一种触摸轨迹平滑处理方法

本发明涉及一种触摸轨迹平滑处理方法，步骤为：将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入长度为L的缓冲区中；选择B样条曲线的阶次N和B样条曲线拟合点数M；在缓冲区内按照时间顺序依次选取M个触摸点并进行N阶B样条曲线拟合；在所述拟合的M个触摸点中相邻的两个触摸点之间按照X方向或Y方向等间距插入Q个插入点，输出插入点和触摸点的坐标信息；依次选择后M个点进行N阶B样条曲线拟合后重复步骤S4操作，直至处理完该条轨迹上所有的触摸点。上述方法有效避免了现有技术中触摸轨迹平滑处理方法平滑效果差，书写的线条不流畅的问题，提供了一种平滑处理效果好，书写更流畅和输出轨迹美观的触摸轨迹平滑处理方法。
1. 一种触摸轨迹平滑处理方法，其特征在于，包括如下步骤：

S1：采集触摸屏的每一帧扫描数据，并将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入长度为l的缓冲区中，其中l为正整数；

S2：选择A样条曲线的阶次N和B样条曲线拟合的点数阈值M，其中，N为小于M的正整数，M为小于等于l的正整数。

S3：当存储在所述缓冲区的扫描数据达到所述l时，在所述缓冲区内按照时间顺序依次选取M个触摸点，对所述M个触摸点进行N阶B样条曲线拟合；

S4：在所述拟合的M个触摸点中相邻的两个触摸点之间按照X方向或Y方向插入Q个插入点，该Q个插入点位于所述B样条曲线上，输出插入点和触摸点的坐标信息，其中Q为正整数；

S5：依次选择后续M个点进行N阶B样条曲线拟合后重复步骤S4操作，直到处理完该条轨迹上所有的触摸点；

所述插入点是在X方向或Y方向上等间距插入所述Q个插入点；

所述l为10。

2. 根据权利要求1所述的触摸轨迹平滑处理方法，其特征在于：所述B样条曲线拟合的点数阈值M的取值为5。

3. 根据权利要求1所述的触摸轨迹平滑处理方法，其特征在于：所示B样条曲线的阶次N为3或4。

4. 根据权利要求1所述的触摸轨迹平滑处理方法，其特征在于：所述插入点的个数Q取值为2 ≤ Q ≤ 10。

5. 根据权利要求1所述的触摸轨迹平滑处理方法，其特征在于：所述插入点的个数Q为4。
一种触摸轨迹平滑处理方法

技术领域
[0001] 本发明涉及触摸轨迹处理方法，具体是一种触摸轨迹平滑处理方法，属于触摸控制技术领域。

背景技术
[0002] 在触摸控制技术的各种应用中，用户常常希望计算机能够理解用户的各种触摸操作，从而理解用户意图并快速地作出相应的响应，进而为用户提供更加方便、智能的服务。用户通过手指、手写笔等触摸物在触摸检测表面滑动是一种常用的触摸操作，在这种情况下，计算机通过分析触摸物在触摸屏上的移动轨迹来判断用户执行的操作，能否对触摸物的运动轨迹进行正确的跟踪关系到计算机能否正确响应用户的操作，所以准确地捕捉、跟踪以及在触摸屏上显示触摸物的轨迹非常重要。
[0003] 一般情况下，触摸屏的处理系统在识别触摸物的运动轨迹时，是根据一帧一帧的扫描数据，识别出一系列离散的触摸点，然后将前后各帧的触摸点相关联，连接成触摸物的运动轨迹。
[0004] 对于单点触摸屏，当触摸物在触摸屏上运动时，计算机通过依次连接前后两帧或者前后两个扫描周期或者前后两个时刻的触摸点，就能够得到触摸物的运动轨迹；对于多点触摸屏，由于前后两帧或者前后两个扫描周期或者前后两个时刻的触摸点都不止为一个，无法直接对前后两帧或者前后两个扫描周期或者前后两个时刻的触摸点进行一对一的关联，需要根据时间的轨迹跟踪方法建立前后两帧触摸点之间的关联，从而进行轨迹跟踪。
[0005] 不管是对单点触摸进行轨迹跟踪，还是对多点触摸进行轨迹跟踪，都是将前后连续多帧中离散的触摸点连接起来形成轨迹，这样连接起来的轨迹是一条一条的折线，另外由于外界干扰、各种误差等因素的存在，识别出的触摸点的位置坐标可能会有偏差，离散的触摸点连接起来形成的轨迹会存在一些拐角或毛刺，如果直接将各帧触摸点连接起来的折线输出在显示屏幕上，输出轨迹很不美观，严重影响用户体验，因此需要对触摸轨迹进行平滑处理，将在各帧中识别出的触摸点拟合成与触摸点分布较接近的平滑曲线进行输出。
[0006] 现有技术中，通常采用将一系列离散的触摸点拟合成平滑的曲线的方法，将拟合的曲线输出到显示屏幕，如采用贝塞尔曲线拟合法、多项式曲线拟合法等，但是这些曲线拟合的方法灵活性差，且处理后的线条依旧存在平滑性差的缺点，用户使用感受不佳。

发明内容
[0007] 本发明所要解决的技术问题是现有技术中触摸轨迹平滑处理方法平滑效果差、用户体验不佳的问题，从而提供一种更平滑、书写效果更好的触摸轨迹平滑处理方法。
[0008] 为解决上述技术问题，本发明是通过以下技术方案实现的：
[0009] 一种触摸轨迹平滑处理方法，包括如下步骤：
[0010] S1: 采集触摸屏的每一帧扫描数据，并将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入长度为L的缓冲区中，其中L为正整数；
S2: 选择B样条曲线的阶次N和B样条曲线拟合的点数阈值M，其中，N为小于M的正整数，M为小于等于L的正整数；
S3: 当存储在所述缓冲区的扫描数据达到所述M时，在所述缓冲区内按照时间顺序依次选取出M个触点，对应所述M个触点进行N阶B样条曲线拟合；
S4: 在所述拟合的M个触点中相邻的两个触点之间插值X方向或Y方向插入Q个插入点，该Q个插入点位于所述B样条曲线上，输出插入点和触点的坐标信息，其中Q为正整数；
S5: 依次选择后续M个点进行N阶B样条曲线拟合后重复步骤S4操作，直到处理完该条轨迹上所有的触点。

所述插入点是在X方向或Y方向上等间距插入所述Q个插入点。
所述缓存区长度L为10。
所述B样条曲线拟合的点数阈值M的取值为5。
所示B样条曲线的阶次N为3或4。
所述插入点的个数Q取值为2≤Q≤10。
所述插入点的个数Q为4。

本发明的上述技术方案相比现有技术具有以下优点：
（1）本发明所述的触控轨迹平滑处理方法，步骤如下：采集触控屏的每一帧扫描数据，并将每条触控的所述扫描数据按照先后顺序堆栈式对应地存入长度为L的缓冲区中；选择B样条曲线的阶次N和B样条曲线拟合的点数阈值M；当存储在所述缓冲区的扫描数据达到所述M时，在所述缓冲区内按照时间顺序依次选取出M个触点，对应所述M个触点进行N阶B样条曲线拟合；在所述拟合的M个触点中相邻的两个触点之间插值X方向或Y方向插入Q个插入点，该Q个插入点位于所述B样条曲线上，输出插入点和触点的坐标信息；依次选择后续M个点进行N阶B样条曲线拟合后重复步骤S4操作，直到处理完该条轨迹上所有的触点。
上述触控轨迹平滑处理方法有效避免了现有技术中触控轨迹平滑处理方法平滑效果差，书写的线条不流畅，用户体验不佳的问题，是一种平滑处理效果好，书写更流畅和平滑的触控轨迹平滑处理方法。

（2）本发明所述的触控轨迹平滑处理方法，采用B样条曲线进行曲线拟合，曲线的局部形状受相应顶点的控制，可以拟合出一条非常灵活的曲线，拟合出的曲线更加接近实际触摸的轨迹，输出的轨迹更加美观，进一步提高了用户体验感受。

附图说明
为了使本发明的内容更容易被清楚地理解，下面结合附图，对本发明作进一步详细的说明，其中，
图1是本发明所述触控轨迹平滑处理方法流程图；
图2是本发明所述触控轨迹平滑处理方法的缓冲区存储触点坐标示意图；
图3是本发明所述触控轨迹平滑处理方法的触控轨迹B样条曲线拟合示意图。

具体实施方式
实施例一
本发明所述的触摸轨迹平滑处理方法流程图如图1所示，其包括如下步骤：

S1:采集触摸屏的每一帧扫描数据，并将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入长度为L的缓冲区中，其中L为正整数。

S2:所选缓冲区长度L为10，如图2所示，类似堆栈的存储方式，具体地说依次向缓冲区存储所选取的触控点坐标，当缓冲区内存储的点数小于缓冲区固定的长度L，继续进行缓冲，即t-1时刻，已有点A、B、C、D、E、F、G、H、I、J10个点存入缓冲区，缓冲区已存满，在t时刻，缓冲区内对应的历史顺序往前移，即先进出，点A移出缓冲区，点K存储到缓冲区。

B样条曲线的阶次N和B样条曲线拟合的点数阈值M，其中，N为小于M的正整数，M为小于等于L的正整数。

B样条曲线的数学表达式为：

\[P(x) = \sum_{k=0}^{n} P_{r,k} F_{r,k}(x) \]

在上式中，0≤k≤1; i=0, 1, 2, ..., m; 所以可以看出出B样条曲线是分段定义的。

根据所述B样条曲线拟合效果、用户的需求和计算运算量来选择B样条曲线的阶次N，所述B样条曲线的阶次N为3或4。

本实例中所述B样条曲线的阶次N为3, 三次B样条曲线分段三次B样条曲线由相邻四个顶点定义，其表达式为：

\[P(x) = \sum_{i=0}^{3} P_{r,k} F_{r,k}(x) \]

n个顶点定义的完整的三次B样条曲线是由n-3段分段曲线连接而成的，三次B样条曲线在连接处达到二阶连续。

作为其他实施例所述B样条曲线的阶次N为4。

S3:当存储在所述缓冲区的扫描数据达到所述M时，在所述缓冲区内按照时间顺序依次选取M个顶点，对所述M个顶点进行N阶B样条曲线拟合。

如图3所示，对于t时刻的K点，缓冲区内向前按照时间顺序依次选取F、G、H、I、J5个点进行三次B样条曲线拟合，拟合出t-5到t-1时的触控轨迹如图中虚线所示。当M取值为5时，能比较好的拟合出相应的插入曲线，在取阶次N=3时，对应的M值必须大于等于5，否则拟合的曲线效果不是很完美。

S4:在所述拟合的M个顶点中相邻的两个顶点之间按照X方向或Y方向插入Q个插入点，该Q个插入点位于所述B样条曲线上，输出插入点和触摸点的坐标信息，其中Q为正整数。优选地，所述插入点在X方向或Y方向上等间距插入所述Q个插入点。

所述插入点的个数Q取值为2≤Q≤10，理论上讲，插入点选取的越多，对应曲线效果越好，但是操作系统采用中断的方式处理触摸点的机制，驱动在给系统传输数据不能太大，否则会影响响应速度。本实施例作为优选实施例，所述插入点的个数Q为4。

作为其他实施例，所述插入点的个数Q可以为2, 3, 5, 6, 7, 8, 9, 10，插入的点越多曲线的轨迹越平滑，输出的轨迹越美观。

实施例二

本发明所述的触摸轨迹平滑处理方法流程图如图1所示，其包括如下步骤：

S1:采集触摸屏的每一帧扫描数据，并将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入如图2所示的缓冲区长度为10的缓冲区中。
S2: 选择B样条曲线的阶次为3和B样条曲线拟合的点数阈值为5。

S3: 当存储在所述缓冲区的扫描数据达到所述M时，在所述缓冲区内按照时间顺序依次选取5个触摸点进行3阶B样条曲线拟合，拟合出的轨迹曲线如图3所示。

S4: 在所述拟合的5个触摸点中相邻的两个触摸点之间按照X方向或Y方向等间距插入4个插入点，所述4个插入点位于所述B样条曲线上，输出所述插入点和触摸点的坐标信息。

S5: 依次选择后续M个触摸点进行N阶B样条曲线拟合后重复步骤S4操作，直到处理完该条轨迹上所有的触摸点。

上述触摸轨迹平滑处理方法有效避免了现有技术中触摸轨迹平滑处理方法灵活性差，上述方法有效避免了现有技术中触摸轨迹平滑处理方法平滑效果差，书写的线条不流畅，用户体验差的问题，提供了一种平滑处理效果好，书写更流畅和平滑的触摸轨迹平滑处理方法。

本发明所述的触摸轨迹平滑处理方法，采用B样条曲线进行曲线拟合，曲线的局部形状受相应顶点的控制，可以拟合出一条非常灵活的曲线，拟合出的曲线更加接近实际触摸的轨迹，输出的轨迹更加美观和平滑，书写效果更好，进一步提高了用户体验。

显然，上述实施例仅仅是为清楚地说明所作的举例，而并非对实施方式的限定。对于所属领域的普通技术人员来说，在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
采集触摸屏的每一帧扫描数据，并将每条轨迹的所述扫描数据按照先后顺序堆栈式对应地存入长度为L的缓冲区中

选择B样条曲线的阶次N和B样条曲线拟合的点数阈值M

当存储在所述缓冲区的扫描数据达到所述M时，在所述缓冲区内按照时间顺序依次选取M个触摸点，对所述M个触摸点进行N阶B样条曲线拟合

在所述拟合的M个触摸点中相邻两个触摸点间按照X方向或Y方向等间距插入Q个插入点，所述Q个插入点位于所述B样条曲线上，输出插入点和触摸点坐标

依次选择后续M个点进行N阶B样条曲线拟合后重复步骤S4操作，直到处理完该条轨迹上所有的触摸点

图1