines,
Lambda applications can enable users to generate complex data transformations based on
semantic actions on data. The system can store data transformations as one or more data

structures defining the flow of data for a pipeline, Lambda application.

-51-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000371] In accordance with an embodiment, decomposing data flow for a dataflow
application, e.g., pipeline, Lambda application, can be used to determine pattern analysis of
the data and to generate functional expressions. The decomposition can be performed for
semantic actions as well as transformations and predicates, or business rules. Each of
previous applications semantic actions can be identified through decomposition. Using a
process of induction, business logic can be extracted from a data flow including its context
elements (business types and functional types).

[000372] In accordance with an embodiment, a model can be generated for the process;
and, based on induction, prescriptive data flow design recommendations can be generated
which are contextually rich. The recommendations can be based on patterns inference from
the model, wherein each of the recommendations may correspond to a semantic action that
can be performed on data for an application.

[000373] In accordance with an embodiment, the system can perform a process for
inferring patterns for data transformation based on functional decomposition. The system can
access a data flow for one or more dataflow applications, e.g., pipelines, Lambda applications.
The data flow can be processed to determine one or more functional expressions. The
functional expressions can be generated based on actions, predicates, or business rules
identified in the data flow. The actions, predicates, or business rules can be used to identify
(e.g., infer) the pattern of transformation on the data flow. Inferring a pattern of transformation
may be a passive process.

[000374] In accordance with an embodiment, the pattern of transformation can be
determined in a crowd sourcing manner based on passive analysis of data flows for different
applications. The pattern can be determined using machine learning (e.g., deep reinforcement
learning).

[000375] In accordance with an embodiment, a pattern of transformation can be identified
for the functions expressions generated for a dataflow application, e.g., pipeline, Lambda
application. One or more data flows can be decomposed to infer patterns for data
transformation.

[000376] In accordance with an embodiment, using the pattern, the system can
recommend one or more data transformations for a data flow of the new dataflow application,
e.g., pipeline, Lambda application. In an example of a data flow of processing on data for a
monetary exchange, the system can identify a pattern of transformations on the data. The
system can also recommend one or more transformations for a new data flow of an application,
wherein the data flow involves data for a similar monetary exchange. The transformation(s)
can be performed in a similar manner according to the pattern such that the new data flow is

modified according to the transformation(s) to produce a similar monetary exchange.

-52-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000377] Figure 41 illustrates a means of identifying a pattern of transformation in a data
flow, for one or more functional expressions generated for each of one or more applications,
in accordance with an embodiment.

[000378] As described previously, in accordance with an embodiment, pipelines, e.g.,
Lambda applications, allow users to define complex data transformations based on semantic
actions that correspond to operators in relational calculus. The data transformations are
usually persisted as directed acyclic graphs or queries, or, in the case of DFML, as nested
functions. Decomposing and serializing a dataflow application, e.g., pipeline, Lambda
application, as a nested function enables pattern analysis of the data flow and induce a data
flow model that can then be used to generate functional expressions abstracting complex
transformations on datasets in similar contexts.

[000379] In accordance with an embodiment, the nested function decomposition is
performed not only at the level of semantic actions (row or dataset operators), but also at the
scalar transformations and predicate structures, which allows deep lineage capability of a
complex data flow. The recommendations based on the induced models can be finely grained
(for example, recommending a scalar transformation on a particular attribute or the use of one
or more attributes in a predicate for filter or join).

[000380] In accordance with an embodiment, the elements of the functional

decomposition generally include that:

[000381] An application represents a top level data flow transformation.

[000382] An action represents an operator on one or more datasets (dataframes to be
specific).

[000383] Actions reference the base semantic action or function declaratively defined in

the system. Actions can have one or more action parameters each of which can have specific
role (in, out, in/out) and type, return one or more processed datasets, and can be embedded
or nested several levels deep.

[000384] Action parameters are owned by actions and have specific functional or
business types, and represent a specific upstream dataset to be processed. Binding
parameters represent datasets or entities in a HUB that are used in the transformation. Value
parameters represent intermediate or transient data structures that are processed in the
context of the current transformation

[000385] Scope resolvers allow the derivation of process lineage for a dataset or an
element in the dataset used in the entire data flow.

[000386] Figure 42 illustrates an object diagram for use in identifying a pattern of
transformation in a data flow, for one or more functional expressions generated for each of one

or more applications, in accordance with an embodiment.

-53-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000387] As illustrated in Figure 42, in accordance with an embodiment, a functional
decomposition logic can be used to decompose, or break down, the data flow for a dataflow
application, e.g., pipeline, Lambda application, into a model describing transformations of data,
predicates, and business rules applied to the data, and attributes used in the data flows into a
selection of registries, including for example a pattern, or a template 812 (if a template is
associated with the pipeline, Lambda application), a service 814, a function 816, function
parameters 818, and function type 820.

[000388] In accordance with an embodiment, each of these functional component can be
further decomposed into, for example, tasks, 822, or actions 824, reflecting the dataflow
application, e.g., pipeline, Lambda application.

[000389] In accordance with an embodiment, a scope resolver 826 can be used to
resolve the reference to a particular attribute or embedded object, through its scope. For
example, as illustrated in Figure 42, the scope resolver resolves the reference to an attribute
or embedded object through its immediate scope. For example, a join function using the output
of a filter and another table would have references to both as its scope resolver, and can be
used in combination with an InScopeOf operation to resolve leaf node to its root node path.
[000390] Figure 43 illustrates a process of identifying a pattern of transformation in a
data flow, for one or more functional expressions generated for each of one or more
applications, in accordance with an embodiment.

[000391] As illustrated in Figure 43, in accordance with an embodiment, at step 842, a
data flow is accessed for each of one or more software applications.

[000392] At step 844, the data flow for the one or more software applications is processed
to generate one or more functional expressions representing the data flow, wherein the one or
more functional expressions are generated based on semantic actions and business rules
identified in the data flow.

[000393] At step 845, a pattern of transformation in the data flow is identified, for the one
or more functional expressions generated for each of the one or more software applications,
wherein the semantic actions and business rules are used to identify the pattern of
transformation in the data flow.

[000394] At step 847, using the pattern of transformation identified in the data flow, a
recommendation of one or more data transformations is provided for a data flow of another

software application.
Ontology Learning

[000395] In accordance with an embodiment, the system can perform an ontology

analysis of a schema definition, to determine the types of data and datasets or entities,

-54-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

associated with that schema; and generate, or update, a model from a reference schema that
includes an ontology defined based on relationships between entities and their attributes. A
reference HUB including one or more schemas can be used to analyze data flows, and further
classify or make recommendations for, e.g., transformations enrichments, filtering, or cross-
entity data fusion of an input data.

[000396] In accordance with an embodiment, the system can perform an ontology
analysis of a schema definition to determine an ontology of types of data and entities in a
reference schema. In other words, the system can generate a model from a schema that
includes an ontology defined based on relationships between entities and their attributes. The
reference schema can be a system-provided or default reference schema, or alternatively a
user-supplied or third-party reference schema.

[000397] Although some data integration frameworks may reverse engineer metadata
from known source system types, they do not provide an analysis of the metadata to build a
functional type system that can be used for pattern definitions and entity classifications.
Harvesting metadata is also limited in scope and does not extend to profiling data for the
extracted datasets or entities. The functionality to allow the user to specify a reference schema
for ontology learning from which to build functional type system for use in complex process
(business logic) and integration patterns in addition to entity classification (in similar topological
space) is currently unavailable.

[000398] In accordance with an embodiment, one or more schemas can be stored in a
reference HUB, which itself can be provided within or as part of the system HUB. As with the
reference schema, a reference HUB can also be a user-supplied or third-party reference HUB,
or in a multitenant environment, can be associated with a particular tenant, and accessed for
example through a dataflow API.

[000399] In accordance with an embodiment, the reference HUB can be used to analyze
data flows and to further classify or make recommendations for, e.g., transformations,
enrichments, filtering, or cross-entity data fusion.

[000400] For example, in accordance with an embodiment, the system can receive input
defining a reference HUB as a schema for ontology analysis. The reference HUB can be
imported to obtain entity definitions (attributes definitions, data types, and relationships
between datasets or entities, constraints, or business rules). Sample data (e.g., attribute
vectors such as, for example, columnar data) in the reference HUB can be extracted for all
datasets or entities, and profiled data, to derive several metrics on the data.

[000401] In accordance with an embodiment, a type system can be instantiated based
on the nomenclature of the reference schema. The system can perform an ontology analysis,

to derive an ontology (e.g., a set of rules) that describe types of data. The ontology analysis

-55-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

can determine data rules that are defined terms of profiled data (e.g., attribute, or composite
value) metrics and describe the nature of a business type element (e.g., UOM, ROI, or
Currency Type) along with their data profile; relationship rules that define associations across
datasets or entities, and attribute vectors (constraints or references imported from the
reference schema); and complex rules that can be derived through a combination of data and
relationship rules. A type system can then be defined based on the rules derived through
metadata harvesting and data sampling.

[000402] In accordance with an embodiment, patterns and templates can be utilized from
a system HUB, based on the type system instantiated using the ontology analysis. The system
can then perform data flow processing using the type system.

[000403] For example, in accordance with an embodiment, classification and type
annotation of datasets or entities can be identified by the type system of the registered HUB.
The type system can be used to define rules for functional and business types derived from
the reference schema. Using the type system, actions, such as, for example, blending,
enriching, and transformation recommendations, can be performed on the entities identified in
data flows based on the type system.

[000404] Figure 44 illustrates a system for generating functional type rules, in
accordance with an embodiment.

[000405] As illustrated in Figure 44, in accordance with an embodiment, a rule induction
logic 850 or software component, which can be provided as software or program code that is
executable by a computer system or other processing device, enables rules 851 to be
associated with a functional type system 852

[000406] Figure 44 illustrates a system for generating functional type rules, in
accordance with an embodiment.

[000407] As illustrated in Figure 45, in accordance with an embodiment, a HUB 1 can
act as a reference ontology, for use in type-tagging, comparing, classifying, or otherwise
evaluating a metadata schema or ontology provided by other (e.g., newly-registered) HUBs,
e.g., HUB 2 and HUB 3, and creating appropriate rules, for use by the Data Al system.
[000408] Figure 46 illustrates an object diagram for use in generating functional type
rules, in accordance with an embodiment.

[000409] In accordance with an embodiment, as illustrated in Figure 46, for example, the
rule induction logic enables rules to be associated with a functional type system having a set
of functional types 853 (for example, HUBs, datasets or entities, and attributes), and stored in
registries for use in creating dataflow applications, e.g., pipelines, Lambda applications,
including that each functional type 854 can be associated with functional type rules 856, and

rules 858. Each rule can be associated with rule parameters 860.

-56-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000410] In accordance with an embodiment, the first time a reference schema is
processed, an ontology including a set of rules can be prepared that are appropriate to that
schema.

[000411] In accordance with an embodiment, the next time a new HUB, or a new schema
is evaluated, its datasets or entities can be compared with an existing ontology and prepared
rules, and used in the analysis of the new HUB/schema and its entities, and the further learning
of the system.

[000412] Although some metadata harvesting in data integration frameworks are limited
to reverse engineering entity definitions (attributes and their data types and in some cases
relationships); in accordance with an embodiment, the approach provided by the system
described herein differs in allowing a schema definition to be used as reference ontology from
which business and functional types can be derived, along with data profiling metrics for the
datasets or entities, in the reference schema. This reference HUB can then be used to analyze
business entities in other HUBs (data sources), to further classify or make recommendations
(e.g., blending, or enriching).

[000413] In accordance with an embodiment, the system employs the following set of

steps to ontology learning using a reference schema:

[000414] A user specifies the option to use a newly registered HUB as a reference
schema.
[000415] Entity definitions (e.g., attributes definitions, data types, relationships between

entities, constraints or business rules are imported).

[000416] A sample data is extracted for all datasets or entities, and data profiled to derive
several metrics on the data.

[000417] A type system is instantiated (functional and business types), based on the
nomenclature of the reference schema.

[000418] A set of rules that describe the business types are derived.

[000419] Data rules are defined in terms of profiled data metrics and describe the nature
of a business type element (for example, UOM or ROI or Currency Type can be defined as a
business type element along with their data profile).

[000420] Relationship rules are generated that define associations across elements
(constraints or references imported from the reference schema).

[000421] Complex rules are generated that can be derived through a combination of data
and relationship rules

[000422] The type system (functional and business) is defined based on the rules derived
through metadata harvesting and data sampling.

[000423] Patterns or templates can then use the types instantiated based on the

-57-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

reference schema to define complex business logic.

[000424] A HUB registered with the system can then be analyzed in the context of the
reference schema.

[000425] Classification and type annotation of datasets or entities, in the newly registered
HUB can be performed, based on the rules for functional and business types derived from the
reference schema.

[000426] Blending, enriching, transformation recommendations can be performed on the
datasets or entities, based on the type annotation.

[000427] Figure 47 illustrates a process for generating a functional type system based
on generated one or more rules, in accordance with an embodiment.

[000428] As illustrated in Figure 47, in accordance with an embodiment, at step 862, input
is receive defining a reference HUB.

[000429] At step 863, the reference HUB is accessed to obtain one or more entity
definitions associated with datasets or entities, provided by the reference HUB.

[000430] At step 864, a sample data is generated for the one or more datasets or entities,
from the reference HUB.

[000431] At step 865, the sample data is profiled to determine one or more metrics
associated with the sample data.

[000432] At step 866, one or more rules are generated based on the entity definitions.
[000433] At step 867, a functional type system is generated based on the generated one
or more rules.

[000434] At step 868, the functional type system, and profiles of the sample data, are

persisted for use in processing a data input.

Foreign Function Interface

[000435] In accordance with an embodiment, the system provides a programmatic
interface (referred to herein in some embodiments as a foreign function interface), by which a
user or third-party can define a service, functional and business types, semantic actions, and
patterns or predefined complex data flows based on functional and business types, in a
declarative manner, to extend the functionality of the system.

[000436] As described previously, current data integration systems may provide limited
interfaces with no support for types and no well-defined interfaces for object composition and
pattern definition. Because of such shortcomings, complex functionality like cross service
recommendations or unified application design platform to invoke semantic actions across
services extending the framework is currently not available.

[000437] In accordance with an embodiment, the foreign function interface enables a

-58-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

user to provide definitions or other information (e.g., from a customer other third-party) in a
declarative manner, to extend the functionality of the system.

[000438] In accordance with an embodiment, the system is metadata-driven, such that
definitions received through the foreign function interface can be processed to determine a
metadata, determine a classification of the metadata, such as, for example, data types (e.g.,
functional and business types), and compare the data types (both functional and business) to
existing metadata to determine whether there is a type match.

[000439] In accordance with an embodiment, the metadata received through the foreign
function interface can be stored in a system HUB to be accessed by the system for processing
a data flow. For example, the metadata can be accessed to determine semantic actions based
on a type of data sets received as an input. The system can determine semantic actions
permitted for the types of data provided through the interface.

[000440] In accordance with an embodiment, by providing a common declarative
interface, the system can enable users to map service native types and actions to platform
native types and actions. This allows a unified application design experience through type and
pattern discovery. It also facilitates a purely declarative data flow definition and design
involving components of various services extending the platform and generation of native code
for the respective semantic actions.

[000441] In accordance with an embodiment, metadata received through the foreign
function interface can be processed in an automated fashion so that the objects or artifacts
described therein (e.g., data types or semantic actions) can be used in operation of data flows
processed by the system. The metadata information received from the one or more third-party
systems may also be used to define a service, indicate one or more functional and business
types, indicate one or more semantic actions, or indicate one or more patterns/templates.
[000442] For example, in accordance with an embodiment, a classification of the
accessed data can be determined, such as functional and business types of the data. The
classification can be identified based on the information about the data received with the
information. By receiving data from one or more third party systems, the functionality of the
system can be extended to perform data integration on a data flow based on the information
(e.g., a service, a semantic action, or a pattern) received from the third party.

[000443] In accordance with an embodiment, metadata in a system HUB can be updated
to include the information identified about the data. For example, services and
patterns/templates can be updated to be performed based on information (e.g., a semantic
action) identified in the metadata received through the foreign function interface. Thus, the
system can be augmented with functionality through the foreign function interface without

interrupting processing of a data flow.

-59-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000444] In accordance with an embodiment, subsequent data flows can be processed
using the metadata in the system HUB after it is updated. Metadata analysis can be
performed on a data flow of a dataflow application, e.g., pipeline, Lambda application. The
system HUB can then be used to determine a recommendation of a transformation, taking into
account the definitions provided via foreign function interface. The transformation can be
determined based on a pattern/template, which is used to define semantic actions to perform
for services, wherein the semantic actions can similarly take into account the definitions
provided via foreign function interface.

[000445] Figure 48 illustrates a system for identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[000446] As illustrated in Figure 48, in accordance with an embodiment, definitions
received via foreign function interface 900 can be used to update one or more of a service
registry 902, functional and business type registry 904, or patterns/templates 906, within the
system HUB.

[000447] In accordance with an embodiment, the updated information can be used by
the data Al subsystem, including a rules engine 908, to determine, for example, type annotated
HUBs, datasets or entities, or attributes 910 in the system HUB, and provide those datasets or
entities, to a recommendation engine 912, for use in providing recommendations for a dataflow
application, e.g., pipeline, Lambda application, via software development component (e.g.,
Lambda Studio).

[000448] Figure 49 further illustrates identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[000449] As illustrated in Figure 49, in accordance with an embodiment, a third-party
metadata 920 can be received at the foreign function interface.

[000450] Figure 50 further illustrates identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,

in accordance with an embodiment.

[000451] As illustrated in Figure 50, in accordance with an embodiment, the third-party
metadata received at the foreign function interface can be used to extend the functionality of
the system.

[000452] In accordance with an embodiment, the system enables allows framework

extensibility through well-defined interfaces that allow registration of services, types native to
the services, semantic actions implemented by the services along with their typed parameters,

patterns or templates that abstract predefined algorithms available as part of the service

-60-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

among other things.

[000453] In accordance with an embodiment, by providing a common declarative
programming paradigm, the pluggable service architecture allows the mapping of service
native types and actions to platform native types and actions. This allows a unified application
design experience through type and pattern discovery. It also facilitates a purely declarative
data flow definition and design involving components of various services extending the
platform and generation of native code for the respective semantic actions.

[000454] In accordance with an embodiment, the pluggable service architecture also
defines a common interface for compilation, generation, deployment and runtime execution
framework (Unified Application Design Service) for the plugins. The recommendation engine
can machine learn and reason over semantic actions and patterns of all plugged in services
and can make cross service semantic action recommendations for a distributed complex data
flow design and development.

[000455] Figure 51 illustrates a process for identifying a pattern for use in providing a
recommendation for a data flow, based on information provided via a foreign function interface,
in accordance with an embodiment.

[000456] As illustrated in Figure 51, in accordance with an embodiment, at step 932,
one or more definitions of a metadata for use in processing a data are receive, via a foreign
function interface.

[000457] At step 934, the metadata received via foreign function interface is processed,
to identify information about the received metadata, including one or more of a classification,
semantic action, template defining a pattern, or service defined by the received metadata.
[000458] At step 936, the metadata received via foreign function interface is stored in a
system HUB, wherein the system HUB is updated to include the information about the received
metadata and to extend functional capabilities of the system including its supported types,
semantic actions, templates, and services.

[000459] At step 938, a pattern for providing a recommendation for a data flow is

identified, based on the information updated in the system HUB via foreign function interface.

Policy Based Lifecycle Management

[000460] In accordance with an embodiment, the system can provide data governance
functionality such as, for example, provenance (where a particular data came from), lineage
(how the data was acquired/processed), security (who was responsible for the data),
classification (what is the data about), impact (how impactful is the data to a business),
retention (how long should the data live), and validity (whether the data should be

excluded/included for analysis/processing), for each slice of data pertinent to a particular

-81-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

snapshot in time; which can then be used in making lifecycle decisions and data flow
recommendations.

[000461] Current approaches to managing data lifecycle does not involve tracking data
evolution(changes in data profile or drift) or governance related functionality based on changes
in data characteristics across temporal partitions. System observed or derived characteristics
of data (classification, frequency of change, type of change, or use in processes) are not used
to make lifecycle decisions or recommendations (retention, security, validity, acquisition
intervals) on the data.

[000462] In accordance with an embodiment, the system can provide a graphical user
interface that can indicate a lifecycle of data flow based on lineage tracking. The lifecycle can
show where the data has been processed and if any errors have occurred during its
processing; and can be shown as a timeline view of data (e.g., number of datasets, volume of
datasets, and use of datasets). The interface can provide a point in time snapshot of data and
can provide visual indicators for data as it is processed. As such, the interface can enable a
complete audit of data, or a system snapshot of data based on the lifecycle (e.g., performance
metrics, or resource usage).

[000463] In accordance with an embodiment, the system can determine a lifecycle of
data based on sample data (periodically sampled from ingested data) and data acquired for
processing by user defined applications. Some aspects of the data lifecycle management is
similar across the category of ingested data namely streaming data and batch data (reference
and incremental). For incremental data, the system can use scheduled, log collection, and
event-driven methods to acquire temporal slices of data and manage allocation of slices across
application instances covering the following functionality.

[000464] In accordance with an embodiment, the system can reconstruct data in case of
loss using lineage across tiers from metadata managed in a system HUB.

[000465] For example, in accordance with an embodiment, incremental data attribute
columns or user configured settings can be identified to acquire incremental data and
maintaining high and low watermarks across ingesting data. Query or API and corresponding
parameters (timestamp or Id columns) can be associated with data that is ingested.

[000466] In accordance with an embodiment, the system can maintain lineage
information across tiers, such as, for example, query or log metadata in the edge layer, topic /
partition offsets for each ingest in the scalable 1/O layer, slices (file partitions) in the data lake,
reference to process lineage (specific execution instance of the application producing the data
and parameters associated with it) for subsequent downstream processed dataset using this
data, topic/partition offset for the dataset “marked” to be published to a target endpoint and its

corresponding data slice in the data lake, and publish job execution instance and the offsets

-82-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

in the partitions that is processed and published to the target endpoint.

[000467] In accordance with an embodiment, in the case of failure of a layer (e.g, edge,
scalable 1/O, data lake, or publish), data can be reconstructed from the upstream layer or
acquired from the source.

[000468] In accordance with an embodiment, the system can perform other lifecycle
management functions.

[000469] For example, in accordance with an embodiment, security is enforced and
audited at each of these layers for data slices. Data slices can be excluded or included (if
already excluded) from being processed or accessed. This allows excluding spurious or
corrupt data slices from being processed. A retention policy can be enforced on slices of data
through sliding windows. An impact is analyzed for slices of data (for example, the ability to
tag slices for a given window, as being impactful in the context of a data mart built for quarterly
reporting).

[000470] In accordance with an embodiment, data is classified by tagging the functional
or business types defined in the system (for example, tagging a dataset with a functional type
(as a cube or dimensional or hierarchical data) along with the business type(s) (e.g., orders,
customers, product, or time).

[000471] In accordance with an embodiment, the system can perform a method that
includes accessing data from one or more HUBs. The data can be sampled, and the system
determine temporal slices of the data and managing the slices, including accessing a system
HUB of the system, to obtain metadata about the sampled data. The sampled data can be
managed for lineage tracking across one or more tiers in the system.

[000472] In accordance with an embodiment, incremental data and parameters about the
sample data can be managed for the data that is ingested. The data can be classified by
tagging a type of data associated with the sample data.

[000473] Figure 52 illustrates managing a sampled data or accessed data, for lineage
tracking across one or more tiers, in accordance with an embodiment.

[000474] For example, as illustrated in Figure 52, in accordance with an embodiment, the
system can be used to receive a data from a HUB 952, in this example, an Oracle database,
and a HUB 954, in this example an S3 or other environment. Data received from input HUBS,
at the edge layer, is provided to the scalable 1/O layer, as one or more topics, for use by
dataflow applications, e.g., pipelines, Lambda applications (wherein each of the topics can be
provided as distributed partitions).

[000475] In accordance with an embodiment, the ingested data, typically represented by
an offset into a partition, can be normalized 964, by the compute layer, and written to the data

lake as one or more temporal slices which span the tiers of the system.

-83-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

[000476] In accordance with an embodiment, the data can then be used by downstream
dataflow applications, e.g., pipelines, Lambda applications 966, 968, and ultimately published
970, to one or more additional topics 960, 962, and thereafter to a target endpoint (e.g., a
table), at one or more output HUBs, such as in this example, a DBCS environment.

[000477] As illustrated in Figure 52, in accordance with an embodiment, at a first time,
the data reconstruction and lineage tracking information can include information such as, for
example, the provenance (Hub 1, S3), lineage (Source Entity in Hub 1), security (Connection
Credential used), or other information regarding the ingest of data.

[000478] Figure 53 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 53, at a subsequent time the data reconstruction and lineage tracking information
can be updated to include information such as, for example, an updated provenance (— T1),
lineage (— T1 (Ingest Process)), or other information.

[000479] Figure 54 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 54, at a subsequent time the data reconstruction and lineage tracking information
can be further updated to include information such as, for example, an updated provenance
(— E1), lineage (— E1 (Normalize)), or other information.

[000480] In accordance with an embodiment, temporal slices 972, for use by one or more
dataflow applications, e.g., pipelines, Lambda applications, can be created, spanning the tiers
of the system. In the event of a failure, for example a failure in writing to the data lake, the
system can determine one or more unprocessed slices of data, and complete the processing
of that slice of data, either in its totality, or incrementally.

[000481] Figure 55 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 55, at a subsequent time the data reconstruction and lineage tracking information
can be further updated, and additional temporal slices created, to include information such as,
for example, an updated lineage (— E11 (App1)), security (Role Executing App 1), or other
information.

[000482] Figure 56 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 56, at a subsequent time the data reconstruction and lineage tracking information
can be further updated, and additional temporal slices created, to include information such as,
for example, an updated lineage (— E12 (App2)), security (Role Executing App 2), or other
information.

[000483] Figure 57 further illustrates managing a sampled data or accessed data, for

-64-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 57, at a subsequent time the data reconstruction and lineage tracking information
can be further updated, and additional temporal slices created, to include information such as,
for example, an updated lineage (— T2 (Publish)), security (Role Executing Publish to 1/0
Layer), or other information.

[000484] Figure 58 further illustrates managing a sampled data or accessed data, for
lineage tracking across one or more tiers, in accordance with an embodiment. As illustrated
in Figure 58, at a subsequent time the data reconstruction and lineage tracking information

can be further updated, to reflect the output of the data to a target endpoint 976.

Data Lifecycle Management

[000485] In accordance with an embodiment, data lifecycle management based on the
lineage tracking described above addresses several functional areas some of which can be
configured by the user (access control, retention, validity), some derived (provenance, lineage)
and others using machine learning algorithms (classification, impact). For example, the data
management applies to both sample data (periodically sampled from ingested data) and data
acquired for processing by user defined applications. Some aspects of the data lifecycle
management is similar across the category of ingested data namely streaming data and batch
data (reference and incremental). For incremental data, DFML uses scheduled, log collection,
and event-driven methods to acquire temporal slices of data and manage allocation of slices
across application instances covering the following functionality:

[000486] Reconstruction of data in case of loss using lineage across tiers from metadata
managed in the system HUB.

[000487] Identifying of incremental data attribute columns or user configured settings to
acquire incremental data and maintaining high and low watermarks across ingest.

[000488] Associating of query or APl and corresponding parameters (timestamp or Id
columns) for each ingest

[000489] Maintaining a lineage information across tiers. Query or Log metadata in the
edge layer. Topic / Partition offsets for each ingest in the scalable I/O layer. Slices (file
partitions) in the data lake. Reference to process lineage (specific execution instance of the
application producing the data and parameters associated with it) for all subsequent
downstream processed dataset using this data. Topic/Partition offset for the dataset “marked”
to be published to a target endpoint and its corresponding data slice in the data lake. Publish
job execution instance and the offsets in the partitions that is processed and published to the
target endpoint.

[000490] In the case of failure of a layer, data can be reconstructed from the upstream

-85-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

layer or acquired from the source. Security is enforced and audited at each of these layers for
data slices. Data slices can be excluded or included (if already excluded) from being
processed or accessed. This allows excluding spurious or corrupt data slices from being
processed. Retention policy can be enforced on slices of data through sliding windows. Impact
is analyzed for slices of data (for example, the ability to tag slices for a given window, as being
impactful in the context of a data mart built for quarterly reporting).

[000491] Classification of the data by tagging the functional or business types defined in
the system (for example, tagging a dataset with a functional type (as a cube or dimensional or
hierarchical data) along with the business type(s) (e.g., orders, customers, product, or time).
[000492] Figure 59 illustrates a process for managing a sampled data or accessed data,
for lineage tracking across one or more tiers, in accordance with an embodiment.

[000493] As illustrated in Figure 59, in accordance with an embodiment, at step 982, data

is accessed from one or more HUBs.

[000494] At step 983, the accessed data is sampled.
[000495] At step 984, temporal slices are identified for sampled data or accessed data.
[000496] At step 985, a system HUB is accessed to obtain metadata about the sampled

data or accessed data represented by the temporal slices.

[000497] At step 986, classification information is determined about the sampled data or
accessed data represented by the temporal slices.

[000498] At step 987, the sampled data or accessed data represented by the temporal
slices is managed, for lineage tracking across one or more tiers in the system.

[000499] Embodiments of the present invention can be implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[000500] In some embodiments, the present invention includes a computer program
product which is a non-transitory computer readable storage medium (media) having
instructions stored thereon/in which can be used to program a computer to perform any of the
processes of the present invention. Examples of storage mediums can include, but are not
limited to, floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory ICs), or other types of storage media
or devices suitable for non-transitory storage of instructions and/or data.

[000501] The foregoing description of the present invention has been provided for the

-66-

10

15

WO 2018/039251 PCT/US2017/048044

purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent
to the practitioner skilled in the art.

[000502] For example while several of the embodiments described above illustrate the
use of products such as, for example, Wolfram, Yago, Chronos, and Spark, to perform various
computations, and data sources such as, for example, BDP, SFDC and S3, to act as sources
or targets of data, the embodiments described herein can also be used with other types of
products and data sources that provide similar types of functionalities.

[000503] Additionally, while several of the embodiments described above illustrate
components, layers, objects, logic, or other or features of the various embodiments, such
features can be provided as software or program code that is executable by a computer system
or other processing device.

[000504] The embodiments were chosen and described in order to best explain the
principles of the invention and its practical application, thereby enabling others skilled in the
art to understand the invention for various embodiments and with various modifications that
are suited to the particular use contemplated. The modifications and variations include any
relevant combination of the disclosed features. It is intended that the scope of the invention

be defined by the following claims and their equivalents.

-87-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

Claims:

What is claimed is:

1. A method for use with a data integration or other computing environment comprising:

accessing a data flow for each of one or more software applications;

processing the data flow for the one or more software applications to generate one or
more functional expressions representing the data flow, wherein the one or more functional
expressions are generated based on one or more semantic actions or business rules identified
in the data flow;

identifying a pattern of transformation in the data flow, for the one or more functional
expressions generated for each of the one or more software applications, wherein the one or
more semantic actions or business rules are used to identify the pattern of transformation in
the data flow; and

using the pattern of transformation identified in the data flow, providing a

recommendation of one or more data transformations for a data flow of another software

application.
2. The method of Claim 1, wherein the application is a dataflow application.
3. The method of Claim 1 or 2, wherein the pattern is used in displaying, at a graphical

user interface, selected ones of the semantic actions enabled for the accessed data, for
selection and use with the accessed data, including automatically providing or updating a list
of the selected ones of the semantic actions enabled for the accessed data, during the

processing of the accessed data.

4. The method of any of Claims 1 to 3, wherein an application represents a top level data
flow transformation; an action represents an operator on one or more datasets; and actions
reference a base semantic action or function declaratively defined in the system, and can have

one or more action parameters.
5. The method of Claim 4, wherein action parameters are owned by actions and have
specific functional or business types, and represent a specific upstream dataset to be

processed.

6. The method of Claim 4, wherein a scope resolver is used to resolve the reference to a

-88-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

particular attribute or embedded object.

7. The method of any of Claims 1 to 6, wherein the method is performed in a cloud or

cloud-based computing environment.

8. A system for providing recommendations of actions and transformations on an input
data for use with a data integration or other computing environment, comprising:
one or more processors operable to:
access a data flow for each of one or more software applications;
process the data flow for the one or more software applications to generate one
or more functional expressions representing the data flow, wherein the one or more
functional expressions are generated based on one or more semantic actions or
business rules identified in the data flow;
identify a pattern of transformation in the data flow, for the one or more
functional expressions generated for each of the one or more software applications,
wherein the one or more semantic actions or business rules are used to identify the
pattern of transformation in the data flow; and
use the pattern of transformation identified in the data flow, providing a
recommendation of one or more data transformations for a data flow of another

software application.

9. The system of Claim 8, wherein the application is a dataflow application.

10. The system of Claim 8 or 9, wherein the pattern is used in displaying, at a graphical
user interface, selected ones of the semantic actions enabled for the accessed data, for
selection and use with the accessed data, including automatically providing or updating a list
of the selected ones of the semantic actions enabled for the accessed data, during the

processing of the accessed data.

11. The system of any of Claims 8 to 10, wherein an application represents a top level data
flow transformation; an action represents an operator on one or more datasets; and actions
reference a base semantic action or function declaratively defined in the system, and can have

one or more action parameters.

12. The system of Claim 11, wherein action parameters are owned by actions and have

specific functional or business types, and represent a specific upstream dataset to be

-89-

10

15

20

25

30

35

WO 2018/039251 PCT/US2017/048044

processed.

13. The system of Claim 11, wherein a scope resolver is used to resolve the reference to

a particular attribute or embedded object.

14. The system of any of Claims 8 to 13, wherein the system is provided in a cloud or cloud-

based computing environment.

15. A non-transitory computer readable storage medium, including instructions stored
thereon which when read and executed by one or more computers cause the one or more
computers to perform a method comprising:

accessing a data flow for each of one or more software applications;

processing the data flow for the one or more software applications to generate one or
more functional expressions representing the data flow, wherein the one or more functional
expressions are generated based on one or more semantic actions or business rules identified
in the data flow;

identifying a pattern of transformation in the data flow, for the one or more functional
expressions generated for each of the one or more software applications, wherein the one or
more semantic actions or business rules are used to identify the pattern of transformation in
the data flow; and

using the pattern of transformation identified in the data flow, providing a
recommendation of one or more data transformations for a data flow of another software

application.

16. The non-transitory computer readable storage medium of Claim 15, wherein the

application is a dataflow application.

17. The non-transitory computer readable storage medium of Claim 15 or 16, wherein the
pattern is used in displaying, at a graphical user interface, selected ones of the semantic
actions enabled for the accessed data, for selection and use with the accessed data, including
automatically providing or updating a list of the selected ones of the semantic actions enabled

for the accessed data, during the processing of the accessed data.
18. The non-transitory computer readable storage medium of any of Claims 15 to 17,

wherein an application represents a top level data flow transformation; an action represents

an operator on one or more datasets; and actions reference a base semantic action or function

-70-

10

15

WO 2018/039251 PCT/US2017/048044

declaratively defined in the system, and can have one or more action parameters.
19. The non-transitory computer readable storage medium of Claim 18, wherein action
parameters are owned by actions and have specific functional or business types, and represent

a specific upstream dataset to be processed.

20. The non-transitory computer readable storage medium of Claim 18, wherein a scope

resolver is used to resolve the reference to a particular attribute or embedded object.
21. A computer program comprising program instructions in machine-readable format that
when executed by a computer system cause the computer system to perform the method of

any of Claims 1to 7.

22. A computer program product comprising the computer program of Claim 21 stored in a

non-transitory machine readable data storage medium.

23. An apparatus comprising means for performing the method of any of Claims 1to 7.

-71-

L A0

PCT/US2017/048044

152

WO 2018/039251

o6 {(foway ‘nan B8l seomosy sndwion
X ¥il 4
, et o) wdinoandu; speeag) .
“““““““““““““““““““““““““““““““““ . , 4 y BLL $8200 Y] S0
181 s18bie] GN0 S0 ((suoeonddy epgue |
{sjaugadiy 69} 061 jil 814
) {suonemddy sogereq . whe 2n0g Biag Butiesng
984 abpg X , J
RO BSIUBIG UG o - .
» ! 91 ¢ seheyanduion) i) / gl
p 3 ! (1] wWesks sun] -uny] ndu Zeg proy Bjeg
prioin BiEg R’ b3 1) .
’ , o Jslufoideq 2%
- . G0 JOBUIRIDOT oAZ uonEotdy g welan eI pnan .
| LB S S, . o1
pAOIC QN] , 1 4 m 4 , (spomEN , - |
\ ((3 HRBAS JuntiaBauey asuarmy
291 $91 Se0IAIeg , - ’
vBl satug WRISASING Y 8180 ubisay uoBmddy 1 y
‘seseieg Hefe) . i 4 3 261, SIS
L ¢ y y ‘sjpsrieg {e0nng
£81 8N4 (nding} | igi s eeg (IS epguey 1.
e 4§ oppg sugedig) s Gy
08} $ANH Inding Y1 oy weuodung Lo gOH fnduy)
L 981 8NH WBISAS | Dgawidoasg smpog 011 S8MK RdY
, 061 sk sug - ubimag
054 WSS 1y 01 .

PCT/US2017/048044

WO 2018/039251

2152

& JH091H

vz Bunpaysg

UL 4Siand

e 1sabuy

3

¥5¢

somueg uliseq uoneoyddy

o~

991 1M weisAy .)
{Suswnsuon
) wjey e
(0Lz —p
g9 wesAsgng 1y gjeg {shienoig 1A
(w ~
19} e BIEQ i .
{{s)uoneonddy epowe]

{slauadig “Be) i5)
{s)uonesiddy Moyeieq

417 susunyg uoyesdiy

e

QUL JOIRUDIONT JUBAT

{sogq B9
907
IBUNBUOY
wang Busigng
uonemnByues usa3

{eowssioinoess “5a)
4%
PIRG
Jadgensong WUsng

{ewey B}
202
anemty ey

)

061 WHSAZ jy eleg

{1n W40
aswyg 6 8)
L
OB
19501 g
SYUBAT]
UOIBUSIKT v ’
» iy sweny “Ba)
N BOZ
apeded wasig /
mme \\}IJ
_ {90 ..
'§080 ‘68 "B
e 7ii » - FATA
wherebpy | “ed gie] {eusep
\\Ku)iil}j

PCT/US2017/048044

WO 2018/039251

3152

¥ 341014

yaz hodar 767 SIBASHUNG 00T WHOBURL] 907 1OROW YOO7, UHtSUel | 7oz el 87 BUNGE
any JNOBLLT o
_ $3v4 5ov4 893
#O SULOISURI] DU _ m Amod M * Aouod
Auidag — 5590004 e puosusty le— pfm je— Buipusig e HREYINS § UOROBIXS
BB sLE0 ertcTg) _ * sueg w ~ BuRe

gny etel \ £ \
qnid 0BLL0Y
; $080 $080 8380

JOIBULOY J I ¢ J)
Mwumm - - 4 , ~ F~ ~

Gk IOIBUN0Y |
Cooss [T oo [T 998

ngz Mol BB sidueg

£ 38914
seymongs e efie) ﬁ CLT PUSLBEOORY | 4TSS u
sendod ‘senpeyng . ,
pue Aoyog Agoeds siepoy 84 o] sBuddew BIRC] WaosuRl] o) 'sleseRg BIE(} Yy 380105
"SHEIPDIN USHaNg < pue mapop 1ekue spieusy } droo e ebiaw “ ‘azipiepuels ‘epoudnp-en] Wil ejeg 158
47 ustitnd 247 PPOIN | 507 WHOJsURI | $07 uoneseda 218 79z 19aby

097 %014 2180 W0

PCT/US2017/048044

WO 2018/039251

§ 340914

(Boypry ‘lepeiapy ‘eier '8 716 seaiag eousisied

} 717 TLBURICORY F 4aReg
1153 82 908 857 997 e 792
UERINGSYS yshand Aotod ETesn YaBiRuRL uonesedsid een 1eafiy
3 e H P
RN M p 098 ﬁ; m ¢ aag w- % 7 dug w- m { dayg
aujpdid aujedd | augedid | N feadid wa ~ suedig
20k suethd
ﬁ esn
YOC ANDBXT PUNY |

PCT/US2017/048044

WO 2018/039251

5/62

3 341014

89E 1UNH-0G45

BLE ghH-BpoRIG 99% anH-geEgXy B8 GNH-D048
— S — . S S LN _
5 ¥ 5 1)
5 1 5 1)
, N N f N - \ 7 \
, . 5¢ {zdpy-n04s) e e
pit {dpy-apreiqy) widepy a5 {dpy-guegn) wdepy 998 \20RY-00 IS} sy ye {8)smdeny
m #5¢ {10py-0048) sdepy T
 z2¢ (oorigy “Bra) addf uoppauue)) | 7og (geeQxg 'Be) adhy umoauiog | 25% (0048 “He) edh | uogoeuund) | Zye adA | uogdauoe;
Los (sJadhl uogoBuLo),

(8 suibug usigng / 1seliu;

ZEE 208G USYqnd £ 15ebu)

1

1

{gny-oeiny e} — BES BBl
ovg LanH ndne) ele] o meq usyang | _ prisalul ulojsuRy)

h

{1000 wok sejeg “Bra)
808 GnH Wty woi wed 1eebyl

yor suyadid sidueny

PCT/US2017/048044

WO 2018/039251

£ 34091

WHON UeapIIng | _ B0y
LN soSHEIS
BN i
Kepi
iy
YIRS
‘“ybus }
BjEIg
‘sifigieg
,\3..., M»._Oﬁnm "" @O.V
‘ ¢ ofiej,
7 ssappy] WRIIOM
poy
; Xudeisy
Y avy
s udeisy by
2y
sujotiy
{(uoisssfiou sonaBon ywoindd e
{24 Sppoyy 7% Buisnop

OLp VORRIUDE POy

L9} BYET B3R

)

o %

Gae 1e58E(]
K050

£BE JasEiey
SRIBROD

00F SjaU | UOHEIPSSELY

CBE ERR0

SIUBAT

16E ose1eq)
LUNOBDY

0B¢. s1eseled

{oiempy Ha)

L85 8MH

PCT/US2017/048044

7152

WO 2018/039251

8 340914

g
abes
FRIBIOA
ydesg) Yo
\\\.-au _* a..;.»;{..o.:.w
195 9¥e B1E
P
he Qﬁ%mv x.‘
€ a0 BB
4 LOBIC) SODBMOUN
4BsE) YL) ,
80%
20 oey somanerc «
auadig {yie0g) SISHELG
o ® W
074 sispoyy

G6E sissereqy

PCT/US2017/048044

WO 2018/039251

8152

6 JH091H

vanwd

had
BN

v nwa

w3
BURHALe BUIEN} oo
o BOISHELS
. G
SSBIppY
BEN
"BHON UBEDINS R N 90%
WIOM LY R SR , ,omm 7\
ooy e WO
wopyi A
Uiy
LISl
Eicy ‘
o vy
HEog O Y% e B il
‘adfieieg XUYORIS
&y
atifediy
““““““““““““““““““““ {uoissaifoy sonslBo uwoit-g4 he)
02y siepoy iy Bugepopy

DLb VORRIUIE 13PON

008 SI004 UOHENSSELD

vhy ugd

-
Ml
e

Oig. s1eseleg

y

{apuiy “Fe)
b 80

ey Be)

£8¢ BNH

PCT/US2017/048044

WO 2018/039251

/52

0L 30944

had
BN

vhy ugd

etz
U AAEE SUBNT o |
’a SONSHEIS
. i
ssainDY
o5 suend
sen mm w\..\w\e\
{LUIm HUON URSDIINT A
HLONLTA o
‘UBap A T N 90y
R A B G R obiep)
A WO o
yompmgal &
BueTA
2eOG A
‘gdfieyerra o
9% 100 = odfya) YOG e xzm,%
1l 36 = odfi - paida
ey
atifediy
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ (uoisssbeor sunaBoy ywoin-d4 Be)
{2y sippogy iy Bugepopy

DLp VORRINDE 13pOyy

008 SI004 UOHENSSELD

-
Ml
e

Oig. s1eseleg

y

{apuiy “Fe)
b 80

ey Be)

£8¢ BNH

PCT/US2017/048044

WO 2018/039251

10/52

SIUeN"

BUBAAIBU

ssaIppY

e

-

07y sEpoy

7
i
i
>
<

»
5

71y utissabay sousiBo
UpeQitydd

¥
4
<
H

OLp UONBIBIIY fIpogy

‘Mm Qon N T T 17 M obigj

B S X T S

Li U044

ROY
SORSHEIS

S

9r

FUEHIOM

487
Yudey

vanwd

had
BN

v nwa

vhy ugd

20y
atifediy

008 SI004 UOHENSSELD

Y

-
Ml
e

Oig. s1eseleg

{apuiy “Fe)
Loy GNH

ey Be)

£8¢ BNH

PCT/US2017/048044

WO 2018/039251

11452

2k 0911

=)

1pEsOdUInnS!

““““ Spusie | |iopssoduagsi | | adAuOS | | soouasel
SENRAIRUASICHOS waipesd | padhy 1Beag beciiaiting)
i ‘Aysusponsmgegoid
} ‘euugies ‘Bag xeus uy 3
ol
simdetep PNUOLER
{3 :
WL {JedA Buises
¥ Y
1 oledd bomm%@mm
“““““““““““““““““““““““““ NSRBI ysadhyeaogoury |_O0ALBUOON
i - »
w {Jsamni {,JsaBespan

PCT/US2017/048044

WO 2018/039251

12152

¥L FH0014

GURYIAeT

seoUBiemI

JOpasedyons)

adij puoclouny

xeydwior

08
E a0 —
yeany ODESONITSH 300 UOISUBIG
adh{RUoEUNS T
&L 34004
0ty
[quvuosuewg | Rl UoISURUP ”
1OPesaCuI0nS!

PCT/US2017/048044

WO 2018/039251

13/52

9t 30014

005]
Ay puoonn;
R
{804 Jouny
i
{ e goury
%
“““““““““““““““““““““““““““““““““““ { Juigmgouny
i glouny e e
« B SIS JUONILNY
YOIoUN Julio)suEs
A
{ Joun o
i
{JOPGHIOH
¥
SHARGUUGSUBE]

§L 347914

6y

L R P A A R

Fepusty

P ETCETS

e B A e S A

digyaby

ELET Y ETY TN

e Y L A A

z
€

N

»

Favampamy
Y

SN
e, BPUAG
- Gnoigally

i

IBUGSND

Hnra g

RINoWY
201

%wa \‘||\¢¢1\t
PipQid
Weq] ..

pisTR

591G

pURg
SmbBaren
JUO

Bl
iy

fen
s

' F

A A A A By

puBsg

e e A AR

aaendenay,
LT

&
& :
&
)
3

[V PEPAY PR TRV PAp PRI
LS 5 e e

" oK

R

tavenvanw?

PCT/US2017/048044

WO 2018/039251

14452

LE FHOHS
078 33 gig pig Zhs
seuadig wol NG FHPG uopmeS/aunatid iideyy f reonpag
QDUBIGHSI] WAl adA] puopiunyg HOREOYIBERY) sajeidue) K yefine)

(86 MBI0T) UOREPUSUALOSEY

098 SUIBUT UOISPUSEILICOSY

BLY 95 PES ﬁ _ £ES
adf i ssalieng SIBHRUBIE A UOHOY oY w — UCHEDLISUIEGoRY
458 GEs
SIMBUIBIEAOUNE UEROUN VLOISURIE

PCT/US2017/048044

WO 2018/039251

15/52

R T et b

8L AL

160 MEN

[8} e¥eET ElRQ
gomsag Bopes
g . PG DI0IG-SOURIRISRY
vopemnbyuos 5 y
waiusbeusyy Sndny eyt B 256 unRG
1 , J
05 Sidy 38800 BlE(]
SoluB BIR(] L0} POTIBIUON
,,,,,,,,,,,,,,,,,,,,,,, ¥ .
955 45 A o 0z
¢ eujdig z auippdig , supdig yabuy

>,

saige]

{sanu4s "By
giH po

{y-aprg “Fa)

anH

SEUNOT BIRC / SENH

PCT/US2017/048044

WO 2018/039251

16/52

61 FH0AH A

{8} o¥eT ElRQ

08%
|-RIC
104 JBB7) IR0

795
LAnHAS
10} 5B eye

{1V5 Sidy 55900y £j8Q
EY(] DITHOLUION
0ZE -
1B() MO
86Ul o Mey

saige]

(19745 “59)
81H PO

{y-aprg “Fa)

anH

SEUNOT BIRC / SENH

PCT/US2017/048044

WO 2018/039251

17152

0c 3044

{8} o¥eT ElRQ

995
{£'7') saupdid
0L imusSy Bed

pag
souysdd 58188

10} 5B eye

{ ovesiay ssooy g

*

965
£ eufiadid

¥eg
Z augadig

(A5

BIR(} PRZECLUON

| aupdid

4
P
by

0zt
1598y

160 MEN

saige]

{sanu4s "By
giH po

{y-aprg “Fa)

anH

SEUNOT BIRC / SENH

PCT/US2017/048044

WO 2018/039251

18/52

2¢ FoHd

7 daig i (enereRn)
erverenrennnsensanrem, SRy ummm.:,.m 7 80
i tgomaiBe) ‘ m 5 dotg 5 doIg ‘ ¢ dalg ’
T N m suoric suadiy auady
vdme L L e ee
auledid pesy L 8N
| 955 eutedd L] . \
L1 FH1044
(05 WSUOHAUT HORMISNT 015 stuuolingg uBissg
996 108 < ﬁ 296 soptng suedid T | 215 B1ZpISH sUedid
} . IR
YaG Weds S A T }
8/5 845 545
.. il isaEeg 158G NOSF T8¢ eaEp

PCT/US2017/048044

WO 2018/039251

19/52

ye FHAL

019
(o - ﬁ — {4 Suadic) ﬁ (e meqy)
{gnaa) Y3080 ™394 “,. _ et Syt MJ A
, {7d sujadid 2ie(ur posal §f |4 suljedid BlBQ) 74 sunetid Bjeg
Butadiy ameubc h,. — ; “4 aulpdig smeubic
. L Buadig B1RQ)
£¢ 31944
{sou0)
FRUOIERT
mmmwwmmwi voalong e wop)
aebeibly e ,ﬂmxﬁ Q)
“ BPIODGHS

PCT/US2017/048044

WO 2018/039251

20/52

92 34NoH

579

p daig
auetid

¢ deig
suliady

AOUT

7 d81s

auadid

@M@AMH\ |
5592075,

#

 deg
auadig

5 JH1D1

029

& 48ig
suiadiy

£ daig
auods

¢ daig
aupetid

L deig
aujadig

WO 2018/039251

PCT/US2017/048044

21152

L2 U]

B eeg) £12(]
s8R
L 350N epoN
1949487 Big()
puedg “Ba)
\ J 09 Si8npeyng vopeoyddy
Z08 suysdid -
) ’ {ewgey “Bra)
- 0sy
wshs Bulfiessep (souoiys “6'9)
- e ﬂ‘ Fas 1 < .A\ ‘ T ks e -
71T DUBLILODSY fNESS 700 1BIADEIIS
02e ysebuy

{sosapyuies “B8)
050 sefieuryg 0mMoEBY

PCT/US2017/048044

WO 2018/039251

22152

B Y1014

210 e el g1eQ
38x3 395 Se%3 39%3
gsanepoN| | g8 £ opON| | 7592 300N] | 259 L BPON |
s s
S N .
T e, Y K
SapoN 18 uonnoaxs eulpti Sinpeyss g
194 e £ §
puedg “Ba)
J 45 SIBINDBYS voneolddy
Y5100y BULEG Gt on %umxm @
JeseuRliy BWIe) Yy o d B BE uOREOlY
mm&mwmm o'a) | eomosey g
washg Bufessa [FOTOHUOIIGM B
- o ey Py , k% % g
SiE BUBIHOORY fUDIBEG 705 BNPOUIS
‘‘) e owaby 4

RO "

g BJR(T 98005 "7

{sosapyuies “B8)
050 sefieuryg 0mMoEBY

PCT/US2017/048044

WO 2018/039251

23152

62 AU

syeanbay

289

ssa00y 9B288aY UOISIADIY
sydeny usty pnoR

. SSEa0Y ERQ Y

sidepy ey o
stiod eby esiiaid-ug b

B waly

BIUBI-UC UOISIADIS |

1

aonas 1eabuy iy ubnons pereiii 51Sanbay 0] $8RI0Y ¢

191 sfE Eleg

BlB(] [OZY/RULON

077 y5abuy

e Blen

L

O} B8P B G

1aanboy
53800Y BIB()
[esay sepRnL
goikiRg meby 2

.

{oyiey B9
0sy
wshs Bulfiessep

SR}

089
piahy
BSHUSIIUD
{1anyds “Bra)
i ol
{1-apmn B8
4r1H
Mttt
SEUNGG BIBT 1 580NH

PCT/US2017/048044

WO 2018/039251

24152

o€ 3401

ssumonds eyep jebve; slemdnd pug “seinpayos pue Agyod Ajnads ‘sippouysiang

469 7™
B
o5 spepows aup oy sBuddew pue siepous 1afiel B10W G SU0 BIEISUSE)
3
YED suoyemRde seselRp Unyno Jo ey eliew o10u 1o Bue SUIDNDU BIED LUOIRUREL
-
£69 suonziatio
UOUS 10 ‘aripiepuels ‘meddnp-ap 2o o suo Butpniau 'uoeiedaud Biep WUCLRY
Z8G SPRINOS BIBD SI0W 40 su0 winy B1ep 1eafiy

PCT/US2017/048044

WO 2018/039251

25/52

L& o1
gL 8 L
ROy e > BPORE g # sl v S S« T e
goissabay nsiboy Buiddep vunon HOG Bl
4% 904 FAt7S L
UOIBNYT - Ay aesg iy 5 wmm
Mg ping dep-oiry PR
'y
(474 Gid Yo
SERLUS ‘slesREg Uoaens [t * A
RS A S
804
XU} §0seEs
84} wasAsgng 1y eleg

Y

{opoig epaue
‘emipg eufpadiy 69)
791 weuodwos
wisludoeasg BRM0G

8563

PCT/US2017/048044

WO 2018/039251

26/52

2& FHNOHd

751]
gvl
BOUSPLUGD pUB ; - N
SUCHBRUBUALODEY
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ BumsRe0d] Bussaoog e
80l KEg giepersy
B5; Busuey " , St 8L 652 subuy
pug Buibiop mmmwm.w £ Mwwmmmoma = mMmmMumoﬁ < uoysodwoss e Buipuesiapun
SOUAPIVO7Y 1804 isaupihs 0L SIBIS v fiony Ko
F 3 r‘r ! - & * L_”.,
p % o) \
G el el 9] a1
YORORAHT oI STIUY NeseRg Faio=iy amw SR
BinEay SRS WO SEppuen Amumg

g2/ H8popy

vZiy eeg

2oL gnH Ry

80

PCT/US2017/048044

WO 2018/039251

27152

vE AL

¥4)
piar) - SSRGS G G po -
5100 - [* 5 ploL -
piory - 1% £ e -
2100 - 4 Zpeig -
o7y - 1112115 v L1 R 121111 [R ;D18 -
ewayog whel BWISUDT BIINDG
£E F4N5I4
(192 4
SSOIPPYIBWOIBAT - [HlONRYY AZEF} o SSRIPPYD -
FAVIUARS o KBPUTO G e oLpng -
B ~ fhms AR Groereoreere Holed -
S LR s 1.1 T/ Lo pugig -
QPRI Lo mipiadiy Qe -
zuieyos Jefie) RLUBYDS BOINOG

PCT/US2017/048044

WO 2018/039251

28/52

§€ JHNNS

8 7™

viep passsooe auy Buddew-oyne ut asn
10 ey 40 Aobaies DRULLISIBD BU) U0 POERG BIED POSSa00E 8Ll Jo Giliold ¥ iBiaueg

1

#ep
POSSE00E 4 Ui BIRD j0 Aloboirg g sulieepn m sseonid Buzme sumnew g Addy

7

BIED POSRE00E DI Jo SHICUIBS B J0 BUC Ajnuap)

hh

BIRD PRSSHN0E BUL 0 SIsARUE BlRpRIsWw B uuoped 0} eiep penseooe
e ‘Wsunioss Bundiucs JBUI0 JO LoRRIGAL BIBD B LM 85N JD) WBAS B 18 '$50001M

PCT/US2017/048044

WO 2018/039251

29152

,. s&L (Ausy ndo “§e) saunossy mndwng

"

I

g0l B SB0ES
wielshsgns 1y Bied ulliser vosoddy
181 e eeg {oipmis epouse
- /b oyps suedid)
) 754 weuodwns
901 GNH WSISAS | Luowdomneg aemog

651 WwesAT sl -ubseg

“

051 wetsAg 1y Bjeg

9 U914

By Dassanie O

10§ PAIIEUE SUCHTR DHUBLIAS
MOW 10 BUC SaRIPU asuodsay

BIRp POSTE0E B

».

BIBD POSSHO0R 81} IO DOIEUS

SUOHTE DHURWSS 0y AN

SiehipLR BIRDEIBUW B OGS

261 senhuz
g

‘syaserpy (suneg)
X

by 8N Gndup

Ok SaNH Ity

"BIEp pesseoe 8l jo Busssomd sl Bulng ‘Blep passator
BU} IO} DOIGRUF SUDRDE SULLISS UL 10 S8U0 peIsies eul it sy & Bunzpdn jo Bupimad
Areonpwmng Bupnisul. BIED DOSSE00R BUY I RN IUB UORODINS J0) BIRD DOSRE00R By
03 PRIGRUS SUDYIR DUBLIBS B4} 10 SBU0 PalIRiEs ‘soRpeu Jasn jeonieb v e Yeidsig

__Aonoesep jsen

F ¥

“““““““““““““““““ Y
Pl
85 SUORRPUBLILIDIY
761 voiy
yuhsp Josn
» SHUoRY
7T
954 | (301 opryg epywe oupa ety “B'e) 0 oBya J95N [EONICRID

B8

PCT/US2017/048044

WO 2018/039251

30/52

86/

L& U]

{30 olprig epquie woyp3 sunadid “Bra) oo sorpajul Jasry emydeld

95N
ﬁ ﬁﬂ RIS BRGWET QSW@W MEEQN ” ,:m‘m& 7581 wﬁ@ﬁﬂ&gou NﬁmFmﬁQmmb@a SHBMHDS M o UORTRIEY JBsh
001 washe s -ubsen —
SUCHEDUSILODSY SUDHOY
061 Washs 1y Bleg
; \
E&%oumﬁ PGRNT0sIp
nowe) wnowe]
P npoid) prnposd]
Pl geis Py s
#62
AR seify] ooy \
Aney L7
/]
- SUOREPUBLIUCISY | 4 26t
veno g wmEg |
X SUoRY | an @

PCT/US2017/048044

WO 2018/039251

31/52

094 7

954

8¢ N4

-

ﬁ {oomg epquie appg sugedid B 7o) waundwon Rsudomas SBML0S w p

UOIRIBIY] S950

sy

PROLIUAG e,
051 washs awi -ubiser SUOREPUOWILIO0SY / SUCIDY
! 05} weishs iy ejeq jeuoRipeY

— T
o1 gnposd Jnpoig| NG PNPOL) b npoid {3 NI
ROpoidup]
prpoid Aug 500G ppy ,
u?mggmnﬁmﬂﬁmz@_ «nﬁaﬁugwﬁowmmu_ U RBISID’ | w..mz__w

BuioEnTy KUy 80In0g ooy

.&anm@&m_w

IPOIUIP YOIBUBWIC PRY

JSUIOISNTYLAE UOBUSLIE DOV

UOISUSLLL] POY SUOIBUBLIIG

SB)EGI0R)| SUIBN AGNT

{301 oprug epguie Hoyp3 sunadid “Bra) 064 eoruBlul JBs) eIdeIO)

1 -
samseau Biedwe 334407 BYHY HMT W9i3d] 97 N%Sf/
,\;w ”
o weng |3l mdy | N
13 rel
i o - B gt o
\\ W BJRpTI0NPOIG B 4400 NYHY 280 e
BHIRORG ‘
LTINS U1 0np0id 334400 BYHY 950 K @
- BICISNT @ /
{1} {p) suonepusUiUnIey e
Jaiivelts @ / A:TA
\nl‘k
-1 SUORY IES VG

PCT/US2017/048044

WO 2018/039251

32152

68 ML

g2t 7™

"BJRp Dosseoor suy o Blussaooid sy Buunp ‘giep passaioe
S 40} POIGBUS SUOHOR IILIBLUSS DU JO SBUO PRTIAIBS Bu) J0 15 & Buepdn so Buipiroid
Aeowewmone Bupniou 'epep poB50008 B LM B51 PUR-UGIDSIES IO} ‘BIED POSSINNE BY
10} PRlieUS SUCIDE DHUBLUSS 3L 10 SPH0 PRYISES ‘aaeyei josh eowded e 1o Aeidsig

G117

JED 34} 10 UOUBDISSRIG Bl U0 DOSRg
DEHIUEPE PUR ZIED DESSEDDE B} J0} PRICRUS SUDIDR THUBLIDS SI0W I6 BUD SR
sstiorsa) oy uasmm “Aenb o1y 01 osuodsal & 90inns 9BpRIMOLY BU) oY BABIoY

vis

BIED PRSSE0E BU} 10 UOHBIISSE)D B SHIBOIUS ASnh GU UIBIBUM RIED DOssanoR
84} 10} PHIGELS SUOIDE DRUBWES jof Asnb e LIBIBAs ay; 1o sanos afipsvouy B 0) pusg

ZLL

BIED passenne sy 1o Uongomsaen e Suuiundep sapriow sishisue epeeu
BurUIeIBYM ‘BIRD PRSSERIE By 10 SIBARUR BlEpeIstl B Wicyad o) B)Rp poBEssDE
uR "Hisltivoimue Bugndwon BRE0 10 voneiDa B1ED B Uus 980 10} wishs B IR 55800i4

PCT/US2017/048044

WO 2018/039251

33/52

Y5 SUDIRPUSILINOS)

{301 oprig
EpGLUET S0P euledid “B'9)
GOT PURLBIY S0 [Rodmg

<.

{{siuoneayddy
epauwe ‘(sisuadiy 69}
fsiuonemndy
soERg MeN 0 usuopas]

Y

50

0% 380914

UBHBUIHSUBI | JO SlR

QUDIBSBIANT

#4014 BiBQ

70¢ uomsaduiosal BUoHaun

005 aboy uoiseduions feubnoun 4

801 waishsang i Bjeq

»,

¥l saoneg
ufiissqy voneolddy

H g o Eieg W

{oprig epgue?

soyps augeds] “He}

981 gr1H wasAs

794 wstnduion
WaHOIBABL SIBMYOS

\, >

oL weishs swiy -ubsag

|0

&

061 weyshs ty e

H{sjuonesudy
epquwe {sleuledid “0r9)
063 {siuonesiddy mogerer

PCT/US2017/048044

WO 2018/039251

34/52

Ly o1

708 HOmSOtINISE] [RUCHOUN]

_

(o} vonaunJandinot

_

Gndui} uogoun 3 UonpuoTLelI L

_

finduy) uonoungindy;

., {Indino) wiesg syt

fuopunouesog el jepdwe
HORUN A B

uoiy Ry ds Ap

= JOP-RUSIEA < X LBp00

. 8E < 070w ony feRdws « 18 40WS A £ [X8] BpOD

o,
S,

fdup wereg sgedus]

{mding} wesmddiust

SiaRmged

-

,
o
,

-._.

woyypesy 4B A
{1 ojeythum Zgny jpeas i S10US19A < 1X819000

3

I
/
¥l

N

B R L L

Yuse pusogsuas | Apg—

UOROY. peSY S %,MI

yse L iselu) A

{sedwe L anuipess g SOWSEA < X8 18p00

BAEY SUOUY BB

st

PCT/US2017/048044

WO 2018/039251

35/52

2 IO

[00g 21607 uopsaduicon(fpUOIUNg

e

[gladoogpespsas L N I
» { Jupasn [1] Buing suies
_ o (Jipedoogu | ienosaysdons
[olpadusiges | weiegensA | 11 0HO8C0GuY o ‘ & (suspgseip
'R + U oledesgie
feogiisapgmepwe ¢V i - I1f vespog wogeyeo Jl
§ (sqoip)eiey Jof s0usiages Jusied sy (, JadoosuiSpauRp E sabey Agpumip e LRRIO0N DANESE
ompsmoypesnm adooguseee § f . ¢} soBeajuy Aperipsegiuy — neg
G orainin venirinaieais . [} uesiong ol Teaepauone LRI
ww [usoppog a1 plodh] pezyeioads i1 gladi euonury
U plusedsiedius 1o iy e iswergtue) L {Jeuweie uonun)
spamy |1 A GnH - , ﬂ | .vaﬁw\.,,mmcmmuw R TS o MY
o { Jaueradddyas fopluonoe M
| _” | [hueaguonaun e ,:m wm%f i ;JS
L uESGU W
@ - it c%wwmoﬁ peppags BB JUORTUR
L glfuuaBupg s | Juraog oy
» . Lluolnyamiting) | .y awavs, e i
e wmiedBupug - clomwamins | , FLI900 e 1 8p00 {swepquoipury
—— suRiebupLg _ H {1 aepio {1 Djsuonouny
Augsigepg : » o {Jsucioe
{ L SEuDnIR i¥ies
weg” 4 Lsuope . 4/»
4 fLpuonoun g _
A . I1iooiy we jepon 9
apon wein euatid 1o staddiug , & fobse OB 919
“phiseiaedue; . L Isuogun
_||.Y 1§ s
et P Mmm;w {,eneet
A«memﬂ kgl SRS L i SRt He
: {1889 {Jsaoimsas
Zig i bpsBay u §
Lol e SeuBIRgBY) 1Y Buine ofenbus
I clereidusy # ; //r »& Buane abenbum
um — » ¢l Buag .,%@.@,,fi
{Jeddyengue B omion e
i (1 oiawoneaneg ik et
ddvepguse] BAG

491 weshsang 1y meg

PCT/US2017/048044

WO 2018/039251

36/52

£y A1

uowesdde sIBME0S ISUICUY JO MO) 21D ¥ 10] SUONEULDSURE BI8p 210U JO BUS 1O
UOHEDUSLILIONR) B SPINGID 0] ‘MO BIRE SUL S DEIRUSD! UONBULDISUBY 10 Uisyed B 481

A0l B B
U UDNRLSURE 0 tienrd By AU G PRRN IF SOj BSSUISHY PUR SUOUDR SHURLSS

i \\.l(t‘
578 2 eIaum “suonEMdUe SBNY0R FI0U O BUC B1L 10 Yors Jo) pateseush sunssedis
(BUGIOUNE SICREI0 BUD 84} 10 “MOY BIBD S U UoHRUIOIRUES 10 wiaged B Anusp
2
I BB B
e e Ui DOYHUSDE SAINI SSPLISHG PUE SUQHOR SHUBLIRS U0 pasRg peiriaual e sucissaudie

[BUONOUY BI0W IO BUG BU IBJBYM ‘WO giep oy Bunuesaides suoissaldys feuonoun;
B0 S0 s eyeistal 0y SuoEsydde BIEMYOS Q50U X0 BUO AU IO AA0H BIRD 9L SEH00I

\\\ r

R

SUORRINTIR BIBMYDS BIOW IO BUD IO YORS IO} MO) BIED
& ‘pisisuoiaue Bugntitns Jeuo Jo voneBeu Bep B Ul 851 0] WIBISAS B 18 55800y

PCT/US2017/048044

vy AU

gleq poueg ool

gR() sidwes

suoBuag] Apus

UORINPU By Bsyng {snusassiay)

37152

WO 2018/039251

jGg sapny ;
561 {(Aoumy Nid7 VBa) seanosey induion
b \\\ ”
og 9807 LORONpUY 81Ty g
269 {58 21007 UGHONpLY 8y
wiaysAs add] jeuonoung
80} WOISASNG (v BB)
$41 sedmiag
uBsar uoteiddy SBUT SISeIE]
, . N 1
wshs adhy juogoung M 181 sy g W {opnys epye 4riH (eounsaay)
Ui 1K walsAs siepdn /| opps sugedid “0a)
//xf 51 peuoduns
991 G11H weysAg wawdomasg alerog
o wershn s e
] 051 weyshs iy e)

56 FHNHA

PCT/US2017/048044

38/52

auneg)
dey-ouy
! J §% 4 " 1
s . - - - oy
Sumoideeg | b7
{ aeneny SefUE fSIeseIEg
v Y P 4
autbiug sany e
. s l-l:_ i o3
o L ganH
. - N smsibay
LOREPLSIILIINSY
, sjaseleq
{ieag “,.. soffiy Bie() puB elepEIBl
i | : ul pavEg AHsse
BB
s u 2K
| M N oy
1141 0
woshsqng Sefiig ‘sese
emy 43 ‘sjeselEg
& , 991 BNH waés k
061 wesAs 1y vleg J

WO 2018/039251

PCT/US2017/048044

WO 2018/039251

39/52

9 349

Apuzaineoy
{1 glehmuzgagepug

e

{15984 LBuououn-

. 4

Bl ecuepyuos
{1l aeaz puenzaasep

Apusposads | jeuonaung

£48

%

{ o0k Uisaiiue

drisuongmnatiy spusike
digsunneEnsdA L opesodunns
SOt | Jsa0uBigR -

disuongmyiadiy =

‘upissaidxy

sedi)eunmn adieen
sadA 1 BUronsung Ty
sadAjpuogoun § A3
FAA 1 EIoEsUNL gnK

gaih § feuonung

I nledd puonaun

Fy glodd L puonoun 40!

{Jeadhymuogsiny -

1] vesbog peless

adif } puogoung

!/F\ 848

(a0 0ibay voganp Sy

F 3 3 &_
f1 ohiexiomep
{1 pidsucheaOedh
L maingdisuonep {Jsamyeep
L 4 ¥
L olengBuuno
- : 111 Bug uossmidvaaing [1] Bug uossdraeoto
{Joipamm p— (- , . ; ”
ainydusuoneEy sngemg TP E it g
7w e s S { Jeiate s 45
{isuausiaparees ¥
) 1] Bunis s
i 0] juswigi3poeles SR
{1 pheusouoie bog
{ upanuaingal
i1} sefiau) wibem PR ﬁ
{Jebespam | 4] eajpdg Agepuri T — {1 plapages
SHYIMEUA L RUCIBUNY .] B
i olemges

../f\ 258

491 wepshsong 1y meg

PCT/US2017/048044

WO 2018/039251

40/52

Ly U901

gog 7™

ndureep g
Buissenod 1 980 Jog ‘siep aduies sy 10 soioud pue WaIsAS odA RUCHDUN] B4 INI8ISd

L858 7™

SN IO 10 BUD DEIeusl Bul UD poseausAS Bdh] jBUCIOUN B BIRIBUEG)

958 ™

suBniuiep Aus DUl U0 DOSEY SOIR RICH 10 SUD BIBIaUR0

998

giep
SICLIBS B4 Uit DRIRIDOSSE SOUIBW SIOUI IO BUD SUILIIRG 0] BBp Sitiues 81 Bl0id

SN SOUBIRGSS B} LICK SHIHUS IO SIOSEIBR BIOU J0 SO By Ky wep ojduies ¥ ajmiauan)

£ag

gk sousies a4 Ag pepiacid SANUL IO SlesEep
U PEIRICOSSE SUORULAPD Aua BI0UE S0 U0 WEINO 0) BNH BOUSIBIY B4 85800y

1 N

8N soussay 2 Buiyap ndu
Yusitonsis Buyndwon muin o voneiDaul BIE0 B (1M 281 10} WHSAS B 18 ‘angoay

PCT/US2017/048044

WO 2018/039251

41/52

8y NS

go6 eubiug seiny ”
‘ ¥
{{shungeonddy Bpouwe , o
{sieuedid “Fal gsy FBuplg Di6 @ WS
E: sneaddy aoERG 1 seingly] sentileg siesere(
SASAUENSR SNt dsotho ’ { SEMH peteloUly 3043
04} wapshg suil-uny | mmmwwnm
¥
Zi6 subug uogepusIL0oa}
ubnenieh fnaif
HONEIOU: 50, WRISASGNG [y elet , P05 Adisiooy
2 o we) .n 8 Iv 5 J ad4] SSOUISNG PUE [PUCKUN 4
p3} SHAABG msmwmwa. adhyjo s adh} 109}
ufiseg uopeonddy \\ ﬁ
{oipg epquey
“op3 susdiy “Ba)
201 wetiodurn
wewdogasg siemog |F~SEidual . D |
““““““““““““““““““““““““““““ | sigesnay peulieg
“““““ 008 doepen 908 sojppiue | Rueneg 706 AusBay sunes

uonming ofimog

G54 BIH WSAS

(g1 wiasds suyj -ufiiseq

051 welsAs 1y Beg

PCT/US2017/048044

WO 2018/039251

42152

69 FH0 94

viop Asifiay

adh] SSBUISNG PUB IBUOIDUNY

74
BRpISH
Aped-payi

go6 eubiug seiny "
{{shmeddy spauEy , y
(SJoupdiy 50 051, |-roupugef OB ENHUWERES
(sYuceoydy MoUERG | v seanauly] sengu / siesereg
SR ALt Aot J F S pominuly a0A}
U A H
(4} wilehg sul-uny | SEAN
¥
| Zi6 by vogepUsLLooey
uopepes, ”
URIEIoUaT) kmw wWasAsng fy eleg
9 - k S
SulenE
PG} SIHARG _
ufiseg uopeonddy \\
{SILORBNUSUILIONEY
I
{oipg epquey

“op3 susdiy “Ba)
2ot weloduwon

wewdoaag siemyjeg |¥~owEtwaY

BOESNEY

00 Baeje

\

adii o8

G06 serelitie suened

uonming ofimog

¥

i

skl 09
1

. Busry
poueq |

206 faiBoy aneg

G54 BIH WSAS

(g1 wiasds suyj -ufiiseq

051 welsAs 1y Beg

PCT/US2017/048044

WO 2018/039251

43/52

0% 40914

y ,

{Buus sebau ‘aie0y) saaisy
Binguy
BN
PRl
JBUIOISND
GOISUBLIG
A
g

06 Apsifioy
adh] SSBUISNG PUB IBUOIDUNY

74
BRpISH
Aped-payi

SIOIR IR PUNOS- -
SUOIY~ 806 suiyg seinYy ”
SIMBOISAT N doi. 3
{{s)ungeonddy Bpouwe W :
{s)oujpdi 6} 051 P 016 €K warsh
(sYuceoydy MoUERG | i senguRy/ sepgu / siesereq)
SN SNt ’ SEIH peRInuwy 8GAY
041 WlsAg s | -um sennu
¥
I 716 subug vopepusiuwosey
uoenlEs, ”
uoneieuaY) , kmw WESASANG Iy BIEG
; J
P9} SIIAEG wsmwmwm
ufiseg uopeonddy \\
(o) ssatusng) simpueRd-
{SHOBBDUBURLOISY UL
¥ 5458 |-
(oipmig BpgweY Jopngadng
“oupg suystiy “Bra) Bppnguosusui
201 wetiodurn , N oL
WRWdORASE SIER0S . aepdway | | gl awocypuss i dn - Bussry]
“““““““““““““““““““““““ ® 1 sjqesney” wawabeueyy ubpdwedl™ peuyeq
“““““ o008 weay 906 Sojejdusa | suioged

st o8

J i

skl 09
1

uonming ofimog

¥

{ath) pUOHOUND SI0BIRIRG -
wof sl "M pesy--

SUDETY MUBLIBS-

(usioysues) ‘siedaly yeofiul)
SE0IAIOG JOPIAGI

206 m&wmmmmw I

G54 BIH WSAS

(g1 wiasds suyj -ufiiseq

051 welsAs 1y Beg

PCT/US2017/048044

WO 2018/039251

44/52

16 FHnot4

886 7™

soBpEl Uogoun; ubidio) B4 BiA ANH WRIBAS sulyl peiEpdn uDRBULIDL
8Y) U0 DOSEG 'MOY BIEG B 10f uopEpuswiLeDa; ¢ Bupinoid Jop Lisped & Auop

966 <™

SE0MISE puR “sepdule) sutgoE
Dgupiies ‘sadh) peucddne sy Bulpniou weisAs Bl Jo SSlgRdRD [RUCHIUN] DUSIRE 0}
PUR BIEPRIBW DSAIBOR SU] IN0TE UDHBULIONS B4 prRul O Dajepdn © gfiH wepsis ol
WIS ‘BN WasAe B u Soepans uanouny uBinin; BUL B DBNSDSI BIBDEISU UL BIDIS

DIBpEI DEAIROT By AG peulep asneR 1o tweyed & Buyap aedwisy
UORDE JHUBLUBS ‘UNEHISS R © IO Al Jo Aun Buipniol ‘eiepeisus DANSIGL BY) INolR
uoHBLoY Aluaps 03 'aospmi uoount UBieun; ouy BIA [OAIB0A BIBPRIOUS 24 558001

\\\ r

o
b
o>

erp g Blissanoud
Lif 9110} BIEDZISW B 10 SUOTIISD SIOW 30 BU0 " B0eel uonoun UBEIDE 2B ONRIeY

PCT/US2017/048044

WO 2018/039251

45/52

25 34001

{poindwasy o peloeds-1esn) Ao (UOIUBIeY
sddy vt aBesny oeduy
035 "UPBHG IBIUBWAIOU] 18N LONB3IHSSEY (159Buj J0f BioBHERY BIRT LONH) BUBAT
DOSN {EUUSH8IY) UOUDBUULT (AjnGeg {zddy “1ddy} ddy
L gni s Ainug soinog abesu {ug 13 Ayug
{65} 1 ani mouBuBALId {esh) any
Sumoes . 194 @ v J
afpaury pue 501
UGHINASUODRY Bie() JOREIPIeD)
WA
Eope 896 996 el USLOHAIS
Poousiand 1| guoneonddy | |y uopsoyddy | | smpuuoN B 5 ba)
{—] §56 G
; i g/1 ke antwns -
!) 24t
{508a "o} ; A_@%ﬁ
81H g £d 84 e (esegERq
: {2d 24 wwum\“e “fre
, 796 096 €56 8nH
T \d z4 mdoy L 11 o] T
o o 11 ket ioi Indimoanduy sigene: . ‘
P 0Bl SNHINGNO , p41 J8ke (o) ndnopndu; sigeeag | 61 sarihiindin
i 061 WRSAS 1y BleQ |

e e e e

PCT/US2017/048044

WO 2018/039251

46/52

£5 U094

DOSN {BHUSHLY) UOIDBUUGT (AjINGeS
{sn0o0id 1360 11 < | gnig ot Ajpug eounog “mmmmgsw {paymehiu] B18q L3 1anK) SweAT
“““ b<leg)yanyaousieroid; {6924 L0) NOUIEYS OIOL ALLNG
o . 191 247 PiEq
afgaury pue 591
UGHONASU0ISY 1R[] IOEPIOE)
oA
Eope 896 996 el USLOHAIS
Doousigng || guopeogddy ||y uogropddy | | szimuUoN B0 ‘g 69)
[P46 GH
i G414 ke sndun) o
L 2t “
(soga B9} || e
gt ding B (seqeeq
: sei0 “He)
- 295 1171 Il 1 A S €56 gt
T g pAl zimdog 14 aoy ”
. e 14, dskey ion mdmonndy sjgeies . ‘
ORL 3@NH AN , 43 sakery (o) ndinOpndu; sigeEag 011 S80H 1nduy :
] 05 washs (v e

PCT/US2017/048044

WO 2018/039251

47152

AR A A R R A A e e R

vy U044

DESN JBNUSLIY) UOROTUULT Anneg
{ezEuIoN) 13 < {pezifuwIoN BIBQ "1 LONH) SUBAY
{ss00054 J50801) 11 < | gy ui Agug sosmog (abesury] {15°13) 30118 TALIENG
] 13 < L1 < {£8) | GNH BOURLRACI | {£d 70 "10) NOILLLEY DI90L ALLNG

Buors|
abeauly pur
UoIINSHo0EY BIEQ

\ -

£15 saous [eiodss)

TN

v

{5080 e}
anH Inding

T T

081 38NH MAN0

0 A Y Y e A A A

e e e e

. 191 @¥e pieg J
13 591
““““““ JEURIOET)
7 weng
m k
Eope 896 996 86 USLOHAIS
Poousignd) guoneonddy ¢) uopeonddy | | ezgeloN B0 ‘e369)
, P56 9NH
i a1 e andung \\q -
, < 24t
Johe
5 W]
e {esegmieq
aei Ba)
296 096 b A 256 BNH
i G HIEAR) 14 mdoy -
11 ke o ndingyandu sjgeian . ‘
, 4} 18R (07 Indingncuy sigeieag) 011 SENH 1nday
05} wWashs 1y BeQ |

PCT/US2017/048044

WO 2018/039251

48/52

55 30944

| ddy Bunnzex3g gioy Anneg
f1ddy) 118 < {8s800id 10} BIGBRlEAY BIBQ 13 LGNH) SIUBAY
{Bznewon) 13 < do¥ PAsHY T ALIING
{ssmo0id 150Bup) L1 < | gni u K303 eninog tebesur < LSN dddY VOBHY T ALLING

Buors|
abeauly pur
UoIINSHo0EY BIEQ

\

£15 saous [eiodss)

A B e A A A e
- [}

N

o

{080 "6%)
BOH 0

e

P 081 sENH AN

Y Y Y

—

191 @¥e pieg)
13 591
253 | EE S JOVELIRIO0T
2 S : D eng
H
v/ \\\\ t
fooe i) 898 996 86
Poousignd) guoneonddy ¢) uopeonddy | | ezgeloN
g4 Pke apdweg \\q)
P \ 2l
Johe
afp3
296 096 [T
i G HIEAR) 14 mdoy
44 sehey o) Indnoandy sigeeag it

et A

husiwuonaug
oG e3 by
pa6 8N

{esegeie(
aei Ba)

(G wWasAS ty BEQ

““““ 756 49NH

e e e e

{11} SBNH 1ndu

Savmay -

PCT/US2017/048044

WO 2018/039251

49/52

AR A A R R A A e e R

95 40944

z ddy Bunnoexy gioy Aunoes !
{zddy} 713 <
{1ddy} 119 < : {ssu001d 10§ BiqRIEAY RIBQ 'L 1T 1ONHRISAG) sjueAT
{ozyBuionN) 13 « dd¥ YAy ALIING
] {sso0uid J59BU1) 1L < | 9K U Agul alunog telisaury: 5 .w.mzm..m%;qmmﬁ.ﬁ:ﬁﬁzm\

Busynes |
afigaury pug
UGHONASUOSY Bl

\ -

£15 saous [eiodss)

TN

v

{5080 e}
anH Inding

T T

081 38NH MAN0

0 A Y Y e A A A

(194 e%e 7R) J
FARS i 491
““““““ , BE N JOBUIRIOOT
L - L ek

Eope 896 996 86 USLOHAIS
Poousignd) guoneonddy ¢) uopeonddy | | ezgeloN B0 ‘e369)

756 B0

g4 Pke apdweg \\q

, £ N wa
Johe
.
*br3 {esegrieqg
aei Ba)
2 766 oge {7 b S 266 8NH
d Pl zumdoy 14 oy ”
i 11 seke o indinoandy sigepag i] 014 SEOH duy

(G wWasAS ty BEQ

et A

e e e e

PCT/US2017/048044

WO 2018/039251

50/52

AR A A R R A A e e R

L5 40941

(W-Q) seket O 0 usiigngd Bunnosxy sjoy Aymosg
(usyand} 74 < {2d9v) 713 <
fiddy) 133 < : {ysngng i0f sj0BiRAY IR ‘21T LOnMWelsss) swaag
{ozHeuIon) 13 < 38 ALIING
] {s98001d 158501} L L < | qnH w Ajusg sounog rabesury NOILLLEYE DIdOL ALIING

Bumoel)
abgauy pue
UODHIISYNT DY BlR0

\ -

£15 saous [eiodss)

TN

v

{5080 e}
anH Inding

T T

081 38NH MAN0

0 A Y Y e A A A

e e e e

. 101 9427 218) J
Zi3 13 591
““““““ W3 JOJBLIPIO0T)
7 D | £ D San ¢ N S eng
i H
, \\ .n,/ \\ ./ \\\ L)
Eope 896 996 86 USLOHAIS
Pousiang § | guopeoyddy || g uopeonddy | | ezmppuLoN B0 ¢35
, P56 9NH
, / g/ ke At \\q ; e
, //x P , 24t
Johe
S
*br3 {esegme]
aei Ba)
296 096 %7 b B 256 AnH
b At Timdey 14 mdoy ”
i 11 seke o indinoandy sigepag i] 614 SBNH nduy
061 WHSAS v BRg |

PCT/US2017/048044

WO 2018/039251

51/52

85 340014

ﬂmmsm SO} {BIUSDBID mE“um:con SONE 0L YSHANA mcmsumxw HOY “btjowm,w
{usuand) 1172004 < (ysgand) 21 < (zddy} 213 <

{1ddy} 113 < : {paysigndele |1 zanH) (peysiand Bleg 2L} sueal

{ozyewion) 13 « : OIS ALIANT ALLLNE '8NH

] {sso0uid J59BU1) 1L < | 9K U Agul alunog telisaury: NOLLLLEYd DIdOL ALIENG

Busynes |
afigaury pug
UGHONASUOSY Bl

\

£15 sa04S Riodiug

AR A A AR R R e A A R

816

isnaq Be)
grs nding
T

081 38NH MAN0

0 A Y Y e A A A

—

L

T s Ly PuEEPREP PPN

L8} ET e

44 sehey o) Indnoandy sigeeag

(G wWasAS ty BEQ

/ {11} SBNH 1ndu

Savmay -

Zid b3 481
““““““ BE JOBUIRIOOT
P2 N | ¢+ R s RN S WK
I I
\\\ .ﬂ/ \\ v/ \\\ , ,L
Eope 896 996 86 USLOHAIS
Pousiang § | guopeoyddy || g uopeonddy | | ezmppuLoN B0 ¢35
, P56 1M
/ gz ke sntun \\q o
,,,,f/l. d ¢t
, Johe
M
*br3 (eseqEEq
aei Ba)
794 0GR e B 256 814
b z4 mdo} 14 mdog ”

e e e e

PCT/US2017/048044

WO 2018/039251

52152

6% 344

186 7™

warsAs gy 18 5181 BI0lY 20 Bu0 ssosor Duppes; obesuy
Jo}'saols fesoduis) Buyj AG polURssXia) BIED DORSEODE A0 BIED DaIdwes sy sbsusyy

so0s [eictust o Ag paussasdal
£IED DESTR00E IO BIBD DophUBs B4 INGGE UCIBULOI UONRILISSE Subiaeg

GBS ™

soots eioduwn oy Ag paiuasoidas
BJED PESSR00E JU Ziep PaIdiies) IN0GE BIpRIBW WB0 01 8NH Wwaishs B 5500y

495 <

BIRP POSSE00R IO B18p poldEs B 10 Se0YS jesothuny AHiusp

£86

2IEp PESSHI0E Bt Blweg

286

SEIH B0 JOBUG WO BIED $S800Y

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/048044

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N5/02
ADD. GO6F9/54 GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Supervised Learning",
youtube,

XP054977814,
Retrieved from the Internet:

XGeSY
[retrieved on 2017-10-23]

12:00-14:29; 17:15-17:49

Word2Vec for Performance and Semi

24 June 2015 (2015-06-24), page 1 pp.,

URL:https://www.youtube.com/watch?v=A2XNIn

Slides and Audio passages at 00:41-00:59;
01:00-01:33; 2:50-3:20; 8:30-9:44;

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2016/049460 Al (ORACLE INT CORP [US]) 1-23

31 March 2016 (2016-03-31)

abstract; claims 1,8; figures

1,2,3,4a,5a,6
X Michael Malak (Oracle): "Extending 1-23

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

31 October 2017

Date of mailing of the international search report

07/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Manfrin, Max

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/048044

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y Anonymous: "Apache Spark 2.0 Preview: 1-23
Machine Learning Model Persistence - The
Databricks Blog",

31 May 2016 (2016-05-31), XP055417721,
Retrieved from the Internet:
URL:https://databricks.com/blog/2016/05/31
/apache-spark-2-0-preview-machine-learning
-model-persistence.html

[retrieved on 2017-10-20]

the whole document

Y Anonymous: "ML Pipelines: A New 1-23
High-Level API for ML1ib - The Databricks
Blog",

7 January 2015 (2015-01-07), XP055417730,
Retrieved from the Internet:
URL:https://databricks.com/blog/2015/01/07
/ml-pipelines-a-new-high-level-api-for-mll
ib.html

[retrieved on 2017-10-20]

the whole document

A WO 2004/021186 A2 (SAP AG [DE]) 1,8,15,
11 March 2004 (2004-03-11) 21,23
abstract; figures 10-16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/048044
Patent document Publication Patent family Publication
cited in search report date member(s) date

WO 2016049460 Al 31-03-2016 CN 106796595 A 31-05-2017
EP 3198484 Al 02-08-2017
US 2016092474 Al 31-03-2016
WO 2016049460 Al 31-03-2016
WO 2004021186 A2 11-03-2004 AU 2003260462 Al 19-03-2004
WO 2004021186 A2 11-03-2004

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - wo-search-report
	Page 127 - wo-search-report
	Page 128 - wo-search-report

