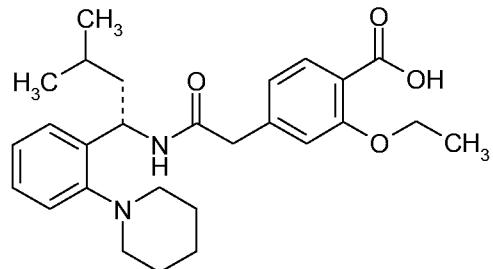



## TABLET FORMULATION COMPRISING REPAGLINIDE AND METFORMIN

The present invention relates to a pharmaceutical fixed dose combination tablet comprising repaglinide and metformin. The present invention also provides a method of 5 producing said tablet.

## BACKGROUND OF THE INVENTION

Metformin disclosed in US 3,174,901 is a long-acting biguanide antidiabetic that is mainly 10 known for its antihyperglycaemic activity and is widely used in the treatment of non-insulin dependent diabetes mellitus (NIDDM). Its chemical name is *N,N*-dimethylimidodicarbonimidic diamide having the following structure:




15

Metformin is manufactured and supplied as hydrochloride salt form.

Metformin is freely soluble in water (Martindale, 33<sup>rd</sup> Edition, page 332 (2002)). It is also known to be a poorly compressible substance. A poorly compressible substance is one 20 that does not bind to form a tablet upon application of compression force. Therefore, such substances may require additional processing and special formulating before they can be compressed into tablets. With such substances, the additional processing necessary is usually a wet granulation step, as direct compression would not be effective. These substances may be formulated with binders or other materials that have high binding 25 capacity (or that act as an aid to compressibility) such that the non-bonding properties of the non-compressible material are overcome. Other techniques to assist compression include having residual moisture in the blend prior to compression or having the non-compressible material in very low amounts in the tablet formulation. High-dose drugs, such as metformin, do not lend themselves to direct compression because of the relatively 30 low proportion of diluent or compression aid in the tablet, poor powder flow and poor compressibility.

Repaglinide is i.a. disclosed in European patent application No. 0 589 874. It is a short-acting hypoglycaemic antidiabetic with the chemical name (S)-2-Ethoxy-4-[2-[[3-methyl-1-[2-(1-piperidinyl)phenyl]butyl]amino]-2-oxoethyl]benzoic acid having the following formula:



5

The solubility of the drug substance repaglinide is quite low (9 micro gram/ml in pH 5.0 buffer solution).

10

## OBJECTS OF THE INVENTION

The mechanisms of action of repaglinide and metformin are considered to cooperate favourable in the treatment of type I and II diabetes mellitus.

Combination therapy of repaglinide with metformin is expected to show synergistic 15 therapeutic efficacy in the treatment of type I and type II diabetes mellitus. As this assumption gets supported by an increasing amount of clinical data, there is an increasing desire for a fixed dose combination drug comprising the active ingredients repaglinide and metformin.

It was therefore an object of the present invention to provide a fixed-dose combination 20 drug comprising repaglinide and metformin, said combination drug displaying the fast dissolution and immediate drug release profile combined with adequate stability.

Generally, a fixed-dose combination of drugs intended for immediate release is prepared by either making a powder mixture or a co-granulate of the two active ingredients with the necessary excipients, normally keeping the basic formulation of the corresponding mono-25 drug preparation and simply adding the second drug component.

With a combination of repaglinide and metformin, this approach was not feasible due to the fact that metformin has to be provided in a much higher quantity than repaglinide and due to the differences in solubility.

However, both repaglinide and metformin are chemical compounds difficult to handle. Therefore, an oral fixed dose combination drug which combines the features of pharmacologic efficacy, adequate drug stability and a reliable and robust method of manufacture has to overcome a number of technical problems. It is an object of the 5 present invention to provide such a fixed dose combination drug.

It is an object of the present invention to provide a pharmaceutical composition that addresses the general challenges associated with the development of a pharmaceutical product, the specific challenges associated with the individual active compounds 10 incorporated in the dosage form and also the challenges associated with bringing the active substances into combination.

A particular challenge associated with this combination is to ensure the bioequivalence of each active compound to the respective components when administered separately in spite of the biopharmaceutical problems associated with repaglinide and the different 15 physical and chemical properties of both actives.

It is another object of the present invention to obtain a formulation of repaglinide and metformin with a size suitable for administration and acceptable to patients in spite of the fact that the composition of the invention shall contain a high amount of metformin 20 (metformin is usually prescribed at 850 mg once or twice a day or at 500 mg three to four times a day). This considerable mass of metformin is to be combined in the same pharmaceutical dosage unit with repaglinide in smaller quantities than metformin (repaglinide is usually prescribed at 0.5 to 2 mg three to four times a day). Prior art teaches that such combination are associated with a large quantity of excipient in order to 25 maintain an acceptable bioavailability (US 6,074,670), what would result in a large tablet.

A further object of the present invention is to obtain a formulation which gives rise to high patient compliance, by reducing the number of unit forms of administration that need to be taken, such as tablets. Diabetes mellitus type II often requires treatment with more than 30 one active substance. In addition, amongst type II diabetes, the prevalence of other disorders associated with insulin resistance (dyslipidaemia, hypertension), which frequently require additional pharmacological forms of treatment, is high. Patient compliance under such circumstances is quite a problem, because individual dosage units are necessarily quite large in view of the high amounts of active substances which need to

be administered, and the practical limits as regards the mass of pharmaceutical compositions which can be administered to a patient as a single dosage unit.

An even further object of the present invention is to provide a pharmaceutical composition  
5 containing both active components, repaglinide and metformin, whilst maintaining a bioavailability of each of the two components equivalent to or superior to that obtained with repaglinide alone or metformin alone. The object of the present invention is to obtain a formulation wherein both products are bioequivalent or suprabioavailable compared to bioavailability of monotherapy.

10

Another object of the present invention is to provide a process for preparing the pharmaceutical compositions fulfilling the objectives listed above, such processes being able to be accomplished with a limited number of different steps and being inexpensive.

15

## SUMMARY OF THE INVENTION

In accordance with the present invention, it has now been found that the solubility problem of the drug substance repaglinide could be overcome by using a granulate obtained by a spray drying (SD) process or by using the active triturate, which is a mixture of repaglinide  
20 SD granulate and microcrystalline cellulose. Repaglinide SD granulate is the spray dried granulate of the mixture of repaglinide, Poloxamer 188, Povidone K 25 and meglumine.

Metformin hydrochloride is highly soluble in water and drug load of metformin is more than 80% w/w of the composition, so this formulation is too sensitive to the amount of  
25 moistening water for high shear granulation. The granulates manufactured by high share granulation have poor compressibility.

Repaglinide and metformin fixed-dose tablets which have good content uniformity, fast dissolution and enough hardness have been developed. Improvement of the repaglinide's  
30 content uniformity was investigated intensively; this problem was solved by the co-granulation of repaglinide active triturate and metformin using the fluidized bed granulation technique. For the enough hardness of the tablet, fluidized bed granulation is needed whereas direct compression and high-share granulation are not effective for improving the tablet properties. The amount of binder and microcrystalline cellulose (MCC) are also

important for the properties. The moisture content of the granulate also has a big impact on the hardness.

## DETAILED DESCRIPTION OF THE INVENTION

5

A first aspect of the present invention is a pharmaceutical tablet comprising repaglinide and metformin in a fast disintegrating tablet matrix [The term "disintegrating tablet matrix" refers to a pharmaceutical tablet base formulation having immediate release characteristics that readily swells and disintegrates in a physiological aqueous medium.]

10 The tablet preferably contains repaglinide in substantially amorphous form. [The term "substantially amorphous" refers to repaglinide comprising amorphous constituents in a proportion of at least 90%, preferably at least 95%, as determined by X-ray powder diffraction measurement].

15 Substantially amorphous repaglinide may be produced by any suitable method known to those skilled in the art, for instance, by freeze drying of aqueous solutions, coating of carrier particles in a fluidized bed, and solvent deposition on sugar pellets or other carriers. Preferably, however, the substantially amorphous repaglinide is prepared by the specific spray-drying method described hereinafter.

20 The other active ingredient metformin is generally supplied in its free basic form, although pharmaceutically acceptable salts may also be used. Preferred is the metformin hydrochloride with a specific particle size distribution, which is usually employed as a fine-crystalline powder, optionally in fine-milled, peg-milled or micronized form. For instance, the particle size distribution of metformin hydrochloride in the tablet, as determined by the 25 method of laser light scattering in a dry dispersion system (Sympatec Helos/Rodos, focal length 100 mm) is preferably as follows:

$d_{10}$  :  $\leq 20 \mu\text{m}$ , preferably 2 to 10  $\mu\text{m}$

$d_{50}$  : 5 to 100  $\mu\text{m}$ , preferably 10 to 50  $\mu\text{m}$

30  $d_{90}$  : 20 to 150  $\mu\text{m}$ , preferably 40 to 100  $\mu\text{m}$

The tablet generally contains 0.1 to 20 mg, preferably 0.5 to 10.0 mg, of repaglinide and 100 to 3000 mg, preferably 200 to 1000 mg, of metformin hydrochloride.

In an even preferred embodiment, the disintegrating tablet matrix comprises a binder, a filler, a disintegrant and, optionally, other excipients and/or adjuvants.

The tablet composition according to the present invention generally comprises 5 to 95 wt.%, preferably 10 to 80 wt.%, of active ingredients; 0 to 20 wt.%, preferably 3 to 10 wt.%, of dry binder; 0 to 10 wt.%, preferably 1 to 5 wt.%, of wet granulation binder; 0 to 95 wt.%, preferably 20 to 90 wt.%, of filler and 0 to 50 wt.%, preferably 1 to 10 wt.%, of disintegrant.

10 The binder is selected from the group consisting of dry binders and/or wet granulation binders. Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose. Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-15 propylmethylcellulose.

The filler is preferably selected from anhydrous lactose, spray-dried lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, microcrystalline cellulose and lactose monohydrate.

20 Suitable disintegrants are, e.g., sodium starch glycolate, polacrilin potassium, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch; sodium starch glycolate and polacrilin potassium being preferred.

25 The other excipients and/or adjuvants are, for instance, selected from carriers, lubricants, flow control agents, crystallization retarders, solubilizers, colouring agents, pH control agents, surfactants and emulsifiers, specific examples of which are given below. The excipients and/or adjuvants are preferably chosen such that a non-acidic, fast dissolving tablet matrix is obtained.

30 Other (optional) constituents may, for instance, be chosen from one or more of the following excipients and/or adjuvants in the amounts indicated:

0 to 10 wt.%, preferably 0.1 to 5 wt.%, of lubricants;

0 to 10 wt.%, preferably 1 to 5 wt.%, of flow control agents;

0 to 10 wt.%, preferably 0 to 0.5 wt.%, of colouring agents;

The other excipients and adjuvants, if used, are preferably selected from diluents and carriers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic calcium phosphate, dibasic sodium phosphate, etc.; surfactants and emulsifiers such as Pluronic, polyethylene glycols, sodium carboxymethyl cellulose, polyethoxylated and hydrogenated castor oil, etc.; and mixtures of two or more of these excipients and/or adjuvants.

The tablets obtained release the active ingredients rapidly and in a largely pH-independent fashion, with complete release occurring within less than 15 minutes and release of the major fraction occurring within less than 5 minutes.

In accordance with the present invention, a substantially increased dissolution rate of the active ingredients is achieved. Normally, at least 70% and typically at least 90% of the drug load are dissolved after 30 minutes.

The tablets of the present invention tend to be slightly hygroscopic and therefore are preferably packaged using a moisture-proof packaging material such as aluminium foil blister packs, or polypropylene tubes and HDPE bottles which preferably contain a desiccant.

In a second aspect, the present invention relates to a method of producing the pharmaceutical tablet according to the present invention comprising the steps of:

- (a) preparing a granulate by granulating and drying a mixture of repaglinide and metformin with a binder solution, using the fluidized bed granulation process,
- 5 (b) mixing the granulate obtained in step (b) with a filler and a disintegrant,
- (c) blending the mixture obtained in step (c) with other excipients and/or adjuvants and
- 10 (d) compression of the product obtained in step (d) into pharmaceutical tablets.

Repaglinide is preferably used in the form of a spray dried granulate or as an active triturate as mentioned hereinbefore; metformin is preferably used in the form of its hydrochloride salt with the specific size distribution as mentioned hereinbefore.

15 According to a further embodiment of the invention, the binder in step (a) is selected from the group consisting of dry binders and/or the group of wet granulation binders and is solved in purified water or a polar organic solvent, preferably ethanol or isopropanol. The solution thus obtained has a concentration of 0.1 to 30% by weight, preferably of 1 to 10%  
20 by weight.

Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose. Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-  
25 propylmethylcellulose.

The total amount of dry binder is so chosen as to be 0 to 20 wt.%, preferably 3 to 10 wt.%, related to the final tablet formulation.

The total amount of wet granulation binder is so chosen as to be 0 to 10 wt.%, preferably 1 to 5 wt.%, related to the final tablet formulation.

30 According to an even further embodiment the moisture content of the granulate obtained in step (a) is controlled to be between 0.1 to 1.5% after drying.

According to an even further embodiment the filler in step (b) is selected from the group consisting of anhydrous lactose, spray-dried lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, microcrystalline cellulose and lactose monohydrate.

The total amount of filler is so chosen as to be 0 to 95 wt.%, preferably 20 to 90 wt.%,

5 related to the final tablet formulation.

According to an even further embodiment the disintegrant in step (b) is selected from the group consisting of sodium starch glycolate, polacrilin potassium, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch; sodium starch 10 glycolate and polacrilin potassium being preferred.

The total amount of disintegrant is so chosen as to be 0 to 50 wt.%, preferably 1 to 10 wt.%, related to the final tablet formulation.

According to an even further embodiment the amount of disintegrant in step (b) is from 1

15 to 500 mg, preferably from 10 to 100 mg, per tablet.

According to an even further embodiment the other excipients and/or adjuvants in step (c) are selected from the group consisting of carriers, lubricants, flow control agents, crystallization retarders, solubilizers, colouring agents, pH control agents, surfactants and 20 emulsifiers, specific examples of which are given below. The excipients and/or adjuvants are preferably chosen such that a non-acidic, fast dissolving tablet matrix is obtained.

The other excipients and adjuvants, if used, are preferably selected from diluents and carriers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like

25 hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as

30 Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic calcium phosphate, dibasic sodium phosphate, etc.; surfactants and emulsifiers such as Pluronic, polyethylene glycols,

sodium carboxymethyl cellulose, polyethoxylated and hydrogenated castor oil, etc.; and mixtures of two or more of these excipients and/or adjuvants.

The total amount of lubricant is so chosen as to be 0 to 10 wt.%, preferably 0.1 to 5 wt.%, related to the final tablet formulation.

5 The total amount of flow control agent is so chosen as to be 0 to 10 wt.%, preferably 1 to 5 wt.%, related to the final tablet formulation.

The total amount of colouring agent is so chosen as to be 0 to 10 wt.%, preferably 0 to 0.5 wt.%, related to the final tablet formulation.

10 According to an even further embodiment the hardness of the tablet obtained in step (d) is controlled to be between 20 and 300 N, preferably between 50 to 200 N.

For preparing the tablet according to the present invention, the tablet layer composition may be compressed in the usual manner in a monolayer tablet press, e.g. a high-speed

15 rotary press in a bilayer or multilayer tabletting mode.

Although the monolayer tablet is the preferred form according to the present invention, it is also possible to prepare a bilayer or even multilayer, wherein the tablet layer composition may be compressed in the usual manner as mentioned above in a bilayer or multilayer

20 tablet press.

For instance, the first tablet layer may be compressed at moderate force of 4 to 8 kN, whereas the main compression of first plus second layer is performed at a force of 10 to 300 kN, preferably 15 to 50 kN.

25

It was impossible to make tablets by the direct compression method due to the poor compressibility, even for a formulation which include 100 mg/tablet Povidone K25.

30 In the formulations according to the present invention, the moisture content of the granulate for tabletting should be between 1.5% and 3.0%. If it is lower than 1.5%, it is very difficult to make tablets due to poor compressibility. If it is higher than 3.0%, it is also very difficult due to poor flowability. Preferably, the moisture content should be between 1.8% and 2.5%.

In order to further illustrate the present invention, the following non-limiting examples are given.

## EXPERIMENTAL PART

5

### Example 1

Tablet containing 1.0 mg repaglinide and 650 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 10 | Povidone K25               | 25.0       | mg |
|    | Metformin HCl              | 650.0      | mg |
|    | Repaglinide triturate      | 14.072     | mg |
|    | Polacrilin potassium       | 30.0       | mg |
|    | Microcrystalline cellulose | 90.0       | mg |
| 15 | Magnesium stearate         | <u>5.0</u> | mg |
|    | Total                      | 814.072    | mg |

Preparing procedure:

Povidone K25 was dissolved in purified water (granulation liquid). Metformin HCl and 20 repaglinide triturate were charged into a suitable fluid bed granulator (e.g. WSG-5: Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the granulate was screened using a suitable screening machine with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and polacrilin potassium were mixed 25 together using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed using a suitable mixer (final mixture). The final mixture was compressed by a suitable tableting machine.

### Example 2

30 Tablet containing 1.0 mg repaglinide and 650 mg metformin:

|                       |        |    |
|-----------------------|--------|----|
| Povidone K25          | 37.5   | mg |
| Metformin HCl         | 650.0  | mg |
| Repaglinide triturate | 14.072 | mg |

|                            |            |    |
|----------------------------|------------|----|
| Polacrilin potassium       | 30.0       | mg |
| Microcrystalline cellulose | 60.0       | mg |
| Magnesium stearate         | <u>5.0</u> | mg |
| Total                      | 796.572    | mg |

5

preparing procedure according to Example 1

### Example 3

10 Tablet containing 2.0 mg repaglinide and 650 mg metformin:

|                            |            |    |
|----------------------------|------------|----|
| Povidone K25               | 25.0       | mg |
| Metformin HCl              | 650.0      | mg |
| Repaglinide triturate      | 28.144     | mg |
| 15 Polacrilin potassium    | 30.0       | mg |
| Microcrystalline cellulose | 78.0       | mg |
| Magnesium stearate         | <u>5.0</u> | mg |
| Total                      | 816.144    | mg |

20 preparing procedure according to Example 1

### Example 4

Tablet containing 2.0 mg repaglinide and 650 mg metformin:

25

|                               |            |    |
|-------------------------------|------------|----|
| Povidone K25                  | 37.5       | mg |
| Metformin HCl                 | 650.0      | mg |
| Repaglinide triturate         | 28.144     | mg |
| Polacrilin potassium          | 30.0       | mg |
| 30 Microcrystalline cellulose | 48.0       | mg |
| Magnesium stearate            | <u>5.0</u> | mg |
| Total                         | 798.644    | mg |

preparing procedure according to Example 1

Example 5

Tablet containing 4.0 mg repaglinide and 650 mg metformin:

5

|    |                            |            |    |
|----|----------------------------|------------|----|
|    | Povidone K25               | 25.0       | mg |
|    | Metformin HCl              | 650.0      | mg |
|    | Repaglinide triturate      | 56.288     | mg |
|    | Polacrilin potassium       | 30.0       | mg |
| 10 | Microcrystalline cellulose | 54.0       | mg |
|    | Magnesium stearate         | <u>5.0</u> | mg |
|    | Total                      | 820.288    | mg |

preparing procedure according to Example 1

15

Example 6

Tablet containing 4.0 mg repaglinide and 650 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 20 | Povidone K25               | 25.0       | mg |
|    | Metformin HCl              | 650.0      | mg |
|    | Repaglinide triturate      | 56.288     | mg |
|    | Polacrilin potassium       | 30.0       | mg |
|    | Microcrystalline cellulose | 90.0       | mg |
| 25 | Magnesium stearate         | <u>5.0</u> | mg |
|    | Total                      | 856.288    | mg |

preparing procedure according to Example 1

30    Example 7

Tablet containing 1.0 mg repaglinide and 500 mg metformin:

|              |      |    |
|--------------|------|----|
| Povidone K25 | 20.0 | mg |
|--------------|------|----|

|   |                            |            |    |
|---|----------------------------|------------|----|
|   | Metformin HCl              | 500.0      | mg |
|   | Repaglinide triturate      | 14.072     | mg |
|   | Na-carboxymethylcellulose  | 25.0       | mg |
|   | Microcrystalline cellulose | 75.0       | mg |
| 5 | Magnesium stearate         | <u>2.0</u> | mg |
|   | Total                      | 636.072    | mg |

Preparing procedure:

Povidone K25 was dissolved in purified water (granulation liquid). Metformin HCl and  
 10 repaglinide triturate were charged into a suitable fluid bed granulator (e.g. WSG-5: Powrex  
 Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the  
 granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened  
 granulate, microcrystalline cellulose and Na-carboxymethylcellulose were mixed together  
 using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed  
 15 using a suitable mixer (final mixture). The final mixture was compressed by a suitable  
 tabletting machine.

Example 8

20 Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
|    | Povidone K25               | 20.0       | mg |
|    | Metformin HCl              | 500.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
| 25 | Na-carboxymethylcellulose  | 25.0       | mg |
|    | Microcrystalline cellulose | 75.0       | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 650.144    | mg |

30 preparing procedure according to Example 7

Example 9

Tablet containing 3.0 mg repaglinide and 500 mg metformin:

|   |                            |            |    |
|---|----------------------------|------------|----|
|   | Povidone K25               | 20.0       | mg |
|   | Metformin HCl              | 500.0      | mg |
|   | Repaglinide triturate      | 42.216     | mg |
| 5 | Na-carboxymethylcellulose  | 25.0       | mg |
|   | Microcrystalline cellulose | 75.0       | mg |
|   | Magnesium stearate         | <u>2.0</u> | mg |
|   | Total                      | 664.216    | mg |

10 preparing procedure according to Example 7

Example 10

Tablet containing 1.0 mg repaglinide and 650 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 15 | Povidone K25               | 20.0       | mg |
|    | Metformin HCl              | 650.0      | mg |
|    | Repaglinide triturate      | 14.072     | mg |
|    | Na-carboxymethylcellulose  | 25.0       | mg |
| 20 | Microcrystalline cellulose | 75.0       | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 786.072    | mg |

preparing procedure according to Example 7

25

Example 11

Tablet containing 1.0 mg repaglinide and 650 mg metformin:

|    |                            |        |    |
|----|----------------------------|--------|----|
| 30 | Povidone K25               | 50.0   | mg |
|    | Metformin HCl              | 650.0  | mg |
|    | Repaglinide triturate      | 14.072 | mg |
|    | Na-carboxymethylcellulose  | 25.0   | mg |
|    | Microcrystalline cellulose | 75.0   | mg |

|                    |               |
|--------------------|---------------|
| Magnesium stearate | <u>2.0</u> mg |
| Total              | 816.072 mg    |

preparing procedure according to Example 7

5

Example 12

Tablet containing 1.0 mg repaglinide and 800 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 10 | Povidone K25               | 50.0       | mg |
|    | Metformin HCl              | 800.0      | mg |
|    | Repaglinide triturate      | 14.072     | mg |
|    | Na-carboxymethylcellulose  | 50.0       | mg |
|    | Microcrystalline cellulose | 100.0      | mg |
| 15 | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 1019.072   | mg |

preparing procedure according to Example 7

20 Example 13

Tablet containing 1.0 mg repaglinide and 800 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 25 | Povidone K25               | 50.0       | mg |
|    | Metformin HCl              | 800.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
|    | Na-carboxymethylcellulose  | 50.0       | mg |
|    | Microcrystalline cellulose | 100.0      | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
| 30 | Total                      | 1033.144   | mg |

preparing procedure according to Example 7

Example 14

Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
|    | Hydroxypropylcellulose     | 20.0       | mg |
| 5  | Metformin HCl              | 500.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
|    | Na-carboxymethylcellulose  | 25.0       | mg |
|    | Microcrystalline cellulose | 75.0       | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
| 10 | Total                      | 650.144    | mg |

Preparing procedure:

Hydroxypropylcellulose was dissolved in purified water (granulation liquid). Metformin HCl and repaglinide triturate were charged into a suitable fluid bed granulator (e.g. WSG-5: 15 Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and Na-carboxymethylcellulose were mixed together using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed using a suitable mixer (final mixture). The final mixture was 20 compressed by a suitable tabletting machine.

#### Example 15

Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
| 25 | Hydroxypropylcellulose     | 20.0       | mg |
|    | Metformin HCl              | 500.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
|    | Crospovidon                | 25.0       | mg |
| 30 | Microcrystalline cellulose | 50.0       | mg |
|    | Lactose                    | 100.0      | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 650.144    | mg |

Preparing procedure:

Hydroxypropylcellulose was dissolved in purified water (granulation liquid). Metformin HCl, repaglinide triturate and lactose were charged into a suitable fluid bed granulator (e.g. WSG-5: Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid.

5 Thereafter, the granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and Crospovidone were mixed together using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed using a suitable mixer (final mixture). The final mixture was compressed by a suitable tabletting machine.

10

Example 16

Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |         |    |
|----|----------------------------|---------|----|
| 15 | Hydroxypropylcellulose     | 20.0    | mg |
|    | Metformin HCl              | 500.0   | mg |
|    | Repaglinide triturate      | 28.144  | mg |
|    | Croscarmellose             | 25.0    | mg |
|    | Microcrystalline cellulose | 50.0    | mg |
| 20 | Lactose                    | 100.0   | mg |
|    | Magnesium stearate         | 2.0     | mg |
|    | Total                      | 650.144 | mg |

Preparing procedure:

25 Hydroxypropylcellulose was dissolved in purified water (granulation liquid). Metformin HCl, repaglinide triturate and lactose were charged into a suitable fluid bed granulator (e.g. WSG-5: Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and croscarmellose were mixed together using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed using a suitable mixer (final mixture). The final mixture was compressed by a suitable tabletting machine.

30

Example 17

Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
|    | Hydroxypropylcellulose     | 20.0       | mg |
| 5  | Metformin HCl              | 500.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
|    | Croscarmellose             | 25.0       | mg |
|    | Microcrystalline cellulose | 50.0       | mg |
|    | Mannitol                   | 100.0      | mg |
| 10 | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 650.144    | mg |

Preparing procedure:

Hydroxypropylcellulose was dissolved in purified water (granulation liquid). Metformin HCl, repaglinide triturate and mannitol were charged into a suitable fluid bed granulator (e.g. 15 WSG-5: Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and Croscarmellose were mixed together using a suitable mixer. Then, magnesium stearate was added to the mixture and 20 mixed using a suitable mixer (final mixture). The final mixture was compressed by a suitable tabletting machine.

#### Example 18

25 Tablet containing 2.0 mg repaglinide and 500 mg metformin:

|    |                            |            |    |
|----|----------------------------|------------|----|
|    | Hydroxypropylcellulose     | 20.0       | mg |
|    | Metformin HCl              | 500.0      | mg |
|    | Repaglinide triturate      | 28.144     | mg |
| 30 | Croscarmellose             | 25.0       | mg |
|    | Microcrystalline cellulose | 50.0       | mg |
|    | Calcium phosphate          | 100.0      | mg |
|    | Magnesium stearate         | <u>2.0</u> | mg |
|    | Total                      | 650.144    | mg |

Preparing procedure:

Hydroxypropylcellulose was dissolved in purified water (granulation liquid). Metformin HCl, repaglinide triturate and calcium phosphate were charged into a suitable fluid bed

5 granulator (WSG-5: Powrex Co., Ltd.), briefly pre-mixed and granulated by spraying granulation liquid. Thereafter, the granulate was screened using a suitable screen with mesh size of ca 0.5 mm. Screened granulate, microcrystalline cellulose and Croscarmellose were mixed together using a suitable mixer. Then, magnesium stearate was added to the mixture and mixed using a suitable mixer (final mixture). The final  
10 mixture was compressed by a suitable tabletting machine.

Example 19

Tablet containing 2.0 mg repaglinide and 500 mg metformin:

15 Hydroxypropylcellulose 20.0 mg  
Metformin HCl 500.0 mg  
Repaglinide triturate 28.144 mg  
Croscarmellose 25.0 mg  
20 Microcrystalline cellulose 50.0 mg  
Calcium phosphate 100.0 mg  
Magnesium stearate 5.0 mg  
Total 653.144 mg

25 preparing procedure according to Example 18

Example 20

Tablet containing 3.0 mg repaglinide and 650 mg metformin:

30 Povidone K25 25.0 mg  
Metformin HCl 650.0 mg  
Repaglinide triturate 42.216 mg  
Polacrilin potassium 30.0 mg

|                            |            |    |
|----------------------------|------------|----|
| Microcrystalline cellulose | 70.0       | mg |
| Magnesium stearate         | <u>5.0</u> | mg |
| Total                      | 822.216    | mg |

5 Preparing procedure according to Example 1

**PATENT CLAIMS**

1. A pharmaceutical tablet comprising repaglinide and metformin in a disintegrating tablet matrix.

5

2. The tablet of claim 1, comprising at least 90% repaglinide in substantially amorphous form.

3. The tablet of claim 1, wherein repaglinide is present in an amount of 0.1 to 20 mg,

10 more preferably of 0.5 to 10.0 mg.

4. The tablet of claim 1 or 2, wherein metformin is present in the form of its hydrochloride salt with a specific particle size distribution.

15 5. The tablet of claim 4, wherein the particle size distribution of metformin hydrochloride is as follows:

$d_{10}$  :  $\leq 20 \mu\text{m}$ , preferably 2 to 10  $\mu\text{m}$

$d_{50}$  : 5 to 100  $\mu\text{m}$ , preferably 10 to 50  $\mu\text{m}$

20  $d_{90}$  : 20 to 150  $\mu\text{m}$ , preferably 40 to 100  $\mu\text{m}$ .

6. The tablet of claim 4, wherein metformin hydrochloride is present in an amount of 100 to 3000 mg, more preferably of 200 to 1000 mg.

25 7. The tablet of claim 1, wherein the disintegrating tablet matrix has immediate release characteristics.

8. The tablet of claim 1, wherein the dissolving tablet matrix comprises a binder, a filler, a disintegrant and, optionally, other excipients and/or adjuvants.

30

9. The tablet of claim 8, wherein the binder is selected from the group of dry binders and/or the group of wet granulation binders.

10. The tablet of claim 8, wherein the dry binder is present in an amount of 0 to 20 wt.%, preferably 3 to 10 wt.%.

11. The tablet of claim 8, wherein the wet granulation binder is present in an amount of 5 0 to 10 wt.%, preferably 1 to 5 wt.%.

12. The tablet of claim 9, wherein the dry binder is selected from cellulose powder and microcrystalline cellulose.

10 13. The tablet of claim 9, wherein the wet granulation binder is selected from corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose.

15 14. The tablet of claim 8, wherein the filler is selected from anhydrous lactose, spray-dried lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, microcrystalline cellulose and lactose monohydrate.

16. The tablet of claim 8, wherein the filler is present in an amount of 0 to 95 wt.%, 20 preferably 20 to 90 wt.%.

17. The tablet of claim 8, wherein the disintegrant is selected from sodium starch glycolate, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch.

25

18. The tablet of claim 8, wherein the disintegrant is present in an amount of 0 to 50 wt.%, preferably 1 to 10 wt.%.

30 The tablet of claim 8, wherein the other excipients and adjuvants are selected from diluents, carriers, lubricants, flow control agents, crystallization retarders, solubilizers, coloring agents, pH control agents, surfactants and emulsifiers, and mixtures of two or more of these excipients and/or adjuvants.

19. The tablet of claim 8, wherein the lubricant is present in an amount of 0 to 10 wt.%, preferably 0.1 to 5 wt.%.

20. The tablet of claim 8, wherein the flow control agent is present in an amount of 0 to 5 10 wt.%, preferably 1 to 5 wt.%.

21. The tablet of claim 8, wherein the colouring agent is present in an amount of 0 to 10 wt.%, preferably 0 to 0.5 wt.%.

10 22. The tablet of claim 1 packaged in a moisture proof packaging material, such as aluminium foil blister packs, or polypropylene tubes and HDPE bottles.

23. A method for the manufacture of a tablet of claim 1 to treat a condition selected from the group consisting of diabetes mellitus type I and II.

15

24. Process for preparing a pharmaceutical tablet according to claim 1, comprising the steps of

20 (a) preparing a granulate by granulating and drying a mixture of repaglinide and metformin with a binder solution, using the fluidized bed granulation process,

(b) mixing the granulate obtained in step (a) with a filler and a disintegrant,

25 (c) blending the mixture obtained in step (b) with other excipients and/or adjuvants and

(d) compression of the product obtained in step (c) into pharmaceutical tablets.

30 25. The process according to claim 24, wherein in step (a) repaglinide is used in the form of a spray dried granulate or an active triturate.

26. The process according to claim 24, wherein in step (a) metformin is used in the form of its hydrochloride salt with the specific particle size distribution according to claim 5.

5 27. The process according to claim 24, wherein the binder is selected from the group consisting of dry binders and/or wet granulation binders.

28. The process according to claim 27, wherein the dry binder is selected from the group consisting of cellulose powder and microcrystalline cellulose.

10

29. The process according to claim 27, wherein the total amount of dry binder is so chosen as to be 0 to 20 wt.%, preferably 3 to 10 wt.%, related to the final tablet formulation.

15

30. The process according to claim 27, wherein the wet granulation binder is selected from the group consisting of corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethyl-cellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxylpropylmethyl-cellulose.

20

31. The process according to claim 27, wherein the total amount of wet granulation binder is so chosen as to be 0 to 10 wt.%, preferably 1 to 5 wt.%, related to the final tablet formulation.

25

32. The process according to claim 24, wherein the binder is solved in purified water or a polar organic solvent.

33. The process according to claim 24, wherein the polar organic solvent is ethanol or isopropanol.

30

34. The process according to claim 24, wherein the binder solution has a concentration of 0.1 to 30% by weight.

35. The process according to claim 24, wherein in step (a) moisture content of the granulate is controlled to be between 0.1 to 1.5 % after drying.

36. The process according to claim 24, wherein the filler in step (b) is selected from  
5 the group consisting of anhydrous lactose, spray-dried lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, microcrystalline cellulose and lactose monohydrate.

37. The process according to claim 36, wherein the total amount of filler is so chosen as to be 0 to 95 wt.%, preferably 20 to 90 wt.%, related to the final tablet formulation.

10

38. The process according to claim 24, wherein the disintegrant in step (b) is selected from the group consisting of sodium starch glycolate, polacrilin potassium, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch.

15

39. The process according to claim 38, wherein the total amount of disintegrant is so chosen as to be 0 to 50 wt.%, preferably 1 to 10 wt.%, related to the final tablet formulation.

20

40. The process according to claim 24, wherein the other excipients and/or adjuvants in step (c) are selected from the group consisting of carriers, lubricants, flow control agents, crystallization retarders, solubilizers, colouring agents, pH control agents, surfactants and emulsifiers.

25

41. The process according to claim 24, wherein in step (d) the hardness of the tablets is controlled to be between 20 N to 300 N.

# INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/054510

**A. CLASSIFICATION OF SUBJECT MATTER**

INV. A61K31/155 A61K31/451 A61K9/16 A61K9/26 A61P3/10

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                            | Relevant to claim No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 2003/224046 A1 (RAO VINAY ET AL)<br>4 December 2003 (2003-12-04)<br>paragraphs [0011], [0023], [0032];<br>figures; examples<br>-----                                                       | 1-41                  |
| X         | US 2003/162816 A1 (GATLIN MARJORIE REGAN<br>ET AL) 28 August 2003 (2003-08-28)<br>paragraphs [0004], [0005], [0007],<br>[0028], [0047], [0048], [0109] -<br>[0112], [0184]; examples<br>----- | 1-41                  |
| X         | US 2005/124663 A1 (GATLIN MARJORIE R ET<br>AL) 9 June 2005 (2005-06-09)<br>paragraphs [0004], [0047], [0055],<br>[0106], [0110] - [0113]; examples<br>-----<br>-/-                            | 1-41                  |

Further documents are listed in the continuation of Box C.

See patent family annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

\*&\* document member of the same patent family

Date of the actual completion of the international search

2 August 2007

Date of mailing of the international search report

14/08/2007

Name and mailing address of the ISA/  
European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Authorized officer

GIMENEZ MIRALLES, J

## INTERNATIONAL SEARCH REPORT

International application No  
PCT/EP2007/054510

## C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                           | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 2005/054731 A1 (FOLLI FRANCO ET AL)<br>10 March 2005 (2005-03-10)                                                         | 23                    |
| Y         | paragraphs [0033], [0050], [0052],<br>[0058], [0066]<br>-----                                                                | 1-41                  |
| X         | US 2004/086562 A1 (SHANGHVI DILIP<br>SHANTILAL ET AL) 6 May 2004 (2004-05-06)                                                | 23                    |
| Y         | paragraphs [0017], [0099]; examples<br>-----                                                                                 | 1-41                  |
| X         | WO 98/56378 A (NOVO NORDISK A/S;<br>HEMMINGSEN, LISBETH, TOFTE; MUELLER,<br>PETER, GIOERTZ)<br>17 December 1998 (1998-12-17) | 23                    |
| Y         | the whole document<br>-----                                                                                                  | 1-41                  |
| Y         | US 2001/036479 A1 (CAVE GILLIAN ET AL)<br>1 November 2001 (2001-11-01)<br>example 5<br>-----                                 | 1-41                  |
| E         | WO 2007/056387 A (ELIXIR PHARMACEUTICALS<br>INC [US]; GEESAMAN BARD J [US])<br>18 May 2007 (2007-05-18)<br>claims<br>-----   | 1-41                  |

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/EP2007/054510

### Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: 23 because they relate to subject matter not required to be searched by this Authority, namely:  
Although claim 23 does not exclude a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.  Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

### Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

#### Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No

PCT/EP2007/054510

| Patent document cited in search report |    | Publication date |                                                                                                                                                                            | Patent family member(s)                                                                                                                                                                                                                                                                                                                                                                                  |  | Publication date                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|----|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 2003224046                          | A1 | 04-12-2003       | NONE                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| US 2003162816                          | A1 | 28-08-2003       | NONE                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| US 2005124663                          | A1 | 09-06-2005       | NONE                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| US 2005054731                          | A1 | 10-03-2005       | CA<br>EP<br>WO                                                                                                                                                             | 2538333 A1<br>1663395 A1<br>2005025673 A1                                                                                                                                                                                                                                                                                                                                                                |  | 24-03-2005<br>07-06-2006<br>24-03-2005                                                                                                                                                                                                                                                                                                                                                                             |
| US 2004086562                          | A1 | 06-05-2004       | CA<br>EP<br>WO<br>JP<br>MX<br>PL                                                                                                                                           | 2434169 A1<br>1349531 A1<br>02055009 A1<br>2004523510 T<br>PA03006217 A<br>362687 A1                                                                                                                                                                                                                                                                                                                     |  | 18-07-2002<br>08-10-2003<br>18-07-2002<br>05-08-2004<br>15-10-2004<br>02-11-2004                                                                                                                                                                                                                                                                                                                                   |
| WO 9856378                             | A  | 17-12-1998       | AU<br>DK<br>JP<br>JP                                                                                                                                                       | 7906898 A<br>1011673 T3<br>2002500677 T<br>2004155791 A                                                                                                                                                                                                                                                                                                                                                  |  | 30-12-1998<br>09-07-2001<br>08-01-2002<br>03-06-2004                                                                                                                                                                                                                                                                                                                                                               |
| US 2001036479                          | A1 | 01-11-2001       | AR<br>AT<br>AU<br>AU<br>BG<br>BR<br>CA<br>CN<br>CZ<br>DE<br>DK<br>EE<br>EP<br>ES<br>HU<br>JP<br>LT<br>LV<br>MX<br>NO<br>NZ<br>PL<br>PT<br>RO<br>SK<br>TR<br>UA<br>WO<br>ZA | 031547 A1<br>330937 T<br>771705 B2<br>2474001 A<br>106870 A<br>0107564 A<br>2397294 A1<br>1395560 A<br>20022429 A3<br>60120916 T2<br>1250321 T3<br>200200393 A<br>1250321 A1<br>2264967 T3<br>0203852 A2<br>2003519681 T<br>2002085 A<br>12914 B<br>PA02006835 A<br>20023367 A<br>519920 A<br>356210 A1<br>1250321 T<br>121381 B1<br>9832002 A3<br>200201798 T2<br>73968 C2<br>0151463 A1<br>200205528 A |  | 24-09-2003<br>15-07-2006<br>01-04-2004<br>24-07-2001<br>31-03-2003<br>01-10-2002<br>19-07-2001<br>05-02-2003<br>18-06-2003<br>15-02-2007<br>31-07-2006<br>15-10-2003<br>23-10-2002<br>01-02-2007<br>28-04-2003<br>24-06-2003<br>27-01-2003<br>20-01-2003<br>28-01-2003<br>04-09-2002<br>25-06-2004<br>14-06-2004<br>29-09-2006<br>30-04-2007<br>01-07-2003<br>21-11-2002<br>15-10-2002<br>19-07-2001<br>10-10-2003 |
| WO 2007056387                          | A  | 18-05-2007       | NONE                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                    |