ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 99128097/09, 08.05.1999
(24) Дата начала действия патента: 08.05.1999
(30) Приоритет: 08.05.1998 KR 1998/16454
(46) Дата публикации: 20.11.2002
(85) Дата перевода заявки РСТ на национальную фазу: 29.12.1999
(86) Заявка РСТ: KR 99/00225 (08.05.1999)
(87) Публикация РСТ: WO 99/59253 (18.11.1999)
(98) Адрес для переписки: 125010, Москва, ул. Б. Спасская, 25, стр.3, ООО "Юридическая фирма Городской и Партнеры", Ю.Д. Куценцова, рег. № 595

СИСТЕМА И СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ЦЕЛЕВОЙ БАЗОВОЙ СТАНЦИИ ПЕРЕРАСПРЕДЕЛЕНИЯ КАНАЛА СВЯЗИ В СИСТЕМЕ МОБИЛЬНОЙ СВЯЗИ

(57) Мобильная система связи выполняет перераспределение канала связи, принимая во внимание направление перемещения мобильной станции. Мобильная станция измеряет интенсивность контрольных сигналов из базовых станций, соседних к ней, и передает информацию об измеренных интенсивностях в КСС. КСС затем выбирает одну из базовых станций в качестве целевой базовой станции перераспределения канала связи в зависимости от информации об измеренной интенсивности и информации о местоположении мобильной станции и базовых станций. Весовые коэффициенты применяются к соседним базовым станциям в соответствии с направлениями соседних базовых станций на основе направления перемещения мобильной станции, которое прогнозируется в соответствии с движением мобильной станции. 4 с. и 10 эл.фл. 7 ил., 1 табл.

![Diagram](image-url)
ABSTRACT OF INVENTION

FIELD: communications engineering.
SUBSTANCE: mobile communication system relocates communication channel considering direction of mobile station movement. Mobile station measures intensity of check signals coming from adjacent base stations and conveys information on measured intensities to base station check. The latter selects one of base stations as target base station for communication channel relocation depending on information about measured intensity and about location of mobile station and base stations. Weighting coefficients are used for adjacent base stations depending on mobile station direction which is predicted according to mobile station movement. EFFECT: facilitated procedure.

RU 2 193 281 C2

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(19) RU (11) 2 193 281 (13) C2
(51) Int. Cl.7
H 04 B 7/26

(21), (22) Application: 99128097/09, 08.05.1999
(24) Effective date for property rights: 08.05.1999
(30) Priority: 08.05.1998 KR 1998/16454
(46) Date of publication: 20.11.2002
(85) Commencement of national phase: 29.12.1999
(86) PCT application:
KR 99/00225 (08.05.1999)
(87) PCT publication:
WO 99/59253 (18.11.1999)
(98) Mail address:
129010, Moskva, ul. B. Spasskaja, 25, str.3,
OOO "Juridicheskaja firma Gorodisskij i
Partnerij", Ju.D.Kuznetsovu, reg. № 595

(71) Applicant:
SAMSUNG EhLEKTRONIKS KO., LTD. (KR)
(72) Inventor:
ChUN Kiong Dzoon (KR),
LI Khiun Voo (KR), DZUNG Ki Sung (KR), JU Tae
Kho (KR)
(73) Proprietor:
SAMSUNG EhLEKTRONIKS KO., LTD. (KR)
(74) Representative:
Kuznetsov Jurij Dmitrievich

(54) SYSTEM AND METHOD FOR FINDING TARGET BASE STATION FOR RELOCATING COMMUNICATION CHANNEL IN MOBILE COMMUNICATION SYSTEM

RU 2 193 281 C2
Передающий уровень техники

1. Область изобретения

Настоящее изобретение относится вообще к системам мобильной связи и, в частности, к системе и способу для определения целевой базовой станции перераспределения канала связи в системе мобильной связи.

2. Описание силового уровня техники

Система мобильной связи множественного доступа с кодовым разделением каналов (МДКР) выполняет перераспределение канала связи для того, чтобы непрерывно обеспечивать обслуживание вызова, даже когда мобильная станция перемещается из одной ячейки в соседнюю ячейку во время обслуживания вызова. Мобильные системы связи, имеющие два типа перераспределения каналов связи: мягкое перераспределение каналов связи и жесткое перераспределение каналов связи. В мягком перераспределении каналов связи мобильная станция поддерживает вызов, используя как канал, выделенный целевой базовой станцией перераспределения канала связи, в который должна быть перераспределена мобильная станция, так и канал, выделенный на настоящей обслуживающей базовой станцией. Между ними, один из каналов, состояние которого имеет величину, независимо, чем порог, освобождается. В жестком перераспределении каналов связи канал, выделенный на настоящей обслуживающей базовой станцией, сначала освобождается, а затем делается попытка соединения в соседнюю базовую станцию.

Вообще мобильная станция во время вызова контролирует интенсивность контрольных сигналов, передаваемых базовыми станциями, соседними к мобильной станции или належащими на базу. Мобильная станция запоминает контрольные сигналы, имеющие сравнительно более высокую интенсивность (см. в таблице). Базовые станции, включаемые в таблицу, упоминаются как "соседние базовые станции". Они могут, мобильная станция перераспределяется, контрольные сигналы из соседних базовых станций изменяются по интенсивности, и мобильная станция изменяют величину, запоминенные в таблице. Мобильная станция затем предоставляет информацию об интенсивностях контрольного сигнала в обслуживающую базовую станцию. Затем после получения информации об интенсивности контрольного сигнала базовая станция находит, на которой связь с мобильной станцией, определяет, выполнять ли операцию перераспределения канала связи. Базовая станция, имеющая контрольный сигнал, который имеет самую высокую интенсивность, становится целевой базовой станцией перераспределения каналов связи, в которую должна быть перераспределена мобильная станция. Однако определение перераспределения каналов связи, имеющих интенсивность принимаемого сигнала увеличивает частоту определения перераспределения базовой станции, приводя к увеличению нагрузки системы.

Со схемой на 1 изображена диаграмма, иллюстрирующая систему мобильной связи. Мобильная сеть связи включает мобильный коммутационный центр (МКЦ) 141, соединенный с множественными контроллерами базовых станций (КБС) 131-13n, каждый из которых соединяется с множественными базовыми станциями 121-12н. Мобильные станции 111-11n, принадлежащие одной ячейке, без проводов соединяются с соответствующей базовой станцией 121 для обеспечения обслуживания вызова. Мобильные базовые станции 121-12н управляются КБС 131. КБС 131-13n затем управляют МКЦ 141. Если мобильная станция 111 пытается связаться с проводным абонентом 161, принадлежащим к коммутируемой телефонной сети общего назначения (КТСО) 151, а не с другой мобильной станцией, принадлежащей к основной сети связи, МКЦ 141 создает информационный канал соединением проводного абонента 161 с мобильной станцией 111 через КТСО 151. Альтернативно также возможно объединить базовые станции 121-12n и соответствующий КБС 131 в один корпус.

Теперь будет сделано описание для обычной операции перераспределения каналов связи, выполняемой системой мобильной связи, с. 1, а сокращенное на с. 2. Когда мобильная станция МС, которая в настоящее время обслуживается базовой станцией БС1, перемещается в область ЯЧЕИКА 1 ячейки соседней базовой станции БС2, происходит перераспределение каналов. В области перераспределения ОП базы ЯЧЕИКА 1, или ЯЧЕИКА 2 обслуживания (или зоны обслуживания) базовой станции БС1 и области ЯЧЕИКА 2 обслуживания базовой станции БС2 под управлением КБС (не показан). То есть, когда мобильная станция МС5, обслуживающая базовой станцией БС1, движется в область перекрытия ОП, она измеряет интенсивность T_on3 сигнала, принимаемого из соседней базовой станции БС2, и предоставляет информацию об измеренной интенсивности в КБС. КБС затем определяет, может ли базовая станция БС2 обслуживать мобильную станцию МС5, и предоставляет обслуживание в базовую станцию МС5 как базовую станцию БС1, и через базовую станцию БС2, когда базовая станция БС2 может обеспечить обслуживание.

Если интенсивность сигнала, принимаемого из базовой станции БС1, уменьшается ниже порога T_drop, когда мобильная станция МС5 перемещается из базовой станции БС2, линия радиосвязи, соединяющая с базовой станцией БС1, обслуживающей в настоящее время, освобождается и обслуживание обеспечивается через линию радиосвязи, соединяющую с базовой станцией БС2. Здесь освобождение линии радиосвязи не происходит, так как только интенсивность сигнала базовой станции BCS больше порога T_drop, когда базовая станция БС1 отключается, когда интенсивность сигнала постоянно поддерживается ниже порога T_drop в течение защитного времени T_Tdrop.

В некоторых случаях мобильная станция МС5 может выбрать удаленную базовую станцию в качестве целевой базовой станции перераспределения каналов связи вместо соседней базовой станции или базовой станции, которая является самой близкой к мобильной станции МС5. Например,
Еще одной технической задачей настоящего изобретения является обеспечение системы и способа перераспределения канала связи для выполнения перераспределения канал связи в зависимости от скорости перемещения мобильной станции.

Для достижения этих и других задач предлагаются система и способ для перераспределения целевой базовой станции перераспределения канала связи в системе мобильной связи в соответствии с направлением перемещения мобильной станции. Мобильная станция имеет интенсивность контрольных сигналов, передаваемых из базовой станции в ближайшей, и передает информацию об измеренных интенсивностях в контроллер базовой станции (КБС). КБС выбирает одну из базовых станций в качестве целевой базовой станции перераспределения канала связи в зависимости от информации измеренной интенсивности и относительного местоположения мобильной станции по отношению к каждой из базовых станций. Весовые коэффициенты, соответствующие каждой из базовых станций, также принимаются во внимание при выборе целевой базовой станции перераспределения канала связи. Весовые коэффициенты определяются в зависимости от направления перемещения мобильной станции относительно каждой из базовых станций, где направление перемещения основывается на направлении движения мобильной станции.

Краткое описание чертежей

Фиг. 1 - изображает блок-схему, иллюстрирующую обычную систему мобильной связи;

Фиг. 2 - диаграмма, иллюстрирующая операцию перераспределения канала связи предшествующего уровня техники в системе мобильной связи в [условие];

Фиг. 3 - диаграмма, иллюстрирующая операцию перераспределения канала связи предшествующего уровня техники, где базовая станция выбирается в качестве целевой базовой станции для перераспределения канала связи из-за того, что она имеет сигнал, имеющий наибольшую интенсивность;

Фиг. 4 - диаграмма, иллюстрирующая операцию перераспределения канала связи в системе мобильной связи в соответствии с настоящим изобретением;

Фиг. 5 - временная диаграмма операции перераспределения канала связи в [условие];

Фиг. 6 - диаграмма, иллюстрирующая способ для применения весовых коэффициентов к базовым станциям вплоть до мобильной станции в соответствии с направлением перемещения мобильной станции;

Фиг. 7 - график, иллюстрирующий сложение весовых коэффициентов с интенсивностями принимаемого сигнала, соответствующим базовым станциям вплоть до мобильной станции.

Подробное описание предпочтительных воплощений

Предпочтительные воплощения настоящего изобретения будут описаны здесь ниже с помощью изображающих чертежей. В последующем описании хорошо известные конструкции или функции не описываются подробно, так чтобы не затягивать
настоящее изобретение

Настоящее изобретение предоставляет систему и способ для определения целевой базовой станции перераспределения канала связи в системе мобильной связи, выявление местоположения мобильной станции и применение весовых коэффициентов к контрольным сигналам, принимаемым из базовых станций вблизи к мобильной станции. При выполнении этого возможно уменьшить нагрузку системы, вызываемую частой операцей перераспределения канала связи, а также уменьшить вероятность разъединения вызова. Здесь при выявлении местоположения мобильной станции несколько раз можно точно определить направление перемещения мобильной станции. Кроме того, для определения направления перемещения можно использовать местоположение мобильной станции с помощью местоположения мобильной станции с прошлым местоположением мобильной станции.

Способы перераспределения канала связи в соответствии с настоящим изобретением теперь будут описаны со ссылкой на фиг.4 - 7. В системе мобильной связи в соответствии с настоящим изобретением, мобильная станция измеряет интенсивность контрольных сигналов, передаваемых из соответствующих базовых станций, и предоставляет информацию об интенсивности сигнала в контроллер базовой станции (КБС). КБС затем выбирает целевую базовую станцию перераспределения канала связи. Кроме того, настоящее изобретение применим в весовых коэффициентах к соответствующим соседним базовым станциям (или кандидатам перераспределения канала связи) для выбора наиболее подходящей целевой базовой станции перераспределения канала связи. Весовые коэффициенты предпочтительно определяются в соответствии с относительным местоположением мобильной станции МС5 по отношению к каждой базовой станции, кандидату перераспределения канала связи.

А. Первоначальное определение местоположения

Теперь предоставляется описание способа для применения весовых коэффициентов к соседним базовым станциям в соответствии с первым воплощением настоящего изобретения. Со ссылкой на фиг.4 базовая станция БС1 использует технологию для определения местоположения мобильной станции МС5 по времени прибытия. Эта технология определения местоположения раскрывается в корейской заявке на патент 38279/1995, имеющей общего владельца. Альтернативная мобильная станция, имеющая приемник ССП (системы глобального позиционирования), может предоставлять информацию своего местоположения в базовую станцию. Настоящее изобретение не ограничивается использованием таких технологий определения местоположения.

Для определения местоположения мобильной станции МС5 базовая станция, находящаяся на связи с мобильной станцией МС5, передает сообщение регистрации местоположения. После приема сообщения подтверждения регистрации местоположения из мобильной станции МС5 обслуживающая базовая станция БС1 передает в КБС информацию, требуемую для отслеживания местоположения, как, например, время передачи сообщения регистрации местоположения и время приема сообщения подтверждения регистрации местоположения. Предпочтительно передача сообщения регистрации местоположения выполняется периодически или в соответствии с состоянием информационного канала. Например, базовая станция может передавать сообщение регистрации местоположения после приема запроса на перераспределение канала связи из мобильной станции МС5. КБС затем предоставляет электронный серийный номер (ЭСН) мобильной станции МС5 в соседние базовые станции (или кандидаты перераспределения канала связи) для того, чтобы позволить им принимать сигнал из мобильной станции МС5.

Для приема сообщения регистрации местоположения во время связи мобильная станция МС5 передает сообщение подтверждения регистрации местоположения на высоком уровне мощности, в поле которой имеется соседние базовые станции БС2 и БС3 также принимают его. После приема сообщения подтверждения регистрации местоположения базовые станции передают сообщения для отслеживания местоположения в КБС. КБС затем определяет направление перемещения мобильной станции, используя информацию, содержащуюся в сообщениях, принимаемых из множественных базовых станций. КБС затем выбирает целевую базовую станцию перераспределения канала связи в соответствии с результатом определения.

Информация, включаемая в сообщения для отслеживания местоположения, может включать время приема, в которое базовые станции БС2 и БС3 приняли сообщение подтверждения регистрации местоположения. Также КБС анализирует информацию, принимаемую из базовых станций БС1, БС2, БС3 для определения местоположения мобильной станции и применяет различные весовые коэффициенты к интенсивностям соответствующих контрольных сигналов из соседних (или кандидатов перераспределения канала связи) базовых станций на основе определенного местоположения. То есть, базовые станции, относительно более близкие к мобильной станции, снабжаются более высокими весовыми коэффициентами, а базовые станции, относительно более удаленные от мобильной станции, обеспечиваются более низкими весовыми коэффициентами. Кроме того, информация о местоположении мобильной станции МС5, весовая информация и информация о местоположении базовых станций БС1, БС2 и БС3 передается в мобильную станцию МС5. Предполагается, что несмотря на то, что число базовых станций, соседних к мобильной станции МС5 или находящихся вблизи, ограничивается двумя на фиг.4, могло бы быть любое число соседних базовых станций. Фиг. 5 является временной диаграммой, иллюстрирующей операцию перераспределения канала связи.
выполняемую в конфигурации мобильной связи фиг. 4. В последующем описании в связи с фиг. 5 предполагается, что мобильная станция МС5 перемещается от базовой станции БС1 к базовой станции БС2. Для выявления местоположения мобильной станции МС5 базовая станция БС1, находящаяся в настоящий момент на связи с мобильной станцией МС6, передает сообщение регистрации местоположения в мобильную станцию МС5 на шаге 511. Одновременно базовая станция БС1 запоминает время передачи сообщения регистрации местоположения и извещает КБС о передаче сообщения регистрации местоположения.

КБС затем передает информацию ЭСН мобильной станции МС5 в соседние базовые станции БС2 и БС3 и позволяет базовым станциям БС2 и БС3 принять сообщение подтверждения регистрации местоположения из мобильной станции МС5. Затем соседние базовые станции БС2 и БС3 датчика информации приемниками для приема сообщения подтверждения из мобильной станции МС5. После приема сообщения регистрации местоположения мобильная станция МС5 передает на шаге 513 сообщение подтверждения регистрации местоположения с высокой мощностью передачи, чтобы соседние базовые станции также БС2 и БС3 могли принять передаваемое сообщение подтверждения регистрации местоположения.

После приема сообщения подтверждения регистрации местоположения базовая станция БС1 передает в КБС время передачи сообщения регистрации местоположения и время приема сообщения подтверждения регистрации местоположения на шаге 515. Также базовые станции БС2 и БС3 передают в КБС время приема сообщения подтверждения регистрации местоположения на шаге 517. На шаге 519 КБС затем измеряет расстояние между мобильной станцией МС5 и соответствующими базовыми станциями БС1-БС3, используя время передачи сообщения регистрации местоположения в базовой станции БС1 и время приема сообщения подтверждения регистрации местоположения в соответствующих базовых станциях БС1-БС3; для того, чтобы вычислить местоположение мобильной станции МС5.

В случае, где местоположение мобильной станции МС5 периодически выявляется, КБС сравнивает предыдущее местоположение мобильной станции МС5 с настоящим местоположением мобильной станции МС5, чтобы прогнозировать направление перемещения мобильной станции МС5. Прогнозированием направления перемещения возможно определить базовую станцию, соответствующую близости, по направлению к которой движется мобильная станция МС5. На основе прогнозируемого направления перемещения более высокой весовой коэффициент применяется к базовым станциям, связанным с близостью, по направлению к которой движется мобильная станция МС5, а более низкий весовой коэффициент применяется к базовым станциям, от которых удалена мобильная станция МС5, как описано на фиг. 6. Ссылаясь на фиг. 6 и принимая во внимание прогнозируемое направление перемещения мобильной станции МС5, окружающая область разделяется на несколько зон по отношению к настоящему местоположению мобильной станции МС5, а затем подходящие весовые коэффициенты применяются к соответствующим соседним базовым станциям БС2-БС7. В этом примере, как иллюстрируется, окружающая область разделяется на 8 зон, имеющих 45 градусов по отношению к горизонтальной или вертикальной оси, проходящей через настоящее местоположение мобильной станции МС5.

Здесь прогнозируется, что мобильная станция МС5 будет двигаться к базовой станции БС2, как изображено контурной линией, ограничивающей предполагаемое местоположение с настоящим местоположением мобильной станции МС5. В соответствии с прогнозом весовые коэффициенты применяются к соответствующим соседним базовым станциям БС2 и БС7. То есть, базовая станция БС2 снабжается самым высоким весовым коэффициентом A, базовые станции БС3 и БС4 - весовым коэффициентом С, который ниже, чем весовой коэффициент B, в базовой станции БС7 - весовым коэффициентом D, который ниже, чем весовой коэффициент С.

Между тем, поскольку КБС знает местоположение базовых станций, он определяет целевую базовую станцию перераспределения канала связи, используя такую вычислительную весовую информацию соответствующих соседних базовых станций, информацию о местоположении мобильной станции и соседних базовых станций и интенсивности сигнала соседних базовых станций, а затем выделяет информационный канал для мобильной станции МС5 для связи с определенной целевой базовой станцией перераспределения канала связи, посредством чего выполнять перераспределение канала связи. Кроме того, на шаге 521 (фиг. 5) КБС передает весовую информацию о местоположении соседних базовых станций БС2 - БС7 и мобильной станции МС5 через базовую станцию, обслуживающую в настоящее время.

Мобильная станция затем определяет базовую станцию, в которую должно быть перераспределение канала связи, с применением весовых коэффициентов к интенсивности сигнала от соседних базовых станции и проверяет свойства, является ли определенная базовая станция подходящей целевой базовой станцией перераспределения канала связи в зависимости от ее местоположения и местоположений соседних базовых станций. Таким образом, мобильная станция может определить наиболее подходящую целевую базовую станцию перераспределения канала связи. Таблица изображает способ для определения окончательной целевой базовой станции перераспределения канала связи.

В таблице, несмотря на то, что интенсивности сигналов, принимаемых из базовых станций БС1-БС4, приравнены друг другу, базовая станция БС2 определяется как окончательная целевая базовая станция перераспределения канала связи вследствие
того, что имеет самый высокий весовой коэффициент, снабжаемый КБС. То есть в таблице базовые станции располагаются в порядке величины определения перераспределения канала связи, полученной добавлением весовых коэффициентов к интенсивностям принимаемого сигнала, и базовая станция, имеющая самую высокую величину определения перераспределения канала связи, выбирается как целевая базовая станция перераспределения канала связи, как изображено на фиг.7.

Ссылаясь на фиг.1, оси X представляют последовательности ПШ (псевдослучаи), используемые для разделения базовых станций, а оси Y представляют величину определения перераспределения канала связи. Показания интенсивности принимаемого сигнала (ППС) глюс весовой коэффициент. Здесь целевая базовая станция перераспределения канала связи является базовой станцией БС2, поскольку она имеет самую высокую величину 95 определения перераспределения канала связи.

Однако даже если целевая базовая станция перераспределения канала связи выбирается таким образом, в случае, где соседние базовые станции разделены стеной от мобильной станции МСБ зданием или другими препятствиями, интенсивность сигнала будет ниже чем величина определения перераспределения канала связи соседних базовых станций БС2 - БС7. Для предотвращения такого события КБС передает информацию о местоположении базовых станций, соседних к мобильной станции МС5, вместе с весовой информацией соседних базовых станций. Поэтому, даже если более далекая базовая станция определяется как целевая базовая станция перераспределения канала связи из-за ее высокой интенсивности сигнала, мобильная станция проверяет определение целевой базовой станции перераспределения канала связи, используя информацию о местоположении соседних базовых станций. Посредством чего выбирая оптимальную целевую базовую станцию перераспределения канала связи.

В этом волошение сделано описание относительного способа для определения информации о местоположении мобильной станции. Однако в случае, где мобильная станция включает приемник СТП и предоставляет информацию о своем местоположении в КБС через обслуживающую базовую станцию, возможно просто обнаружить местоположение мобильной станции без помощи от соседних базовых станций. В этом волошение, поскольку КБС знает местоположение потенциальных базовых станций перераспределения канала связи, он может определить целевую базовую станцию перераспределения канала связи, принимая во внимание местоположение мобильной станции, применением более высокого весового коэффициента к базовой станции, ближайшей к мобильной станции, а более низкого весового коэффициента к базовой станции, наиболее удаленной от мобильной станции, используя информацию о местоположении, передаваемую из мобильной станции, и интенсивности контрольных сигналов из базовых станций.

Второе волошение мобильная станция применяет весовые коэффициенты к соответствующим соседним базовым станциям, используя информацию о местоположении соответствующих базовых станций, получившуюся из КБС или задающую во время начальной установки системы. Обслуживающая базовая станция передает в мобильную станцию информацию о местоположении себя и других базовых станций и информацию о соседних базовых станциях (например, информацию о свдиге ПШ) через пейджинговский канал или канал синхронизации.

Использованием вышеуказанной информации, принимаемой из базовой станции, мобильная станция может вычислить координаты (Xi, Yi) местоположения обслуживающей базовой станции и координаты (Xi, Yi) местоположения соседних базовых станций. То есть мобильная станция может определить соседние базовые станции анализом величин свдига ПШ базовых станций, в которых получаются контрольные сигналы. Кроме того, мобильная станция может определить местоположение таким же образом, как первое волошение или традиционный способ. После приема информации о местоположении обслуживающей базовой станции и соседних базовых станций мобильная станция вычисляет относительное расстояние между базовой станцией, обслуживаемой в настоящее время, и соответствующими базовыми станциями. Относительное расстояние используется при выборе базовой станции, ближайшей к мобильной станции, в случае, где имеются больше одной базовой станции, имеющих одинаковый весовой коэффициент.

Относительное расстояние определяется как

$$D_n = \sqrt{(X_n - X_1)^2 + (Y_n - Y_1)^2} \ldots (1),$$

где горизонтальное расстояние $D_n = X_n - X_1$, а вертикальное расстояние $D_n = Y_n - Y_1$. Также возможно вычислить углы (или направления) между базовой станцией, к которой принадлежит мобильная станция, и другими базовыми станциями, используя координаты местоположения соответствующих базовых станций. D_1 и D_2 представляют горизонтальное и вертикальное расстояние от начала координат (0, 0). Использованием этих величин возможно вычислить относительное расстояние и угол между настоящей базовой станцией и соответствующей базовой станцией. То есть при предположении, что настоящее местоположение мобильной станции равно местоположению обслуживающей базовой станции, вычисляются расстояния и углы между обслуживающей базовой станцией и соседними базовыми станциями. Например,
если предполагается, что базовая станция, обслуживающая в настоящее время, имеет координаты (2, 2) местоположения, а соседняя базовая станция имеет координаты (0, 0) местоположения, относительное расстояние Dn становится 2V (поскольку Dx = 2 и Dy = 2) из уравнения (1), а угол между ними становится 45° из уравнения (2)

\[\theta = \arctan(Dx/Dy) \] (2).

Кроме того, поскольку мобильная станция знает весовые коэффициенты, применяемые к соответствующим соседним базовым станциям, в соответствии с углами, она применяет самый высокий весовой коэффициент к базовой станции, связанной с ближайшей базовой станцией, перемещающейся к ней и более низкий весовой коэффициент к базовым станциям, которые становятся более удаленными от мобильной станции. Здесь направление перемещения мобильной станции может быть определено также образом, как первое волокнение, если может быть непосредственно принято от спутника через приёмник ССП.

Кроме того, когда имеются несколько базовых станций, имеющих одинаковый весовой коэффициент, мобильная станция выполняет перераспределение канала связи в базовую станцию, ближайшую к текущей базовой станции, используя относительное расстояние Dn. В этом волокнении описано, как относительно специфика способа для вычисления расстояний и углов (или направлений) между соответствующими соседними базовыми станциями при предположении, что соседняя базовая станция равно местоположению обслуживаемой базовой станции. Однако, поскольку мобильная станция знает свое собственное местоположение, как упомянуто выше, она может также вычислить расстояние и углы между соответствующими соседними базовыми станциями использованием своего собственного местоположения.

В схеме способ перераспределения канала связи для соответствующего направления изображение дает возможность мобильной станции измерения интенсивности конечных сигналов, передаваемых из соответствующих базовых станций. Базовая станция затем определяет базовые станции, кандидаты перераспределения канала связи в соответствии с измерениями интенсивности конечного сигнала. После этого мобильная станция применяет различные весовые коэффициенты к базовым станциям, кандидатам перераспределения канала связи, в двух различных способах. В первом способе КБС прогнозирует местоположение и направление перемещения мобильной станции, используя полученную информацию (т.е. время передачи сообщения регистрации местоположения и время приема сообщения подтверждения регистрации местоположения), передаваемую из соседних базовых станций, оставаясь обслуживаемой базовой станции, применяет весовые коэффициенты к соответствующим базовым станциям, кандидатам перераспределения канала связи, на основе прогнозируемого направления перемещения и передату весовую информацию в мобильную станцию.

Во втором способе мобильная станция принимает информацию о местоположении соседних базовых станций и применяет весовые коэффициенты к соседним базовым станциям в соответствии с ее направлением движения, используя принимаемую информацию о местоположении. После применения весовых коэффициентов к соседним базовым станциям мобильная станция ожидает соответствующие весовые коэффициенты с интенсивностями контрольных сигналов из соседних базовых станций, чтобы выбрать наиболее подходящую базовую станцию перераспределения канала связи.

В этом случае, чтобы проверить, является ли выбранная базовая станция действительно оптимальной целевой базовой станцией перераспределения канала связи, в следующих двух различных способах. В первом способе мобильная станция может принять информацию о своем собственном местоположении и информацию о местоположении соседних базовых станций из КСБ и сравнивать свое собственное местооположение с местоположением соседних базовых станций, чтобы определить, выбранная ли ближайшая базовая станция. Если определяется, что базовая станция, выбранная с использованием весовых коэффициентов, не является ближайшей базовой станцией, мобильная станция воспринимает ошибочный выбор целевой базовой станции перераспределения канала связи и выполняет процедуру перераспределения канала связи опять.

Во втором способе мобильная станция вычисляет относительное расстояние Dn между мобильной станцией и соответствующими базовыми станциями при предположении, что ее собственное местоположение равно местоположению обслуживающей базовой станции, и проверяет, является ли выбранная базовая станция оптимальной целевой базовой станцией перераспределения канала связи, используя относительное расстояние Dn. Напомним, если соответствующие соседние базовые станции выбранной, используя весовой коэффициент является самым коротким, мобильная станция может проверить, что целевая базовая станция перераспределения канала связи выбрана правильно.

Кроме того, возможно узнать скорость перемещения, скорость и расстояние мобильной станции из времени обнаружения предыдущего местоположения и времени обнаружения настоящего местоположения мобильной станции. Базовая станция может быть перераспределена в базовую станцию, имеющую подходящий радиус яркости, в соответствии со скоростью перемещения. Когда мобильная станция перемещается с высокой скоростью, маленький радиус яркости соседней базовой станции невелико вызывает частое перераспределение канала связи. В этом случае неэффективна перераспределения канала связи, поскольку часто перераспределения камня вызывалось бы часто в короткие интервалы, увеличивающая вероятность ошибок и разъединения вызова. Для предотвращения этого, когда мобильная станция движется с высокой скоростью, правильное
перераспределяется в базовую станцию, имеющую большой радиус ячеек для выполнения стабильного перераспределения канала связи. Иначе, когда мобильная станция движется с низкой скоростью, правильное управление перераспределением в ближайшую базовую станцию. Кроме того, поскольку система мобильной связи в соответствии с настоящим изобретением в основном выявляет местоположение мобильной станции, возможно обеспечить обслуживание регистрации местоположения без отдельного процесса корректирования местоположения.

Как описано выше, традиционное перераспределение канала связи выполняется в зависимости только от интенсивности сигнала. Следовательно, когда интенсивность сигнала из базовой станции далеко от мобильной станции является временно высокой из-за окружения, происходит неправильное перераспределение канала связи в эту базовую станцию. Через некоторое время, если интенсивность принимаемого сигнала уменьшается, операция перераспределения канала связи выполнялась бы опять. Частое выполнение перераспределения канала связи увеличивает нагрузку системы, приводя к увеличению вероятности разъединения вызова. Однако система мобильной связи в соответствии с настоящим изобретением выполняет операцию перераспределения канала связи, принимая во внимание местоположение базовых станций и весовые коэффициенты соседних базовых станций, полученное отслеживанием местоположения мобильной станции, посредством чего увеличивается надежность системы и гарантирует стабильное содержание перераспределения канала связи.

Несмотря на то, что изображение изображено и описано в этой работе, о его определенной предпочтительности воплощения, специалистам в данной области техники будет понятно, что различные изменения по форме и деталям могут быть сделаны в этом, не выходя за рамки сущности и объема изобретения, как определяются прилагаемой формулой изобретения.

Формула изобретения:

1. Способ определения перераспределения канала связи мобильной станции с одной из базовых станций, соседних с ней, отличающийся тем, что содержит шаг, на которых измеряют на мобильной станции, интенсивности контрольных сигналов из соседних базовых станций, когда мобильная станция перераспределяется в одну из базовых станций, соседних с ней, и выбирают на мобильной станции целевую базовую станцию перераспределения канала связи из соседних базовых станций в зависимости от измеренных интенсивностей сигналов и весовых коэффициентов, которые применяются к каждой из соседних базовых станций и определяются на основании направления перемещения мобильной станции и местоположения мобильной станции и базовой станции, при этом направление перемещения прогнозируют в соответствии с перемещением мобильной станции.

2. Способ по п. 1, в котором направления мобильных станций вычисляются

\[s = tg^{-1}(Dx/Dy), \]

где \(Dx = Xn-Xi \) и \(Dy = Yn-Yi \), когда координаты обслуживающей базовой станции \((Xi, Yi)\), а координаты соседней базовой станции \((Xn, Yn)\).

3. Способ по п. 1, дополнительно содержащий шаг вычисления относительного расстояния между обслуживающей базовой станцией и соседними базовыми станциями, чтобы проверить, выбирается ли ближайшая базовая станция как целевая базовая станция перераспределения канала связи.

4. Способ по п. 1, в котором мобильная станция принимает свои собственные координаты через глобальную систему позиционирования (ССП), для прогнозирования своего направления перемещения.

5. Способ по п. 1, в котором целевая базовая станция перераспределения канала связи является соседней базовой станцией, имеющей самую высокую величину определения перераспределения канала связи, определяемую сложением соответствующих весовых коэффициентов с интенсивностями принимаемых контрольных сигналов.

6. Способ определения перераспределения канала связи в системе мобильной связи, отличающийся тем, что содержит шаг, на которых измеряют в мобильной станции интенсивности контрольных сигналов из множественных базовых станций и передают измеренные интенсивности в контроллер базовой станции (КБС), и выбирают в КБС одну из базовых станций в качестве целевой базовой станции перераспределения канала связи в зависимости от измеренных интенсивностей и весовых коэффициентов, которые применяются к каждой из соседних базовых станций и определяются на основании направления перемещения мобильной станции и местоположения мобильной станции и базовой станции, при этом направление перемещения прогнозируют в соответствии с перемещением мобильной станции.

7. Способ по п. 6, отличающийся тем, что шаг выбора целевой базовой станции перераспределения канала связи содержит шаг, на которых прогнозируют направление перемещения мобильной станции на основании перемещения мобильной станции, сравнивают прогнозируемое направление перемещения с местоположением соответствующих соседних базовых станций и применяют весовые коэффициенты к соответствующим соседним базовым станциям в соответствии с направлением перемещения мобильной станции и выбирают целевую базовую станцию перераспределения канала связи соседних базовых станций на основании измеренных интенсивностей и весовых коэффициентов.

8. Способ по п. 7, в котором шаг прогнозирования направления перемещения мобильной станции содержит шаг, на которых передают в обслуживающей базовой станции сообщения регистрации местоположения и предоставляют время передачи сообщения регистрации местоположения в КБС; после приема сообщения регистрации местоположения передают в мобильной станции сообщение.
предъявленное местоположение с предыдущим местоположением мобильной станции для прогнозирования направления перемещения мобильной станции, определяют в КБС весовой коэффициент, который применяется к соответствующей соседней базовой станции, путем сравнения прогнозируемого направления с местоположением соседних базовых станций, передают в КБС применяемый весовой коэффициент в мобильную станцию и выбирают в мобильной станции целевую базовую станцию перераспределения канала связи в зависимости от измеренных интенсивностей и весового коэффициента.
12. Способ по п. 11, в котором целевая базовая станция перераспределения канала связи является базовой станцией, имеющей самую высокую величину определения перераспределения канала связи, определяемую сложением соответствующих весовых коэффициентов с измеренными интенсивностями принятых контрольных сигналов.
13. Устройство для определения перераспределения каналов связи мобильной станции в системе мобильной связи, отличающееся тем, что содержит устройство для определения местоположения в КБС, в ответ на сообщение регистрации местоположения, передают в мобильной станции сообщение подтверждения, сообщение подтверждения в соседние базовые станции, после получения сообщения подтверждения передают в обслуживающей базовой станции соседних базовых станций на основе вычисленных расстояний, сравнивают в КБС.
<table>
<thead>
<tr>
<th>Соседняя БС</th>
<th>Интенсивность сигнала</th>
<th>Весовой коэффициент</th>
<th>Величина определения перераспределения канала связи</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC3</td>
<td>-77</td>
<td>B(16)</td>
<td>93</td>
</tr>
<tr>
<td>BC2</td>
<td>-75</td>
<td>A(20)</td>
<td>95 (цель перераспределения канала связи)</td>
</tr>
<tr>
<td>BC4</td>
<td>74</td>
<td>C(12)</td>
<td>86</td>
</tr>
<tr>
<td>BC1</td>
<td>75</td>
<td>D(8)</td>
<td>83</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Фиг. 2
Фиг. 3
Фиг. 4
Фиг. 7

ПИПС + весовой коэффициент

весовой коэффициент

БС1 БС2 БС3 БС4

95 93 86

83