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(57) ABSTRACT 

Exemplary embodiments Support multi-threaded subgraph 
execution control within a graphical modeling or graphical 
programming environment. In an embodiment, a subgraph 
may be identified as a subset of blocks within a graphical 
model, or graphical program, or both. A subgraph initiator 
may explicitly execute the Subgraph while maintaining data 
dependencies within the Subgraph. Explicit signatures may 
be defined for the subgraph initiator and the subgraph either 
graphically or textually. Execution control may be branched 
wherein the data dependencies within the Subgraph are main 
tained. Execution control may be joined together wherein the 
data dependencies within the Subgraph are maintained. 
Exemplary embodiments may allow Subgraphs to execute on 
different threads within a graphical modeling or program 
ming environment. 
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MULT-THREADED SUBGRAPH 
EXECUTION CONTROL IN A GRAPHICAL 

MODELING ENVIRONMENT 

RELATED APPLICATIONS 

0001. This application claims the benefit of U.S. Provi 
sional Patent Application Ser. No. 61/121,747 filed Dec. 11, 
2008, the contents of which are incorporated by reference 
herein in their entirety. This application is related to applica 
tion Ser. No. entitled “Subgraph Execution Control 
in a Graphical Modeling Environment, filed Dec. 9, 2009 

BACKGROUND INFORMATION 

0002 Various classes of graphical models or graphical 
programming describe computations that can be performed 
on application specific computational hardware. Such as a 
computer, microcontroller, field programmable gate array 
(FPGA), and custom hardware. Examples of graphical mod 
els can include time-based block diagrams such as those 
found within the Simulink(R) environment from the Math 
Works, Inc. Natick Ma, discrete-event diagrams such as those 
found within the SimEvents(R) environment from the Math 
Works, Inc. and data-flow diagrams. A common characteris 
tic among these various forms of graphical models is that they 
define semantics on how to execute the diagram. 
0003. Historically, engineers and scientists have utilized 
graphical models in numerous Scientific areas such as feed 
back control theory and signal processing, to study, design, 
debug, and refine dynamic systems. Dynamic systems are 
systems whose behaviors change over time. Dynamic sys 
tems may be representative of many real-world Systems. Such 
as control systems. Graphical modeling has become common 
technique for designing models of dynamic systems because 
graphical modeling Software packages provide Sophisticated 
software platforms with a rich suite of support tools that 
makes the analysis and design of dynamic systems efficient, 
methodical, and cost-effective. 
0004 Graphical modeling environments can include one 
or more graphical models. These graphical models can be 
described by a graph consisting of nodes (often called blocks) 
connected by edges (often called lines or signals). The edges 
form dependencies between the nodes. The nodes generally 
describe computations, though it is also possible for the edges 
to have semantic meaning. The semantic behavior of the 
graphical model is different in each domain. For example, in 
time-based block diagrams edges represent signal quantities 
that vary with time (e.g., data signals) and the nodes are 
blocks representing dynamic systems (e.g., components of a 
controller). The signals may form a time-based dependency 
between blocks. In contrast, the semantic behavior in a dis 
crete-event system may differ from the semantic behavior of 
the time-based model. For example, in a discrete-event sys 
tem, the edges generally represent entity paths by which 
entities can travel from node to node. Each node in a discrete 
event system may represent an action to perform on the entity. 
In a data flow diagram, nodes may represent operations. The 
edges may represent values and the nodes may be executed 
based upon data availability. 
0005. In the above classes of graphical models, it is pos 
sible to provide explicit execution control via a control edge 
connecting a control initiator with a node (or nodes) within a 
model. The controlled nodes are referred to as a subgraph. For 
example, Simulink provides function-call and action signals 
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which are used to explicitly control the execution of sub 
systems or other models. In this existing system, function-call 
and action signals take precedence over the data signals. 
Existing techniques may provide desired operating character 
istics for graphical models in Some situations; however, in 
other situations models may not operate as desired. For 
example, data dependencies may be ignored when explicit 
execution control is used in conventional modeling environ 
mentS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 The accompanying drawings, which are incorpo 
rated in and constitute a part of this specification, illustrate 
one or more embodiments of the invention and, together with 
the description, explain the invention. In the drawings, 
0007 FIG. 1A illustrates a prior art graphical model that 
employs a conventional technique for explicitly controlling 
execution of Subgraphs in a graphical model. 
0008 FIG.1B illustrates a prior art graphical model that 
employs a conventional technique for controlling execution 
of a portion of a model; 
0009 FIG. 2 illustrates an embodiment containing a 
graphical model that includes a Function-Call Split block, 
which creates a subgraph that is explicitly controlled while 
honoring data dependencies; 
0010 FIGS. 3A-3C illustrate embodiments containing 
graphical models that include a Function-Call Split block, 
which creates a subgraph that is explicitly controlled while 
honoring data dependencies where the Subgraph has a loop 
that is broken by latching an input of a function-call Sub 
system; 
0011 FIG. 4 illustrates the model of FIG. 3A where 
there is no need to break a loop within an explicitly controlled 
Subgraph; 
0012 FIG. 5 illustrates an embodiment where a data 
dependency violation exists within an explicitly controlled 
Subgraph; 
0013 FIG. 6 illustrates a user interface for displaying 
information about an error in the model of FIG. 5; 
0014 FIG. 7 illustrates an embodiment that performs 
Supervisory control using explicit subgraph control of two 
separate Subgraphs running at different rates; 
0015 FIG. 8 illustrates an embodiment that includes 
Function-Call Split blocks that can be configured to invoke a 
Subgraph according to data dependencies and the ordering of 
the blocks within the subgraph is annotated on the blocks after 
analyzing the model; 
0016 FIG. 9 illustrates an embodiment that includes a 
Function-Call Split block where the ordering of the outgoing 
function-calls is annotated using numerical identifiers; 
0017 FIG. 10 illustrates a graphical model that employs 
a conventional technique for combining function-call control 
signals: 
0018 FIG. 11 illustrates an embodiment that includes a 
Function-Call Join block to predictably provide multiple con 
trol initiators to a subgraph; 
0019 FIG. 12 illustrates an embodiment that includes a 
Function-Call Split block that creates a subgraph which hon 
ors data dependencies and within the Subgraph a Function 
Call Join block is used to predictably provide multiple control 
initiators to a Subgraph; 
0020 FIG. 13 illustrates a conventional technique that 
uses external function invocations; 
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0021 FIG. 14 illustrates a conventional technique that 
uses external function invocations with an implicit input to a 
function-call Subsystem; 
0022 FIG. 15 illustrates a conventional technique that 
uses external function invocations across Subsystem bound 
aries; 
0023 FIG. 16 illustrates an exemplary embodiment of 
the invention that provides the ability to create components 
with control signal (e.g. function-call or action signal) inputs 
and outputs of the components; 
0024 FIG. 17 illustrates an exemplary technique for 
allowing a user to create and/or edit the signatures of a func 
tion-call Subsystem signals; 
0.025 FIG. 18 illustrates a conventional model that uses 
conventional implementations of function call Subsystems; 
0026 FIG. 19A illustrates an embodiment that uses 
function-call group and ungroup blocks to enable componen 
tization of systems with a control signal crossing the systems 
boundaries; 
0027 FIG. 19B illustrates an embodiment that uses 
function-call group and ungroup blocks to enable componen 
tization of systems with multiple control signals crossing the 
systems boundaries; 
0028 FIGS. 19C-19E illustrate embodiments that fur 
ther provide examples of componentization in graphical 
models consistent with principles of the invention; 
0029 FIG. 20A illustrates an embodiment of a Func 
tion-Call Group block dialog: 
0030 FIG. 20B illustrates an embodiment of a Func 
tion-Call Group block dialog with Has pre-execution blocks 
selected; 
0031 FIG. 21—illustrates an embodiment of a Function 
Call Split block that invokes Function-Call Subsystems in 
parallel on new threads; 
0032 FIG. 22 illustrates an embodiment of a Function 
Call Split block that invokes one of the Function-Call Sub 
systems on a new thread; 
0033 FIG. 23 illustrates an embodiment of a subgraphs 
that are explicitly controlled while honoring data dependen 
cies and the subgraph consists of Function-Call Split block 
that invokes one of the Function-Call subsystems in another 
thread, where the another thread is synchronized with the 
main thread via a Function-Call Sync block; 
0034 FIG.24 illustrates an embodiment of a chart mak 
ing a function-call; 
0035 FIG. 25 illustrates an embodiment that includes 
Subgraphs that are explicitly controlled while honoring data 
dependencies and where the Subgraph consists of a Function 
Call Split block that invokes one of the Function-Call sub 
systems in another thread, where the thread is then synchro 
nized with the main thread via a Function-Call Sync block; 
0.036 FIG. 26 illustrates an embodiment of a function 
call subsystem from FIG.25 containing source blocks that are 
executed when needed; 
0037 FIG. 27 illustrates an embodiment of a function 
call subsystem from FIG. 25 containing sink blocks that are 
executed when needed; 
0038 FIG. 28 illustrates an embodiment of a continu 
ous-time system that uses a spawn block to speed up execu 
tion by running transformations in parallel; 
0039 FIG. 29 illustrates an exemplary flow chart illus 
trating exemplary processing for implementing an embodi 
ment of the invention; 
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0040 FIG.30 illustrates an exemplary computing archi 
tecture for implementing an embodiment of the invention; 
and 
0041 FIG. 31 illustrates an exemplary distributed pro 
cessing architecture for implementing an embodiment of the 
invention. 

DETAILED DESCRIPTION 

0042 Exemplary embodiments are discussed in connec 
tion with graphical models created and executed in the Sim 
ulink environment (hereinafter “Simulink”). Current or past 
versions of Simulink will be used to discuss conventional 
(prior art) techniques for providing execution control over 
portions of a graphical model. For example, Simulink 7.3 is 
one example of a conventional application that will be used to 
present existing techniques. A Simulink-based representation 
will be used for discussing novel techniques provided by 
aspects of the invention that provide explicit execution con 
trol over portions of a graphical model. 
0043 Control signals such as function-call or action sig 
nals found within Simulink's time-based block diagram envi 
ronment are used to provide explicit execution control of a 
portion of a model. Explicitly controlled portions of a model 
may be referred to as subgraphs. Within a model, a subgraph 
is a subset of the blocks and the lines connected to the subset 
of blocks. With conventional modeling techniques, these con 
trol signals take precedence over data signals. FIG. 1A illus 
trates a graphical model that employs a conventional tech 
nique for explicitly controlling execution of subgraphs in a 
graphical model. The model of FIG. 1A was created using 
Simulink version 7.3 (R2009a). Model 100 represents a con 
trol system and can include components (blocks), Such as 
chart 105, init 110, merge 115, plant 120, Src 125, f 130, and 
g 135. In model 100, plant 120 is the entity being controlled 
(e.g. a car) and the other blocks in model 100 (e.g., chart 105, 
init 110, merge 115, f130, and g 135) are used to control plant 
120. In model 100, dashed lines, such as signal 140, are 
control signals, which are referred to as function-call signals 
within the Simulink 7.3 environment. 
0044. A control initiator is a block that uses a control 
signal to execute one or more destination blocks. For 
example, in Model 100 chart 105 is a control imitator, which 
can also be referred to as a function-call initiator, and is 
responsible for executing function-call Subsystems, such as 
function-call subsystems represented by f 130 and g 135. 
0045. In model 100, solid lines, such as signal 145, repre 
sent numerical time-varying quantities and can be referred to 
as data signals. Data signals may represent inputs and outputs 
to dynamic systems defined by blocks in a model. Such as 
model 100. In a time-based block diagram environment, 
blocks perform transformations on the data signals. Blocks 
not explicitly controlled by a control signal initiator. Such as 
chart 105, execute according to time-based semantics, i.e. 
execute when they have a sample hit. 
0046. In model 100, chart 105 may be a Stateflow chart 
block that contains or implements a finite-state machine 
responsible for supervisory control of blocks init 110, f130, 
and g 135. Chart 105 may run an init function-call subsystem, 
implemented via init 110, at start-up or when another condi 
tion is detected. Such as an invalid input (u)to the plant (which 
may be conveyed to chart 105 via signal 150). In model 100, 
normal run-time activities of the controller are represented by 
the function-call subsystem blocks f130 andg 135. Chart 105 
runs init 110, f130, and g 135 as defined by user-specific state 
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and control-flow logic within the State chart using the func 
tion-call control signals 140, 149, and 148. 
0047 For example, chart 105 can run the function-call 
Subsystems Zero, one, or more times on every time step of 
model 100 by sending commands via the function-call con 
trol signals 140, 149, and 148 to run the function-call sub 
systems. These commands are realized by run-time functions 
(e.g. C++ class methods) on the function-call Subsystems. 
Simulink7.3 will ensure that the output of function of src 125 
is executed prior to the output function of chart 105. On a 
given time-step chart 105 may choose to run f 130 and then 
immediately run the output and update methods of g 135. In 
this case, f 130, will see the previous value of output s2 147 
(because g’s output method has yet to be invoked).g. 135 will 
see the current value of output s1155 (because f 130 was 
previously executed). The chart 105, before invoking f 130, 
will compute signal 145, where i is an input to f130. After 
executing f130, the chart, 105 can immediately use signal, r 
160 in the user-defined chart logic to make other decisions. 
The signal, r 160, is referred to as a return-value. 
0048. As illustrated in the example of model 100, data 
dependencies implied by signals s1 155 and s2 147 are 
ignored in determining the order in which fl30 and g135 
execute—the control signal initiator blocks use the control 
signals to cause immediate execution of the subsystems f130 
and g 135. Phrased another way, the execution order of sub 
systems f 130 and g 135 are not dictated by the data signals 
connecting them but instead by the explicit control signal 
invocations of Chart 105. 
0049. The explicit control of subgraphs contrasts with 
conventional execution in a Simulink block diagram that 
follows data dependency order. Consider the example of FIG. 
1B. Referring now to FIG. 1B, the Sine Wave block 180 
always executes before the Gain block 181, and Gain block 
181 always executes before the Scope block 184. The blocks 
in FIG. 1B are said to execute in the order of their data 
dependencies. Any delays in the reading of data during execu 
tion need to be introduced explicitly as shown in FIG. 1B 
where the block Gain 1182 reads a delayed value of signal s1, 
where the delayed value of signal S1 is produced using unit 
delay block 183. 
0050. The behavior described in connection with FIG. 1B 
contrasts with the semantic defined by explicit execution 
control consistent with aspects of the invention. While the 
explicit execution control semantic is well-defined, it can 
result in unexpected behavior for users that are familiar with 
execution that is based upon data dependencies. In the case of 
explicit execution control. Some signals experience delays 
even when no explicit Delay block was introduced in the 
model. This unexpected behavior can be especially difficult to 
trace when constructing large models consisting of many 
thousands of blocks. For example, it may be difficult for a user 
to understand when a given function-call Subsystem is 
executing using current input signal values or delayed (pre 
vious value) input signal values when the user is working with 
conventional modeling environments. The phrase “data 
dependencies are not satisfied’ is used herein to indicate 
situations and/or examples where a delay may be introduced 
as a result of explicit execution control. 
0051 Chart 105 may be generally referred to as a control 

initiator. A control initiator block has one or more control 
signal outputs that are used to explicitly invoke destination 
blocks. Referring back to model 100, chart 105 has three 
control signal outputs, signal 140 to init 110, signal 149 to f 
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130, and signal 148 to g 135. These control signals are 
referred to as function-call signals. Function-call signals are 
one form of a control signal. Simulink7.3 also contains action 
signals which are control signals that come from a control 
initiator, which is either a Switch Case or If block. Concepts 
described herein can be extended to classes of signals dis 
cussed in connection with disclosed embodiments consistent 
with the principles of the invention. 
0052 While the behavior of Simulink 7.3 and other con 
ventional types of graphical environments is well-defined, 
there may be a need to ensure data dependencies are satisfied 
during model execution, while also allowing for explicit 
execution control. To enable explicit execution control, while 
satisfying data dependencies, an exemplary embodiment 
employs a novel semantic via a Control Signal Split block. In 
general a Control Signal Split (or equivalently a Control 
Signal Branch block) block can accept a control-signal and 
then in turn execute one or more destination blocks. A Control 
Signal Split block can be realized in an embodiment as a 
Function-Call Split block. 
0053 A Function-Call Split block may be a block that 
accepts a function-call signal and splits (branches) it into two 
or more function-call signals. When a function-call invoca 
tion (message) is received at the input port to the Function 
Call Split block, function-calls are initiated at all outputs. 
These resulting function-calls are executed in a manner Such 
that data dependencies are satisfied. In another embodiment, 
a Function-Call Split block may be realized as an Action Split 
block that accepts an Action signal and splits (branches) the 
action signal into two or more action signals that invoke 
Action Subsystems. 
0054 FIG. 2 illustrates an embodiment containing a 
graphical model that includes a Function-Call Split block, 
245, which creates a subgraph whose execution is explicitly 
controlled while honoring data dependencies. FIG. 2 illus 
trates model 200 that can include chart 205, function call 
subsystems init 210, f 230 and g 235, Src block 225, merge 
block 215, plant subsystem 220, function-call loop break 
block 240 and Function-Call Split block 245. In model 200, f 
230, g 235 and the Function-call Loop Break block 240 form 
a Subgraph where execution of the subgraph is explicitly 
controlled by the function-call signal f 250 from the chart 
205. Within model 200, two types of control signals may be 
defined, namely function-call signals and action signals. In 
model 200, a control signal may define when subordinate 
blocks as identified by the subgraph are executed. In model 
200, a control initiator may initiate execution of the subgraph. 
By way of example, chart 205 is the control initiator in FIG. 
2 (often referred to as a function-call initiator) and the signals 
connected to the output ports, f and init of chart 205 are 
control signals (of specific type function-call). In FIG. 2, 
there are two subgraphs, the init Function-call Subsystem that 
includes init 210 and the subgraph consisting of the Function 
call Subsystems, f 230, g 235, and the Function-call Loop 
Break block 240. 

0055) Function-call Loop Break block 240 can be realized 
in a variety of ways, such as via a Unit Delay or Memory 
block which outputs a prior value of the signal by maintaining 
state within the block. The Function-call Loop Break block 
240 must run at the same rate as the other blocks in the 
Subgraph. Another realization of the Function-call Loop 
Break block 240 can be realized by eliminating the need for 
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the Function-call Loop break block 240 and by providing a 
parameter on the Inport block of the function-call subsystem 
that allows feedback. 

0056. The Function-call Split block 245 branches' the 
function-call control signal connected to the output port f of 
the chart 205 into two respective signals, g255 and f260. The 
Function-call Split block 245 can be configured to execute the 
out-going function-call control signals (in this case fand g) in 
any desired order based on a user specification. In FIG. 2, the 
Function-call Split block 245 executes f 230 first and then g 
235 second. The Function-call Loop Break block 240 pro 
vides the Function-call Subsystem, f 230 with the previous 
value of s2 from g235. If the Function-call Loop Break block 
240 were not present, there would be an algebraic loop 
involving the two Function-call Subsystems, f230 and g 235. 
This would result in an error condition unless the algebraic 
conditions are solved using an algebraic loop solver. 
0057 FIG. 3A illustrates an embodiment containing a 
graphical model that includes a Function-Call Split block, 
345, which creates a subgraph whose execution is explicitly 
controlled while honoring data dependencies where the sub 
graph has a loop consisting of signals S1 and S2 where the loop 
is broken by latching the 3" input of 330. The latching is 
achieved by selecting the “Latch input for feedback signals of 
function-call Subsystems outputs' parameter on the Inport 
block dialog of the Function-Call Subsystem, f 330. In the 
embodiment of FIG. 3A, the Function-Call subsystem, f330, 
has indicated that the 3" input (In3) is latched, meaning that 
f 330 specified that it is using the prior value of the signal 
feedback from function-call subsystem g335. The specifica 
tion is done by opening the Function-call subsystem, f 330 
and setting the “Latch input for feedback signals of function 
call subsystems' on the Inport block, In3. In FIG. 3, dialog 
window 344 may be used to specify the latch input. Specify 
ing the loop break property on the subordinate blocks (in this 
case, f330) has the advantage over the Loop break blocks in 
that documentation of the system is improved. For example, 
in FIG. 3A it may be clear to a model designer that f 330 is 
using a latched value at input port 3 from the prior execution 
of g335 via signals2 because of the <Li> annotation on 330. 
0058 An embodiment illustrated in FIG.3B can represent 
an improvement over the pattern explored in FIG.3A, namely 
that the Function-Call Split block can be entirely subsumed 
into the functionality of the Initiator. FIG. 3B illustrates how 
the Chart 305 and the Split block 345, of FIG. 3A, are sub 
sumed into the single hierarchical level of the model 360. 
Further, as illustrated in FIG. 3C, the entire Chart 305 can be 
programmed to subsume the functionality of the Split block 
345 without introducing an explicit Split block shown in the 
model. For example, and referring to FIG. 3C, the fact that f 
executes before g is indicated by the number 1 near the fport 
370 of the Chart and the number 2 near the g port 375 of the 
Chart. The representation of FIG. 3C may represent an 
improvement that allows f and g to execute in accordance to 
their data dependencies. The example of FIGS. 3A, B, and C 
contrast with the example shown in FIG. 1A where the f130 
and g 135 could execute in any arbitrary order dictated by the 
Chart. 

0059 Embodiments can return processed results from all 
or any subgraphs connected to a Function-Call Split block 
back to the Initiator of the function-call control signal. This is 
illustrated in FIG. 4 where f430 returns a signal rto the Chart 
405. Use of signals, such as r, does not require the use of a 
loop break block because there is no implied delay in the 
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signal. This concept can be extended to return a value from g 
435 as well. The Chart can then use these two values to control 
the Plant. 

0060. In certain situations, a conflict may be created 
between explicit Subgraph execution control and execution 
ordering determined by data dependencies. When this situa 
tion occurs, an error may be produced as shown in FIG. 5 at 
chart 405 via the shaded fill pattern. The error may also cause 
an error log to be produced and displayed via a user interface. 
An exemplary error log that can accompany the graphically 
depicted error of FIG. 5 is illustrated in FIG. 6 via window 
600. If a user were to specify on the Function-Call Split block 
that the right function-call output executes before the bottom 
function-call output (with dot showing next to the right func 
tion-call output), then data dependencies would be satisfied 
because the Function-Call Subsystem, g would execute 
before the Function-Call Subsystem, fand the model would 
execute without error. 

0061 The need for explicit execution control of subgraphs 
arises in many situations where explicit ordering (often 
referred to as sequencing or scheduling) of the Subgraphs 
enables Supervisory control. For example, one Subgraph may 
represent activities to be performed at initialization and 
another subgraph may represent run-time behavior. In the 
example of FIG.3A, the initialization subgraph defined by the 
init Function-Call Subsystem is executed when the system 
starts up or is reset while running. Within a Subgraph that is 
explicitly controlled, it may further be desired that data 
dependencies are satisfied ensuring each block within the 
Subgraph is operating on current (e.g., up-to-date) informa 
tion. Referring back to FIG. 3A, the subgraph starting at the 
Function-Call Split block, 345 represent run-time dynamics 
that control the plant 320 and within this subgraph, data 
dependencies are satisfied. 
0062 Explicit control of subgraphs can provide at least 
two capabilities for the model designer: 
(1) modeling of systems where there needs to be explicit 
scheduling of Subsystems by elements of a block-diagram, 
which can be referred to as supervisory control, and 
(2) modeling of systems where certain block diagram ele 
ments need to perform auxiliary intermediate computations 
that are needed for performing their overall computation, 
which can be referred to as external function invocation. 

0063. These capabilities are provided by explicit control 
of subgraphs can used separately or together as shown in FIG. 
3A. Referring back to FIG. 3A, based upon the state of the 
system, chart 305 invokes either the initialization function 
call Subsystem, init 310, or the run-time logic consisting of 
the subgraph consisting of the Function-Call Split block 345, 
and f 330 and g335 Function-Call Subsystems. This type of 
decision making can be referred to as Supervisory control. In 
addition the chart uses the signal r 350, computed by the 
function-call subsystem f 330. In this context the chart is 
making an external function invocation and using r 350 for 
further processing. 
0064 FIG. 7 illustrates an embodiment that performs 
Supervisory control using explicit subgraph control of two 
separate subgraphs running at different rates. In FIG. 7, there 
are two separate charts, namely chart 710 and chart 720, 
responsible for supervisory control of two separate sub 
graphs, subgraph 730 and subgraph 740, respectively. In an 
embodiment, Charts 710 and 720 can further produce peri 
odic signals. In this figure, the 1 m-sec (one millisecond) chart 
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710 produces a periodic signal at its first output port 715. This 
signal is transformed by blocks and used elsewhere in the 
model. 
0065. Similarly the 2 m-sec chart 720 produces a periodic 
signal at its first output port 725 which is used elsewhere in the 
model. The second output port 717 of chart 710 is then con 
nected to subgraph 730 consisting of three blocks. The 1 
m-sec chart 710 on every (1 m-sec) time step decides if it 
should execute subgraph 730. When chart 710 executes sub 
graph 730, all three blocks in subgraph 730 execute while 
satisfying data dependencies, i.e., the 3 blocks of Subgraph 
730 are evaluated left to right because of data dependencies. 
In subgraph 730, the size of the execution control split block 
(in this case a Function-Call Split block 735) has been 
reduced to a very small dot representing a branch-point. Like 
wise, the 2 m-sec chart 720 executes the subgraph 740 con 
nected to its second output port 727 based on logic, which 
may or may not run the Subgraph 740 on the 2 m-sec time 
step. A Rate Transition block 750 is used to convert the data 
from the 2 m-sec task to the 1 m-sec task. The Function-Call 
Split block 735 decides the order in which the subordinate 
blocks are executed. 

0066 FIG. 8 illustrates an embodiment 800 that includes 
Function-Call Split blocks 810A, B, C that can be configured 
to invoke a subgraph according to data dependencies and the 
ordering of the blocks within the Subgraph is annotated on the 
blocks after analyzing the model. FIG. 8 can include function 
call generator 805, Function-Call Split block 810A, B, and C, 
sine wave generator 815, function call subsystems 820, 825. 
830 and 835, and output 840. Subsystems 820, 825,830 and 
835 may be subordinate function-call subsystems in an 
embodiment. These Subsystems can optionally be annotated 
using a nomenclature, such as “Bii', where “if” is an integer 
indicating the execution ordering sequence for the Sub 
systems. For example, in FIG. 8, subsystem 820 may execute 
first, subsystem 825 may execute second, subsystem 830 may 
execute third and subsystem 835 may execute fourth, or last. 
0067. The ordering of how subsystems execute can be 
represented using alternative graphical techniques. An 
example of an alternative technique for representing an 
explicit ordering for Subsystem execution is illustrated in 
FIG. 9. 

0068 FIG. 9 includes Function-Call Split block 905 that 
receives signal 906 from function call generator 904. Func 
tion-call split block 905 includes two output signals identified 
using “1” for signal 907A that goes to subsystem 920 and “2 
for signal 907B that goes to subsystem 925. In FIG.9, Func 
tion-Call Split block 905 includes a graphical representation 
in the form of a dot proximate to where signal 907A intersects 
the border of Function-Call Split block 905. The dot indicates 
which function-call branch is executed first, namely the one 
for signal 907A. The “1” next to the signal indicates Function 
Call Subsystem h1 runs first and the '2' next to the other 
signal indicates Function-Call Subsystem h2 runs second. 
When cascaded Function-Call Split blocks are used for split 
ting a function-call signal to call more than two function-call 
Subsystems, users may also choose to show absolute execu 
tion sequence (like “1”. “2, 3...) or hierarchical execution 
sequence (such as “1.1.2”. “1.2.1). Users can manually 
insert a Function-Call Split block to branch a function-call 
signal, or can simply branch a function-call signal and a 
Function-Call Split block will be automatically added. 
0069. In FIG.9 a round subgraph block is used and repre 
sents one exemplary technique for graphically representing 
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functionality associated with subgraph control. Other 
embodiments can use other techniques (e.g., shapes) for rep 
resenting Subgraph blocks or subgraph functionality. For 
example, a rectangular block or another shape block could be 
used. Furthermore, if there are no options, a simple branch 
(i.e., no block) may be used to represent the concept of a 
Function-Call Split. Similarly, an implementation may 
include more than two output signals, i.e. it is possible to split 
a function-call into 3 function-call signals by either cascading 
two Function-Call Split blocks or providing a split block that 
has 3 outputs. 
(0070 If a user were to instruct the Function-Call Split 
block 905 to execute its branches according to data depen 
dencies in this model, there would be ambiguities because 
there is no dependency between h1 and h2. In this case an 
error message would be generated indicating that insufficient 
data dependencies exist in model 900 to ensure a unique 
execution ordering. If there are no ambiguities and a unique 
ordering can be found, as in FIG. 8, choosing a branch order 
ing based on data dependency can result in deterministic 
execution sequencing. 
0071 A Control Signal Split block can be referred to using 
different names according to environments in which the block 
is used and/or according to particular functionality imple 
mented using the block. For example, in a Simulink environ 
ment, when used with Function-Call signals, the block may 
be referred to as the Function-Call Split block, Function-Call 
Branch block, Function-Call Branch Point block, Function 
Call Split Junction block, Function-Call Splitter, etc. When 
used with Simulink's action signals the Control Signal Split 
block may be referred to as the Action Branch Point block, 
Action Branch block, Action Split block, Action Split Junc 
tion block, Action Splitter, etc. 
0072 A subgraph loop break block can also be referred to 
using different names. For example, in a Simulink environ 
ment, when used with Function-Call signals, it may be 
referred to as the Function-Call Loop Break block, when used 
with action signals (similar to function-call signals), it may be 
referred to as the Action Loop Break block. Alternatively, the 
term loop break may be replaced with “memory' or “delay” 
or “latch'. It should be recognized that several different 
names can be used to describe this block. The property of 
breaking loops can also be realized as a parameter (property) 
of the subordinate blocks that are executed (run) by the con 
trol initiator. 
0073. A conventional technique for joining control signals 
together that can produce unexpected results may be realized 
using Simulink 7.3 (R2009a). For example, Simulink 7.3 
provides a Mux block as shown in FIG. 10. In FIG. 10 func 
tion-calls are combined into a wide function-call signal 1020 
that includes signals f and g. The wide function call signal is 
used to invoke the Function-Call Subsystem 1015. The wide 
function-call signal 1020 enables either Chart1 1005 or 
Chart2 1010 to run the Function-Call Subsystem 1015. 
0074. A potential downside of the implementation of FIG. 
10 is that the ordering of the control initiators (Chart1 1005 
and Chart2 1010) is not clearly demarcated to a user. The 
semantics of Simulink7.3 indicate that either Chart1 1005 or 
Chart2 1010 can be first in the sorted-list. The sorted-list of 
blocks is generated when analyzing the model by using data 
dependencies among the blocks. The Sorted-list is then used 
to create block function execution lists that are used to run the 
model. Execution lists may also be referred to as block 
method execution lists because blocks are often implemented 
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using object oriented programming techniques where the 
functions are methods of a class. Switching the ordering of 
Chart11005 and Chart2 1010 in the sorted-list will change the 
result, or answer when FCSS 1015 has blocks with state 
inside it. Since there are no data dependencies between 
Chart11005 and Chart2 1010, the order is inferred from block 
priorities when block priorities are specified; otherwise, the 
block names are used. Thus, seemingly insignificant changes 
to a block (e.g., a new block name) can produce significant 
changes in a result, or answer, produced by a model. 
0075 An exemplary embodiment of the invention can 
overcome limitations, such as those associated with the Sim 
ulink 7.3 embodiment of FIG. 10. For example, an embodi 
ment of the invention can use a control signal join block to 
predictably provide multiple control initiators to a subgraph. 
An alternative name for the Function-Call Join block would 
be a Function-Call Sequence block. For example, a Control 
Signal Join block is used when it is desirable to have multiple 
control initiators of a given Subgraph (or single block). A 
Control Signal Join block specifies the ordering when two or 
more invocations of the Join block are initiated on the same 
time step. 
0076 For example, and referring to FIG. 11, the Function 
Call Join block 1120 can include a dialog window 1130 that 
can be used to display information regarding operation of join 
block 1120. For example, dialog window 1130 can display 
information indicating that join block 1120 uses an ordering 
that is either left-to-right, right-to-left, or specified. When 
specified is selected in dialog window 1130, a set of indices 
corresponding to the input ports are provided giving the 
desired ordering. In the embodiment illustrated in FIG. 11, 
left-to-right ordering has been selected. 
0077 Referring to FIG. 11, a left-to-right ordering means 
that Chart2 1110 must be placed before Chart1 1105 in the 
sorted list. The sorted list may be a data structure that is used 
by a simulation or code generation engine to generate execu 
tion lists. This ensures that on any given time step, if both 
Chart1 1105 and Chart2 1110 are invoking subgraph 1115, 
then Chart2 1110 will come first. Within the Function-Call 
Subsystem, FCSS, 1115, the user can add logic that makes 
decisions based on which specific initiator invoked the func 
tion-call subsystem. For example, if Chard, 1105 invoked 
FCSS, 1115 then one action could be taken otherwise if 
Chart2, 1110 invoked FCSS 1115, then another action could 
be taken. 

0078. The Function-Call Join block 1120 is useful for 
handling a subgraph created by a Function-Call Split block. 
In FIG. 12, model 1200 includes a chart 1205 that initiates 
execution of the subgraph defined by the Function-Call Split 
block 1225, Function-Call Subsystems, f 1230, g 1235, h 
1250, Merge block 1245, and the Function-Call Join block 
1240. Within the subgraph, both Function-Call Subsystems f 
1230 and g 1235 use the Function-Call Subsystem h 1250. 
Both f1230 and g 1235 provide an input, In1 to Function-Call 
Subsystem h 1250 via a Merge block 1245. The Function 
Call subsystem f1230 uses the result of callingh 1250 during 
its processing and the Function-Call Subsystem g 1235 
invokes h 1250 to produce the final answer of the subgraph 
which is provided to the plant 1220 via the Merge block 1215. 
As before, the chart 1205 can choose to either run the init 
(initialization) Function-Call Subsystem 1210, typically at 
system startup, or run the Subgraph by invoking a function 
call on f 1230. 
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007.9 The Function-Call Join block (or generally a Con 
trol Signal Join) block output is either connected to a sub 
graph being explicitly controlled as in FIG. 11 or it can be 
connected to another Join block. The cascading of join blocks 
in effect produces a network of join blocks that result in one 
join operation. 
0080 Conventional techniques may infer function-call 
signatures from a graphical diagram. FIG. 13 illustrates a 
conventional technique using Simulink 7.3 external function 
invocations. 

0081. In FIG. 13, chart 1305 invokes the function-call 
subsystem 1310 with Inputs 1320 and receives the results of 
the computation via result signal 1325 for immediate use 
during the time-step. The construct illustrated in FIG. 13, 
when used with many input signals and result signals, pro 
duces a diagram that is difficult for users to understand and/or 
follow. Furthermore, the analysis of the model 1300 requires 
that all blocks be available to a compiler used to execute the 
model. This prevents a user from componentizing (or parti 
tioning) the model into two independent parts, one consisting 
of the Chart 1305 and the other consisting of the Function 
Call Subsystem, 1310. 
I0082 Referring to FIG. 14, consisting of a conventional 
technique for external function invocations, the function-call 
subsystem f 1420 has two inputs—one from the initiator 
function-call subsystem, 11405 and the other from the Gain 
block, G 1415. The function-call itself, therefore, has two 
inputs, namely signal 1429 and signal 1430. Similarly, the 
function-call has one return value (result of computation) 
from f 1420 back to the Initiator 1405 via signal 1435. The 
implications of this signature are two fold: 

0.083 1. During simulation, before the invocation of the 
function-call subsystem f 1420 by the initiator 11405 
both inputs need to be ready. This implies that G 1415 
needs to execute prior to 11405 

0084 2. When code is automatically generated from the 
model, the function generated for f 1420 will have two 
inputs and one return value. 

I0085. In FIG. 14, the signature of the function-call is 
implied by the connectivity of model 1400 and is derived 
during the compilation process. For example, this process is 
used in Simulink 7.3 and earlier versions of Simulink. 

I0086 Approaches to extracting the signature of the func 
tion-call. Such as is shown in FIG. 14, does not scale to 
complex systems where different components of a system 
may be modeled with only knowledge of the interfaces of 
systems they interact with. By way of example, consider FIG. 
15 illustrating a conventional technique using external func 
tion invocations that includes model 1500, identified as TOP 
and subsystems A1510 and B 1530 which we'd like to make 
components 
I0087 Model 1500 uses (references) two separate sub 
systems, namely subsystem A 1510 and subsystem B 1530. 
We'd like to make A 1510 and B 1530 components that can be 
independently analyzed (compiled for execution). In Sim 
ulink7.3, components may be referred to as Model Reference 
blocks. In general componentization lets a user define re 
usable model components that can be compiled indepen 
dently of their use. For example, if 1510 and 1530 were a 
components (Model Reference blocks), 1510 may be com 
piled independent of 1530. However, in conventional envi 
ronments components cannot be created that have control 
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signals such as the function-call signal 1535 cross system 
boundaries. In some embodiments, a component may repre 
sent a model. 

I0088. By way of example, FIG. 15 may illustrate an 
embodiment configured to depict three separate component 
models, one for the TOP, one for the A1510, and one for B 
1530. If this were the case, then it would possible to indepen 
dently open and execute A1510 or to use model A1510 from 
another model. Therefore, when constructing model A 1510, 
it should be possible to build model A 1510 without knowing 
the contents of model B 1530 or how TOP (model 1500) 
might be using model A1510. This workflow may imply two 
things: 

0089. 1. The builder of model A 1510 needs to be able to 
capture information regarding signals marked a 1540, b 
1550, and c 1545 in model A 1510 because signals a 
1540, b 1550, and c 1545 all constitute the signature of 
the function-call invoked in model B 1530. 

0090 2. The builder of model B 1530 needs to be able 
build the function-call subsystem without knowing the 
contents of model A 1510. 

0091. To satisfy 1 and 2 above, builders of models. A 1510 
and B 1530 each need a mechanism (or a contract) for cap 
turing the signature of the function-call the two models share. 
0092 FIG. 16 illustrates an exemplary embodiment of the 
invention that provides the ability to create components with 
control signal (e.g. function-call or action signal) inputs and 
outputs of the components. FIG. 16 produces the same 
answer as FIG. 15. However, a difference between FIG. 15 
and FIG. 16 are that FIG. 16 has componentized the sub 
system A 1510 into Model Reference component A 1610 as 
indicated by the solid triangles in the corners of the model 
block. Similarly, FIG.16 has componentized the subsystem B 
1530 into Model Reference component B 1630. 

0093 1. In model A 1610, the builder will have the 
ability to produce a single signal 1650 that includes the 
invocation signal of the function call, the input argu 
ments from the initiator of the function-call and the 
return values (results of processing) of the function-call. 
This is referred to in general as Subgraph control signals 
with input and output arguments, further illustrate in 
FIG. 16. In contrast, conventional techniques express 
each function call as a separate signal. 

0094 2. In model B 1630, the builder will have the 
ability to capture the input arguments and return values 
expected from the initiator in a structured form. One 
structured form could be a table which corresponds to a 
Subgraph Control Signal Class from which objects 
describing the signature are created, further illustrated in 
FIG. 16. 

(0095 3. In model A 1610, the builder will have to ability 
to capture the fact that gain G1620 is an implicit input to 
the function-call invoked from A 1610. One way of 
capturing this information graphically is shown in the 
Subgraph Control Signals with Input and Output argu 
ments illustrated in FIG. 16 via the Add Input 1660 
Marshal block. 

0096. The exemplary mechanisms listed above facilitate 
the following: 

0097. 1. Models A 1610 and model B 1630 can be 
compiled in isolation and a user can generate code for 
one model without the presence of the other. 
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0098 2. The execution order of blocks in model A1610 
can be determined without the presence of Model B 
1630. 

0099 3. When Model A 1610 and model B 1630 are 
connected together, a user can easily check that the 
contract for the function-call is met by both model A 
1610 and model B 1630 because the signatures of the 
function-calls are specified at both models. 

01.00. 4. The builders of model A 1610 and model B 
1630 can build their models in a modular fashion. 

0101 FIG. 17 illustrates an exemplary technique for 
allowing a user to create and/or edit the signatures of a func 
tion-call subsystem signal such as 1650. For example, a func 
tion-call subsystem 1705 may be associated with a dialog 
window 1750 that allows a user to input information associ 
ated with function-call subsystem 1705 which represents the 
input value a and output value b of the function-call sub 
system 1625 of FIG. 16. 
0102) Exemplary embodiments can use Control Signal 
Group and Control Signal Ungroup blocks to allow models to 
be decomposed into separate units that can be independently 
compiled and/or reused. For example, a model may include 
control signals that cross boundaries of Subsystems in the 
model. The model may use control signal group blocks or 
control signal ungroup blocks along with input and/or output 
data signals to provide independent control to respective Sub 
systems in the model. The use of control signal group and/or 
ungroup blocks may allow the Subsystems to be indepen 
dently compiled and reused. The use of control signal group 
and ungroup blocks can provide models with the capability to 
have control signals cross hierarchical boundaries of the 
model, enable parallel compilation of components (e.g., Sub 
systems) in the model, allow for independent verification of 
components of the model and provide uses with improved 
development workflows (e.g., when many people are working 
on a model). 
(0103 FIG. 18 illustrates a conventional model that uses 
function call subsystems. In FIG. 18, model 1810, named 
Top, consists of two subsystems, SYS11820 and SYS2 1840. 
SYS11820 contains a state chart, Chart1 1822, that invokes a 
Function-Call Subsystem, FCSS 1850 in SYS2 1840 via the 
function-call control signal, f 1832. SYS1 1820 also contains 
a Sine Wave block 1824 and a Gain block 1826. Because the 
output signal, c 1828, of the Gain block 1826 is an input to the 
Function-Call Subsystem, FCSS 1850, the gain must be com 
puted before Chart1 1830 is executed because Chart1 is 
responsible for executing FCSS 1850 and FCSS has a data 
dependency on c 1828, which is computed by the Gain block, 
1826 using the sine wave value 1824. Thus, to sort SYS1 
1820, we need to know the contents of SYS2 1840 and how 
SYS2 1840 is using the signal, c 1828. Had SYS2 1840 used 
the signal c 1828 (its 3" input) elsewhere and not by the FCSS 
1850, then Sine Wave 1824 and Gain 1826 could be executed 
before or after Chart1 1830 because there is no execution 
(data) dependency in this case. 
0104. However, in FIG. 18, an execution dependency 
requires that the Sine Wave 1824 and Gain 1826 execute 
before Chart1 1830 is executes. The contents of the Chart1 
1830 consist of a single state that produces a which is set to 
X--2, where X is an internal state of Chart1 1830 and is initial 
ized to 0 by the chart. After computing a, Chart1 1830 con 
tinues execute the Function Call Subsystem, FCSS 1850, by 
invoking it via the Function-Call control signal, f via the f 
statement. FCSS 1850 then transforms the signal a (which 
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will be 2 on the first time step), via the Lookup Table (2-D) 
1852 and provides this transformed signal to the 1' Outport 
block 1854 labeled b. FCSS 1850 then transforms this signal 
(b) again using the Discrete Zero-Pole block 1858 and pro 
vides this signal to the 2" Outport block 1856 labeled out. 
0105. After FCSS 1850 finishes executing, execution con 

trol is returned to Chart1 1830 where the transformed signal, 
b, is saved by Chart1 1830 in its internal state, x via the x=b 
statement. The direct feed-though bit on b was cleared 
because it is a return value from the invoked Function-Call 
subsystem, FCSS 1850. Therefore, to generate the correct 
sorted list and block method execution order, the contents of 
SYS2 1850 are also needed to determine which signal are 
return values. After SYS1 1820 finishes executing, SYS2 
1840 executes. Since FCSS 1850 is not directly executed by 
SYS2 1840 (its execution initiator is Chart1 1830 which 
already ran), the only other blocks in SYS2 1840 which need 
to be evaluated is the Scope block 1842 which plots the value 
of out computed by Chart1 1830 via the FCSS 1850 invoca 
tion. This completes the execution of the first time step for the 
model 1810. This process continues with time advancing 
until the desired stop time is reached. 
0106 FIG. 19A illustrates an embodiment that uses func 
tion-call group and ungroup blocks to enable componentiza 
tion of systems with a control signal crossing the systems 
boundaries. In FIG. 19A, the system of FIG. 18 is imple 
mented in an embodiment of the invention that uses function 
call group blocks and function-call ungroup blocks. The 
implementation of FIG. 19A employs a technique referred to 
as componentization (e.g., model referencing) to simplify 
representing the system to a user. For example, and referring 
to FIG. 19A, model TOP 1902 can include two subsystem. 
For example, one subsystem can be represented as SYS1 
1904 using a Model Reference block that can be compiled 
and/or analyzed without knowledge of the contents of SYS2 
1930, another Model Reference block, and vice versa. For 
example, if a user were to right-click on the f-group signal 
1922 or 1932 or the signal 1915 connecting SYS1 to SYS2, 
the user could inspect the contents of the signal and the 
contents would show that the signal is a bundled signal con 
sisting of a function-call control signal originating at 1906 
and terminating at 1940 with data input signals a 1910 and c 
1916 and return value signal b. 1944. This inspection could be 
shown either textually or graphically in a dialog. 
0107 SYS1 1904 includes Chart/1908, which is imple 
mented using logic similar to that of the Chart1 1830 in FIG. 
18. The Function-Call control signal, f1906 is provided for a 
Function-Call Group block 1918 along with the Function 
Call input data signal, a 1910. The output of the Gain block 
1914, c 1916, is also provided to the Function-Call Group 
block 1918. The Function-Call Group block 1918 can be 
configured to specify the return values and signal attributes 
(data type, dimensions, sampling modes, etc.) Such as their 
data type as show in FIG. 20A. 
0108 Referring now to FIG. 20A, dialog 2000 may 
include one or more fields 2010 in which a user can specify 
signal values, signal attributes for the signals, etc. In an 
embodiment, dialog 2000 may allow users to specify signal 
values and signal attributes using MATLAB cell syntax. For 
example, the i' element of a cell array and the data type for 
the respective return value signal is the i+1" element. In FIG. 
20A, a user may have specified that the data type is inherited, 
meaning that the signal attributes will be back inherited from 
the Chart1 input. Alternatively, the properties of the Function 
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Call Proxy and Function-Call Proxy Adaptors could be speci 
fied textually using an object-oriented syntax Such as MAT 
LAB's Class system. 
0109 Referring now to FIG. 19A, at SYS1 1904 in isola 
tion (without knowledge of the contents of SYS2 1930) the 
model of SYS1 can be analyzed to identify all information 
about the function-call f1906, initiated by the Chart1 1908 to 
enable independent compilation. It may be known that the 
output signal, a 1910, from the Chart1 1908 is a function-call 
input. In addition, it may be known that data signal c 1916, 
produced by the Gain block 1914, is an implicit input to the 
same function-call. Moreover, it may be known that input b 
1920 to the Chart1 1908 is a return value data signal from the 
same function-call. This information ensures the compilation 
process of SYS1 1904 will place the Sine Wave block 1912 
and Gain block 1914 before Chart1 1908. The compilation 
process will also clear the direct feed through of the input 
port, b, of the Chart1 1908 because b is a function-call return 
value. The bundled signal created by the Function-Call group 
1918 is passed to the 1' Outport block 1922, named f-group. 
0110. In Top/SYS2 1930 the first input port 1932 is con 
nected to a Function-Call Ungroup block 1934. Block 1934 
unbundles the f-group signal and produces function-call con 
trol signal 1940 used to invoke the Function-Call Subsystem, 
FCSS 1942. Block 1934 also unbundles the signals a 1938 
and c 1942, which are also provided to FCSS 1942. Block 
1934 may be associated with a dialog to allow users to enter 
information associated with block 1934. For example, a dia 
log for block 1934 may be similar to dialog 2000 that is 
associated Function-Call Group block 1918. A dialog win 
dow for block 1942 may allow a user to define that there is one 
return value from the Function-Call Subsystem, FCSS 1942, 
labeled, b 1944. Based on this information, we can compile 
SYS2 1930 can be coupled without knowledge of any other 
parts of the model. 
0111. The embodiment of FIG. 19A makes use of explicit 
signatures to ensure that users can compile components with 
control signal inputs and outputs without having knowledge 
of the control signal sources or destinations outside of the 
component being compiled. This enables componentization, 
parallel compilation, independent development and testing of 
the components. An additional capability provided by control 
signal inputs and outputs such as the function-call control 
signal input SYS1 and function-call control signal output of 
SYS2 is the ability to have multiple function-call inputs and 
outputs. 
0112 FIG. 19B, includes two componentized systems, 
SYS A 1961 and SYS B 1967 (Model Reference blocks in 
Simulink) used with model 1961. SYS. A 1961 is invoking 
two entry points on SYS B 1967, the initentry point 1962 and 
the run1 entry point 1963 via function-call grouped signals 
output from function group blocks 1964 and 1965, respec 
tively. SYS A/chart 1954 initiates execution of either the init 
block 1964 or run1 block 1965 on any given time step. 
SYS A 1961 illustrates the ability to have multiple function 
call control signals from a chart and the ability to Merge (map 
to same memory location) the return values from the invoked 
function-call Subsystems. 
0113 FIG. 20B illustrates a dialog window that can be 
used with, for example, Function-Call Group—run1 (block 
1965). Dialog 2030 includes fields 2032 and a check box 
2034 for Has pre-execution blocks'. When checkbox 2034 is 
selected, the selection indicates that before the run1 function 
call can be invoked, some (unknown) set of blocks has to be 
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executed before the control signal initiator (in this case 1966) 
because they are feeding the function-call Subsystem being 
executed. To ensure the pre-execution blocks run, SYS A 
1961 issues a run 1 pre exeucte hidden function-call 
(message) via the run1 f-group signal before running the 
Chart 1966. 
0114 Referring back to FIG. 19B, Top/SYS B 1967, 
includes function-call ungroup blocks 1968 and 1969 used to 
unbundle the function-call control signal and the data signals. 
The Function-Call Subsystem, run1 1970, has an A/D block 
1971 feeding it. To ensure correct results from SYS B 1967, 
A/D block 1971 needs to run before run1 1970 is run. To 
achieve this, SYS B 1967 creates a hidden function-call 
input that can conceptually be part of the run1 f-group but 
with name run1 pre execute(). 
0115. In the embodiment of FIG. 19B, any component 
providing a grouped function-call signal must run this entry 
point. When compiling the Top system 1960, the signatures of 
the signals between the components can be observed to detect 
mismatches. For example, if the Top/SYS A/Function-Call 
Group—run1 block 1965 did not check the Has pre-execu 
tion blocks checkbox, a signature match would have been 
detected during compilation of Top 1960 and an error would 
be produced. 
0116. The block names Function-Call Group and Func 
tion-Call Ungroup are used convey that the blocks bundle 
signals together and then unbundle the signals, respectively. 
An alternative naming scheme would be to use the terms 
Function-Call Proxy and Function-Call Proxy Adaptor as 
shown in FIG. 19.C. 
0117 FIG. 19C is similar to FIG. 19A, and includes 
renamed blocks. Generally, these blocks can be referred to as 
Control Signal Proxy and Control Signal Proxy Adaptor 
blocks. The basic functionality of these blocks may remain 
the same. For example, in FIG. 19C, the Function-Call Proxy 
block 1974 creates a bundled control signal labeled f-proxy 
1975. The signal line is displayed using a contrasting line 
style to indicate the signal is abundled control signal. If a user 
were to inspect the signal either textually or graphically using 
a dialog box, the user would see the bundled signal contains a 
function-call signal with a first input signal, a second implicit 
input signal c, and a return value signal, b. The dialogs of the 
Function-Call Proxy and Function-Call Unproxy block may 
be similar to FIG. 20A and FIG. 20B. 

0118. The Function-Call Proxy blocks and Function-Call 
Proxy Adaptor blocks need not have the same names in the 
signals. For example, in FIG. 19C, the signal inspection dia 
log 1973 shows that the f-proxy signal has elements nameda, 
b, and c. Similarly TOP/SYS2 1976 is defined with signals a, 
b, and c. Alternatively, different signal names could have been 
specified in TOP/SYS2 1976 for the Function-Call Adaptor 
1977 and/or the Function-Call Subsystem, FCSS 1978 as 
long as the signal attributes (data types, dimension, etc.) are 
consistent the model would be correctly defined and would 
eXecute. 

0119. It should be recognized that the Function-Call Proxy 
(or equivalently Function-Call Group) block is a form of 
Marshal block 1660 of FIG. 16. Both the Marshal and Func 
tion-Call Proxy block are used to create a bundled signal. 
Signal 1650 of FIG.16 is a bundle that consists of a function 
call signal, an input 'a' and a return value signal b. signal 
f-proxy 1975 of FIG. 19C has a similar signature and they are 
effectively the same when Marshal block 1660 is used. The 
overall inputs the function-call subsystems, F 1630 of FIG.16 
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and FCSS of FIG. 19C have the same signature (2 inputs, one 
output). If a user were to add a 2" input to the Marshal block 
1660 of FIG. 16 the function-call subsystem 1625 of FIG. 16 
would have 3 input arguments. Likewise if a user were to add 
a 3’ input signal to the Function-Call Proxy block 1979, the 
function-call signal bundle, f-proxy would have 3 input argu 
ments and the FCSS subsystem 1978 of FIG. 19C would have 
3 inputs. Similar flexibility and consistency is provided at the 
Function-Call Proxy Adaptor 1977. 
I0120 Recognizing that the bundled signal 1650 of FIG.16 
may be preferred by certain users, the Chart1 1980 of FIG. 
19C can be configured to produce a function-call control 
signal bundle containing a bundled signal. This is shown in 
FIG. 19D. 

I0121. In FIG. 19D, Chart 1980 is making a function-call 
passing in the value a, and receiving the value b via signal 
1981. From a functional perspective, the models of FIG. 19C 
and FIG. 19D are equivalent and produce the same answer. 
The Function-Call Proxy block 1982 is used to create the 
f-proxybundled function-call control signal consisting of two 
inputs (a and c) and one return value (b). The Function-Call 
Proxy Adaptor 1983 is used to unbundle the f-proxy signal 
and provide the bundled functional-call control signal f(in: a, 
out: b) to the function-call subsystem, FCSS 1984. 
0.122 One additional depiction of the Function-Call Proxy 
block 1982 would be to eliminate the explicit output port 
signal of the Function-Call Proxy block 1982 and in turn 
provide a paired function-call proxy port block that produces 
the function-call proxy signal at the top of the component. 
Additionally, the Function-Call Proxy Adaptor block 1983 
could be depicted without the bundled function-call control 
signal and in turn have a paired function-call proxy adaptor 
port block that receives abundled function-call control signal 
and implicitly provides it to the Function-Call Proxy Adaptor. 
This idea is illustrated in FIG. 19E. 

(0123. In FIG. 19E, the Proxy blocks inside SysA 1985 do 
not have an explicit output ports for the respective function 
call groups. Instead, the Proxy block 1986 is directly “hyper 
linked to the Server port blocks A 1987 and B 1988. Simi 
larly within SysB 1989, the Adapter blocks 1990, 1991 do not 
have explicit connections to the function-call group signals. 
Instead, they are hyperlinked to the Server blocks A 1987 and 
B 1988 inside SysB 1989. The respective Server Port blocks 
of SysA 1985 and SysB 1989 are connected to indicate that 
the function-call group signals of Sys5 A 198 are served by 
function-call blocks inside SysB 1989. 
0.124. A Subgraph Split block can be setup to perform 
parallel execution of the subordinate blocks. For example, 
FIG. 21 illustrates a Function-Call Split block 2110 (a real 
ization of the general concept of Subgraph Split block) has 
been configured to invoke its subordinate blocks, Function 
Call Subsystem h1 2130 and Function-Call Subsystem h2 
2140 in two new threads as annotated with the f, to in the icon 
to indicate parallel execution and the Th 2150 and The 2160 
function-call control signal labels (for thread 1 and thread 2). 
0.125. In FIG. 21, there are no data dependencies and com 
putations performed by the Function-Call Subsystems h1 
2130 and h22140 are independent. 
0.126 To improve efficiency threads may be created at 
model start and the threads may remain active. The act of 
invoking function-call on another thread signals via a sema 
phore or other synchronization entity thus activating execu 
tion of the subordinate function-call subsystem. 
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0127. The term thread within the context of FIG. 21 refers 
to a separate thread of execution. In one implementation, the 
separate thread of execution can be a child thread of the 
process executing the model. Alternatively, the term thread 
can also mean a separate process running on the same com 
puter or a process on a different computer. Generally, child 
threads of the current process are preferred because they use 
fewer resources. However, separate processes for the execu 
tion threads are required on Some systems that don't Support 
child threads within a process. There are numerous other 
reasons for using separate processes Such as increased paral 
lelism by leveraging multiple computers or multiple hetero 
geneous cores on a multicore system. In this case, a message 
passing interconnect is setup to communicate between the 
processes. 

0128. A parameter of Function-Call Split block 2110 can 
specify that the subordinate controlled blocks, namely h1 
2130 and h2 2140, execute in new threads as shown in FIG. 
21. In another embodiment, a user may specify that none or a 
subset of the subordinate controlled blocks execute in new 
threads. For example and referring to FIG. 22, h1 2130 
executes in the same thread as the control initiator 2120 
(Function-Call Generator) and h2 2140 executes in a new 
thread labeled, Th1 2230. One advantage of having h1 2130 
run in the same thread of execution as the main model is that 
fewer resources will be used while still ensuring that both h1 
2130 and h22140 do run in parallel. 
0129. Threading may introduce a new constraint on data 
signals, such as the need to ensure deterministic execution. 
For example and considering FIG. 23, model 2300 may rep 
resent an engine controller. In model 2300 there are three 
analog-to-digital (A/D) converters. The Engine On A/D con 
verter 2302 detects when the engine is to be controlled to the 
desired speed as provided to model 2300 via the Desired 
Engine Speed A/D converter 2306. The Engine Speed A/D 
converter 2304 provides the current engine speed. The chart 
block 2308 is responsible for running either the init Function 
Call Subsystem 2310 or the subgraph defined by the three 
function call branch blocks 2329, 2331, and 2332, the Func 
tion-Call Subsystems, f12312, f2 2314, f32316, and f42318 
and the sync block 2320 (or more formally a data synchroni 
zation block). This subgraph is responsible for the “running 
state of the engine where it computes the desired throttle 
position provided to the Engine Throttle Position D/A con 
verter 2324 through the Merge block 2322. The init Function 
Call Subsystem 2310 sets the desired throttle position when 
the system starts up by providing the value to the Engine 
Throttle Position D/A 2324 converter through the Merge 
block 2322. The Merge block 2322 outputs the merged signal 
of init u or run u. In FIG. 23 did not require a synchroniza 
tion block between f12312 and f32316 which is running in a 
different thread because fl will have finished execution 
before f3 starts running. This synchronization is achieved by 
2329 which executes its bottom branch f1 2312 prior to 
executing is right-most branch 2331. It should also be clear to 
one skilled in the art that an incorrectly placed data synchro 
nization block would result in an error. For example, if a data 
synchronization block were placed on the Inl signal feeding 
2316, then during model analysis an error would be produced. 
0130. In FIG. 23, the Function-Call Subsystem f32316 is 
executing in a child thread (th2) 2326 and thus the Function 
Call Subsystems f2 2314 and f3 2316 run in parallel. In the 
embodiment of FIG. 23, parallel execution increases the pro 
cessing speed of the system for the automobile. The Sync 
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block 2320 is a Function-Call Synchronization (or more gen 
erally a Control Signal Synchronization) block that is used to 
synchronize the child thread containing f3 with the main 
thread 2328. The Function-Call Subsystem f4 2318, cannot 
start processing until both f22134 and f32316 is complete. If 
Function-Call Subsystem f2 2314 finishes before f3 2316 is 
complete, then the sync block 2320 will cause the main thread 
2328 to wait for the child thread 2330 of f2 2314. Once the 
child thread is complete, the right-most Function-Call Split 
block 2332 will invoke the Function-Call Subsystem fa. 2318. 
0131 The contents of the chart block 2308 are shown in 
FIG. 24. In FIG. 24, f init function call is invoked at start up. 
Then the chart enters the waiting state 2410. When the 
“Engine On'' (A/D) converter 2302 produces a 1, the chart 
will enter the running state 2420. In the running state 2420, 
the chart periodically executes the subgraph of FIG. 23 at a 
discrete-time (sampled) rate. 
0.132. When FIG. 23 is examined, e.g., by a user or pro 
grammatically, it may be determined that efficiency can be 
improved by using function-call Subsystems to control when 
the Engine Speed, Desired Engine Speed and Engine Throttle 
Position blocks run. In FIG. 23, these will run when the chart 
is in the waiting state. FIG.25 illustrates an embodiment that 
can provide improved performance with respect to the 
embodiment of FIG. 23 by using function-call subsystems to 
control aspect of the system. 
0133. In FIG.25, the two source A/D converters of FIG. 24 
(2304, 2306) have been placed into Function-Call Subsystem 
f0 2510 whose contents are show in FIG. 26. Referring to 
FIG. 25. The chart 2308, when in the running state, runs the fo 
2510 first then runs f12312 to prefilter the input, then creates 
child thread, th22326 to run f32316 and at the same time runs 
f2 2314 in the main thread. Then f\ 2318 runs after f2 2314 
finishes and after f3 2316 finishes. The sync block 2320 
ensures f32316 finishes. The Merge block 2322 merges the 
output of the init subsystem 2310 with the output offA 2318. 
By definition the merge block 2322 is a virtual block meaning 
that it doesn't have any run-time behavior. Merge block 2322 
ensures Out1 from the init subsystem 2310 and Out1 offA 
2318 occupy the same memory location. Because init 2310 
and f42318 never execute on the same time step, the output of 
the Merge block 2322 represents the output of init 2310 or f4 
2318 that ran last. The Merge block 2322 output is provided 
to the Function-Call Subsystem Engine Throttle Position 
block 2530. FIG. 27 illustrates the contents of block 2530. 
The join block 2540 is used to ensure block 2530 will only 
execute after init 2310 runs or after f42318 runs thus ensuring 
the D/A converter of FIG. 27 is only run when its input signal 
value may have changed. 
0.134 Employing a Function-Call Split block operating in 
parallel mode is one way in which to spawn child threads of 
execution. The general concept may be referred to as spawn 
control signal initiator. One realization of the spawn control 
signal initiator is via the block illustrated in FIG. 28. FIG. 28 
represents a model of a portion of an automotive engine (the 
plant). In FIG.28, the plant may be modeled using time-based 
block diagram semantics Such as continuous-time dynamics, 
hybrid (continuous+one or more discrete rates) dynamics, or 
discrete dynamics (one or more discrete rates). To improve 
execution speed, the plant is broken up into two sections and 
Supporting blocks for those sections as shown in the figure. 
I0135) In FIG. 28, the signals coming from the In1 and In2 
Inport blocks 2810 and 2820, respectively, are in the main 
thread. The Spawn block 2805 creates a new thread (th) 2807. 
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The section 1 subsystem 2820 contains blocks that transform 
the In1 signal into an output signal which is provided to a 
thread synchronization block 2830, sync. After the main 
thread starts executing the child thread, the main thread 
immediately continues to execute the subsystem defined by 
section 22825 this subsystem transforms the In2 signals and 
provides them to the Out? block 2840. 
0136. If section 2 completes before section 1 is done, then 
the sync block 2830 will wait for section 12820 to complete. 
This ensures that both Out1 2835 and Out2 2840 are in the 
main thread. The implementation of the embodiment of FIG. 
28 requires that the modeling environment produce a sorted 
list consisting having the following ordering: Action Spawn, 
Section 1. Section 2, and Sync. The requirements of the 
arrangement of FIG. 28 are that the sync block be placed as 
late as possible and that the Action spawn blocks 2805 be 
placed as early as possible. One means by which to achieve 
this is in the graph that is sorted, in the initial per-sort list, 
place the Action Spawn blocks 2805 first and the Sync blocks 
2830 last. An alternative implementation for the sync block 
2830 would be to have the users explicitly draw a dependency 
signal from the output of section 22825 to the input of the 
sync block 2830. This signal would visually show the execu 
tion dependency and eliminate the need to explicitly pre-sort 
sync blocks last before sorting the graph defined by the 
blocks. 
0.137 If the Spawn block were not present, the model in 
FIG. 28 would produce an error when the model is analyzed 
by the simulation/execution engine. 
0.138. In addition, to having the Synchronization block 
synchronize threads, the Synchronization block may also 
include a timeout threshold, wherein if the subgraph does not 
complete execution before the threshold is reached an erroris 
detected. The error condition may be to stop execution and 
report an error or the spawn block can produce an error signal 
that is used by other blocks to programmatically take correc 
tive action, thus ensuring the model continues to execute. 
0139 Explicit execution control description thus far has 
primarily focused on time-based graphical models such as the 
block diagrams found within Simulink. Explicit execution 
control can apply to many different graphical modeling envi 
ronments, including, but not necessarily limited to, discrete 
event such as the models found within SimEvents and data 
flow modeling environments. One difference between data 
flow and time-based graphical models is that in most data flow 
modeling environments, the execution of blocks is defined by 
data availability rather than a time hit as in time-based sys 
tems. In a data flow model, control signals can be used to 
execute subgraphs and within the Subgraphs data dependen 
cies are honored using the capabilities and techniques 
described herein. In addition, the other capabilities including 
explicit signatures for components via Control Signal Proxy 
and Control Signal Proxy Adaptor blocks, threading, and data 
sync block, etc. are suitable for Such environments. 
0140 FIG. 29 illustrates exemplary processing that can be 
performed using embodiments of the invention. Referring to 
FIG. 29, a time-based graphical model may be provided and 
may consist of a set of blocks connected by data signal lines 
(act 2905). Each block defines a dynamic system that is 
characterized by a set of equations defined by System theory 
including but not limited to initialization, pre execute, out 
put, update, derivative, termination run-time functions. The 
model may be converted into an executable form to analyze 
the model or compile it (act 2910). Model compilation con 
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sists of sorting the blocks according to data dependencies. In 
an embodiment, sorting may be performed using a variant of 
depth first sorting that handles strongly connected compo 
nents. Using the compiled information, the model may be 
linked via a link phase that generates block function execu 
tion lists from the sorted-list, one for each block run-time 
function of a given rate (sample time) (act 2915). 
0141 Before running a simulation or generating code, the 
initialize functions are called to setup the system state. In an 
interpretive simulation, the block run-time functions are 
executed in a simulation loop using the block function execu 
tion lists, where the output functions are executed first, and 
then the update functions for discrete states are executed (act 
2920). Finally integration of the continuous states is com 
puted by integrating the derivatives and time is advanced. 
0142. The addition of control signals to a time-based 
graphical model is handled during compilation by ignoring 
these signals for the block Sorting based on data dependen 
cies. Each control signal initiator is provided with objects it 
can use to run functions on the connected Subgraph. For 
example a Stateflow chart with a function-call control signal 
output may be connected to a Function-Call Split block. The 
chart will be provided with an object that can be used to run 
the various runtime methods associated with the control sig 
nal. If the Function-Call Split block is connected to a Func 
tion-Call Subsystems, then the object will aggregate the run 
time methods of both subsystems. 
0143. In stead of using an interpretive simulation, gener 
ated code can by produced from the graphical model (act 
2925). Code generation is performed by using the sorted list 
and the results of initialization to create an intermediate rep 
resentation that is transformed to generated code such as C or 
C++. Alternatively, hardware can be synthesized from the 
model by producing code that conforms to a hardware 
description language HDL Such as Verilog. 
014.4 FIG. 30 illustrates an exemplary computer architec 
ture that can be used to implement computer 3000. FIG.30 is 
an exemplary diagram of an entity corresponding to computer 
3000. As illustrated, the entity may include a bus 3010, pro 
cessing logic 3020, a main memory 3030, a read-only 
memory (ROM) 3040, a storage device 3050, an input device 
3060, an output device 3070, and/or a communication inter 
face 3080. Bus 3010 may include a path that permits commu 
nication among the components of the entity. 
0145 Processing logic 3020 may include a processor, 
microprocessor, or other types of processing logic that may 
interpret and execute instructions. In one implementation, 
processing logic 3020 may include a single core processor or 
a multi-core processor. In another implementation, process 
ing logic 3020 may include a single processing device or a 
group of processing devices, such as a processor cluster or 
computing grid. In still another implementation, processing 
logic 3020 may include multiple processors that may be local 
or remote with respect each other, and may use one or more 
threads while processing. 
0146 Main memory 303.0 may include a random access 
memory (RAM) or another type of dynamic storage device 
that may store information and instructions for execution by 
processing logic 3020. ROM 3040 may include a ROM 
device or another type of static storage device that may store 
static information and/or instructions for use by processing 
logic 3020. Storage device 3050 may include a magnetic, 
Solid state and/or optical recording medium and its corre 
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sponding drive, or another type of static storage device that 
may store static information and/or instructions for use by 
processing logic 3020. 
0147 Input device 3060 may include logic that permits an 
operator to input information to the entity, such as a keyboard, 
a mouse, a pen, a touchpad, an accelerometer, a microphone, 
Voice recognition, camera, neural interface, biometric mecha 
nisms, etc. Output device 3070 may include a mechanism that 
outputs information to the operator, including a display, a 
printer, a speaker, etc. Communication interface 3080 may 
include any transceiver-like logic that enables the entity to 
communicate with other devices and/or systems. For 
example, communication interface 3080 may include mecha 
nisms for communicating with another device or system via a 
network. 
0148. The entity depicted in FIG. 30 may perform certain 
operations in response to processing logic 3020 executing 
Software instructions contained in a computer-readable 
medium, such as main memory 3030. A computer-readable 
medium may be defined as a physical or logical memory 
device. The software instructions may be read into main 
memory 3030 from another computer-readable storage 
medium, such as storage device 3050, or from another device 
via communication interface 3080. The software instructions 
contained in main memory 303.0 may cause processing logic 
3020 to perform processes described herein when the soft 
ware instructions are executed on processing logic. Alterna 
tively, hardwired circuitry may be used in place of or in 
combination with software instructions to implement pro 
cesses described herein. Thus, implementations described 
hereinare not limited to any specific combination of hardware 
circuitry and Software. 
0149. Although FIG. 30 shows exemplary components of 
the entity, in other implementations, the entity may contain 
fewer, different, or additional components than depicted in 
FIG. 30. In still other implementations, one or more compo 
nents of the entity may perform one or more tasks described 
as being performed by one or more other components of the 
entity. 
0150. One or more embodiments of the invention may be 
implemented in a distributed environment. FIG.31 illustrates 
an example of a distributed environment 3100 that may be 
configured to implement one or more embodiments of the 
invention. Referring to FIG. 31, environment 3100 may con 
tain various entities including computing device 3000, target 
environment 3110, service provider 3120, cluster 3130, and 
network 3140. Note that the distributed environment 3100 is 
just one example of a distributed environment that may be 
used with embodiments of the invention. Other distributed 
environments that may be used with embodiments of the 
invention may contain more entities, fewer entities, entities in 
arrangements that differ from the arrangement illustrated in 
FIG. 31. Moreover, the distributed environments may be con 
figured to implement various cloud computing frameworks. 
0151. Details of computing device 3000 were described 
above with respect to FIG. 30. In distributed environment 
3100, computing device 3000 may be configured to, among 
other things, exchange information (e.g., data) with other 
entities on network 3140 (e.g., target environment 3110, ser 
vice provider 3120, and cluster 3130). Computing device 
3000 may interface with the network 3140 via communica 
tion interface 180. 
0152 Target environment 3110 may be configured to 
execute and/or interpreta compiled version of a model, which 
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may be generated in or otherwise available to the distributed 
environment 3100. The network3140 may include a commu 
nication network capable of exchanging information between 
the entities in the network 3140. The network 3140 may 
include digital and/or analog aspects. The information may 
include machine-readable information having a format that 
may be adapted for use, for example, in the network 3140 
and/or with one or more entities in the network 3140. For 
example, the information may be encapsulated in one or more 
packets that may be used to transfer the information through 
the network 3140. 
0153 Information may be exchanged between entities 
using various network protocols, such as, but not limited to, 
the Internet Protocol (IP), Asynchronous Transfer Mode 
(ATM), Synchronous Optical Network (SONET), the User 
Datagram Protocol (UDP), Transmission Control Protocol 
(TCP), Institute of Electrical and Electronics Engineers 
(IEEE) 802.11, etc. 
0154 The network 3140 may include various network 
devices, such as gateways, routers, Switches, firewalls, serv 
ers, repeaters, address translators, etc. Portions of the network 
3140 may be wired (e.g., using wired conductors, optical 
fibers, etc.) and/or wireless (e.g., using free-space optical 
(FSO), radio frequency (RF), acoustic transmission paths, 
etc.). Portions of network 3140 may include a substantially 
open public network, such as the Internet. Portions of network 
3140 may include a more restricted network, such as a private 
corporate network or virtual private network (VPN). 
(O155 It should be noted that implementations of networks 
and/or devices operating on networks described hereinare not 
limited with regards to, for example, information carried by 
the networks, protocols used in the networks, and/or the 
architecture/configuration of the networks. 
0156 Service provider 3120 may include logic that makes 
a service available to another entity in the distributed envi 
ronment 3100. Service provider 3120 may also include a 
server operated by, for example, an individual, a corporation, 
an educational institution, a government agency, and so on, 
that provides one or more services to a destination, such as 
computing device 3000. The services may include software 
containing computer-executable instructions that implement 
one or more embodiments of the invention or portions 
thereof, and may be executed, in whole or in part, by (1) a 
destination, (2) the service provider 3120 on behalf of the 
destination, or (3) Some combination thereof. 
0157 For example, in an embodiment, service provider 
3120 may provide one or more subscription-based services 
that may be available to various customers. The services may 
be accessed by a customer via network 3140. The customer 
may access the services using a computer system, such as 
computing device 3000. The services may include services 
that implement one or more embodiments of the invention or 
portions thereof. Service provider 3120 may limit access to 
certain services based on, e.g., a customer service agreement 
between the customer and service provider 3120. 
0158. The service agreement may allow the customer to 
access the services that may allow the customer to build, 
execute, and/or analyze a model. Such as model 300, as 
described above. The service agreement may include other 
types of arrangements, such as certain fee-based arrange 
ments or restricted access arrangements. For example, a cus 
tomer may pay a fee which provides the customer unlimited 
access to a given package of services for a given time period 
(e.g., per minute, hourly, daily, monthly, yearly, etc.). For 
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services not included in the package, the customer may have 
to pay an additional fee in order to access the services. Still 
other arrangements may be resource-usage based. For 
example, the customer may be assessed a fee based on an 
amount of computing resources and/or network bandwidth 
used. 

0159) Cluster 3130 may include a number of units of 
execution (UEs)3132 that may perform processing of one or 
more embodiments of the invention or portions thereof on 
behalf of computing device 3000 and/or another entity, such 
as service provider 3120. The UEs 3132 may reside on a 
single device or chip or on multiple devices or chips. For 
example, the UEs 3132 may be implemented in a single ASIC 
or in multiple ASICs. Likewise, the UEs 3132 may be imple 
mented in a single computer system or multiple computer 
systems. Other examples of UEs 3132 may include FPGAs, 
CPLDs, ASIPs, processors, multiprocessor systems-on-chip 
(MPSoCs), graphic processing units, microprocessors, etc. 
The UEs 3132 may be configured to perform operations on 
behalf of another entity. 
0160 Exemplary embodiments may include or may be 
implemented in a technical computing environment that 
includes hardware and/or hardware-Software based logic. 
The logic may provide a computing environment that allows 
users to perform tasks related to disciplines. Such as, but not 
limited to, mathematics, science, engineering, medicine, 
business, etc., more efficiently than if the tasks were per 
formed in another type of computing environment, Such as an 
environment that required the user to develop code in a con 
ventional programming language. Such as C++, C, Fortran, 
Pascal, etc. In one implementation, the technical computing 
environment may include a dynamically typed language that 
can be used to express problems and/or solutions in math 
ematical notations familiar to those of skill in the relevant 
arts. For example, the technical computing environment may 
use an array as a basic element, where the array may not 
require dimensioning. These arrays may be used to Support 
array programming in that operations can apply to an entire 
set of values, such as values in an array. Array programming 
may allow array based operations to be treated as a high-level 
programming technique or model that lets a programmer 
think and operate on whole aggregations of data without 
having to resort to explicit loops of individual non-array, i.e., 
Scalar operations. 
0161 The technical computing environment may further 
be adapted to perform matrix and/or vector formulations that 
can be used for data analysis, data visualization, application 
development, simulation, modeling, algorithm development, 
etc. These matrix and/or vector formulations may be used in 
many areas, such as statistics, finance, image processing, 
signal processing, control design, life Sciences, education, 
discrete event analysis and/or design, state based analysis 
and/or design, etc. 
0162 The technical computing environment may further 
provide mathematical functions and/or graphical tools (e.g., 
for creating plots, Surfaces, images, Volumetric representa 
tions, etc.). In one implementation, the technical computing 
environment may provide these functions and/or tools using 
toolboxes (e.g., toolboxes for signal processing, image pro 
cessing, data plotting, parallel processing, optimization, etc.). 
In another implementation, the technical computing environ 
ment may provide these functions as block sets (e.g., an 
optimization block set). In still another implementation, the 
technical computing environment may provide these func 
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tions in another way, Such as via a library, etc. The technical 
computing environment may be implemented as a text based 
environment, a graphically based environment, or another 
type of environment, such as a hybrid environment that is both 
text and graphically based. 
0163 For example, a text-based embodiment may imple 
ment the technical computing environment using one or more 
text-based products. For example, a text-based technical 
computing environment (TCE), may be implemented using 
products such as, but not limited to, MATLAB(R) by The 
MathWorks, Inc.; Octave; Python; Comsol Script; MATRIXx 
from National Instruments; Mathematica from Wolfram 
Research, Inc.; Mathcad from Mathsoft Engineering & Edu 
cation Inc.; Maple from Maplesoft; Extend from Imagine 
That Inc.; Scilab from The French Institution for Research in 
Computer Science and Control (INRIA); Virtuoso from 
Cadence; or Modelica or Dymola from Dynasim. The text 
based TCE may support one or more commands that Support 
remote processing using one or more units of execution or 
other types of remote processing devices. 
0164. A graphically-based embodiment may implement 
the technical computing environment in a graphically-based 
technical computing environment using products such as, but 
not limited to, Simulink(R, Stateflow(R, SimEventsTM, etc., by 
The MathWorks, Inc.; VisSim by Visual Solutions; Lab 
View(R) by National Instruments; Dymola by Dynasim: Soft 
WIRE by Measurement Computing: WiT by DALSA 
Coreco; VEE Pro or SystemVue by Agilent; Vision Program 
Manager from PPT Vision; Khoros from Khoral Research; 
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from 
Cadence: Rational Rose from IBM; Rhopsody or Tau from 
Telelogic; Ptolemy from the University of California at Ber 
keley; or aspects of a Unified Modeling Language (UML) or 
SysML environment. The graphically-based TCE may sup 
port remote processing using one or more units of execution 
or other types of remote processing devices. Implementations 
may provide a modeling environment that allows states to be 
implicitly reset while a model executes. 
0.165. The foregoing description of exemplary embodi 
ments of the invention provides illustration and description, 
but is not intended to be exhaustive or to limit the invention to 
the precise form disclosed. Modifications and variations are 
possible in light of the above teachings or may be acquired 
from practice of the invention. For example, while a series of 
acts has been described with regard to FIG.29, the order of the 
acts may be modified in other implementations consistent 
with the principles of the invention. Further, non-dependent 
acts may be performed in parallel. 
0166 In addition, implementations consistent with prin 
ciples of the invention can be implemented using devices and 
configurations other than those illustrated in the figures and 
described in the specification without departing from the 
spirit of the invention. Devices and/or components may be 
added and/or removed from the implementations of FIGS. 30 
and 31 depending on specific deployments and/or applica 
tions. Further, disclosed implementations may not be limited 
to any specific combination of hardware. Further, certain 
portions of the invention may be implemented as “logic' that 
performs one or more functions. This logic may include hard 
ware, Such as hardwired logic, an application-specific inte 
grated circuit, a field programmable gate array, a micropro 
cessor, software, or a combination of hardware and software. 
0167. No element, act, or instruction used in the descrip 
tion of the invention should be construed as critical or essen 
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tial to the invention unless explicitly described as such. Also, 
as used herein, the article “a” is intended to include one or 
more items. Where only one item is intended, the term “one' 
or similar language is used. Further, the phrase “based on as 
used herein is intended to mean “based, at least in part, on 
unless explicitly stated otherwise. 
0168 Headings and sub-headings used herein are to aid 
the reader by dividing the specification into Subsections. 
These headings and Sub-headings are not to be construed as 
limiting the scope of the invention or as defining the inven 
tion. 
0169. The scope of the invention is defined by the claims 
and their equivalents. 
What is claimed is: 
1. A computer-implemented method in a graphical model 

ing environment, the method comprising: 
providing a control initiator, where the control initiator 

provides a control signal to a control signal splitter, 
providing a first Subgraph in the modeling environment, 

where: 
the first Subgraph includes one or more blocks, and 
the first Subgraph is connected to the control signal split 

ter; 
providing a second subgraph in the modeling environment, 

where: 
the second subgraph includes one or more blocks, and 
the second subgraph is connected to the control signal 

splitter; 
executing the first subgraph on a first thread to produce a 

first result when the first subgraph receives the control 
signal from the control signal splitter; and 

executing the second subgraph on a second thread to pro 
duce a second result when the second subgraph receives 
the control signal from the control signal splitter. 

2. The method of claim 1, further comprising: 
providing a data synchronization block; and 
maintaining data integrity between the first thread and the 

second thread using the data synchronization block. 
3. The method of claim 1, where the first thread is a calling 

thread and the second thread is a new thread called by the 
calling thread. 

4. The method of claim 1, where the second thread is the 
calling thread and the first thread is a new thread called by the 
calling thread. 

5. The method of claim 1, further comprising: 
providing a calling thread. 
6. The method of claim 5, further comprising: 
calling the first thread using the calling thread; and 
calling the second thread using the calling thread. 
7. The method of claim 1, further comprising a second 

control signal splitter, the second control signal splitter con 
nected to the control signal splitter. 

8. The method of claim 1, where the control signal splitter 
splits the control signal into more than two output control 
signals. 

9. The method of claim 1, where the control initiator is a 
state chart. 

10. The method of claim 1, where the model is a time-based 
model, a data flow model, or an event-based model. 

11. The method of claim 1, where the control signal is a 
function-call or an action signal. 

12. The method of claim 1, where the model includes one 
or more data signals. 
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13. A computer-implemented method in a graphical mod 
eling environment, the method comprising: 

providing a first control initiator, where the first control 
initiator is connected to a first Subgraph by a first control 
signal; 

executing the first Subgraph in a first thread; 
providing a second control initiator, where the second con 

trol initiator is connected to a second Subgraph by a 
second control signal; 

executing the second subgraph in a second thread; and 
interacting with a data synchronization block, where: 

the interacting allows a result from the first Subgraph to 
be used by the second subgraph when the second 
Subgraph is executing, and 

the data synchronization block waits for the first thread 
to finish executing before allowing the first result to be 
used by the second Subgraph when the second Sub 
graph is executing. 

14. The method of claim 13, where the graphical modeling 
environment includes a graphical representation that repre 
sents the first control initiator and the second control initiator. 

15. The method of claim 14, where the graphical represen 
tation is a block. 

16. The method of claim 13, where graphical modeling 
environment further includes a splitter block, where the split 
ter block connects the first control initiator to the first sub 
graph and the second control initiator to the second Subgraph. 

17. The method of claim 13, where the synchronization 
block includes a timeout threshold. 

18. The method of claim 17, further comprising: 
producing an error when the timeout threshold is exceeded. 
19. The method of claim 13, where the control initiator is a 

state chart. 
20. The method of claim 13, where the model is a time 

based model, a data flow model, or an event-based model. 
21. The method of claim 13, where the control signal is a 

function-call or an action signal. 
22. The method of claim 13, where the model includes one 

or more data signals. 
23. A computer-implemented method in a graphical mod 

eling environment, the method comprising: 
providing a spawn control initiator, the spawn control ini 

tiator executing on a main thread in the modeling envi 
ronment, 

providing a subgraph in the modeling environment, where: 
the Subgraph includes one or more blocks, and 
the Subgraph is connected to the spawn control initiator 

via a control signal; 
directly providing inputs to the Subgraph; and 
executing the Subgraph on a separate thread, the separate 

thread differing from the main thread, the executing 
producing a result. 

24. The method of claim 23, where the modeling environ 
ment further includes: 

a synchronization block, connected to the output of the 
Subgraph the synchronization block waiting for the 
separate thread to finish executing before allowing the 
result to be used by the main thread. 

25. The method of claim 23, where the modeling environ 
ment produces an error when the result is used in the main 
thread without first passing through a synchronization block. 

26. The method of claim 25, where the synchronization 
block is the last block executed on the main thread. 
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27. The method of claim 25, where the synchronization 
block includes additional inputs, the additional inputs depict 
ing when the result is needed by the main thread. 

28. The method of claim 25, where the synchronization 
block includes a timeout threshold. 

29. The method of claim 28, further comprising: 
producing an error when the timeout threshold is exceeded. 
30. The method of claim 23, where the control initiator is a 

state chart. 
31. The method of claim 23, where the model is a time 

based model, a data flow model, or an event-based model. 
32. The method of claim 23, where the control signal is a 

function-call or an action signal. 
33. The method of claim 23, where the model includes one 

or more data signals. 
34. A computer-readable medium holding executable 

instructions that when executed on a processor control Sub 
graph execution in a model, the medium holding one or more 
instructions for: 

providing a control initiator, where the control initiator 
provides a control signal to a control signal splitter, 

providing a first Subgraph in the modeling environment, 
where: 
the first Subgraph includes one or more blocks, and 

the first subgraph is connected to the control signal splitter; 
providing a second subgraph in the modeling environment, 

where: 
the second subgraph includes one or more blocks, and 
the second subgraph is connected to the control signal 

splitter; 
executing the first Subgraph on a first thread to produce a 

first result when the first subgraph receives the control 
signal from the control signal splitter; and 

executing the second subgraph on a second thread to pro 
duce a second result when the second subgraph receives 
the control signal from the control signal splitter. 
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35. A computer-readable medium holding executable 
instructions that when executed on a processor control Sub 
graph execution in a model, the medium holding one or more 
instructions for: 

providing a first control initiator, where the first control 
initiator is connected to a first Subgraph by a first control 
signal; 

executing the first Subgraph in a first thread; 
providing a second control initiator, where the second con 

trol initiator is connected to a second Subgraph by a 
second control signal; 

executing the second subgraph in a second thread; and 
interacting with a data synchronization block, where: 

the interacting allows a result from the first Subgraph to 
be used by the second subgraph when the second 
Subgraph is executing, and 

the data synchronization block waits for the first thread 
to finish executing before allowing the first result to be 
used by the second Subgraph when the second Sub 
graph is executing. 

36. A computer-readable medium holding executable 
instructions that when executed on a processor control execu 
tion of a Subgraph in a model, the medium holding one or 
more instructions for: 

providing a spawn control initiator, the spawn control ini 
tiator executing on a main thread in the modeling envi 
ronment, 

providing a subgraph in the modeling environment, where: 
the Subgraph includes one or more blocks, and 
the subgraph is connected to the spawn control initiator 

via a control signal; 
directly providing inputs to the Subgraph; and 
executing the Subgraph on a separate thread, the separate 

thread differing from the main thread, the executing 
producing a result. 


