(19)中华人民共和国国家知识产权局
(12)发明专利申请

(10)申请公布号 CN 107922217 A
(43)申请公布日 2018.04.17

(21)申请号 201680050305.0
(22)申请日 2016.09.14

(30)优先权数据
62/218745 2015.09.15 US
62/305103 2016.03.08 US

(85)PCT国际申请进入国家阶段日
2018.02.28

(86)PCT国际申请的申请数据
PCT/US2016/051577 2016.09.14

(87)PCT国际申请的公布数据
WO2017/048746 EN 2017.03.23

(71)申请人 陶氏环球技术有限责任公司
地址 美国密歇根州

(72)发明人 J・M・斯拉格特 A・K・舒尔茨

(74)专利代理机构 北京泛华伟业知识产权代理有限公司 11280
代理人 徐舒

(51)Int.Cl.
C02F 1/42(2006.01)
B01J 49/00(2017.01)

(54)发明名称
净化水的方法

(57)摘要
提供一种净化水的方法，包括：(a)提供pH为5.5或更低并包含以下的水溶液(A)：(i)以溶解有机碳含量的呈5mg/L或更多的量的一种或多种溶解有机化合物，和(ii)以所述水溶液(A)的重量计95重量％或更多的水，和(b)使所述水溶液(A)与计算的Hansch参数为-1.0到2.5的丙烯酸树脂(B)颗粒的集合体接触，和(c)然后从所述丙烯酸树脂(B)的颗粒集合体中分离水溶液(C)。
1. 一种净化水的方法，包含：
(a) 提供pH为5.5或更低并包含以下的水溶液(A)；
(i) 以溶解有机碳测量的呈1mg/L或更多的量的一种或多种溶解有机化合物；
(ii) 以所述水溶液(A)的重量计为95重量%或更多的水；
(b) 使所述水溶液(A)与计算的Hansch参数为-1.0到2.5的丙烯酸树脂(B)的颗粒集合体接触；
(c) 然后从所述丙烯酸树脂(B)的颗粒集合体中分离水溶液(C)。
2. 根据权利要求1所述的方法，其中所述溶解有机化合物包含一种或多种腐植酸、一种或多种富里酸或其混合物。
3. 根据权利要求1所述的方法，其中以溶解有机碳测量的所述溶解有机化合物的量为10mg/L或更高。
4. 根据权利要求1的方法，其中所述丙烯酸类树脂(B)包含侧基，所述侧基包含选自伯、仲和叔胺基的官能团。
5. 根据权利要求1所述的方法，其中所述方法在步骤(a)之前进一步包含以下步骤：
(x) 提供包含以下的水溶液(X)：
(i) 5mg/L或更多的呈1mg/L或更多的量的一或多种溶解腐殖酸，和
(ii) 以所述水溶液(X)的重量计为95重量%或更多的水；
(y) 使所述水溶液(X)与树脂(Y)的颗粒集合体接触，其中所述树脂(Y)包含选自由磺酸酯基、磺酸酯基以及其组合组成的组的化学侧基；
(z) 然后从所述丙烯酸树脂(B)的颗粒集合体中分离所述水溶液(A)。
6. 根据权利要求1所述的方法，其中所述方法在所述步骤(c)之后进一步包含以下步骤：
(d) 使所述水溶液(C)与树脂(D)的颗粒集合体接触，其中所述树脂(D)包含季胺化学侧基；
(e) 然后从所述树脂(D)的颗粒集合体中分离水溶液(E)。
7. 根据权利要求6所述的方法，其中在步骤(e)之后，所述方法进一步包含使所述丙烯酸类树脂(B)再生的步骤，其中使所述丙烯酸类树脂(B)再生的所述步骤包含以下步骤：
(f) 使所述丙烯酸树脂(B)的颗粒集合体与pH值为10或更高的水溶液(RB)接触以形成混合物B2RB，
(g) 然后从所述混合物B2RB中分离丙烯酸树脂(B4)。
净化水的方法

[0001] 通常需要净化水。举例来说，来自天然水源的水常常含有不期望的高含量的溶解有机化合物。一些这类化合物是腐殖酸和富里酸。常常期望从水中去除部分或全部溶解有机化合物。过去，强碱离子交换树脂已用于从水中去除腐殖酸和富里酸。然而，强碱离子交换树脂具有相对难以再生的缺点。

[0002] Cornelissen等人在《水研究》，第42卷(2008)第413-423页中测试了各种离子交换树脂除去腐殖质的能力；但他们仅测试了一种弱碱树脂，并且其报告弱碱树脂在去除腐殖质方面为低效的。期望提供一种从水中去除溶解有机化合物而不存在强碱离子交换树脂的缺点的方法。

[0003] 以下是本发明的发明内容。

[0004] 本发明的第一方面是一种净化水的方法；包含：

[0005] (a) 提供pH为5.5或更低并包含以下的水溶液(A)。

[0006] (i) 以溶解有机碳含量至少1mg/L或更多的量的一种或多种溶解有机化合物，和

[0007] (ii) 以水溶液(A)的重量计95重量％或更多的水，和

[0008] (b) 使水溶液(A)与所算的Hansch参数为-1.0到2.5的丙烯酸树脂(B)颗粒的集合体接触，和

[0009] (c) 然后使水溶液(C)与丙烯酸树脂(B)的颗粒集合体分离。

[0010] 本发明的第二方面是一种使丙烯酸树脂(B2)再生的方法，所述方法包含：

[0011] (A) 提供所算的Hansch参数为-1.0到2.5的丙烯酸树脂(B2)颗粒的集合体，其中一种或多种腐殖酸、一种或多种富里酸或其他化合物吸附到所述丙烯酸树脂(B2)上，和

[0012] (B) 使所述丙烯酸树脂(B2)颗粒的集合体与pH值为4或更低的水溶液(RA)接触以形成混合物B2RA，

[0013] (C) 然后从所述混合物B2RA分离丙烯酸树脂(B3)。

[0014] 本发明的第三方面是一种使丙烯酸树脂(B2)再生的方法，所述包含：

[0015] (A) 提供所算的Hansch参数为-1.0到2.5的丙烯酸树脂(B2)颗粒的集合体，其中一种或多种腐殖酸、一种或多种富里酸或其他化合物吸附到所述丙烯酸树脂(B2)上，和

[0016] (B) 使所述丙烯酸树脂(B2)颗粒的集合体与pH值为10或更高的水溶液(RB)接触以形成混合物B2RB，其中所述水溶液(RB)包含金属阳离子和氢氧根阴离子，

[0017] (C) 然后从所述混合物B2RB中分离丙烯酸树脂(B4)。

[0018] 以下是图示简单说明。

[0019] 图1展示其中水溶液(X)通过含有树脂(Y)的柱的本发明方法的实施例。水溶液(A)从含有树脂(Y)的柱中离开并且然后通过含有树脂(B)的柱。水溶液(C)从含有树脂(B)的柱中离开并且然后通过含有树脂(D)的柱。水溶液(E)从含有树脂(D)的柱中离开。图2展示其中再生水溶液(RA)通过含有负载树脂(B2)的柱，并且水溶液(RAE)从含有负载树脂(B2)的柱离开的实施例。图3展示其中再生水溶液(RB)通过含有负载树脂(B2)的柱，并且水溶液(RBB)从含有负载树脂(B2)的柱离开的实施例。图4展示其中再生水溶液(RB)沿其中水溶液(C)已通过含有树脂(D)的柱的相反方向通过含有负载树脂(B2)的柱，并且水溶液(RBB)从
含有负载树脂 (D2) 的柱中离开的实施例。然后，在图 4 中，水溶液 (RB2) 通过含有负载树脂 (B2) 的柱，并且水溶液 (RB2E) 从含负载树脂 (B2) 的柱中离开。

【0021】以下是对本发明的具体实施方式。

【0022】如本文所用，除非上下文另外明确指示，否则以下术语具有指定定义。

【0023】可彼此反应以形成聚合物的重复单元的分子在本文中称为“单体”。因此形成的重复单元在本文中称为单体的“聚合单元”。

【0024】乙烯基单体具有结构 I

其中 R1、R2、R3 及 R4 中的每一个独立地是氢、卤素、脂肪基（例如烷基）、被取代的脂肪基、芳基、被取代的芳基、另一被取代或未被取代的有机基团或其任何组合。乙烯基单体的分子量小于 2,000。乙烯基单体包括例如苯乙烯、被取代的苯乙烯、二烯、乙烯、乙烯衍生物及其混合物。乙烯衍生物包括例如以下的未被取代和被取代的形式：乙酸乙烯酯和丙烯酸单体。丙烯酸单体是选自被取代和未被取代的 (甲基) 丙烯酸、(甲基) 丙烯酰胺、(甲基) 丙烯酰酸、(甲基) 丙烯酸的烷基酯、(甲基) 丙烯酸的酰胺、氯乙烯、卤代烯烃以及其混合物的单体。如本文所用，前缀“(甲基) 丙烯酰基”意指丙烯酰基或甲基丙烯酰基。“被取代”意指具有至少一个连接的化学基团，例如烷基、烯基、乙烯基、烃基、烷氧基、羧酸基、其它官能团以及其组合。

【0027】如本文所用，乙烯基芳香族单体为其中 R1、R2、R3 和 R4 中的一个或多个含有一个或多个芳香族环的乙烯基单体。

【0028】单乙烯基单体是每个分子恰好具有一个非芳香族碳-碳双键的乙烯基单体。多烯基乙烯基单体是每个分子具有两个或更多个非芳香族碳-碳双键的乙烯基单体。

【0029】乙烯基聚合物是其中以聚合物重量计，90 重量％或更多的聚合单元是一种或多种乙烯基单体的聚合单元的聚合物。丙烯酸聚合物是其中以聚合物重量计，80 重量％或更多的聚合单元具有结构 II 或结构 III 或其混合物的乙烯基聚合物：

其中 R6 和 R7 各自独立地为氢或甲基，并且其中 R8、R8 和 R8 各自独立地为氢或被取代或未被取代的烃基。
[0032] 如果聚合物链具有足够的分支点以使聚合物不溶于任何溶剂，那么在本文中认为
树脂交联。当在此说聚合物不溶于溶剂时，这意味着在25℃下少于0.1克树脂将溶解在100
克溶剂中。
[0033] 颗粒集合体以颗粒的直径为特征，如果颗粒不是球形，那么认为颗粒的直径是与
颗粒具有相同体积的颗粒的直径。颗粒集合体在本文中通过集合体的体积平均直径来表
征。
[0034] 首先过滤水以去除颗粒，并且然后通过分析总有机碳（total organic carbon,
TOC）来表征水中溶解有机化合物的量。TOC可通过使用UV/过硫酸盐氧化利用膜电导技术，
例如Siervers TOC分析仪（来自GE）来分析。
[0035] 如本文所用，强酸树脂是除了可能的微量杂质之外不具有磺酸基以外的侧链官能
团的树脂。如本文所用，弱酸树脂是除了可能的微量杂质之外不具有羧酸基以外的侧链官
能团的树脂。如本文所用，强碱树脂是除了可能的微量杂质之外不具有季铵基团以外的侧
链官能团的树脂。如本文所用，弱碱树脂是除了可能的微量杂质之外不具有除伯胺基、仲胺
基、叔胺基以及其组合之外的侧链官能团的树脂。
[0036] 腐殖酸是天然存在的酸性有机物质，通常以类似化合物的混合物的形式存在。典
型的腐殖酸分子含有芳香环、醇基和羧基以及其它结构。腐殖酸的平均化学式为C_{11}H_{10}N_{5}O_{5}S_{x}
其中i为170到205；j为170到205；k为80到100；x为7到11；并且y为0.5到1.5。通常，对于腐殖
酸而言，氢与碳的摩尔比为0.8:1到1.2:1。通常认为氢与碳的摩尔比接近1:1的事实意味着
腐殖酸分子具有多个芳香环环。通常腐殖酸的平均分子量是3,500到4,500。腐殖酸在25℃
下在pH为1.0或更低时不溶于水。
[0037] 富里酸是一种天然存在的酸性有机物质，通常以类似化合物的混合物的形式存
在。典型的富里酸分子含有芳香族环、醇基和羧基以及其它结构。腐殖酸的平均化学式为
C_{24}H_{24}N_{8}O_{5}S_{x}，其中p为122到144；q为164到200；r为85到105；w为2到8；z为1到4。通常，对于富里
酸而言，氢与碳的摩尔比为1.21:1到1.5:1。通常认为氢与碳的摩尔比高于1:1的事实意味
着富里酸分子比腐殖酸分子具有更多的芳香环。通常腐殖酸的平均分子量为3000到4000。
富里酸在25℃下在1.0或更低的pH下可溶于水中。
[0038] 如果存在于水中的化合物作为在水中溶剂化单个分子存在，那么认为其溶解。
有机化合物含有碳，不包括通常认为是无机的化合物的化合物。通常认为是无机的含碳
化合物包括以下：碳的二元氧化物和硫化物；三元金属氧化物；三元金属硫化物；以及金
属碳化物等。溶解在水样品中的碳化合物的量在本文中表征为TOC，其为如上所述测量的
每升溶液中溶解有机化合物中所包含的碳原子的毫克数。
[0039] 本文中称聚合物具有以下等式确定的计算的Hansch参数（HPoly）：
[0040] HPoly＝（WFMon1）*（HMon1）+（WFMon2）*（HMon2）+（WFMon3）*（HMon3）
[0041] 其中Mon1、Mon2等是聚合物中所含有的聚合单体单元，其中WFMonX是MonX的重量
分数；其中HMonX是MonX的计算的Hansch参数，并且其中总和取自聚合物中含有的所有单体
单元。注意到以下有有用的：
[0042] 1＝（WFMon1）+（WFMon2）+（WFMon3）
[0043] 对于任何特定的聚合单体单元，计算的Hansch参数是基于存在于聚合物中的聚合
单元的结构计算。如果在聚合过程之后将官能团添加到聚合的单体单元中，那么为了计算
Hansch参数，该单体单元含有官能团。为说明这一点，考虑胺官能的苯乙烯类聚合物（并非本发明丙烯酸聚合物）的实例为有用的，聚合物可以制成苯乙烯（重量分数WFSty）与二乙烯基苯（重量分数WFDBV）的共聚物。然后可以进行将一个二甲基氨基甲基连接到聚合物中的每个产物环上的化学反应。然后考虑在Hansch参数计算中的两个聚合单体单元将如下：

结构 STY-A

结构 DVB-A

[0045] 将确定结构STY-A和DVB-A的Hansch参数（分别标记为HISTY-A和HDVB-A），并且此实例聚合物的计算的Hansch参数将为 (WFSTY) * (HI) + (WFDBV) * (HDVB)。

[0046] 单个聚合单体单元的计算的Hansch参数如下确定。如本文所用，术语“Hansch参数”是疏水性指数，如根据Kowwin方法所计算，值越大表明疏水性越强。针对此的工具可以在http://www.epa.gov/oppt/exposure/pubs/episuitel.htm下载。Kowwin方法使用校正的“片段常数”方法来预测表示为logP的Hansch参数。对于任何聚合单体单元，分子结构分成各具有一个系数的片段，并且将结构中的所有系数值加在一起以获得聚合单体单元的log P估计值。片段可以是原子，但如果基团给出可重现的系数，则为较大的官能团（例如C = O）。通过对可靠测量的log P值（KOWWIN的“还原论”片段常数方法）的多元回归导出每个单独片段的系数，其中log P通过在水与给定的疏水有机溶剂的混合物中测试片段来测量。在校正的片段常数方法中，通过校正因子来调整官能团的系数，以解释官能团的所测量log P系数值与同一官能团的log P之间的任何差异，其可由求和单独基团中所有原子的所估计的log P系数产生。


[0047] 如本文所用，“金属阳离子”是碱金属、碱土金属或另一种金属。

[0048] 当本文中称比率为X:1或更大时，其意味着所述比率是Y:1，其中Y大于或等于X。举例来说，如果称比率为3:1或更大，那么所述比率可以是3:1或5:1或100:1，但不可以是2:1。类似地，当本文中称比率为W:1或更小时，其意指那个比率是Z:1，其中Z小于或等于W。举例来说，如果称比率为15:1或更低，那么所述比率可以是15:1或10:1或0:1:1，但不可以是20:
1. [0049] 本发明涉及使用水溶液 (A)。水溶液 (A) 的 pH 值为 5.5 或更低、优选 4.5 或更低；更优选 4.0 或更低。优选地，水溶液 (A) 的 pH 值为 2.0 或更高、更优选为 2.5 或更高。
[0050] 水溶液 (A) 含有溶解有机化合物。作为总有机碳 (TOC) 测量的溶解有机化合物的总量优选为 1mg/L 或更高；更优选 2mg/L 或更高；更优选 5mg/L 或更高；更优选 10mg/L 或更高；更优选 20mg/L 或更高。
[0051] 溶解有机化合物优选地含有反应性或多种腐植酸、一种或多种富里酸或其混合物。优选地，来源于腐植酸或富里酸的 TOC 的部分以 TOC 的总量计为 10 重量％或更多；更优选 20 重量％或更多；更优选 50 重量％或更多。
[0052] 水溶液 (A) 含有以水溶液 (A) 的重量计 95 重量％或更多；更优选 98 重量％或更多；更优选 99 重量％或更多的量的水。
[0053] 本发明的实施例涉及使水溶液 (A) 与丙烯酸树脂 (B) 的颗粒集合体接触。优选地，具有结构式 II 或结构式 III 的丙烯酸树脂 (B) 中的聚合单元的量以丙烯酸树脂 (B) 的颗粒集合体的干重计为 80 重量％或更多；更优选 90 重量％或更多；更优选 95 重量％或更多。
[0054] 丙烯酸树脂 (B) 的计算的 Hanksch 参数为 -1.0 到 2.5。优选地，丙烯酸树脂 (B) 的计算的 Hanksch 参数为 0.8 或更高；更优选 0.6 或更高；更优选 0.4 或更高；更优选 0.2 或更高。
[0055] 优选地，丙烯酸树脂 (B) 的 Hanksch 参数为 1.5 或更低；更优选 1.0 或更低；更优选 0.5 或更低；更优选 0.2 或更低。
[0056] 优选地，丙烯酸树脂 (B) 是具有侧基，并且优选具有一些或全部含有一个或多个官能团的侧基的聚合物。丙烯酸树脂 (B) 上悬挂的官能团优选地选自由伯胺基、仲胺基、叔胺基以及其组合组成的组。优选地，丙烯酸树脂 (B) 为弱碱树脂。
[0057] 优选的丙烯酸树脂 (B) 含有结构 III 或结构 IV 或结构 V 的聚合单元

![IV](image1.png)

其中 R10 是氢或甲基，其中 R11、R12 和 R13 各自是被取代或未被取代的烃基，并且其中 R14 是氢或被取代或未被取代的烃基。R14 的合适二价基团包括被取代和未被取代的
[0058] 1-, 2-甲基基；1-, 2-乙基基；1-, 3-丙基基；1-, 2-（1-甲基苯基）；1-, 2-（2-甲基苯基）；1-, 4-丁基基；1-, 3-（1-甲基丙基）；1-, 3-（2-甲基丙基）；1-, 2-（1-乙基苯基）；1-, 2-（2-乙基苯基）；1-, 5-戊基；1-, 4-（1-甲基丁基）；
[0059] 1-, 4-（2-甲基丁基）；1-, 4-（3-甲基丁基）；1-, 4-（4-甲基丁基）；1-, 3-（1-乙基丙基）；1-, 3-（2-乙基丙基）；1-, 3-（3-乙基丙基）；1-, 3-（1-二甲基丙基）；
[0060] 1-, 3-（1-，3-二甲基丙基）；1-, 3-（2-，3-二甲基丙基）；1-, 6-乙基基；1-, 5-（1-甲基
戊基）；
[0062] 1-，5-（2-甲基戊基）；1-，5-（3-甲基戊基）；1-，5-（4-甲基戊基）；1-，4-（1-乙基丁基）；1-，4-（2-乙基丁基）；1-，4-（3-乙基丁基）；1-，4-（1-，2-二甲基丁基）；1-，4-（1-，3-二甲基丁基）；
甲氧基，二甲氧基，三甲氧基，聚甲基氧基（具有4到10个甲氧基），聚甲基氧基（具有1到100个甲氧基），乙氧基，二乙氧基，三乙氧基，聚乙氧基（具有4到10个乙氧基），聚乙氧基（具有1到100个乙氧基），丙氧基，二丙氧基，三丙氧基，聚丙氧基，甲氧基乙氧基，乙氧基甲氧基，聚乙氧基聚甲基氧基（具有4到10个乙氧基和/或甲氧基），聚乙氧基聚甲基氧基（具有1到100个乙氧基和/或甲氧基），以及其组合，其中合适取代基包括羟基，烷氧基，氨基及其组合。

[0063] R⁶,R⁷,R¹²和R¹³的合适单价基团独立地包括：

[0064] 被取代和未被取代的甲基：乙基；1-丙基；2-丙基，1-丁基；2-丁基；

[0065] 1-（2-甲基丙基）；2-（2-甲基丙基）；1-戊基；2-戊基；3-戊基；1-（1-甲基丁基）；

[0066] 1-（2-甲基丁基）；1-（3-甲基丁基）；1-（4-甲基丁基）；1-（1-乙基丙基）；

[0067] 1-（2-乙基丙基）；1-（3-乙基丙基）；1-（1-，2-二甲基丙基）；1-（1-，3-二甲基丙基）；

[0068] 1-（2-，3-二甲基丙基）；1-己基；1-（1-甲基戊基）；1-（2-甲基戊基）；

[0069] 1-（3-甲基戊基）；1-（4-甲基戊基）；1-（1-乙基丁基）；1-（2-乙基丁基）；1-（3-乙基丁基）；

[0070] 1-（1-，2-二甲基丁基）；1-（1-，3-二甲基丁基）；1-（2-，3-二甲基丁基）；甲氧基，二甲氧基，三甲氧基，聚甲基氧基（具有4到10个甲氧基），聚甲基氧基（具有1到100个甲氧基），乙氧基，二乙氧基，三乙氧基，聚乙氧基（具有4到10个乙氧基），聚乙氧基（具有1到100个乙氧基），丙氧基，二丙氧基，三丙氧基，聚丙氧基，甲氧基乙氧基，乙氧基甲氧基，聚乙氧基聚甲基氧基（具有4到10个乙氧基和/或甲氧基），聚乙氧基聚甲基氧基（具有1到100个乙氧基和/或甲氧基）以及其组合，其中合适的取代基包括羟基，烷氧基，胺基及其组合。

[0071] 当R²¹不是氢时，R²¹的合适基团的列表与R⁶的列表相同，尽管R⁶和R²¹可以彼此独立地选择。

[0072] 优选地，丙烯酸树脂（B）含有一种或多种多乙烯基单体的聚合单元。合适的多乙烯基单体包括例如二乙烯基苯；乙二醇二乙烯基醚；二甘醇二乙烯基醚；三甘醇二乙烯基醚；聚乙二醇二乙烯基醚；二醇（甲基）丙烯酸烷酯（包括1-，6-己二醇二丙烯酸酯；1-，6-二乙二醇二甲基丙烯酸酯；1-，9-壬二醇二甲基丙烯酸酯；以及1-，4-丁二醇二甲基丙烯酸酯；1-，10-癸二醇二丙烯酸酯；1-，5-戊二醇二丙烯酸酯；1-三环癸烷二甲醇二丙烯酸酯）；乙氧基化的3-双酚A二丙烯酸酯；二丙二醇二丙烯酸酯；二双（4-甲基丙烯酸酯）丙烯；丙烯酸烯丙酯；甲基丙烯酸烯丙酯；四甘醇二丙烯酸酯；三丙二醇二丙烯酸酯；聚丁二烯二丙烯酸酯；季戊四醇三丙烯酸酯；1，1，1-三羟甲基丙烷三丙烯酸酯；1，1，1，1-四羟甲基丙烷三丙烯酸酯；PEO（5800）-b-PP0（3000）-b-PEO（5800）二甲基丙烯酸酯（PEO是聚环氧乙烷，并且PP0是聚环氧丙烷）；[PEO（10700）-b-PP0（4500）] 4-乙二胺四甲基丙烯酸酯；二季戊四醇五丙烯酸酯；季戊四醇四丙烯酸酯；二-三羟甲基丙烷四丙烯酸酯；三（2-次乙基）异氰脲酸三丙烯酸酯；二季戊四醇五丙烯酸酯；乙烯基化（20）三羟甲基丙烷三丙烯酸酯；以及其混合物。

[0073] 丙烯酸树脂（B）呈颗粒形式。优选地，体积平均粒径为20μm或更大，更优选50μm或
更大，更优选100μm或更大。优选地，体积平均粒径为1000μm或更小。

【0074】优选地，丙烯酸树脂(B)不溶于水，优选地，丙烯酸树脂(B)交联。

【0075】丙烯酸树脂(B)可以是丙烯酸树脂或苯乙烯-丁二烯的共聚物，其平均粒子径小于17 Å，而大孔树脂的孔径为17-500 Å。平均粒子径确定如下。首先，使用BET法测定颗粒集合体的树脂表面积(resin surface area, RSA)。然后测定同一树脂的树脂孔容(resin pore volume, RPV)。对于孔容，使用单点测试，在P/P0=0.980或更高的压力下，其中P0是环境压力。孔容计算如下：在最大P/P0下，参考单点；并且在所述点处注意到吸附气体的摩尔数(Nmax)。认为摩尔数的吸附气体占据如理想气体定律所给定的体积V：V＝Nmax*R*T/P(其中R为气体常数并且T为绝对温度)。体积V报告为孔容(RPV)。对于平均粒子径，所报告的结果为4* (RPV) / (RSA)。

【0076】优选地，丙烯酸树脂(B)不载附吸附的有机化合物。吸附的有机化合物的量通过以下测定：使丙烯酸树脂(B)与等体积的试验水溶液(test solution, TS)接触，使混合物在23℃静置4小时，然后从混合物中分离液体部分，然后使用酸性KMn04方法(以每升树脂g 0e作为单位给出结果)分析溶解有机化合物的液体部分。在使用之前，水性测试溶液(TS)具有小于10ppb的有机化合物。水性测试溶液(TS)具有在-2到15范围内的pH并且可能具有或不具有一种或多种溶解无机盐。水性测试溶液(TS)与丙烯酸树脂(B)之间不存在化学反应。选择水性测试溶液(TS)以有效去除可能驻留在丙烯酸树脂(B)上的任何吸附的有机化合物。优选地，在使用丙烯酸树脂(B)上的吸附有机化合物的量为树脂0.1g 0e/l以下。

【0077】当丙烯酸树脂(B)与水溶液(A)接触时，在本文中组合称为混合物BA。预期在丙烯酸树脂(B)与水溶液(A)接触期间，一些或全部腐殖酸和/或富里酸从水溶液(A)转移到丙烯酸树脂(B)。在接触后，使水溶液(C)与混合物BA分离。优选地，水溶液(C)中腐殖酸的浓度与水溶液(A)中腐殖酸的浓度比值为0.5:1或更小；更优选为0.2:1或更小；更优选为0.1:1或更小；更优选为0.05:1或更小；更优选为0.02:1或更小；更优选为0.01:1或更小。优选地，水溶液(C)中富里酸浓度与水溶液(A)中富里酸浓度的比值为0.5:1或更小；更优选为0.2:1或更小；更优选为0.1:1或更小；更优选为0.05:1或更小；更优选为0.02:1或更小；更优选为0.01:1或更小。

【0078】一种制备混合物BA然后分离水溶液(C)的方法是：将水溶液(A)和丙烯酸树脂(B)二者放入容器中，搅拌混合物，然后通过沉降、通过倒出液体、通过离心、通过过滤或通过其组合去除水溶液(C)。优选地，将丙烯酸树脂(B)颗粒的集合体放入容器中，例如色谱柱中，所述容器在使水通过容器的同时保留丙烯酸树脂(B)的颗粒，并且然后通过重力压力或其组合迫使水溶液(A)通过入口进入容器，并且使水溶液(C)通过出口从容器离开。当水溶液(C)与混合物BA分离时，混合物BA的剩余部分是丙烯酸树脂(B2)。

【0079】考虑到制备混合物BA然后分离水溶液(C)的方法将使溶解有机化合物从水溶液(A)转移到丙烯酸树脂(B)中，使得水溶液(C)将成为具有较低浓度的溶解有机化合物即水溶液(A)。

【0080】考虑水溶液(A)的来源为有用的，优选地，水溶液(A)通过使水溶液(X)与树脂(Y)的颗粒集合体接触以制备混合物X的溶液来生产。优选地，使混合物X的液体部分与混合物X的其余部分分离，并且所述液体部分是水溶液(A)。

【0081】水溶液(X)具有与水溶液(A)相同的腐殖酸浓度的优选范围。水溶液(X)具有与水
溶液(A)相同的富里酸浓度的优选范围。水溶液(X)具有与水溶液(A)相同的水量的优选范围。

【0082】优选地，水溶液(X)的pH值为5或更高；优选地，水溶液(X)的pH值更优选地为6或更高。优选地，水溶液(X)的pH值为9或更低，更优选地为8或更低。

【0083】优选地，水溶液(X)直接从一种或多种天然来源，如河流、溪流、湖泊、池塘或水库获得。考虑可进行一些物理纯化步骤，如过滤以去除呈颗粒形式的污染物，可任选地针对取自天然来源的水溶液进行，然后将所述水溶液用作水溶液(X)。优选地，任选地从天然来源去除水溶液后，在用作水溶液(X)之前不进行除过动以去除颗粒以外的纯化步骤。

【0084】优选地，树脂(Y)是具有阳离子交换侧基的阴离子交换树脂。优选地，树脂(Y)包含选自由磷酸酯基、羧酸酯基或其混合物组成的组的化学侧基。优选地，一些或全部阳离子交换侧基呈氢形式。更优选地，树脂(Y)包含磷酸酯侧基。

【0085】优选地，树脂(Y)包含一种或多种乙烯基芳香族单体的聚合单元。优选地，树脂(Y)中乙烯基芳香族单体的聚合单元的量以树脂(Y)的重量计为50重量%或更多；更优选地75重量%或更多；更优选地90重量%或更多。优选地，在开始进行本发明的方法时，树脂(Y)呈氢形式。

【0086】使水溶液(X)与树脂(Y)的颗粒集合体接触以制备混合物XY，并且先使混合物XY的液体部分与混合物XY的其余部分分离的优选方法与针对混合物BA的上文所描述的优选方法相同。制备和分离混合物XY的方法可以独立于或将混合物BA所选择的方法来选择。

【0087】考虑水溶液(X)含有一种或多种金属阳离子。优选地，由混合物XY制备混合物XY和水溶液(A)的过程引起金属阳离子从水溶液(X)转移到树脂(Y)。优选地，水溶液(A)中金属阳离子的浓度低于水溶液(X)中金属阳离子的浓度。

【0088】在获得水溶液(C)之后，优选地通过使水溶液(C)与树脂(D)的颗粒集合体接触以制备混合物DC来处理水溶液(C)。优选地，混合物DC的液体部分然后从混合物DC中分离，并且所述液体部分是水溶液(E)。优选地，树脂(D)具有阴离子交换侧基的阴离子交换树脂。优选地，树脂(D)为强碱树脂。优选地，树脂(D)包含侧酸铵基。优选地，一些或全部阴离子交换基团侧基或树脂(D)呈氢氧化物形式。

【0089】优选地，树脂(D)包含一种或多种乙烯基芳香族单体的聚合单元。优选地，树脂(D)中乙烯基芳香族单体的聚合单元的量以树脂(D)的重量计为50重量%或更多；更优选地75重量%或更多；更优选地90重量%或更多。

【0090】使水溶液(C)与树脂(D)的颗粒集合体接触以制备混合物DC，并且然后使混合物DC的液体部分与混合物DC的剩余部分分离的优选方法与针对混合物BA的上文所述的优选方法相同。用于制备和分离混合物DC的方法可以独立于为制备和分离混合物BA而选择的方法。在从混合物DC中分离水溶液(E)之后，混合物DC的剩余部分含有树脂(D2)。

【0091】考虑水溶液(C)与树脂(D)之间的接触将引起非氢氧化物阴离子从水溶液(C)转移到树脂(D)以交换氢氧化物阴离子。优选地，水溶液(D)中非氢氧化物阴离子的浓度高于水溶液(E)中的非氢氧化物阴离子的浓度。

【0092】优选地，水溶液(E)具有相对较低浓度的金属阳离子，相对较低浓度的非氢氧化物阴离子以及相对较低浓度的溶液有机化合物。
在已从混合物B中去除水溶液（C）之后，混合物B的剩余固体部分为丙烯酸树脂（B2）。丙烯酸树脂（B2）优选地具有吸附腐殖酸，富里酸或其混合物。

考虑到随着更多的溶解有机化合物吸附到丙烯酸树脂（B2）上，丙烯酸树脂（B2）在从水溶液（A）中去除溶解有机化合物方面变得更加有效。当丙烯酸树脂（B2）失去从水溶液（A）中去除有机化合物的有效性时，认为丙烯酸树脂（B2）“负载”。优选地，当开始本发明的方法时，水溶液（C）的TOC与水溶液（A）的TOC的比值为1.5:1或更低；优选为1.25:1或更低。在实施本发明的方法一段时间后，预测水溶液（C）的TOC与水溶液（A）的TOC的比值将升高并将随本发明的方法进行更长时间而继续上升。当水溶液（C）的TOC与水溶液（A）的TOC的比值达到或超过0.8:1时，称丙烯酸树脂（B2）“负载”。通常，负载的丙烯酸树脂具有3.36g Oe/升树脂或更多的吸附有机含量（如通过下文描述的酸性KmnO4测试所测量）。

优选地，当丙烯酸树脂（B2）负载时，进行“再生”过程以从丙烯酸树脂（B2）中去除溶解有机化合物。预期这类再生将使丙烯酸树脂（B2）转化回成丙烯酸树脂（B），然后所述丙烯酸树脂可用于本发明的方法中以从水溶液（A）中去除溶解有机化合物。

优选地，再生涉及使水溶液（R）与丙烯酸树脂（B2）接触以形成混合物B2R，并且然后从水溶液（RE）中分离丙烯酸树脂。优选地，水溶液（R）是pH值为4或更低的酸性，或pH值为10或更高的碱性。

一种优选的再生方法是酸再生。在酸再生中，优选地使丙烯酸类树脂（B2）与水溶液（RA）接触，其中水溶液（RA）的pH值为4或更低，从而形成混合物B2RA。

优选地，水溶液（RA）具有pH值为4或更低的pH值，优选pH值在1.25:1或更低pH值，优选pH值为10或更高的碱性。

优选地，水溶液（RA）不具有溶解的金属离子和溶解的非氢氧化物阴离子。水溶液（RA）的特征在于“盐比值”，所述盐比值定义为所有溶解的金属离子与所有溶解的非氢氧化物阴离子的摩尔比。优选地，水溶液中的盐比值（RA）小于0.1:1，更优选小于0.01:1。

优选地将混合物B2RA分离为丙烯酸树脂（B3）和水溶液（RAE）。优选地，丙烯酸树脂（B3）适合作为丙烯酸树脂（B）。

另一种优选的再生方法是碱再生。在碱再生中，优选地使丙烯酸树脂（B2）与水溶液（RB）接触，其中水溶液（RB）的pH值为10或更高，从而形成混合物B2RB。

优选地，水溶液（RB）的pH值为12或更高，更优选13或更高；更优选14或更高。

优选地，水溶液（RB）含有金属阳离子、氢氧化物阴离子和非氢氧化物阴离子。优选的金属阳离子是碱金属阳离子；更优选的是钠离子。优选的水溶液（RB）仅有效地具有一种类型的金属阳离子。优选地，在水溶液（RB）中，最浓缩的金属阳离子的量与所有其它金属阳离子的浓度之和的比值为10:1或更大；更优选为100:1或更大。优选的非氢氧化物阴离子为卤素离子；更优选的是氯离子。优选的水溶液（RB）仅有效地具有一种类型的非氢氧化物阴离子。优选地，在水溶液（RB）中，最浓缩的非氢氧化物阴离子的量与所有其它非氢氧化物阴离子的浓度之和的比值为10:1或更大；更优选为100:1或更大。

优选地，水溶液（RB）中溶解金属离子的量以水溶液（RB）的重量计为1重量％或更多；更优选为2重量％或更多；更优选为3重量％或更多；更优选为4重量％或更多。优选地，水溶液（RB）中溶解金属离子的量以水溶液（RB）的重量计为10重量％或更少；更优选为9重量％或更少；更优选为8重量％或更少；更优选为7重量％或更少。
优选地，水溶液（RB）中氢氧化物离子的量以水溶液（RB）的重量计为1重量%或更多；优选2重量%或更多；优选3重量%或更多。优选地，水溶液（RB）中氢氧化物离子的量以水溶液（RB）的重量计为9%或更少；优选8%或更少；优选7%或更少；优选6%或更少；优选5%或更少。

优选地，水溶液（RB）中非氢氧化物离子的量以水溶液（RB）的重量计为0.3重量%或更多；优选为0.4%或更多；优选为0.5%或更多。优选地，水溶液（RB）中非氢氧化物离子的量以水溶液（RB）的重量计为5重量%或更少；优选3%或更少；优选2%或更少；优选1.5%或更少。

优选地，将混合物B2RB分离成丙烯酸树脂（B4）和水溶液（RBE）。优选地，丙烯酸树脂（B4）适用作丙烯酸树脂（B）。

在碱再生的优选实施例（在此称为“双碱再生”）中，水溶液（RB）用于再生丙烯酸树脂（D2）和丙烯酸树脂（B2）两者。在双碱再生中，使水溶液（RB）与树脂（D2）接触以形成混合物RBDR2，然后将水溶液（RB2）从混合物RBDR2中分离出来；然后使水溶液（RB2）与树脂（B2）接触以形成混合物B2RB2，然后将水溶液（RBE）从混合物B2RB2中分离出来。当从混合物B2RB2中分离水溶液（RES）时，混合物B2RB2中的剩余物质包括优选适用作丙烯酸树脂（B）的树脂。双碱再生可通过以下进行：将树脂（D2）和丙烯酸树脂（B2）各自提供在保留树脂的单独容器（如色谱柱）中，同时使水溶液在与树脂接触之后通过；然后水溶液（RB）通过含有树脂（D2）的容器；收集从含有树脂（D2）的容器离开的水溶液（RB2）；然后使水溶液（RB2）通过含有丙烯酸树脂（B2）的容器；然后收集从含有丙烯酸树脂（B2）的容器离开的水溶液（RBE）。考虑到当足够的水溶液（RB）通过两个容器时，树脂（D2）将已经完全或部分地转化为氢氧化物形式并将适用作树脂（D），并且丙烯酸树脂（B2）将损失大部分或全部吸附的溶解有机化合物，并将适用作丙烯酸树脂（B）。

以下是本发明的实例。除非另有说明，否则所有操作均在室温，约23°C下进行。

使用以下缩写：

DVB＝二乙烯基苯

h＝小时

BV＝床体积

daq＝水性

soln.＝溶液

Scav1＝Hansch参数为-0.1的丙烯酸树脂

Scav2＝Hansch参数为0.0的丙烯酸树脂

ppm C/L＝每升碳的重量百万分率

RW＝通过沙子过滤后的河水；平均TOC＝2.6ppm C/L（最小TOC＝1.9ppm C/L，并且最大TOC＝3.9ppm C/L）。在以下实验中，RW的pH值始终在2.5与3.2之间。

TOC＝溶解有机碳，使用GE Power & Water的SIEVERS 900分析仪所测量。

WB1＝AMBERLITE™IRA96，具有侧聚胺基的大孔苯乙烯/DVB共聚物，Hansch参数在2.6到2.8范围内。

SB1＝AMBERLITE™IRA9000，强碱大孔苯乙烯/DVB共聚物，Hansch参数在-1.6到-1.4范围内。
通过“酸性KmnO₄测试”分析一些样品的吸附有机含量，其进行如下：制备KmnO₄溶液（每1000mL去离子水0.395g KmnO₄）。制备硫酸亚铁铵（II）溶液（将4.9克硫酸亚铁（II）溶于200mL去离子水中，添加2mL 95%（重量）的硫酸，并且添加去离子水以制备1000mL）。用去离子水将待测溶液稀释到100mL。稀释因子是100。除以待测溶液的初始体积的商。将100mL待测溶液与2mL 5N硫酸混合，接着添加20mL KmnO₄溶液。将溶液煮沸10分钟，然后冷却到25℃。然后添加20mL硫酸亚铁（II）铵溶液。溶液用量KmnO₄溶液滴定；终点由色位滴定管确定。所滴定的KmnO₄溶液的体积为V₁，单位为mL。在用去离子水置换“待测稀释溶液”下重复所述方法，并且滴定体积为V₂，单位为mL。有机含量以每升树脂的克数（mgO₂/L）由下式表示。

\[(V₁ - V₂) \times (稀释因子)\]

(0125) 实例1和2以及比较例3C：水溶液（A）的pH值的影响：

(0126) 实例1和例2采用图1所描述的配置，如下所示：

(0127) 阳离子交换树脂（Y） = AMBERJET™ UP1400树脂或AMBERJET™ 1500树脂（均来自陶氏化学公司（Dow Chemical Company））。两者都是凝胶型、高酸型能团的聚苯乙烯二乙烯基苯共聚体树脂。在本方法中认为这两种树脂为可互换的。在开始进行方法时，两者都呈氢气形式。

(0128) 阴离子交换树脂（D）= AMBERLITE™ IRA900强碱阴离子交换树脂，具有侧三乙基铵基的苯乙烯/DVB共聚物（陶氏化学公司）

(0129) 流向：每个容器从上到下

(0130) 容器尺寸：内径3cm，床深28.3cm

(0131) 流速：3L/h

(0132) 比流速：15BV/h

(0133) RW的TOC为3.8ppm C/L。

(0134) 水溶液（A）的pH值，丙烯酸树脂（B）的输入流在2.5与3.2之间

(0135) 实例1丙烯酸树脂（B）= Scav1

(0136) 实例2丙烯酸树脂（B）= Scav2

(0137) 比较例3C采用与实施例1中相同的配置，使用相同的树脂和相同的RW和相同的条件，不同之处在于容器的顺序如下：Scav1接着是阳离子交换树脂（Y），然后是AMBERLITE™ IRA900。过滤河水RW进入含有Scav1的容器中。

(0138) 分析来自最终容器的输出流。结果如下：

(0139) 表1：实例1和2相比例比较例3C

(0140) 最终输出流的TOC（ppm C/L）

<table>
<thead>
<tr>
<th>BV</th>
<th>实例1</th>
<th>实例2</th>
<th>C.Ex.3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>0.8</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>275</td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.8</td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>400</td>
<td>0.8</td>
<td></td>
<td>2.8</td>
</tr>
</tbody>
</table>
对于超过1200BV而言，实例1和实例2都维持低于15ppm C/L的TOC。相比之下，比较实例3C展示在700BV时与过滤河水几乎相同的TOC。

实例4和5比较例6C：用酸再生

清除剂树脂Scav1使用实例1的程序负荷溶解除有机化合物，直到水溶液(C)的TOC与水溶液(A)的TOC的比值达到0.8：1。

然后Scav1树脂如下再生。

表2：再生条件

<table>
<thead>
<tr>
<th>实例4</th>
<th>实例5</th>
<th>比较实例 6C</th>
</tr>
</thead>
<tbody>
<tr>
<td>方向</td>
<td>从上到下</td>
<td>从上到下</td>
</tr>
<tr>
<td>再生</td>
<td>HCl 水溶液</td>
<td>NaOH 水溶液</td>
</tr>
<tr>
<td>数量(g 100%/Lr)</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td>浓度(% wt)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>流速</td>
<td>mL/h</td>
<td>400</td>
</tr>
<tr>
<td>比流速</td>
<td>BV/h</td>
<td>2</td>
</tr>
<tr>
<td>持续时间(min)</td>
<td>54</td>
<td>50</td>
</tr>
</tbody>
</table>

注(1): 10重量%NaCl和1重量%NaOH的水溶液
[0149] 再生后，使用再生的Scav1作为树脂(B)重复实例1的程序，结果如下。进料水的TOC为2.6ppm C/L。

[0150] 表3：实例4相比于比较实例5C

[0151] 最终输出流的TOC(ppm C/L)

<table>
<thead>
<tr>
<th>BV</th>
<th>实例4</th>
<th>实例5</th>
<th>比较实例6C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.7</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>0.7</td>
<td>0.5</td>
<td>3.2</td>
</tr>
<tr>
<td>300</td>
<td>0.8</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>400</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>500</td>
<td>0.9</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>600</td>
<td>1.3</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>700</td>
<td>1.2</td>
<td>5.0</td>
<td>1.4</td>
</tr>
<tr>
<td>800</td>
<td>1.1</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>900</td>
<td>1.2</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>1000</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>1100</td>
<td>1.0</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>1200</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0153] 实例4表现良好，有效地从进料水中去除TOC。实例5对于600BV床体积表现良好。应注意，实例5展示在约600BV处短时间TOC的急剧升高，此后树脂可接受地操作。认为这类短暂的急剧上升与离子耗竭和树脂化学形式的变化有关。在使用酸再生的树脂时，预计会有这类短暂的急剧上升。预期发生短暂的急剧上升的发生(即观察到短暂的急剧上升的BV)取决于所处理水的组成。实例6C表现不佳，允许相对大量的TOC通过。

[0154] 例7：Scav2的行为

[0155] 在用Scav2代替Scav1重复实例1。结果如下：

[0156] 表4：实施例7：最终输出流的TOC(ppm C/L)

<table>
<thead>
<tr>
<th>BV</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>230</th>
<th>250</th>
<th>520</th>
<th>550</th>
<th>700</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.2</td>
<td>0.7</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

[0158] 表4：实施例7：最终输出流的TOC(ppm C/L) (续)

<table>
<thead>
<tr>
<th>BV</th>
<th>900</th>
<th>1050</th>
<th>1100</th>
<th>1350</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC</td>
<td>0.7</td>
<td>1.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

[0160] 实例7表现地类似于实例1。

[0161] 实例8和比较实例9C：树脂类型的比较

[0162] 重复实例1的程序，不同之处在于进料水的TOC为2.1ppb C/L。作为树脂(B)，使用以下各者：

[0163] 实例8：Scav1
比较实例9C:WB1 (AMBERLITE™ IRA96)
结果如下。
表5: 实例8和比较实例9C: 最终输出流的TOC (ppm C/L)

<table>
<thead>
<tr>
<th>BV</th>
<th>0</th>
<th>100</th>
<th>400</th>
<th>500</th>
<th>750</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>实例8</td>
<td>1.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

比较实例9C | 0.6 | 0.9 | 0.8 | 0.8 | 1.0 | 1.1 | 1.1 |

表5: 最终输出流的TOC (ppm C/L) (续)

<table>
<thead>
<tr>
<th>BV</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1650</th>
<th>1700</th>
<th>1800</th>
<th>2000</th>
<th>2250</th>
<th>2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>实例8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>比较实例9C</td>
<td>1.1</td>
<td>1.6</td>
<td>2.0</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

比较实例9C在约1500BV处相对较早地展示“突破”（其中输出TOC变得高于进料流中的TOC浓度），而实例8在约2300BV处展示晚得多的突破。在这一实例中，在程序结束时负载树脂的有机含量为每升树脂4.5g O₂。

比较实例10C: 强碱树脂

重复实例1，不同之处在于树脂B为比较树脂SB1 (AMBERLITE™ IRA900，呈Cl形式)。实例10C的结果可以直接与实例1的结果比较。

表6: 比较实例10C: 最终输出流的TOC (ppm C/L)

<table>
<thead>
<tr>
<th>BV</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较实例10C</td>
<td>7.8</td>
<td>1.6</td>
<td>3.2</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>3.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

表6: 最终输出流的TOC (ppm C/L) (续)

<table>
<thead>
<tr>
<th>BV</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较实例10C</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

实例11和12: 从负载Scav1中去除有机化合物

在实例1的程序中使用树脂Scav1，直到根据上述标准使树脂负载。

如下测试从负载Scav1树脂中去除有机化合物。使20ml负载树脂与20ml再生溶液混合。这一部分再生溶液在本文中称为“第一再生床体积(first regeneration bed volume)或(first regen.bed vol.)”。将混合物静置1小时。然后从再生溶液中除去树脂，空气冲刷树脂，并通过上文所述的酸性KMnO₄试验测试再生溶液的有机物含量。稀释因子为5，树脂的体积与再生溶液的体积相同，所以式

(V1-V2) *5/1000
[0182] 给出每升树脂0.2的克数，其在下文报道。
[0183] 然后将相同的再生溶液与树脂重新混合，并且重复所述过程，在2.3和4小时结束
时进行测量。这些测量结果报告为“第一再生床体积”的结果。
[0184] 然后将再生溶液的新生部分（“第二再生床体积”）与树脂混合，并且重复相同的程
序，从树脂中每小时分离再生溶液，空气冲刷树脂以及测试有机化合物内容物的再生溶液。
[0185] 再生溶液使用如下：
[0186] 实例11：10%NaCl和15%NaOH的水溶液
[0187] 实例12：10%NaOH和15%NaCl的水溶液
[0188] 使用酸性K2Cr2O7，测试测定溶解有机化合物。结果如下；
[0189] 表7：以树脂上负载的量计，再生溶液的有机含量（g 0.2/1树脂）和从树脂中去除的
有机化合物的重量百分比。
[0190]
<table>
<thead>
<tr>
<th>实例</th>
<th>再生床体积</th>
<th>1h (%)</th>
<th>2h (%)</th>
<th>3h (%)</th>
<th>4h (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 第一</td>
<td>0.86 (38%)</td>
<td>1.15 (51%)</td>
<td>1.28 (56%)</td>
<td>1.3 (57%)</td>
<td></td>
</tr>
<tr>
<td>11 第二</td>
<td>0.79 (34%)</td>
<td>0.89 (39%)</td>
<td>0.95 (42%)</td>
<td>0.97 (43%)</td>
<td></td>
</tr>
<tr>
<td>12 第一</td>
<td>0.98 (43%)</td>
<td>1.10 (49%)</td>
<td>1.67 (74%)</td>
<td>1.80 (80%)</td>
<td></td>
</tr>
<tr>
<td>12 第二</td>
<td>0.3 (13%)</td>
<td>0.35 (16%)</td>
<td>0.41 (18%)</td>
<td>0.45 (20%)</td>
<td></td>
</tr>
</tbody>
</table>

[0191] 在8小时和2个床体积后两种再生溶液去除所有负载有机化合物。
[0192] 实例13和14：复杂的再生方案
[0193] 使用实施例11和12的方法再生加载的Scav1树脂，并进行以下改变。将树脂暴露于
第一再生床体积3小时，并暴露于第二再生床体积2小时。
[0194] 再生溶液是具有如下所示的溶质重量百分比的水溶液。
[0195] 表8：再生溶液

<table>
<thead>
<tr>
<th>实例</th>
<th>第一再生床体积</th>
<th>第二再生床体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>10%NaOH+1%NaCl</td>
<td>10%NaCl+1%NaOH</td>
</tr>
<tr>
<td>14</td>
<td>10%NaCl+1%NaOH</td>
<td>10%NaOH+1%NaCl</td>
</tr>
</tbody>
</table>

[0197] 结果如下：
[0198] 表9：再生结果（有机含量，g 0.2/L，和去除的有机化合物的重量百分比）
[0199]
<table>
<thead>
<tr>
<th>实例</th>
<th>第一再生床体积</th>
<th>第二再生床体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1.77 (67%)</td>
<td>0.88 (33%)</td>
</tr>
<tr>
<td>14</td>
<td>1.16 (44%)</td>
<td>1.16 (44%)</td>
</tr>
</tbody>
</table>

[0200] 实例13和实例14均从树脂中去除大量的有机内容物。实施例13更有效，从树脂中
去除所有的有机内容物。
图2
图3
图4