ABSTRACT

Recombinant surfactant protein A and medicament compositions based thereon are useful for the prevention or treatment of pulmonary infection and inflammation.
Figure 1

Colony counts / gram lung

SPA- Untreated

SPA- Treated

(n = 8)

24 HOUR

6 HOUR
Figure 2

Colony Count/gram lung

μg rSP-A

NT 25 50 75 100 150

Thousands

(n=34) (n=8) (n=8) (n=8)
Figure 3

- WT Untreated
- WT Treated

Colonies per Gram Lung

<table>
<thead>
<tr>
<th>6 HOUR</th>
<th>24 HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 12)</td>
<td>(n = 12)</td>
</tr>
</tbody>
</table>

(Thousands)
Figure 4

Colony Count / Gram Lung

24 HOURS

WT Untreated

WT Treated

(n=12)

(n=12)
Figure 5
RECOMBINANT SP-A FOR THE TREATMENT OR PREVENTION OF PULMONARY INFECTION AND INFLAMMATION

TECHNICAL FIELD

[0001] The present invention relates to the novel use of recombinant surfactant protein A for the production of a medicament for the treatment of pulmonary infection and inflammation.

PRIOR ART

[0002] Pulmonary surfactant plays an important role in maintaining the structural integrity of the alveoli by reducing surface tension. The surfactant consists mostly of a complex mixture of phospholipids and genetically distinct proteins referred to as surfactant protein A, B, C and D (also designated as SP-A, SP-B, SP-C and SP-D). It is synthesized by alveolar type II pneumocytes and secreted as tightly packed lamellar bodies into the alveoli (King, R. J.: Pulmonary Surfactant, J. Appl. Physiol. 1982, 51, 1-8).

[0003] SP-A is hypothesized to play a role in protecting the lung from bacterial, viral, and fungal infections (Thiel, S., and Reid, K.: Structures and functions associated with the group of mammalian lectins containing collagen-like sequences. FEBS Lett. 1989, 250, 78). In addition, in vitro, it has been shown that SP-A binds to various micro-organisms, acts as opsonin, enhances killing of micro-organisms by macrophages, down regulates pro-inflammatory cytokines such as TNF-α induced by LPS or microbial pathogens (reviewed in: Molecular Basis of Disease, Pulmonary surfactant. Ed: L. M. G. van Golde, Biochimica et Biophysica Acta, 1998,1408, 77-364).

[0004] Recently, it was shown that mice lacking SP-A are susceptible to group B streptococcal infection (LeVine A. M. et al.: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection; The Journal of Immunology, 1997, 4336-4340) and that exogenous protein-free SP-A enhanced bacterial clearance in SP-A deficient mice (LeVine A. M. et al.: Surfactant protein A (SP-A) binds group B streptococcus (GBS), enhancing phagocytosis and clearance from lungs of SP-A deficient mice; Am J. Respir. Crit. Care Med. 1998, Vol. 157, A 865). In addition, it was shown that baboons with bronchopulmonary dysplasia (BPD) and superimposed infection have decreased levels of SP-A present in the lungs (King, R. J., et al.: Surfactant protein A deficiency in a primate model of pulmonary dysplasia, Am. J. Respir. Crit. Care Med. 1995, 151(6), 1989-97 and Co暮らし, J. J.: Pathophysiologic, morphometric, and biochemical studies of the premature baboon with bronchopulmonary dysplasia, Am. Rev. Respir. Dis. 1992, 145, 872-81). Furthermore, it was shown that SP-A is decreased in a number of diseases such as pneumonia, asthma, bronchiolitis, lung transplantations, cystic fibrosis, ARDS, smokers etc. as reviewed in M. Greise, Pulmonary surfactant in health and human lung diseases: state of the art. Eur. Respir. J. 1999, 13, 1455-1476. It was also shown, that SP-A inhibits allergen induced histamine release as well as the proliferation of lymphocytes in cells isolated from allergen exposed asthmatics. (Wang, J. Y. et al., Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med., 1998, 158, 510-518; Mandan, T. et al., Lung surfactants proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils. Clin. Exp. Immunol., 1997, 110, 241-249).

SUMMARY OF THE INVENTION

[0005] The subject invention has several distinct aspects. One aspect is the use of a component which is at least substantially the same as recombinant surfactant protein A (rSP-A) for treating or preventing a pulmonary infection or inflammation. Another aspect is a medicament composition for treating or preventing a pulmonary infection and inflammation, and which comprises an active component which is at least substantially the same as recombinant surfactant protein A. A further aspect is a method of compounding such a medicament composition. A still further aspect comprises the concurrent use of surfactant protein D (SP-D) with an active component which is at least substantially the same as recombinant surfactant protein A in treating or preventing a pulmonary infection and inflammation, in compounding a medicament composition and in the resulting medicament composition itself. An additional aspect of the invention is an article of manufacture, comprising packaging material and rSP-A or a compound which is substantially the same as rSP-A (in a container) within the packaging material, and the packaging material including a label or instructions which indicate usefulness for the treatment or prevention of inflammation or microbial infection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 graphically illustrates that the clearance of GBS in the SP-A (−/) mice was significantly enhanced at 6 and 24 hours when GBS was co-administered with 150 μg rSP-A.

[0007] FIG. 2 graphically illustrates that GBS clearance by SP-A (−/) mice is dose dependent and is increased by increased amount of rSP-A.

[0008] FIG. 3 graphically illustrates the clearance of GBS in wild-type mice is significantly enhanced at 6 and 24 hours when GBS is co-administered with 150 μg rSP-A.

[0009] FIG. 4 graphically illustrates that wild-type animals infected with GBS and treated 6 hours after infection with intratracheal rSP-A have increased clearance of GBS at 24 hours.

[0010] FIG. 5 graphically illustrates that exogenous rSP-A reduces TNF-α content in lung homogenates from SP-A (−/) mice challenged with GBS close to the level observed in SP-A (+/) mice.

DETAILS

[0011] Surprisingly it has now been found that recombinant surfactant-associated protein A (rSP-A) can be used in the treatment or prevention of pulmonary infection and inflammation and is equivalent or superior to the use of surfactant-associated protein A (SP-A) obtained from natural sources, for example that isolated from lavage fluid from healthy individuals or proteins from patients. This must be regarded as particularly surprising as SP-A isolated from human lung lavage consists of a homogenous population of a flower bouquet like hexameric structure, each unit of
which consists of three SP-A polypeptide chains (α1), analogous to that described for the complement factor C1q. The fully assembled hexameric structure is thought to be essential for a functional molecule with respect to stimulating anti-microbial defense mechanisms or anti-inflammatory activity. In contrast to the naturally derived SP-A, surfactant-associated protein A produced by recombinant techniques consists of a variety of oligomeric structures ranging from one single polypeptide chain (α1) to the fully assembled octameric form (α6) (Voss, T., et al.: Macromolecular organization of natural and recombinant lung surfactant protein SP-28-36; J. Mol. Biol. 1988, 201, 219-227; Voss et al.: Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: Implications for the chain composition of natural human SP-A, Am. J. Respir. Cell Mol. Biol., 1991, 4, 88-94).

In addition it was shown, that natural derived SP-A is glycosylated. However, although recombinant produced SP-A, depending on the system used for expression (mammalian, insect, or yeast cells), shows different glycosylation patterns, it shows anti-microbial or anti-inflammatory effects superior or equivalent to the natural SP-A.

As used herein microbial refers to bacterial, viral or fungal.

In the text and drawings n refers to the number of animals (mice), and w refers to “wild-type”. As used in the claims, “substantially the same as” includes a) derivatives of surfactant-associated protein A produced by recombinant techniques, but which differ from natural surfactant-associated protein A by addition, deletion or substitution of one or more amino acids, b) SP-A modifications which differ in type and/or degree of glycosylation, and c) recombinant fusion proteins consisting of the complete or portions of the SP-A fused with suitable proteins or parts thereof having anti-infective or anti-inflammatory activities, as long as the surfactant-associated proteins A retain microbial clearance activity or anti-inflammatory activity, as determined by assay.

Examples which may be mentioned in connection with deleted, truncated or mutated forms of rSP-A are the SP-A-glob variant in which the amino acids of the collagenous domain were deleted (as 17-80) or other forms as described in Spissinger et al., Assembly of the surfactant protein SP-A. Eur. J. Biochem., 1991, 199, 65-71.

Exemplary proteins having anti-infective or anti-inflammatory activities which may be mentioned in connection with recombinant fusion proteins are proteins such as defensins, lysozymes, cytokines, chemokines and immunoglobulins. These proteins can be fused to either the C- or N-terminal end of SP-A.

In one embodiment of the invention recombinant SP-A obtainable by expression of a DNA sequence coding for SP-A in a suitable eucaryotic expression system is used for the manufacture of a medicament for the prevention or treatment of pulmonary infection and inflammation. Suitable expression systems are, for example, CHO-cells using suitable expression vectors. Suitable expression vectors, for example: pMT(E) Apo containing the SV40 enhancer and the inducible human metallothionin promoter (Fritz et al., Proc. Natl. Acad. Sci. USA, 83:4114-4118), pRC/CMV for constitutive expression of the gene of interest (Invitrogen, Leek, Netherlands) or any other expression vector useful for mammalian cells containing homologous intron sequences (i.e., authentic genomic sequences from the gene of interest) or heterologous intron sequences. In this case it is further preferred to use a partial or complete genomic sequence coding for SP-A, for example a genomic sequence as described in WO86/03408 for the A1 gene yielding a higher expression rate and subsequently to higher order structures of SP-A (Voss et al.: Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences. Implications for the chain composition of natural human SP-A. Am. J. Respir. Cell Mol. Biol., 1991, 4, 88-94). This approach would also apply for the A2 gene described by Katyal, S. L. et al. (Am. J. Respir. Cell Mol. Biol., 1992, 6:446-452). Preferentially the expression of the genomic sequence coding for SP-A in a suitable expression system is carried out as described by Voss et al. (Am. J. Respir. Cell Mol. Biol. 1991, 4, 88-94).

In addition, to express the cDNA sequences coding for SP-A (A1/A2) it is preferred to use either insect cells
using the Baculovirus expression system (McCormack, F. et al., J. Biol. Chem., 1994, 269:5833-5841) or yeast, such as *Pichia pastoris*, in both cases with or without co-expression of the human prolyl 4-hydroxylase stabilizing the collagen helices by hydroxylyating proline residues in the collagenous domain as demonstrated for the expression of collagen (Lamberg, A. et al., J. Biol. Chem., 1996, 271:11988-11995; Vuorela, A. et al., EMBO J., 1997, 16:6702-6712). For example rSP-A can be produced by cloning of the respective cDNAs into the EcoRI site of the Baculovirus expression vector pVL.1392, subsequent generation of recombinant viruses and expression in SF21 cells using standard procedures. rSP-A may also be produced in yeast (for example *Pichia pastoris*) after cloning of the respective cDNAs into yeast expression vectors such as pPICZ A (Invitrogen, Leek, Netherlands) for the expression in *Pichia pastoris*.

[0020] In another embodiment of the invention recombinant SP-A obtainable by expression of a DNA sequence coding for SP-A in a suitable procaryote expression system is used for the manufacture of a medicament for the prevention or treatment of pulmonary infection and inflammation.

[0021] In a further embodiment of the invention non-glycosylated rSP-A is used for the manufacture of a medicament for the prevention or treatment of pulmonary infection and inflammation.

[0022] A still further embodiment of the invention is an article of manufacture which comprises packaging material and a pharmaceutical agent within the packaging material wherein the pharmaceutical agent is at least substantially the same as rSP-A, and wherein the packaging material comprises a label or package insert which indicates that the pharmaceutical agent is useful for preventing or treating a pulmonary microbial infection or a pulmonary inflammation. The packaging material, label and package insert otherwise parallel or resemble what is generally regarded as standard packaging material, labels and package inserts for pharmaceuticals having related utilities.

[0023] Pharmacology

[0024] Methods

[0025] Animal Husbandry

[0026] The murine SP-A gene locus was targeted by homologous recombination as previously described (Korfhagen; T. R. et al.: “Altered surfactant function and structure in SP-A gene targeted mice;” PNAS, 1996, 93, 9594-9599). Lungs of SP-A (+/-) mice do not contain detectable SP-A mRNA or protein. To limit variability related to strain differences, 129 J wild type (+/+), and SP-A (+/-) mice of the same strain were studied. Animals were housed and studied under IACUC-approved protocols in the animal facility of the Children’s Hospital Research Foundation, Cincinnati. Male and female mice of approximately 20 to 25 grams (35 to 42 days old) were used. (LeVine A. M. et al.: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection; The Journal of Immunology, 1997, 158, 4336-4340).

[0027] Recombinant SP-A

[0029] Preparation of Bacteria

[0030] A stock culture of group B *streptococcus* (GBS) was obtained from a clinical isolate from a newborn with systemic infection. Bacteria were suspended in sterile phosphate-buffered saline (PBS) containing 20% glycerol and frozen in aliquots at -70°C. Bacteria from the same passage were used to minimize variations in virulence related to culture conditions. Before each experiment, an aliquot was thawed and plated on tryptic soy—5% defibrinated sheep blood agar then inoculated into 4 ml of Todd-Hewitt broth (Difco Laboratories, Detroit, Mich.) and grown for 14 to 16 hours at 37°C with continuous shaking. The broth was centrifuged, and the bacteria were washed in PBS at pH 7.2 and resuspended in 4 ml of the buffer. In order to facilitate studies, a growth curve was generated so the bacterial concentration could be determined spectrophotometrically, which was confirmed by quantitative culture of the intratracheal inoculum.

[0031] Intratracheal Inoculation

[0032] Administration of GBS into the respiratory tract of the mice was performed by intratracheal inoculation of 10⁵ or 10⁶ cfu diluted in sterile normal saline (0.9% NaCl). To deliver GBS in the presence of rSP-A, GBS was diluted in 0.9% NaCl with 1 mM CaCl₂ and appropriate amounts of rSP-A in a 37°C water bath for 30 minutes. Bacteria were delivered by intratracheal inoculation as previously described (LeVine A. M. et al.: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection; The Journal of Immunology, 1997, 4336-4340).

[0033] Bacterial Clearance

[0034] Quantitative cultures of lung homogenates were performed 6 and 24 hours after inoculation of the animals with bacteria or bacteria together with SP-A, as previously described (LeVine A. M. et al.: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection; The Journal of Immunology, 1997, 4336-4340). Bacterial clearance from the lungs of SP-A (+/-) mice was determined after intratracheal inoculation with GBS together with varying doses of rSP-A ranging from 25 μg, 50 μg, 75 μg, 100 μg to 150 μg. Wild-type animals were infected with GBS (10⁵ cfu) and treated with rSP-A (150 μg) at the time of infection or 6 hours after infection.

[0035] Cytokine Production

[0036] Lung homogenates were centrifuged at 1,200xg and the supernatants were stored at -20°C. Tumor necrosis factor-α (TNF-α) levels were measured with ELISAs, using goat anti-rabbit antibody (R&D Systems) directed against TNF-α. All plates were read on a microplate reader (Molecular Devices, Menlo Park, Calif.) and analyzed with the use of a computer-assisted analysis program (Softmax, Molecular Devices).

[0037] Statistical Methods

[0038] Since the distribution of the variable cfu/gram of lung was not normally distributed, a natural log transformation was used for all analyses. Analyses of variance (ANOVA) was performed to assess differences between the groups. Individual scores for each time point were compared using the median scores non parametric test. Findings were considered statistically significant at probability levels <0.05.
Recombinant SP-A Increased Bacterial Clearance in SP-A (-/-) Mice

The clearance of GBS in the SP-A (-/-) mice was significantly enhanced at 6 and 24 hours when GBS was co-administered with 150 µg rSP-A (FIG. 1). Effects of rSP-A were comparable to that observed with SP-A isolated from proteinosis patients. GBS clearance by SP-A (-/-) mice was dose dependent and was increased by 50 µg, 75 µg, 100 µg and 150 µg of rSP-A (FIG. 2).

Recombinant SP-A Increased Bacterial Clearance in Wild-type Mice

The clearance of GBS in wild-type mice was significantly enhanced at 6 and 24 hours when GBS was co-administered with 150 µg rSP-A (FIG. 3). Wild-type animals infected with GBS and treated 6 hours after infection with intratracheal rSP-A (150 µg) had increased clearance of GBS at 24 hours (FIG. 4).

Pulmonary clearance of intratracheally administered GBS was reduced in SP-A (-/-) mice compared to wild-type mice. Co-administration of exogenous recombinant SP-A with the bacteria significantly improved bacterial clearance demonstrating an immediate reversible defect in the SP-A (-/-) mouse. Enhanced pulmonary clearance of GBS with rSP-A treatment was dose dependent. Wild-type mice were effectively treated with rSP-A with increased clearance of GBS from the lungs.

In addition, it could be shown that exogenous rSP-A reduces TNF-α content in lung homogenates from SP-A (-/-) mice challenged with GBS close to the level observed in SP-A (+/+) mice (FIG. 5).

Utility

On account of its microbial and anti-inflammatory properties rSP-A is useful for the manufacture of medicaments for the prevention or treatment of pulmonary infection and inflammation. As used herein pulmonary infection refers to microbial pneumonias caused, for example, by viruses like Respiratory Syncytial Virus, Adenovirus, Herpes simplex, Influenza A and others or bacteria like, Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Group B Streptococci, Enterobacter or Streptococcus pneumoniae and others, as well as fungi like Aspergillus fumigatus, Pneumocystis carinii, Candida albicans and others.

Furthermore pulmonary infection also refers to cases of reduced immunity for example the immunoparalytic phase occurring during sepsis and to immunodeficiency syndromes, whether congenital, spontaneously acquired, or iatrogenic. They are characterized by unusual susceptibility to infection and not infrequently to autoimmune disease and lymphoreticular malignancies. Patients with defects in humoral immunity have recurrent or chronic sinusopulmonary infection, meningitis, and bacteremia, most commonly caused by pyogenic bacteria, such as Haemophilus influenzae, Streptococcus pneumoniae, and Staphylococci. These and other pyogenic organisms also cause frequent infections in individuals who have either neutropenia or a deficiency of the pivotal third component of complement (C3).

In connection with the present invention pulmonary inflammation refers, e.g., to bronchopulmonary dysplasia (BPD), and rSP-A therefore is also useful for the manufacture of medicaments for the prevention or treatment of bronchopulmonary dysplasia (BPD) or other disorders of SP-A deficiency. In particular BPD caused by artificial ventilation of premature babies may be mentioned in connection with the present invention. Additionally, inflammation also refers to pulmonary inflammation caused by artificial ventilation or cases of release of cytokines into the lung not primarily due to bacteria, viruses or fungi. Inflammation includes also diseases like asthma, CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease). It also includes acute lung injury up to the worst stages known as ARDS. In addition, inflammation also refers to inflammation induced by allergens.

The present invention also refers to the treatment of bacterial pulmonary infections with rSP-A or suitable forms thereof in combination or addition to antibiotics in the way that the infection induced inflammation is cured.

The invention furthermore relates to a method for the treatment of mammals, including humans, who are suffering from one of the above-mentioned illnesses. The method is characterized in that a therapeutically active and pharmaceutically tolerable amount of rSP-A is administered to the mammal in need thereof.

In connection with the novel use of rSP-A according to the invention medicaments are prepared by procedures familiar to those skilled in the art. To do this rSP-A is either employed as such or preferably in combination with suitable pharmaceutical auxiliaries, e.g., as suspensions, solutions or in powder form, the rSP-A content advantageously being from 0.1 to 90% (wt/wt), preferably 0.1 to 15% (wt/wt). The rSP-A can be administered either alone or with auxiliaries. The auxiliaries which are suitable for the desired pharmaceutical formulations are familiar to the person skilled in the art on account of his expert knowledge. Pharmaceutical formulations which can be used according to the present invention and containing rSP-A in combination with synthetic or natural lipids are, for example, disclosed in U.S. Pat. No. 4,659,805. Surprisingly, and in contrast to pharmaceutical formulations comprising rSP-A disclosed in the state of the art, lipid free formulations comprising rSP-A as active ingredient can also be used for the treatment of pulmonary infection and inflammation. A further aspect the invention thus relates to lipid free medicaments comprising rSP-A.

In particular such lipid free medicaments comprising rSP-A contain as auxiliary from 0.01 to 0.1 % of a calcium salt, preferably calcium chloride. An exemplary liquid, lipid free medicament can be manufactured by dissolving 100 to 1,000 mg of rSP-A and 11.1 mg of calcium chloride in 100 ml of a sterile 0.9% aqueous sodium chloride solution.

In a preferred embodiment the medicaments are made available in liquid form for intratracheal or intrabronchial administration by instillation or nebulization or in powder form for administration by inhalation.

In connection with the novel use of rSP-A according to the invention medicaments are administered, for example, 2 to 3 times daily for from 1 to 7 days. For example medicaments comprising 100 µg/kg to 10 mg/kg (of body weight) of rSP-A are administered by inhalation or intratracheally or intrabronchially.

DESCRIPTION OF FIGURES

FIG. 1: Enhanced clearance of GBS from the lung in SP-A (-/-) mice. 10⁸ cfu GBS were inoculated with or without 150 μg of rSP-A, and colony counts were performed after 6 and 24 hours as previously described. SP-A (-/-) without rSP-A (solid bars) and with rSP-A (hatched bars). Data are Means±SEM (standard error of means) values.

FIG. 2: Enhanced clearance of GBS by exogenous rSP-A is dose dependent. SP-A (-/-) mice were inoculated with 10⁶ cfu GBS in the presence of either 0 (N.T.), 25, 50, 75, 100 or 150 μg of rSP-A, and colony counts were performed 6 hours after intratracheal instillation as previously described. Data are Means±SEM values.

FIG. 3: Enhanced clearance of GBS from the lung in SP-A (+/+), mice (wt). 10⁸ cfu GBS were inoculated with or without 150 μg of rSP-A and colony counts were performed 6 and 24 hours after intratracheal instillation as previously described. SP-A (+/+), without rSP-A (hatched bars) and with rSP-A (solid bars). Data are Means±SEM values.

FIG. 4: Rescue of GBS infection in SP-A(-/-) mice. SP-A (+/+), mice were intratracheally inoculated with 10⁶ cfu GBS in the absence of exogenous rSP-A. 6 hours after infection, 150 μg of rSP-A were intratracheally administered. 24 hours after rSP-A administration colony counts in lungs were performed. Colony counts were dramatically reduced in lungs from animals treated with rSP-A (solid bars) compared to untreated animals (hatched bars). Data are Means±SEM values.

FIG. 5: rSP-A reduces TNF-α content in lung homogenates from SP-A (-/-) mice challenged with GBS. SP-A (-/-) and SP-A (+/+) mice were intratracheally inoculated with 10⁴ cfu GBS, in the absence or presence of exogenous 150 μg rSP-A. 6 hours after infection lungs were removed, homogenized, and the level of TNF-α was measured as previously described. SP-A (-/-) untreated (solid bar), SP-A (-/-) treated (cross hatched bar), SP-A (+/+) mice untreated (dotted bar). Data are expressed in pg/ml and represent means±SEM values with n=6 mice per group.

The invention and its advantages are readily understood from the preceding description. Variations may be made in the processes and compositions without departing from the spirit and scope of the invention or sacrificing its material advantages, the processes and products hereinbefore described being merely illustrative of preferred embodiments of the invention.

1-17. (canceled)

18. A lipid-free pharmaceutical composition in powder form comprising a pharmaceutically acceptable active component and a suitable carrier therefore, wherein the active component comprises recombinant surfactant protein A (rSP-A).

19. The pharmaceutical composition of claim 18, wherein the rSP-A is obtained by expression of a genomic sequence coding for SP-A in a suitable expression system.

20. The pharmaceutical composition of claim 18, wherein the rSP-A is obtained by expression of a cDNA coding for SP-A in a suitable expression system.

21. An article of manufacture comprising packaging material and the pharmaceutical composition according to claim 18 contained within the packaging material, wherein the packaging material comprises a label or package insert which indicates that the active component is useful for treating a pulmonary microbial infection or inflammation.