wo 2013/040241 A1 I} 1] NP1 0000 Y R O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/040241 A1

21 March 2013 (21.03.2013) WIPO I PCT
(51) International Patent Classification: (74) Agents: PEARCE, Jeffrey et al.; P.O. Box 51, Redmond,
GO6F 21/00 (2013.01) Washington 98073 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2012/055210 kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO. CR, CU, CZ, DE, DK, DM,
13 September 2012 (13.09.2012) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
61/534220 13 September 2011 (13.09.2011) Us RW, SC, 8D, SE, 8G, SK, SL, SM, ST, 8V, SY, TH, T/,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(71) Applicant (for all designated States except US): M, ZW.
PRIVATECORE, INC. [US/US]; 555 Bryant St. #3821, . L
Palo Alto, California 94301 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(75) Inventors/Applicants (for US only): HOROVITZ, Oded UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
[IL/US]; 1444 Pitnam Avenue, Palo Alto, California 94301 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(US). WEIS, Stephen A. [US/US]; 280 Fell Street #308, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
San Francisco, California 94102 (US). WALDSPURGER, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Carl A. [US/US]; 517 Georgia Avenue, Palo Alto, Califor- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
nia 94306 (US). RIIHAN, Sahil [IN/US]; 103 Chester ML, MR, NE, SN, TD, TG).
Street, Menlo Park, California 94025 (US).
[Continued on next page]
(54) Title: SOFTWARE CRYPTOPROCESSOR

FI1G. 1

(57) Abstract: Security of information - both code and data - stored in a com-

puter's system memory is provided by an agent (5100) loaded into and at run

DEVICES 7006
8700 e
P MEM

S
DEV | STORAGE
MEM {8100
6710 . -

| o=
=

APPS
8300

Vis
8200

BUS(ES)

I_>

os/ CAGHE MANAGER 4000”7
HYPERVISOR 2100 "
A\ 2000
1000
¥
cPU | MMU | 1OMMU
1200 | 1300
M
3100
.
N T
ENCRYPT/ {
CORE DECRYPT 3000
5110
VALIDATION
6120
7 AGENT
5000
1100 CACHE ~ 5100

time resident in a CPU cache (5000). Memory writes from the CPU (1000)
are encrypted by the agent before writing and reads into the CPU are decryp-
ted by the agent before they reach the CPU. The cache-resident agent also op-
tionally validates the encrypted information stored in the system memory.
T Support for /O devices (6700) and cache protection from unsafe DMA of the
cache by devices is also provided.

WO 2013/040241 A1 WK 00TV VAT 00 A OO0

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2013/040241 PCT/US2012/055210

SOFTWARE CRYPTOPROCESSOR

FIELD OF THE INVENTION

[0001] This invention relates to computer security, in particular, to establishing
trust in the integrity and privacy of software and hardware components.

BACKGROUND

[0002] Since the beginning of electronic computing, there has been a never-
ending concern that the hardware and/or software comprising the computers — to say
nothing of user and other data — has been deliberately or inadvertently corrupted. As
the complexity of computers increases, so does this concern. At the heart of the
problem is trust, or the lack thereof. Software, hypervisors (in virtualized computer
systems), operating systems (OS) and applications and the like that run on modern
computers, servers, mobile devices, etc., assume, for example, that the hardware on
which they are running can be trusted — when software stores information in
memory, it expects the information to be the same the next time it is read from
memory and not tampered with or leaked to an attacker.

[0003] With an increase of platform modularization, it is possible for a human
operator or a hardware component to modify the state of the software out-of-band of
its execution. For example, every device that is connected to main memory through
an I/O bus (for example, a PCI bus) can communicate with the software by means of
writing and reading not only to shared areas but also from the application private
state that is stored in the main memory. For these and many other reasons, the
problem of trust is more prevalent today than ever before, especially as more and
more organizations rely on service providers or manufacturers to run their software

and build the systems on which they run.

[0004] An attacker can successfully penetrate a software system just by
observing, without modifying, the state of the application. One example of such an
attack consists of just observing data stored in memory (for example, credit card
numbers, personally identifying information, etc.) without requiring access

WO 2013/040241 PCT/US2012/055210

credentials such as passwords. Another example is known as a “cold-boot” attack,
which exploits the physical property of system memory (in particular, DRAM) that its
contents are retained for a short time even when the power is removed. In such
attacks, a human can force a reboot of the system, often just by causing a loss of
power or reset, and then, while data is still latent, reboot into a small (even USB-
based) OS that then can observe or copy the data from the supposedly secure
hardware; alternatively, the user can quickly remove the main memory device from
one host and mount it on another host in order to read its content. The cold-boot
attack is explained, for example, in http://citp.princeton.edu/memory/. By observing
the state of the software, that is, the contents of memory, the attacker can then
obtain secrets and credentials (for example, keys) that later allow the attacker entry
through the front door of the software stack.

[0005] Consequently, a whole branch of computer science is dedicated to
finding solutions to the problem of trust. Some of the concepts and attempted
solutions include the following.

[0006] "Data-at-rest” encryption involves encrypting data at the storage back-
end, that is, data that is not, at a given moment, being transmitted between devices
or otherwise processed. Although this method provides a relative easy and
straightforward way to encrypt substantially the entire non-volatile storage, it does
not protect data that is currently being processed or used. Yet another drawback is
that any keys used to encrypt the “at-rest” data must be stored and persist as long as
the data; keys themselves are subject to theft while in memory, which would defeat
the encryption as a whole.

[0007] “Cryptoprocessors” have been in use since the early days of
computers. In broad terms, a conventional, modern cryptoprocessor is some form of
microprocessor (including smartcards) that includes built-in hardware support for
cryptographic operations. In short, existing cryptoprocessor-based security solutions
rely on dedicated or specialized hardware and typically also on modifications to the
processor circuitry itself. One variant of this concept is "in-line processor RAM
encryption”, which is a hardware-based approach to the problem in which the CPU

integrates encryption logic into the cache circuitry, and which enables

WO 2013/040241 PCT/US2012/055210

encryption/decryption whenever cache data is either evicted or filled. Although
commodity operating systems can run on some known cryptoprocessors, at present
there is no cryptoprocessor implementation, in the sense of full-memory encryption,
for an x86 architecture.

[0008] The Trusted Computing Group TCG
(http://www.trustedcomputinggroup.org) works on a solution that can attest to the
software that has started to execute on a processor after a system boot, or in the
case of Intel's TXT (Trusted Execution Technology)
(http://download.Intel.com/technology/security/downloads/315168.pdf), whenever a
software component decides to execute in a measured environment. Once the
system has started to run the measured code, however, the TCG framework no

longer provides additional run-time protection.

[0009] "Messaging encryption” is a system concept for secure communication
(for example, VPN, IPsec, SSL) that allows hosts or other software entities to
communicate privately over public networks. Note that this is a form of encryption for
“data-in-motion”. Although this method provides a level of security for data in transit
between two entities, it is not designed or suitable for protecting data being

otherwise processed before or after transit.

[0010] Various researchers have started to experiment with using private
storage in the CPU to hide data, in particular the x86 internal state, from the main
memory. One such example is TRESOR
(http://www.usenix.org/events/sec11/tech/full_papers/muller.pdf), which contains
references to "frozen cache". Research in this area has demonstrated the ability to
protect some data from reaching RAM, but not the entire software stack. This
solution therefore has the weakness that an attacker can easily modify other data
that is exposed to the RAM and modify its software component to expose all secrets.

[0011] "Cache management via page coloring”
(http://en.Wikipedia.org/wiki/cache_coloring) is a method to split the cache content
between multiple applications running on a single x86 processor. This method
divides the total set of physical pages into pages that are "known" not to conflict "as

WO 2013/040241 PCT/US2012/055210

far as cache placement is concerned”, assuming that if each application allocates
only from one pool of pages having color A, it will never contend with another
application that allocates from another pool of pages having color B. In this way, the
application using color A cannot cause evictions of cached data associated with
application using color B, and vice versa, but it does not provide any guarantee as to
which pages in a given pool are currently in the cache or in system memory.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Figure 1 illustrates the main hardware and software components of the

invention, as well as the main principles of operation.

[0013] Figure 2 illustrates an example of an embodiment in which a
security/validation component may be part of system software wholly or partially in a
CPU cache.

[0014] Figure 3 illustrates the interaction with system memory by various

hardware and software components in typical implementations.
DETAILED DESCRIPTION

[0015] Although different implementations of the invention may operate with
more relaxed requirements and assumptions, in broadest terms, this invention
provides an “agent” (either software or “firmware”) contained within the CPU cache
that encrypts/decrypts and/or validates/authenticates data and/or instructions that
are passed to or from the processor core(s). As such, the invention provides a
cryptoprocessor that is embodied as software — requiring no specific hardware
support or modifications — onboard the main processor itself. This cached software
module/agent thus forms a software “wall” around the CPU core, which makes
available instructions and data coming in to the core in the proper, unencrypted form
for processing, but that encrypts all out-going data before the CPU stores it in any
external modules, including system memory, device memory, etc. Thanks to this,
with at most limited and fabricator-level exceptions (see below), the only software
(including the notion of “firmware”) or hardware that need be trusted during run-time
is the processor and the code that defines the agent. In the context of this

WO 2013/040241 PCT/US2012/055210

discussion, "trusted" means that the main processor is expected to behave according
to its specifications and execute the associated software stack without deviation from
publicly available processor specifications. In other words, the main processor itself
is trusted to be free of backdoors that might allow attacks on the cached software.
According to this aspect, the level of trust of the overall system will therefore be as
great as the trust for the main processor itself, together with the cached agent. It will
then be possible for end users to load arbitrary applications and process sensitive
information knowing that neither human operators nor malicious hardware or

software can attack their sensitive data or applications.

[0016] One other potential limitation to the level of trust would stem from the
theoretical ability of a malicious actor to examine the state of the CPU at run-time. In
general, however, tampering with the internal state of a running CPU is a difficult and
expensive operation such that the level of trust that the system described here

allows is still greater than for conventional solutions.

[0017] Where the processor (together with the cached agent) is the only
trusted component, there is greatly reduced complexity as compared with existing
systems, which can be trusted only if one also trusts that each component and
human operator is working according to specifications. Of course, human operators
cannot be "tested" the same as computer components, which makes trust all the
more difficult. Even if one were to trust all components and humans, it would still be
necessary to monitor and evaluate whether their performance honors the software
stack privacy and integrity. In short, it is much more difficult to trust the integrity of
many different links in a chain than it is to trust the integrity of a single link that is
known to be strong.

[0018] In one embodiment, existing software solutions (hypervisors, operating
systems, and applications) may be run with only a minimal change in the lowermost
component of the software stack, such as the operating system (OS) or hypervisor.
In particular, in this embodiment, the agent is itself included as a component of the
OS/hypervisor, either as a cache-management module, or as a part of this module,
which is resident in cache at run-time. This provides support for general-purpose

applications and also support for legacy applications. This contrasts with the

WO 2013/040241 PCT/US2012/055210

"hardware security module” HSM
(http://en.wikipedia.org/wiki/hardware_security_module), which is a dedicated
external component designed to protect a specific application but that has a limited
programming interface that cannot run arbitrary applications.

[0019] In general, this invention focuses on the use of the main processor
cache, which is far smaller than the system memory installed in modern systems.
Two changes need to be made in the software stack in order to execute in this new
architecture. These changes can be made in the OS/hypervisor, whichever runs
directly on the main processor. First, in any OS/hypervisor, there is some code that
handles interrupts sent by hardware, as well as software faults triggered by
applications. This "always present" code generally can fit inside the main processor
cache. Second, most modern OSes/hypervisors assume a large main memory,
although that assumption is not an absolute requirement - applications are likely to
work correctly even if only very limited amounts of physical memory are available,
such as with the help of virtual memory; however, without making a change in the

OS/hypervisor, performance will suffer.

[0020] According to various aspects, systems and methods are provided to
manage the main processor cache so that a software agent always controls which
parts of main memory can occupy the cache. Some processors are already
configured to enable such granular control and in such cases the configured
instructions and procedures can be used to implement this feature. Some main
processors lack the granular control over their memory cache, however, and will
therefore require careful software algorithms to manipulate the main processor into a
state in which a software agent can control which part of the memory occupies the

cache at any given time.

[0021] The x86 processor is an example of a processor that lacks granular
cache control. The x86 class of processors is well known in the industry and has
memory cache controls that are listed, for example, in the manual "Intel 64 and IA-32
Architectures Software Developer's Manual, Volume 3: System Programming
Guide" available from Intel Corp. In order to achieve control over the cache content,

however, the main processor would need to notify the software stack whenever a

WO 2013/040241 PCT/US2012/055210

cache line is about to be evicted, which in turn allows the software stack to change
the cache line before it is written back to main memory. The x86 lacks such software

notification.

[0022] Figure 1 is a simplified illustration of a computer system that could
embody different aspects of the invention. At the heart of the system is a main
processor CPU 1000, which includes at least one core 1100 that receives and
processes instructions using well-known components and circuitry. A CPU will of
course include many different components, ranging from internal clock circuitry to an
ALU, but since these are well-known, they are not illustrated even though they may
be assumed to be part of the CPU 1000.

[0023] System-level software such as an operating system (OS) and/or
hypervisor 2000 will typically be included to perform well-known functions. Virtual
machines 6200 and applications 6300 are illustrated as running under the
supervision of the OS/hypervisor 2000. A hypervisor will typically not be necessary if
no virtual machines are included; both options are illustrated in Figure 1 merely for
the sake of completeness. Various devices 6700, which can encompass almost any
known devices such as storage, network, human interface, chipset, etc., may also be
included. Some form of storage 6100 such as a hard disk system will normally be
included along with less typically less persistent but faster memory devices such as
system memory 7000.

[0024] In Figure 1, the system memory 7000 is shown as a single component
MEM, but this is merely for the sake of clarity; in most implementations, the system
memory 7000 will comprise different high-speed memory devices that may be
included either stand-alone, such as for the main system memory, dedicated and
located within different devices, etc. RAM, flash memory, flash-backed RAM,
phase-change memory (PCM) and other such technologies may also be
encompassed by the general term “system memory 7000” for purposes of this
invention. From the perspective of the CPU, the system memory 7000 is therefore
some addressable memory space, which does not need to be within one component

or contiguous.

WO 2013/040241 PCT/US2012/055210

[0025] A typical computer system will include various buses 4000 such as an
address bus, a data bus, possibly a dedicated I/O bus, etc. In cases where one or
more devices is remote, there will generally also be some form of network channel,
bus, or point-to-point interconnects such as the Intel QPI (QuickPath Interconnect),
which is not separately shown merely for the sake of simplicity.

[0026] An essential component to this invention is the cache 5000, which is
part of the CPU 1000. The general structure and properties of a cache are well-
understood in the field of computer science and will therefore not be described
further here.

[0027] Unique to this invention, however, is an agent 5100, which is a
software component that includes an encryption/decryption module 5110 as well as
an optional validation module 5120. In one embodiment, the agent 5100 is a
software component within the system software 2000 and which resides in the cache
5000 at run time. In some implementations, the system software 2000 may include a
cache management module 2100 that also performs various cache-related tasks; in
these cases, it is possible for the agent 5100 to be either identical to or a sub-
component of such a cache management module 2100. The agent 5100 may be
included either as a dedicated component in the system software, or be incorporated
into any other appropriate system software component. In another embodiment, the
agent 5100 may be an independent component resident in the cache, in which case
the cache management module 2100 may not be necessary and the OS/hypervisor

may be an unmodified system software layer.

[0028] Different processor architectures will naturally have different cache
structures and some have more than one. For the purposes of this invention, if there
are options, it is preferable to select a cache that is large enough to hold all the code
defining the cache management module 2100/agent 5100 because this will reduce
the traffic (similar to memory-to-disk swapping and paging) between the cache and
the main memory, and the accompanying increase in encryption/decryption activity
this brings. Other caches may be chosen, however, if one is willing to accept that
not all components of the agent, plus any other cached software, may fit at once in

the cache. In many existing processors, the LLC (last-level cache) will be most

WO 2013/040241 PCT/US2012/055210

suitable because it is generally the largest. In x86 systems, this will be the L3 cache,
which at least partially includes the lower level L1 and L2 caches such that when a
lower level cache has a miss, it will read through the next level cache, not directly

from memory.

[0029] As is illustrated by the dashed lines, instructions and data submitted to
and transmitted back from the core can be made visible to and be intercepted by the
agent 5100. According to one aspect of the invention, whenever information (data
and/or instructions) is transmitted from the CPU, in particular from the core 1100 or
some other internal CPU component, this transmission is intercepted by the agent
5100 and is encrypted by the agent module 5110 before it is returned outside of the
logical boundaries of the CPU 1000, in particular, to system memory 7000.
Instructions and data inbound to the CPU core or internal components are then
decrypted by the agent 5110 before they are submitted for processing. In some
implementations, all in-coming and out-going (from the perspective of the CPU)
information may be decrypted and encrypted, although in other implementations this
encryption and decryption could be carried out only for certain portions of system
memory 7000. The system designer may freely choose which encryption and
decryption algorithm the module 5110 uses. The designer will then consider such
factors as the available size within the cache for the agent and how much
performance he is willing to sacrifice to obtain higher levels of cryptologic security.
Suitable procedures will be implemented to store the encryption keys, typically within
the cache 5000 itself, and preferably only for the duration of key use.

[0030] It would in general be unnecessary and cause unacceptable
performance degradation to individually encrypt/decrypt every byte of information
passing between the CPU and the main system memory by way of the cached agent
5100. Instead, a larger granularity will generally be preferable. In x86 systems, for
example, the virtual memory subsystem usually moves information at the level of
pages. In one implementation, the agent 5100 therefore traps on accesses at the
granularity of full pages and since most software execution will generate page-size
traffic, the agent will typically encrypt and decrypt by page. This operation can be
triggered, for example, by detecting the page faults that are generated to instruct a

WO 2013/040241 PCT/US2012/055210

hypervisor (in virtualized embodiments) to fetch the next portion of system memory
that is necessary for making progress in the execution of software.

[0031] In addition to application execution, the agent 5100 might have its own
meta-data that may be too big to fit inside the cache. Such meta-data may be stored
in encrypted form in main memory and be accessed proactively by the agent, not
requiring triggering by a page fault; consequently, such accesses do not need to be

at the same page-size granularity.

[0032] It is not necessary for the agent to execute software directly on the
CPU; rather, the agent could be configured to interpret the software, for example,
unmodified virtual machines and applications. This would allow the agent to
proactively detect a need for memory access by the software and allow it to read in
such memory in smaller chunks, thereby improving throughput and performance.
This is a design choice, which might also include such known techniques as pre-
fetching and code scanning. One example of an interpreter that might be used is an

x86 instruction set interpreter.

[0033] Although the system software 2000, the virtual machines 6200 and the
applications 6300 are often conceptualized as separate entities in system diagrams
such as Figure 1, these are of course in reality respective bodies of data and code
that are stored as any other body of "1s" and "0s" in system storage 6100 and are
loaded either as a whole or in units such as pages into the higher-speed system
memory 7000 for execution under the control of the system software 2000. The
contents of their code and data in respective memory address locations may
therefore be cached by the CPU just as any other in order to improve performance.
One other consequence of this, however, is that the agent 5100 can secure even the
code that defines such software components just like any other information stored in

system memory.

[0034] Even at this point, one can see a difference between this invention and
known solutions. For one, except for the always present code necessary to initialize
the CPU itself, the illustrated embodiment does not require action on the part of any
hardware or software component other than what is part of the main processor 1000.

10

WO 2013/040241 PCT/US2012/055210

One other important distinction is that the agent 5100 may be implemented as a
software module resident in the cache 5000. In short, the agent 5100 converts what
may be a commodity processing system into a cryptoprocessor with no requirement
for hardware modification or, at run-time, any trusted hardware or software

components external to the CPU.

[0035] Although cache-based encryption of information transmitted from the
CPU to system memory can ensure the secrecy of such information, encryption
alone does not also ensure its integrity — even encrypted information can be
tampered with or even accidentally altered. As Figure 1 also illustrates, the agent
5100 may therefore also include a validation software module 5120, which computes
some form of validation data to associate with what the module 5110 encrypts and
has stored in system memory. This validation data could be as simple as a
checksum, although in most cases it would be more secure to use any known
message integrity algorithm to compute hash values, message authentication codes
(MACs), or digital signatures associated with each block of information (such as a
page) that is encrypted. The validation module 5120 may then later re-compute the
validation data for the same memory block, compare the re-computed validation data
with the previously computed and stored validation data, and thereby detect any
change, which would be indicated by a mis-match. This verification procedure could
be carried out whenever the memory block is to be read, as a background process,
or on any other schedule the system designer may prefer.

[0036] Encryption does not strictly require validation, and vice versa.
Consequently, it would be possible to configure the agent to do validation alone, or
to selectively enable both encryption and validation. In other words, the agent may
include both the encryption/decryption module 5110, or the validation module 5120
or both (the embodiment illustrated in Figure 1 and the embodiment that, in the most
secure implementation, will be the preferred one). As for a validation-only
implementation, this may be sufficient in environments where privacy is not required
or desired, but data integrity is. Note that even a validation-only implementation
would still have the benefit of the highest level notion in this invention — an agent
within the trusted cache of a hardware processor.

11

WO 2013/040241 PCT/US2012/055210

[0037] Even in implementations that incorporate both modules 5110 and 5120
and corresponding functionalities, it would be possible to make these selectable. For
example, one may wish to maintain privacy of data, in which case the encryption
module would encrypt that data before it is written to memory, whereas one may not
care to incur the performance cost (however slight) of encryption/decryption for other
information, such as the already well-known code of a commodity operating system
or application. It may be desirable, however, to ensure that even non-encrypted
memory blocks (such as pages) have not been tampered with, and in such case
validation only may be sufficient. A suitable data structure such as a simple indexed
list could then be included in the agent to indicate whether a particular memory block

(such as a page) should be or has been encrypted and/or validated.

[0038] Figure 2 illustrates, at run-time, the embodiment in which the agent
5100 is a sub-component of the cache management module 2100 of the
OS/hypervisor 2000. In other words, in this embodiment, the OS/hypervisor 2000 is
modified to include the agent 5100, either as part of an existing cache management
module 2100 (if it has other unrelated functions as well), or as the cache
management module itself. The cache management module 2100 will maintain the
list of pages, pages ranges, etc., that are allowed access to the OS/hypervisor and
actively manage the cache, for example, monitor that the cache never misses via the

performance counter and takes action if any error is discovered.

[0039] As Figure 2 illustrates, at run-time, the OS/hypervisor 2000 will
generally be loaded at last partially into the cache 5000; this is normal even in
conventional systems. Depending on their relative sizes in a given implementation, it
is possible that the entire OS/hypervisor 2000 may not fit entirely within the cache
5000. In such case, as Figure 2 illustrates by the shaded upper portion of the
OS/hypervisor 2000 extending logically outside the cache 5000, some portion of the
OS/hypervisor 2000 may instead be stored until needed in an encrypted system
memory region indicated as 9100. As the figure shows, user-level software such as
the VMs 6200 and applications 6300 may also be loaded in the cache 5000, at the
same time as the system software 2000 and, as needed, portions (shown shaded) of
the corresponding code may at least temporarily be moved out to or left in the

12

WO 2013/040241 PCT/US2012/055210

encrypted system memory region 9100. This is analogous the manner in which
memory pages are frequently swapped between system memory and disk storage in
conventional computers. In order to ensure proper functioning of all the features of
this invention, however, in particular, the feature that only the CPU and agent need
to be trusted, all of the agent 5100 should preferably remain resident in the cache

throughout run time.

[0040] One example of a way to manage the cache content for main
processors that lack granular cache control is:

1. Determine the cache geometry and associativity, for example, using
supported interfaces or by direct evaluation (for example, one known technique is to
measure the time to access memory regions of different sizes; a cache hit is much
faster than a cache miss);

2. Determine the maximum set of physical pages that can coexist in the cache
for a typical cache that operates on physical addresses. For a processor that
instead uses virtual addresses to index cache memory (possibly with additional
physical address tagging), the agent 5100 may be configured to manage the
assignment of virtual addresses to ensure that all mapped memory can co-exist
simultaneously in the cache.

3. Maintain the discovered set of physical pages, for example, as the only pages
that can be assigned to virtual addresses to be used by the hypervisor, OS or the
application. Note, however (as described below), as one alternative, that virtual-to-
physical page mappings and/or specific regions of physical memory can be marked
as uncacheable, so arbitrary mappings are also possible provided that the only
cachable pages are the ones in the set of physical pages that can co-exist (see step

2 above).
[0041] Another example of a procedure to manage the cache content is:
1. Determine the cache geometry and associativity, for example, using known,

supported interfaces or by direct evaluation
2. Determine the maximum set of physical pages that can coexist in the cache
while noting that the cache operates on physical addresses. As in the method

described above, for a processor that instead uses virtual addresses to index cache

13

WO 2013/040241 PCT/US2012/055210

memory (possibly with additional physical address tagging), the agent 5100 may be
configured to manage the assignment of virtual addresses to ensure that all mapped
memory can co-exist simultaneously in the cache.

3. Maintain the determined set of physical pages, for example, as the only pages
that can be assigned to virtual addresses to be used by the hypervisor, OS or the
application. Note, as above, the alternative that virtual-to-physical page mappings
and/or specific regions of physical memory can be marked as uncacheable.

4. To read any memory outside the set of pages mentioned above, the OS or
hypervisor may use any supported processor methods to read memory into a CPU
register while bypassing the cache. Once the copied memory is in a processor
register, it is safe to copy the register content into one of the physical pages that
occupy the cache.

5. To write any memory outside the set of pages mentioned above, use reverse
logic relative to step 4.

6. To protect the CPU cache from access via DMA, configure the IOMMU
(provided in many modern processor architectures, such as the x86 architectures) or
some other CPU-specific method to block DMA to pages that occupy the cache.

[0042] Various methods are known to allow the cache to be bypassed when
accessing a particular address or range of addresses. Examples of such methods
that are available for, among other architectures, the x86, include: Memory Type
Range Registers (MTTRs), which can command the x86 processor not to cache
certain memory areas; the PAT extension to the MMU, which controls caching of
individual pages; and special non-temporal load and store instructions, such as
MOVNTDQ and MOVNTDQA.

[0043] In most existing x86 systems, a set of physical pages that can coexist
in the CPU cache is any contiguous set of pages that starts on a multiple of the
cache size. For example, if the cache size is 8 MB, a first set of pages are the pages
that occupy the system address space from [0-8) MB, a second set is the pages that
occupy the system address space from [8-16) MB, and so on. This feature can be
exploited in various ways to test whether a given set of physical pages can coexist,
assuming a software stack that can fit within the tested set of pages. This can be

14

WO 2013/040241 PCT/US2012/055210

accomplished in various ways, for example, by determining whether cache evictions
have occurred using either a processor cache performance counter or a hardware
bus analyzer (that is, a “memory protocol analyzer”). These methods comprise,
more specifically, the following:

[0044] Using the processor cache performance counter.

1. Invalidate the cached content.

2. Read every byte (or other memory unit) in the set of pages to be tested.

3. Record the value of the processor cache performance counter (number of

cache misses).

4. Repeat step 2, that is, read every byte (or other memory unit) again.

5. Again read the processor cache performance counter (number of cache
misses).

6. Compare the results. If the number of cache misses is the same as in step 3,

then all pages coexisted in the cache, since this will show that re-reading the whole

range did not cause any miss.

[0045] Using a hardware bus analyzer:
1. Read every byte (or other memory unit) in the set of pages to be tested.
2. Using a bus analyzer, start measuring any access to main memory by the

main processor.

3. Repeat step 1.

4. Analyze results of the bus analyzer; in particular, search for any reads from
the addresses in the set of pages. If there is no read in that range then all the pages
coexisted in the cache.

[0046] There are other methods for determining if cache misses occur, which
may be used instead of the method outlined above. Just one example is to use a
device capable of performing non-cache-coherent reads of memory (bypassing the

cache).

[0047] Another alternate method involves using the x86 INVD instruction to
invalidate the cache contents, and then inspecting the associated system memory

15

WO 2013/040241 PCT/US2012/055210

pages to see if any lines were written back. In particular, the cache region may be
filled with an initial pattern and then flushed to memory via WBINVD. The region is
then filled with a distinct test pattern, and the cache is invalidated via the INVD
instruction. The memory backing the cache is then examined and the information
about which lines were evicted may be used to determine the sets of pages that
conflict in the cache, in order to find the non-conflicting set. Just one example of a
way to determine this would be to observe that any cache lines that do not contain
the original pattern must have been evicted due to conflicts when writing the test
pattern.

[0048] Inspection of the cache as just described can be carried out at different
times and by different entities, depending on a given implementation choice. In one
embodiment, for example, cache inspection could be done offline and manually for
each processor configuration. In another embodiment, a loadable Linux kernel
module may run the conflict test. In other embodiments, cache inspection could be
done at boot-time when the cache management/agent software is first loaded. In yet
other embodiments, such checks could be performed periodically at run-time by the
secure OS/hypervisor, as an extra layer of protection to detect any unexpected
cache evictions that may have occurred (and allowing them to be scrubbed quickly to
reduce the exposure time of sensitive data, as is explained further below).

[0049] Yet another approach is to time memory accesses (for example, using
the x86 RDTSC "read timestamp counter" instruction) to detect misses, for example,

as an alternative to using the cache-miss performance counter.

[0050] Note that the more recent generation of Intel x86 processors (starting
with those code-named "Sandy Bridge") use so-called "complex cache addressing”,
where the hardware hashes a memory address to determine where it will reside in
the cache. In other words, page coloring in such systems may no longer work. In
such systems, the method for computing a set of non-conflicting pages will typically
require the generate-and-test procedures outlined above.

[0051] In many common systems, a modern hypervisor or OS can be given as
a constraint a set of physical pages that are allowed to be used, with the expectation

16

WO 2013/040241 PCT/US2012/055210

that the hypervisor or OS will respect that constraint and reference only the given
pages for execution. One additional step will normally be required, however, to
prevent hardware devices from reading the state of the CPU cache. By default, it will
normally be possible for devices to issue DMA (direct memory access) requests to
read from any system address. [If that memory happens to be cached by a DMA-
cache-coherent CPU, such as in an x86 system, the CPU will allow access to such

memory, which could defeat the trust module and expose the software state.

[0052] An IOMMU (/O memory management unit) 1300 is a device
configurable by software that can restrict hardware devices from accessing system
addresses, such that a device cannot read or write to memory that hasn't been
explicitly allocated (mapped) for it. Many commodity processors include the IOMMU
as part of the CPU circuitry itself; in other cases, it will be a separate component, in
which case known measures will need to be taken to ensure its security. In addition
to an IOMMU, some CPUs have other technologies that can provide DMA protection,
for example, the Intel x86 TXT technology. One method to provide DMA protection is
therefore to use the IOMMU, although it is possible to implement various
embodiments of this invention using other CPU-specific alternatives. To mitigate
access to the CPU cache by devices, an IOMMU may therefore be configured to
prevent such access. This is normally done by configuring the IOMMU so that each
page in the set of pages occupying the cache will have no mapping, or a mapping to
an invalid address range, such as an address that is not mapped by any device or
memory in the system address space. In normal operation, the software stack will
not require any of the devices to read from the memory that occupies the cache, so
normal operation can be expected. If a malicious hardware device attempts to read
the software state, however, this will be prevented by the IOMMU. One exception to
this are some pages that occupy the cache and are knowingly selected by the
software stack for /O communication with devices. For such pages, the IOMMU will
be configured to map the pages so that they are allowed to be accessed by
hardware devices. One reason for having such pages is that some old hardware
devices may be able to address only small amounts of the address space; for
example, ISA devices can address only the first 16 MB of the system address space.

17

WO 2013/040241 PCT/US2012/055210

Communicating with such devices might therefore need to happen using memory
that is within the cache.

[0053] Even when allowing access to certain pages inside the cache for 1/O
purposes, however, the pages that are allowed access for devices are only those
that are used at that point in time for I/O communication. Once I/O communication is
completed, the IOMMU protection can be established once again and the page can
be used for other purposes, such as for running other software code. Note that this
is not a security risk, as the agent is aware of any page being used for /O and can
treat it accordingly.

[0054] Since the agent 5100 contains executable code loaded in the CPU
cache 5000, and this cache is empty at the time the CPU is first powered on or after
a reset, the issue arises as to how to load the agent in a secure manner. Each
processor architecture will have different ways to address this issue that skilled
designers will know how to use, but for the purpose of illustration, assume that the
invention is to be implemented in a system based on the current x86 architecture.
As mentioned above, Intel at present provides the Trusted Execution Technology
(TXT), which includes a Trusted Platform Module (TPM) chip as a hardware
extension of the x86-type CPU. TXT is a known method for authenticating software
launch on a system with a TPM. According to some proposals, the TPM may be
incorporated into the CPU itself in the future. Figure 1 shows these as TXT 3000
and TPM 3100.

[0055] One method to arrange secure loading of the agent 5100 is as follows:
0) Using a trusted system, compute a hash value of the code to be loaded as the
agent 5100 and store this securely.

1) Load agent loader code in the system main memory as with other
applications. At this stage, the agent code might be visible in main memory, and
therefore might come under malicious attack.

2) Following Intel-specified and therefore known operation of the TXT
technology, execute the agent loader code in an MLE (Measured Launch
Environment) to load the agent 5100 into the cache 5000 and record the agent hash
value in the TPM 3100. The MLE will provide protection from DMA for all the agent

18

WO 2013/040241 PCT/US2012/055210

loader code. At this stage, there are no secrets loaded in memory, only the agent
loader code.

3) Rehash the cached agent code and, via a remote system, communicate with
the TPM (through a preferably dedicated network agent) and compare this rehashed
value with the previously stored agent hash value. If these two hash values match,
then the cached agent will be authenticated, that is, it will be known that at run-time it
is running unmodified.

4) Private information (storage keys, VM images, etc.) may now be
communicated to the host running the agent 5100 since the agent, now securely
loaded, will ensure that all execution happens only within the CPU cache. Note that
it is possible for a CPU to generate encryption keys securely that reside in the cache
with no need for communication external to the CPU itself.

[0056] Figure 3 illustrates the interaction with system memory by various
hardware and software components in typical implementations, and also illustrates
how the invention is able to support not only operations with system memory, but
also 1/O devices that may include memory of their own. Figure 3 also illustrates the
distinction between safe/private system memory address regions (9000) and unsafe,
potentially malicious system memory address regions (9001).

[0057] As for safe/private memory 9000, in general, any memory currently in
the cache 5000 may be considered safe to access — it is trusted. Information in
memory that has been encrypted by the agent, although not trustworthy in the sense
of cached information, is nonetheless safe by virtue of the encryption and further by
validation. Software in the stack may consider such address regions as safe in the
sense that they view the system memory that they address to be physical addresses,
but in reality are within the cache 5000 and can therefore be trusted. In other words,
the software stack thinks that it is addressing system memory as usual, but is in
reality addressing the cache 5000.

[0058] Note that encryption by the module 5110 (Figure 1) provides
confidentiality of the information stored in these memory regions (including such
information as the state of the virtual machines 6200 and applications 6300 and any
portions of the OS/hypervisor 2000 that cannot fit in the cache 5000); validation by

19

WO 2013/040241 PCT/US2012/055210

the module 5120 (Figure 1) provides data integrity; but actual availability is not
guaranteed. Thus, a malicious entity could still tamper with code or data, but this
tampering would be detected as explained above: tampering would cause a
mismatch in the hash or other validation data for the affected block. Note that even
without the validation module 5120 and its related operations, tampering with
executable code stored in encrypted form would almost certainly lead to detectable

runtime errors or an outright failure of the affected code to make forward progress.

[0059] In Figure 3, the software stack 2000, 6200, 6300 is shown as being
outside of the cache. This is merely for sake of illustration. As explained above, at
run-time most and preferably all of the OS/hypervisor 2000, in particular, the agent
5100, will be resident in the trusted cache 5000, as well as any other parts of the
stack (such as VMs 6200 and/or applications 6300) that the OS/hypervisor 2000

chooses to load into the cache as well for conventional performance reasons.

[0060] Unencrypted memory regions 9001 cannot be trusted and are not safe
from attack. In general, any memory not currently in the cache is considered unsafe
and must be encrypted by the agent to prevent privacy and integrity attacks. The un-
trusted memory space 9001 includes normal system memory as used by a
conventional system. No special attributes need to be associated with a particular
address in such a system memory space, which can therefore be used by executing
code (although preferably not code itself), storage or device 1/0. As explained
above, the un-trusted memory space may also be used to store executable code that
is encrypted/validated; this code may be paged in and executed after re-validation
and decryption by the agent 5100.

[0061] Unencrypted system memory may not be the only mappable memory
in the overall system. Depending on what they are and how they are built, devices
6700 may, for example, be able to access their own dedicated, typically onboard
device memory 6710 (such as the memory on a video card). Note that, even in
conventional systems, it is rare to map device memory 6710 for any purpose other
than /O with devices; in particular, code is not typically executed from device
memory. As the CPU cache 5000 provides access to system addresses, some of

the addresses might not be backed by system memory at all; instead, they might be

20

WO 2013/040241 PCT/US2012/055210

backed by the device memory 6710, for example, a video card with 512MB, which is

not part of the system memory, but in theory can be used as such.

[0062] Devices may also be enabled to access an untrusted system memory
address space 9510 via a DMA I/O channel 9600. In a trusted setup, however, DMA
protection 9201 (for example, provided by IOMMU 1300 — see Figure 1) is
configured to prevent access to the system address ranges that occupy the CPU
cache. This is symbolized by the arrow from the I/O channel 9600 “bouncing off of”
the DMA protection module 9210. This IOMMU protection mechanism is described in

greater detail above.

[0063] The encrypted storage region 9610 shown in Figure 3 is simply
undedicated memory. For a system that does not trust the system memory in
general, it is beneficial to include a region such as 9610 as an untrusted storage
area to store an encrypted RAM disk, as encrypted swap storage, etc. This can
improve performance compared to slow storage devices, and can compensate for

the limited processor cache size.

[0064] A system memory area that backs the CPU cache is indicated as 9500.
As one example, this area might contain zeros or other patterns (for example,
randomly generated bits, in which case the seed should be stored for subsequent
recomputation and validation) that indicate and validate that no memory is leaked
back from the cache to system memory, such as by an accidental write-back. In
other words, if, upon later inspection by the agent, the system memory region 9500
does not contain the same pattern, then the system will know there has been some
cache leakage. Some pattern other than all zeroes has the advantage that a reset
won't be confused with a correct state. Note that this backing memory region 9500
is still not to be trusted, as it is neither in the cache nor in a region of encryption, but

it may still be safely used by the agent as described.

[0065] The region of non-conflicting memory 9500 may also be used during
the initial loading of the agent 5100. One example of a procedure that uses the

cache-backing memory region 9500 includes the following steps:

21

WO 2013/040241 PCT/US2012/055210

1. T0: The image of the OS/hypervisor 2000 kernel image is read into the
memory region 9500. At this point, all information in region 9500 may be in plain
text, that is, none of the information is yet safe.

2. T1: The OS/hypervisor kernel initializes the agent 5100, (which will then
manage the caching property of physical memory to limit the kernel to only the set of
non- conflicting pages), configure the IOMMU, and enter into the proper run-time
state.

3. T2: The agent 5100 fills the memory range 9500 backed by the cache with
the eviction-detection-fill-pattern.

4. T3-Tn: The system is run from the cache only. Note that the memory region
9500 backing the cache is not an encrypted version of the running state; rather, it is
“stale” memory containing a fill pattern. Periodically, the agent 5100 may examine
the memory region 9500 to check that this fill pattern is intact, and, thereby, to detect
if any cache lines have leaked due to eviction.

[0066] It is well known that caches operate on aligned, contiguous chunks of
data, referred to as cache lines. For example, 64 bytes is a common cache line size
in modern x86 processors, and movement of data between the cache and system
memory occurs at cache-line granularity. The processor cache is typically organized
in a set-associative manner; each cache index can store up to N cache lines in an N-
way set-associative cache. For modern x86 processors, N is commonly 8 or 16. The
processor typically employs a deterministic mapping from memory addresses to
cache indexes, such that a large number of lines in system memory will be mapped
to the same cache index, although the cache may only hold up to N of them at a
time. When more than N memory addresses that map to the same cache index are
accessed, they cannot all fit in the cache at the same time, resulting in cache
evictions. Modern processors commonly employ a least-recently-used (LRU) policy
(or some approximation) to determine which already-cached line to evict in order to
make space for a newly-accessed line from system memory. When a modified (also
known as “dirty”) line is evicted, it is written back to system memory. In general,
processors do not provide any way for software to interpose on cache evictions or
writebacks.

22

WO 2013/040241 PCT/US2012/055210

[0067] This invention does not rely on the existence of special hardware
support or processor modes for locking down portions of the cache contents, as
required by the “bus encryption” method described in Xi Chen, Robert P. Dick, and
Alok Choudhary. “Operating System Controlled Processor-Memory Bus Encryption”,
in Proceedings of Design, Automation and Test in Europe, (DATE 2008), Munich,
Germany, March 2008, or the CARMA system (cited below).

[0068] Uncontrolled cache evictions leak data from trusted cache memory to
untrusted system memory, violating privacy. Also, a subsequent access to an evicted
line will load data from untrusted system memory into the trusted cache, enabling an
attacker to violate integrity. As a result, effective cache management is essential for
preserving the privacy and integrity of both code and data. One key challenge is
therefore preventing evictions from cache conflicts, a problem that is not discussed
in related work. This involves carefully selecting the portions of memory that are
allowed to be cached, and marking the rest of memory uncacheable. In general, the
processor memory management unit (MMU) 1200 (Figure 1) permits software to
control, map, and protect memory at the granularity of pages, which are typically
much larger than individual cache lines. For example, the smallest page size is 4096
bytes for x86 processors.

[0069] One method for addressing this issue is: 1) Find a non- conflicting set
of pages; then 2) use only these pages for running the current software, since only
these pages will have a caching policy that allows the CPU to cache them; remaining
pages in the system will typically have a caching policy that prevents caching. Since
the set of pages that need to be found as non-conflicting are the only pages ever to
be mapped into the cache, even when data is read from the rest of the untrusted
memory, it is still read in such a way that does not place them into the cache and

that generally will not cause eviction of memory that is currently in the cache.

[0070] The set of non-conflicting pages depends on the particular function
used by the processor to map memory addresses to cache indexes, which in turn
depends on details of the processor implementation. In some cases, once the cache
organization (size and associativity) is determined, the mapping can be computed

and controlled via page coloring. In other cases, such as the most recent

23

WO 2013/040241 PCT/US2012/055210

generations of Intel x86 processors (starting with “Sandy Bridge”), the mapping is an
opaque, complex hash function that is not disclosed by the processor vendor. As a
result, an experimental approach is required to find a suitable set of non-conflicting
pages, which in turn demands a reliable procedure for detecting conflicts.
PrivateCore has developed several eviction-detection techniques, including methods
that bypass the cache to perform non-coherent reads from system memory, as well
as methods that involve monitoring hardware performance counters. The further
ability to detect evictions at runtime, during production system operation, is also
important, in order to catch and scrub any unexpected leaks quickly and reduce

exposure time.

[0071] At this point, those skilled in computer security at the system level will
appreciate some of the advantages of the various aspects of this invention relative to
other solutions proposed in the literature. One clear advantage is that the software-
only approach of the invention does not require any special hardware support, and
may even be used with commodity hardware, such as systems based on modern
Intel x86 processors. If both encryption/decryption and validation features are
implemented (not required) then the disclosed system is designed to guarantee both
privacy (confidentiality) and integrity for all code and data in the system.

[0072] The trusted computing base (TCB) of the implementation of the
invention described above does not need to extend beyond the processor, and may
operate according to a threat model that explicitly assumes that all other hardware is
untrusted and potentially malicious. However, for secure launch and attestation, the
TCB should preferably also encompass the components required to establish a root
of trust, such as Intel Trusted Execution Technology (TXT), which may include off-
processor Trusted Platform Module (TPM) hardware in some implementations.

[0073] In particular, system memory itself may be considered untrusted, and
its contents may be assumed to be vulnerable to being read or written by an
attacker, violating privacy or integrity, respectively. Similarly, all other hardware
devices and interconnects outside the processor are untrusted, and potentially under
the control of an attacker. For example, a compromised I/O device, such as a

common network interface card (NIC) capable of performing DMA, may be exploited

24

WO 2013/040241 PCT/US2012/055210

to violate privacy or integrity by maliciously inspecting or corrupting the contents of

code and data in main memory or caches.

[0074] In this invention, the only memory that needs to be trusted is the
processor cache, which is a physically-integrated part of the processor itself; any
other memory that is used may be encrypted or, in the case of device memory or
possible DMA, controlled using IOMMU. This contrasts with the Cryptkeeper system
described in Peter A. H. Peterson, “Cryptkeeper: Improving Security with Encrypted
RAM?, in IEEE International Conference on Technologies for Homeland Security
(HST 2010), November 2010. Cryptkeeper divides main-memory into separate
cleartext and encrypted portions, and does not attempt to manage cache contents;
all RAM is cacheable. As a result, Cryptkeeper fails to preserve privacy for its
cleartext memory region, making an explicit choice to allow some memory contents
to be leaked, in order to improve performance. Note that even if Cryptkeeper
reduced the size of its cleartext region to fit in the cache, without additional
modifications, accesses to encrypted regions would still induce cache evictions and
therefore leak cleartext data back to memory. Cryptkeeper also does not address
integrity, and thus does not provide protection against attacks that modify or corrupt
code and data in either the cleartext or encrypted portions of RAM.

[0075] Similarly, the bus-encryption scheme proposed in Chen, et al., cited
above, assumes that an attacker is “unable to tamper with the contents of memory”
and unable to “modify the kernel”, which is assumed to reside in read-only non-

volatile memory off-processor, as is the case for some embedded systems.

[0076] Merely by way of comparison with an approach proposed publicly only
after the priority date of this application, the CARMA system described in Amit
Vasudevan, Jonathan M. McCune, James Newsome, Adrian Perrig, and Leendert
van Doorn. “CARMA: A Hardware Tamper-Resistant Isolated Execution Environment
on Commodity x86 Platforms”, in Proceedings of the ACM Symposium on
Information, Computer and Communications Security (ASIACCS 2012), Seoul,
Korea, May 2012, relies on cache memory exclusively, so that system memory is
never accessed and need not be present. The authors state explicitly that “execution

will be entirely within cache and not interact with untrusted RAM”, and that they were

25

WO 2013/040241 PCT/US2012/055210

able to successfully remove all DRAM in a prototype implementation. This choice
constrains the types of workloads that can be supported by CARMA significantly; in
particular, it makes CARMA essentially useless for large, general-purpose VMs,
complicated applications, or most unmodified commercial software, which are almost
all too big to fit entirely within the cache. Moreover, the only mechanism CARMA
includes for any notion of support for I/O devices is via an in/out command to passive
devices, initiated by the CPU itself. This is a severe restriction as compared with the
present invention, which enables even devices to initiate memory writes, through

shared memory, in order to share data with the CPU.

[0077] The TRESOR system (mentioned also above) described in Tilo Muller,
Felix C. Freiling, and Andreas Dewald. “TRESOR Runs Encryption Securely Outside
RAM”, in Proceedings of the 20th USENIX Security Symposium, San Francisco,
California, August 2011, is designed to address the more limited problem of storing
disk encryption keys securely, so that physical attacks on RAM cannot compromise
encrypted disk contents. TRESOR stores encryption keys in privieged machine-
specific processor registers (x86 debug registers), and implements the AES
encryption algorithm without storing any sensitive information in RAM. In contrast to
the architecture of the invention described in this application, which protects privacy
and, optionally, integrity for all code and data in the system, TRESOR protects only
encryption keys. The approach of using privileged processor registers to store
information securely does not scale beyond a very small amount of state; TRESOR
is, for example, able to store only 256 bits securely (in four 64-bit debug registers),
just enough to hold a single AES-256 key. This (mis)use of the x86 debug register
mechanism also precludes its intended use for hardware breakpoints and
watchpoints. Furthermore, without privacy and integrity protection for the whole code
and data, an attacker can manipulate the TRESOR implementation, and through that
alteration, gain access to the keys stored in CPU debug registers.

26

WO 2013/040241 PCT/US2012/055210

CLAIMS

1. A system for securing information in a computer CHARACTERIZED BY:

a central processing unit (CPU) (1000) that includes at least one core (1100)
that receives and executes instructions and processes data;

a cache (5000) within the CPU,

system memory that has a system memory address space;

a software stack (2000, 6200, 6300) that runs on the CPU and is embodied at
least partially as instructions and data stored in the system memory; and

an agent (5100) running within the cache and comprising an
encryption/decryption module (5110) that encrypts information, which may comprise
code and/or data, before it is written to the system memory by the CPU and decrypts
the information read from system memory for, and before, processing by the CPU
core as the instructions and data.

2. A system as in claim 1, further CHARACTERIZED IN THAT:

the agent (5100) encrypts the information in blocks; and
the agent includes a validation module (5120) that associates with each
encrypted, stored information block a validation value.

3. A system as in claim 2, further CHARACTERIZED IN THAT the validation
module (5120) subsequently re-computes the validation value for each information
block and compares it with the corresponding, previously associated validation
value, whereby the validation module (5120) can detect any changes to the

information block.

4. A system as in claim 1, further CHARACTERIZED IN THAT the software
stack executes on a first portion of the system memory address space, which backs
the cache (5000), such that any read or write requests addressed to the first portion
by a entity in the software stack are fulfilled by the cache without accessing system

memory.

27

WO 2013/040241 PCT/US2012/055210

5. A system as in claim 4, further CHARACTERIZED IN THAT the software
stack also addresses a second, encrypted portion (9000) of system memory address

space.

6. A system as in claim 5, further CHARACTERIZED BY:

system software (2000) that, at run-time, is at least substantially loaded within
and executes in the cache (5000);

in which:

the agent comprises a portion of the system software and is, during run-time,
always resident in the cache.

7. A system as in claim 1, further CHARACTERIZED BY:

at least one I/O device (6700) that includes device memory (6710); and

an I/O memory management unit (1300) configured to allow the I/O device to
address and access the cache only for predetermined I/O operations under
supervision of the agent (5100).

8. A system as in claim 1, further CHARACTERIZED BY:

at least one /O device (6700) that is configured for direct memory access via
an I/O channel (9600); and

an 1/O memory management unit (1300) configured to block DMA to the
cache.

9. A system as in claim 1, further CHARACTERIZED BY a trusted platform
module (TPM) component (3100) provided to securely load the agent (5100) into the
cache (5000) before execution of other software in the software stack.

10. A system as in claim 1, further CHARACTERIZED IN THAT the software
stack includes a hypervisor and at least one virtual machine (6200).

11. A system as in claim 1, further CHARACTERIZED IN THAT the software

stack includes an interpreter provided for executing unmodified commodity software.

28

WO 2013/040241 PCT/US2012/055210

12. Asystem asin claim 1, further CHARACTERIZED BY:

a cache-backing memory region (9500) that is a sub-set of the system
memory and that is provided to contain a data pattern;

in which:

the agent is provided to inspect the contents of the cache-backing memory
region to determine any change in the data pattern, indicating eviction of at least a
part of the cache contents into the cache-backing memory region.

13. A method for securing information in a computer that has

a central processing unit (CPU) (1000) that includes at least one core (1100)
that receives and executes instructions and processes data;

a cache (5000) within the CPU,

system memory that has a system memory address space; and

a software stack (2000, 6200, 6300) that runs on the CPU and is embodied at
least partially as instructions and data stored in the system memory;

CHARACTERIZED BY:

loading an agent (5100) into the cache;

using the agent, encrypting information, which may comprise code and/or
data, before it is written to the system memory by the CPU and decrypting the
information read from the system memory for, and before, processing by the CPU
core as the instructions and data.

14. A method as in claim 13, further CHARACTERIZED BY:

encrypting the information in memory blocks; and
computing and associating validation data with each encrypted memory block.

15. A method as in claim 14, further CHARACTERIZED IN THAT the memory
blocks are memory pages.

16. A method as in claim 14, further CHARACTERIZED BY: re-computing the
validation data for each information block and comparing it with the corresponding,

29

WO 2013/040241 PCT/US2012/055210

previously associated validation data, thereby detecting changes to the information
block.

17. A method as in claim 13, further CHARACTERIZED BY:

executing the software stack on a first portion of the system memory address
space, which backs the cache (5000);

and fulfilling in the cache any read or write requests addressed to the first
portion by a entity in the software stack, without accessing system memory.

18. A method as in claim 17, further CHARACTERIZED BY allowing the software
stack also to address a second portion (9000) of the system memory address space,
which contains the encrypted information.

19. A method as in claim 13, further CHARACTERIZED IN THAT the computer
includes at least at least one 1/O device (6700) that includes device memory (6710),
further comprising allowing the 1/0O device to address and access the cache only for
predetermined I/O operations.

20. A method as in claim 13, further CHARACTERIZED IN THAT the computer
includes at least at least one 1/O device (6700) that includes device memory (6710),
further comprising blocking direct memory access (DMA) to the cache by the I/O

device.

21. A method as in claim 13, further CHARACTERIZED BY securely loading the
agent (5100) into the cache (5000) before execution of other software in the software
stack.

22. A method as in claim 13, further CHARACTERIZED IN THAT the system
memory address space is organized into memory blocks, further comprising:
determining a non-cache-conflicting-set of the memory blocks; and
marking only the system memory associated with the non-cache-conflicting as
cacheable, thereby preventing cache conflicts by system memory.

23. A method as in claim 13, further CHARACTERIZED BY executing unmodified

software in the software stack using interpretation.

30

WO 2013/040241 PCT/US2012/055210

24. A method as in claim 13, further CHARACTERIZED BY:

storing a data pattern in a cache-backing memory region (9500; and

inspecting the contents of the cache-backing memory region to determine any
change in the data pattern, indicating eviction of at least a part of the cache contents
into the cache-backing memory region.

25. In a computer that has a central processing unit (CPU) (1000) that includes at
least one core (1100) that receives and executes instructions and processes data; a
cache (5000) within the CPU; system memory that has a system memory address
space; and a software stack (2000, 6200, 6300) that runs on the CPU and is
embodied at least partially as instructions and data stored in the system memory;

a method for preventing cache conflicts by system memory pages
CHARACTERIZED BY:

determining a non-cache-conflicting-set of the memory pages; and

marking only the system memory associated with the non-cache-conflicting as

cacheable, thereby preventing cache conflicts by system memory.

26. A method as in claim 25, in which the computer includes a processor cache
performance counter and each memory page comprises a set of memory units, the
method further CHARACTERIZED IN THAT:

invalidating contents of the cache;

reading in every unit in a set of pages to be tested;

record the value of the processor cache performance counter to determine a
number of cache misses;

again reading in every unit in the set of pages to be tested;

again reading the processor cache performance counter; and

determining that the tested memory pages are non-cache-conflicting if the
results of the two reads of the performance counter are equal.

27. A method as in claim 25, in each memory page comprises a set of memory
units, the method further CHARACTERIZED BY:
reading in every unit in a set of pages to be tested;

measuring any access to the system memory by the CPU;

31

WO 2013/040241 PCT/US2012/055210

again reading in every unit in the set of pages to be tested;

searching for any reads from system memory addresses in the tested set of
pages; and

if no read is found, determining that the tested memory pages are non-cache-
conflicting and may coexist in the cache.

28. A method as in claim 25, further CHARACTERIZED BY:

invalidating the cache contents; and

inspecting a test set of the system memory pages to determine if any cache
lines were written back to system memory.

29. A method as in claim 25, further CHARACTERIZED BY:

filling the cache with an initial data pattern;

flushing the cache to a cache-backing region of the system memory;

filling the cache with a test data pattern;

invalidating the cache;

examining the cache-backing region of the system memory to determine
which, if any, cache lines were evicted by identifying any cache lines that do not
contain the initial data pattern.

30. A method as in claim 25, in which the computer has an x86 architecture,
further CHARACTERIZED BY flushing the cache using a WBINVD instruction and
invalidating the cache using an INVD instruction.

32

WO 2013/040241 PCT/US2012/055210

FiG. 1
APPS DEVICES ?OQ‘
Vis i $700
6200 8300 2SS o MEM
0 DEV STORAGE
MEM §100
8710 e
A Y'Y
FY
/ ¥ ¥ ¥
BUS(ES) %
*\1 X X f e
k.4 h 4 ¥ /!
08/ CACHE MANAGER 4000°
HYPERVISOR 2100 "
X T
~ 2000
1000 ..
s v v
CcPU MMU {IOMMU ' '
1200 | 1300
TPM
3100
e TXT
ENCRYPT/ 8
CORE DECRYPT 3000
5110
VALIDATION
8120
2 5000 AGENT
' BN N
1100 JcacHe 5100

1/3

PCT/US2012/055210

WO 2013/040241

FIG. 2

0005

0002 ~._ dHOYD

"

00tS
SededV

0028
SIWA

HADYNYIN FHOVO

O0LG
™~

1NIOV

AR
NOLLYCGITIYA

811G
LdAEDE0
JLdAHONA

l//

00Le

HOSIAHIAAH
180G

2/3

WO 2013/040241 PCT/US2012/055210

FIG. 3
3000
SAFE! |e—
VMs APPs PRIVATE
8200 6300
F 3 F
¥ W
08/
HYPERVISOR
2000
CPU CACHE - TRUSTED
5000
Y L 4 Y Y
MEM-UNTRUSTED
PATTERNED MEM*&;ﬁ%USTEB
9500 22
- F 3 E
DMA PROTECTION
9210
ﬁf/f N ‘
N | 0O CHANNEL ENCRYPTED
N (DMA} STORAGE
9500 9810
DEVICES MAPPED DEV
UNSAFE/ 6700 MEM
MALICIOUS = 8710

\~ 8001

3/3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/55210

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 21/00 (2012.01)
USPC - 713/182

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC (8) - GOSF 21/00 (2012.01)
USPC - 713/182

Minimum documentation searched (classification system followed by classification symbols)

USPC - 713/182 or 713/189 or 713/190 (See Keywords Below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Patbase; Google Scholar; PubWEST(PGPB, USPT, EPAB, JPAB);

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms: CPU, processor, cache, core, processing unit, internal memory, external memory, system memory, encrypt, decrypt,
hash, value, compare, secure, trusted, data, instruction, crypto, hypervisor, virtual machine, agent, block, page, validate, verify, DMA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2010/0281273 A1 (LEE et al.), 04 November 2010 (04.11.2010), entire document, especially | 1-24
Abstract; para [0016], [0035]-[0037], [0038], [0043), [0045], [0073}-[0075], [0104], [0122], [0139]
A US 2011/0167278 A1 (GOTO et al.), 07 July 2011 (07.07.2011), entire document 1-24
A US 2008/0109660 A1 (MITRA), 08 May 2008 (08.05.2008), entire document 1-24

D Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art
“&” document member of the same patent family

Date of the actual completion of the international search

09 January 2013 (09.01.2013)

Date of mailing of the international search report

23 JAN 2013

Name and mailing address of the ISA/US

Mai!l Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 574.273.3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 12/55210

Box No. 11 Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful interational search can be carried out, specifically:

3. EI Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
-see extra sheet-

1. I:I As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. l:l As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. E No required additional search fees were timely paid by the applicant. Consequently, this international search report is

restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-24

Remark on Protest I:l The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 12/55210

Continuation in Box lIl: Observations where unity of invention is lacking
Invention Groups:

Group |: claims 1-24
Group |I: claims 25-30

Reasons for Lack of Unity of Invention:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group |: claims 1-24, drawn to a system/method for securing information in a computer comprising an encryption/decryption module that
encrypts information. 4

Group |I: claims 25-30, drawn to a method comprising preventing cache conflicts by system memory pages.

The inventions listed as Groups | - 1l do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical feature of the Group | invention is a system/method for securing information in a computer comprising an
encryption/decryption module that encrypts information. The special technical feature of the Group tl invention is a method comprising
preventing cache conflicts by system memory pages.

Groups | and Il share the technical feature of a central processing unit (CPU) (1000) that includes at least one core (1100) that receives
and executes instructions and processes data; a cache (5000) within the CPU; system memory that has a system memory address
space; and a software stack (2000, 6200, 6300) that runs on the CPU and is embodied at least partially as instructions and data stored
in the system memory.

However, this shared technical feature does not represent a contribution over the prior art US 2010/0281273 A1 (Lee et al.} (04
November 2010), which discloses a processor is provided having a processor core, a cache memory, a plurality of registers [...] the
processor to execute the at least one on-chip instruction [...] the processor encrypts data written to, and decrypts data read from
(abstract, para [0016}); "machine memory space" denotes the actual physical memory 22 available in the hardware 16 (para [0037]); and
virtualized software stacks, (para [0037]); all software running on the CPU of the present invention is part of a module [...] untrusted
parts of the software stack are in a generic untrusted module called module zero (para [0081]). Thus, Groups | - il do not share a same
or corresponding special technical feature that would provide a unifying contribution over the prior art. None of these specia! technical
features are common to the other groups. Therefore, unity of invention is lacking.

Form PCT/ISA/210 (extra sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

