Title: ELECTRICAL CABLE HAVING A SURFACE WITH REDUCED COEFFICIENT OF FRICTION

Abstract: The mixture of plastic (17) and lubricating material (19) being coated on the electrical conductive wire or fiber optic wire by extruding head (15) to form an electrical cable or optical cable (12) having a surface with reduced coefficient of friction.
ELECTRICAL CABLE HAVING A SURFACE WITH REDUCED COEFFICIENT OF FRICTION

TECHNICAL FIELD

[0001] The present invention relates to an electrical cable and to a method of and equipment for reducing its coefficient of friction.

BACKGROUND ART

[0002] Electrical cables which include at least one conductor core and at least one coating are well known.

[0003] Such cables present the disadvantage that their exterior surface has a high coefficient of friction, so that they are awkward to fit in internal sections of walls and ceilings or conduits, since when they come into contact with the surfaces they become stuck or difficult to pull, etc.

[0004] In order to overcome said difficulty, alternative materials such as vaselines and the like have been used to coat the exterior surface of the cable, thereby reducing the coefficient of friction.

[0005] In a complementary manner, guides of small diameter are sometimes used, one end of which is inserted through the cavity through which the cable has to pass and the other is attached to the end of the cable which must be inserted into the cavity. Thus, once the guide has emerged at the desired place it is pulled until the end of the cable appears again after having passed through the entire section.

[0006] In numerous fields of application, and in particular telecommunications, electric or fiber optic cables are inserted into ducts. There is therefore a need to minimize the coefficient of friction between cables and the inside walls of ducts.

[0007] In one solution, the core of the cable passes via a first extruder which applies a conventional sheath thereto i.e., a jacket and/or insulation, often made of polyethylene. The sheathed core then passes through a second extruder which applies a lubricant layer thereto,
such as an alloy of silicone resin and polyethylene. The cable lubricated in that way then passes in conventional manner through a cooling vessel.

[0008] A second solution provides for an extruder to cover the core of a cable with a sheath. At the outlet from that extruder there is disposed a coating chamber for applying granules of material to the still-hot sheath, which granules are designed to become detached when the cable is inserted in a duct. Finally, the coated cable passes through a cooling vessel.

[0009] In both of these two prior solutions, it is necessary to interpose additional equipment between the extruder and the cooling vessel. That gives rise to a major alteration of the manufacturing line.

[0010] In addition, the equipment for depositing the lubricant must be very close to the sheath extrusion head since otherwise it is not possible to control the thickness of the sheath properly. In any event, the additional equipment occupies non-negligible space and such an arrangement is not favorable for control over the dimensions of the sheath.

[0011] Whatever the prior art method used, the manufacture and/or installation of said cables involves a considerable loss of time and an economic cost, since alternative materials are required.

DISCLOSURE OF THE INVENTION

[0012] The present invention thus seeks to provide a method for making a cable having a surface with reduced coefficient of friction that does not significantly alter the geometrical characteristics of the cable and the cable so produced.

[0013] The invention thus provides a method for incorporating a lubricant in the sheath of a cable, the sheath being made by means of an extruder and optionally followed by a cooling vessel.

[0014] In one embodiment of the present invention, the lubricant material is mixed with the sheath material prior to either material being heated.
[0015] In another embodiment of the invention, the lubricant material is heated and mixed with the sheath material prior to the sheath material being heated.

[0016] In a further embodiment of the invention, the lubricant material is mixed with the sheath material after both materials have been heated.

[0017] In yet another embodiment of the invention, the non-heated lubricant material is mixed with heated sheath material.

[0018] As used herein the term sheath means a jacket and/or insulation applied to the core of a cable.

[0019] With the method and cable of the invention said disadvantages can be solved, while providing other advantages which will be described below.

[0020] The method for the manufacture of electrical cables is characterized in that it includes a step in which a lubricating material is mixed with the sheath material and this mixture is applied to the core of the cable.

[0021] A cable with low coefficient of friction is achieved thereby, so that subsequent installation of the same is considerably simplified, since it slides over the surfaces with which it comes into contact.

[0022] The step of mixing the lubricating material and the sheath material may be carried out with the lubricating material heated or not and the sheath material heated or not.

[0023] The sheath material normally is introduced in pellet form to an extruder which heats and directs the sheath material onto the cable or conductor core. The present invention includes the embodiment of incorporating the lubricating material into the sheath pellets during the formation of the sheath pellets and introducing this mixture of sheath pellets and lubricant material into an extruder, the embodiment of mixing the lubricant material with the sheath pellets and the embodiment of introducing this mixture into the extruder, and
introducing the sheath pellets into the extruder and subsequently introducing the lubricating material into the extruder prior to contacting the cable core.

[0024] Advantageously, the lubricant material is selected from the group consisting essentially of fatty amides, hydrocarbon oils, fluorinated organic resins, and mixtures thereof. The lubricant material may be incorporated at any point in the manufacturing process before the formation of the sheath, and depending upon the material, may be heated prior to mixing with the sheath material.

[0025] In instances where the sheath material has a high melting or softening temperature, or for other reasons such as processibility, efficiency of the process, etc. the lubricant material may be added to the sheath material as the sheath material is being formed. If the final cable construction is such that there are two or more different sheath materials applied to the cable core, the lubricant material need only be incorporated into the outermost sheath material.

[0026] Advantageous fatty amides and metallic fatty acids include, but are not limited to erucamide, oleamide, oleyl palmitamide, stearyl stearamide, stearamide, behenamide, ethylene bisstearamide, ethylene bisoleamide, stearyl erucamide, erucyl stearamide, and the like. Advantageous hydrocarbon oils include, but are not limited to, mineral oil, silicone oil, and the like. Lubricating materials suitable for the present invention further include plasticizers, dibasic esters, silicones, anti-static amines, organic amines, ethanolamides, mono- and di-glyceride fatty amines, ethoxylated fatty amines, fatty acids, zinc stearate, stearic acids, palmitic acids, calcium stearate, lead stearate, sulfates such as zinc sulfate, etc., and the like. The above lubricating materials may be used individually or in combination.

[0027] Suitable lubricating materials include fluorinated organic resins, such as a polymer of one or more fluorinated monomers selected from tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene and the like. The fluorinated resin is preferably used in the form of a powder, emulsion or aqueous dispersion.

[0028] The electrical cable is characterized in that it incorporates a lubricating material in the sheath coating, which lubricating material blooms, migrates toward the exterior, or permeates the cable sheath. If desired the sheath material may be somewhat porous, thereby resulting in the lubricating material more readily migrating toward the exterior surface of the sheath.
[0029] The sheath of the cable thus contains sufficient lubricating material to provide an exterior surface with reduced coefficient of friction.

[0030] The equipment for the manufacturing of electrical cables is characterized in that it may include a device for the incorporation of a lubricating material into the sheath material prior to application to the cable core.

[0031] Said equipment may also include a tank to maintain the lubricating material, a section for mixing the lubricating material and sheath material and a section for applying the mixture to the cable core.

[0032] Moreover, the equipment may also include a pressure adjusting valve(s), a level indicator(s) of the lubricating material tank and sheath material tanks, and a pressure gauge(s).

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] For a better understanding of the present invention, a drawing is attached in which, schematically and by way of example, an embodiment is shown.

[0034] FIG. 1 is a schematic elevation view of equipment for manufacturing electrical cable, according to the method of the present invention.

DESCRIPTION OF THE BEST MODE

[0035] As can be appreciated in the figure, the equipment 11 for manufacturing electrical cable 12 of the present invention includes a reel 13 which supplies conductor wire 14 to an extruding head 15, which in turn includes a tank 16 of plastic material 17; a tank 18 of lubricating material 19 for mixture with plastic material 17 and for application onto the exterior surface of the conductor wire 14; a cooling box 20 for cooling the exterior surface of the plastic material 17 — lubricating material 19 mixture which is in a state of fusion or semifusion on the conductor wire or cable core 14; and a reel 21 for taking up the resulting cable 12.
[0036] As can also be seen in the figures, the tank 18 may include a section 22 through which the lubricating material can pass into tank 16 and be mixed with plastic material 17 and a section 23 through which lubricating material 19 can be introduced directly into extruding head 15 at a point after plastic material 17 has been introduced into extruding head 15.

[0037] Plastic material 17 includes known materials used in electrical wire and cable products such as polyethylene, polypropylene, polyvinylchloride, organic polymeric thermosetting and thermoplastic resins and elastomers, polyolefins, copolymers, vinyls, olefin-vinyl copolymers, polyamides, acrylics, polyesters, fluorocarbons, and the like.

[0038] The present inventive method and the novel cable produced thereby includes the step of coating conductor wire or cable core 14 with the mixture of plastic material 17 and lubricating material 19 and optionally cooling the coated cable formed thereby.

[0039] Cable 12 is thus obtained with at least one conducting core and an exterior coating, the main characteristic of which is that its coefficient of friction is low, which makes it easier to install since it slips on the surfaces with which it comes into contact.

[0040] Another beneficial property gained by the present invention is an increased resistance to “burn-through.” “Burn-through,” or “pull-by,” results from friction generated by pulling one cable over another during installation, causing deterioration and eventual destruction to its own jacket as well as the jacket of the other cable. When using a lubricated cable of this invention the number of six-inch-stroke cycles required to produce burn-through was increased from 100 to 300.

[0041] The present inventive cable may also enhance ease in stripping the jacket from the cable end – termed stripability.

[0042] A further benefit of the present invention is the reduction of jacket rippling. Jacket rippling results from the friction of the jacket against building materials, causing the jacket material to stretch and bunch. Jacket damage may result. Installation situations, which repeatedly caused jacket rippling in unlubricated cable caused no rippling in lubricated cable jackets.
[0043] Despite the fact that reference has been made to specific embodiments of the invention, it will be clear to experts in the subject that the cable, the method and the equipment described can be varied and modified in many ways, and that all the details mentioned can be replaced by others which are technically equivalent without departing from the sphere of protection defined by the attached claims.

[0044] For example, cable 12 on which plastic material 17 and lubricating material 19 are applied can be of any desired configuration and can be an optical fiber cable or the like.

[0045] It has been found experimentally that the use of a lubricating material disclosed herein is suitable for providing a considerable reduction of the coefficient of friction of the cable, which means that it is easier to install without adding any external element to it, which is one of the objectives sought in the present invention.

EXAMPLE

[0046] To understand the affects of the jacket lubricant system on the ease of pull variations of the UL (Underwriters Laboratories, Inc.) joist pull test was utilized.

[0047] The joist pull test outlined in UL 719 Section 23 establishes the integrity of the outer PVC jacket of Type NM-B constructions when subjected to pulling through angled holes drilled through wood blocks.

[0048] The test apparatus consists of an arrangement of 2"x4" wood blocks having holes drilled at 15° drilled through the broad face. Four of these blocks are then secured into an frame so that the centerlines of the holes are offset 10" to create tension in the specimen through the blocks. A coil of NM-B is placed into a cold-box and is conditioned at -20°C for 24 hours. A section of the cable is fed through corresponding holes in the blocks where the end protruding out of the last block is pulled through at 45° to the horizontal. The cable is then cut off and two other specimens are pulled through from the coil in the cold-box. Specimens that do not exhibit torn or broken jackets and maintain conductor spacing as set fort in the Standard are said to comply.
UL Joist-Pull Test

[0049] Pulling wire through the wood blocks provides a more direct correlation of the amount of force required to pull NM-B in during installation. Because of this relationship, the joist-pull test is initially the basis for which ease of pulling is measured, but a test for quantifying this “ease” into quantifiable data had to be established.

[0050] A variable-speed device was introduced to pull the cable specimen through the blocks. An electro-mechanical scale was installed between the specimen and the pulling device to provide a readout of the amount of force in the specimen. To create back tension a mass of known weight (5-lbs) was tied to the end of the specimen.

[0051] Data recorded proved that NM-B constructions having surface lubricates reduced pulling forces.

[0052] A 12-V constant speed winch having a steel cable and turning sheave was employed; the turning sheave maintains a 45 degree pulling angle and provides a half-speed to slow the rate of the pulling so that more data points could be obtained. Holes were drilled in rafters whereby specimens could be pulled by the winch.

[0053] It was found using this method that lubricated specimens yielded approximately a 50% reduction in pulling force when compared to standard, non-lubricated NM-B specimens.
The results are shown in Tables 1 and 2 wherein the data was recorded at five second intervals.

Modified Joist-Pull Test
TABLE 1

<table>
<thead>
<tr>
<th>Test Pt. Descr.</th>
<th>Manufacturer A1</th>
<th>Manufacturer A2</th>
<th>Manufacturer A3</th>
<th>Manufacturer B1</th>
<th>Manufacturer B2</th>
<th>Manufacturer B3</th>
<th>Control 1</th>
<th>Control 2</th>
<th>Present Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Point</td>
<td>26.8</td>
<td>49.3</td>
<td>37.8</td>
<td>37.4</td>
<td>16.5</td>
<td>41.9</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Point</td>
<td>34.6</td>
<td>51.1</td>
<td>35.2</td>
<td>38.1</td>
<td>41.6</td>
<td>42</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Point</td>
<td>33.7</td>
<td>46.8</td>
<td>32</td>
<td>33</td>
<td>40.2</td>
<td>38.7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Point</td>
<td>38.8</td>
<td>49.8</td>
<td>34.7</td>
<td>34.6</td>
<td>43.1</td>
<td>29.6</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Point</td>
<td>33.1</td>
<td>44.8</td>
<td>34.2</td>
<td>32.5</td>
<td>41.3</td>
<td>34.3</td>
<td>20.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Point</td>
<td>28.6</td>
<td>44.7</td>
<td>32.2</td>
<td>33.2</td>
<td>42.5</td>
<td>35.9</td>
<td>15.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Point</td>
<td>5.5</td>
<td>51</td>
<td>32.2</td>
<td>33.9</td>
<td>41.1</td>
<td>37</td>
<td>17.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Point</td>
<td>26.8</td>
<td>49.2</td>
<td>33.9</td>
<td>33</td>
<td>40.9</td>
<td>38.4</td>
<td>17.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Point</td>
<td>21.9</td>
<td>52.5</td>
<td>32.6</td>
<td>30.6</td>
<td>42.7</td>
<td>37.3</td>
<td>21.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>30.51</td>
<td>48.69</td>
<td>33.87</td>
<td>34.03</td>
<td>41.45</td>
<td>37.22</td>
<td>19.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AAA - Denotes Outliers
Test in Table 1 performed at a constant speed with winch using 1/2 speed pulley
Test in Table 2 performed on cable with a 5# weight suspended at building entry

Std. Prod.

<table>
<thead>
<tr>
<th>Average</th>
<th>Present Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.6289</td>
<td>19.37</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Point</td>
<td>34</td>
<td>32.6</td>
<td>50</td>
<td>47.5</td>
<td>40.2</td>
<td>21.5</td>
<td>12.3</td>
</tr>
<tr>
<td>2nd Point</td>
<td>35</td>
<td>35.7</td>
<td>50.6</td>
<td>38.3</td>
<td>37.5</td>
<td>22.9</td>
<td>12.8</td>
</tr>
<tr>
<td>3rd Point</td>
<td>35.5</td>
<td>31.2</td>
<td>46.7</td>
<td>43.2</td>
<td>27.5</td>
<td>29</td>
<td>12.1</td>
</tr>
<tr>
<td>4th Point</td>
<td>37.7</td>
<td>35</td>
<td>44.5</td>
<td>46</td>
<td>36.8</td>
<td>22.4</td>
<td>14.9</td>
</tr>
<tr>
<td>5th Point</td>
<td>40.5</td>
<td>30.6</td>
<td>46.2</td>
<td>39.5</td>
<td>36</td>
<td>23.3</td>
<td>11.9</td>
</tr>
<tr>
<td>6th Point</td>
<td>32.9</td>
<td>28.8</td>
<td>40.9</td>
<td>35.7</td>
<td>41.2</td>
<td>21.1</td>
<td>12.5</td>
</tr>
<tr>
<td>7th Point</td>
<td>44.2</td>
<td>32.4</td>
<td>52.8</td>
<td>37.5</td>
<td>37</td>
<td>21.6</td>
<td>11.7</td>
</tr>
<tr>
<td>8th Point</td>
<td>43</td>
<td>32.4</td>
<td>40.7</td>
<td>27.7</td>
<td>31.7</td>
<td>22.5</td>
<td>11.7</td>
</tr>
<tr>
<td>9th Point</td>
<td>43.4</td>
<td>30.5</td>
<td>40</td>
<td>31.1</td>
<td>19.2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10th Point</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>38.62</td>
<td>32.13</td>
<td>45.82</td>
<td>38.50</td>
<td>35.99</td>
<td>22.61</td>
<td>12.25</td>
</tr>
</tbody>
</table>

14-2/12-2
Control Avg. 40.103241
14-2/12-2
Invention A 22.61
14-2/12-2
Invention B 12.25
What is claimed is:

1. A method for the manufacture of an electrical cable including:
 providing an electrical conductor wire;
 providing a plastic material;
 providing a lubricating material;
 mixing the plastic material and said lubricating material; and
 coating the conductor wire with said mixture of plastic material and lubricating material.

2. The method of claim 1, wherein the plastic material is in the form of pellets.

3. The method of claim 2, wherein the lubricating material is incorporated or mixed with the plastic material prior to or as the plastic material is formed into pellets.

4. The method of claim 1, wherein the lubricating material is introduced to and mixed with the plastic material prior to coating the conductor wire.

5. The method of claim 1, wherein the step of coating the conductor wire is accomplished by extruding the mixture of plastic material and lubricating material onto the conductor wire.

6. The method of claim 5, wherein a mixture of the plastic material and lubricating material is introduced into the extruder.

7. The method of claim 5, wherein the plastic material is introduced into the extruder and the lubricating material is subsequently introduced into the extruder.

8. The method according to claim 1, wherein the lubricating material is selected from the group consisting essentially of fatty amides, hydrocarbon oils, plasticizers, silicone oils and mixtures thereof.
9. An electrical cable including at least one conductor core and at least one coating of plastic material having a lubricating material incorporated therein.

10. An apparatus for the manufacture of an electrical cable including a reel for supplying a conductor wire to an extruding head, said extruding head connected to a tank containing plastic material for coating the conducting wire, and a reel for taking up the cable, including a device for providing a lubricating material to the extruding head.

11. An apparatus for the manufacture of an electrical cable including a reel for supplying a conductor wire to an extruding head, said extruding head connected to a tank containing plastic material for coating the conducting wire, and a reel for taking up the cable, including a device for providing a lubricating material to the tank containing plastic material.

12. A method for manufacturing an electrical cable, comprising:
 providing an electrical conductor wire;
 providing a plastic material;
 providing a lubricating material;
 mixing the plastic material and said lubricating material; and
 coating the conductor wire with said mixture of plastic material and lubricating material wherein the plastic material has a temperature of at least 85°C; and
 cooling coated conductor wire.

13. The method of claim 13, wherein during the coating step, the plastic material has a temperature of approximately 150 degree C.

14. The method of claim 13, wherein during the cooling step, the plastic material and the lubricating material are cooled to approximately 20 degree C.
15. The method of claim 13, wherein the lubricating material is selected from the group consisting of fatty amides, hydrocarbon oils, plasticizers, silicone oils and mixtures thereof.

16. The method of claim 16, wherein the lubricating material comprises oleamide.

17. The method of claim 16, wherein the lubricating material comprises erucamide.

18. The method of claim 16, wherein the lubricating material comprises mineral oil.

19. The method of claim 16, wherein the lubricating material comprises silicone oil.

20. The method of claim 16, wherein the lubricating material comprises dibasic esters.

21. The method of claim 16, wherein the lubricating material comprises ethylenebisstearamide.

22. A method for manufacturing an electrical cable, comprising:
 providing an electrical conductor wire;
 providing a plastic material;
 providing a lubricating material;
 mixing the plastic material and said lubricating material; and
 coating the conductor wire with said mixture of plastic material and lubricating material,
 wherein the plastic material has a temperature of at least 20°C; and
 cooling the coated conductor wire.
23. A method for the manufacture of fiber optic cable including:
 providing a fiber optic wire;
 providing a plastic material;
 providing a lubricating material;
 mixing the plastic material and said lubricating material;
 coating the wire with said mixture of plastic material and lubricating material; and
 cooling the coated fiber optic wire.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : B23P 19/00; H01R/43/00; H01B 5/00, 7/00, 7/29, 11/06; B23B 9/00, 15/00, 27/00, 31/00
 US CL : 29/33F, 748, 825; 174/36, 118, 126.1; 264/45.9, 171.14, 171.19, 171.23; 428/375, 376, 392, 394, 395
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S.: H01R/43/00;

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 None

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16-21</td>
</tr>
<tr>
<td>Y</td>
<td>US 3,108,981 A (Clark et al) 29 October 1963 (29.10.1963), the whole document.</td>
<td>1, 4-9 and 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 3, and 12-23</td>
</tr>
<tr>
<td>X</td>
<td>US 3,064,073 A (Downing et al) 13 November 1962 (13.11.1962), the whole document.</td>
<td>1-9 and 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-23</td>
</tr>
<tr>
<td>Y</td>
<td>US 2,685,707 A (Llewellyn et al) 10 August 1954 (10.08.1954), Col. 9, line 1 and 60; Col. 11, line 11.</td>
<td>14, 18, 19 and 22</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.
- See patent family annex.

* = Special categories of cited documents:
 "A" = document defining the general state of the art which is not considered to be of particular relevance
 "E" = earlier application or patent published on or after the international filing date
 "L" = document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" = document referring to an oral disclosure, use, exhibition or other means
 "P" = document published prior to the international filing date but later than the priority date claimed
 "T" = later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" = document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" = document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "A" = document member of the same patent family

Date of the actual completion of the international search: 07 November 2005

Date of mailing of the international search report: 20 DEC 2005

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of any additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-9 and 12-24

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
BOX III. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-9 and 12-24, drawn to electrical cable and method for manufacturing of an electrical cable.

Group II, claim(s) 10 and 11, drawn to apparatus for manufacturing of an electrical cable.

The inventions listed as Groups I and II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group I lacks the same or corresponding special features of reels for supplying and taking up the cable as required in Group II.

Group II lacks the same or corresponding special feature of mixing the plastic and lubricating material as required in Group I.