Sulfamates of the following formula (I):

\[
\begin{align*}
\text{X} & \quad \text{CH}_2\text{OSO}_2\text{NHR} \\
\text{R}_2 & \quad \text{R}_3 \\
\text{R}_4 & \quad \text{R}_5
\end{align*}
\]

wherein X is O or CH₂ and R₁, R₂, R₃, R₄, and R₅ are as herein defined have been found to exhibit anticonvul- sant activity and are thus useful in the treatment of conditions such as epilepsy. Further, pharmaceutical compositions containing a compound of formula (I) as well as methods for their use and intermediates form part of the present invention.

12 Claims, No Drawings
ANTICONVULSANT SULFAMATE DERIVATIVES

Sulfamates of various structures, including those derived from monosaccharides are described in references such as N. K. Kochetkov et al in Zhurnal Obschei Kimii, Vol. 41, No. 8, 1866 to 1871 (1971), Vol. 42, No. 12, 2755 to 2757 (1972) and Vol. 44, No. 4, 871 to 875 (1974) and in Doklady Akademii Nauk USSR, Vol. 216, No. 1, 97 to 100 (1974); T. Tsuchiya et al., in Tetrahedron Letters, No. 36, 3365 to 3368 (1978); and A. F. Hirsch in Journal of Medicinal Chemistry, 24, 901 to 903 (1981) and U.S. Pat. No. 4,075,351.

SUMMARY OF THE INVENTION

It has been found that sulfamates of the following formula (I):

\[
\begin{align*}
\text{X} & \quad \text{CH}_2\text{OSO}_2\text{NHR}_1 \\
\text{R}_2 & \quad \text{R}_3 \\
\text{R}_4 & \quad \text{R}_5
\end{align*}
\]

wherein X is O or CH₂ and R₁, R₂, R₃, R₄ and R₅ are as hereinafter defined, possess anticonvulsant activity in mammals and are thus useful in treating disease states such as epilepsy and glaucoma. Also part of the present invention are pharmaceutical compositions containing one or more sulfamates of formula (I) as well as methods for the treatment e.g., prevention, of convulsions using such compositions.

DETAILED DESCRIPTION OF THE INVENTION

The sulfamates of the invention are of the following formula (I):

\[
\begin{align*}
\text{X} & \quad \text{CH}_2\text{OSO}_2\text{NHR}_1 \\
\text{R}_2 & \quad \text{R}_3 \\
\text{R}_4 & \quad \text{R}_5
\end{align*}
\]

wherein

- X is CH₂ or oxygen;
- R₁ is hydrogen or alkyl; and
- R₂, R₃, R₄ and R₅ are independently hydrogen or lower alkyl and, when X is CH₂, R₄ and R₅ may be alkene groups joined to form a benzene ring and, when X is oxygen, R₃ and R₁ and/or R₄ and R₅ together may be a methylenedioxy group of the following formula (II):

\[
\begin{align*}
\text{R}_4 & \quad \text{O} \\
\text{R}_5 & \quad \text{O} \\
\text{C} & \quad
\end{align*}
\]

wherein R₄ and R₅ are the same or different and are hydrogen, lower alkyl or are alkyl and are joined to form a cyclopentyl or cyclohexyl ring.

R₁ in particular is hydrogen or alkyl of about 1 to 4 carbons, such as methyl, ethyl and iso-propyl. Alkyl throughout this specification includes straight and branched chain alkyl. Alkyl groups for R₂, R₃, R₄, R₅, R₆ and R₇ are of about 1 to 3 carbons and include methyl, ethyl, iso-propyl and n-propyl. When X is CH₂, R₄ and R₅ may combine to form a benzene ring fused to the 6-membered X-containing ring, i.e., R₄ and R₅ are defined by the alkatrienyl group =CH=CH=CH=CH...

A particular group of compounds of formula (I) is that wherein X is oxygen and both R₂ and R₃ and R₄ and R₅ together are methylenedioxy groups of the formula (II) wherein R₄ and R₅ are both hydrogen, both alkyl or combine to form a spiro cyclopentyl or cyclohexyl ring, in particular where R₄ and R₅ are both alkyl such as methyl. A second group of compounds is that wherein X is CH₂ and R₂ and R₃ are joined to form a benzene ring. A third group of compounds of formula (I) is that wherein both R₂ and R₃ are hydrogen.

The compounds of formula (I) may be synthesized by the following methods:

(a) Reaction of an alcohol of the formula RCH₂OH with a chlorosulfamate of the formula CISO₂NH₂ or CISO₂NHR in the presence of a base such as potassium t-butoxide or sodium hydride at a temperature of about -20° to 25° C. and in a solvent such as toluene, THF or dimethylformamide wherein R is a moiety of the following formula (III):

\[
\begin{align*}
\text{R}_4 & \quad \text{R}_3 \\
\text{R}_5 & \quad \text{R}_2
\end{align*}
\]

(b) Reaction of an alcohol of the formula RCH₂OH with sulfuryl chloride of the formula SO₂Cl₂ in the presence of a base such as triethylamine or pyridine at a temperature of about -40° to 25° C. in a solvent such as diethyl ether or methylene chloride to produce a chlorosulfate of the formula RCH₂OSO₂Cl.

The chlorosulfate of the formula RCH₂OSO₂Cl may then be reacted with an amine of the formula R₂NH₂ at a temperature of about -40° to 25° C. in a solvent such as methylene chloride or acetonitrile to produce a compound of formula (I). The reaction conditions for (b) are also described by T. Tsuchiya et al in Tet. Letters, No. 36, p. 3365 to 3368 (1978).

(c) Reaction of the chlorosulfate RCH₂OSO₂Cl with a metal azide such as sodium azide in a solvent such as methylene chloride or acetonitrile yields an azidosulfate of the formula RCH₂OSO₂N₃ as described by M. Hedayatullah in Tet. Lett. p. 2455-2458 (1975). The azidosulfate is then reduced to a compound of formula (I) wherein R₁ is hydrogen by catalytic hydrogenation, e.g. with a noble metal and H₂ or by heating with copper metal in a solvent such as methanol.

The starting materials of the formula RCH₂OH may be obtained commercially or as known in the art. For example, starting materials of the formula RCH₂OH wherein both R₂ and R₃ and R₄ and R₅ are identical and are of the formula (II) may be obtained by the method of R. F. Brady in Carbohydrate Research, Vol. 15, p. 35 to 40 (1970) or by reaction of the trimethylsilyl enol ether of a R₂COR₇ ketone or aldehyde with fructose at a temperature of about 25° C. in a solvent such as a halocarbon, e.g. methylene chloride in the presence of a protic acid such as hydrochloric acid or a Lewis Acid

Further, carboxylic acids and aldehydes of the formulae RCOOH and RCHO may be reduced to compounds of the formula RCH2OH by standard reduction techniques, e.g. reaction with lithium aluminum hydride, sodium borohydride or borane-THF complex in an inert solvent such as diglyme, THF or toluene at a temperature of about 0° to 100° C, e.g., as described by H. O. House in "Modern Synthetic Reactions", 2nd Ed., pages 45 to 144 (1972).

The compounds of the invention include the various individual isomers as well as the racemates thereof, e.g., the various alpha and beta attachments, i.e., below and above the plane of the drawing, of R₂, R₃, R₄ and R₅ on the 6-membered ring. Preferably, the oxygens of the methylenedioxy group (II) are attached on the same side of the 6-membered ring.

The compounds of formula (I) are useful as anticonvulsant agents. The anticonvulsant activity of the subject compounds was determined using a standard "maximal electroshock test" (MES). In this test, activity is indicated by a block of the toxic extensor seizure caused by application of an electric shock to mice via corneal electrodes, as described by Swinyard et al in J. Pharmacol. Expil. Therap. 106, 319 (1952), and recorded as % block. A more recent description of current anticonvulsant drug screening is given in Swinyard et al in Epilepsia 19, 409 (1978).

The anticonvulsant activity of compounds of this invention tested according to the Swinyard (1952) method is shown in the following Table 1:

<table>
<thead>
<tr>
<th>Ex-</th>
<th>MES test</th>
<th>ED₅₀ (mg/kg, i.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>am-</td>
<td>Compound</td>
<td></td>
</tr>
<tr>
<td>ple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>O-CH₂OSO₂NH₂</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>CH₃</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>CH₂OSO₂NH₂</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>O-CH₂OSO₂NHCH₃</td>
<td>70% block at 200 mg/kg, i.p.</td>
</tr>
</tbody>
</table>

*Unless otherwise noted.

For treating epilepsy, a compound of formula (I) may be employed at a daily dosage in the range of about 30 to 2000 mg, usually in 2 to 4 divided doses, for an average adult human. A unit dose would contain about 10 to 500 mg of the active ingredient.

In general, compounds of formula (I) may be used in treating epilepsy in a manner similar to that used for phenytoin. Medical aspects of the treatment of epilepsy are described by L. S. Goodman et al in "The Pharmacological Basis of Therapeutics", 5th Ed. pages 201 to 226, Macmillan (1975).

Further, compounds of formula (I) are inhibitors of carbonic anhydrase, as determined by the methods described by S. J. Dodgson et al in the Proc. Natl. Acad. Sci., U.S.A., 77, pages 5562 to 5566 (1980) or by N. Itada et al in the Journal Biol. Chem., 252, pages 3881 to 3890 (1977) and as such, are useful in the treatment of glaucoma. The relationship between the treatment of glaucoma and carbonic anhydrase inhibition is described by A. Stein et al in the American Journal of Ophthalmology, 95:222-228 (1983). For the treatment of glaucoma, a compound of formula (I) may be administered systemically, e.g. by oral or parenteral routes as described below, or topically in the eye in a mineral oil solution or suspension, or aqueous suspension. When used systemically, the compound would be administered in an amount of about 50 to 500 mg per day for an average adult human, while the topical dosage would be about 1 to 3 drops (per eye) of a solution or suspension containing about 1 to 5% by weight of a compound of formula (I) with the dosage being administered about 1 to 4 times per day.

To prepare the pharmaceutical compositions of this invention, one or more sulfamate compounds of formula (I) are intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral, by suppository, or parenteral. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus, for liquid oral preparations, such as, for example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules and tablets, suitable carriers and additives include starches, sugars, dilluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar
coated or enteric coated by standard techniques. Suppositories may be prepared, in which case cocoa butter could be used as the carrier. For parenterals, the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.

The pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful, suppository and the like, from about 10 to about 300 mg of the active ingredient.

The foregoing compositions are particularly suitable for use in the treatment of epilepsy or the symptoms of epilepsy by a method comprising internally administering to a subject suffering from the symptoms of epilepsy compositions comprising an effective epilepsy inhibiting amount of a compound of formula (I).

Also part of the present invention are intermediates of the formulae \(RCH_2OSO_2Cl \) and \(RCH_2OSO_2N_2 \).

In the following Examples and throughout the specification the following abbreviations may be used: g (grams); ml (milliliters); min (minutes); hr (hours); mol (moles); cm (centimeters); v/v (volume to volume); mp (melting point); TLC (thin layer chromatography); NMR (nuclear magnetic resonance); IR (infrared); DMF (dimethylformamide); THF (tetrahydrofuran); and C, H, N, etc. (the chemical symbols for the elements).

EXAMPLE 1

(Tetrahydro-2H-pyranyl-2-yl)methane sulfamate

To a cold solution (−5°C) of tetrahydropyran-2-methanol (2.33 g, 0.02 mol) in DMF (40 ml) was added 50% oily sodium hydride (1.17 g, 0.024 mol as NaH). After stirring for 45 min, sulfamoyl chloride (3.42 g, 0.03 mol) was added and the stirring continued for an additional 45 min, at −5°C. The reaction mixture was poured into cold water and extracted with chloroform. The organic layer was dried (Na_2SO_4) and the solvents were removed under vacuum to give a syrup which was dry column chromatographed (eluted with ethyl acetate:hexane, 4:1 v/v) to give pure (tetrahydro-2H-pyran-2-yl) methanesulfamate as a pale yellow syrup, IR (CHCl_3) 1180 cm⁻¹ and 1370 cm⁻¹ (OSO_2NH_2).

EXAMPLE 2

(1-Methylcyclohexyl)methane sulfamate

To a cold solution (−4°C) of (1-methylcyclohexyl)methanol (6.2 g, 0.048 mol) in DMF (90 ml) was added 50% oily sodium hydride (2.81 g, 0.059 mol as NaH). After stirring for 1 hr, sulfamoyl chloride (7.82 g, 0.062 mol) was added and the stirring was continued for an additional 30 min at −4°C. The reaction mixture was poured into cold water and extracted with toluene. The organic layer was dried (Na_2SO_4) and the solvents were removed under vacuum to give a syrup which crystallized upon cooling. Recrystallization from chloroform/hexane gave pure (1-methylcyclohexyl)methane sulfamate, mp 40°–42°C.

EXAMPLE 3

2,3,4,5-Bis-O-(1-methylthiylidene)–β-D-fructopyranosyl sulfamate

To a cold solution (−4°C) of 2,3,4,5-di-O-isopropylidene-β-D-fructopyranose (75 g, 0.29 mol) in DMF (725 ml) was added 50% oily sodium hydride (16.34 g, 0.034 mol as NaH). After stirring for 90 min, sulfamoyl chloride (54.9 g, 0.48 mol) was added and the stirring continued for an additional 3.5 hr at that temperature. The reaction mixture was poured into cold water and extracted with toluene. The organic layer was dried (Na_2SO_4) and the solvents removed under vacuum to give a syrup which crystallized immediately. Recrystallization from ethylacetate/hexane gave pure 2,3,4,5-bis-O-(1-methylthiylidene)–β-D-fructopyranosyl sulfamate, mp 125°–126°C.

EXAMPLE 4

2,3,4,5-Bis-O-(1-methylthiylidene)–β-D-fructopyranosyl methyl sulfamate

A solution of sulfonyl chloride (93 ml, 1.15 mol) in methylene chloride (100 ml) was added dropwise to a cold solution (−5°C) of 2,3,4,5-di-O-isopropylidene-β-D-fructopyranose (150 g, 0.58 mol) in methylene chloride (400 ml) and pyridine (150 ml). The reaction mixture was allowed to stir and warm to room temperature (25°C); it was stirred for an additional 2 hr. Solvents were removed under vacuum. The resulting semi-solid was dissolved in anhydrous acetonitrile (35 g, 150 ml) and methyl amine was bubbled in. The reaction mixture was tightly stoppered and solvents removed under vacuum. The resulting syrup was subjected to liquid chromatography (dry column ethyl acetate:hexane, 4:1) yielding a light yellow syrup, 2,3,4,5-bis-O-(1-methylthiylidene)–β-D-fructopyranosyl methyl sulfamate, which was homogeneous by TLC and 'HNMR.

EXAMPLE 5

(1,2,3,4-Tetrahydro-2-naphthalenyl)methyl sulfamic acid ester

To a cold solution (−5°C) of (1,2,3,4-tetrahydro-2-naphthalenyl)methanol (7.1 g, 0.044 mol) in DMF (80 ml) was added 50% oily sodium hydride (2.56 g, 0.054 mol as NaH). After stirring for 45 min, sulfamoyl chloride (6.6 g, 0.057 mol) was added and the stirring continued for an additional 95 min at −5°C. The reaction mixture was poured into cold water and extracted with toluene. The organic layer was dried (Na_2SO_4) and the solvents removed under vacuum to give a syrup which crystallized immediately. Recrystallization from chloroform/hexane gave pure (1,2,3,4-tetrahydro-2-naphthalenyl)methyl sulfamic acid ester, mp 108°–109°C, as a white solid.

What is claimed is:
1. A sulfamate of the following formula (I):

 ![Chemical Structure](image)

 (I)

 \[
 \begin{align*}
 \text{R}^1 & \quad \text{X} \quad \text{R}^2 \quad \text{R}^3 \quad \text{R}^4 \\
 \text{CH}_2\text{OSO}_2\text{NHR} & \quad \text{R}^5
 \end{align*}
 \]

 wherein

 \(\text{X} \) is oxygen;
 \(\text{R}_1 \) is hydrogen or alkyl; and
 \(\text{R}_2, \text{R}_3, \text{R}_4 \) and \(\text{R}_5 \) are independently hydrogen or lower alkyl and \(\text{R}_2 \) and \(\text{R}_3 \) and/or \(\text{R}_4 \) and \(\text{R}_5 \) together may be a group of the following formula (II):
4,513,006

2,3:4,5-bis-O-(1-methylethylidene)-\(\beta\)-D-fructopyranose methylsulfamate.

5. The sulfamate of claim 4, wherein said sulfamate is 2,3:4,5-bis-O-(1-methylethylidene)-\(\beta\)-D-fructopyranose sulfamate.

6. A pharmaceutical composition effective for the treatment of convulsions comprising an anticonvulsantly effective amount of a sulfamate of claim 1 and a pharmaceutically-acceptable carrier.

7. The pharmaceutical composition of claim 6, wherein said sulfamate is present in a unit dosage amount of about 10 to 500 milligrams of the sulfamate.

8. A method for the treatment of convulsions in a mammal which comprises administering to the mammal, the pharmaceutical composition of claim 6.

9. The sulfamate of claim 4, wherein said sulfamate is 2,3:4,5-bis-O-(1-methylethylidene)-\(\beta\)-D-fructopyranose methylsulfamate.

10. The sulfamate of claim 1, wherein the two oxygen atoms of the group of formula (II) are attached on the same side of the six-membered ring depicted in formula (I).

11. The sulfamate of claim 1, wherein the sulfamate of formula (I) is a fructopyranose.

12. The sulfamate of claim 1, wherein in formula (I), \(R_1\) is hydrogen.

\[\text{R}_5 \text{C} \text{O} \text{O} \text{C} \text{O} \text{R}_7 \text{ (II)} \]

wherein

\(R_6\) and \(R_7\) are the same or different and are hydrogen, lower alkyl or are alkyl and are joined to form a cyclopentyl or cyclohexyl ring.

2. The sulfamate of claim 1, wherein

\(R_2\) and \(R_3\) and \(R_4\) and \(R_5\) together are groups of the formula (II).

3. The sulfamate of claim 1, wherein said alkyl group for \(R_1\) is alkyl of about 1 to 4 carbons; said lower alkyl group for \(R_2\), \(R_3\), \(R_4\) and \(R_5\) is alkyl of about 1 to 3 carbons; and said lower alkyl for \(R_6\) and \(R_7\) is alkyl of about 1 to 3 carbons.

4. The sulfamate of claim 1, wherein said sulfamate of formula (I) is selected from the group consisting of:

(tetrahydro-2H-pyran-2-yl)methane sulfamate;
2,3:4,5-bis-O-(1-methylethylidene)-\(\beta\)-D-fructopyranose sulfamate;

\[\text{SO} \text{O} \text{C} \text{O} \text{R}_1 \text{ (I)} \]

[Diagram]
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,513,006
DATED : April 23, 1985
INVENTOR(S) : Maryanoff et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page.
Item [*] Notice, delete “September 23, 2003” and insert -- September 26, 2003 --.

Signed and Sealed this
Second Day of May, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,513,006
APPLICATION NO. : 06/535,475
DATED : April 23, 1985
INVENTOR(S) : Maryanoff et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Certificate Extending the Patent Term under 35 U.S.C. 156, the original expiration date is incorrect. In the second paragraph line 1

Delete: September 23, 2003

and insert therefor

--September 26, 2003--.

This certificate supersedes Certificate of Correction issued March 2, 2006.

Signed and Sealed this

Fourth Day of July, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office
This is to certify that an application under 35 U.S.C. § 156 has been filed in the United States Patent and Trademark Office, requesting extension of the term of U.S. Patent No. 4,513,006 based upon the regulatory review of the product TOPAMAX® (topiramate) by the Food and Drug Administration. Since it appears that the requirements of the law have been met, this certificate extends the term of the patent for the period of Five Years from September 23, 2003, the original expiration date of the patent, subject to the payment of maintenance fees as provided by law, with all rights pertaining thereto as provided by 35 U.S.C. § 156(b).

I have caused the seal of the United States Patent and Trademark Office to be affixed this 23rd day of July 2004.

Jon W. Dudas
Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the United States Patent and Trademark Office