wo 2011/119940 A1 |10 00RO R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 AN 0001000 00 000 00
ernational Bureau S,/ ‘ 0 |
. . . ME' (10) International Publication Number

(43) International Publication Date \,!:,: #

29 September 2011 (29.09.2011) WO 2011/119940 A1
(51) International Patent Classification: (74) Agents: FEIG, Philip J. et al.; Telcordia Technologies,

GO6F 11/30 (2006.01) Inc., One Telcordia Drive 5G116, Piscataway, NIJ

08854-415 .

(21) International Application Number: 7S
PCT/US2011/029969 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: 25 Match 2011 (25.03 2011 AO. AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
arc (25.03.2011) CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/317,777 26 March 2010 (26.03.2010) Us NO, NZ, OM, PE, PG, P, PL, PT, RO, RS, RU, SC, SD,
SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(71) Applicant (for all designated States except US): TEL- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

CORDIA TECHNOLOGIES, INC. [US/US]; One Tel- . o
cordia Drive 5G116, Piscataway, NJ 08854-4157 (US). (84) Designated States (unless otherwise indicated, for every
’ ’ kind of regional protection available): ARIPO (BW, GH,

(72) Inventor; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(75) Inventor/Applicant (for US only): AGRAWAL, Hira ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
[US/US]; 4 Terrace Lane, Bridgewater, NJ 08807 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,

[Continued on next page]

(54) Title: DETECTION OF GLOBAL METAMORPHIC MALWARE VARIANTS USING CONTROL AND DATA FLOW
ANALYSIS

(57) Abstract: Malware feature extraction derives semantic sum-
maries of executable malware using global, inter-procedural program
analysis techniques. A combination of global, inter-procedural pro-

:::?IZt—e ral gram analysis techniques constructs semantic summaries of malware
which automatically detect and discard any noise introduced by
,-' O ; transformations and capture the essence of the underlying computa-
G)—>(T) tions in a succinct form. This is achieved in two ways. First, global
control flow analysis techniques are used to derive a high level rep-
o resentation of malware code that, for instance, removes the effects of

subroutine calls. Second, global data flow analysis techniques are
compute_area 'f‘; ':r?‘.a a employed to detect and remove all spurious elements of malware that
o T L do not contribute towards its underlying computation, thereby pre-
(i) venting the resulting summaries from being "corrupted" with unnec-
essary, extraneous elements.

check_equilateral
long_formula

Fignre 4

WO 2011/119940 A1 W00) 00 T O AR

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

DETECTION OF GLOBAL METAMORPHIC MALWARE
VARIANTS USING CONTROL AND DATA FLOW ANALYSIS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/317,777,

filed on March 26, 2010 which is incorperated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to cyber security and specifically relates to
deriving malware signatures of executable malware using global, inter-scale program
analysis techniques that are resistant to global, large-scale malware transformations which

can produce variants with drastically different call graphs and equally dissimilar flow

graphs.

BACKGROUND OF THE INVENTION

The present invention is a novel technique to derive high level signatures of
malware, such as computer viruses and worms that will enable many more variants of such
malware to be detected than what are possible today using existing techniques. The high
level signatures capture semantic malware summaries that are not perturbed by global,
large-scale, automated transformations, which can produce malware variants that differ
drastically from one another. These transformations are made possible by a new breed of
metamorphic malware engines, which take one malware sample as input and use
automated program diversification techniques to produce an exponentially large number of
variants with completely different call graphs and flow graphs. The transformations
include, for instance, randomly splitting code blocks into functions, merging existing
functions into parent functions, and inserting new, irrelevant function calls, complete with
their definitions which may even be recursive. All of these transformations can be applied
repeatedly and recursively, but they are applied in a manner that does not affect the overall
semantics of the code involved. The present invention abstracts away all of these syntactic

1

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

differences and captures their common, semantic content info concise signatures, which

can be used to match future, as yet unknown variants of the same malware.

Prior solutions rely on syntactic signatures, such as code checksums and presence
of specific byte sequences, to locate and isolate malware from genuine, legitimate code.
These methods are easily evaded by polymorphic and metamorphic malware that can
automatically and repeatedly morph themselves, so they can no longer be caught using
prior, existing signatures. Some prior solutions also use flow graphs or call graphs of
malware as their signatures, but such signatures are also casily defeated by performing
global malware transformations which can alter both the call graph and the flow graphs of
individual functions within that malware. The present invention, on the contrary, abstracts
away all of these syntactic differences and captures their common, semantic content into
concise signatures, which can be used to match future, unknown variants of the same

malware.

Many new techniques have been developed for constructing higher level semantic
signatures that do not require exact matches for detecting malware instances. They can,
therefore, match multiple polymorphic variants of the same malware. These techniques,
however, can address only a subset of malware variants. Many of them, for example,
address only variants that are created using relatively simple techxiiques like substituting
one register for another in a block of assembly instructions, replacing an operation such as
“add” with another equivalent operation such as “subtract” while negating its operand,
reordering certain instructions within a block that do not interfere with one another, and
inserting redundant instructions that do not affect the outcome of the computation
involved, among others. Some of these techniques also analyze higher-level
representations of code such as flow graphs of functions rather than raw bytes representing
that code. They can, therefore, accommodate small, local polymorphic changes in malware
code as long as they do not significantly alter the higher, overall structure of the flow
graph involved. They will, however, fail to spot variants that make significant, but
otherwise benign, changes to the branching structures of that flow graph. Other
techniques take a more global view. Instead of examining flow graphs of individual
functions, they analyze their high level calling structure. They will, therefore, catch all

variants that belong to the same malware family as long as they do not drastically alter the

2

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

shape of the call graph involved. Creating variants with significantly different call graphs,
however, is fairly easy. The call graph based techniques too, therefore, will fail to detect
large sets of malware variants that are generated automatically in this way. The inventive
approach based on deriving semantic summaries of malware, on the contrary, is resistant

to such global, large scale transformations.

Prior solutions rely either on delecting syntactic differences among malware
variants or comparing their control structures, which can be easily defeated by modifying
those structures without modifying the underlying semantics. They may also be defeated
by introducing a lot of spurious code in those variants. Using the present invention it is
possible to remove all spurious code using data flow analysis and, furthermore, drastically
simplify the resulting structures using global super-block analysis techniques, which result
in signatures that are easily comparable. This approach required a novel combination of
existing techniques with super block dominator analysis techniques, which is described in
H. Agrawal. Dominators, Super Blocks, and Program Coverage. ACM Symposium on
Principles of Programming Languages, 1994, pp. 25-34 and in H. Agrawal. Efficient
Coverage Testing Using Global Dominator Graphs, ACM Workshop on Program Analysis
Tools and Engineering, 1999, pp. 11-20.

SUMMARY OF THE INVENTION

Prior solutions, as mentioned above, rely on syntactic signatures, such as code
checksums and presence of specific byte sequences, to locate and isolate malware from
genuine, legitimate code. These methods are easily evaded by polymorphic and
metamorphic malware that can automatically and repeatedly morph themselves, so they
can no longer be caught using prior, existing signatures. Some prior solutions also use
flow graphs or call graphs of malware as their signatures, but such signatures are also
easily defeated by performing global malware transformations which can alter both the
call graph and the flow graphs of individual functions within that malware. The present
invention, on the contrary, abstracts away all of these syntactic differences and captures
their common, semantic content into concise signatures, which can be used to match future,

unknown variants of the same malware.

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

Additionally, prior solutions rely either on detecting syntactic differences among
malware variants or comparing their control structures, which can be easily defeated by
modifying those structures without modifying the underlying semantics. They may also be
defeated by introducing a lot of spurious code in those variants. The present invention can
remove all spurious code using data flow analysis and, furthermore, drastically simplify
the resulting structures using global super-block analysis techniques, which result in
signatures that are easily comparable. This approach requires a novel combination of

existing techniques with super block dominator analysis techniques.

The present invention is a technique to derive high level, semantic signatures of
malware such as computer viruses, worms, Trojans, backdoors, and logic bombs, among
others. These signatures may be used to detect not only the malware from which those
signatures were extracted, but also detect their variants, which may have been generated
automatically using metamorphic transformation engines. Without such semantic
signatures, malware detection tools will need to constantly update their signature
databases with signatures of new variants, which is impractical given that a malware

instance may have an exponentially large number of variants.

The present invention has the advantage that one semantic signature can be used to
match an exponentially large number of malware variants that belong the same family. As
these variants can be generated automatically with the help of a metamorphic variant
generation engine, manually generating a signature for each such variant is impractical.
Storing a separate signature for each variant is also infeasible because a malware instance
can have an exponentially Iarge number of variants. Semantic signatures also enable zero-
day malware attacks, becausc new variants do not require the corresponding signatures to

be added to the signature database.

The present invention is a novel form of malware feature extraction that derives
semantic summaries of executable malware using global, inter-procedural program
analysis techniques. These summaries are not perturbed by global, large-scale malware
transformations, which can produce variants with drastically different call graphs and
equally dissimilar flow graphs. Such transformations are enabled by a new breed of
metamorphic malware engines, which take one malware sample as input and use

automated program diversification techniques to produce, on demand, an exponentially
4

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

large number of variants with completely different call graphs and flow graphs. The
transformations include, for instance, randomly splitting code blocks into functions,
merging existing functions into parent functions, and inserting new, irrelevant function
calls, complete with their spurious definitions which may even be recursive. All of these
transformations can be applied repeatedly and recursively, but they are applied in a

manner that does not affect the overall semantics of the code involved.

The invention also has application to detect/classify malware in any form of
software: source code, binary code, byte code, scripts, etc. In addition, there are
applications besides malware detection/classification, for example, it also can be used to

detect plagiarized sofiware.

The present invention will be best understood when the following description is

read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a simple example of an algorithm used to illustrate generation of high

level semantic summaries that are robust in the face of global transformations.

Figure 2 is a variant of the code in Figure 1 depicting global transformations where

code fragments may be pushed into subroutines or pulled out of them.

Figure 3is a flow graph (top) and a call graph (bottom) of the example program in
Figure 1.

Figure 4 is an inter-procedural flow graph (top) and a call graph (bottom) of the

variant in Figure 2,
Figure 5 is a super-block dominator tree of the flow graph in Figure 3.

Figure 6 is a program dependence graph of the example in Figure 1.

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

Figure 7 is a projection of the super-block dominator tree in Figure 5 over nodes in

program slice shown as shaded nodes in Figure 6.

DETAILED DESCRIPTION

Referring now to the figures and in particular refer to the simple example in Figure
1. For brevity of presentation, the code is shown in C. The technique of the present
invention applies equally well to malware code available as disassembled binary or that

written using a scripting language.

The example code in Figure 1 reads the lengths of the three sides of a triangle,
determines what type of triangle it is, and uses that information to compute its arca and
prints the same. Figure 2, shows a variant of this program where some of the code has
been pushed into subroutines, and the code that determines if the given triangle is a
scalene triangle has been replaced with a check for a right triangle. In general, the code in
Figure 2 is an example of global transformation where code fragments may be pushed into
subroutines or pulled out of them. Such transformations may be carried out in an
automated manner and may be applied recursively. Figures 3 and 4 depict both flow
graphs (in the top) and call graphs (in the bottom) of these two examples, respectively.
Dashed nodes and edges in the flow graph represent dummy nodes and edges introduced
to model transfer of control between subroutines. Note that the two {low graphs differ
drastically from one another, and the two call graphs are, equally dissimilar, even though
their underlying programs are semantically equivalent. Techniques that rely on
comparison of flow graphs and call graphs, therefore, will fail to conclude that the two

programs are variants of one another.

The present invention uses a combination of global, inter-procedural program
analysis techniques to construct semantic summaries of malware which automatically
detect and discard any noise introduced by such transformations and capture the essence of
the underlying computations in a succinct form. This is achieved in two ways. First, the
invention uses global control flow analysis techniques to derive a high level representation
of malware code that, for instance, removes the effects of subroutine calls. Second, the

invention employs global data flow analysis techniques to detect and remove all spurious

6

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

elements of malware that do not contribute towards its underlying computation, thereby
preventing the resulting summaries from being “corrupted” with unnecessary, extraneous

elements.

The control flow analysis technique partitions all statements in a given malware
code into “super blocks™ which have the property that any execution path through the
program that includes one statement in a partition necessarily includes all other statements
in the same partition, although they need not be executed contiguously, one after another.
Furthermore, the control flow analysis technique arranges these partitions into a
hierarchical, rooted tree structure, called super-block dominator tree, which has the
additional property that any malware execution path that executes one super-block also

executes all of its ancestor super-blocks in that tree.

Figure 5 shows the super-block dominator tree of the flow graph in Figure 1. If the
corresponding tree for the flow graph in Figure 2 is constructed and all dummy call site,
call return, and function exit nodes from the resulting tree are projected, the result is the
same tree as that shown in Figure 5, with one difference: the check for a scalene triangle
(statement “g”) will be replaced with the check for a right triangle (statement “y”) in the
root node. Note, however, that neither of these checks contribute towards calculation of
area in their respective variants, as that calculation is based solely on whether the triangle
is determined to be an equilateral triangle or not. In other words, these checks, as well as
the statements that are executed based on the outcome of these checks, are completely
spurious, and their inclusion in the resulting summaries makes them “noisy” and, therefore,
susceptible to errors. To overcome this problem, global, inter-procedural data flow
analysis of malware is also performed and the corresponding program slice is constructed
from its program dependence graph, and that slice is used to filter out all spurious, uscless

statements from its super-block dominator tree.

Figure 6 shows the program dependence graph of the example in Figure 1. Solid
lines indicate data dependencies, and dashed lines denote control dependencies. Shaded
nodes indicate the program slice, i.e., program statements that contribute towards its
underlying computation, The graph consists of all nodes that are reachable from all of its

“output” statements that have an “external” program effect. The graph captures data flow

7

10

15

20

25

30

WO 2011/119940 7 PCT/US2011/029969

dependencies, depicted as solid edges, among statements that rely on the value of a
variable and the statements that supply that value. It also captures control dependencies,
shown as dashed edges, between statements and the conditional statements that guard their
execution. The node labeled “m” in that figure denotes an “output” node (the statement
that prints the result of the area computation, in this case), and all nodes that are reachable
from that node by following one or more edges, shown as shaded nodes, represent the
corresponding program slice. In the case of a malware, an output node comprises, for
example, of a statement that makes an illegitimate system call or one that performs an

unauthorized external communication, among others.

Note that, in the above example, the statements involved in determining if the
given triangle is a scalene triangle, i.e., statements “d”, g”, and “h”, do not belong to the
program slice, as they do not have an effect on the value of area being computed. The
assert statement at node “b” is excluded from the program slice for the same reason. If a
variant removed any of these statements from the code, or replaced them with other
spurious statements, as was done in Figure 2 where a check for a scalene triangle was
replaced with a check for a right triangle, the resulting program slice will still match that
of the original program. Similarly, if a variant changed the order of the statements that are
used to classify the given triangle as being an equilateral, scalene, or a right triangle, or it
added new statements that further classified it as an isosceles triangle, it will still match
that summary, because it abstracts away all statements that have no bearing on the

underlying computation.

The program dependence graphs from which program slices are determined,
however, are often cyclic, although the graph in Figure 6 is not, as the corresponding
program in Figure 1 does not contain any loops. Note that determining whether a given
malware represents a variant of a previously known malware involves computing the
“distance” between its summary and the summaries of previously known malware.
Computing distances between two un-rooted, cyclic graphs, however, is a computationally
hard problem. This problem can be greatly simplified if the graphs involved were rooted
trees. The super-block dominator tree representation discussed earlier fulfills this
requirement. But that structure preserves all spurious statements in the analyzed code,

which the program slice eliminates. Accordingly, the two representations are combined by

8

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

projecting the super-block dominator tree in Figure 5 over only those statements that arc
included in the program slice indicated as shaded nodes in Figure 6. Figure 7 shows the
corresponding super-block dominator tree after all unshaded nodes in Figure 6,
representing “noise”, have been projected out from the super-block dominator tree in
Figure 5. This tree represents the high level semantic summary of the example in Figure 1,
and it has all of the desired properties in a semantic summary:

The summary abstracts away relative ordering among statements that are always
executed together, though not necessarily consecutively.

The summary abstracts away spurious statements that do not affect the outcome of
the program.

The summary withstands large scale, recursive transformations which involve
moving code fragments into and out of functions.

The summary works even in presence of recursive function calls.

The summary is relatively easy to compare with summaries derived from other

malware.

To illustrate the robustness of this semantic summary against global
transformations, compute the program slice of the variant in Figure 2, using its system
dependence graph, which consists of the set of program dependence graphs of all of its
subroutines, linked by additional nodes and edges that represent parameter passing among
subroutines and edges that summarize dependencies among those parameters. The
corresponding program slice is then determined using a context-sensitive inter-procedural
graph reachability algorithm starting from the output nodes. The system dependence graph
of the example in Figure 2 is omitted for brevity, but note that the resulting program slice
contains exactly the same nodes as the shaded nodes in Figure 6. This is not surprising as
the variant in Figure 2 performs exactly the same computation as the code in Figure 1. The
only thing that has changed is some of the code has been split into separate subroutines,
thereby making the control flow more complex, and some spurious statements have been
replaced by different set of spurious statements. Projecting out ail non program slice
statements out of its super-block dominator tree yields exactly the same tree as that shown

in Figure 7.

10

15

20

25

30

WO 2011/119940 PCT/US2011/029969

As will be appreciated by one skilled in the art, the present invention may be
embodied as a system, method or computer program product. Accordingly, the present
invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

%48

“circuit,” “module” or “system.”

The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the invention. As used herein, the
singular forms "a", "an" and "the" are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further understood that the terms
"comprises" and/or "comprising,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or components, but do not

preclude the presence or addition of one or more other features, integers, steps, operations,

elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or step
plus function elements, if any, in the claims below are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of the present invention has been presented for
purposes of illustration and description, but is not intended to be exhaustive or limited to
the invention in the form disclosed. Many modifications and variations will be apparent to
those of ordinary skill in the art without departing from the scope and spirit of the
invention, The embodiment was chosen and described in order to best explain the
principles of the invention and the practical application, and to enable others of ordinary
skill in the art to understand the invention for various embodiments with various

modifications as are suited to the particular use contemplated.

Various aspects of the present disclosure may be embodied as a program, software,
or computer instructions stored in a computer or machine usable or readable storage
medium or device, which causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or machine. A computer readable

storage medium or device may include any tangible device that can store a computer code

10

10

15

20

25

WO 2011/119940 PCT/US2011/029969

or instruction that can be read and executed by a computer or a machine. Examples of
computer readable storage medium or device may include, but are not limited to, hard
disk, diskette, memory devices such as random access memory (RAM), read-only memory

(ROM), optical storage device, and other recording or storage media.

The system and method of the present disclosure may be implemented and run on a
general-purpose computer or special-purpose computer system. The computer system
may be any type of known or will be known systems and may typically include a
processor, memory device, a storage device, input/output devices, internal buses, and/or a
communications interface for communicating with other computer systems in conjunction

with communication hardware and software, etc.

The terms “computer system” and “computer network™ as may be used in the
present application may include a variety of combinations of fixed and/or portable
computer hardware, software, peripherals, and storage devices. The computer system may
include a plurality of individual components that are networked or otherwise linked to
perform collaboratively, or may include one or more stand-alone components. The
hardware and sofiware components of the computer system of the present application may
include and may be included within fixed and portable devices such as desktop, laptop,
server. A module may be a component of a device, software, program, or system that
implements some “functionality”, which can be embodied as software, hardware, firmware,

electronic circuitry, or etc.

While there has been described and illustrated a method for deriving malware
signatures that are resistant to metamorphic transformations thereby enabling the detection
of more malware variants for cryptic security, it will be apparent to those skilled in the art
that variations and modifications are possible without deviating form the broad principles
and teachings of the present invention which shall be limited solely by the scope of the

claims appended hereto.

11

WO 2011/119940 PCT/US2011/029969

APP 1994

CLAIMS

What is claimed is:

1. A method of deriving malware signatures comprising:

applying global control flow analysis to code containing malware to provide a
high level representation of malware code;

applying global data flow analysis to code containing malware to detect and
remove spurious elements of malware to provide malware-free code; and

combining the high level representation and malware-free code outputs.
2. The method as set forth in claim 1, wherein said combining comprises projecting the
representation over the malware-free code thereby creating a high level semantic

summary,

3. The method as set forth claim I, wherein said conirol flow analysis partitions

statements in malware code into super blocks.

4. The method as set forth in claim 1, further comprising arranging said partitions into a

super block dominator tree

5. The method as set forth in claim 1, wherein said data flow analysis creates a program

slice from a program dependence graph.

12

WO 2011/119940

1/5

anr

*.—.'[':‘E"lﬂ MO0 o oo

intmain(}{

read (x,y,);
assert (x >=y 8&y >=z),
equilateral = false;

scalene = true;
ifx=y 8% y==2)
equilateral = true;

if(xi=y & y!l=2)
scalene = true;
if (equilateral)
area = x"x * sqrt(3)/4;
else
s=(x+y+2)/2
area = sgrt(s * (sX) * (s-y) * (s-2));
print (area);

Figure 1

PCT/US2011/029969

WO 2011/119940

2/5

[B ¢ =« N

S mo 0

[a= ' o1

[y

int main() {
read {x, v, 2,
assert(x>=y && y>=2z),
equilateral = check_equilateral(x.y,z);
right = check_right (x,y.2);
area = compute_area {x, y, z);
print (area);
}
bool check_equilateral {s1, s2, s3) {
result = false;
if (s1==82 && s2==s3});
result = true;
return result;
}
bool check_right (51, s2, s3) {
result = false;
if{s1*s1 == 8282 + §3"s3)
result = frue;
return result;
}
float compute_area (51, s2, s3) {
if (equilateral)
area = s1*s1 * sqri(3)/4;
glse
area = long_formula(s1, s2, s3),
return area;
}
float long_formula {s1, 2, 83) {
s=(s1+s2+83)/2
result = sart(s * (s—s1) * (s—s2) * (s—s3});
return resulf;

Figure 2

PCT/US2011/029969

WO 2011/119940 PCT/US2011/029969

3/5

main

Figure 3

WO 2011/119940 PCT/US2011/029969

4/5

check_
equilateral

a5
N

’ Ty
o

1

i

FI“\
Ry
N

long__
formula

LAY

o e
LI

compute_area

check_equilateral
Cenook_riond |
long_formula

Figure 4

WO 2011/119940

5/5

Figure 5

Z
®

Figure 6

Figure 7

PCT/US2011/029969

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/29969

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 11/30 (2011.01)
USPC - 713/188

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 713/188

Minimum documentation searched (classification system followed by classification symbols)

USPC: 726/34; 726/22 (keyword limited - see search terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)
PubWEST (PGPB, USPT, USOC, EPAB, JPAB); GOOGLE; Google Scholar
Terms: security, malware, virus, spyware, signature, semantic, summary, variant, block, level, graph, tree, partition, modify, dependence.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

entire document, especially abstract, para [0002], [0003], [0007], [0027], [0173], [0218].

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2008/0320594 A1 (Jiang) 25 December 2008 (25.12.2008), 1-5
entire document, especially abstract, para [0028], [0090], [0093], [0115], [0133].
Y US 2005/0216770 A1 (Rowett et al.) 29 September 2005 (29.09.2005), 1-5
entire document, especially abstract, para [0009], [0010]), [0157], [0166], [0174].
A US 2007/0294756 A1 (Fetik) 20 December 2007 (20.12.2007), 1-5

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11 May 2011 (11.05.2011)

Date of mailing of the international search report

10 JUN 2011

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - wo-search-report

