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Exemplary embodiments support multi-threaded subgraph
execution control within a graphical modeling or graphical
programming environment. In an embodiment, a subgraph
may be identified as a subset of blocks within a graphical
model, or graphical program, or both. A subgraph initiator
may explicitly execute the subgraph while maintaining data
dependencies within the subgraph. Explicit signatures may
be defined for the subgraph initiator and the subgraph either
graphically or textually. Execution control may be branched
wherein the data dependencies within the subgraph are main-
tained. Execution control may be joined together wherein the
data dependencies within the subgraph are maintained.
Exemplary embodiments may allow subgraphs to execute on
different threads within a graphical modeling or program-
ming environment.
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MULTI-THREADED SUBGRAPH
EXECUTION CONTROL IN A GRAPHICAL
MODELING ENVIRONMENT

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 61/121,747 filed Dec. 11,
2008, the contents of which are incorporated by reference
herein in their entirety. This application is related to applica-
tion Ser. No. , entitled “Subgraph Execution Control
in a Graphical Modeling Environment,” filed Dec. 9, 2009

BACKGROUND INFORMATION

[0002] Various classes of graphical models or graphical
programming describe computations that can be performed
on application specific computational hardware, such as a
computer, microcontroller, field programmable gate array
(FPGA), and custom hardware. Examples of graphical mod-
els can include time-based block diagrams such as those
found within the Simulink® environment from the Math-
Works, Inc. Natick Ma, discrete-event diagrams such as those
found within the SimEvents® environment from the Math-
Works, Inc. and data-flow diagrams. A common characteris-
tic among these various forms of graphical models is that they
define semantics on how to execute the diagram.

[0003] Historically, engineers and scientists have utilized
graphical models in numerous scientific areas such as feed-
back control theory and signal processing, to study, design,
debug, and refine dynamic systems. Dynamic systems are
systems whose behaviors change over time. Dynamic sys-
tems may be representative of many real-world systems, such
as control systems. Graphical modeling has become common
technique for designing models of dynamic systems because
graphical modeling software packages provide sophisticated
software platforms with a rich suite of support tools that
makes the analysis and design of dynamic systems efficient,
methodical, and cost-effective.

[0004] Graphical modeling environments can include one
or more graphical models. These graphical models can be
described by a graph consisting of nodes (often called blocks)
connected by edges (often called lines or signals). The edges
form dependencies between the nodes. The nodes generally
describe computations, though itis also possible for the edges
to have semantic meaning. The semantic behavior of the
graphical model is different in each domain. For example, in
time-based block diagrams edges represent signal quantities
that vary with time (e.g., data signals) and the nodes are
blocks representing dynamic systems (e.g., components of a
controller). The signals may form a time-based dependency
between blocks. In contrast, the semantic behavior in a dis-
crete-event system may differ from the semantic behavior of
the time-based model. For example, in a discrete-event sys-
tem, the edges generally represent entity paths by which
entities can travel from node to node. Each node in a discrete-
event system may represent an action to perform on the entity.
In a data flow diagram, nodes may represent operations. The
edges may represent values and the nodes may be executed
based upon data availability.

[0005] In the above classes of graphical models, it is pos-
sible to provide explicit execution control via a control edge
connecting a control initiator with a node (or nodes) within a
model. The controlled nodes are referred to as a subgraph. For
example, Simulink provides function-call and action signals
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which are used to explicitly control the execution of sub-
systems or other models. In this existing system, function-call
and action signals take precedence over the data signals.
Existing techniques may provide desired operating character-
istics for graphical models in some situations; however, in
other situations models may not operate as desired. For
example, data dependencies may be ignored when explicit
execution control is used in conventional modeling environ-
ments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
one or more embodiments of the invention and, together with
the description, explain the invention. In the drawings,
[0007] FIG.1A—illustrates a prior art graphical model that
employs a conventional technique for explicitly controlling
execution of subgraphs in a graphical model.

[0008] FIG.1B—illustrates a prior art graphical model that
employs a conventional technique for controlling execution
of'a portion of a model;

[0009] FIG. 2—illustrates an embodiment containing a
graphical model that includes a Function-Call Split block,
which creates a subgraph that is explicitly controlled while
honoring data dependencies;

[0010] FIGS. 3A-3C—illustrate embodiments containing
graphical models that include a Function-Call Split block,
which creates a subgraph that is explicitly controlled while
honoring data dependencies where the subgraph has a loop
that is broken by latching an input of a function-call sub-
system,

[0011] FIG. 4—illustrates the model of FIG. 3A where
there is no need to break a loop within an explicitly controlled
subgraph;

[0012] FIG. 5—illustrates an embodiment where a data
dependency violation exists within an explicitly controlled
subgraph;

[0013] FIG. 6—illustrates a user interface for displaying
information about an error in the model of FIG. 5;

[0014] FIG. 7—illustrates an embodiment that performs
supervisory control using explicit subgraph control of two
separate subgraphs running at different rates;

[0015] FIG. 8—illustrates an embodiment that includes
Function-Call Split blocks that can be configured to invoke a
subgraph according to data dependencies and the ordering of
the blocks within the subgraph is annotated on the blocks after
analyzing the model;

[0016] FIG. 9—illustrates an embodiment that includes a
Function-Call Split block where the ordering of the outgoing
function-calls is annotated using numerical identifiers;
[0017] FIG. 10—illustrates a graphical model that employs
a conventional technique for combining function-call control
signals;

[0018] FIG. 11—illustrates an embodiment that includes a
Function-Call Join block to predictably provide multiple con-
trol initiators to a subgraph;

[0019] FIG. 12—illustrates an embodiment that includes a
Function-Call Split block that creates a subgraph which hon-
ors data dependencies and within the subgraph a Function-
Call Join block is used to predictably provide multiple control
initiators to a subgraph;

[0020] FIG. 13—illustrates a conventional technique that
uses external function invocations;
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[0021] FIG. 14—illustrates a conventional technique that
uses external function invocations with an implicit input to a
function-call subsystem;

[0022] FIG. 15—illustrates a conventional technique that
uses external function invocations across subsystem bound-
aries;

[0023] FIG. 16—illustrates an exemplary embodiment of
the invention that provides the ability to create components
with control signal (e.g. function-call or action signal) inputs
and outputs of the components;

[0024] FIG. 17—illustrates an exemplary technique for
allowing a user to create and/or edit the signatures of a func-
tion-call subsystem signals;

[0025] FIG. 18—illustrates a conventional model that uses
conventional implementations of function call subsystems;
[0026] FIG. 19A—illustrates an embodiment that uses
function-call group and ungroup blocks to enable componen-
tization of systems with a control signal crossing the systems
boundaries;

[0027] FIG. 19B—illustrates an embodiment that uses
function-call group and ungroup blocks to enable componen-
tization of systems with multiple control signals crossing the
systems boundaries;

[0028] FIGS. 19C-19E—illustrate embodiments that fur-
ther provide examples of componentization in graphical
models consistent with principles of the invention;

[0029] FIG. 20A—illustrates an embodiment of a Func-
tion-Call Group block dialog;

[0030] FIG. 20B—illustrates an embodiment of a Func-
tion-Call Group block dialog with ‘Has pre-execution’ blocks
selected;

[0031] FIG.21—illustrates an embodiment of a Function-
Call Split block that invokes Function-Call Subsystems in
parallel on new threads;

[0032] FIG.22—illustrates an embodiment of a Function-
Call Split block that invokes one of the Function-Call Sub-
systems on a new thread;

[0033] FIG. 23—illustrates an embodiment of a subgraphs
that are explicitly controlled while honoring data dependen-
cies and the subgraph consists of Function-Call Split block
that invokes one of the Function-Call subsystems in another
thread, where the another thread is synchronized with the
main thread via a Function-Call Sync block;

[0034] FIG.24—illustrates an embodiment of a chart mak-
ing a function-call;

[0035] FIG. 25—illustrates an embodiment that includes
subgraphs that are explicitly controlled while honoring data
dependencies and where the subgraph consists of a Function-
Call Split block that invokes one of the Function-Call sub-
systems in another thread, where the thread is then synchro-
nized with the main thread via a Function-Call Sync block;
[0036] FIG. 26—illustrates an embodiment of a function-
call subsystem from FIG. 25 containing source blocks that are
executed when needed;

[0037] FIG. 27—illustrates an embodiment of a function-
call subsystem from FIG. 25 containing sink blocks that are
executed when needed;

[0038] FIG. 28—illustrates an embodiment of a continu-
ous-time system that uses a spawn block to speed up execu-
tion by running transformations in parallel;

[0039] FIG. 29—illustrates an exemplary flow chart illus-
trating exemplary processing for implementing an embodi-
ment of the invention;

Jul. 8,2010

[0040] FIG. 30—illustrates an exemplary computing archi-
tecture for implementing an embodiment of the invention;
and

[0041] FIG. 31—illustrates an exemplary distributed pro-
cessing architecture for implementing an embodiment of the
invention.

DETAILED DESCRIPTION

[0042] Exemplary embodiments are discussed in connec-
tion with graphical models created and executed in the Sim-
ulink environment (hereinafter “Simulink™). Current or past
versions of Simulink will be used to discuss conventional
(prior art) techniques for providing execution control over
portions of a graphical model. For example, Simulink 7.3 is
one example of a conventional application that will be used to
present existing techniques. A Simulink-based representation
will be used for discussing novel techniques provided by
aspects of the invention that provide explicit execution con-
trol over portions of a graphical model.

[0043] Control signals such as function-call or action sig-
nals found within Simulink’s time-based block diagram envi-
ronment are used to provide explicit execution control of a
portion of a model. Explicitly controlled portions of a model
may be referred to as subgraphs. Within a model, a subgraph
is a subset of the blocks and the lines connected to the subset
otf’blocks. With conventional modeling techniques, these con-
trol signals take precedence over data signals. FIG. 1A illus-
trates a graphical model that employs a conventional tech-
nique for explicitly controlling execution of subgraphs in a
graphical model. The model of FIG. 1A was created using
Simulink version 7.3 (R2009a). Model 100 represents a con-
trol system and can include components (blocks), such as
chart 105, init 110, merge 115, plant 120, src 125, £130, and
g 135. In model 100, plant 120 is the entity being controlled
(e.g. a car) and the other blocks in model 100 (e.g., chart 105,
init 110, merge 115, £130, and g 135) are used to control plant
120. In model 100, dashed lines, such as signal 140, are
control signals, which are referred to as function-call signals
within the Simulink 7.3 environment.

[0044] A control initiator is a block that uses a control
signal to execute one or more destination blocks. For
example, in Model 100 chart 105 is a control imitator, which
can also be referred to as a function-call initiator, and is
responsible for executing function-call subsystems, such as
function-call subsystems represented by £ 130 and g 135.
[0045] Inmodel 100, solid lines, such as signal 145, repre-
sent numerical time-varying quantities and can be referred to
as data signals. Data signals may represent inputs and outputs
to dynamic systems defined by blocks in a model, such as
model 100. In a time-based block diagram environment,
blocks perform transformations on the data signals. Blocks
not explicitly controlled by a control signal initiator, such as
chart 105, execute according to time-based semantics, i.e.
execute when they have a sample hit.

[0046] In model 100, chart 105 may be a Stateflow chart
block that contains or implements a finite-state machine
responsible for supervisory control of blocks init 110, £ 130,
and g 135. Chart 105 may run an init function-call subsystem,
implemented via init 110, at start-up or when another condi-
tion is detected, such as an invalid input (u) to the plant (which
may be conveyed to chart 105 via signal 150). In model 100,
normal run-time activities of the controller are represented by
the function-call subsystem blocks £ 130 and g 135. Chart 105
runs init 110, £130, and g 135 as defined by user-specific state
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and control-flow logic within the state chart using the func-
tion-call control signals 140, 149, and 148.

[0047] For example, chart 105 can run the function-call
subsystems zero, one, or more times on every time step of
model 100 by sending commands via the function-call con-
trol signals 140, 149, and 148 to run the function-call sub-
systems. These commands are realized by run-time functions
(e.g. C++ class methods) on the function-call subsystems.
Simulink 7.3 will ensure that the output of function of src 125
is executed prior to the output function of chart 105. On a
given time-step chart 105 may choose to run £ 130 and then
immediately run the output and update methods of'g 135. In
this case, £ 130, will see the previous value of output s2 147
(because g’s output method has yet to be invoked). g 135 will
see the current value of output s1 155 (because f 130 was
previously executed). The chart 105, before invoking f 130,
will compute signal ‘ > 145, where ‘1’ is an input to £ 130. After
executing £130, the chart, 105 can immediately use signal, ‘r’
160 in the user-defined chart logic to make other decisions.
The signal, r 160, is referred to as a return-value.

[0048] As illustrated in the example of model 100, data
dependencies implied by signals s1 155 and s2 147 are
ignored in determining the order in which f130 and g135
execute—the control signal initiator blocks use the control
signals to cause immediate execution of the subsystems £130
and g 135. Phrased another way, the execution order of sub-
systems 130 and g 135 are not dictated by the data signals
connecting them but instead by the explicit control signal
invocations of Chart 105.

[0049] The explicit control of subgraphs contrasts with
conventional execution in a Simulink block diagram that
follows data dependency order. Consider the example of FIG.
1B. Referring now to FIG. 1B, the Sine Wave block 180
always executes before the Gain block 181, and Gain block
181 always executes before the Scope block 184. The blocks
in FIG. 1B are said to execute in the order of their data
dependencies. Any delays in the reading of data during execu-
tion need to be introduced explicitly as shown in FIG. 1B
where the block Gain 1 182 reads a delayed value of signal s1,
where the delayed value of signal s1 is produced using unit
delay block 183.

[0050] The behavior described in connection with FIG. 1B
contrasts with the semantic defined by explicit execution
control consistent with aspects of the invention. While the
explicit execution control semantic is well-defined, it can
result in unexpected behavior for users that are familiar with
execution that is based upon data dependencies. In the case of
explicit execution control, some signals experience delays
even when no explicit Delay block was introduced in the
model. This unexpected behavior can be especially difficult to
trace when constructing large models consisting of many
thousands of blocks. For example, it may be difficult for auser
to understand when a given function-call subsystem is
executing using current input signal values or delayed (pre-
vious value) input signal values when the user is working with
conventional modeling environments. The phrase “data
dependencies are not satisfied” is used herein to indicate
situations and/or examples where a delay may be introduced
as a result of explicit execution control.

[0051] Chart 105 may be generally referred to as a control
initiator. A control initiator block has one or more control
signal outputs that are used to explicitly invoke destination
blocks. Referring back to model 100, chart 105 has three
control signal outputs, signal 140 to init 110, signal 149 to f
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130, and signal 148 to g 135. These control signals are
referred to as function-call signals. Function-call signals are
one form of'a control signal. Simulink 7.3 also contains action
signals which are control signals that come from a control
initiator, which is either a Switch Case or If block. Concepts
described herein can be extended to classes of signals dis-
cussed in connection with disclosed embodiments consistent
with the principles of the invention.

[0052] While the behavior of Simulink 7.3 and other con-
ventional types of graphical environments is well-defined,
there may be a need to ensure data dependencies are satisfied
during model execution, while also allowing for explicit
execution control. To enable explicit execution control, while
satisfying data dependencies, an exemplary embodiment
employs a novel semantic via a Control Signal Split block. In
general a Control Signal Split (or equivalently a Control
Signal Branch block) block can accept a control-signal and
then in turn execute one or more destination blocks. A Control
Signal Split block can be realized in an embodiment as a
Function-Call Split block.

[0053] A Function-Call Split block may be a block that
accepts a function-call signal and splits (branches) it into two
or more function-call signals. When a function-call invoca-
tion (message) is received at the input port to the Function-
Call Split block, function-calls are initiated at all outputs.
These resulting function-calls are executed in a manner such
that data dependencies are satisfied. In another embodiment,
a Function-Call Split block may be realized as an Action Split
block that accepts an Action signal and splits (branches) the
action signal into two or more action signals that invoke
Action subsystems.

[0054] FIG. 2 illustrates an embodiment containing a
graphical model that includes a Function-Call Split block,
245, which creates a subgraph whose execution is explicitly
controlled while honoring data dependencies. FIG. 2 illus-
trates model 200 that can include chart 205, function call
subsystems init 210, 230 and g 235, src block 225, merge
block 215, plant subsystem 220, function-call loop break
block 240 and Function-Call Split block 245. In model 200, £
230, g 235 and the Function-call Loop Break block 240 form
a subgraph where execution of the subgraph is explicitly
controlled by the function-call signal f 250 from the chart
205. Within model 200, two types of control signals may be
defined, namely function-call signals and action signals. In
model 200, a control signal may define when subordinate
blocks as identified by the subgraph are executed. In model
200, a control initiator may initiate execution of the subgraph.
By way of example, chart 205 is the control initiator in FIG.
2 (often referred to as a function-call initiator) and the signals
connected to the output ports, f and init of chart 205 are
control signals (of specific type function-call). In FIG. 2,
there are two subgraphs, the init Function-call Subsystem that
includes init 210 and the subgraph consisting of the Function-
call Subsystems, f 230, g 235, and the Function-call Loop
Break block 240.

[0055] Function-call Loop Break block 240 can be realized
in a variety of ways, such as via a Unit Delay or Memory
block which outputs a prior value of the signal by maintaining
state within the block. The Function-call Loop Break block
240 must run at the same rate as the other blocks in the
subgraph. Another realization of the Function-call Loop
Break block 240 can be realized by eliminating the need for
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the Function-call Loop break block 240 and by providing a
parameter on the Inport block of the function-call subsystem
that allows feedback.

[0056] The Function-call Split block 245 ‘branches’ the
function-call control signal connected to the output port f of
the chart 205 into two respective signals, g 255 and £ 260. The
Function-call Split block 245 can be configured to execute the
out-going function-call control signals (in this case fand g) in
any desired order based on a user specification. In FIG. 2, the
Function-call Split block 245 executes f 230 first and then g
235 second. The Function-call Loop Break block 240 pro-
vides the Function-call Subsystem, f 230 with the previous
value of's2 from g 235. If the Function-call Loop Break block
240 were not present, there would be an algebraic loop
involving the two Function-call Subsystems, £ 230 and g 235.
This would result in an error condition unless the algebraic
conditions are solved using an algebraic loop solver.

[0057] FIG. 3A illustrates an embodiment containing a
graphical model that includes a Function-Call Split block,
345, which creates a subgraph whose execution is explicitly
controlled while honoring data dependencies where the sub-
graphhas aloop consisting of signals s1 and s2 where the loop
is broken by latching the 3" input of 330. The latching is
achieved by selecting the “Latch input for feedback signals of
function-call subsystems outputs” parameter on the Inport
block dialog of the Function-Call Subsystem, f 330. In the
embodiment of FIG. 3 A, the Function-Call subsystem, £ 330,
has indicated that the 3" input (In3) is latched, meaning that
f 330 specified that it is using the prior value of the signal
feedback from function-call subsystem g 335. The specifica-
tion is done by opening the Function-call subsystem, f 330
and setting the “Latch input for feedback signals of function-
call subsystems” on the Inport block, In3. In FIG. 3, dialog
window 344 may be used to specity the latch input. Specify-
ing the loop break property on the subordinate blocks (in this
case, £330) has the advantage over the Loop break blocks in
that documentation of the system is improved. For example,
in FIG. 3A it may be clear to a model designer that f 330 is
using a latched value at input port 3 from the prior execution
of'g 335 via signal s2 because of the <LLi> annotation on 330.
[0058] Anembodiment illustrated in FIG. 3B can represent
an improvement over the pattern explored in FIG. 3A, namely
that the Function-Call Split block can be entirely subsumed
into the functionality of the Initiator. FIG. 3B illustrates how
the Chart 305 and the Split block 345, of FIG. 3A, are sub-
sumed into the single hierarchical level of the model 360.
Further, as illustrated in FIG. 3C, the entire Chart 305 can be
programmed to subsume the functionality of the Split block
345 without introducing an explicit Split block shown in the
model. For example, and referring to FIG. 3C, the fact that £
executes before g is indicated by the number 1near the f port
370 of the Chart and the number 2 near the g port 375 of the
Chart. The representation of FIG. 3C may represent an
improvement that allows f and g to execute in accordance to
their data dependencies. The example of FIGS. 3A, B, and C
contrast with the example shown in FIG. 1A where the £ 130
and g 135 could execute in any arbitrary order dictated by the
Chart.

[0059] Embodiments can return processed results from all
or any subgraphs connected to a Function-Call Split block
back to the Initiator of the function-call control signal. This is
illustrated in FIG. 4 where 430 returns a signal r to the Chart
405. Use of signals, such as r, does not require the use of a
loop break block because there is no implied delay in the
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signal. This concept can be extended to return a value from g
435 as well. The Chart can then use these two values to control
the Plant.

[0060] In certain situations, a conflict may be created
between explicit subgraph execution control and execution
ordering determined by data dependencies. When this situa-
tion occurs, an error may be produced as shown in FIG. 5 at
chart 405 via the shaded fill pattern. The error may also cause
an error log to be produced and displayed via a user interface.
An exemplary error log that can accompany the graphically
depicted error of FIG. 5 is illustrated in FIG. 6 via window
600. Ifauser were to specify on the Function-Call Split block
that the right function-call output executes before the bottom
function-call output (with dot showing next to the right func-
tion-call output), then data dependencies would be satisfied
because the Function-Call Subsystem, g would execute
before the Function-Call Subsystem, f and the model would
execute without error.

[0061] The need for explicit execution control of subgraphs
arises in many situations where explicit ordering (often
referred to as sequencing or scheduling) of the subgraphs
enables supervisory control. For example, one subgraph may
represent activities to be performed at initialization and
another subgraph may represent run-time behavior. In the
example of FIG. 3A, the initialization subgraph defined by the
init Function-Call Subsystem is executed when the system
starts up or is reset while running. Within a subgraph that is
explicitly controlled, it may further be desired that data
dependencies are satisfied ensuring each block within the
subgraph is operating on current (e.g., up-to-date) informa-
tion. Referring back to FIG. 3A, the subgraph starting at the
Function-Call Split block, 345 represent run-time dynamics
that control the plant 320 and within this subgraph, data
dependencies are satisfied.

[0062] Explicit control of subgraphs can provide at least
two capabilities for the model designer:

(1) modeling of systems where there needs to be explicit
scheduling of subsystems by elements of a block-diagram,
which can be referred to as supervisory control, and

(2) modeling of systems where certain block diagram ele-
ments need to perform auxiliary intermediate computations
that are needed for performing their overall computation,
which can be referred to as external function invocation.

[0063] These capabilities are provided by explicit control
of'subgraphs can used separately or together as shown in FIG.
3A. Referring back to FIG. 3A, based upon the state of the
system, chart 305 invokes either the initialization function-
call subsystem, init 310, or the run-time logic consisting of
the subgraph consisting of the Function-Call Split block 345,
and £330 and g 335 Function-Call Subsystems. This type of
decision making can be referred to as supervisory control. In
addition the chart uses the signal r 350, computed by the
function-call subsystem f 330. In this context the chart is
making an external function invocation and using r 350 for
further processing.

[0064] FIG. 7 illustrates an embodiment that performs
supervisory control using explicit subgraph control of two
separate subgraphs running at different rates. In FIG. 7, there
are two separate charts, namely chart 710 and chart 720,
responsible for supervisory control of two separate sub-
graphs, subgraph 730 and subgraph 740, respectively. In an
embodiment, Charts 710 and 720 can further produce peri-
odic signals. In this figure, the 1 m-sec (one millisecond) chart
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710 produces a periodic signal at its first output port 715. This
signal is transformed by blocks and used elsewhere in the
model.

[0065] Similarly the 2 m-sec chart 720 produces a periodic
signal at its first output port 725 which is used elsewhere in the
model. The second output port 717 of chart 710 is then con-
nected to subgraph 730 consisting of three blocks. The 1
m-sec chart 710 on every (1 m-sec) time step decides if it
should execute subgraph 730. When chart 710 executes sub-
graph 730, all three blocks in subgraph 730 execute while
satisfying data dependencies, i.e., the 3 blocks of subgraph
730 are evaluated left to right because of data dependencies.
In subgraph 730, the size of the execution control split block
(in this case a Function-Call Split block 735) has been
reduced to a very small dot representing a branch-point. Like-
wise, the 2 m-sec chart 720 executes the subgraph 740 con-
nected to its second output port 727 based on logic, which
may or may not run the subgraph 740 on the 2 m-sec time-
step. A Rate Transition block 750 is used to convert the data
from the 2 m-sec task to the 1 m-sec task. The Function-Call
Split block 735 decides the order in which the subordinate
blocks are executed.

[0066] FIG. 8 illustrates an embodiment 800 that includes
Function-Call Split blocks 810A, B, C that can be configured
to invoke a subgraph according to data dependencies and the
ordering of the blocks within the subgraph is annotated on the
blocks after analyzing the model. FIG. 8 can include function
call generator 805, Function-Call Split block 810A, B, and C,
sine wave generator 815, function call subsystems 820, 825,
830 and 835, and output 840. Subsystems 820, 825, 830 and
835 may be subordinate function-call subsystems in an
embodiment. These subsystems can optionally be annotated
using a nomenclature, such as “B#”, where “#” is an integer
indicating the execution ordering sequence for the sub-
systems. For example, in FIG. 8, subsystem 820 may execute
first, subsystem 825 may execute second, subsystem 830 may
execute third and subsystem 835 may execute fourth, or last.
[0067] The ordering of how subsystems execute can be
represented using alternative graphical techniques. An
example of an alternative technique for representing an
explicit ordering for subsystem execution is illustrated in
FIG. 9.

[0068] FIG. 9 includes Function-Call Split block 905 that
receives signal 906 from function call generator 904. Func-
tion-call split block 905 includes two output signals identified
using “1” for signal 907A that goes to subsystem 920 and “2”
for signal 907B that goes to subsystem 925. In FIG. 9, Func-
tion-Call Split block 905 includes a graphical representation
in the form of a dot proximate to where signal 907 A intersects
the border of Function-Call Split block 905. The dot indicates
which function-call branch is executed first, namely the one
forsignal 907 A. The “1” next to the signal indicates Function-
Call Subsystem h1 runs first and the “2” next to the other
signal indicates Function-Call Subsystem h2 runs second.
When cascaded Function-Call Split blocks are used for split-
ting a function-call signal to call more than two function-call
subsystems, users may also choose to show absolute execu-
tion sequence (like “17,“2”,“3” ... ) or hierarchical execution
sequence (such as “1.1.2”, “1.2.1”). Users can manually
insert a Function-Call Split block to branch a function-call
signal, or can simply branch a function-call signal and a
Function-Call Split block will be automatically added.
[0069] InFIG.9 around subgraph block is used and repre-
sents one exemplary technique for graphically representing
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functionality associated with subgraph control. Other
embodiments can use other techniques (e.g., shapes) for rep-
resenting subgraph blocks or subgraph functionality. For
example, a rectangular block or another shape block could be
used. Furthermore, if there are no options, a simple branch
(i.e., no block) may be used to represent the concept of a
Function-Call Split. Similarly, an implementation may
include more than two output signals, i.e. it is possible to split
a function-call into 3 function-call signals by either cascading
two Function-Call Split blocks or providing a split block that
has 3 outputs.

[0070] If a user were to instruct the Function-Call Split
block 905 to execute its branches according to data depen-
dencies in this model, there would be ambiguities because
there is no dependency between hl and h2. In this case an
error message would be generated indicating that insufficient
data dependencies exist in model 900 to ensure a unique
execution ordering. If there are no ambiguities and a unique
ordering can be found, as in FIG. 8, choosing a branch order-
ing based on data dependency can result in deterministic
execution sequencing.

[0071] A Control Signal Split block can be referred to using
different names according to environments in which the block
is used and/or according to particular functionality imple-
mented using the block. For example, in a Simulink environ-
ment, when used with Function-Call signals, the block may
be referred to as the Function-Call Split block, Function-Call
Branch block, Function-Call Branch Point block, Function-
Call Split Junction block, Function-Call Splitter, etc. When
used with Simulink’s action signals the Control Signal Split
block may be referred to as the Action Branch Point block,
Action Branch block, Action Split block, Action Split Junc-
tion block, Action Splitter, etc.

[0072] A subgraph loop break block can also be referred to
using different names. For example, in a Simulink environ-
ment, when used with Function-Call signals, it may be
referred to as the Function-Call Loop Break block, when used
with action signals (similar to function-call signals), it may be
referred to as the Action Loop Break block. Alternatively, the
term loop break may be replaced with “memory” or “delay”
or “latch”. It should be recognized that several different
names can be used to describe this block. The property of
breaking loops can also be realized as a parameter (property)
of the subordinate blocks that are executed (run) by the con-
trol initiator.

[0073] A conventional technique for joining control signals
together that can produce unexpected results may be realized
using Simulink 7.3 (R2009a). For example, Simulink 7.3
provides a Mux block as shown in FIG. 10. In FIG. 10 func-
tion-calls are combined into a wide function-call signal 1020
that includes signals fand g. The wide function call signal is
used to invoke the Function-Call Subsystem 1015. The wide
function-call signal 1020 enables either Chartl 1005 or
Chart2 1010 to run the Function-Call Subsystem 1015.
[0074] A potential downside of the implementation of FIG.
10 is that the ordering of the control initiators (Chart1 1005
and Chart2 1010) is not clearly demarcated to a user. The
semantics of Simulink 7.3 indicate that either Chart1 1005 or
Chart2 1010 can be first in the sorted-list. The sorted-list of
blocks is generated when analyzing the model by using data
dependencies among the blocks. The sorted-list is then used
to create block function execution lists that are used to run the
model. Execution lists may also be referred to as block
method execution lists because blocks are often implemented
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using object oriented programming techniques where the
functions are methods of a class. Switching the ordering of
Chart1 1005 and Chart2 1010 in the sorted-list will change the
result, or answer when FCSS 1015 has blocks with state
inside it. Since there are no data dependencies between
Chartl 1005 and Chart2 1010, the orderis inferred from block
priorities when block priorities are specified; otherwise, the
block names are used. Thus, seemingly insignificant changes
to a block (e.g., a new block name) can produce significant
changes in a result, or answer, produced by a model.

[0075] An exemplary embodiment of the invention can
overcome limitations, such as those associated with the Sim-
ulink 7.3 embodiment of FIG. 10. For example, an embodi-
ment of the invention can use a control signal join block to
predictably provide multiple control initiators to a subgraph.
An alternative name for the Function-Call Join block would
be a Function-Call Sequence block. For example, a Control
Signal Join block is used when it is desirable to have multiple
control initiators of a given subgraph (or single block). A
Control Signal Join block specifies the ordering when two or
more invocations of the Join block are initiated on the same
time step.

[0076] Forexample, and referring to FIG. 11, the Function-
Call Join block 1120 can include a dialog window 1130 that
can be used to display information regarding operation of join
block 1120. For example, dialog window 1130 can display
information indicating that join block 1120 uses an ordering
that is either left-to-right, right-to-left, or specified. When
specified is selected in dialog window 1130, a set of indices
corresponding to the input ports are provided giving the
desired ordering. In the embodiment illustrated in FIG. 11,
left-to-right ordering has been selected.

[0077] Referring to FIG. 11, a left-to-right ordering means
that Chart2 1110 must be placed before Chartl 1105 in the
sorted list. The sorted list may be a data structure that is used
by a simulation or code generation engine to generate execu-
tion lists. This ensures that on any given time step, if both
Chartl 1105 and Chart2 1110 are invoking subgraph 1115,
then Chart2 1110 will come first. Within the Function-Call
Subsystem, FCSS, 1115, the user can add logic that makes
decisions based on which specific initiator invoked the func-
tion-call subsystem. For example, if Chard, 1105 invoked
FCSS, 1115 then one action could be taken otherwise if
Chart2, 1110 invoked FCSS 1115, then another action could
be taken.

[0078] The Function-Call Join block 1120 is useful for
handling a subgraph created by a Function-Call Split block.
In FIG. 12, model 1200 includes a chart 1205 that initiates
execution of the subgraph defined by the Function-Call Split
block 1225, Function-Call Subsystems, f 1230, g 1235, h
1250, Merge block 1245, and the Function-Call Join block
1240. Within the subgraph, both Function-Call Subsystems f
1230 and g 1235 use the Function-Call Subsystem h 1250.
Both 1230 and g 1235 provide an input, In1 to Function-Call
Subsystem h 1250 via a Merge block 1245. The Function-
Call subsystem {1230 uses the result of calling h 1250 during
its processing and the Function-Call Subsystem g 1235
invokes h 1250 to produce the final answer of the subgraph
which is provided to the plant 1220 via the Merge block 1215.
As before, the chart 1205 can choose to either run the init
(initialization) Function-Call Subsystem 1210, typically at
system startup, or run the subgraph by invoking a function-
call on £ 1230.
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[0079] The Function-Call Join block (or generally a Con-
trol Signal Join) block output is either connected to a sub-
graph being explicitly controlled as in FIG. 11 or it can be
connected to another Join block. The cascading of join blocks
in effect produces a network of join blocks that result in one
join operation.

[0080] Conventional techniques may infer function-call
signatures from a graphical diagram. FIG. 13 illustrates a
conventional technique using Simulink 7.3 external function
invocations.

[0081] In FIG. 13, chart 1305 invokes the function-call
subsystem 1310 with Inputs 1320 and receives the results of
the computation via result signal 1325 for immediate use
during the time-step. The construct illustrated in FIG. 13,
when used with many input signals and result signals, pro-
duces a diagram that is difficult for users to understand and/or
follow. Furthermore, the analysis of the model 1300 requires
that all blocks be available to a compiler used to execute the
model. This prevents a user from componentizing (or parti-
tioning) the model into two independent parts, one consisting
of the Chart 1305 and the other consisting of the Function-
Call Subsystem, 1310.

[0082] Referring to FIG. 14, consisting of a conventional
technique for external function invocations, the function-call
subsystem f 1420 has two inputs—one from the initiator
function-call subsystem, 11405 and the other from the Gain
block, G 1415. The function-call itself, therefore, has two
inputs, namely signal 1429 and signal 1430. Similarly, the
function-call has one return value (result of computation)
from f 1420 back to the Initiator 1405 via signal 1435. The
implications of this signature are two fold:

[0083] 1.During simulation, before the invocation of the
function-call subsystem f 1420 by the initiator 11405
both inputs need to be ready. This implies that G 1415
needs to execute prior to 11405

[0084] 2. When code is automatically generated from the
model, the function generated for f 1420 will have two
inputs and one return value.

[0085] In FIG. 14, the signature of the function-call is
implied by the connectivity of model 1400 and is derived
during the compilation process. For example, this process is
used in Simulink 7.3 and earlier versions of Simulink.

[0086] Approaches to extracting the signature of the func-
tion-call, such as is shown in FIG. 14, does not scale to
complex systems where different components of a system
may be modeled with only knowledge of the interfaces of
systems they interact with. By way of example, consider FIG.
15 illustrating a conventional technique using external func-
tion invocations that includes model 1500, identified as TOP
and subsystems A 1510 and B 1530 which we’d like to make
components

[0087] Model 1500 uses (references) two separate sub-
systems, namely subsystem A 1510 and subsystem B 1530.
We’d like to make A 1510 and B 1530 components that can be
independently analyzed (compiled for execution). In Sim-
ulink 7.3, components may be referred to as Model Reference
blocks. In general componentization lets a user define re-
usable model components that can be compiled indepen-
dently of their use. For example, if 1510 and 1530 were a
components (Model Reference blocks), 1510 may be com-
piled independent of 1530. However, in conventional envi-
ronments components cannot be created that have control
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signals such as the function-call signal 1535 cross system
boundaries. In some embodiments, a component may repre-
sent a model.

[0088] By way of example, FIG. 15 may illustrate an
embodiment configured to depict three separate component
models, one for the TOP, one for the A 1510, and one for B
1530. If this were the case, then it would possible to indepen-
dently open and execute A 1510 or to use model A 1510 from
another model. Therefore, when constructing model A 1510,
it should be possible to build model A 1510 without knowing
the contents of model B 1530 or how TOP (model 1500)
might be using model A 1510. This workflow may imply two
things:

[0089] 1. Thebuilder of model A 1510 needs to be able to
capture information regarding signals marked a 1540, b
1550, and ¢ 1545 in model A 1510 because signals a
1540, b 1550, and c 1545 all constitute the signature of
the function-call invoked in model B 1530.

[0090] 2. The builder of model B 1530 needs to be able
build the function-call subsystem without knowing the
contents of model A 1510.

[0091] To satisty 1 and 2 above, builders of models A 1510
and B 1530 each need a mechanism (or a contract) for cap-
turing the signature of the function-call the two models share.

[0092] FIG.16 illustrates an exemplary embodiment of the
invention that provides the ability to create components with
control signal (e.g. function-call or action signal) inputs and
outputs of the components. FIG. 16 produces the same
answer as FIG. 15. However, a difference between FIG. 15
and FIG. 16 are that FIG. 16 has componentized the sub-
system A 1510 into Model Reference component A 1610 as
indicated by the solid triangles in the corners of the model
block. Similarly, FIG. 16 has componentized the subsystem B
1530 into Model Reference component B 1630.

[0093] 1. In model A 1610, the builder will have the
ability to produce a single signal 1650 that includes the
invocation signal of the function call, the input argu-
ments from the initiator of the function-call and the
return values (results of processing) of the function-call.
This is referred to in general as subgraph control signals
with input and output arguments, further illustrate in
FIG. 16. In contrast, conventional techniques express
each function call as a separate signal.

[0094] 2. In model B 1630, the builder will have the
ability to capture the input arguments and return values
expected from the initiator in a structured form. One
structured form could be a table which corresponds to a
Subgraph Control Signal Class from which objects
describing the signature are created, further illustrated in
FIG. 16.

[0095] 3.Inmodel A 1610, the builder will have to ability
to capture the fact that gain G 1620 is an implicit input to
the function-call invoked from A 1610. One way of
capturing this information graphically is shown in the
Subgraph Control Signals with Input and Output argu-
ments illustrated in FIG. 16 via the Add Input 1660
Marshal block.

[0096] The exemplary mechanisms listed above facilitate
the following:

[0097] 1. Models A 1610 and model B 1630 can be
compiled in isolation and a user can generate code for
one model without the presence of the other.
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[0098] 2. The execution order of blocks in model A 1610
can be determined without the presence of Model B
1630.

[0099] 3. When Model A 1610 and model B 1630 are
connected together, a user can easily check that the
contract for the function-call is met by both model A
1610 and model B 1630 because the signatures of the
function-calls are specified at both models.

[0100] 4. The builders of model A 1610 and model B
1630 can build their models in a modular fashion.
[0101] FIG. 17 illustrates an exemplary technique for
allowing a user to create and/or edit the signatures of a func-
tion-call subsystem signal such as 1650. For example, a func-
tion-call subsystem 1705 may be associated with a dialog
window 1750 that allows a user to input information associ-
ated with function-call subsystem 1705 which represents the
input value a and output value b of the function-call sub-

system 1625 of FIG. 16.

[0102] Exemplary embodiments can use Control Signal
Group and Control Signal Ungroup blocks to allow models to
be decomposed into separate units that can be independently
compiled and/or reused. For example, a model may include
control signals that cross boundaries of subsystems in the
model. The model may use control signal group blocks or
control signal ungroup blocks along with input and/or output
data signals to provide independent control to respective sub-
systems in the model. The use of control signal group and/or
ungroup blocks may allow the subsystems to be indepen-
dently compiled and reused. The use of control signal group
and ungroup blocks can provide models with the capability to
have control signals cross hierarchical boundaries of the
model, enable parallel compilation of components (e.g., sub-
systems) in the model, allow for independent verification of
components of the model and provide uses with improved
development workflows (e.g., when many people are working
on a model).

[0103] FIG. 18 illustrates a conventional model that uses
function call subsystems. In FIG. 18, model 1810, named
Top, consists of two subsystems, SYS1 1820 and SYS2 1840.
SYS1 1820 contains a state chart, Chartl 1822, that invokes a
Function-Call Subsystem, FCSS 1850 in SYS2 1840 via the
function-call control signal, £ 1832. SYS1 1820 also contains
a Sine Wave block 1824 and a Gain block 1826. Because the
output signal, ¢ 1828, of the Gain block 1826 is an input to the
Function-Call Subsystem, FCSS 1850, the gain must be com-
puted before Chartl 1830 is executed because Chartl is
responsible for executing FCSS 1850 and FCSS has a data
dependency on ¢ 1828, which is computed by the Gain block,
1826 using the sine wave value 1824. Thus, to sort SYS1
1820, we need to know the contents of SYS2 1840 and how
SYS2 1840 is using the signal, ¢ 1828. Had SYS2 1840 used
the signal ¢ 1828 (its 3"/ input) elsewhere and not by the FCSS
1850, then Sine Wave 1824 and Gain 1826 could be executed
before or after Chartl 1830 because there is no execution
(data) dependency in this case.

[0104] However, in FIG. 18, an execution dependency
requires that the Sine Wave 1824 and Gain 1826 execute
before Chartl 1830 is executes. The contents of the Chartl
1830 consist of a single state that produces ‘a’ which is set to
x+2, where X is an internal state of Chart1 1830 and is initial-
ized to O by the chart. After computing a, Chartl 1830 con-
tinues execute the Function Call Subsystem, FCSS 1850, by
invoking it via the Function-Call control signal, f via the f
statement. FCSS 1850 then transforms the signal a (which
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will be 2 on the first time step), via the Lookup Table (2-D)
1852 and provides this transformed signal to the 1% Outport
block 1854 labeled b. FCSS 1850 then transforms this signal
(b) again using the Discrete Zero-Pole block 1858 and pro-
vides this signal to the 2”¢ Outport block 1856 labeled out.
[0105] After FCSS 1850 finishes executing, execution con-
trol is returned to Chartl 1830 where the transformed signal,
b, is saved by Chartl 1830 in its internal state, X via the x=b
statement. The direct feed-though bit on b was cleared
because it is a return value from the invoked Function-Call
subsystem, FCSS 1850. Therefore, to generate the correct
sorted list and block method execution order, the contents of
SYS2 1850 are also needed to determine which signal are
return values. After SYS1 1820 finishes executing, SYS2
1840 executes. Since FCSS 1850 is not directly executed by
SYS2 1840 (its execution initiator is Chartl 1830 which
already ran), the only other blocks in SYS2 1840 which need
to be evaluated is the Scope block 1842 which plots the value
of out computed by Chartl 1830 via the FCSS 1850 invoca-
tion. This completes the execution of the first time step for the
model 1810. This process continues with time advancing
until the desired stop time is reached.

[0106] FIG.19A illustrates an embodiment that uses func-
tion-call group and ungroup blocks to enable componentiza-
tion of systems with a control signal crossing the systems
boundaries. In FIG. 19A, the system of FIG. 18 is imple-
mented in an embodiment of the invention that uses function-
call group blocks and function-call ungroup blocks. The
implementation of FIG. 19A employs a technique referred to
as componentization (e.g., model referencing) to simplify
representing the system to a user. For example, and referring
to FIG. 19A, model TOP 1902 can include two subsystem.
For example, one subsystem can be represented as SYS1
1904 using a Model Reference block that can be compiled
and/or analyzed without knowledge of the contents of SYS2
1930, another Model Reference block, and vice versa. For
example, if a user were to right-click on the f-group signal
1922 or 1932 or the signal 1915 connecting SYS1 to SYS2,
the user could inspect the contents of the signal and the
contents would show that the signal is a bundled signal con-
sisting of a function-call control signal originating at 1906
and terminating at 1940 with data input signals a 1910 and ¢
1916 and return value signal b, 1944. This inspection could be
shown either textually or graphically in a dialog.

[0107] SYS1 1904 includes Chart/1908, which is imple-
mented using logic similar to that of the Chartl 1830 in FIG.
18. The Function-Call control signal, £ 1906 is provided for a
Function-Call Group block 1918 along with the Function-
Call input data signal, a 1910. The output of the Gain block
1914, ¢ 1916, is also provided to the Function-Call Group
block 1918. The Function-Call Group block 1918 can be
configured to specify the return values and signal attributes
(data type, dimensions, sampling modes, etc.) such as their
data type as show in FIG. 20A.

[0108] Referring now to FIG. 20A, dialog 2000 may
include one or more fields 2010 in which a user can specify
signal values, signal attributes for the signals, etc. In an
embodiment, dialog 2000 may allow users to specify signal
values and signal attributes using MATLAB cell syntax. For
example, the i” element of a cell array and the data type for
the respective return value signal is the i+1? element. In FIG.
20A, a user may have specified that the data type is inherited,
meaning that the signal attributes will be back inherited from
the Chartl input. Alternatively, the properties of the Function-
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Call Proxy and Function-Call Proxy Adaptors could be speci-
fied textually using an object-oriented syntax such as MAT-
LAB’s Class system.

[0109] Referring now to FIG. 19A, at SYS1 1904 in isola-
tion (without knowledge of the contents of SYS2 1930) the
model of SYS1 can be analyzed to identify all information
about the function-call £ 1906, initiated by the Chart1 1908 to
enable independent compilation. It may be known that the
output signal, a 1910, from the Chart1 1908 is a function-call
input. In addition, it may be known that data signal ¢ 1916,
produced by the Gain block 1914, is an implicit input to the
same function-call. Moreover, it may be known that input b
1920 to the Chart1 1908 is a return value data signal from the
same function-call. This information ensures the compilation
process of SYS1 1904 will place the Sine Wave block 1912
and Gain block 1914 before Chartl 1908. The compilation
process will also clear the direct feed through of the input
port, b, of the Chartl 1908 because b is a function-call return
value. The bundled signal created by the Function-Call group
1918 is passed to the 1°* Outport block 1922, named f-group.
[0110] In Top/SYS2 1930 the first input port 1932 is con-
nected to a Function-Call Ungroup block 1934. Block 1934
unbundles the f-group signal and produces function-call con-
trol signal 1940 used to invoke the Function-Call Subsystem,
FCSS 1942. Block 1934 also unbundles the signals a 1938
and ¢ 1942, which are also provided to FCSS 1942. Block
1934 may be associated with a dialog to allow users to enter
information associated with block 1934. For example, a dia-
log for block 1934 may be similar to dialog 2000 that is
associated Function-Call Group block 1918. A dialog win-
dow forblock 1942 may allow a user to define that there is one
return value from the Function-Call Subsystem, FCSS 1942,
labeled, b 1944. Based on this information, we can compile
SYS2 1930 can be coupled without knowledge of any other
parts of the model.

[0111] The embodiment of FIG. 19A makes use of explicit
signatures to ensure that users can compile components with
control signal inputs and outputs without having knowledge
of the control signal sources or destinations outside of the
component being compiled. This enables componentization,
parallel compilation, independent development and testing of
the components. An additional capability provided by control
signal inputs and outputs such as the function-call control
signal input SYS1 and function-call control signal output of
SYS2 is the ability to have multiple function-call inputs and
outputs.

[0112] FIG. 19B, includes two componentized systems,
SYS_A 1961 and SYS_B 1967 (Model Reference blocks in
Simulink) used with model 1961. SYS_A 1961 is invoking
two entry points on SYS_B 1967, the init entry point 1962 and
the runl entry point 1963 via function-call grouped signals
output from function group blocks 1964 and 1965, respec-
tively. SYS_A/chart 1954 initiates execution of either the init
block 1964 or runl block 1965 on any given time step.
SYS_A 1961 illustrates the ability to have multiple function-
call control signals from a chart and the ability to Merge (map
to same memory location) the return values from the invoked
function-call subsystems.

[0113] FIG. 20B illustrates a dialog window that can be
used with, for example, Function-Call Group—runl (block
1965). Dialog 2030 includes fields 2032 and a check box
2034 for ‘Has pre-execution blocks’. When check box 2034 is
selected, the selection indicates that before the runl function-
call can be invoked, some (unknown) set of blocks has to be



US 2010/0175045 Al

executed before the control signal initiator (in this case 1966)
because they are feeding the function-call subsystem being
executed. To ensure the pre-execution blocks run, SYS_A
1961 issues a run_1_pre_exeucte ‘hidden’ function-call
(message) via the runl f-group signal before running the
Chart 1966.

[0114] Referring back to FIG. 19B, Top/SYS_B 1967,
includes function-call ungroup blocks 1968 and 1969 used to
unbundle the function-call control signal and the data signals.
The Function-Call Subsystem, runl 1970, has an A/D block
1971 feeding it. To ensure correct results from SYS_B 1967,
A/D block 1971 needs to run before runl 1970 is run. To
achieve this, SYS_B 1967 creates a ‘hidden’ function-call
input that can conceptually be part of the runl f-group but
with name runl_pre_execute( ).

[0115] In the embodiment of FIG. 19B, any component
providing a grouped function-call signal must run this entry
point. When compiling the Top system 1960, the signatures of
the signals between the components can be observed to detect
mismatches. For example, if the Top/SYS_A/Function-Call
Group—runl block 1965 did not check the ‘Has pre-execu-
tion blocks’ checkbox, a signature match would have been
detected during compilation of Top 1960 and an error would
be produced.

[0116] The block names Function-Call Group and Func-
tion-Call Ungroup are used convey that the blocks bundle
signals together and then unbundle the signals, respectively.
An alternative naming scheme would be to use the terms
Function-Call Proxy and Function-Call Proxy Adaptor as
shown in FIG. 19C.

[0117] FIG. 19C is similar to FIG. 19A, and includes
renamed blocks. Generally, these blocks can be referred to as
Control Signal Proxy and Control Signal Proxy Adaptor
blocks. The basic functionality of these blocks may remain
the same. For example, in FIG. 19C, the Function-Call Proxy
block 1974 creates a bundled control signal labeled f-proxy
1975. The signal line is displayed using a contrasting line
style to indicate the signal is a bundled control signal. Ifa user
were to inspect the signal either textually or graphically using
a dialog box, the user would see the bundled signal contains a
function-call signal with a first input signal, a second implicit
input signal ¢, and a return value signal, b. The dialogs of the
Function-Call Proxy and Function-Call Unproxy block may
be similar to FIG. 20A and FIG. 20B.

[0118] The Function-Call Proxy blocks and Function-Call
Proxy Adaptor blocks need not have the same names in the
signals. For example, in FIG. 19C, the signal inspection dia-
log 1973 shows that the f-proxy signal has elements named a,
b, and c. Similarly TOP/SYS2 1976 is defined with signals a,
b, and c. Alternatively, different signal names could have been
specified in TOP/SYS2 1976 for the Function-Call Adaptor
1977 and/or the Function-Call Subsystem, FCSS 1978 as
long as the signal attributes (data types, dimension, etc.) are
consistent the model would be correctly defined and would
execute.

[0119] Itshouldberecognized that the Function-Call Proxy
(or equivalently Function-Call Group) block is a form of
Marshal block 1660 of FIG. 16. Both the Marshal and Func-
tion-Call Proxy block are used to create a bundled signal.
Signal 1650 of FIG. 16 is a bundle that consists of a function-
call signal, an input ‘a’ and a return value signal ‘b’. signal
f-proxy 1975 of FIG. 19C has a similar signature and they are
effectively the same when Marshal block 1660 is used. The
overall inputs the function-call subsystems, F 1630 of FIG. 16
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and FCSS of FIG. 19C have the same signature (2 inputs, one
output). If a user were to add a 2”¢ input to the Marshal block
1660 of FIG. 16 the function-call subsystem 1625 of FIG. 16
would have 3 input arguments. Likewise if a user were to add
a 3’ input signal to the Function-Call Proxy block 1979, the
function-call signal bundle, f-proxy would have 3 input argu-
ments and the FCSS subsystem 1978 of FIG. 19C would have
3 inputs. Similar flexibility and consistency is provided at the
Function-Call Proxy Adaptor 1977.

[0120] Recognizingthatthe bundled signal 1650 of FIG. 16
may be preferred by certain users, the Chartl 1980 of FIG.
19C can be configured to produce a function-call control
signal bundle containing a bundled signal. This is shown in
FIG. 19D.

[0121] In FIG. 19D, Chart 1980 is making a function-call
passing in the value a, and receiving the value b via signal
1981. From a functional perspective, the models of FIG. 19C
and FIG. 19D are equivalent and produce the same answer.
The Function-Call Proxy block 1982 is used to create the
f-proxy bundled function-call control signal consisting of two
inputs (a and ¢) and one return value (b). The Function-Call
Proxy Adaptor 1983 is used to unbundle the f-proxy signal
and provide the bundled functional-call control signal f(in: a,
out: b) to the function-call subsystem, FCSS 1984.

[0122] Oneadditional depiction ofthe Function-Call Proxy
block 1982 would be to eliminate the explicit output port
signal of the Function-Call Proxy block 1982 and in turn
provide a paired function-call proxy port block that produces
the function-call proxy signal at the top of the component.
Additionally, the Function-Call Proxy Adaptor block 1983
could be depicted without the bundled function-call control
signal and in turn have a paired function-call proxy adaptor
port block that receives a bundled function-call control signal
and implicitly provides it to the Function-Call Proxy Adaptor.
This idea is illustrated in FIG. 19E.

[0123] InFIG. 19E, the Proxy blocks inside SysA 1985 do
not have an explicit output ports for the respective function-
call groups. Instead, the Proxy block 1986 is directly “hyper-
linked” to the Server port blocks A 1987 and B 1988. Simi-
larly within SysB 1989, the Adapter blocks 1990, 1991 do not
have explicit connections to the function-call group signals.
Instead, they are hyperlinked to the Server blocks A 1987 and
B 1988 inside SysB 1989. The respective Server Port blocks
of SysA 1985 and SysB 1989 are connected to indicate that
the function-call group signals of Sys5 A 198 are served by
function-call blocks inside SysB 1989.

[0124] A Subgraph Split block can be setup to perform
parallel execution of the subordinate blocks. For example,
FIG. 21 illustrates a Function-Call Split block 2110 (a real-
ization of the general concept of Subgraph Split block) has
been configured to invoke its subordinate blocks, Function-
Call Subsystem h1l 2130 and Function-Call Subsystem h2
2140 in two new threads as annotated with the {, to in the icon
to indicate parallel execution and the Th, 2150 and Th, 2160
function-call control signal labels (for thread 1 and thread 2).
[0125] InFIG. 21, there are no data dependencies and com-
putations performed by the Function-Call Subsystems hl
2130 and h2 2140 are independent.

[0126] To improve efficiency threads may be created at
model start and the threads may remain active. The act of
invoking function-call on another thread signals via a sema-
phore or other synchronization entity thus activating execu-
tion of the subordinate function-call subsystem.
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[0127] The term thread within the context of FIG. 21 refers
to a separate thread of execution. In one implementation, the
separate thread of execution can be a child thread of the
process executing the model. Alternatively, the term thread
can also mean a separate process running on the same com-
puter or a process on a different computer. Generally, child
threads of the current process are preferred because they use
fewer resources. However, separate processes for the execu-
tion threads are required on some systems that don’t support
child threads within a process. There are numerous other
reasons for using separate processes such as increased paral-
lelism by leveraging multiple computers or multiple hetero-
geneous cores on a multicore system. In this case, a message
passing interconnect is setup to communicate between the
processes.

[0128] A parameter of Function-Call Split block 2110 can
specify that the subordinate controlled blocks, namely hl
2130 and h2 2140, execute in new threads as shown in FIG.
21. In another embodiment, a user may specify that none or a
subset of the subordinate controlled blocks execute in new
threads. For example and referring to FIG. 22, hl 2130
executes in the same thread as the control initiator 2120
(Function-Call Generator) and h2 2140 executes in a new
thread labeled, Th1 2230. One advantage of having h1 2130
run in the same thread of execution as the main model is that
fewer resources will be used while still ensuring that both h1
2130 and h2 2140 do run in parallel.

[0129] Threading may introduce a new constraint on data
signals, such as the need to ensure deterministic execution.
For example and considering FIG. 23, model 2300 may rep-
resent an engine controller. In model 2300 there are three
analog-to-digital (A/D) converters. The Engine On A/D con-
verter 2302 detects when the engine is to be controlled to the
desired speed as provided to model 2300 via the Desired
Engine Speed A/D converter 2306. The Engine Speed A/D
converter 2304 provides the current engine speed. The chart
block 2308 is responsible for running either the init Function-
Call Subsystem 2310 or the subgraph defined by the three
function call branch blocks 2329, 2331, and 2332, the Func-
tion-Call Subsystems, f1 2312, f2 2314, £3 2316, and {4 2318
and the sync block 2320 (or more formally a data synchroni-
zation block). This subgraph is responsible for the “running”
state of the engine where it computes the desired throttle
position provided to the Engine Throttle Position D/A con-
verter 2324 through the Merge block 2322. The init Function-
Call Subsystem 2310 sets the desired throttle position when
the system starts up by providing the value to the Engine
Throttle Position D/A 2324 converter through the Merge
block 2322. The Merge block 2322 outputs the merged signal
of init_u or run_u. In FIG. 23 did not require a synchroniza-
tion block between 1 2312 and {3 2316 which is running in a
different thread because fl1 will have finished execution
before 3 starts running. This synchronization is achieved by
2329 which executes its bottom branch f1 2312 prior to
executing is right-most branch 2331. It should also be clear to
one skilled in the art that an incorrectly placed data synchro-
nization block would result in an error. For example, if a data
synchronization block were placed on the Inl signal feeding
2316, then during model analysis an error would be produced.
[0130] InFIG. 23, the Function-Call Subsystem {3 2316 is
executing in a child thread (th2) 2326 and thus the Function-
Call Subsystems {2 2314 and f3 2316 run in parallel. In the
embodiment of FIG. 23, parallel execution increases the pro-
cessing speed of the system for the automobile. The sync
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block 2320 is a Function-Call Synchronization (or more gen-
erally a Control Signal Synchronization) block that is used to
synchronize the child thread containing {3 with the main
thread 2328. The Function-Call Subsystem f4 2318, cannot
start processing until both £2 2134 and 3 2316 is complete. If
Function-Call Subsystem {2 2314 finishes before {3 2316 is
complete, then the sync block 2320 will cause the main thread
2328 to wait for the child thread 2330 of £2 2314. Once the
child thread is complete, the right-most Function-Call Split
block 2332 will invoke the Function-Call Subsystem f4 2318.
[0131] The contents of the chart block 2308 are shown in
FIG. 24. In FIG. 24, {_init function call is invoked at start up.
Then the chart enters the waiting state 2410. When the
“Engine On” (A/D) converter 2302 produces a 1, the chart
will enter the running state 2420. In the running state 2420,
the chart periodically executes the subgraph of FIG. 23 at a
discrete-time (sampled) rate.

[0132] When FIG. 23 is examined, e.g., by a user or pro-
grammatically, it may be determined that efficiency can be
improved by using function-call subsystems to control when
the Engine Speed, Desired Engine Speed and Engine Throttle
Position blocks run. In FIG. 23, these will run when the chart
is in the waiting state. FIG. 25 illustrates an embodiment that
can provide improved performance with respect to the
embodiment of FIG. 23 by using function-call subsystems to
control aspect of the system.

[0133] InFIG.25, the two source A/D converters of FIG. 24
(2304, 2306) have been placed into Function-Call Subsystem
f0 2510 whose contents are show in FIG. 26. Referring to
FIG. 25, The chart 2308, when in the running state, runs the f0
2510 first then runs f1 2312 to prefilter the input, then creates
child thread, th2 2326 to run f3 2316 and at the same time runs
2 2314 in the main thread. Then 4 2318 runs after £2 2314
finishes and after f3 2316 finishes. The sync block 2320
ensures 3 2316 finishes. The Merge block 2322 merges the
output of the init subsystem 2310 with the output of {4 2318.
By definition the merge block 2322 is a virtual block meaning
that it doesn’t have any run-time behavior. Merge block 2322
ensures Outl from the init subsystem 2310 and Outl of f4
2318 occupy the same memory location. Because init 2310
and 14 2318 never execute on the same time step, the output of
the Merge block 2322 represents the output of init 2310 or f4
2318 that ran last. The Merge block 2322 output is provided
to the Function-Call Subsystem Engine Throttle Position
block 2530. FIG. 27 illustrates the contents of block 2530.
The join block 2540 is used to ensure block 2530 will only
execute after init 2310 runs or after {4 2318 runs thus ensuring
the D/A converter of FIG. 27 is only run when its input signal
value may have changed.

[0134] Employing a Function-Call Split block operating in
parallel mode is one way in which to spawn child threads of
execution. The general concept may be referred to as spawn
control signal initiator. One realization of the spawn control
signal initiator is via the block illustrated in FIG. 28. FIG. 28
represents a model of a portion of an automotive engine (the
plant). In FIG. 28, the plant may be modeled using time-based
block diagram semantics such as continuous-time dynamics,
hybrid (continuous+one or more discrete rates) dynamics, or
discrete dynamics (one or more discrete rates). To improve
execution speed, the plant is broken up into two sections and
supporting blocks for those sections as shown in the figure.
[0135] InFIG. 28, the signals coming from the Inl and In2
Inport blocks 2810 and 2820, respectively, are in the main
thread. The Spawn block 2805 creates a new thread (th) 2807.
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The section 1 subsystem 2820 contains blocks that transform
the Inl signal into an output signal which is provided to a
thread synchronization block 2830, sync. After the main
thread starts executing the child thread, the main thread
immediately continues to execute the subsystem defined by
section 2 2825 this subsystem transforms the In2 signals and
provides them to the Out2 block 2840.

[0136] Ifsection 2 completes before section 1 is done, then
the sync block 2830 will wait for section 1 2820 to complete.
This ensures that both Outl 2835 and Out2 2840 are in the
main thread. The implementation of the embodiment of FIG.
28 requires that the modeling environment produce a sorted
list consisting having the following ordering: Action Spawn,
Section 1, Section 2, and Sync. The requirements of the
arrangement of FIG. 28 are that the sync block be placed as
late as possible and that the Action spawn blocks 2805 be
placed as early as possible. One means by which to achieve
this is in the graph that is sorted, in the initial per-sort list,
place the Action Spawn blocks 2805 first and the Sync blocks
2830 last. An alternative implementation for the sync block
2830 would be to have the users explicitly draw a dependency
signal from the output of section 2 2825 to the input of the
sync block 2830. This signal would visually show the execu-
tion dependency and eliminate the need to explicitly pre-sort
sync blocks last before sorting the graph defined by the
blocks.

[0137] If the Spawn block were not present, the model in
FIG. 28 would produce an error when the model is analyzed
by the simulation/execution engine.

[0138] In addition, to having the Synchronization block
synchronize threads, the Synchronization block may also
include a timeout threshold, wherein if the subgraph does not
complete execution before the threshold is reached an error is
detected. The error condition may be to stop execution and
report an error or the spawn block can produce an error signal
that is used by other blocks to programmatically take correc-
tive action, thus ensuring the model continues to execute.
[0139] Explicit execution control description thus far has
primarily focused on time-based graphical models such as the
block diagrams found within Simulink. Explicit execution
control can apply to many different graphical modeling envi-
ronments, including, but not necessarily limited to, discrete
event such as the models found within SimEvents and data
flow modeling environments. One difference between data
flow and time-based graphical models is that in most data flow
modeling environments, the execution of blocks is defined by
data availability rather than a time hit as in time-based sys-
tems. In a data flow model, control signals can be used to
execute subgraphs and within the subgraphs data dependen-
cies are honored using the capabilities and techniques
described herein. In addition, the other capabilities including
explicit signatures for components via Control Signal Proxy
and Control Signal Proxy Adaptor blocks, threading, and data
sync block, etc. are suitable for such environments.

[0140] FIG. 29 illustrates exemplary processing that can be
performed using embodiments of the invention. Referring to
FIG. 29, a time-based graphical model may be provided and
may consist of a set of blocks connected by data signal lines
(act 2905). Each block defines a dynamic system that is
characterized by a set of equations defined by system theory
including but not limited to initialization, pre_execute, out-
put, update, derivative, termination run-time functions. The
model may be converted into an executable form to analyze
the model or compile it (act 2910). Model compilation con-
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sists of sorting the blocks according to data dependencies. In
an embodiment, sorting may be performed using a variant of
depth first sorting that handles strongly connected compo-
nents. Using the compiled information, the model may be
linked via a link phase that generates block function execu-
tion lists from the sorted-list, one for each block run-time
function of a given rate (sample time) (act 2915).

[0141] Before running a simulation or generating code, the
initialize functions are called to setup the system state. In an
interpretive simulation, the block run-time functions are
executed in a simulation loop using the block function execu-
tion lists, where the output functions are executed first, and
then the update functions for discrete states are executed (act
2920). Finally integration of the continuous states is com-
puted by integrating the derivatives and time is advanced.

[0142] The addition of control signals to a time-based
graphical model is handled during compilation by ignoring
these signals for the block sorting based on data dependen-
cies. Each control signal initiator is provided with objects it
can use to run functions on the connected subgraph. For
example a Stateflow chart with a function-call control signal
output may be connected to a Function-Call Split block. The
chart will be provided with an object that can be used to run
the various runtime methods associated with the control sig-
nal. If the Function-Call Split block is connected to a Func-
tion-Call Subsystems, then the object will aggregate the run-
time methods of both subsystems.

[0143] In stead of using an interpretive simulation, gener-
ated code can by produced from the graphical model (act
2925). Code generation is performed by using the sorted list
and the results of initialization to create an intermediate rep-
resentation that is transformed to generated code such as C or
C++. Alternatively, hardware can be synthesized from the
model by producing code that conforms to a hardware
description language HDL such as Verilog.

[0144] FIG. 30 illustrates an exemplary computer architec-
ture that can be used to implement computer 3000. FI1G. 30 is
an exemplary diagram of an entity corresponding to computer
3000. As illustrated, the entity may include a bus 3010, pro-
cessing logic 3020, a main memory 3030, a read-only
memory (ROM) 3040, a storage device 3050, an input device
3060, an output device 3070, and/or a communication inter-
face 3080. Bus 3010 may include a path that permits commu-
nication among the components of the entity.

[0145] Processing logic 3020 may include a processor,
microprocessor, or other types of processing logic that may
interpret and execute instructions. In one implementation,
processing logic 3020 may include a single core processor or
a multi-core processor. In another implementation, process-
ing logic 3020 may include a single processing device or a
group of processing devices, such as a processor cluster or
computing grid. In still another implementation, processing
logic 3020 may include multiple processors that may be local
or remote with respect each other, and may use one or more
threads while processing.

[0146] Main memory 3030 may include a random access
memory (RAM) or another type of dynamic storage device
that may store information and instructions for execution by
processing logic 3020. ROM 3040 may include a ROM
device or another type of static storage device that may store
static information and/or instructions for use by processing
logic 3020. Storage device 3050 may include a magnetic,
solid state and/or optical recording medium and its corre-
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sponding drive, or another type of static storage device that
may store static information and/or instructions for use by
processing logic 3020.

[0147] Inputdevice 3060 may include logic that permits an
operator to input information to the entity, such as a keyboard,
a mouse, a pen, a touchpad, an accelerometer, a microphone,
voice recognition, camera, neural interface, biometric mecha-
nisms, etc. Output device 3070 may include a mechanism that
outputs information to the operator, including a display, a
printer, a speaker, etc. Communication interface 3080 may
include any transceiver-like logic that enables the entity to
communicate with other devices and/or systems. For
example, communication interface 3080 may include mecha-
nisms for communicating with another device or system via a
network.

[0148] The entity depicted in FIG. 30 may perform certain
operations in response to processing logic 3020 executing
software instructions contained in a computer-readable
medium, such as main memory 3030. A computer-readable
medium may be defined as a physical or logical memory
device. The software instructions may be read into main
memory 3030 from another computer-readable storage
medium, such as storage device 3050, or from another device
via communication interface 3080. The software instructions
contained in main memory 3030 may cause processing logic
3020 to perform processes described herein when the soft-
ware instructions are executed on processing logic. Alterna-
tively, hardwired circuitry may be used in place of or in
combination with software instructions to implement pro-
cesses described herein. Thus, implementations described
herein are not limited to any specific combination of hardware
circuitry and software.

[0149] Although FIG. 30 shows exemplary components of
the entity, in other implementations, the entity may contain
fewer, different, or additional components than depicted in
FIG. 30. In still other implementations, one or more compo-
nents of the entity may perform one or more tasks described
as being performed by one or more other components of the
entity.

[0150] One or more embodiments of the invention may be
implemented in a distributed environment. FIG. 31 illustrates
an example of a distributed environment 3100 that may be
configured to implement one or more embodiments of the
invention. Referring to FIG. 31, environment 3100 may con-
tain various entities including computing device 3000, target
environment 3110, service provider 3120, cluster 3130, and
network 3140. Note that the distributed environment 3100 is
just one example of a distributed environment that may be
used with embodiments of the invention. Other distributed
environments that may be used with embodiments of the
invention may contain more entities, fewer entities, entities in
arrangements that differ from the arrangement illustrated in
FIG. 31. Moreover, the distributed environments may be con-
figured to implement various cloud computing frameworks.

[0151] Details of computing device 3000 were described
above with respect to FIG. 30. In distributed environment
3100, computing device 3000 may be configured to, among
other things, exchange information (e.g., data) with other
entities on network 3140 (e.g., target environment 3110, ser-
vice provider 3120, and cluster 3130). Computing device
3000 may interface with the network 3140 via communica-
tion interface 180.

[0152] Target environment 3110 may be configured to
execute and/or interpret a compiled version of a model, which
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may be generated in or otherwise available to the distributed
environment 3100. The network 3140 may include a commu-
nication network capable of exchanging information between
the entities in the network 3140. The network 3140 may
include digital and/or analog aspects. The information may
include machine-readable information having a format that
may be adapted for use, for example, in the network 3140
and/or with one or more entities in the network 3140. For
example, the information may be encapsulated in one or more
packets that may be used to transfer the information through
the network 3140.

[0153] Information may be exchanged between entities
using various network protocols, such as, but not limited to,
the Internet Protocol (IP), Asynchronous Transfer Mode
(ATM), Synchronous Optical Network (SONET), the User
Datagram Protocol (UDP), Transmission Control Protocol
(TCP), Institute of Electrical and Electronics Engineers
(IEEE) 802.11, etc.

[0154] The network 3140 may include various network
devices, such as gateways, routers, switches, firewalls, serv-
ers, repeaters, address translators, etc. Portions of the network
3140 may be wired (e.g., using wired conductors, optical
fibers, etc.) and/or wireless (e.g., using free-space optical
(FSO), radio frequency (RF), acoustic transmission paths,
etc.). Portions of network 3140 may include a substantially
open public network, such as the Internet. Portions of network
3140 may include a more restricted network, such as a private
corporate network or virtual private network (VPN).

[0155] It should be noted that implementations of networks
and/or devices operating on networks described herein are not
limited with regards to, for example, information carried by
the networks, protocols used in the networks, and/or the
architecture/configuration of the networks.

[0156] Service provider 3120 may include logic that makes
a service available to another entity in the distributed envi-
ronment 3100. Service provider 3120 may also include a
server operated by, for example, an individual, a corporation,
an educational institution, a government agency, and so on,
that provides one or more services to a destination, such as
computing device 3000. The services may include software
containing computer-executable instructions that implement
one or more embodiments of the invention or portions
thereof, and may be executed, in whole or in part, by (1) a
destination, (2) the service provider 3120 on behalf of the
destination, or (3) some combination thereof.

[0157] For example, in an embodiment, service provider
3120 may provide one or more subscription-based services
that may be available to various customers. The services may
be accessed by a customer via network 3140. The customer
may access the services using a computer system, such as
computing device 3000. The services may include services
that implement one or more embodiments of the invention or
portions thereof. Service provider 3120 may limit access to
certain services based on, e.g., a customer service agreement
between the customer and service provider 3120.

[0158] The service agreement may allow the customer to
access the services that may allow the customer to build,
execute, and/or analyze a model, such as model 300, as
described above. The service agreement may include other
types of arrangements, such as certain fee-based arrange-
ments or restricted access arrangements. For example, a cus-
tomer may pay a fee which provides the customer unlimited
access to a given package of services for a given time period
(e.g., per minute, hourly, daily, monthly, yearly, etc.). For
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services not included in the package, the customer may have
to pay an additional fee in order to access the services. Still
other arrangements may be resource-usage based. For
example, the customer may be assessed a fee based on an
amount of computing resources and/or network bandwidth
used.

[0159] Cluster 3130 may include a number of units of
execution (UEs) 3132 that may perform processing of one or
more embodiments of the invention or portions thereof on
behalf of computing device 3000 and/or another entity, such
as service provider 3120. The UEs 3132 may reside on a
single device or chip or on multiple devices or chips. For
example, the UEs 3132 may be implemented in a single ASIC
or in multiple ASICs. Likewise, the UEs 3132 may be imple-
mented in a single computer system or multiple computer
systems. Other examples of UEs 3132 may include FPGAs,
CPLDs, ASIPs, processors, multiprocessor systems-on-chip
(MPSoCs), graphic processing units, microprocessors, etc.
The UEs 3132 may be configured to perform operations on
behalf of another entity.

[0160] Exemplary embodiments may include or may be
implemented in a technical computing environment that
includes hardware and/or hardware-software based logic.
The logic may provide a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc., more efficiently than if the tasks were per-
formed in another type of computing environment, such as an
environment that required the user to develop code in a con-
ventional programming language, such as C++, C, Fortran,
Pascal, etc. In one implementation, the technical computing
environment may include a dynamically typed language that
can be used to express problems and/or solutions in math-
ematical notations familiar to those of skill in the relevant
arts. For example, the technical computing environment may
use an array as a basic element, where the array may not
require dimensioning. These arrays may be used to support
array programming in that operations can apply to an entire
set of values, such as values in an array. Array programming
may allow array based operations to be treated as a high-level
programming technique or model that lets a programmer
think and operate on whole aggregations of data without
having to resort to explicit loops of individual non-array, i.e.,
scalar operations.

[0161] The technical computing environment may further
be adapted to perform matrix and/or vector formulations that
can be used for data analysis, data visualization, application
development, simulation, modeling, algorithm development,
etc. These matrix and/or vector formulations may be used in
many areas, such as statistics, finance, image processing,
signal processing, control design, life sciences, education,
discrete event analysis and/or design, state based analysis
and/or design, etc.

[0162] The technical computing environment may further
provide mathematical functions and/or graphical tools (e.g.,
for creating plots, surfaces, images, volumetric representa-
tions, etc.). In one implementation, the technical computing
environment may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, optimization, etc.).
In another implementation, the technical computing environ-
ment may provide these functions as block sets (e.g., an
optimization block set). In still another implementation, the
technical computing environment may provide these func-
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tions in another way, such as via a library, etc. The technical
computing environment may be implemented as a text based
environment, a graphically based environment, or another
type of environment, such as a hybrid environment that is both
text and graphically based.

[0163] For example, a text-based embodiment may imple-
ment the technical computing environment using one or more
text-based products. For example, a text-based technical
computing environment (TCE), may be implemented using
products such as, but not limited to, MATLAB® by The
MathWorks, Inc.; Octave; Python; Comsol Script; MATRIXx
from National Instruments; Mathematica from Wolfram
Research, Inc.; Mathcad from Mathsoft Engineering & Edu-
cation Inc.; Maple from Maplesoft; Extend from Imagine
That Inc.; Scilab from The French Institution for Research in
Computer Science and Control (INRIA); Virtuoso from
Cadence; or Modelica or Dymola from Dynasim. The text-
based TCE may support one or more commands that support
remote processing using one or more units of execution or
other types of remote processing devices.

[0164] A graphically-based embodiment may implement
the technical computing environment in a graphically-based
technical computing environment using products such as, but
not limited to, Simulink®, Stateflow®, SimEvents™, etc., by
The MathWorks, Inc.; VisSim by Visual Solutions; Lab-
View® by National Instruments; Dymola by Dynasim; Soft-
WIRE by Measurement Computing; WiT by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhopsody or Tau from
Telelogic; Ptolemy from the University of California at Ber-
keley; or aspects of a Unified Modeling Language (UML) or
SysML environment. The graphically-based TCE may sup-
port remote processing using one or more units of execution
orother types of remote processing devices. Implementations
may provide a modeling environment that allows states to be
implicitly reset while a model executes.

[0165] The foregoing description of exemplary embodi-
ments of the invention provides illustration and description,
but is not intended to be exhaustive or to limit the invention to
the precise form disclosed. Modifications and variations are
possible in light of the above teachings or may be acquired
from practice of the invention. For example, while a series of
acts has been described with regard to FIG. 29, the order of the
acts may be modified in other implementations consistent
with the principles of the invention. Further, non-dependent
acts may be performed in parallel.

[0166] In addition, implementations consistent with prin-
ciples of the invention can be implemented using devices and
configurations other than those illustrated in the figures and
described in the specification without departing from the
spirit of the invention. Devices and/or components may be
added and/or removed from the implementations of FIGS. 30
and 31 depending on specific deployments and/or applica-
tions. Further, disclosed implementations may not be limited
to any specific combination of hardware. Further, certain
portions of the invention may be implemented as “logic” that
performs one or more functions. This logic may include hard-
ware, such as hardwired logic, an application-specific inte-
grated circuit, a field programmable gate array, a micropro-
cessor, software, or a combination of hardware and software.
[0167] No element, act, or instruction used in the descrip-
tion of the invention should be construed as critical or essen-
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tial to the invention unless explicitly described as such. Also,
as used herein, the article “a” is intended to include one or
more items. Where only one item is intended, the term “one”
or similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

[0168] Headings and sub-headings used herein are to aid
the reader by dividing the specification into subsections.
These headings and sub-headings are not to be construed as
limiting the scope of the invention or as defining the inven-
tion.

[0169] The scope of the invention is defined by the claims
and their equivalents.

What is claimed is:

1. A computer-implemented method in a graphical model-
ing environment, the method comprising:

providing a control initiator, where the control initiator

provides a control signal to a control signal splitter;
providing a first subgraph in the modeling environment,
where:
the first subgraph includes one or more blocks, and
the first subgraph is connected to the control signal split-
ter;

providing a second subgraph in the modeling environment,

where:

the second subgraph includes one or more blocks, and

the second subgraph is connected to the control signal
splitter;

executing the first subgraph on a first thread to produce a

first result when the first subgraph receives the control
signal from the control signal splitter; and

executing the second subgraph on a second thread to pro-

duce a second result when the second subgraph receives
the control signal from the control signal splitter.

2. The method of claim 1, further comprising:

providing a data synchronization block; and

maintaining data integrity between the first thread and the

second thread using the data synchronization block.

3. The method of claim 1, where the first thread is a calling
thread and the second thread is a new thread called by the
calling thread.

4. The method of claim 1, where the second thread is the
calling thread and the first thread is a new thread called by the
calling thread.

5. The method of claim 1, further comprising:

providing a calling thread.

6. The method of claim 5, further comprising:

calling the first thread using the calling thread; and

calling the second thread using the calling thread.

7. The method of claim 1, further comprising a second
control signal splitter, the second control signal splitter con-
nected to the control signal splitter.

8. The method of claim 1, where the control signal splitter
splits the control signal into more than two output control
signals.

9. The method of claim 1, where the control initiator is a
state chart.

10. The method of claim 1, where the model is a time-based
model, a data flow model, or an event-based model.

11. The method of claim 1, where the control signal is a
function-call or an action signal.

12. The method of claim 1, where the model includes one
or more data signals.
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13. A computer-implemented method in a graphical mod-
eling environment, the method comprising:
providing a first control initiator, where the first control
initiator is connected to a first subgraph by a first control
signal;
executing the first subgraph in a first thread;
providing a second control initiator, where the second con-
trol initiator is connected to a second subgraph by a
second control signal;
executing the second subgraph in a second thread; and
interacting with a data synchronization block, where:
the interacting allows a result from the first subgraph to
be used by the second subgraph when the second
subgraph is executing, and

the data synchronization block waits for the first thread
to finish executing before allowing the first result to be
used by the second subgraph when the second sub-
graph is executing.

14. The method of claim 13, where the graphical modeling
environment includes a graphical representation that repre-
sents the first control initiator and the second control initiator.

15. The method of claim 14, where the graphical represen-
tation is a block.

16. The method of claim 13, where graphical modeling
environment further includes a splitter block, where the split-
ter block connects the first control initiator to the first sub-
graph and the second control initiator to the second subgraph.

17. The method of claim 13, where the synchronization
block includes a timeout threshold.

18. The method of claim 17, further comprising:

producing an error when the timeout threshold is exceeded.

19. The method of claim 13, where the control initiator is a
state chart.

20. The method of claim 13, where the model is a time-
based model, a data flow model, or an event-based model.

21. The method of claim 13, where the control signal is a
function-call or an action signal.

22. The method of claim 13, where the model includes one
or more data signals.

23. A computer-implemented method in a graphical mod-
eling environment, the method comprising:

providing a spawn control initiator, the spawn control ini-
tiator executing on a main thread in the modeling envi-
ronment;

providing a subgraph in the modeling environment, where:
the subgraph includes one or more blocks, and
the subgraph is connected to the spawn control initiator

via a control signal;

directly providing inputs to the subgraph; and

executing the subgraph on a separate thread, the separate
thread differing from the main thread, the executing
producing a result.

24. The method of claim 23, where the modeling environ-

ment further includes:

a synchronization block, connected to the output of the
subgraph the synchronization block waiting for the
separate thread to finish executing before allowing the
result to be used by the main thread.

25. The method of claim 23, where the modeling environ-
ment produces an error when the result is used in the main
thread without first passing through a synchronization block.

26. The method of claim 25, where the synchronization
block is the last block executed on the main thread.
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27. The method of claim 25, where the synchronization
block includes additional inputs, the additional inputs depict-
ing when the result is needed by the main thread.

28. The method of claim 25, where the synchronization
block includes a timeout threshold.

29. The method of claim 28, further comprising:

producing an error when the timeout threshold is exceeded.

30. The method of claim 23, where the control initiator is a
state chart.

31. The method of claim 23, where the model is a time-
based model, a data flow model, or an event-based model.

32. The method of claim 23, where the control signal is a
function-call or an action signal.

33. The method of claim 23, where the model includes one
or more data signals.

34. A computer-readable medium holding executable
instructions that when executed on a processor control sub-
graph execution in a model, the medium holding one or more
instructions for:

providing a control initiator, where the control initiator

provides a control signal to a control signal splitter;
providing a first subgraph in the modeling environment,

where:

the first subgraph includes one or more blocks, and

the first subgraph is connected to the control signal splitter;

providing a second subgraph in the modeling environment,

where:

the second subgraph includes one or more blocks, and

the second subgraph is connected to the control signal
splitter;

executing the first subgraph on a first thread to produce a

first result when the first subgraph receives the control
signal from the control signal splitter; and

executing the second subgraph on a second thread to pro-

duce a second result when the second subgraph receives
the control signal from the control signal splitter.
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35. A computer-readable medium holding executable
instructions that when executed on a processor control sub-
graph execution in a model, the medium holding one or more
instructions for:

providing a first control initiator, where the first control

initiator is connected to a first subgraph by a first control
signal;

executing the first subgraph in a first thread;

providing a second control initiator, where the second con-

trol initiator is connected to a second subgraph by a
second control signal;

executing the second subgraph in a second thread; and

interacting with a data synchronization block, where:

the interacting allows a result from the first subgraph to
be used by the second subgraph when the second
subgraph is executing, and

the data synchronization block waits for the first thread
to finish executing before allowing the first result to be
used by the second subgraph when the second sub-
graph is executing.

36. A computer-readable medium holding executable
instructions that when executed on a processor control execu-
tion of a subgraph in a model, the medium holding one or
more instructions for:

providing a spawn control initiator, the spawn control ini-

tiator executing on a main thread in the modeling envi-
ronment;

providing a subgraph in the modeling environment, where:

the subgraph includes one or more blocks, and
the subgraph is connected to the spawn control initiator
via a control signal;

directly providing inputs to the subgraph; and

executing the subgraph on a separate thread, the separate

thread differing from the main thread, the executing
producing a result.



