
THE TWO TORT DIT U MULT MAI MARIAN MINUN
US 20180060367A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0060367 A1

IOANNOU et al . (43) Pub . Date : Mar . 1 , 2018

(54) WORKLOAD OPTIMIZED DATA
DEDUPLICATION USING GHOST
FINGERPRINTS

(52) U . S . CI .
CPC . . GO6F 17 / 30303 (2013 . 01) ; G06F 17 / 30336

(2013 . 01)
(71) Applicant : INTERNATIONAL BUSINESS

MACHINES CORPORATION ,
ARMONK , NY (US)

(57) ABSTRACT

(72) Inventors : NIKOLAS IOANNOU , Zurich (CH) ;
ROMAN A . PLETKA , Zurich (CH) ;
CHENG - CHUNG SONG , Tucson , AZ
(US) ; RADU STOICA , Adliswil (CH) ;
SASA TOMIC , Kilchberg (CH) ;
ANDREW D . WALLS , San Jose , CA
(US)

A controller of a data storage system generates fingerprints
of data blocks written to the data storage system . The
controller maintains , in a data structure , respective state
information for each of a plurality of data blocks . The state
information for each data block can be independently set to
indicate any of a plurality of states , including at least one
deduplication state and at least one non - deduplication state .
At allocation of a data block , the controller initializes the
state information for the data block to a non - deduplication
state and , thereafter , in response to detection of a write of
duplicate of the data block to the data storage system ,
transitions the state information for the data block to a
deduplication state . The controller selectively performs data
deduplication for data blocks written to the data storage
system based on the state information in the data structure
and by reference to the fingerprints .

(21) Appl . No . : 15 / 250 , 276
(22) Filed : Aug . 29 , 2016

Publication Classification
(51) Int . Ci .

GOOF 1730 (2006 . 01)

Processor system 102 - 100 Processor system 102

P 104 P 104 P 104 P 104

Local storage 106 Local storage 106

1 / 0 adapter 108
. . . I - 110 . . .

Interface node 122

1 / O adapter 108
. . . 110 . . .

Interface node 122

RAID controller 124 RAID controller 124

Flash card 126 Flash card 126 Flash card 126 Flash card 126

Data storage system 120

Processor system 102

100

Processor system 102

P 104

. . .

P 104

P 104

P 104

P104 . . . P . 104

Patent Application Publication

Local storage 106

Local storage 106

I / O adapter 108

1 / O adapter 108
. . . f110 . . .

. . . I110 . . . Interface node 122

Interface node 122

RAID controller 124

RAID controller 124

Mar . 1 , 2018 Sheet 1 of 12

Flash card 126

Flash card 126

. . .

Flash card 126 OOOO
Flash card 126

Data storage system 120

US 2018 / 0060367 A1

Fig . 1A

10

Ar 110

Interface card 111

Interface card 111

Patent Application Publication

Host side switching fabric 112

Memory 118 Fingerprint index cache 119

Controller 113 Fingerprint Deduplication engine 114 engine 125

Address mapping cache 121

Mar . 1 , 2018 Sheet 2 of 12

Address mapping engine 116

Space reclamation engine 115

To other interface node (s)

Reference counter cache 117

Storage side switching fabric 123

Interface node 122

To RAID controller
Fig . 1B

US 2018 / 0060367 A1

rap2

GPP memory 134

? GPP 132 | -

Gateway 130

Patent Application Publication

Flash controller

Flash controller memory 142

Flash controller 140 ??
Flash controller memory 142

140

NAND flash memory System 150

NAND fash memory System 150

Mar . 1 , 2018 Sheet 3 of 12

Data pages 152

Fingerprint index 154

Reference counters 156

Address mapping data structure 158

| US 2018 / 0060367 A1

Flash card 126 Fig . 10

Patent Application Publication Mar . 1 , 2018 Sheet 4 of 12 US 2018 / 0060367 A1

Added reference counters 156 Pera , 5 / 11 / 2016

Romina

Side 3 NY

Address mapping data structure 158 Address MD page 300

E

304

Metadata page header 302 < input block address , output block address , - ABS > < input block address , output block address , ABS >

Patent Application Publication

User data 200

File 202a

File 202b

Input

blocks A B C D E CIA F BG

< input block address , output block address , ABS >

Input block address

< Output block
address , ABS >

Address MD page 300

Output blocks

output to leto

Mar . 1 , 2018 Sheet 5 of 12

Storage array 204

Metadata page header 302 < input block address , output block address , ABS > < input block address , output block address , ABS > < input block address , output block address , ABS >

US 2018 / 0060367 A1

Fig . 2

Fig . 3

Fingerprint index 154 Fingerprint MD page 400

Patent Application Publication

LE404
Metadata page header 402 < fingerprint , FPS , block address > < fingerprint , FPS , block address > II < fingerprint , FPS , block address >

Fingerprint

< FPS , block address >

Mar . 1 , 2018 Sheet 6 of 12

Fingerprint MD page 400 Metadata page header 402 < fingerprint , FPS , block address > < fingerprint , FPS , block address > LT < fingerprint , FPS , block address >

US 2018 / 0060367 A1

Fig . 4

Update 516

Sub - block write 512

Unallocated

Update - in place 504

Patent Application Publication

Full block write

GC removes invalid ghost FPs

Duplicate write FP ghost ? verified (requires data read for verification , no removal of ghost FPs)

510

Block invalidation 530

518

526

GC removes verified FP and ghost FPS

Block overwrite 514

534

Duplicate write FP ghost ? verified (no data read) 520

Non - shared & unique FP

Invalid 508

Shared & Dedupe 506

Mar . 1 , 2018 Sheet 7 of 12

Duplicate write , overwrite 522

502

Block invalidation

Block invalidation sets RC to 1
GC removes ghost FPS FP verified ? ghost

532

528

LRC = = 0 after block invalidation . 524

US 2018 / 0060367 A1

Fig . 5

Sub - block write 612

Update write 616 Update - in

Patent Application Publication

Unallocated 600

place 604

Clean block and remove all FPS 634

GC removes all invalid ghost FPS 618

Block invalidation 630

Duplicate write FP ghost ? verified (requires data verification , removal of invalid ghost FPs)
626

Full block write 610

Update write 614

Duplicate write FP ghost ? verified

Mar . 1 , 2018 Sheet 8 of 12

620

Invalid 608

Non - shared & unique FP 602

Shared & dedupe 606

Duplicate write , update write 622

Block invalidation 632

RC = = 1 after block invalidation FP verified ? ghost (might require data read) 628

RC = = 0 after block invalidation
624

Fig . 6

US 2018 / 0060367 A1

Sub - block write 712

Update write 716

Unallocated 700

Update - in place 704

Patent Application Publication

Block invalidation

Full block write

730

Clean block and remove all FPs 734

Duplicate write FP ghost ? verified (requires data verification , removal of invalid ghost FPS)
726

710

Sub - block or unique update 714

Duplicate write FP ghost ? verified 720

Mar . 1 , 2018 Sheet 9 of 12

Invalid 708

Non - shared & unique FP 702

Shared & dedupe 706

Duplicate write , overwrite 722

RC = = 1 after block invalidation FP verified ? ghost (requires data read)

Block invalidation 732

728

RC = = 0 after block invalidation
724

US 2018 / 0060367 A1

Fig . 7A

Sub - block write

Update write

712

716

Unallocated 700

Update - in place 704

Patent Application Publication

Full block write

Block invalidation 730 730

Clean block and remove all FPS 734

710

Update Update write 714

Duplicate write FP ghost ? verified 720
verified

Sharee

Non - shared & unique FP 702

Invalid 708

Shared & dedupe 706

Mar . 1 , 2018 Sheet 10 of 12

Duplicate write ,
write 722

Block invalidation 732
RC = = 0 after block invalidation

724

US 2018 / 0060367 A1

Fig . 7B

Sub - block write 812

Sub - block write 815 Update - in - place & no valid FP 804

Patent Application Publication

Unallocated 800
Block invalidation 830

Sub - block write 827

Clean block and remove verified FP 834

Full block write 810

Full block write / background FP computation 817

ble
Duplicate write / background or inline FP match FP ghost ? verified (requires data read) 820

Mar . 1 , 2018 Sheet 11 of 12

Invalid

Update - in - place & valid FP

Shared & dedupe 806

Duplicate write , overwrite 822

808

802

Block invalidation

RC = = 1 after invalidation
FP verified ? ghost

832

Full block write 818

828

RC = = 0 after block invalidation
824

US 2018 / 0060367 A1

Fig . 8

Snapshot / xcopy / clone

Block update 918

Snapshot / copy / clone 942

950

Update - in - place 904

Shared & ghost FPS 909

Patent Application Publication Patent Application Publicatio

Sub - block write 912

L

Duplicate block write FP ghost ? verified (requires data read) 956

946 946 RC = = 1 after block invalidation

GC removes invalid ghost FPS

Block invalidation 934

916

Block invalid

Duplicate block write FP ghost ? verified (requires data read) 922

Unallocated

Clean block & remove all FPS

Invalid

RC = = 0 after block invalidation 930

Shared & dedupe 906

Duplicate write , overwrite , Snapshot / xcopy clone 924

900

908

938

Mar . 1 , 2018 Sheet 12 of 12

Block update 914 914

Block invalidation

Full block write

932

Duplicate block write FP ghost ? verified 920

Duplicate block write FP ghost ? verified

910

RC = = 1 after block invalidation FP verified ? ghost removal of alll ghost FPS

952

Snapshot / xcopy / clone 940

936

Non - shared & unique FP

Shared & unique FP

902

907

RC = = 1 after

- block invalidation
944

US 2018 / 0060367 A1

Snapshot / xcopy / clone 948

Fig . 9

US 2018 / 0060367 A1 Mar . 1 , 2018

WORKLOAD OPTIMIZED DATA
DEDUPLICATION USING GHOST

FINGERPRINTS

BACKGROUND OF THE INVENTION
[0001] This disclosure relates to data processing and stor
age , and more specifically , to management of a data storage
system , such as a flash - based data storage system , to opti
mize data deduplication .
[0002] NAND flash memory is an electrically program
mable and erasable non - volatile memory technology that
stores one or more bits of data per memory cell as a charge
on the floating gate of a transistor or a similar charge trap
structure . In a typical implementation , a NAND flash
memory array is organized in blocks (also referred to as
“ erase blocks ”) of physical memory , each of which includes
multiple physical pages each in turn containing a multiplic
ity of memory cells . By virtue of the arrangement of the
word and bit lines utilized to access memory cells , flash
memory arrays can generally be programmed on a page
basis , but are erased on a block basis .
[0003] As is known in the art , blocks of NAND flash
memory must be erased prior to being programmed with
new data . A block of NAND flash memory cells is erased by
applying a high positive erase voltage pulse to the p - well
bulk area of the selected block and by biasing to ground all
of the word lines of the memory cells to be erased . Appli
cation of the erase pulse promotes tunneling of electrons off
of the floating gates of the memory cells biased to ground to
give them a net positive charge and thus transition the
voltage thresholds of the memory cells toward the erased
state .
[0004] Over thousands of program / erase cycles , the volt
age - induced stress on the NAND flash memory cells
imparted by the program - erase process causes bit error rates
for the data programmed into the NAND flash memory cells
to increase over time and thus limits the useful life of NAND
flash memory . Consequently , it is desirable to reduce the
number of program / erase cycles for NAND flash memory by
decreasing the volume of data written into the NAND flash
memory through data deduplication (i . e . , eliminating storage
of duplicate copies of data) . In addition , deduplication
reduces the cost per effective capacity of flash - based storage
systems and can lower the space utilization of a flash - based
storage system which in turn reduces the internal data
storage overhead such as write amplification .
[0005] In general , during the data deduplication process ,
unique chunks of data (e . g . , data blocks or pages) are
identified and stored within the NAND flash memory . Other
chunks of data to be stored within the NAND flash memory
are compared to stored chunks of data , and when a match
occurs , a reference that points to the stored chunk of data is
stored in the NAND flash memory in place of the redundant
chunk of data . Given that a same data pattern may occur
dozens , hundreds , or even more than thousands of times (the
match frequency may be dependent on a chunk size) , the
amount of data that must be stored can be greatly reduced by
data deduplication .
[0006] A data storage system can perform deduplication
using either or both of an in - line deduplication process and
a background deduplication process . With in - line data dedu
plication , the data storage system determines if incoming
data to be stored duplicates existing data already stored on
the storage media of the data storage system by computing

a hash (also referred to in the art as a “ fingerprint ") of the
incoming data and performing a lookup of the hash in a
metadata data structure . If a match is found in the metadata
data structure , the data storage system stores a reference to
the existing data instead of the incoming data . Some dedu
plication methods may additionally perform a one - to - one
comparison of the old and new data . With background
deduplication , the data storage system stores all incoming
write data to the storage media , and a background process
subsequently searches for and replaces duplicate data with a
reference to another copy of the data . Background data
deduplication can decrease store latency compared to in - line
deduplication because a hash computation and lookup to
determine duplication of data (and optionally a one - to - one
data comparison) do not need to be performed before storing
incoming write data . However , implementing background
data deduplication typically employs resource - intensive
background scanning , and in case the deduplication ratio of
the data is greater than one requires a greater storage
capacity and causes increased wear on the storage media as
compared to data storage systems utilizing in - line dedupli
cation . Conversely , in - line data deduplication requires less
data storage capacity and may reduce wear of the storage
media , but , if not properly managed , can result in an
appreciably higher store latency and in a decreased write
bandwidth .
10007] . Regardless of whether in - line or background dedu
plication is employed , the data storage system is required to
persistently store (e . g . , in NAND flash memory) a large
volume of hashes (“ fingerprints ”) in the metadata data
structure (s) . In addition , in order to achieve reasonably good
performance , data storage systems typically utilize a large
amount of dynamic memory (e . g . , dynamic random access
memory (DRAM)) to enable quick access to the metadata
data structures . However , because in real world systems the
size of the dynamic memory is necessarily limited , it is
typical that portions of the metadata data structures have to
be paged in and out from non - volatile storage , reduced in
size , or completely dropped , which ultimately negatively
impacts overall I / O performance and / or deduplication ratio .
Consequently , the appropriate management of fingerprints
presents an issue that impacts deduplication performance
and thus overall I / O performance .
[0008] U . S . Pat . No . 8 , 392 , 384B1 discloses one technique
for managing fingerprints in which the overall storage
volume of fingerprints is managed to fit those fingerprints
likely to be accessed into a dynamic memory (i . e . , cache) . In
this approach , fingerprints are classified , via binary sam
pling , into sampled and non - sampled types only when the
cache becomes full , and only non - sampled fingerprints are
allowed to be replaced in the cache . In particular , one or
more bits of a fingerprint can be used to decide to which type
the fingerprint belongs , thereby reclassifying sampled
entries into non - sampled ones . In this approach , all finger
prints in the fingerprint index (including those that are
cached) correspond to data blocks presently stored in the
deduplication storage system , meaning that fingerprints of
overwritten (and hence no longer be valid) data are not
retained in the fingerprint index .
[0009] U . S . Pat . No . 9 , 069 , 786B2 discloses another tech
nique for managing fingerprints that utilizes two or more
fingerprint lookup tables to store fingerprints . In this
approach , a first table stores fingerprints that are more likely
to be encountered , and a second (and any additional) tables

US 2018 / 0060367 A1 Mar . 1 , 2018

store fingerprints that less likely to be encountered . Based on
this categorization , inline deduplication is performed for
those fingerprints likely to be encountered , and background
deduplication is performed for those fingerprints less likely
to be encountered . In order to determine which tables should
be searched , attributes indicating how much effort to put into
inline deduplication are associated with data chunks or
groups of data chunks .

in which ghost fingerprints are lazily maintained in both
memory and the bulk storage media ;
[0021] FIG . 8 is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with yet another
embodiment in which ghost fingerprints are maintained in
both memory and the bulk storage media ; and
[0022] FIG . 9 is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with yet another
embodiment that distinguishes between sharing of array
blocks caused by deduplication and sharing of array blocks
attributed to other features supported by the storage system
such as volume snapshots , storage - side copy commands
(e . g . , XCOPY) , or volume clone operations .

BRIEF SUMMARY

DETAILED DESCRIPTION

[0010] In at least one embodiment , a controller of a data
storage system generates fingerprints of data blocks written
to the data storage system . The controller maintains , in a
data structure , respective state information for each of a
plurality of data blocks . The state information for each data
block can be independently set to indicate any of a plurality
of states , including at least one deduplication state and at
least one non - deduplication state . At allocation of a data
block , the controller initializes the state information for the
data block to a non - deduplication state and , thereafter , in
response to detection of a write of duplicate of the data block
to the data storage system , transitions the state information
for the data block to a deduplication state . The controller
selectively performs data deduplication for data blocks
written to the data storage system based on the state infor
mation in the data structure and by reference to the finger
prints .

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0011] FIG . 1A is a high level block diagram of a data
processing environment in accordance with one embodi
ment ;
[0012] FIG . 1B is a more detailed block diagram of an
exemplary interface node of the data storage system
depicted in FIG . 1A ;
[0013] FIG . 1C is a more detailed block diagram of an
exemplary flash card of the data storage system illustrated in
FIG . 1A ;
[0014] FIG . 2 depicts an example of data deduplication in
accordance with one embodiment ;
[0015) FIG . 3 is a more detailed view of the address
mapping data structure of FIG . 1C in accordance with one
embodiment ;
[0016] FIG . 4 is a more detailed view of the fingerprint
index of FIG . 1C in accordance with one embodiment ;
[0017] FIG . 5 is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with one or more
embodiments ;
[0018] FIG . 6 is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with an embodiment
in which ghost fingerprints are stored only in memory ;
[0019] FIG . 7A is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with an embodiment
in which ghost fingerprints are maintained in both memory
and the bulk storage media ;
[0020] FIG . 7B is a state diagram illustrating management
of an array block state (ABS) and fingerprint state (FPS) of
a block of a storage array in accordance with an embodiment

[0023] With reference now to the figures and with par
ticular reference to FIG . 1A , there is illustrated a high level
block diagram of an exemplary data processing environment
100 including a NAND flash - based data storage system and
a controller configured to perform data deduplication
according to the present disclosure . It will be appreciated
upon review of the following description that the specific
architectural details of data processing environment 100
provided herein do not necessarily limit the inventions
disclosed herein and that the disclosed inventions are appli
cable to other data processing environments , including those
employing alternative or additional bulk storage media .
[0024] In the illustrated example , data processing envi
ronment 100 includes one or more hosts , such as a processor
system 102 having one or more processors 104 that process
instructions and data . Processor system 102 may addition
ally include local storage 106 (e . g . , dynamic random access
memory (DRAM) or disks) that may store program code ,
operands and / or execution results of the processing per
formed by processor (s) 104 . In various embodiments , pro
cessor system 102 can be , for example , a mobile computing
device (such as a smartphone or tablet) , a laptop or desktop
personal computer system , a server computer system (such
as one of the POWER® series available from International
Business Machines Corporation) , or a mainframe computer
system . Processor system 102 can also be an embedded
processor system using various processors such as ARM® ,
POWER , Intel X86 , or any other processor combined with
memory caches , memory controllers , local storage , I / O bus
hubs , etc .
[0025] Each processor system 102 further includes an
input / output (I / O) adapter 108 that is coupled directly (i . e . ,
without any intervening device) or indirectly (i . e . , through at
least one intermediate device) to a data storage system 120
via an I / O channel 110 . In various embodiments , an I / O
channel 110 may employ any one or a combination of known
or future developed communication protocols , including , for
example , Fibre Channel (FC) , FC over Ethernet (FCOE) ,
Internet Small Computer System Interface (iSCSI) , Infini
Band , Transport Control Protocol / Internet Protocol (TCP /
IP) , Peripheral Component Interconnect Express (PCIe) , etc .
I / O operations (IOs) communicated via 1 / 0 channel 110
include read IOs by which a processor system 102 requests
data from a data storage system 120 and write IOs by which
a processor system 102 requests storage of data in data
storage system 120 .

US 2018 / 0060367 A1 Mar . 1 , 2018

[0026] In the illustrated embodiment , data storage system
120 includes multiple interface nodes 122 through which
data storage system 120 receives and responds to IOs via I / O
channels 110 . Each interface node 122 is coupled to each of
multiple Redundant Array of Inexpensive Disks (RAID)
controllers 124 in order to facilitate fault tolerance and load
balancing . There may be one , two , or more than two
interface nodes 122 in a data storages system 120 and
interface nodes may communicate directly with each other
within as well as across data storage systems 120 (e . g . , by
a PCIe bus) . Each of RAID controllers 124 is in turn coupled
(e . g . , by a PCIe bus) to each of multiple flash cards 126
including , in this example , NAND flash storage media . In
other embodiments , other storage media can be employed in
addition to or in place of the NAND flash storage media .
[0027] FIG . 1B depicts a more detailed block diagram of
an exemplary embodiment of an interface node 122 of data
storage system 120 of FIG . 1A . In the illustrated embodi
ment , interface node 122 includes one or more interface
cards 111 that serve as an interface to processor systems 102
through I / O channels 110 and connect to a host side switch
ing fabric 112 , which can be implemented , for example , by
a Peripheral Component Interconnect express (PCIe) switch
or other suitable switch . Host side switching fabric 112
transfers data between interface cards 111 and one or more
processors within interface node 122 , which are collectively
illustrated in FIG . 1B as controller 113 . The processor (s)
forming controller 113 can be implemented with general
purpose processor (s) and / or special - purpose processor (s) ,
such as Application Specific Integrated Circuits (ASICs) or
Field Programmable Gate Arrays (FPGAs)) . In the case
multiple processors are implemented within controller 113 ,
one or more of the processors may be dedicated for data
plane processing , and one or more processors may be
dedicated for control plane processing . Controller 113 is
coupled to a memory 118 (e . g . , DRAM or magneto - resistive
random access memory (MRAM) , which may be imple
mented as a unified memory or as multiple different memo
ries . Memory 118 holds a fingerprint index cache 119 ,
address mapping cache 121 , and reference counter cache 117
among other data structures . Note , that the fingerprint index ,
address mapping table , and reference counters may fit
entirely or only partially in these caches . Each data type may
be stored separately (as shown in FIG . 1B) and / or collocated
in a dedicated data structure in memory 118 . Controller 113
is additionally coupled to RAID controllers 124 through
storage side switching fabric 123 , which can be imple
mented with a PCIe switch or other switch technology .
Controller 113 is further coupled to one or more other
interface nodes 122 in data storage system 120 to handle
fail - over scenarios or to perform other data synchronization
functions or delegation / redirection of deduplication opera
tions .

[0028] FIG . 1C illustrates a more detailed block diagram
of a flash card 126 of data storage system 120 of FIG . 1A .
Flash card 126 includes a gateway 130 that serves as an
interface between flash card 126 and RAID controllers 124 .
Gateway 130 is coupled to a general - purpose processor
(GPP) 132 , which can be configured (e . g . , by program code)
to perform various management functions , such as garbage
collection , wear - leveling , data placement decisions for
future writes , pre - processing of IOs received by gateway
130 and / or scheduling servicing of the IOs by flash card 126 .
GPP 132 is coupled to a GPP memory 134 (e . g . , DRAM or

MRAM) that can conveniently buffer data created , refer
enced and / or modified by GPP 132 in the course of its
processing
100291 Gateway 130 is further coupled to one or more
flash controllers 140 , each of which controls a respective
NAND flash memory system 150 . Flash controllers 140 can
be implemented , for example , by an ASIC or a FPGA having
an associated flash controller memory 142 (e . g . , DRAM) . In
embodiments in which flash controllers 140 are imple
mented with an FPGA , GPP 132 may program and configure
flash controllers 140 during start - up of data storage system
120 . After startup , in general operation flash controllers 140
receive read and write IOs from gateway 130 that request to
read data stored in NAND flash memory system 150 and / or
to store data in NAND flash memory system 150 . Flash
controllers 140 service these IOs , for example , by accessing
NAND flash memory systems 150 to read or write the
requested data from or into NAND flash memory systems
150 or by accessing one or more read and / or write caches
(not illustrated in FIG . 1C) associated with NAND flash
memory systems 150 .
[0030] Flash controllers 140 implement a Flash Transla
tion Layer (FTL) that provides logical - to - physical address
translation to enable access to specific memory locations
within NAND flash memory systems 150 . In general , an IO
received by flash controller 140 indicates the logical block
address (LBA) at which the data is to be accessed (read or
written) and , if a write IO , the write data to be written to data
storage system 120 . The IO may also specify the amount (or
size) of the data to be accessed . Other information may also
be communicated depending on the protocol and features
supported by data storage system 120 . As is known to those
skilled in the art , NAND flash memory , such as that
employed in NAND flash memory systems 150 , is con
strained by its construction such that the smallest granule of
data that can be accessed by a read or write IO is fixed at the
size of a single flash memory page , for example , 16 kilo
bytes (kB) . The LBA indicated by the host device corre
sponds to a logical page within a logical address space , the
logical page typically having a size of four kilobytes . As
such , more than one logical page may be stored in a physical
flash page . The FTL translates this LBA into a physical
address assigned to a corresponding physical location in a
NAND flash memory system 150 . As shown , NAND flash
memory systems 150 may store data pages 152 containing
user data , as well as management metadata structures , such
as a fingerprint index 154 , reference counters 156 , and
address mapping data structure 158 .
[0031] Referring now to both FIGS . 1B and 1C , controller
113 of interface node 122 preferably provides system man
agement functions , as well as higher level services such as
snapshots , thin provisioning , and deduplication . To provide
deduplication , controller 113 implements a fingerprint
engine 114 that generates fingerprints for data blocks that are
to be written to flash cards 126 . The fingerprints computed
by fingerprint engine 114 are preferably cryptographic
hashes that provide collision resistance , cannot be inverted ,
and cannot manufacture collisions . Examples of suitable
functions that can be employed by fingerprint engine 114 to
generate fingerprints include SHA - 1 and SHA - 2 (SHA - 2
includes any of SHA - 224 , SHA - 256 , SHA - 384 , SHA - 512 ,
SHA - 512 / 224 , and SHA - 512 / 256) . In general , the volume of
the fingerprints generated by fingerprint engine 114 is many
times larger than the storage capacity of memory 118 .

US 2018 / 0060367 A1 Mar . 1 , 2018

Consequently , controller 113 stores the fingerprints gener -
ated by fingerprint engine 114 in fingerprint index 154 (see ,
FIG . 1C) in flash cards 126 and caches only a subset of the
fingerprints in a fingerprint index cache 119 in memory 118 .
For example , in one embodiment , controller 113 caches
“ hot ” (i . e . , frequently encountered) fingerprints in finger
print index cache 119 and holds colder fingerprints only in
fingerprint index 154 . The fingerprints may alternatively or
additionally be segregated between fingerprint index cache
119 and fingerprint index 154 based on one or more addi
tional criteria , such as the type , state , or source (client or
volume) of the fingerprints .
[0032] Controller 113 additionally includes an address
mapping engine 116 that maps input block addresses refer
enced in read and write IOs received from hosts such as
processor systems 102 into output block addresses employed
internally within data storage system 120 . For example , in
some embodiments , the input block addresses reference
logical blocks of a logical storage volume , and the output
block addresses are array block addresses referencing blocks
of the storage array within data storage system 120 . (In some
literature , the array blocks are referred to as “ physical ”
blocks , although as noted above in reality further translation
is generally performed by lower level storage controllers
(e . g . , flash controllers 140) in order to address physical
storage locations in the storage media .) These array blocks
may be , for example , 4 , 8 , or 16 kB in size . In the depicted
embodiment , address mapping engine 116 maps between the
input and output block addresses by reference to address
mapping data structure 158 (see , FIG . 1C) . For quick
reference , address mapping engine 116 may cache fre
quently referenced address translations in an address map
ping cache 121 in memory 118 . Address mapping engine 116
maintains a set of reference counters 156 (see , FIG . 1C) in
flash cards 126 including a respective reference counter 156
for each block in the output address space and caches only
a subset of the reference counters in the reference counter
cache 117 . Reference counter cache 117 may be inclusive or
exclusive of the entries in reference counters 156 . Each
reference counter 156 tracks how many times the corre
sponding block of the output address space is referenced in
the storage array .
[0033] Controller 113 also includes a deduplication engine
125 that executes the search for duplicates upon incoming
writes or during background deduplication . When a dupli
cate is found , the deduplication engine 125 uses the address
mapping engine 116 to update address mapping data struc
tures 158 and reference counters 156 including the poten
tially cached copies in the address mapping cache 121 and
the reference counter cache 117 . When the new write IO is
not a duplicate , deduplication engine 125 inserts the finger
print generated by the fingerprint engine 114 into the fin
gerprint index 154 directly and / or into the fingerprint index
cache 119 .
[0034] Controller 113 further includes a space reclamation
engine 115 (also referred to as a garbage collection engine) .
Space reclamation engine 115 reclaims blocks of the output
address space (i . e . , array blocks) that are logically invalid
and / or no longer referenced (e . g . , those for which the
associated reference counter in the stored reference counters
156 and / or the reference counter cache 117 has a value of
zero) and removes the associated unneeded fingerprints from
fingerprint index 154 and fingerprint index cache 119 , and if
needed , any stale mapping information from address map -

ping data structure 158 . In addition , space reclamation
engine 115 may further manage the promotion of finger
prints (e . g . , " hot " fingerprints) from fingerprint index 154 to
fingerprint index cache 119 and the demotion of fingerprints
(e . g . , “ colder ” fingerprints) from fingerprint index cache 119
to fingerprint index 154 .
[0035] It should be noted at this point that the fingerprint
index cache 119 , the address mapping cache 121 , and the
reference counter cache 117 in memory 118 may be orga
nized into separate read and write caches . Hence updates in
the write caches may not immediately be stored in the
NAND flash memory system 150 but rather be lazily
destaged depending on the cache replacement policy used .
100361 . It should be appreciated that in other embodiments
the deduplication performed by the deduplication engine
125 in controller 113 can alternatively or additionally be
performed at other levels within the data processing envi
ronment shown in FIG . 1A . For example , these functions
can be implemented at a lower level of the storage hierarchy ,
such as in RAID controller 124 or in flash cards 126 , or at
a higher level of the storage hierarchy , such as in a storage
area network controller (e . g . , one of processor systems 102)
that controls multiple data storage systems 120 . In general ,
it is preferable for the fingerprint generation and deduplica
tion functions to be performed at a controller at as high a
level as possible within the storage hierarchy having vis
ibility to potentially duplicate data and thus achieve the
greatest savings in storage capacity and wear from dedupli
cation . Regardless of the level of storage hierarchy at which
fingerprint generation and deduplication are implemented ,
these functions are preferably performed in - line rather than
in a background process (although background deduplica
tion is employed in some embodiments , as discussed below) .
For generality , the logic that performs fingerprint generation
and data deduplication is referred to herein as a " controller , "
and is defined to include hardware logic (e . g . , a general
purpose processor , ASIC , FPGA or other integrated cir
cuitry) , which is configured in hardware and / or by firmware
and / or software to perform the data deduplication and fin
gerprint management described herein .
[0037] Referring now to FIG . 2 , an example of data
deduplication in accordance with one embodiment is
depicted . In this example , a data storage system , such as data
storage system 120 of FIGS . 1A - 1C , receives one or more
write IOs directing data storage system 120 to store user data
200 including files 202a and 2026 . File 202a includes data
blocks A , B , C . D , E , C (i . e . , data block C is duplicated in
file 202a) , and file 202b includes data blocks A , F , B , and G
(i . e . , data blocks A and B are duplicated between files 202a
and 202b) . In response to receipt of write IOs specifying
storage of the data blocks comprising files 202a - 202b ,
fingerprint engine 114 generates a respective fingerprint of
each data block , and deduplication engine 125 determines
whether or not the generated fingerprint matches an existing
fingerprint in fingerprint index 154 (including fingerprint
index cache 119) . If not , deduplication engine 125 installs a
new fingerprint entry for the data block in fingerprint index
154 (and / or fingerprint index cache 119) . In addition ,
address mapping engine 116 performs address mapping for
the input block address (e . g . , a volume block address) to
obtain an output block address (e . g . , an array block address
or logical block address) , and controller 113 passes the store
data and output block address to a flash card 126 to initiate
storage of the data block in the storage array 204 formed by

US 2018 / 0060367 A1 Mar . 1 , 2018

flash cards 126 . In this manner , blocks A - G , when first
encountered by controller 113 , are written to storage array
204 . However , when controller 113 encounters a duplicate
data block as indicated by the presence of a matching
fingerprint in fingerprint index 154 , controller 113 com
mands a flash card 126 to store , at the relevant output block
address in the address mapping data structure 158 (which
may also reside in the address mapping cache 121) deter
mined by address mapping engine 116 , a pointer to the
existing copy of the data block in lieu of storing a duplicate
of the data block . Thus , as indicated in FIG . 2 , the storage
array 204 formed of flash cards 126 stores only a single copy
of each of data blocks A - G and additionally stores pointers
to blocks A , B and C in place of duplicate copies of these
blocks .
[0038] The data deduplication generally illustrated in FIG .
2 can result in significant savings in storage capacity as well
as reduction of wear on flash cards 126 that would be caused
by writing duplicate blocks of user data to the NAND flash
storage media . However , data deduplication has attendant
costs in terms of metadata storage and processing overhead
that , if not handled appropriately , can impair or even out
weigh the benefits achieved by data deduplication . For
example , conventional NAND flash - based storage systems
that implement data deduplication typically invalidate and
remove from storage fingerprints of overwritten data blocks
which are no longer referenced . In the most straight - forward
implementation , each input block address mapping entry has
a pointer to a < fingerprint , array block address , reference
counter > tuple that is part of a fingerprint index structure .
Such a design , however , requires frequent metadata updates
at every user IO and is efficient only in the case where all or
most metadata resides in DRAM (or in a medium with
similar fast random - access characteristics) . The memory
requirement becomes impractical as the DRAM size scales
with the storage capacity (e . g . , 4 TB of DRAM are required
to store the metadata for 1 PB of storage) to hold the
metadata . In storage systems that do not have enough
DRAM to cache most metadata , a different design with
better scalability properties is desirable where the address
mapping , fingerprints , and reference counters are stored in
separate metadata structures (e . g . , FIG . 1C) . This decou
pling allows for a reduction in metadata IO and enables more
efficient caching of metadata based on type and utilization .
In comparison with the straight - forward design , only the
address mapping table has to be made persistent . For
example , the reference counters can be reconstructed by
traversing the address mapping table , while the fingerprints
can be inserted and removed in bulk as any fingerprint can
be reconstructed by scanning the stored data . By lazily
maintaining the reference counters and the fingerprints out
side of the IO path , the additional IO required to maintain
metadata is reduced . An additional benefit of such a scalable
design is that it allows for targeted and efficient caching of
metadata in DRAM based on their type , frequency of
accesses , etc . For example , the address mapping table is
amenable to temporal and special locality , while fingerprints
insertions and lookups are not . This can be exploited by
caching the address mapping table with the highest priority ,
while caching only some fingerprints for frequent duplicate
data . However , a drawback of designs where the fingerprint
metadata is separated from the address translation metadata
is that invalid fingerprints cannot be immediately removed
without maintaining a reverse lookup capability that maps

array blocks to fingerprints . A reverse lookup capability
would generate a comparable amount of metadata as for the
fingerprint index , increase the metadata IO and storage
overhead , and defeat the goal of reducing the DRAM and IO
overhead of the scalable design . However , the absence of a
reverse lookup capability leads to additional complexity for
space reclamation in response to blocks becoming logically
invalid as the associated invalidated fingerprints have to be
cleaned up in the background (garbage collected) before the
blocks can be reused .
[0039] In accordance with the present disclosure , high I / O
throughput is achieved for inline data deduplication of
random writes of unique data with low deduplication over
head and low latency through intelligent management by a
controller (e . g . , controller 113) of array block states and
associated fingerprint metadata . The disclosed management
of array block states and fingerprint metadata reduces over
head of frequently performed deduplication - related opera
tions with the tradeoff of adding additional processing
overhead to less frequently performed operations . As a
starting point , analysis of workloads of data storage system
reveals that some typical workloads contain a larger fraction
of unique data blocks , even in cases in which many data
blocks are duplicated . Consequently , the processing over
head attributable to deduplication (e . g . , out - of - place write
semantics , additional metadata updates , garbage collection
of overwritten data blocks) can be reduced by performing
such processing only when writing to the data storage
system data blocks that will have duplicates (i . e . , write
workloads with many duplicates) and not when writing
unique data blocks that only has few duplicates (i . e . , dedu
plication averse write workloads) . For example , consider a
dataset including 100 logical blocks of which 10 are unique
and in which the first logical block has 91 logical copies .
With inline deduplication , these 100 logical blocks will be
reduced to 10 unique blocks and thus only 10 physical
blocks will be stored . In this example , 9 / 10 of the physical
blocks (90 %) do not need to incur any deduplication - related
overhead even though the data reduction achieved through
deduplication is very high (10 : 1) . Further , workload analysis
reveals that unique blocks can generally be expected to be
updated more frequently than duplicated blocks (e . g . , dupli
cates blocks are often cold data or even read - only data) .
Therefore , continuing the previous example , after the first
100 logical blocks are written , the workload may be com
posed of updates only to the unique data blocks . In this case ,
the deduplication ratio always remains constant , even
though all of the incoming writes do not need to incur any
deduplication - related overhead . On the other hand , work
loads that exhibit duplicates do not typically see overwrites
before a duplicate is detected (i . e . , assuming that no longer
used addresses are properly being trimmed) . Therefore it is
beneficial to treat data blocks that have been written for the
first time differently such that , upon a duplication being
found , the overhead from executing the deduplication - re
lated operations is significantly reduced .
[0040] In view of the foregoing observations , the present
disclosure preferably supports the ability to utilize metadata
to distinguish between unique and duplicated data blocks . In
at least one embodiment , all incoming data blocks are
initially considered unique blocks for which at least some
deduplication - related overhead can be avoided . Fingerprints
for incoming writes can be generated and then lazily main
tained in fingerprint metadata structure (s) . Due to the lazy

US 2018 / 0060367 A1 Mar . 1 , 2018

management of fingerprints , fingerprints for a unique data
block can be either verified or unverified , where unverified
fingerprints that may or may not represent the signature of
the current state of the associated data block are defined
herein as " ghost fingerprints . ” Ghost fingerprints can thus be
considered as a tentative fingerprint entry . Presence of a
ghost fingerprint indicates that the controller implementing
deduplication has previously received the associated data
block , but does not indicate whether or not the data block is
unmodified or duplicated . For any given block , multiple
ghost fingerprints may be present in the fingerprint index ,
but at most one ghost fingerprint can be present that actually
represents the stored data block . Maintaining ghost finger
prints involves less processing overhead than maintaining
valid fingerprints for frequently updated data blocks , as stale
ghost fingerprints will be dropped lazily without incurring
any metadata IO . In at least some embodiments , the finger
print length and / or fingerprint computation method differs
based on the fingerprint type . As one example , verified
fingerprints can be longer and thus have a lower false
positive rate , while ghost fingerprints can be shorter and thus
more space efficient .
[0041] With reference now to FIG . 3 , there is illustrated a
more detailed view of address mapping data structure 158 of
FIG . 1C in accordance with one embodiment . In the
depicted embodiment , address mapping data structure 158
includes a multiplicity of address metadata (MD) pages 300 ,
each including a metadata page header 302 and multiple
address translation entries 304 . In the illustrated example ,
each address translation entry 304 associates an input block
address (e . g . , a logical volume block address) with an output
block address (e . g . , array block address) output by address
mapping engine 116 . In addition , in a preferred embodiment ,
each of address translation entries 304 includes an additional
metadata field referred to herein as array block state (ABS) ,
which is described in greater detail below with reference to
FIGS . 5 - 9 . As further shown in FIG . 3 , when queried by
address mapping engine 116 with an input block address
having a match in address mapping data structure 158 ,
address mapping data structure 158 returns the associated
output block address and the ABS . Address mapping data
structure 158 may be organized into a tree structure , a hash
map or any other convenient data structure that facilitates
lookup operations . Further , the input and output block
addresses may be organized in terms of address ranges . In
case data is compressed before stored in an array block , the
address mapping data structure may also include the com
pressed size and / or other additional meta - data preferably
associated with the address entries (e . g . , cyclic redundancy
check value) .
0042] Referring now to FIG . 4 , there is depicted a more
detailed view of fingerprint index 154 in accordance with
one embodiment . In the illustrated embodiment , fingerprint
index 154 includes a multiplicity of fingerprint metadata
(MD) pages 400 , each including a metadata page header 400
and multiple fingerprint entries 402 . In the illustrated
example , each fingerprint entry 402 takes the form of a tuple
associating a fingerprint determined by fingerprint engine
114 with a block address , which can be , for example , the
input block address (e . g . , logical block address or client
block address) received as an input by address mapping
engine 116 or the output block address (e . g . , array block
address) output by address mapping engine 116 . The fin -
gerprint MD pages may be organized into a tree structure , a

hash map or any other convenient data structure that facili
tates lookup operations . Other additional meta - data prefer
ably associated with the fingerprint entries may be stored in
the fingerprint index 154 (e . g . , volume ID , age , size of the
data block . etc .) .
[0043] Further , in a preferred embodiment , some of fin
gerprint entries 402 employ one type of address while others
employ the other type of address (e . g . , ghost fingerprints
may be associated with logical volume block addresses
while valid fingerprints are associated with array block
addresses) . The tuple further includes an explicit indication
of a fingerprint state (FPS) , which indicates whether or not
the fingerprint entry 202 is verified or unverified (i . e . , a
ghost fingerprint) . The FPS may also include a bit indicating
if this fingerprint is the first fingerprint that had been created
for this block address . (This information may alternatively
or additionally be stored in the ABS .) As indicated above , for
lookup efficiency and to reduce the size of fingerprint index
154 , in at least some embodiments fingerprint index 154
preferably only supports forward lookups , such that an
access to fingerprint index 154 specifying a fingerprint
returns the associated block address (assuming the access
results in a hit in fingerprint index 154) and FPS . Individual
ones of fingerprint metadata pages 400 can be paged into and
out of fingerprint index cache 119 as needed or desired .
10044] In storage systems that employ a large amount of
memory or in storage systems where other performance
tradeoffs are preferred , the fingerprint index can be imple
mented in other ways without affecting the deduplication
process . For example , in one preferred embodiment , the
fingerprint MD pages are part of a hash table that allows a
different tradeoff between fingerprint insert performance and
fingerprint lookup performance . In another embodiment ,
fingerprints are stored in separate index structures based on
their type . For example , verified fingerprints can be stored in
a dedicated index that is searched first for matches and is
given priority for caching in fingerprint index cache 119 ,
while ghost fingerprints are stored in a separate index that is
searched only if the first index does not produce a match .
[0045] With reference now to FIG . 5 , there is illustrated a
state diagram illustrating management of the array block
state (ABS) and fingerprint state (FPS) of a block of a
storage array in accordance with one or more embodiments .
The management process represented by this state diagram
can be performed by a controller of a data storage system ,
which for the purposes of the following description will be
assumed to be controller 113 of FIG . 1B . More common
state transitions in this and the other state diagrams given
herein are indicated by heavyweight lines , and less common
state transitions are indicated by lightweight lines .
[0046] In the embodiment of FIG . 5 , the ABS of an array
block can be in any of five states , including Unallocated
state 500 , Non - shared and Unique Fingerprint state 502 ,
Update - in - place state 504 , Shared and Dedupe state 506 , and
Invalid state 508 . Each array block of a storage array begins
in Unallocated state 500 , which signifies that the array block
address of the array block is not associated with a volume
block address in address mapping data structure 158 and that
the array block does not have any associated fingerprint
stored in fingerprint index 154 or fingerprint index cache
119 . An unallocated array block may hence be implemented
in a way that no storage physical storage spaces is used in
flash cards 126 . The ABS of an array block transitions from
Unallocated state 500 to either Non - shared and Unique

US 2018 / 0060367 A1 Mar . 1 , 2018

Fingerprint state 502 or Update - in - place state 504 in
response to controller 113 receiving a write IO . As shown at
reference numeral 510 , in the most common case in which
the write IO specifies a full array block of write data (e . g . ,
4 kB , 8 kB , 16 kB , or a multiple thereof) , controller 113
allocates one or more array blocks for storing the write data
via address mapping data structure 158 , creates one or more
address mapping entries in address mapping data structure
158 for each of the array blocks , increments the relevant
reference counter in the stored reference counters 156 and / or
the reference counter cache 117 to a value of 1 , and sets the
ABS for the address translation entry to Non - shared and
Unique Fingerprint state 502 . As shown at reference
numeral 512 , in the less common case in which the write IO
specifies less than a full array block of write data (e . g . ,
smaller than 4 kB) , controller 113 performs similar process
ing , but sets the ABS for the address translation entry to
Update - in - place state 502 instead of Non - shared and Unique
Fingerprint state 502 . In this case , the actual write operation
may be performed in a read - modify - write sequence in some
embodiments . In either case , when an array block is initially
allocated , controller 113 sets ABS to a non - deduplication
state in which data deduplication is not performed and sets
the FPS of the array block to the unverified state . In
embodiments that store ghost fingerprints in the index cache
119 only , the FPS may be associated to the index cache 119
and hence only stored there . Note that in some embodi
ments , a sub - block write 512 may result in no fingerprint
being created and therefore no FPS has to be set . In the case
of an array block in Non - shared and Unique Fingerprint
state 502 , it is known that only a single unique fingerprint ,
namely , a ghost fingerprint , resides in fingerprint index 154
or fingerprint index cache 119 ; an array block in Update
in - place state 504 can have one or more associated ghost
fingerprints in the fingerprint index 154 or fingerprint index
cache 119 , but only one of these actually represents the data
of array block (i . e . , is valid) and all the others , if present , are
invalid . Clearly , in embodiments that do not create a fin
gerprint upon a sub - block write 512 there may even be no
fingerprint in the Update - in - place 504 state . In other words ,
there may be at most one fingerprint actually representing
the data of the array block (i . e . , the ghost fingerprint is valid)
and all the others , if present , are invalid .
[0047] Note that for a duplicate write to unallocated space
a fresh array block may be allocated or not . In case the
detection of the duplicate is performed entirely inline (i . e . ,
before the write is acknowledged to the processor system
102) , no allocation of an array block is needed . When the
write 10 is acknowledged before the deduplication engine
125 detects a duplicate , data may have to be made persistent
before the actual deduplication and therefore require an
array block to be allocated . The same is valid for updates
with duplicate data to allocated space that map to existing
array blocks in the Shared and Dedupe state 506 .
[0048] Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 502 to
Update - in - place state 504 in response to either a partial or
full update of the array block , as shown at reference numeral
514 . As indicated at reference numeral 516 , controller 113
similarly retains an array block in Update - in - place state 504
in response to either a partial or full update of the array
block . Note that a partial block overwrite at reference
numeral 514 as well as a partial update write at reference
numeral 516 may not include the creation of a new (ghost)

fingerprint in some embodiments . It will be appreciated that
while NAND flash memory systems 150 do not physically
permit in - place update of data pages 152 , from the logical
view of controller 113 in - place updates are permitted for
array blocks . Therefore , in - place updates can be done in
non - deduplication states 502 and 504 . Controller 113 tran
sitions the ABS of the array block from Update - in - place
state 504 to Unique Fingerprint state 502 as shown at
reference numeral 518 in response to the garbage collection
performed by space reclamation engine 115 optionally
removing either all of the unverified (i . e . , ghost) fingerprints
or all invalid ghost fingerprints (i . e . , retaining only the single
ghost fingerprint that corresponds to the data being stored in
the array block if such a ghost fingerprint exists) for the
array block from fingerprint index 154 or fingerprint index
cache 119 . The ABS may for this purpose maintain a counter
representing the number of overwrites seen , and the counter
may further be stored in the FPS in order to facilitate the
detection of the last fingerprint created for the array block .
In preferred embodiments that do not implement a reverse
lookup capability for fingerprints in the fingerprint index
cache 119 , such garbage collection requires controller 113 to
read the data of the array block from flash cards 126 and
generate a fingerprint to perform lookups in fingerprint
index cache 119 .
[0049] Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 502 to
Shared and Dedupe state 506 (in which inline deduplication
is performed for the array block) in response to receipt of a
write IO specifying the write of a full data block for which
a matching ghost fingerprint is found in fingerprint index
154 (reference numeral 520) . Note that the transition does
not require a verification of the fingerprint because the
matching fingerprint is the only fingerprint for this array
block . Therefore the deduplication overhead is minimized
for the transition indicated by reference numeral 520 . In
addition to updating the ABS , controller 113 also increments
the reference counter in the stored reference counters 156
and / or the reference counter cache 117 for the array block
and updates the FPS of the associated fingerprint in finger
print index 154 from unverified (i . e . , a ghost fingerprint) to
verified . Depending on the implementation of the FPS ,
controller 113 may further adapt the array block address in
the FPS from an input block address to an output block
address or vice versa . Controller 113 also transitions the
ABS of an array block to Shared and Dedupe state 506 from
Update - in - place state 504 in response to receipt of a write IO
specifying the write of a full data block for which a matching
ghost fingerprint is found in fingerprint index 154 (reference
numeral 526) . In this case , controller 113 must also verify if
the matching ghost fingerprint is the valid one (and update
its FPS accordingly , for example , by reading the data of the
array block from flash cards 126 and then either directly
comparing the array block data to the write data or indirectly
comparing them via a fingerprint match . Only when this
verification is successful does controller 113 transition the
ABS of the array block to Shared and Dedupe state 506 . If
the verification is not successful , the existing array block
remains in Update - in - place state 504 , the write will be
handled as a full block write 510 (for which a new array
block has to be allocated) , and no deduplication is per
formed . Although this verification operation is computation
ally expensive , it is infrequently performed and therefore
does not create a significant negative impact on the overall

US 2018 / 0060367 A1 Mar . 1 , 2018

system performance . Additionally , the invalid ghost finger
print is preferably removed from the fingerprint index cache
119 and / or the fingerprint index 154 . Other embodiments
may handle the removal of ghost fingerprints lazily , and
controller 113 preferably does not employ space reclamation
engine 115 to remove unverified fingerprints for the array
block from fingerprint index cache 119 in response to state
transition 526 . Thus , an array block having its ABS set to
Shared and Dedupe state 506 has a reference count greater
than or equal to one , a single associated verified fingerprint
in fingerprint index 154 , and possibly one or more associated
ghost fingerprints in fingerprint index 154 and / or fingerprint
index cache 119 . While an array block is in Shared and
Dedupe state 506 , controller 113 incurs the full processing
and meta - data storage overhead of deduplication for the
array block , since it is presumed that an array block having
at least one duplicate will likely have additional duplicates ,
rather than being overwritten . Further , controller 113 per
forms out of place writes for any overwrites of input blocks
that map to the array block .
[0050] As indicated at reference numeral 522 , controller
113 retains the ABS of an array block in Shared and Dedupe
state 506 in response to receipt of a write 10 specifying a
duplicate block write or in response to an overwrite , a trim
command , or a volume deletion that , upon update of the
reference counter in the stored reference counters 156 and / or
the reference counter cache 117 , results in a reference count
in the associated reference counter in the stored reference
counters 156 and / or the reference counter cache 117 of at
least one . If the overwrite , trim or volume deletion results in
a zero value of the reference counter , controller 113 transi
tions the ABS of the array block from Shared and Dedupe
state 506 to Invalid state 508 (reference numeral 524) .
Controller 113 may transition the ABS of an array block
from Shared and Dedupe state 506 to Non - shared and
Unique Fingerprint state 502 in response to the value of the
associated reference counter in the stored reference counters
156 and / or the reference counter cache 117 reaching one and
the garbage collection performed by space reclamation
engine 115 deciding to remove all of the ghost fingerprints
for the array block from fingerprint index 154 (reference
numeral 528) . In this case , controller 113 additionally
updates the FPS of the remaining fingerprint from verified to
unverified . Transition from Shared and Dedupe state 506 to
Non - shared and Unique Fingerprint state 502 indicates that
further deduplication opportunities for the array block are
unlikely .
[0051] As illustrated at reference numerals 530 and 532 ,
controller 113 transitions the ABS of an array block from
either Update - in - place state 504 or Non - shared and Unique
Fingerprint state 502 to Invalid state 508 in response to a
block invalidation (such as an overwrite or a trim command
or volume deletion or a snapshot deletion that removes the
array block from use) . When an array block is in Invalid
state 508 , the block data and all associated fingerprint
metadata are removed from use and are simply awaiting
removal from address mapping data structure 158 (and
address mapping cache 121) and fingerprint index 154 (and
fingerprint index cache 119) by space reclamation engine
115 . Once such garbage collection is performed , controller
113 sets the associated reference counter to a predefined
unused value (e . g . , to - 1) and transitions the array block
from Invalid state 508 to Unallocated state 500 (reference
numeral 534) .

[0052] Differing implementations of the general state dia
gram given in FIG . 5 can additionally be explored based
upon specific architectural choices , such as the manner in
which fingerprints are handled . Moreover , not all transitions
presented in FIG . 5 need to be implemented . Only a subset
of the state transitions are required such that the state
diagram graph is connected (i . e . , there is a path from any
state to any other state either directly or indirectly through
other states) . Further , in some embodiments , the timing of
the deduplication can be dependent upon the type of the
fingerprint matched . As one example , verified fingerprints
can be used for performing inline deduplication , while ghost
fingerprints are used to perform background deduplication .
[0053] For example , a first class of implementations holds
ghost fingerprints only in fingerprint index cache 119 and
not in the fingerprint index 154 residing in the bulk storage
(e . g . , on the NAND flash media) . In this implementation , it
is possible to maintain in memory 118 a reverse lookup
between block addresses and fingerprints to facilitate fast
cleanup of invalid ghost fingerprints . However , given the
fact that in practical systems , memory 118 will have a
storage capacity much lower than the volume of fingerprints ,
ghost fingerprints will need to be garbage collected periodi
cally . In addition , it may not be possible to perform exhaus
tive inline deduplication given the limited amount of ghost
fingerprints in memory 118 . In a second class of implemen
tations , ghost fingerprints can be stored both in memory 118
and in the fingerprint index 154 residing in the bulk storage
(e . g . , on the NAND flash media) . This arrangement typically
entails verifying ghost fingerprints by reading data from the
NAND flash media , as it is more difficult to remove ghost
fingerprints when an array block is overwritten or deallo
cated . The description of FIG . 5 above is applicable to one
implementation belonging to the first class of implementa
tions . Another one is described below with reference to
FIGS . 6 ; additional implementations belonging to the sec
ond class of implementations are described below with
reference to FIGS . 7A - 7B and FIG . 8 . Note that some
embodiments may dynamically switch between these imple
mentations depending on the available resources in the
system (e . g . , a reverse mapping may be initially maintained
but later dropped when the fingerprint index cache 119
exceeds a certain limit) .
[0054] Referring now to FIG . 6 , there is depicted a state
diagram illustrating management of an array block state
(ABS) and fingerprint state (FPS) of a block of a storage
array in accordance with an embodiment in which ghost
fingerprints are cached only in memory and not stored on the
underlying bulk storage media . The management process
represented by this state diagram can be performed by a
controller of a data storage system , which for purposes of the
following description will be assumed to be controller 113 of
FIG . 1B .
[0055] In FIG . 6 , the ABS of an array block can have any
of six states , including Unallocated state 600 , Non - shared
and Unique Fingerprint state 602 , Update - in - place state 604 ,
Shared and Dedupe state 606 and Invalid state 608 . Each
array block of a storage array begins in Unallocated state
600 , which signifies that the array block address of the array
block is not associated with a volume block address in
address mapping data structure 158 and that the array block
does not have any associated fingerprint stored in fingerprint
index 154 or fingerprint index cache 119 . The ABS of an
array block transitions from Unallocated state 600 to either

US 2018 / 0060367 A1 Mar . 1 , 2018

Non - shared and Unique Fingerprint state 602 or Update - in
place state 604 in response to controller 113 receiving a
write IO . As shown at reference numeral 610 , in the most
common case in which the write IO specifies a full array
block of write data (e . g . , 8 kB , 16 kB , or multiple thereof) ,
controller 113 allocates an array block for storing the write
data via address mapping data structure 158 , creates an
address mapping entry in address mapping data structure
158 , increments the relevant reference counter in the stored
reference counters 156 and / or the reference counter cache
117 to a value of 1 , and sets the ABS for the address
translation entry to Non - shared and Unique Fingerprint state
602 . As shown at reference numeral 612 , in the less common
case in which the write IO specifies less than a full array
block of write data (e . g . , 4 kB , or smaller) , controller 113
performs similar processing , but sets the ABS for the address
translation entry to Update - in - place state 604 instead of
Non - shared and Unique Fingerprint state 602 . The operation
indicated by reference numeral 612 may or may not create
a ghost fingerprint . In either case , when an array block is
initially allocated , controller 113 sets ABS to a non - dedu
plication state in which deduplication is not performed and
sets the FPS of the fingerprint (which is held solely in
fingerprint index cache 119) to the unverified state . In the
case of an array block in Non - shared and Unique Fingerprint
state 602 , it is known that only a single unique fingerprint ,
namely , a ghost fingerprint , resides in fingerprint index
cache 119 ; assuming that a sub - block write 612 always
generates a fingerprint and garbage collection step 618 only
removes invalid fingerprints , an array block in Update - in
place state 604 can have zero or more associated ghost
fingerprints in fingerprint index cache 119 , but in case there
is a ghost fingerprint , only one of these ghost fingerprints
actually represents the data block (i . e . , is valid) and all the
others , if present , are invalid .
[0056] Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 602 to
Update - in - place state 604 in response to either a partial or
full update of the array block , as shown at reference numeral
614 . As indicated at reference numeral 616 , controller 113
similarly retains an array block in Update - in - place state 604
in response to either a partial or full update of the array
block . (It is again noted that while NAND flash memory
systems 150 do not physically permit in - place update of data
pages 152 , from the logical view of controller 113 in - place
updates are permitted for array blocks in non - deduplication
states .) Again , the steps in reference numeral 614 and 616
may or may not create a ghost fingerprint . Controller 113
transitions the ABS of the array block from Update - in - place
state 604 to Non - shared and Unique Fingerprint state 602 as
shown at reference numeral 618 in response to the garbage
collection performed by space reclamation engine 115
removing all of the invalid unverified (i . e . , ghost) finger
prints for the array block from fingerprint index cache 119
while keeping the ghost fingerprint representing the cur
rently stored data in the array block . As noted above , this
garbage collection can be facilitated by optionally imple
menting a reverse lookup capability for fingerprints in
fingerprint index cache 119 . In some embodiments when no
valid ghost fingerprint representing the currently stored data
in the array block is found , a new ghost fingerprint may be
created by reading the array block , generating a fingerprint ,
and inserting it in the fingerprint index cache 119 .

[0057] Controller 113 transitions the ABS of an array
block from Non - shared and Unique fingerprint state 602 to
Shared and Dedupe state 606 in response to receipt of a write
IO specifying the write of a full data block for which a
matching ghost fingerprint is found in fingerprint index
154 (reference numeral 620) . In addition to updating the
ABS , controller 113 also increments the relevant reference
counter in the stored reference counters 156 and / or the
reference counter cache 117 and updates the FPS of the
associated fingerprint in fingerprint index cache 119 from
unverified (i . e . , a ghost fingerprint) to verified . Controller
113 also transitions the ABS of an array block to Shared and
Dedupe state 606 from Update - in - place state 604 in
response to receipt of a write IO specifying the write of a full
data block for which a matching ghost fingerprint that
corresponds to the actual data being stored is found in
fingerprint index cache 119 (reference numeral 626) . In this
case , controller 113 has to verify that the matching ghost
fingerprint is the valid one (and updates its FPS accord
ingly) , for example , by reading the data of the array block
from flash cards 126 and then either directly comparing the
array block data to the write data or indirectly comparing
them via a fingerprint match . Only when the verification is
successful does controller 113 transition the ABS of the
block to Shared and Dedupe state 606 . If the verification is
not successful , the existing array block remains in Update - in
place state 604 , the write will be handled as a full block write
610 (for which a new array block has to be allocated) , and
no deduplication is performed . Additionally , the invalid
ghost fingerprint is preferably removed from the fingerprint
index cache 119 . Controller 113 additionally employs space
reclamation engine 115 to remove all unverified fingerprints
not matching the actual data stored for the array block from
fingerprint index cache 119 . Although these verification and
removal operations are computationally expensive , they are
infrequently performed and therefore do not create a sig
nificant negative impact on overall system performance . In
case a reverse array block to fingerprint mapping is present
data verification can be avoided for transition 626 : Control
ler 113 can utilize this reverse mapping to identify the valid
ghost fingerprint and remove all invalid ghost fingerprints .
In such a scenario , upon an update write triggering transi
tions 614 and 616 the reverse mapping is used to immedi
ately remove the old ghost fingerprint when the new one is
added . Therefore , Update - in - place state 604 and Non - shared
and Unique fingerprint 602 are essentially the same . How
ever , this removal can be done lazily before transition 626 is
performed (requiring a traversal of the fingerprint index
cache 119) . Thus , an array block having its ABS set to
Shared and Dedupe state 606 has a reference count greater
than or equal to one , a single associated verified fingerprint
in fingerprint index cache 119 (and / or in the fingerprint
index 154) , and no associated ghost fingerprints in finger
print index cache 119 . While an array block is in Shared and
Dedupe state 606 , controller 113 incurs the full processing
and meta - data storage overhead of deduplication for the
array block , since it is presumed that an array block having
at least one duplicate will likely have additional duplicates
created , rather than being overwritten . Further , controller
113 performs out of place writes for any overwrites of input
blocks that map to the array block .
[0058] As indicated at reference numeral 622 , controller
113 retains the ABS of an array block in Shared and Dedupe
state 606 in response to receipt of a write IO specifying a

US 2018 / 0060367 A1 Mar . 1 , 2018

duplicate block or in response to an update write that retains
a reference count of at least one in the associated reference
counter in the stored reference counters 156 and / or the
reference counter cache 117 . If an update write results in a
zero value of the associated reference counter , controller 113
transitions the ABS of the array block from Shared and
Dedupe state 606 to Invalid state 608 (reference numeral
624) . Controller 113 can optionally transition the ABS of an
array block from Shared and Dedupe state 606 to Non
shared and Unique Fingerprint state 602 in response to the
value of the associated reference counter 117 reaching one
(reference numeral 628) . In this case , no garbage collection
is performed by space reclamation engine 115 to remove
ghost fingerprints for the array block as there are no such
ghost fingerprints for the array block , and controller 113
updates the FPS of the verified fingerprint from verified to
unverified , and if needed , moves the fingerprint from fin
gerprint index 154 into the fingerprint index cache 119 as
ghost fingerprints can only reside in the fingerprint index
cache 119 . Transition from Shared and Dedupe state 606 to
Non - shared and Unique Fingerprint state 602 indicates that
further deduplication opportunities for the array block are
unlikely . Note that finding the correct fingerprint to update
requires either re - reading the data and re - computing the
fingerprint or maintaining a reverse mapping from verified
fingerprints to array blocks and is therefore costly in term of
memory consumption and / or processing overhead .
[0059] As illustrated at reference numerals 630 and 632 ,
controller 113 transitions the ABS of an array block from
either Update - in - place state 604 or Unique fingerprint state
602 to Invalid state 608 in response to receipt of a block
invalidation (either an overwrite IO specifying duplicate
data , a trim command , or volume deletion command that
removes the array block from use) . In this transition , con
troller 113 decrements the value of the associated reference
counter 117 to zero . When an array block is in Invalid state
608 , the block data and all associated fingerprint metadata
are removed from use and are simply awaiting removal from
address mapping data structure 158 and fingerprint index
154 by space reclamation engine 115 . Once such garbage
collection is performed , controller 113 resets the associated
reference counter to a predefined unused value (e . g . , to - 1)
and transitions the array block from Invalid state 608 to
Unallocated state 600 (reference numeral 634) .
[0060] The first class of implementations represented by
FIGS . 5 - 6 seek to avoid verification of fingerprints , which is
computationally and / or resource expensive and may thus
reduce the sustained system performance . This first class of
implementations transitions as many array blocks as pos
sible to either the Update - in - place state 504 , 604 (which is
designed to handle random writes of unique data) or Shared
and Dedupe state 506 , 606 (which is designed to handle
highly duplicative workloads , such as Virtual Desktop Ini -
tiative (VDI) workloads) , while seeking to avoid the com
putational expense and NAND flash accesses to fingerprint
metadata pages 400 in the fingerprint index 154 and data
pages 152 in response to transitions from Update - in - place
state 504 , 604 to Shared and Dedupe state 506 , 606 . The first
class of implementations thus provides full or near - full
inline deduplication . In cases in which the capacity for ghost
fingerprints in fingerprint index cache 119 is exhausted ,
generation of a new fingerprint can be handled in Non
shared and Unique Fingerprint state 502 , 602 by controller
113 transitioning the ABS of the array block to Shared and

Dedupe state 506 and adding the new fingerprint as a
verified fingerprint (which is stored in the fingerprint index
154 on the NAND flash media) . If a new fingerprint is
generated while the capacity for ghost fingerprints in fin
gerprint index cache 119 is exhausted and the ABS of an
array block is in Update - in - place state 504 , 604 controller
113 considers the access to be a random write update and
reverts to best efforts deduplication by discarding the new
fingerprint or any other ghost fingerprint . Note that in case
controller 113 discards only invalid ghost fingerprints dedu
plication still remains exhaustive . (Controller 113 can seek
to reduce the incidence of reversion to best efforts dedupli
cation by having space reclamation engine 115 periodically
clean up invalid ghost fingerprints in the background and by
transitioning array blocks from Non - shared and Unique
Fingerprint state 502 , 602 to Shared and Dedupe state 506 ,
606 in the background .)
[0061] Referring now to FIG . 7A , there is depicted a state
diagram illustrating management of an array block state
(ABS) and fingerprint state (FPS) of a block of a storage
array in accordance with an embodiment in which ghost
fingerprints are maintained in both memory and the bulk
storage media . The management process represented by this
state diagram can be performed by a controller of a data
storage system , which for purposes of the following descrip
tion will be assumed to be controller 113 of FIG . 1B . In the
second class of implementations represented by FIG . 7A as
well as FIGS . 7B and 8 , which all maintain ghost finger
prints in fingerprint index cache 119 in memory 118 and in
fingerprint index 154 on the NAND flash storage media , a
greater number of ghost fingerprints can advantageously be
maintained through use of the greater storage capacity of the
NAND flash media . However , transitions of the ABS of an
array block from the Update - in - place state to the Non - shared
and Unique Fingerprint state or the Shared and Dedupe state
to the Non - shared and Unique Fingerprint state are more
costly and preferably avoided because these transitions
entail access to and removal of ghost fingerprints from the
NAND flash storage media .
[0062] In FIG . 7A , the ABS of an array block can have any
of five states , including Unallocated state 700 , Non - shared
and Unique Fingerprint state 702 , Update - in - place state 704 ,
Shared and Dedupe state 706 , and Invalid state 708 . Each
array block of a storage array begins in Unallocated state
700 , which signifies that the array block address of the array
block is not associated with a volume block address in
address mapping data structure 158 and that the array block
does not have any associated fingerprint stored in fingerprint
index 154 or fingerprint index cache 119 . Controller 113
transitions the ABS of an array block from Unallocated state
700 to either Non - shared and Unique Fingerprint state 702
or Update - in - place state 704 in response to controller 113
receiving a write IO . As shown at reference numeral 710 , in
the most common case in which the write 10 specifies a full
array block of write data (e . g . , 4 kB , 8 kB , 16 kB , or a
multiple thereof) , controller 113 allocates an array block for
storing the write data via address mapping data structure
158 , creates an address mapping entry in address mapping
data structure 158 , increments the relevant reference counter
in the stored reference counters 156 and / or the reference
counter cache 117 to a value of 1 , and sets the ABS for the
address translation entry to Non - shared and Unique Finger
print state 702 . As shown at reference numeral 712 , in the
less common case in which the write 10 specifies less than

US 2018 / 0060367 A1 Mar . 1 , 2018

a full array block of write data (e . g . , smaller than 4 kB) ,
controller 113 performs similar processing , but sets the ABS
for the address translation entry to Update - in - place state 704
instead of Non - shared and Unique Fingerprint state 702 . In
either case , when an array block is initially allocated
controller 113 sets ABS to a non - deduplication state in
which no deduplication is performed for the array block and
sets the FPS of the fingerprint to the unverified state . In the
case of an array block in Non - shared and Unique Fingerprint
state 702 , it is known that only a single unique fingerprint for
the array block , namely , a ghost fingerprint , resides in
fingerprint index 154 or fingerprint index array 119 ; assum
ing that writing a sub - block 712 always generates a finger
print , an array block in Update - in - place state 704 can have
one or more associated ghost fingerprints in fingerprint
index 154 or fingerprint index cache 119 , but only one of
these ghost fingerprints actually represents the data of the
array block (i . e . , is valid) and all the others , if present , are
invalid . In other embodiments , writing a sub - block in steps
712 and 716 may not generate a fingerprint , hence an array
block in Update - in - place state 704 can have zero or more
associated ghost fingerprints . Clearly , in this case at most
one of these fingerprints actually represents the data of the
array block (i . e . , is valid) , and all others , if present , are
invalid .
[0063] Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 702 to
Update - in - place state 704 in response to either a partial or
full update of the array block , as shown at reference numeral
714 . As indicated at reference numeral 716 , controller 113
similarly retains an array block in Update - in - place state 704
in response to either a partial or full update of the array
block . Unlike the embodiments of FIG . 6 , in the embodi
ment of FIG . 7A , controller 113 does not support a transition
of the ABS of the array block from Update - in - place state 704
to Non - shared and Unique Fingerprint state 702 in order to
avoid garbage collection accesses to the NAND storage
media .
10064) Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 702 to
Shared and Dedupe state 706 (in which deduplication is
performed for the array block) in response to receipt of a
write IO specifying the write of a full data block for which
a matching ghost fingerprint is found in fingerprint index
154 (reference numeral 720) . In addition to updating the
ABS , controller 113 also increments the relevant reference
counter in the stored reference counters 156 or reference
counter cache 117 and updates the FPS of the single asso
ciated fingerprint in fingerprint index 154 and / or fingerprint
index cache 119 from unverified (i . e . , a ghost fingerprint) to
verified . Controller 113 also transitions the ABS of an array
block to Shared and Dedupe state 706 from Update - in - place
state 704 in response to receipt of a write IO specifying the
write of a full data block for which a matching ghost
fingerprint that corresponds to the actual data being stored is
found in fingerprint index 154 (or fingerprint index cache
119) (reference numeral 726) . In this case , controller 113 has
to verify that the matching ghost fingerprint is the valid one
(and updates its FPS accordingly) , for example , by reading
the data of the array block from flash cards 126 and then
either directly comparing the array block data to the write
data or indirectly comparing them via a fingerprint match .
Only when the verification is successful , controller 113
transitions to Shared and Dedupe state 706 . If the verifica -

tion is not successful , the existing array block remains in
Update - in - place state 704 , the write will be handled as a full
block write 710 (for which a new array block has to be
allocated) , and no deduplication is performed . Controller
113 also employs space reclamation engine 115 to remove
unverified fingerprints for the array block from fingerprint
index 154 in response to state transition 726 . Thus , an array
block having its ABS set to Shared and Dedupe state 706 has
a reference count greater than or equal to one , has a single
associated verified fingerprint in fingerprint index 154 , and
will have no associated ghost fingerprints in fingerprint
index 154 or fingerprint index cache 119 . While an array
block is in Shared and Dedupe state 706 , controller 113
incurs the full processing and meta - data storage overhead of
deduplication for the array block , since it is presumed that
the array block having at least one duplicate and will likely
have additional duplicates created , rather than being over
written . Further , controller 113 performs out of place writes
for any overwrites of input blocks that map to the array
block .
[0065] As indicated at reference numeral 722 , controller
113 retains the ABS of an array block in Shared and Dedupe
state 706 in response to receipt of an write IO specifying a
duplicate block write or in response to an update write that
retains a reference count of at least one in the associated
reference counter 117 . If an update write results in a zero
value of the associated reference counter in the stored
reference counters 156 and / or the reference counter cache
117 , controller 113 transitions the ABS of the array block
from Shared and Dedupe state 706 to Invalid state 708
(reference numeral 724) . Controller 113 may transition the
ABS of an array block from Shared and Dedupe state 706 to
Non - shared and Unique Fingerprint state 702 in response to
the value of the associated reference counter 117 being
decremented to one and the array block having only one
associated fingerprint (i . e . , a verified fingerprint) in finger
print index 154 or fingerprint index cache 119 (reference
numeral 728) . In this case , controller 113 updates the FPS of
the remaining fingerprint from verified to unverified , which
entails an access to the NAND flash media . Transition from
Shared and Dedupe state 706 to Non - shared and Unique
Fingerprint state 702 indicates that further deduplication
opportunities for the array block are unlikely .
10066) As illustrated at reference numerals 730 and 732 ,
controller 113 transitions the ABS of an array block from
either Update - in - place state 704 or Non - shared and Unique
fingerprint state 702 to Invalid state 708 in response to
receipt of an write IO specifying a deduplication write , a
trim command , or volume deletion command that removes
the array block from use . In this transition , controller 113
decrements the value of the associated reference counter 117
to zero . When an array block is in Invalid state 708 , the
block data and all associated fingerprint metadata are
removed from use and are simply awaiting removal from
address mapping data structure 158 and fingerprint index
154 by space reclamation engine 115 . Once such garbage
collection is performed , controller 113 sets the associated
reference counter to a predefined unused value (e . g . , to - 1)
and transitions the array block from Invalid state 708 to
Unallocated state 700 (reference numeral 734) .
10067] With reference now to FIG . 7B , there is given a
state diagram illustrating management of an array block
state (ABS) and fingerprint state (FPS) of a block of a
storage array in accordance with an embodiment in which

US 2018 / 0060367 A1 Mar . 1 , 2018

nu

ghost fingerprints are lazily maintained in both memory and
the bulk storage media . As indicated by like reference
numerals , the embodiment of FIG . 7B is similar to that
illustrated in FIG . 7A , except that the state diagram includes
no state transition from Shared and Dedupe state 706 to
Non - shared and Unique Fingerprint state 702 and no state
transition from Update - in - place state 704 to Shared and
Dedupe state 706 given the computational expense and wear
associated with performing garbage collection for ghost
fingerprints on the NAND flash storage media . As a result ,
Shared and Dedupe state 706 does indicate that no ghost
fingerprints exist for the array block . Furthermore , in
Update - in - place state 704 no new fingerprints are generated
so a block in this state has at most one associated invalid
ghost fingerprint .
[0068] Referring now to FIG . 8 , there is depicted a state
diagram illustrating management of an array block state
(ABS) and fingerprint state (FPS) of a block of a storage
array in accordance with yet another embodiment in which
ghost fingerprints are maintained in both memory and the
bulk storage media . This design is characterized by lower
complexity , but slightly higher computational cost for the
first duplicate write that is detected , and the ability to
perform deduplication even for data written using writes
smaller than the dedupe block size . The management pro
cess represented by this state diagram can be performed by
a controller of a data storage system , which for purposes of
the following description will be assumed to be controller
113 of FIG . 1B .
[0069] In FIG . 8 , the ABS of an array block can have any
of five states , including Unallocated state 800 , Update - in
place with Valid Fingerprints state 802 , Update - in - place
without Valid Fingerprints state 804 , Shared and Dedupe
state 806 , and Invalid state 808 . Each array block of a
storage array begins in Unallocated state 800 , which signi
fies that the array block address of the array block is not
associated with a volume block address in address mapping
data structure 158 or address mapping cache 121 and that the
array block does not have any associated fingerprint stored
in fingerprint index 154 or fingerprint index cache 118 .
Controller 113 transitions the ABS of an array block from
Unallocated state 800 to either Update - in - place with Valid
Fingerprints state 802 or Update - in - place without Valid
Fingerprints state 804 (in both states no deduplication is
performed for the array block) in response to controller 113
receiving a write IO . As shown at reference numeral 810 , in
the most common case in which the write IO specifies a full
array block of write data (e . g . , 4 kB , 8 kB , 16 kB , or a
multiple thereof) , controller 113 allocates an array block for
storing the write data via address mapping data structure
158 , creates an address mapping entry in address mapping
data structure 158 , increments the relevant reference counter
in the stored reference counters 156 and / or the reference
counter cache 117 to a value of 1 , sets the ABS for the
address translation entry to Update - in - place with Valid Fin
gerprints state 802 , and computes a fingerprint that is stored
in either the fingerprint index 154 and / or the fingerprint
cache 118 . In the case of an array block in Update - in - place
with Valid Fingerprints state 802 , it is known that one or
possibly more ghost fingerprints reside in fingerprint index
154 or fingerprint index cache 118 . As shown at reference
numeral 812 , in the less common case in which the write IO
specifies less than a full array block of write data (e . g . , 4 kB
or smaller) , controller 113 allocates an array block for

storing the write data via address mapping data structure
158 , creates an address mapping entry in address mapping
data structure 158 , increments the relevant reference counter
in the stored reference counters 156 and / or the reference
counter cache 117 to a value of 1 , and sets the ABS for the
address translation entry to Update - in - place without Valid
Fingerprints state 804 . For an array block in update - in - place
without Valid fingerprints state 804 , no ghost fingerprints are
computed or stored in fingerprint index 154 or fingerprint
index cache 118 when transitions 812 is performed .
[0070] Controller 113 retains the ABS of an array block in
Update - in - place with Valid Fingerprints state 802 in
response to a full update of the array block , as shown at
reference numeral 818 . As indicated at reference numeral
815 , controller 113 similarly retains an array block in
Update - in - place without Valid fingerprints state 804 in
response to a partial update of the array block . In response
to a full update of an array block in Update - in - place without
Valid Fingerprints state 804 , controller 113 transitions the
ABS of the array block to Update - in - place with Valid
Fingerprints state 802 , as shown at reference numeral 817 .
It should be noted that this state transition can also be
triggered by a background deduplication process (if
desired) , which will read the entire array block to generate
the fingerprint that will be inserted into fingerprint index 154
or fingerprint index cache 118 .
10071] Controller 113 transitions the ABS of an array
block from Update - in - place with Valid Fingerprint state 802
to Update - in - place without Valid Fingerprint state 804 in
response to a partial (sub - block) update of the array block
(reference numeral 827) . In this case , similarly to transition
812 , no fingerprint is computed or stored in the fingerprint
index 154 or in the fingerprint index cache 118 .
10072] Controller 113 transitions the ABS of an array
block from Update - in - place with Valid Fingerprints state
802 to Shared and Dedupe state 806 (in which deduplication
is also performed) in response to receipt of a write IO
specifying the write of a full data block for which a matching
ghost fingerprint is found in fingerprint index 154 or fin
gerprint index cache 118 (reference numeral 820) . In this
case , controller 113 must also verify if the matching ghost
fingerprint is the valid one (and update its FPS accordingly) .
This fingerprint verification entails reading the array block
data from the NAND storage media and either directly
comparing the data or its fingerprint to determine a match .
Only when this verification is successful can controller 113
transition the ABS of the block to Shared and Dedupe state
806 . If the verification is not successful , the existing array
block remains in Update - in place with Valid Fingerprints
state 802 , the write will be handled as a full block write 810
(for which a new array block has to be allocated) , and no
deduplication is performed . Additionally , the invalid ghost
fingerprint is preferably removed from the fingerprint index
cache 118 and / or the fingerprint index 154 . In addition to
updating the ABS , controller 113 also increments the rel
evant reference counter in the stored reference counters 156
and / or the reference counter cache 117 and updates the FPS
of the matching ghost fingerprint in fingerprint index 154 or
fingerprint index cache 118 from unverified (i . e . , a ghost
fingerprint) to verified . Note that at this point invalid ghost
fingerprints pointing to this array block may still exist as
transition 820 does not involve garbage collection of ghost
fingerprints . An array block having its ABS set to Shared and
Dedupe state 806 has a reference count greater than or equal

US 2018 / 0060367 A1 Mar . 1 , 2018
13

to one , has a single associated verified fingerprint in finger
print index 154 , and may have associated ghost fingerprints
in fingerprint index 154 or fingerprint index cache 118 .
While an array block is in Shared and Dedupe state 806 ,
controller 113 incurs the full processing and meta - data
storage overhead of deduplication for the array block , since
it is presumed that an array block having at least one
duplicate and will likely have additional duplicates created ,
rather than being overwritten . Further , controller 113 per
forms out of place writes for any overwrites of input blocks
that map to the array block . It should be noted that in this
embodiment , controller 113 does not support any transitions
of the ABS of an array block from Update - in - place without
Valid Fingerprints state 804 to Shared and Dedupe state 806
because the array block does not have an associated valid
ghost fingerprint .
10073] As indicated at reference numeral 822 , controller
113 retains the ABS of an array block in Shared and Dedupe
state 806 in response to receipt of an write IO specifying a
duplicate block write . If one of these operations results in a
zero value of the associated reference counter in the stored
reference counters 156 and / or the reference counter cache
117 , controller 113 transitions the ABS of the array block
from Shared and Dedupe state 806 to Invalid state 808
(reference numeral 824) . Controller 113 transitions the ABS
of an array block from Shared and Dedupe state 806 to
Update - in - place with Valid fingerprints state 802 in response
to an update write the array block while the value of the
associated reference counter 117 is one (reference numeral
828) . In this case , controller 113 removes the verified
fingerprint from fingerprint index 154 or fingerprint index
cache 118 and adds the newly computed ghost fingerprint to
fingerprint index 154 and / or fingerprint index cache 118 ,
which may entail an access to the NAND flash media .
[0074] As illustrated at reference numerals 830 and 832 ,
controller 113 transitions the ABS of an array block from
either Update - in - place without Valid Fingerprint state 804 or
Update - in - place with Valid Fingerprint state 802 to Invalid
state 808 in response to receipt of an array block invalida
tion , such as a write IO specifying a deduplication write , a
trim command , or volume deletion command that removes
the array block from use . In this transition , controller 113
decrements the value of the associated reference counter in
the stored reference counters 156 and / or the reference coun
ter cache 117 to zero . When an array block is in Invalid state
808 , the block data and all associated fingerprint metadata
are removed from use and are simply awaiting removal from
address mapping data structure 158 and fingerprint index
154 by space reclamation engine 115 . Once such garbage
collection is performed , controller 113 sets the associated
reference counter to a predefined unused value (e . g . , to - 1)
and transitions the array block from Invalid state 808 to
Unallocated state 800 (reference numeral 834) .
[0075] With reference now to FIG . 9 , a state diagram is
illustrated depicting the management of the array block state
(ABS) and fingerprint state (FPS) of a block of a storage
array in accordance with yet another embodiment that
distinguishes between sharing of array blocks triggered by
deduplication and sharing of array blocks attributed to other
features supported by the storage system such as volume
snapshots , storage - side copy commands (e . g . , XCOPY) , or
volume clone operations . FIG . 9 therefore shows how dedu
plication based on ghost fingerprints (including the mainte -
nance of address translation , FPS , ABS , and reference

counters metadata) can be integrated with other storage
features that generate additional sources of array block
sharing . The management process represented by this state
diagram can be performed by a controller of a data storage
system , which for the purposes of the following description
will be assumed to be controller 113 of FIG . 1B . More
common state transitions in this and the other state diagrams
given herein are indicated by heavyweight lines , and less
common state transitions are indicated by lightweight lines .
100761 . In the embodiment of FIG . 9 , the ABS of an array
block can be in any of seven states , including Unallocated
state 900 , Non - shared and Unique Fingerprint state 902 ,
Update - in - place state 904 , Shared and Dedupe state 906 ,
Shared and Ghost Fingerprint state 909 , Shared and Unique
Fingerprint state 907 , and Invalid state 908 . Each array
block of a storage array begins in Unallocated state 900 ,
which signifies that the array block address of the array
block is not associated with a volume block address in
address mapping data structure 158 and that the array block
does not have any associated fingerprint stored in fingerprint
index 154 or fingerprint index cache 119 . An unallocated
array block may hence be implemented in a way that no
storage physical storage spaces is used in flash cards 126 .
[0077] The ABS of an array block transitions from Unal
located state 900 to either Non - shared and Unique Finger
print state 902 or Update - in - place state 904 in response to
controller 113 receiving a write IO . As shown at reference
numeral 910 , in the most common case in which the write
IO specifies a full array block of write data (e . g . , 4 kB , 8 kB ,
16 kB , or a multiple thereof) , controller 113 allocates one or
more array blocks for storing the write data via address
mapping data structure 158 , creates one or more address
mapping entries in address mapping data structure 158 for
each of the array blocks , increments the relevant reference
counter in the stored reference counters 156 and / or the
reference counter cache 117 to a value of 1 , and sets the ABS
for the address translation entry to Non - shared and Unique
Fingerprint state 902 . As shown at reference numeral 912 , in
the less common case in which the write IO specifies less
than a full array block of write data (e . g . , smaller than 4 kB) ,
controller 113 performs similar processing , but sets the ABS
for the address translation entry to Update - in - place state 902
instead of Non - shared and Unique Fingerprint state 902 . In
this case , the actual write operation may be performed in a
read - modify - write sequence in some embodiments . In either
case , when an array block is initially allocated , controller
113 sets ABS to a non - deduplication state in which data
deduplication is not performed and sets the FPS of the array
block to the unverified state . Note that in some embodi
ments , a sub - block write 912 may result in no fingerprint
being created , and therefore no FPS has to be set . In the case
of an array block in Non - shared and Unique Fingerprint
state 902 , it is known that only a single unique fingerprint ,
namely , a ghost fingerprint , resides in fingerprint index 154
or fingerprint index cache 119 ; an array block in Update
in - place state 904 can have one or more associated ghost
fingerprints in the fingerprint index 154 or fingerprint index
cache 119 , but only one of these actually represents the data
of array block (i . e . , is valid) and all the others , if present , are
invalid . Clearly , in embodiments that do not create a fin
gerprint upon a sub - block write 912 there may even be no
fingerprint for a block whose ABS is in the Update - in - place
state 904 state .

US 2018 / 0060367 A1 Mar . 1 , 2018
14 .

[0078] Note that for a duplicate write to unallocated space
a fresh array block may be allocated or not . In case the
detection of the duplicate is performed entirely inline (i . e . ,
before the write is acknowledged to the processor system
102) , the allocation of an array block is not needed . When
the write IO is acknowledged before the deduplication
engine 125 detects a duplicate , data may have to be made
persistent before the actual deduplication and therefore
require an array block to be allocated . The same is true for
updates with duplicate data to allocated space that map to
existing array blocks in the Shared and Dedupe state 906 .
[0079] Controller 113 transitions the ABS of an array
block from Non - shared and Unique Fingerprint state 902 to
Update - in - place state 904 in response to either a partial or
full update of the array block , as shown at reference numeral
914 . As indicated at reference numeral 916 , controller 113
similarly retains an array block in Update - in - place state 904
in response to either a partial or full update of the array
block , as shown by transition 918 . It will be appreciated that
while NAND flash memory systems 150 do not physically
permit in - place update of data pages 152 , from the logical
view of controller 113 in - place updates are permitted for
array blocks . Therefore , in - place updates can be done in
non - deduplication states 902 and 904 . Controller 113 tran
sitions the ABS of the array block from Update - in - place
state 904 to Non - shared and Unique Fingerprint state 902 as
shown at reference numeral 916 in response to the garbage
collection performed by space reclamation engine 115
optionally removing either all of the unverified (i . e . , ghost)
fingerprints or all invalid ghost fingerprints (i . e . , retaining
only the single ghost fingerprint that corresponds to the data
being stored in the array block if such a ghost fingerprint
exists) for the array block from fingerprint index 154 or
fingerprint index cache 119 . The ABS may for this purpose
maintain a counter representing the number of overwrites
seen and the counter may further be stored in the FPS in
order to facilitate the detection of the last fingerprint created
for the array block .
[0080] Controller 113 transitions the ABS of an array
block to Shared and Dedupe state 906 (in which inline
deduplication is performed for the array block) from either
Non - shared and Unique Fingerprint state 902 (transition
920) or from Shared and Unique Fingerprint state 909
(transition 952) in response to receipt of a write 10 speci
fying the write of a full data block for which a matching
ghost fingerprint is found in fingerprint index 154 . Note that
the transition does not require a verification of the finger
print because the matching fingerprint is the only fingerprint
for this array block . Therefore , the deduplication overhead is
minimized for the transition shown at reference numeral
920 . In addition to updating the ABS , controller 113 also
increments the reference counter in the stored reference
counters 156 and / or the reference counter cache 117 for the
array block and updates the FPS of the associated fingerprint
in fingerprint index 154 from unverified (i . e . , a ghost fin
gerprint) to verified . Depending on the implementation of
the FPS , controller 113 may further adapt the array block
address in the FPS from an input block address to an output
block address or vice versa .
[0081) Controller 113 also transitions the ABS of an array
block to Shared and Dedupe state 906 either from Update
in - place state 904 (transition 922) or from Shared and Ghost
Fingerprints state 909 (transition 956) in response to receipt
of a write IO specifying the write of a full data block for

which a matching ghost fingerprint is found in fingerprint
index 154 (reference numeral 926) . In this case , controller
113 must also verify if the matching ghost fingerprint is the
valid one (and update its FPS accordingly) , for example , by
reading the data of the array block from flash cards 126 and
then either directly comparing the array block data to the
write data or indirectly comparing them via a fingerprint
match . Only when this verification is successful does con
troller 113 transition to Shared and Dedupe state 906 . If the
verification is not successful , the existing array block
remains in Update - in place state 904 or in Shared and Ghost
Fingerprints state 909 , the write is handled as a full block
write 910 (for which a new array block has to be allocated) ,
and no deduplication is performed . Additionally , the invalid
ghost fingerprint is preferably removed from the fingerprint
index cache 119 and / or the fingerprint index 154 . Although
this verification operation is computationally expensive , it is
infrequently performed and therefore does not create a
significant negative impact on the overall system perfor
mance . Thus , an array block having its ABS set to Shared
and Dedupe state 906 has a reference count greater than or
equal to one , a single associated verified fingerprint in
fingerprint index 154 , and possibly one or more associated
ghost fingerprints in fingerprint index 154 and / or fingerprint
index cache 119 . While an array block is in Shared and
Dedupe state 906 , controller 113 incurs the full processing
and meta - data storage overhead of deduplication for the
array block , since it is presumed that an array block having
at least one duplicate will likely have additional duplicates ,
rather than being overwritten . Further , controller 113 per
forms out of place writes for any overwrites of input blocks
that map to the array block .
[0082] As indicated at reference numeral 924 , controller
113 retains the ABS of an array block in Shared and Dedupe
state 906 in response to receipt of a write IO specifying a
duplicate block write or in response to an overwrite , such as
a trim command , or a volume deletion that , upon update of
the reference counter in the stored reference counters 156
and / or the reference counter cache 117 , results in a reference
count in the associated reference counter in the stored
reference counters 156 and / or the reference counter cache
117 of at least one . If the overwrite , trim or volume deletion
results in a zero value of the reference counter , controller
113 transitions the ABS of the array block from Shared and
Dedupe state 906 to Invalid state 908 reference numeral
930) . Controller 113 transitions the ABS of an array block
from Shared and Dedupe state 906 to Non - shared and
Unique Fingerprint state 902 in response to the value of the
associated reference counter in the stored reference counters
156 and / or the reference counter cache 117 reaching one and
the garbage collection performed by space reclamation
engine 115 deciding to remove all of the ghost fingerprints
for the array block from fingerprint index 154 (reference
numeral 936) . In this case , controller 113 additionally
updates the FPS of the remaining fingerprint from verified to
unverified . Transition 936 , from Shared and Dedupe state
906 to Non - shared and Unique Fingerprint state 902 , indi
cates that further deduplication opportunities for the array
block are unlikely .
(0083] As illustrated at reference numerals 940 , controller
113 transitions the ABS of an array block from Non - shared
and Unique Fingerprint state 902 to Shared and Unique
Fingerprint state 907 and sets the reference counter to a
value of two in response to an IO request that results in the

US 2018 / 0060367 A1 Mar . 1 , 2018
15

block being referenced (shared) by multiple addresses . Such
block sharing can result either from a volume snapshot
command , a storage - side copy command (e . g . , XCOPY) , or
a volume clone operation . Shared and Unique Fingerprint
state 907 state reflects that the array block is being shared
due to multiple addresses being mapped to it explicitly as a
result of an user command , rather than implicitly due to the
addresses storing the same content . In Shared and Unique
Fingerprint state 907 , any write IO to an address mapped to
the array block must be performed out of place by allocating
and writing to a new array block . A block in Shared and
Unique Fingerprint state 907 has zero or more ghost finger
prints as the FPS is not updated following transitions 940 . As
indicated at reference numeral 950 , controller 113 retains the
ABS of an array block in Shared and Unique Fingerprint
state 907 in response to receipt of a write IO triggering a
block invalidation (such as an overwrite , a trim command , or
a volume deletion) or in response to an 10 command that
creates additional explicit sharing (such as snapshot ,
XCOPY , or clone) that , upon update of the reference counter
in the stored reference counters 156 and / or the reference
counter cache 117 , results in a reference count in the
associated reference counter in the stored reference counters
156 and / or the reference counter cache 117 of at least two .
If a block invalidation results in a reference counter value of
one , controller 113 transitions the ABS of the array block
from Shared and Unique Fingerprint state 907 back to
Non - shared and Unique Fingerprint state 902 (reference
numeral 944) .
[0084] As illustrated at reference numerals 942 , controller
113 transitions the ABS of an array block from Update - in
place state 904 to Shared and Ghost Fingerprints state 909
and sets the reference counter to a value of two in response
to an IO request that results in the block being referenced
(shared) by multiple addresses . Such block sharing can
result either from a volume snapshot command , a storage
side copy command (e . g . , XCOPY) , or a volume clone
operation . Shared and Ghost Fingerprint state 909 reflects
that the array block is being shared due to multiple addresses
being mapped to it explicitly as a result of an user command ,
rather than implicitly due to the addresses storing the same
content . In Shared and Ghost Fingerprint state 909 , any
write IO to an address mapped to the array block must be
performed out of place by allocating and writing to a new
array block . A block in Shared and Ghost Fingerprint state
909 has zero or more ghost fingerprints as the FPS is not
updated following transition 942 . As indicated at reference
numeral 950 , controller 113 retains the ABS of an array
block in Shared and Ghost Fingerprint state 909 in response
to receipt of a write IO triggering a block invalidation (such
as an overwrite , a trim command , or a volume deletion) or
in response to an 10 command that creates additional
explicit sharing (such as snapshot , XCOPY , or clone) that ,
upon update of the reference counter in the stored reference
counters 156 and / or the reference counter cache 117 , results
in a reference count in the associated reference counter in the
stored reference counters 156 and / or the reference counter
cache 117 of at least two . If a block invalidation results in
a reference counter value of one , controller 113 transitions
the ABS of the array block from Shared and Ghost Finger
print state 909 back to Update - in - place state 904 (reference
numeral 946) .
[0085] As illustrated at reference numerals 932 and 934 ,
controller 113 transitions the ABS of an array block from

either Update - in - place state 904 or Non - shared and Unique
Fingerprint state 902 to Invalid state 908 in response to a
block invalidation , such as an overwrite , a trim command ,
volume deletion , snapshot deletion that removes the array
block from use . When an array block is in Invalid state 908 ,
the block data and all associated fingerprint metadata are
removed from use and are simply awaiting removal from
address mapping data structure 158 (and address mapping
cache 121) and fingerprint index 154 (and fingerprint index
cache 119) by space reclamation engine 115 . Once such
garbage collection is performed , controller 113 sets the
associated reference counter to a predefined unused value
(e . g . , to - 1) and transitions the array block from Invalid state
908 to Unallocated state 900 (reference numeral 938) .
[0086] Differing implementations of the general state dia
gram given in FIG . 9 can additionally be explored based
upon specific architectural choices , such as the manner in
which fingerprints are handled . Moreover , not all transitions
presented in FIG . 9 need be to be implemented . Only a
subset of the state transitions are required such that the state
diagram graph is connected (i . e . , there is a path from any
state to any other state either directly or indirectly through
other states) .
[0087] As has been described , in at least one embodiment ,
a controller of a data storage system generates fingerprints of
data blocks written to the data storage system . The controller
maintains , in a data structure , respective state information
for each of a plurality of data blocks . The state information
for each data block can be independently set to indicate any
of a plurality of states , including at least one deduplication
state and at least one non - deduplication state . At allocation
of a data block , the controller initializes the state information
for the data block to a non - deduplication state and , there
after , in response to detection of a write of duplicate of the
data block to the data storage system , transitions the state
information for the data block to a deduplication state . The
controller selectively performs data deduplication for data
blocks written to the data storage system based on the state
information in the data structure and by reference to the
fingerprints .
[0088] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0089] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore

US 2018 / 0060367 A1 Mar . 1 , 2018
16

going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
10090) Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
10091) Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0092] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0093] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com

puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
10094] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0095] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0096] While the present invention has been particularly
shown as described with reference to one or more preferred
embodiments , it will be understood by those skilled in the art
that various changes in form and detail may be made therein
without departing from the spirit and scope of the invention .
For example , although aspects have been described with
respect to a data storage system including a flash controller
that directs certain functions , it should be understood that
present invention may alternatively be implemented as a
program product including a storage device storing program
code that can be processed by a processor to perform such
functions or cause such functions to be performed . As
employed herein , a “ storage device ” is specifically defined
to include only statutory articles of manufacture and to
exclude transmission media per se , transitory propagating
signals per se , and forms of energy per se .
[0097] In addition , although embodiments have been
described that include use of a NAND flash memory , it
should be appreciated that embodiments of the present
invention can also be used with other types of non - volatile
random access memory (NVRAM) including , for example ,
phase - change memory (PCM) and combinations thereof .

US 2018 / 0060367 A1 Mar . 1 , 2018

[0098] The figures described above and the written
description of specific structures and functions below are not
presented to limit the scope of what Applicants have
invented or the scope of the appended claims . Rather , the
figures and written description are provided to teach any
person skilled in the art to make and use the inventions for
which patent protection is sought . Those skilled in the art
will appreciate that not all features of a commercial embodi
ment of the inventions are described or shown for the sake
of clarity and understanding . Persons of skill in this art will
also appreciate that the development of an actual commer
cial embodiment incorporating aspects of the present inven
tions will require numerous implementation - specific deci
sions to achieve the developer ' s ultimate goal for the
commercial embodiment . Such implementation - specific
decisions may include , and likely are not limited to , com
pliance with system - related , business - related , government
related and other constraints , which may vary by specific
implementation , location and from time to time . While a
developer ' s efforts might be complex and time - consuming
in an absolute sense , such efforts would be , nevertheless , a
routine undertaking for those of skill in this art having
benefit of this disclosure . It must be understood that the
inventions disclosed and taught herein are susceptible to
numerous and various modifications and alternative forms .
Lastly , the use of a singular term , such as , but not limited to ,
“ a ” is not intended as limiting of the number of items .
What is claimed is :
1 . A method of controlling a data storage system , the

method comprising :
a controller generating fingerprints of data blocks written

to the data storage system ;
the controller maintaining , in a data structure , respective

state information for each of a plurality of data blocks
in the data storage system , wherein the state informa
tion for each data block can be independently set to
indicate any of a plurality of states , and wherein the
plurality of states includes at least one deduplication
state in which deduplication is performed for the asso
ciated data block and at least one non - deduplication
state in which deduplication is not performed for the
associated data block , wherein the maintaining
includes :
at allocation of a data block , initializing the state

information for the data block to a non - deduplication
state among the plurality of states ; and

thereafter , in response to detection of a write of dupli
cate of the data block to the data storage system ,
transitioning the state information for the data block
to a deduplication state among the plurality of states ;
and

the controller selectively performing data deduplication
for data blocks written to the data storage system based
on the state information in the data structure and by
reference to the fingerprints .

2 . The method of claim 1 , wherein the method further
comprises :

maintaining a fingerprint index of data blocks written to
the data storage system , wherein the fingerprint index
includes both unverified ghost fingerprints and verified
fingerprints , wherein the verified fingerprints represent
current data of the associated data blocks and the
unverified ghost fingerprints represent current data of

some associated data blocks and do not represent
current data of other associated data blocks .

3 . The method of claim 2 , wherein :
the data storage system includes non - volatile storage
media and a cache ; and

the method further comprises storing unverified ghost
fingerprints only in the cache and storing verified
fingerprints in the non - volatile storage media .

4 . The method of claim 2 , and further comprising :
in the fingerprint index , associating unverified ghost fin

gerprints with input logical block addresses .
5 . The method of claim 2 , and further comprising :
removing unverified ghost fingerprints from the finger

print index when transitioning the state information
from the non - deduplication state to the deduplication
state .

6 . The method of claim 2 , wherein :
the non - deduplication state is a first non - deduplication

state in which an associated data block has at most one
associated fingerprint in the fingerprint index ;

the plurality of states further includes a second non
deduplication state in which deduplication is not per
formed for the associated data block and in which an
associated data block can have multiple different fin
gerprints in the fingerprint index ;

the method further comprises :
in response to an update write to a data block in the first
non - deduplication state , updating the data block to a
different state among the plurality of states ;

in response to an update write to a data block in the
second non - deduplication state , retaining the data
block in the second non - deduplication state .

7 . The method of claim 1 , and further comprising setting
the state information of the data block to a non - deduplica
tion state in response to a command to create a copy of the
data block .

8 . The method of claim 7 , and further comprising follow
ing the setting , refraining from transitioning the state infor
mation of the data block to any deduplication state until
deallocation of the data block .

9 . The method of claim 1 , and further comprising :
maintaining a reference count value for the data block ;

and
transitioning the state information of the data block from

a deduplication state to a non - deduplication state based
on the reference count value .

10 . A data processing system , comprising :
a controller of a data storage system , wherein the con

troller is configured to perform :
generating fingerprints of data blocks written to the

data storage system ;
maintaining , in a data structure , respective state infor

mation for each of a plurality of data blocks in the
data storage system , wherein the state information
for each data block can be independently set to
indicate any of a plurality of states , and wherein the
plurality of states includes at least one deduplication
state in which deduplication is performed for the
associated data block and at least one non - dedupli
cation state in which deduplication is not performed
for the associated data block , wherein the maintain
ing includes :

US 2018 / 0060367 A1 Mar . 1 , 2018

at allocation of a data block , initializing the state
information for the data block to a non - dedupli
cation state among the plurality of states ; and

thereafter , in response to detection of a write of
duplicate of the data block to the data storage
system , transitioning the state information for the
data block to a deduplication state among the
plurality of states ; and

selectively performing data deduplication for data
blocks written to the data storage system based on
the state information in the data structure and by
reference to the fingerprints .

11 . The data processing system of claim 10 , wherein the
controller is configured to perform :
maintaining a fingerprint index of data blocks written to

the data storage system , wherein the fingerprint index
includes both unverified ghost fingerprints and verified
fingerprints , wherein the verified fingerprints represent
current data of the associated data blocks and the
unverified ghost fingerprints represent current data of
some associated data blocks and do not represent
current data of other associated data blocks .

12 . The data processing system of claim 11 , wherein :
the data storage system includes non - volatile storage
media and a cache ; and

the controller is configured to perform storing unverified
ghost fingerprints only in the cache and storing verified
fingerprints in the non - volatile storage media .

13 . The data processing system of claim 11 , wherein the
controller is configured to perform :

in the fingerprint index , associating unverified ghost fin
gerprints with input logical block addresses .

14 . The data processing system of claim 11 , wherein the
controller is configured to perform :

removing unverified ghost fingerprints from the finger
print index when transitioning the state information
from the non - deduplication state to the deduplication
state .

15 . The data processing system of claim 10 , wherein the
controller is configured to perform setting the state infor
mation of the data block to a non - deduplication state in
response to a command to create a copy of the data block .

16 . The data processing system of claim 15 , wherein the
controller is configured to perform following the setting ,
refraining from transitioning the state information of the
data block to any deduplication state until deallocation of the
data block .

17 . The data processing system of claim 10 , wherein the
controller is configured to perform :
maintaining a reference count value for the data block ;

and
transitioning the state information of the data block from

a deduplication state to a non - deduplication state based
on the reference count value .

18 . A program product , comprising :
a storage device ; and
program code stored in the storage device , wherein the

program code , when executed by a controller of a data
storage system , causes the controller to perform :
generating fingerprints of data blocks written to the

data storage system ;
maintaining , in a data structure , respective state infor

mation for each of a plurality of data blocks in the
data storage system , wherein the state information

for each data block can be independently set to
indicate any of a plurality of states , and wherein the
plurality of states includes at least one deduplication
state in which deduplication is performed for the
associated data block and at least one non - dedupli
cation state in which deduplication is not performed
for the associated data block , wherein the maintain
ing includes :
at allocation of a data block , initializing the state

information for the data block to a non - dedupli
cation state among the plurality of states ; and

thereafter , in response to detection of a write of
duplicate of the data block to the data storage
system , transitioning the state information for the
data block to a deduplication state among the
plurality of states ; and

selectively performing data deduplication for data
blocks written to the data storage system based on
the state information in the data structure and by
reference to the fingerprints .

19 . The program product of claim 18 , wherein the con
troller is configured to perform :
maintaining a fingerprint index of data blocks written to

the data storage system , wherein the fingerprint index
includes both unverified ghost fingerprints and verified
fingerprints , wherein the verified fingerprints represent
current data of the associated data blocks and the
unverified ghost fingerprints represent current data of
some associated data blocks and do not represent
current data of other associated data blocks .

20 . The program product of claim 19 , wherein :
the data storage system includes non - volatile storage
media and a cache ; and

the controller is configured to perform storing unverified
ghost fingerprints only in the cache and storing verified
fingerprints in the non - volatile storage media .

21 . The program product of claim 19 , wherein the con
troller is configured to perform :

in the fingerprint index , associating unverified ghost fin
gerprints with input logical block addresses .

22 . The program product of claim 19 , wherein the con
troller is configured to perform :
removing unverified ghost fingerprints from the finger

print index when transitioning the state information
from the non - deduplication state to the deduplication
state .

23 . The program product of claim 18 , wherein the con
troller is configured to perform setting the state information
of the data block to a non - deduplication state in response to
a command to create a copy of the data block .

24 . The program product of claim 23 , wherein the con
troller is configured to perform following the setting ,
refraining from transitioning the state information of the
data block to any deduplication state until deallocation of the
data block .

25 . The program product of claim 18 , wherein the con
troller is configured to perform :
maintaining a reference count value for the data block ;

and
transitioning the state information of the data block from

a deduplication state to a non - deduplication state based
on the reference count value .

* * * *

