发明名称
纤维素竹炭纤维的溶剂法制备和应用

摘要
本发明涉及一种纤维素竹炭纤维的溶剂法制备和应用。制备：(1) 将粉碎的纤维素、竹炭粉、助剂与不同液体混合均匀，在35～160℃温度下溶解、脱泡1～120小时，形成稳定浓度的溶液，竹炭粉的混合质量比为0.01～20%，助剂的添加量为0～10%；(2) 过滤、脱泡后，纺丝，凝固浴固化；(3) 再经过拉伸、水洗、漂白，再经过上油、干燥工序，得纤维素竹炭共混复合纤维。适用于服装、装饰、医用纺织品领域。本发明中使用不同液体生产效率高且易于回收，符合绿色生产的要求，制得的复合纤维具有良好的机械强度、机械性能，该复合纤维制成的织物能吸湿、除臭抗菌、蓄热保温、远红外与负离子释放、屏蔽电磁辐射等。
1. 一种纤维素竹炭纤维的溶剂法制备，包括下列步骤：
 （1）将粉碎的纤维素、竹炭粉、助剂与离子液体混合均匀，在 35~160℃温度下溶解、脱泡 1~120 小时，形成固体含量为 3~40% 的均一稳定纺丝溶液，竹炭粉的混合质量比为 0.01~20%，助剂的添加质量比为 0~10%；
 （2）经过滤、脱泡后，纺丝，凝固浴固化；
 （3）再经拉伸、水洗、漂白，再经过上油、干燥工序，得纤维素竹炭共混复合纤维。
2. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述粉碎的纤维素是将聚合度在 300~2500，α-纤维素含量 90~100% 的天然纤维素、细菌纤维素、棉花或醋酸纤维素经过机械粉碎。
3. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述竹炭粉是将竹炭粉经超细化后所得，粒度 50~400nm。
4. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述助剂是脂肪酸、硅烷偶联剂或钛酸酯。
5. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述离子液体是由阳离子和阴离子组成，阳离子为取代基是氢、C1~C6 的烷基、乙烯基、丙烯基、丁烯基、羟乙基、羟基、烷氧基中的一种或几种的烷基季铵离子、烷基季磷离子、烷基咪唑离子或烷基吡啶离子；
 所述的阴离子为卤素离子、BF4-、PF6-、SCN-、CN-、OCN-、CNO-、CF3SO3-、CF3COO-、(CF3SO3)2N-或(CF3SO2)2Cl-中的一种。
6. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述步骤（2）中的纺丝是湿法纺丝、干喷湿纺或熔喷湿纺进行纺丝，其中凝固浴为水或 0~60% 的离子液体水溶液，凝固浴温度为 0~90℃，纺丝速度为 5~150 米/分。
7. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述步骤（3）中拉伸是纤维经过紧张拉伸、喷头拉伸、塑化拉伸、空气浴后拉伸或回缩中的一种或几种组合进行拉伸，总拉伸率为 3~200%。
8. 根据权利要求 1 所述的纤维素竹炭纤维的溶剂法制备，其特征在于：所述复合纤维是共混短纤维或长丝，纤维强度是 2~5 cN/dtex，纤维的截面形状是常规或异形。
纤维素竹炭纤维的溶剂法制备和应用

技术领域

本发明属纤维素竹炭纤维领域，特别是涉及一种纤维素竹炭纤维的溶剂法制备和应用。

背景技术

自然界中的所有物质中纤维素不仅储备量大，而且有巨大的恢复量。目前只有极少的纤维素被制成纤维。用于制造纤维和薄膜的纤维素量，还不及世界工业生产的纤维素产量的4%。随着人类对自然界认识的不断深入以及石油、煤、天然气等资源的日益短缺，纤维素的利用还将逐渐扩大。纤维素纤维由于原料纤维素能被生物分解，安全燃烧转化成水蒸气和二氧化碳，由废弃物引起的破坏环境问题少。因此发展纤维素纤维是十分必要的。其中，制造再生纤维素纤维的半制品——浆粕的原材料来源也相当广泛，从优质的针叶木和棉短绒到阔叶木、速生材、竹子以及各种草本植物（如甘蔗渣、芦苇、黄麻杆等）。

目前生产纤维素纤维主要采用的是粘胶法，生产过程冗长而复杂，能耗和操作费用高，并存在废水、废渣的污染、处理回收等项问题。而离子液体作为一种新型的纤维素溶剂，在较宽的范围内以液态存在，且具有良好的热稳定性，无毒、无挥发性，有利于环境保护和操作人员健康。可以通过选择适宜的离子液体组合和改变其物理化学性质，是许多有机物、无机物和高分子材料的良溶剂。许多离子液体对纤维素的溶解度很大，有些甚至达到35%；而采用纤维素黄化法生产粘胶纤维所采用的纤维素浓度不超过10%，因此采用离子液体生产纤维素纤维可以大大提高生产效率。

竹炭内无数的孔内表面积，可吸附杂质，毒素与水份，甚至具有远红外线释放作用。因此，竹炭具有优异的吸湿性、调湿性、除臭抗菌、蓄热保温、远处及负离子释放、屏蔽电磁辐射等特性。另处竹子作为一种优质天然材料，在中国被越来越多地应用到建筑、室内装修乃至制作纤维和衣料等方面。因此，开发竹炭纤维素纤维具有现实意义。

目前见于报道的纤维素竹炭纤维报道主要是采用粘胶法生产：如中国专利200320110113.9、200610037895.1、200510102775.0 公开了一种生产竹炭粘胶纤维的方法。

发明内容

本发明旨在提供一种纤维素竹炭纤维的溶剂法制备和应用，通过以离子液体作为纤维素的溶剂和竹炭粉的分散剂，制备纤维素/竹炭粉复合纤维，解决了目前采用粘胶法生产纤维素纤维所带来的环境污染问题，并带给纤维素释放负离子的功能，满足生产需要。

本发明的一种纤维素竹炭纤维的溶剂法制备，包括下列步骤：
（1）将粉碎的纤维素、木炭粉、助剂与离子液体混合均匀，在35~160℃温度下溶解、脱泡1~120小时，形成固含量为3~30%的均匀稳定纺丝溶液，木炭粉的混合质量比为0.01~20%，助剂的添加质量比为0~10%，微波辐射、施加一定的真空度等有利于浆粒的溶解；
（2）经过滤、脱泡后，采用湿法纺丝、干喷湿纺法或熔喷湿纺法进行纺丝，凝固浴固化，其中凝固浴为水或0~60%的离子液体水溶液，凝固浴温度为0~90℃，纺丝速度为5~150米/分；
（3）再经拉伸、水洗、漂白，以彻底除去纤维中的各种杂质，再经过上油、干燥等工序，得到纤维素木炭共混复合纤维。

所述粉碎的纤维素是将聚合度在300~2500、α-纤维素含量90%~100%的天然纤维素(包括竹浆粕、木浆粕、棉浆粕、芦苇浆、甘蔗渣浆、麻杆浆等)、细菌纤维素、棉花、醋酸纤维素等经过机械粉碎，浆粕经过活化处理或不做处理。

所述竹炭粉是将竹炭粉经超细化后所得，粒度50~400nm。
所述助剂是三聚酸、硅烷偶联剂或钛酸酯。

所述离子液体是由阳离子和阴离子组成，阳离子为取代基是氢、C1~C6的烷基、乙烯基、丙烯基、丁烯基、羟基、羟基、烷氧基中的一种或几种的烷基季铵离子、烷基季磷离子、烷基咪唑离子或烷基吡啶离子；所述的阴离子为卤素离子、BF4-、PF6-、SCN-、CN-、OCN-、CNO-、CF3SO3-、CF3COO-、(CF3SO2)2N-或(CF3SO2)2Cl-中的一种。

所述拉伸是纤维经过紧拉拉伸、喷头拉伸、塑化拉伸、空气浴后拉伸或回缩等一种或几种组合进行拉伸，总拉伸率为3~200%。

所述复合纤维包括共混短纤维和长丝，纤维强度是2~5cN/dtex，纤维的截面形状有常规和异形。

本发明的纤维素木炭纤维适用于服装、装饰、医用纺织品领域。

本发明的有益效果：
（1）采用离子液体制备纤维素/木炭复合纤维，避免了粘胶法冗长而复杂的生产过程，生产过程明显缩短，工艺能耗和操作费用低，而离子液体作为一种新型的纤维素溶剂，无毒无害、无挥发性，有利于环境保护和操作人员健康，离子液体的水溶液还可用作凝固液，且离子液体易于回收，符合绿色生产的要求；
（2）本发明制备得到的纤维素/木炭粉复合纤维具有良好的机械强度，其机械性能与常规粘胶纤维相当；
（3）纤维素/竹炭粉复合纤维制成的织物能吸湿、调湿、除臭抗菌、蓄热保温、远红外与负离子释放、屏蔽电磁辐射等。

具体实施方式

下面结合具体实施例，进一步阐述本发明。应理解，这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解，在阅读了本发明讲授的内容之后，本领域技术人员可以对本发明作各种改动或修改，这些等价形式同样落入本申请所附权利要求书所限定的范围。

每个实施例中的份数是重量份数。

实施例 1

将粉碎的 9 份天然纤维素、1 份竹炭粉与 100 份[BMMIM]Cl（1-丁基-3-甲基咪唑盐酸盐）离子液体混合均匀，在 45℃下搅拌 24 小时，得到纺丝液。

纺丝溶液经过滤、脱泡后，经多孔喷丝板进入到含 5%离子液体的凝固浴中，凝固浴温度为 25℃。经过 10%的拉伸后，再经水洗、漂白、上油、干燥等程序，纺丝速度为 5 米/分，得到强度为 2.5cN/dtex 的纤维。

实施例 2

将粉碎的 10 份细辛纤维素、0.1 份竹炭粉与 90 份[BMMIM]Cl 离子液体混合均匀，在 100℃下搅拌 120 小时，得到纺丝液。

纺丝溶液经过滤、脱泡后，经多孔喷丝板进入到水凝固浴中，凝固浴温度为 15℃。经过 3%的拉伸后，再经水洗、漂白、上油、干燥等程序，纺丝速度为 20 米/分，得到强度为 3.3cN/dtex 的纤维。

实施例 3

将粉碎的 1 份棉、0.2 份竹炭粉与 3 份[AMIM]Cl（1-烯丙基-3-甲基咪唑盐酸盐）离子液体混合均匀，在 60℃下搅拌 80 小时，得到纺丝液。

纺丝溶液经过滤、脱泡后，经多孔喷丝板进入到含 25%离子液体的凝固浴中，凝固浴温度为 55℃。经过 8%的塑化拉伸后，再经水洗、漂白、上油、干燥等程序，纺丝速度为 30 米/分，得到强度为 2.1cN/dtex 的纤维。