(54) Title: METHODS OF TREATING C18-MEDIATED DISEASES AND CONDITIONS, AND COMPOUNDS AND COMPOSITIONS THEREOF

(57) Abstract

Disclosed is a method for treating the symptoms of an acute or chronic disorder mediated by the classical pathway of the complement cascade, comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Formula (I) or a solvate, hydrate or pharmaceutically acceptable salt thereof; wherein R¹, R², R³, X, Y and Z are defined in the specification.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslavia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TG</td>
<td>Tunisia</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>United States of America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods of Treating C1s-Mediated Diseases and Conditions, and Compounds and Compositions Therefor

Background of the Invention

Field of the Invention

The present invention is in the field of inhibiting the enzyme C1s, a protease in the classical pathway of the complement system, and the use of this inhibition to treat or ameliorate acute or chronic disorders in mammals.

Related Art

The immune system of the human body is equipped with several defense mechanisms to respond to bacterial, viral, or parasitic infection and injury. One such defense mechanism involves the complement system. Complement consists of a complex series of approximately 30 plasma and membrane protein components, many of which are proteinases. Once activated, this system of enzymes non-specifically complements the immunologically specific effects of antibody by modulating the immune response, lysing target cells, stimulating vascular and other smooth muscle cells, facilitating the transport of immune complexes, producing anaphylatoxins which cause degranulation of mast cells and release of histamine, stimulating chemotaxis (migration) of leukocytes towards the area of complement activity, activating B lymphocytes and macrophages, and inducing phagocytosis and lysis of cells (Eisen, H. N., Immunology, Harper & Row Publishers, Inc. Hagerstown, Md., p. 512 (1974); Roitt, I. et al., Immunology, Gower Medical Publishing, London, New York, pp. 7.1-7.14 (1985); U.S. Patent Nos. 5,472,939 and 5,268,363).

The complement system functions as a "cascade". The enzyme cascades are initiated when inactive enzyme precursor molecules are activated, through limited proteolysis, by membrane-bound enzymes. A small fragment is lost from the enzyme precursor and a nascent
membrane binding site is revealed. The major fragment then binds to the membrane as the next functionally active enzyme of the complement cascade. Since each enzyme is able to activate many enzyme precursors, the system forms an amplifying cascade, resembling the reactions seen in blood clotting and fibrinolysis (Roitt, I. et al., *Immunology*, Gower Medical Publishing, London, New York, pp. 7.1-7.14 (1985)).

The proteins of the complement system form two inter-related enzyme cascades, termed the classical and alternative pathways. The classical pathway is usually initiated by antigen-antibody complexes, while the alternative pathway is activated by specific polysaccharides, often found on bacterial, viral, and parasitic cell surfaces. The classical pathway consists of components C1-C9, while the alternative pathway consists of components C3 and several factors, such as Factor B, Factor D, and Factor H.

The sequence of events comprising the classical complement pathway consists of three stages: recognition, enzymatic activation, and membrane attack leading to cell death. The first phase of complement activation begins with C1. C1 is made up of three distinct proteins: a recognition subunit, C1q, and the serine proteinase subcomponents, C1r and C1s, which are bound together in a calcium-dependent tetrameric complex, C1r2s2. An intact C1 complex is necessary for physiological activation of C1 to result. Activation occurs when the intact C1 complex binds to immunoglobulin complexed with antigen. This binding activates C1s which then cleaves both the C4 and C2 proteins to generate C4a and C4b, as well as C2a and C2b. The C4b and C2a fragments combine to form the C3 convertase, which in turn cleaves C3 to form C3a and C3b (Makrides, *Pharmacol. Rev.* 50:59-87 (1998); and U.S. Patent No. 5,268,363). Both the classical and alternative pathways are capable of individually inducing the production of the C3 convertase to convert C3 to C3b, the generation of which is the central event of the complement pathway. C3b binds to C3b receptors present on neutrophils, eosinophils, monocytes and macrophages, thereby activating the terminal lytic complement sequence, C5-C9 (Roitt, I. et al., *Immunology*, Gower Medical Publishing, London, New York, pp. 7.1-7.14 (1985)).

Complement is designed to fight infection and injury; however, this same mechanism, if inappropriately activated, can cause a significant amount of inflammation, tissue damage, and other disease states such as the autoimmune diseases, as a result of the rapid and aggressive

Complement fragments generated by the classical portion of the complement cascade have been found to be present in the immune complexes formed against indigenous tissue in autoimmune diseases. Such diseases include, but are not limited to: Hashimoto's thyroiditis, glomerulonephritis and cutaneous lesions of systemic lupus erythematosus, other glomerulonephritides, bullous pemphigoid, dermatitis herpetiformis, Goodpasture's syndrome, Graves' disease, myasthenia gravis, insulin resistance, autoimmune hemolytic anemia,

Compounds that potently and selectively inhibit complement will have therapeutic applications in several acute and chronic immunological disorders, and a variety of neurodegenerative diseases. Evidence from both human and animal studies shows that activation of the classical complement pathway is primarily involved in neurodegenerative diseases of the central nervous system (CNS). Autoimmune diseases in which these inhibitors of the complement cascade system will be therapeutically useful include myasthenia gravis (MG), rheumatoid arthritis (in which the substance can be administered directly into a joint capsule to prevent complement activation), systemic lupus erythematosus. Neurodegenerative diseases in which inhibitors of the complement cascade system will be therapeutically useful include the demyelinating disorder multiple sclerosis (MS), the neuropathies Guillain-Barré syndrome (GBS) and Miller-Fisher syndrome (MFS), and Alzheimer’s disease (AD). Other diseases and conditions include hereditary angioedema (in which a deficiency in complement control protein leads to an active complement consumption), septic shock, paroxysmal nocturnal hemoglobinurea, organ rejection (transplantation), burns (wound healing), brain trauma, asthma, platelet storage, hemodialysis, and cardiopulmonary bypass equipment (Makrides, Pharmacol. Rev. 50:59-87 (1998); Spiegel et al., Strategies for Inhibition of Complement Activation in the Treatment of Neurodegenerative Diseases in: Neuroinflammation: Mechanisms and Management, Wood (ed.), Humana Press, Inc., Totowa, NJ, Chapter 5, pp. 129-176; and U.S. Patent No. 4,916,219).

A number of strategies have been proposed for the inhibition of primarily the classical complement pathway. Efforts to directly inhibit complement activation have focused on chemical compounds that inhibit complement components such as C1r and C1s. Small peptide inhibitors of convertases, such as the C3 and C5 convertases, have also been described (Liszewski and Atkinson, Exp. Opin. Invest. Drugs 7: 323-332 (1998). So far, the best studied ‘designer’ complement inhibitor for treatment of CNS disorders is soluble recombinant human
complement receptor Type 1 (sCR1). sCR1 has proven effective in animal models of CNS
diseases and is under investigation for use in man (Fearon, Clin. Exp. Immunol. 86 (Suppl.1):43-
46 (1991)). However, there are several drawbacks to the use of sCR1 in disorders of the CNS:
the agent is expensive, must be administered systemically, and has a short half-life in vivo. The
next generation of complement inhibitors are likely to solve many of these drawbacks (Spiegel
et al., Strategies for Inhibition of Complement Activation in the Treatment of Neurodegenerative
Diseases in: Neuroinflammation: Mechanisms and Management, Wood (ed.), Humana Press,

A need continues to exist for non-peptidic compounds that are potent inhibitors of
complement, specifically C1s, and which possess greater bioavailability and fewer side-effects
than currently available C1s inhibitors. Accordingly, new classes of potent C1s inhibitors,
characterized by potent inhibitory capacity, are potentially valuable therapeutic agents for a
variety of conditions.

Summary of the Invention

It has been found that a class of furanyl and thiienyl amidines and guanidines are capable
of inhibiting C1s activity. These compounds have Formula I below and are described in U.S.
Provisional Application No. 60/119,364, filed February 9, 1999 and U.S. Application No.
09/372,748, filed August 11, 1999. These applications are fully incorporated by reference herein.
Based upon this enzyme inhibitory activity, compounds of Formula I can be employed to treat
acute and chronic disorders associated with activation (often inappropriate) of the classical
pathway of the complement cascade.

The present invention provides a method for treating acute and chronic immunological
disorders associated with activation of the classical pathway of the complement system by
administering to a mammal in need of such treatment a therapeutically effective amount of a
compound of Formula I. These acute and chronic conditions include inflammation, tissue
damage, and other disease states such as the autoimmune diseases, as a result of rapid and
aggressive enzyme activity of the complement cascade. Often inflammation is a causative factor
of tissue damage associated with many of these conditions.
In one embodiment, compounds of Formula \(I \) can be administered to a mammal to treat complement-mediated inflammation and tissue damage. Examples of conditions that can be treated include intestinal inflammation of Crohn's disease, thermal injury (burns, frostbite), and post pump syndrome in cardiopulmonary bypass.

In a second embodiment, compounds of the present invention can be administered to a mammal suffering from the symptoms of adult respiratory distress syndrome.

In a third embodiment, compounds of Formula \(I \) can be administered to a mammal to treat complement-mediated complications in sepsis and complement-mediated tissue injury associated with autoimmune diseases. Examples of conditions that can be treated include immune-complex-induced vasculitis glomerulonephritis, hemolytic anemia, myasthenia gravis, type II collagen-induced arthritis, and allergic neuritis.

The complement system is also involved in hyperacute allograft and hyperacute xenograft rejection. Complement activation during immunotherapy with recombinant IL-2 appears to cause the severe toxicity and side effects observed from IL-2 treatment. Thus, in a fourth embodiment, compounds of Formula \(I \) can be administered to a mammal before, during or after the transplant of an organ or a graft to ameliorate the rejection of such organ or graft by the mammal. Grafts can include an allograft or xenograft. In a fifth embodiment of the present invention, a compound of Formula \(I \) is administered to a mammal before, during or after treatment of said mammal with IL-2 in an amount effective to reduce the toxicity and side-effects of the IL-2 treatment.

A sixth embodiment of the present invention is directed to administering a therapeutically effective compound of Formula \(I \) to a mammal that has been diagnosed with an auto-immune disease. Autoimmune diseases that are treatable according to the present invention include Hashimoto's thyroiditis, glomerulonephritis and cutaneous lesions of systemic lupus erythematosus, other glomerulonephritides, bullous pemphigoid, dermatitis herpetiformis, Goodpasture's syndrome, Graves' disease, myasthenia gravis, insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, and rheumatoid arthritis. Preferred autoimmune diseases which can be treated by inhibitors of the present invention are myasthenia gravis (MG), rheumatoid arthritis (in which the substance can be administered directly into a joint capsule to prevent complement activation), and systemic lupus erythematosus.
A seventh embodiment of the present invention is directed to administering a therapeutically effective compound of Formula I to a mammal that has been diagnosed with a neurodegenerative disease. Neurodegenerative diseases in which inhibitors of the complement cascade system will be therapeutically useful include the demyelinating disorder multiple sclerosis (MS), the neuropathies Guillain-Barré syndrome (GBS) and Miller-Fisher syndrome (MFS), and Alzheimer’s disease (AD). Other diseases and conditions include hereditary angioedema, septic shock, paroxysmal nocturnal hemoglobinuria, organ rejection (transplantation), burns (wound healing), brain trauma, asthma, platelet storage, hemodialysis, and cardiopulmonary bypass equipment.

In an eighth embodiment, the present invention provides a pharmaceutical composition for treating a complement-mediated disease state comprising a compound of Formula I in an amount effective to inhibit C1s protease function in a mammal, and a pharmaceutically acceptable carrier or diluent.

A ninth embodiment of the present invention is directed to novel compounds that are potent C1s inhibitors.

Detailed Description of the Preferred Embodiments

A pharmaceutical composition for treating a complement-mediated disease state comprising a compound of Formula I in an amount effective to inhibit C1s protease function in a mammal, and a pharmaceutically acceptable carrier or diluent are within the scope of the present invention.

Compounds useful in the present invention have the general Formula I:

![Chemical Structure](image)

or a solvate, hydrate or pharmaceutically acceptable salt thereof; wherein:
X is O, S or NR\(^2\), where R\(^2\) is hydrogen, alkyl, aralkyl, hydroxy(C\(_{2,4}\))alkyl, or alkoxy(C\(_{2,4}\))alkyl;

Y is a direct covalent bond, CH\(_2\) or NH;

Z is NR\(^3\)R\(^6\), hydrogen or alkyl, provided that Y is NH whenever Z is hydrogen or alkyl;

R\(^1\) is hydrogen, amino, hydroxy, halogen, cyano, C\(_{1,4}\) alkyl or –CH\(_2\)R, where R is hydroxyamino or C\(_{1,3}\) alkoxy;

R\(^2\) and R\(^3\) are independently:

i. hydrogen,

ii. halogen,

iii. hydroxy,

iv. nitro,

v. cyano,

vi. amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, monoalkylmonoarylamino, monoaralkylamino, diaralkylamino, alkylarylamino, alkoxy carbonylamino, aralkoxycarbonylamino, aryloxy carbonylamino, alkylsulfonylamino, aralkylsulfonylamino, arylsulfonylamino, formylamino, acylamino, H(S)CNH\(_-\), or thioacylamino,

vii. aminocarbonyl, monoalkylaminocarbonyl, dialkylaminocarbonyl, acyl, aminoacyl, or arylaminocarbonyl,

viii. aminothiocarbonyl, monoalkylaminothiocarbonyl, dialkylaminothiocarbonyl, thioacyl or aminothioacyl,

ix. aminocarbonylamino, mono- and dialkylaminocarbonylamino, mono- and diarylaminocarbonylamino, or mono- and diaralkylaminocarbonylamino,

x. aminocarboxyloxy, mono- and dialkylaminocarboxyloxy, mono- and diarylaminocarboxyloxy, mono- and diaralkylaminocarboxyloxy,

xi. aminosulfonyl, mono- and dialkylaminosulfonyl, mono- and diarylaminosulfonyl, or mono- and diaralkylaminosulfonyl,

d. alkoxy, or alkylthio, wherein the alkyl portion of each group may be optionally substituted,
xiii. aralkoxy, aryloxy, aralkylthio, or arylthio, wherein the aryl portion of each group can be optionally substituted,
xiv. alkylsulfonyl, wherein the alkyl portion can be optionally substituted,
xv. aralkylsulfonyl, or arylsulfonyl, wherein the aryl portion of each group can be optionally substituted,
xvi. alkenyl, or alkynyl,
xvii. optionally substituted aryl,
xviii. optionally substituted alkyl,
xix. optionally substituted aralkyl,
xx. optionally substituted heterocycle, or
xxi. optionally substituted cycloalkyl; and

\[R^4, R^5 \text{ and } R^6 \text{ are independently hydrogen, } C_{1-4} \text{ alkyl, aryl, hydroxyalkyl, aminoalkyl, monoalkylamino(C}_{2-10}) \text{alkyl, dialkylamino(C}_{2-10}) \text{alkyl, carboxyalkyl, cyano, amino, alkoxy, or hydroxy, or } -\text{CO}_2R^w, \text{ where} \]

\[R^w \text{ is hydrogen, hydroxy, alkoxy, cyano, alkoxy carbonyl, alkyl, cycloalkyl, phenyl, benzyl,} \]

where \(R^4 \text{ and } R^5 \text{ are independently hydrogen, } C_{1-6} \text{ alkyl, } C_{2-6} \text{ alkenyl or phenyl, } R^f \text{ is hydrogen, } C_{1-6} \text{ alkyl, } C_{2-6} \text{ alkenyl or phenyl, } R^g \text{ is hydrogen, } C_{1-6} \text{ alkyl, } C_{2-6} \text{ alkenyl or phenyl, and } R^h \text{ is aralkyl or } C_{1-6} \text{ alkyl.} \]

When an alkyl-containing group, heterocyclic-containing group or aryl-containing group of \(R^2 \text{ or } R^3 \text{ is optionally substituted, the optional substituents can be 1 to 4 non-hydrogen substituents, provided that the resulting compound is stable. Values of optional substituents on alkyl groups include halogen, hydroxy, thiol, amino, monoalkylamino, dialkylamino, formylamino, aminoiminomethyl, acylamino, aminoacyl, mono- or di- alkylaminocarbonyl, thiocarbamylamino, thioacylamino, aminothiocarbonyl, alkoxy, arloxy, aminocarbonyloxy,} \]
mono- or di-alkylaminocarbonyloxy, mono- or diarylaminocarbonyloxy, mono- or diaralkylaminocarbonyloxy, alkylsulfonyl, aralkylsulfonyl, alkylsulfonylamino, aralkylsulfonylamino, alkoxycarbonylamino, aralkoxycarbonylamino, aryloxy carbonylamino, mono- or di- alkylaminothiocarbonyl, aralkoxy, carboxy, carboxyalkyl, alkoxy carbonyl, alkoxy carbonylalkyl, nitro, cyano, trifluoromethyl, alkylthio and arylthio.

Preferred values of optional substituents on an alkyl group are chloro, hydroxy, amino, mono(C1-4)alkylamino, di(C1-4)alkylamino, formylamino, C2-6 acylamino, aminocarbonyl, C2-8 amino acetyl, C1-6 alkoxy, C6-14 aryloxy, carboxy, carboxy(C1-6)alkyl, C2-8 alkoxy carbonyl, nitro, cyano, trifluoromethyl, C1-6 alkylthio, C6-14 arylthio, C1-6 alkylsulfonylamino, C7-15 aralkylsulfonylamino, C6-10 arylsulfonylamino, mono- or di(C1-6)alkylaminocarbonyloxy, mono- or di- (C6-10) arylaminocarbonyloxy, mono- or di(C7-15) aralkylcarbonyloxy, C1-6 alkoxy carbonylamino, C7-C12 aralkoxy carbonylamino, and C6-C10 aryloxy carbonylamino.

Preferred values of optional substituents on aryl-containing and heterocyclic-containing groups include chloro, hydroxy, amino, mono(C1-4) alkylamino, di(C1-4) alkylamino, formylamino, C2-6 acyl am ino, aminocarbonyl, C2-8 amino acetyl, C3-7 cycloalkyl, C1-6 alkyl, C1-6 alkoxy, C6-14 aryloxy, carboxy, carboxy(C1-6) alkyl, C2-8 alkoxy carbonyl, nitro, cyano, trifluoromethyl, C1-6 alkylthio, C6-14 arylthio, C6-14 aryl, substituted phenyl, tetrazolyl, thienyl (further optionally substituted by one, two or three of chloro, hydroxy, C1-4 alkyl, C1-4 alkoxy, amino or carboxy), 3,4-methylenedioxy, 3,4-ethylenedioxy, 3,4-propylenedioxy, C1-6 alkylsulfonylamino, C7-15 aralkylsulfonylamino, C1-6 arylsulfonylamino, mono- or di(C1-6) alkylaminocarbonyloxy, mono- or di-(C6-10) arylaminocarbonyloxy, mono- or di-(C7-15) aralkylcarbonyloxy, C1-6 alkoxy carbonylamino, C7-C15 aralkoxy carbonylamino, C6-C10 aryloxy carbonylamino, C2-6 thiao acylamino, aminothiocarbonyl, and C2-8 aminothioacyl.

A first preferred group of compounds falling within the scope of the present invention include compounds of Formula I wherein X is sulfur or oxygen; Y is a covalent bond or -NH-; R1 is hydrogen, amino, hydroxy or halogen; R4, R5 and R6 are independently hydrogen, C1-6 alkyl, amino, cyano, C1-4 alkoxy or hydroxy, and are preferably all hydrogen; one of R2 or R3 is hydrogen, C1-6 alkyl (optionally substituted with hydroxy, amino, carboxy or aminocarbonyl), C1-6 alkylthio or C1-6 alkoxy; and the other of R2 or R3 is aminoacyl, acylamino, aminosulfonyl, sulfonamido, aminocarbonylamino, alkoxy carbonylamino, optionally substituted oxazolyl,
optionally substituted isoxazolyl, optionally substituted benzothienyl, optionally substituted furanyl, optionally substituted pyrazolyl or optionally substituted pyridyl.

Preferred values of R^1 include hydrogen, amino, hydroxy and fluoro.

A preferred value of R^2 is Formula II (see below) where Ar is phenyl, thiazolyl, thiazolinyl, oxazolyl, isothiazolyl, isoazolyl, imidazolyl, pyridyl, pyrimidinyl, pyrazinyl, thieryl (thiophenyl), pyrrolyl, oxazolinyland benzothienyl.

Preferred values of R^3 include C_{1-4} alkyl (optionally substituted), halogen, amino, acylamino, C_{1-6} alkythio, (such as methylthio or ethylthio) C_{1-6} alkoxy (such as methoxy and ethoxy), trifluoromethyl, methylsulfonyl, and benzylthio.

A preferred value of X is divalent sulfur (S).

Preferred values of Y are a covalent bond or —NH—, most preferably a covalent bond.

Preferred values of R^4, R^5 and R^6 include hydrogen, methyl, ethyl, propyl, n-butyl, hydroxy, methoxy, and ethoxy.

Preferred values of R^4, R^5 and R^6 in Formula I also include prodrugs such as —CO_2R^w, where R^w, in each instance, is preferably one of C_{1-4} alkyl, C_{4-7} cycloalkyl or benzyl. Suitable values of R^4, R^5 and R^6 include hydrogen, methyl, ethyl, propyl, n-butyl, hydroxy, methoxy, ethoxy, cyano, $\text{—CO}_2\text{CH}_3$, $\text{—CO}_2\text{CH}_2\text{CH}_3$ and $\text{—CO}_2\text{CH}_2\text{CH}_2\text{CH}_3$.

Also suitable at R^4, R^5 and R^6 is the group —CO_2R^w, where R^w is one of

![Diagram](attachment:image.png)

where R^d-R^h are defined as above. When R^4, R^5 and R^6 are —CO_2R^w, where R^w is one of one of these moieties, the resulting compounds are prodrugs that possess desirable formulation and bioavailability characteristics. A preferred value for each of R^4, R^5 and R^6 is hydrogen, R^7 is methyl, and preferred values for R^8 include benzyl and tert-butyl.

Preferred values of R^7 include hydrogen, C_{1-6} alkyl, and C_{6-10} ar(C_{1-4}) alkyl, C_{2-6} hydroxyalkyl. Suitable values are hydrogen, methyl, ethyl and benzyl.
The term "alkyl" as employed herein by itself or as part of another group refers to both straight and branched chain radicals of up to 12 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl.

The term "alkenyl" is used herein to mean a straight or branched chain radical of 2-20 carbon atoms, unless the chain length is limited thereto, including, but not limited to, ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and the like. Preferably, the alkenyl chain is 2 to 10 carbon atoms in length, more preferably, 2 to 8 carbon atoms in length most preferably from 2 to 4 carbon atoms in length.

The term "alkynyl" is used herein to mean a straight or branched chain radical of 2-20 carbon atoms, unless the chain length is limited thereto, wherein there is at least one triple bond between two of the carbon atoms in the chain, including, but not limited to, acetylene, 1-propylene, 2-propylene, and the like. Preferably, the alkynyl chain is 2 to 10 carbon atoms in length, more preferably, 2 to 8 carbon atoms in length, most preferably from 2 to 4 carbon atoms in length.

In all instances herein where there is an alkenyl or alkynyl moiety as a substituent group, the unsaturated linkage, i.e., the vinylene or acetylene linkage is preferably not directly attached to a nitrogen, oxygen or sulfur moiety.

The term "alkylthio" as employed herein by itself or as part of another group refers to a straight or branched chain radical of 1 to 20 carbon atoms, unless the chain length is limited thereto, bonded to a sulfur atom, including, but not limited to, methylthio, ethylthio, n-propylthio, isopropylthio, and the like. Preferably the alkylthio chain is 1 to 10 carbon atoms in length, more preferably 1 to 8 carbon atoms in length.

The term "alkoxy" as employed herein by itself or as part of another group refers to a straight or branched chain radical of 1 to 20 carbon atoms, unless the chain length is limited thereto, bonded to an oxygen atom, including, but not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, and the like. Preferably the alkoxy chain is 1 to 10 carbon atoms in length, more preferably 1 to 8 carbon atoms in length.
The term "cycloalkyl" as employed herein by itself or as part of another group refers to cycloalkyl groups containing 3 to 9 carbon atoms. Typical examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and cyclononyl.

The term "halogen" or "halo" as employed herein by itself or as part of another group refers to chlorine, bromine, fluorine or iodine with chlorine being preferred.

The term "acyl" as employed herein by itself or as part of another group refers to the group -C(O)R# where R# is alkyl, alkenyl, alkynyl, aryl, or aralkyl. Preferred acyl groups are alkanoyl, aralkanoyl and aroyl groups (-C(O)R# where R# is C\textsubscript{1-8} alkyl, C\textsubscript{6-10} aryl(C\textsubscript{1-4})alkyl or C\textsubscript{6-10} aryl).

The term "thioacetyl" as employed herein by itself or as part of another group refers to the group -C(S)R# where R# is alkyl, alkenyl, alkynyl, aryl or aralkyl, preferably C\textsubscript{1-8} alkyl.

The term "thiocarboxyl" as employed herein by itself or as part of another group refers to the group -C(S)-.

The term "monoalkylamine" as employed herein by itself or as part of another group refers to an amino group which is substituted with one alkyl group having from 1 to 6 carbon atoms.

The term "dialkylamine" as employed herein by itself or as part of another group refers to an amino group which is substituted with two alkyl groups, each having from 1 to 6 carbon atoms.

The term "aryl" as employed herein by itself or as part of another group refers to monocyclic or bicyclic aromatic groups containing from 6 to 14 carbons in the ring portion, preferably 6-10 carbons in the ring portion, such as phenyl, naphthyl or tetrahydronaphthyl.

The term "aralkyl" or "arylalkyl" as employed herein by itself or as part of another group refers to C\textsubscript{1-6}alkyl groups as discussed above having an aryl substituent, such as benzyl, phenylethyl or 2-naphthylmethyl.

The terms "heterocyclic," "heterocyclo" or "heterocycle" as employed herein by themselves or as part of larger groups refers to a saturated or wholly or partially unsaturated 3-7 membered monocyclic, or 7-10 membered bicyclic ring system, which consists of carbon atoms and from one to four heteroatoms independently selected from the group consisting of O, N, and S, wherein the nitrogen and sulfur heteroatoms can be optionally oxidized, the nitrogen can be
optionally quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring, and wherein the heterocyclic ring can be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Especially useful are rings containing one oxygen or sulfur, one to three nitrogen atoms, or one oxygen or sulfur combined with one or two nitrogen atoms. Examples of such heterocyclic groups include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azeopenyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazoyl, benzopyranyl, benzothiazolyl, benzoxazolyl, furyl, tetrahydrofuryl, tetrahydropyranyl, thiienyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, and oxadiazolyl. Morpholino is the same as morpholinyl.

The term "heteroatom" is used herein to mean an oxygen atom ("O"), a sulfur atom ("S") or a nitrogen atom ("N"). It will be recognized that when the heteroatom is nitrogen, it may form an NR₂R₃ moiety, wherein R' and R₃ are, independently from one another, hydrogen or C₁ to C₈ alkyl, or together with the nitrogen to which they are bound, form a saturated or unsaturated 5-, 6-, or 7-membered ring.

The term "heteroaryl" as employed herein refers to groups having 5 to 14 ring atoms; 6, 10 or 14 π electrons shared in a cyclic array; and containing carbon atoms and 1, 2 or 3 oxygen, nitrogen or sulfur heteroatoms (where examples of heteroaryl groups are: thiienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, furyl, pyranyl, isobenzofuranyl, benzoxazolyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, indazolyl, purinyl, 4H-quinoxalinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinazolinyl, cinnolinyl, pteridinyl, 4αH-carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl and phenoazinyl groups).

The expression "prodrug" denotes a derivative of a known direct acting drug, which derivative has enhanced delivery characteristics and therapeutic value as compared to the drug,
and is transformed into the active drug by an enzymatic or chemical process. Useful prodrugs are those where R^4, R^5 and/or R^6 are –CO_2R^w, where R^w is defined above. See, U.S. Patent No. 5,466,811 and Saulnier et al., *Bioorg. Med. Chem. Lett.* 4:1985-1990 (1994).

The term "substituted," as used herein, means that one or more hydrogens of the designated moiety are replaced with a selection from the indicated group, provided that no atom's normal valency is exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens attached to an atom of the moiety are replaced.

By "stable compound" or "stable formula" is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture and formulation into an efficacious therapeutic agent.

Specific compounds for use in the method of the invention include the compounds described in the Examples, such as the following:

4-[4-(4-chlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine;
4-phenyl-5-methylthiothiophene-2-carboxamidine;

4-[4-(2,4-dichlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine;
4-(4-methylthiazol-2-yl)-5-methylthiothiophene-2-carboxamidine;
methyl 4-[4-(4-phenylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate;
4-[4-(3-methoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine,
4-[4-(3-hydroxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine,

4-(4-phenylthiazol-2-yl)-5-methylthiothiophene-2-carboxamidine,
4-[4-(4-nitrophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine,
4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine,
4-[4-(3,4-propylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine,
4-[4-(4-naphth-2-yl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine, 4-isopropylsulfonyl-
5-methylthiothiophene-2-carboxamidine;
4-phenyl-5-methylthiothiophene-2-carboxamidine;
4-[4-(4-chlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine;
4-[4-(4-phenylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine;
4-[4-(4-methoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine;

4-(2-naphthylthiazol-2-yl)-5-methylthiothiophene-2-carboxamidine;
4-[4-(4-chloro-3-methylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-(5-methyl-4-phenylthiazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-[4-(4-chloro-3-nitrophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-(5-phenylazoxyrazol-2-yl)-5-methylthiothiophene-2-carboxamide;

5 4-[4-(3-fluoro-5-trifluoromethylphenyl)-5-methylthiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(3,5-bis(trifluoromethyl)phenyl)-5-methyl-thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(3-fluoro-5-trifluoromethylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;

10 4-[4-(3-bromophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(3,4-methylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(4-methylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(3,5-bis(trifluoromethyl)phenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(2-methoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;

15 4-(4-phenylimidazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-[4-(2,4-dimethoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-(4-benzylthiazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-[4-(3,4-dichlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(3-methylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;

20 4-[4-(3,5-dimethoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(2-methylphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(2,5-dimethoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-(4,5-diphenylthiazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-(2-phenylthiazol-4-yl)-5-methylthiothiophene-2-carboxamide;

25 4-[4-(2-chloro-3-pyridyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(phenoxy)methyl]thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-(4-cyclohexylthiazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-[4-(4-chlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-[4-(2-hydroxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;

30 4-[4-(3-trifluoromethoxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide;
4-{(2-chloro-4-pyridyl)thiazol-2-yl}-5-methylthiothiophene-2-carboxamide;
4-(5-phenyl-2-pyridyl)-5-methylthiothiophene-2-carboxamide;
4-{2-(2-chlorophenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(3-methoxyphenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(phenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(2,5-dimethoxyphenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(4-chloro-2-methylphenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(4-dimethylaminophenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(4-methoxyphenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{4-(4-hydroxy-3-methoxyphenyl)thiazol-2-yl}-5-methylthiothiophene-2-carboxamide;
4-{4-(3-hydroxy-4-methoxyphenyl)thiazol-2-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(fluorophenylamino)thiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(2,4,5-trimethylphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(3-chloro-2-methylphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(isopropylphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(benzyloxyphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(bromophenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(2,5-dichlorophenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(2-bromo-4-methylphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(2,3-dichlorophenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(3,4,5-trimethoxyphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(piperidinylethyl)aminothiazol-4yl}-5-methylthiothiophene-2-carboxamide;
4-{2-(4-methylphenyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide;
4-(4-phenyloxazol-2-yl)-5-methylthiothiophene-2-carboxamide;
4-{2-(diphenylmethyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide; and
4-{2-(3-phenylpropyl)aminothiazol-4-yl}-5-methylthiothiophene-2-carboxamide,
as well as pharmaceutically acceptable salts thereof, for example the hydrochloride,
hydrobromide and acetate salts thereof, or a prodrug thereof.
A preferred subgenus of compounds that can be employed in the present invention include compounds of Formula I wherein X is sulfur or oxygen; Y is a covalent bond or -NH--; Z is NR5R6; R1 is hydrogen, amino, hydroxy or halogen; R4, R5 and R6 are independently hydrogen, C1-4 alkyl, amino, C1-4 alkoxy or hydroxy, and are preferably all hydrogen; one of R2 or R3 is hydrogen, C1-6 alkylthio, C1-4 alkyl optionally substituted with OH, NH2, COOH or aminocarbonyl, or C1-6 alkoxy; and the other of R2 or R3 is:

\[
\text{Ar} \quad \text{R}^8 \quad \text{R}^9
\]

where:

Ar is a group selected from the group consisting of phenyl, thiazolyl, thiazolinyl, oxazolyl, isothiazolyl, isoxazolyl, furanyl, imidazolyl, pyridyl, pyrimidinyl, pyrazinyl, thiophenyl, tetrazolyl, pyrrolyl, pyrazolyl, oxadiazolyl, oxazolyl, isoxazolyl, imidazolyl, triazolyl, pyrrolinyl, benzothiazolyl, benzothienyl, benzimidazolyl, 1,3-oxazolidin-2-onyl, imidazolin-2-onyl (preferably phenyl, thiazolyl, thiazolinyl, oxazolyl, isothiazolyl, isoxazolyl, imidazolyl, pyridyl, pyrimidinyl, thienyl, pyrrolyl and benzothienyl), any of which can optionally include an exocyclic = O (keto) or = NR\(^{\mathrm{V}}\) (imino) group, where R\(^{\mathrm{V}}\) is alkyl, aryl, aralkyl, alkylamino, arylimino or aralkylimino; and

R\(^8\) and R\(^9\) are independently selected from the group consisting of hydrogen, halogen, amino, mono(C1-4)alkylamino, di(C1-4)alkylamino, arylamino, mono- and di- (C6-14)arylaminio, mono- and di-(C6-14)ar(C1-6)alkylamino, formylamino, C2-6 acylamino, aminocarbonyl, C2-8 aminoacyl, C2-6 thioacylamino, aminothiocarbonyl, C2-8 aminothioacyl, C1-4 alkyl, C3-8 cycloalkyl, C1-6 alkoxy, carboxy, carboxy(C1-6)alkyl, C2-8 alkoxycarbonyl, nitro, cyano, trifluoromethyl, thiazolyl, thiazolinyl, oxazolyl, isothiazolyl, isoxazolyl, furanyl, imidazolyl, pyridyl, pyrimidinyl, pyrazinyl, thienyl (thiophenyl), tetrazolyl, pyrrolyl, pyrazolyl, oxadiazolyl, oxazolyl, isoxazolyl, imidazolyl, triazolyl, pyrrolinyl, benzothiazolyl, benzothienyl, benzimidazolyl, 1,3-oxazolidin-2-onyl, imidazolin-2-onyl, C6-14 aryloxy, C1-6 alkylthio, C6-14 arylthio, C6-14 aryl, or C6-14 ar(C1-6)alkyl, wherein the aforementioned heteroaryl groups and the aryl portions of C6-14 aryloxy, mono- and di C6-14 aryl amino, mono- and di- C6-14 ar(C1-6)alkylamino, C6-14 arylthio, C6-14
ar(C_{1-6}) alkyl, and C_{6-14} aryl can be further optionally substituted, preferably by one, two or three of halogen, hydroxy, amino, mono(C_{1-4})alkylamino, di(C_{1-4})alkylamino, formylamino, C_{1-4} acylamino, C_{1-4} aminoacyl, mono- or di-(C_{1-4})alkylaminocarbonyl, thiocarbonylamino, C_{1-4} thioacetylamo, aminothiocarbonyl, C_{1-4} alkoxy, C_{6-10} arlyloxy, aminocarbonyloxy, mono- or di(C_{1-4})alkylaminocarbonyloxy, mono- or di(C_{6-10})arylamino, mono- or di(C_{7-15}) aralkylaminocarbonyloxy, C_{1-4} alkylsulfonl, C_{6-10} arylsulfonl, (C_{7-15}) aralkylsulfonl, C_{7-15} aralkylsulfonlamino, C_{7-15} aralkylsulfonlamino, (C_{7-15}) aralkylsulfonlamino, mono- and di-alkylaminosulfonylamino, mono- and di-arylaminosulfonylamino, mono- and di-aralkylaminosulfonylamino, C_{1-4} alkoxy carbonylamino, C_{7-15} aralkoxy carbonylamino, C_{6-10} aralkoxy carbonylamino, mono- or di-(C_{1-4}) alkyaminothiocarbonylamino, C_{1-6} aralkoxy, carboxy, carboxy(C_{1-4}) alkyl, C_{1-4} alkoxy carbonylamino, C_{1-4} alkoxy carbonylalkyl, carboxy(C_{1-4}) alkoxy, alkoxy carbonylalkoxy, nitro, cyano, difluoromethyl, C_{1-6} alylthio and C_{6-10} arylthio, or by 3,4-methylenedioxy, 3,4-ethylenedioxy, and 3,4-propylendioxy.

Preferred values of R^8 and R^9 are halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, nitro, difluoromethyl, C_{6-10} aryl (further optionally substituted by one or two of chloro, halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, nitro, trifluoromethyl, carboxy, 3,4-methylenedioxy, 3,4-ethylenedioxy, 3,4-propylendioxy, amino, 4-phenylphenyl (biphenyl), C_{1-6} aminoalkyl, carboxy, C_{1-6} alkyl, 3,4-methylenedioxy, 3,4-ethylenedioxy, 3,4-propylendioxy, amino, C_{1-6} alkanoylamino, C_{6-14} aroylamino, C_{1-6} hydroxyalkyl, thieryl (further optionally substituted by one or two of chloro, amino, methyl, methoxy, or hydroxy) and tetrazolyl. More preferably, R^2 is thienyl, oxazolyl, or thiazolyl, optionally substituted by any of the aforementioned groups.

Examples of preferred R^8 and R^9 groups include 4-chlorophenyl, 2,4-dichlorophenyl, methyl, 4-nitrophenyl, 3-nitrophenyl, 4-methoxyphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 3-(2,4-dimethylthien-5-yl)phenyl, 3-hydroxyphenyl, 5-(carboxymethyl)thien-2-yl, phenyl, 3,4-ethylenedioxyphenyl, 3,4-propylendioxyphenyl, naphth-2-yl, 3-phenyl-4-(tetrazol-5-yl)phenyl, 2,4-dichlorophenyl), 4-phenylphenyl, 3-methoxyphenyl, 3-hydroxyphenyl, 3-phenylphenyl, phenylthiomethyl, 2-chloro-4,5-dimethoxyphenyl, 4-chloro-3-methylphenyl, 5-methyl-4-phenyl, 4-chloro-3-nitrophenyl, 3-fluoro-5-trifluoromethylphenyl, 3,5-bis(trifluoromethyl), 3-fluoro-5-trifluoromethylphenyl, 3-bromophenol, 3,4-methylenedioxyphenyl, 4-methylphenyl, 3-methylphenyl, 3,5-bis(trifluoromethyl)phenyl, 2-methoxyphenyl, 6-phenyl-2-pyridyl, 2,4-
dimethoxyphenyl, 3,4-dimethoxyphenyl, benzyl, 3,4-dichlorophenyl, 3-methylphenyl, 3,5-dimethoxyphenyl, 2-methylphenyl, 2,5-dimethoxyphenyl, 2-chloro-3-pyridyl, phenoxyethyl, cyclohexyl, 2-hydroxyphenyl, 3-trifluoromethoxyphenyl, 2-chloro-4-pyridyl, 3-chloro-4-pyridyl, 2-chlorophenylamino, 3-methoxyphenylamino, phenylamino, 2,5-dimethoxyphenylamino, amino, 4-chloro-2-methylphenylamino, 4-dimethylaminophenylamino, 4-methoxyphenylamino, 4-hydroxy-3-methoxyphenyl, 3-hydroxy-4-methoxyphenyl, 2-fluorophenylamino, 2,4,5-trimethylphenylamino, 3-chloro-2-methylphenylamino, 2-isopropylphenylamino, 4-benzyloxyphenylamino, 2-bromophenylamino, 2,5-dichlorophenylamino, 2-bromo-4-methylphenylamino, 2,3-dichlorophenylamino, 3,4,5-trimethylphenylamino, 2-piperidinylethylamino, 4-methylphenylamino, 2-thienyl, 2-5,6,7,8-tetrahydronaphthyl, 3-(2-phenoxyacetic acid)phenyl, 2-(2-phenoxyacetic acid)phenyl, diphenylmethylamino, 3-phenylpropylamino, 3-phenylphenyl, phenylthiomethyl, 2-chloro-4,5-dimethoxyphenyl, and isopropyl.

Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula I wherein:

X is sulfur;
Y is a covalent bond;
Z is NR^5R^6;
R^1 is hydrogen;
R^3 is methylthio or methyl;
R^4, R^5 and R^6 are all hydrogen; and

R^2 is Formula II, where Ar is phenyl, thiazolyl, oxazolyl, benzothienyl, pyridyl, or imidazolyl; and R^8 and R^9 are independently hydrogen, or C_{6-10} aryl or heterocycle, either of which is optionally substituted by one, two or three of chloro, hydroxy, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, amino, carboxy, phenyl, naphthyl, biphenyl, hydroxyphenyl, methoxyphenyl, dimethoxyphenyl, carboxyalkoxyphenyl, alkoxyalkylcarboxyl, carboxyethoxy, alkoxysulfonylaminophenyl, aryloxyalkylsulfonylaminophenyl, acylsulfonylaminophenyl, aralkylsulfonylaminophenyl, chlorophenyl, dichlorophenyl, aminophenyl, carboxyphenyl, nitrophenyl, 3,4-methylenedioxy, 3,4-ethylenedioxy, 3,4-propylenedioxy, or
heteroarylsulfonylamino-phenyl where the heteroaryl portion is further optionally halo or \(C_{1-6} \) alkyl substituted.

Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula I wherein:

\[X \text{ is sulfur;} \]
\[Y \text{ is a covalent bond;} \]
\[Z \text{ is } NR^5R^6; \]
\[R^1 \text{ is hydrogen;} \]
\[R^2 \text{ is alkyl, ar(alkyl), alkylsulfonyl, aminocarbonyl, amidino, or } \]

where

\[\text{Ar is an aromatic or heteroaromatic group selected from the group consisting of phenyl, thiazolyl, oxazolyl, imidazolyl and pyridyl;} \]
\[R^8 \text{ and } R^9 \text{ are independently selected from the group consisting of hydrogen, carboxy, phenyl, naphthyl, alkyl, pyridyl, oxazolyl, furanyl, cycloalkyl and amino, any of which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen, alkyl, haloalkyl, aralkyl, heteroaryl, phenyl, naphthyl, alkoxy, aryloxy, hydroxy, amino nitro, thiophenyl, benzothiophenyl, fluorenyl, 3,4-ethylenedioxy, 3,4-methylenedioxy, 3,4-propylenedioxy, arylsulfonamido, alkylsulfonamido and aryloxy, each of said 1 to 3 substituents may be further optionally substituted with one or more groups selected from alkoxy, haloalkyl, halogen, alkyl, amino, acetyl, hydroxy, dialkylamino, dialkylaminoacetyl, monoalkylaminoacetyl, \(-SO_2\)-heteroaryl, \(-SO_2\)-aryl, or aryl; } \]
\[R^1 \text{ is } -SO_2\text{-alkyl, trifluoromethyl, S(O)-alkyl, hydrogen, alkoxy, alkylthio, alkyl, or aralkylthio;} \]
\[\text{and } \]
\[R^4, R^5, R^6 \text{ are hydrogen.} \]

Preferred compounds of this subgenus are those where Ar is a thiazolyl, preferably thiazol-2-yl or thiazol-4-yl, and at least one of \(R^8 \) and \(R^9 \) is substituted phenyl, most preferably on the 4-position of the thiazol-2-yl group. Also preferred are compounds where \(R^2 \) is a
4-phenylthiazol-2-yl group wherein said phenyl is further optionally substituted and R^3 is methylthio.

Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula III:

![Chemical Structure](image)

or a pharmaceutically acceptable salt or prodrug thereof, where

A is methylthio or methyl;

G' is $-O-, -S-, -NH-$, or a covalent bond;

n is an integer from 1-10, preferably from 1-6;

m is an integer from 0-1; and

R' and R'' are independently selected from hydrogen, alkyl, aryl or aralkyl, or R' and R'' are taken together with the N atom to which they are attached to form a 3-8 membered heterocyclic ring, optionally containing an additional O, N, or S atom, and when said 3-8 membered heterocyclic ring contains an additional N atom, said additional N atom is optionally substituted by hydrogen, C_{1-4}alkyl, C_{6-10}aryl, C_{6-10}ar(C_{1-4})alkyl, acyl, alkoxy carbonyl or benzoyloxycarbonyl.

Most preferred compounds of Formula III are those for which R' and R'', taken together with the N atom to which they are attached, form a ring selected from piperazinyl, pyrrolidinyl, piperidinyl or morpholinylic, which are optionally further substituted with 1 to 4 substituents selected from halogen, hydroxy, amino, monoalkylamino, dialkylamino, formylamino,
acylamino, aminoacyl, mono- or di- alkyaminocarbonyl, thiocarbonylamino, thioacylamino, aminothiocarbonyl, alkoxy, aryloxy, aminocarbonyloxy, mono- or di-alkyaminocarbonyloxy, mono- or diarylaminocarbonyloxy, mono- or diaralkylaminocarbonyloxy, alkylsulfonil, arylysulfonil, aralkylsulfonil, alkylsulfonylamino, arylsulfonylamino, aralkylsulfonylamino, alkoxycarbonylamino, aralkoxycarbonylamino, aryloxycarbonylamino, mono- or di- alkyaminothiocarbonyl, aralkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, nitro, cyano, trifluoromethyl, alkylthio and arylthio, where each of these substituents has the preferred values set forth for Formulae I and II above.

Examples of preferred compounds of Formula III for use in the method of the invention include:

5-methylthio-4-[4-(3-[[N-(2-morpholin-4-yl)ethyl]carbamoyl]methoxy]phenyl](1,3-thiazol-2-yl)thiophene-2-carboxamidine;

5-methylthio-4-[4-[3-(2-morpholin-4-yl-2-oxoethoxy)phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine;

5-methylthio-4-[4-[3-(2-oxo-2-piperazinylethoxy)phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine;

4-[4-(3-[[N-(2-aminoethyl)carbamoyl]methoxy]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;

4-(4-[3-(2-(4-acetyl)
piperazinyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;

4-(4-[3-[2-(4-methyl)piperazinyl)-2-oxoethoxy]phenyl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;

methyl 2-[3-[2-(5-amidino-2-methyl-3-thienyl)-1,3-thiazol-4-yl]phenoxy]acetate;

5-methylthio-4-[4-(3-[2-oxo-2-[4-benzyl]
piperazinyl]ethoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine;

(D,L)-4-(4-[3-[2-(3-aminopyrrolidiny]-2-oxoethoxy]phenyl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;

5-methylthio-4-[4-(3-[2-oxo-2-piperidylethoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine;
(D,L)-ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-2-carboxylate;
5-methylthio-4-{4-[3-(2-oxo-2-pyrrolidinylethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine;
5-methylthio-4-{4-[3-(2-oxo-2-[4-benzylpiperidyl]ethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine;
(D,L)-4-(4-{3-[2-(3-methylpiperidyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
4-{4-[3-[2-(4-methylpiperidyl)-2-oxoethoxy]phenyl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
4-{4-{3-[2-(2-azabicyclo[4.4.0]dec-2-yl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
(D,L)-ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-3-carboxylate;
5-methylthio-4-{4-[3-(2-oxo-2-[1,2,3,4-tetrahydroquinolyl]ethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine;
ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-4-carboxylate;
4-{4-{3-[2-((3R)-3-hydroxypiperidyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
D,L-4-{4-{3-[2-[2-ethylpiperidyl]-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
4-{4-{3-[2-((3S)-3-hydroxypyrrolidinyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
D,L-4-{4-{3-[2-(3-hydroxymethyl)piperidyl]-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine,
4-{4-[3-(2-[(2R)-2-[(phenylamino)methyl]pyrrolidinyl]-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
4-{4-[3-2-[(3R)-3-(methoxymethyl)pyrrolidinyl]-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine;
1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy} acetyl)piperidine-3-carboxamide, and
2-{3-[2-(5-[[((tert-butoxy)carbonylamino]iminomethyl]-2-methyl-3-thienyl)-1,3-thiazol-4-yl]phenoxy} acetic acid;
or pharmaceutically acceptable salts or prodrugs thereof.

Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula IV:

![Formula IV](image)

or a pharmaceutically acceptable salt or prodrug thereof, where

A is methylthio or methyl; and

R"" is hydrogen, C_{6-14} aryl, C_{1-6} alkyl, C_{1-6} alkoxy (C_{6-14}) aryl, amino(C_{6-14}) aryl, monoalkylamino(C_{6-14}) aryl, dialkylamino(C_{6-14}) aryl, C_{6-10} ar(C_{1-6}) alkyl, heterocycle(C_{2-6}) alkyl such as morpholinoalkyl, piperazinylalkyl and the like, C_{1-6} alk(C_{6-14}) aryl, amino(C_{1-6}) alkyl, mono(C_{1-6}) alkylamino(C_{1-6}) alkyl, di(C_{1-6}) alkylamino(C_{1-6}) alkyl, hydroxy(C_{6-14}) aryl, or hydroxy(C_{1-6}) alkyl, where the aryl and heterocyclic rings are further optionally substituted by 1-4 substituents selected from halogen, hydroxy, amino, mono(C_{1-6}) alkylamino, di(C_{1-6}) alkylamino, formylamino, (C_{1-6}) acylamino, amino(C_{1-6}) acyl, mono- or di-(C_{1-6}) alkyaminocarbonyl, thiocarbonylamino, (C_{1-6}) thioacylamino, aminothiocarbonyl, (C_{1-6}) alkoxy, (C_{6-10}) aryloxy, aminocarbonyloxy, mono- or di-(C_{1-6}) alkyaminocarbonyloxy, mono- or di-(C_{6-10}) ar(C_{1-6}) alkyaminocarbonyloxy, (C_{1-6}) alkylsulfonyl, (C_{6-10}) ar(C_{1-6}) alkylsulfonyl, (C_{1-6}) ar(C_{6-10}) alkylsulfonylamino, C_{6-10} arylsulfonylamino, (C_{6-10}) ar(C_{1-6}) alkylsulfonylamino, (C_{1-6}) alkoxy carbonylamino,
(C_{6,10})ar(C_{1,6})alkoxycarbonylamino, C_{6,10}aryloxycarbonylamino, mono- or di- (C_{1,6})alkylaminothiocarbonyl, (C_{6,10})ar(C_{1,6})alkoxy, carboxy, (C_{1,6})carboxyalkyl, C_{1,6}alkoxycarbonyl, (C_{1,6})alkoxycarbonyl(C_{1,6})alkyl, nitro, cyano, trifluoromethyl, (C_{1,6})alkythio and C_{6,10}aryltio.

Examples of preferred compounds of Formula IV for use in the present invention include:

1. 4-{[2-(3-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
2. 4-{[2-(4-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
3. 4-{[2-{[4-(dimethylamino)phenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
4. 4-{[2-(4-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
5. 4-{[2-{[diethylmethylamino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
6. 5-methylthio-4-{[2-{[3-phenylpropyl]amino}[1,3-thiazol-4-yl]} thiophene-2-carboxamide;
7. 5-methylthio-4-{[2-{[2,4,5-trimethylphenyl]amino}[1,3-thiazol-4-yl]} thiophene-2-carboxamide;
8. 4-{[2-{[2-fluorophenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
9. 4-{[2-{[3-chloro-2-methylphenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
10. 4-{[2-{[methyl(phenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
11. 5-methylthio-4-{[2-[[4-(phenylmethoxy)phenyl]amino][1,3-thiazol-4-yl]} thiophene-2-carboxamide;
12. 20. 4-{[2-{[(bromophenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
13. 4-{[2-{[2,6-dichlorophenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
14. 4-{[2-{[2-bromo-4-methylphenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
15. 5-methylthio-4-{[2-{[2-morpholin-4-ylethyl]amino}[1,3-thiazol-4-yl]} thiophene-2-carboxamide;
16. 25. 4-{[2-{[2,3-dichlorophenyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
17. 5-methylthio-4-{[2-{[3,4,5-trimethoxyphenyl]amino}[1,3-thiazol-4-yl]} thiophene-2-carboxamide;
18. 5-methylthio-4-{[2-{[2-piperidylethyl]amino}[1,3-thiazol-4-yl]} thiophene-2-carboxamide;
19. 4-{[2-{[[4-(methylphenyl)methyl]amino}[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamide;
4-(2-[[4-(4-chlorophenoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
4-(2-[[4-phenoxyphenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-(2-[[4-(phenylamino)phenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
5-methylthio-4-(2-[[4-benzylphenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
5-methylthio-4-(2-[[4-(piperidylsulfonyl)phenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
5-methylthio-4-(2-(3-quinolylamino)(1,3-thiazol-4-yl))thiophene-2-carboxamide;
10 5-methylthio-4-(2-(2-naphthylamino)(1,3-thiazol-4-yl))thiophene-2-carboxamide;
4-(2-(2H-benzo[3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
4-(2-[(7-bromofluoren-2-yl)amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
4-(2-[(4-cyclohexylphenyl)amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
15 5-methylthio-4-(2-[[4-(phenyldiazenyl)phenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
5-methylthio-4-(2-[[3-(hydroxymethyl)phenyl]amino](1,3-thiazol-4-yl))-thiophene-2-carboxamide;
4-(2-[[3-methylpiperidyl)methyl]phenyl]amino)(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
20 4-(2-[[3-hydroxyphenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
4-(2-[[4-(carbamoylmethoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamide;
5-methyl-4-(2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
25 5-methyl-4-(2-[[4-phenoxyphenyl]amino](1,3-thiazol-4-yl))thiophene-2-carboxamide;
5-methyl-4-(2-(phenylamino)(1,3-thiazol-4-yl))thiophene-2-carboxamide; and
4-(4-isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
as well as pharmaceutically acceptable salts and prodrugs thereof.
Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula \(I \), or a pharmaceutically acceptable salt or prodrug thereof, wherein:

X is sulfur or oxygen, preferably sulfur;

Y is a covalent bond or -NH-, preferably a covalent bond;

Z is NR\(^3\)R\(^6\);

R\(^1\) is hydrogen, amino, hydroxy or halogen, preferably hydrogen;

R\(^4\), R\(^5\) and R\(^6\) are independently hydrogen, C\(_{1-4}\) alkyl, amino, C\(_{1-4}\) alkoxy or hydroxy, and are preferably all hydrogen;

R\(^3\) is hydrogen, C\(_{1-6}\) alkylthio, C\(_{1-4}\) alkyl optionally substituted with OH, NH\(_2\), COOH or aminocarbonyl, or C\(_{1-4}\) alkoxy, preferably methylthio or methyl; and

R\(^2\) is

alkylsulfonylamino, aralkylsulfonylamino, aralkenylsulfonylamino, arylsulfonylamino, heteroaryl sulfonylamino, di(aralkylsulfonyl)amino, di(aralkenylsulfonyl)amino, di(aryl sulfonyl)amino, or di-(heteroaryl sulfonyl)amino, wherein any of the aryl or heteroaryl containing groups are optionally substituted on the aromatic ring; or

amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, monoalkylmonoarylamino, monoarylalkylamino, diarylalkylamino, monoalkylmonoarylalkylamino, monoheterocycleamino, diheterocycleamino, monoalkylmonoheterocycleamino, wherein any of the aryl or heteroaryl containing groups are optionally substituted on the aromatic ring and wherein any of the heterocycle containing groups can be optionally ring substituted; or

alkanoylamino, alkenoylamino, alkynoylamino, aroylamino, aralkanoylamino, aralkenoylamino, heteroaroylamino, heteroarylalkanoylamino, any of which is optionally substituted on the aromatic ring; or

alkoxy and alkylthio, either of which is optionally substituted, or aryloxy, aralkoxy, arythio, aralkylthio, aralkylsulfonyl, aralkylsulfonfyl,
aralkenylsulfonyl, any of which is optionally substituted on the aromatic ring; or
alkoxycarbonylamino, aralkoxycarbonylamino, aryloxy carbonylamino, wherein
any of the aryl containing groups is optionally substituted on the aromatic
ring; or
formylamino, H(S)CNH-, or thioacetylamino.

Preferred optional substituents are halogen, C₁₋₆ alkyl, C₁₋₆ alkoxy, hydroxy, nitro,
trifluoromethyl, C₆₋₁₀ aryl, C₆₋₁₀ arloxy, C₆₋₁₀ arylmethoxy (wherein the aryl groups on these
aryl-containing substituents are further optionally substituted by one or two of chloro, halogen,
C₁₋₆ alkyl, C₁₋₆ alkoxy, phenyl, hydroxy, nitro, trifluoromethyl, carboxy, 3,4-methylene dioxy,
3,4-ethylenedioxy, 3,4-propylenedioxy, or amino), C₁₋₆ aminoalkyl, carboxy, alkyl, 3,4-
methylene dioxy, 3,4-ethylenedioxy, 3,4-propylenedioxy, amino, mono- or di- (C₁₋₆)alkylamino,
mono- or di- C₆₋₁₀ arylamino, C₁₋₆ alkylsulfonylamino, C₆₋₁₀ arylsulfonylamino, C₁₋₈ acylamino,
C₁₋₈ alkoxy carbonyl, C₁₋₆ alkanoylamino, C₆₋₁₄ arylamino, C₁₋₆ hydroxyalkyl, methylsulfonyl,
phenyl sulfonyl, thienyl (further optionally substituted by one or two of chloro, amino, methyl,
methoxy, or hydroxy) and tetrazolyl.

In one aspect of this subgenus, R² is preferably C₁₋₆ alkylsulfonylamino, C₆₋₁₀
ar(C₁₋₆)alkylsulfonylamino, C₆₋₁₀ ar(C₂₋₆)alkenylsulfonylamino, C₆₋₁₀ arylsulfonylamino,
heteroarylsulfonylamino, di(C₆₋₁₀ ar(C₁₋₆)alkylsulfonylamino), di(C₆₋₁₀
ar(C₂₋₆)alkenylsulfonylamino), di(C₆₋₁₀ arylsulfonylamino), or di-(heteroarylsulfonylamino),
wherein any of the aryl or heteroaryl containing groups can be optionally substituted on the
aromatic ring.

Especially preferred R² groups in this subgenus include C₆₋₁₀ arylsulfonylamino, di-(C₆₋₁₀
aryl sulfonylamino), C₆₋₁₀ ar(C₃₋₆)alkylsulfonylamino, di-(C₆₋₁₀ ar(C₃₋₆)alkylsulfonylamino),
thienyl sulfonylamino, any of which is optionally substituted on the aromatic ring.

Useful values of R², when R² is a substituted sulfonylamino group include
biphenylsulfonylamino, bis(biphenylsulfonyl)amino, naphth-2-yl sulfonlamino, di(naphth-2-
yl sulfonlamino), 6-bromonaphth-2-yl sulfonlamino, di(6-bromonaphth-2-yl sulfonlamino)
napth-1-yl sulfonlamino, di(naphth-1-yl sulfonlamino), 2-methylphenylsulfonylamino, di-(2-
methylphenylsulfonylamino), 3-methylphenylsulfonylamino, di-(3-methylphenylsulfonylamino),
4-methylphenylsulfonylamino, di-(4-methylphenylsulfonylamino), benzylsulfonylamino, 4-methoxyphenylsulfonylamino, di-(4-methoxyphenylsulfonylamino), 4-iodophenylsulfonylamino, di-(4-iodophenylsulfonylamino), 3,4-dimethoxyphenylsulfonylamino, bis-(3,4-dimethoxyphenylsulfonylamino), 2-chlorophenylsulfonylamino, di-(2-chlorophenylsulfonylamino), 3-chlorophenylsulfonylamino, di-(3-chlorophenylsulfonylamino), 4-chlorophenylsulfonylamino, di-(4-chlorophenylsulfonylamino), phenylsulfonylamino, di-(phenylsulfonylamino), 4-tert-butylphenylsulfonylamino, di-(4-tert-butylphenylsulfonylamino), 2-phenylethenylsulfonylamino, and 4-(phenylsulfonyl)thien-2-ylsulfonylamino.

In another aspect of this subgenus, R² is preferably amino, mono(C₄₋₆)alkylamino, di(C₄₋₆)aryl amino, mono(C₆₋₁₀)aryl amino, di(C₆₋₁₀)aryl amino, mono(C₄₋₆)alkylmonoo(C₆₋₁₀)aryl amino, monoo(C₄₋₆)alkylamino, di(C₆₋₁₀)aryl amino, mono(C₄₋₆)alkylmonoo(C₆₋₁₀)aryl amino, monoo(C₄₋₆)alkylamino, diheteroaryl amino, mono(C₄₋₆)alkylmonoheteroaryl amino, wherein any of the aryl or heteroaryl containing groups can be optionally substituted on the aromatic ring.

Especially preferred R² groups in this subgenus include mono(C₆₋₁₀)aryl amino, mono(C₄₋₆)alkylmonoo(C₆₋₁₀)aryl amino, mono(C₆₋₁₀)aryl amino, mono(C₄₋₆)alkylmonoo(C₆₋₁₀)aryl amino, monoo(C₄₋₆)alkylamino, monoheteroaryl amino, and mono(C₄₋₆)alkylmonoheteroaryl amino. Examples of suitable heteroaryl amino groups include 1,3-thiazol-2-ylamino, imidazol-4-ylamino, quinolin-2-ylamino and quinolin-6-ylamino.

Useful values of R², when R² is a substituted amino group, include anilino, naphth-2-ylamino, naphth-1-ylamino, 4-(biphenyl)thiazol-2-ylamino, 4-(phenyl)thiazol-2-ylamino, 4-phenyl-5-methylthiazol-2-ylamino, 4-hydroxy-4-trifluoromethylthiazol-2-ylamino, 3-phenylphenylamino, pyrimidin-2-ylamino, 4-isopropylphenylamino, 3-isopropylphenylamino, 4-phenylphenylamino, 3-fluoro-4-phenylphenylamino, 3,4-methylenedioxyphenylamino, n-butylphenylamino, N-methyl-N-(2-methylphenyl)amino, 3-nitrophenylamino, 4-methoxyphenylamino, 3-methoxyphenylamino, 2-methoxyphenylamino, 2-methylphenylamino, 3-methylphenylamino, 3,4-dimethylphenylamino, 3-chlorophenylamino, 4-chlorophenylamino, 4-(3-fluoro-4-methylphenylamino), 4-(indan-5-yl)amino, benzylamino, indanyl methylamino, 2,3-dihydrobenzofuranyl methyl, 2-phenylimidazol-5-yl, 3-hydroxybenzyl, 3-phenoxyphenylamino, 4-phenoxyphenylamino, 3-benzyloxyphenylamino, 4-benzyloxyphenylamino, quinolin-6-
ylamino, quinolin-3-ylamino, 4-(phenylamino)phenylamino, 4-(4-ethylphenyl)phenylamino, 4-(dimethylamino)phenylamino, 4-cyclohexylphenylamino, 4-(9-ethylcarbazol-3-yl)amino, 4-(t-butyl)phenylamino, and 4-methylthiophenyl amino.

In another aspect of this subgenus, R² is preferably an acylamino group, such as alkanoylamino, alkenoylamino, arylamino, aralkanoylamino, aralkenoylamino, heteroaroylamino, heteroarylalkanoylamino, any of which is optionally substituted on the aromatic ring.

Especially preferred R² groups in this subgenus include (C₆H₅)arylcarbonylamino, C₆H₅ ar(C₂H₅)alkylcarbonylamino, C₆H₅ ar(C₅H₅)alkenylcarbonylamino, C₆H₅ aryloxy(C₁₋₃)alkylcarbonylamino, C₅H₅ ar(C₁₋₃)alkylcarbonylamino, C₅H₅ cycloalkylcarbonylamino, C₅H₅ alkylcarbonylamino, and heteroarylcarbonylamino, such as furanylcarbonylamino, and quinolinylcarbonylamino.

Useful values of R², when R² is an acylamino group include 3-hydroxyphenylcarbonylamino, 2-phenylethylcarbonylamino, phenylcarbonylamino, cyclohexylcarbonylamino, 4-methyl-3-nitrophenylcarbonylamino, furan-2-ylcarbonylamino, tert-butylcarbonylamino, 5-(3,5-dichlorophenoxy)furan-2-ylcarbonylamino, naphth-1-ylcarbonylamino, quinolin-2-ylcarbonylamino, 4-ethoxyphenylcarbonylamino, phenoxyethylcarbonylamino, and 3-methylphenylcarbonylamino.

In another aspect of this subgenus, R² is preferably C₆H₅ aryloxy, C₆H₅ ar(C₁₋₃)alkoxy, C₆H₅ arylsulfonyl, C₆H₅ ar(C₂₋₄)alkylsulfonyl, or C₆H₅ ar(C₂₋₆)alkenylsulfonyl, any of which is optionally substituted on the aromatic ring. Especially preferred R² groups in this subgenus include C₆H₅ aryloxy, and C₆H₅ arylsulfonyl.

Useful values of R², when R² is an aryloxy or arylsulfonyl group include phenoxy, naphthoxy, phenylsulfonyl, and naphthylsulfonyl.

Representative compounds within the scope of this subgenus include:

5-methylthio-4-(6-quinolylamino)thiophene-2-carboxamide;
5-methylthio-4-[(3-phenylphenylamino)thiophene-2-carboxamide;
5-methylthio-4-(3-quinolylamino)thiophene-2-carboxamide;
5-methylthio-4-(pyrimidin-2-ylamino)thiophene-2-carboxamide;
4-[(4-cyclohexylphenylamino)-5-methylthiothiophene-2-carboxamide;
methyl 4-amino-5-methylthiothiophene-2-carboxylate;
methyl 4-[[aminothioxomethyl]amino]-5-methylthiothiophene-2-carboxylate;
5-methylthio-4-[[4-(phenyl,1,3-thiazol-2-yl)amino]thiophene-2-carboxamide;
5-methylthio-4-[[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamide;
4-[[5-methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxamide;
4-[[4-hydroxy-4-(trifluoromethyl)(1,3-thiazolin-2-yl)]amino]-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-(2-naphthylamino)thiophene-2-carboxamide;
4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxamide;
4-[(3-methylphenyl)amino]-5-methylthiothiophene-2-carboxamide;
4-[(3-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamide;
4-[[3-(methylthyl)phenyl]amino]-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-[(3-nitrophenyl)amino]thiophene-2-carboxamide;
4-[[4-(methylthyl)phenyl]amino]-5-methylthiothiophene-2-carboxamide;
4-[[3,4-dimethylphenyl]amino]-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-[[4-phenylphenyl]amino]thiophene-2-carboxamide;
4-[(3-fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxamide;
4-(2H-benzo[d]1,3-dioxolen-5-ylamino)-5-methylthiothiophene-2-carboxamide;
4-[(4-butylphenyl)amino]-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-[[benzyl]amino]thiophene-2-carboxamide;
4-(indan-5-ylamino)-5-methylthiothiophene-2-carboxamide;
4-(2,3-dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-[[2-phenylimidazol-4-yl]amino]thiophene-2-carboxamide;
5-methylthio-4-[[2-quinolyl)methyl]amino]thiophene-2-carboxamide;
4-[[3-hydroxyphenyl)methyl]amino]-5-methylthiothiophene-2-carboxamide;
5-methylthio-4-[(phenylcarbonylamino)thiophene-2-carboxamide;
4-((2E)-3-phenylprop-2-enoylamino)-5-methylthiothiophene-2-carboxamide;
4-[(4-chlorophenyl)carbonylamino]-5-methylthiothiophene-2-carboxamide;
4-(cyclohexylcarbonylamino)-5-methylthiothiophene-2-carboxamide;
methyl 4-[(4-methyl-3-nitrophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate;
4-(2-furylcarbonylamino)-5-methylthiothiophene-2-carboxamide;
4-(2,2-dimethylpropanoylamino)-5-methylthiothiophene-2-carboxamidine;
4-[[5-(3,5-dichlorophenoxy)(2-furyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-(naphthylcarbonylamino)-thiophene-2-carboxamidine;
5-methylthio-4-(2-quinolylcarbonyl-amino)thiophene-2-carboxamidine;
4-[[3-methoxyphenyl]carbonylamino]-5-methylthiothiophene-2-carboxamidine;
4-[[2-(2-hydroxy-5-methoxyphenyl)acetylamino]-5-methylthiothiophene-2-carboxamidine;
4-[[4-ethoxyphenyl]carbonylamino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-(2-phenoxyacetylamino)-thiophene-2-carboxamidine;
4-[[3-methylphenyl]carbonylamino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[[3-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamidine;
5-methylthio-4-[[3-phenoxyphenyl]amino]thiophene-2-carboxamidine;
5-methylthio-4-[[4-phenoxyphenyl]amino]thiophene-2-carboxamidine;
4-[[2-methoxyphenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-[[2-methylphenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-[[3-chlorophenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-(methylphenylamino)-5-methylthiothiophene-2-carboxamidine;
5-methyl-4-(phenylamino)thiophene-2-carboxamidine;
4-[[4-(dimethylamino)phenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-[[4-ethylphenyl]amino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamidine;
5-methylthio-4-[[4-(phenylamino)phenyl]amino]thiophene-2-carboxamidine;
4-[[4-methoxyphenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-[[3-fluoro-4-methylphenyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-(inden-5-ylamino)-5-methylthiothiophene-2-carboxamidine;
4-[[9-ethylcarbazol-3-yl]amino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[[4-(phenylphenyl)sulfonyl]amino]thiophene-2-carboxamidine;
4-[bis[[4-(phenylphenyl)sulfonyl]amino]-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[[2-naphthylsulfonyl]-amino]thiophene-2-carboxamidine;
4-[bis(2-naphthylsulfonyl)amino]-5-methylthiothiophene-2-carboxamidine;
4-[[6-bromo(2-naphthyl)sulfonyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-{bis[(6-bromo(2-naphthyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[(naphthylsulfonyl)-amino]thiophene-2-carboxamidine;
4-{bis(naphthylsulfonyl]amino}-5-methylthiothiophene-2-carboxamidine;
4-[(2-methylphenyl)sulfonyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-{bis[(2-methylphenyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine;
4-[(3-methylphenyl)sulfonyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-{bis[(3-methylphenyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine;
4-[(4-methylphenyl)sulfonyl]amino]-5-methylthiothiophene-2-carboxamidine;
4-{bis[(4-methylphenyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine;
5-methylthio-4-[(benzylsulfonyl]amino]-thiophene-2-carboxamidine;
5-methylthio-4-phenoxythiophene-2-carboxamidine; and
5-methylthio-4-(phenylsulfonyl)thiophene-2-carboxamidine;
as well as salts thereof, such as hydrochloride or trifluoracetate salts and prodrugs thereof.

Another preferred subgenus of compounds that can be employed in the present invention
include compounds of Formula V:

![Chemical Structure](image)

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R^1 is arylsulfonyl or arylcarbonyl, wherein said aryl moiety of said arylsulfonyl or
arylcarbonyl is optionally substituted by one or more substituents;

R^2 is hydrogen or C_{1-6} alkyl, preferably hydrogen;
Z is NR³R⁶;
R¹ is hydrogen, alkyl, amino, hydroxy or halogen, preferably hydrogen and C₁₋₆ alkyl; and
R⁴, R⁵ and R⁶ are independently hydrogen, C₁₋₄ alkyl, amino, C₁₋₄ alkoxy or hydroxy, and
are preferably all hydrogen.

Preferred substituents for the aryl moiety of said arylsulfonyl or arylocarbonyl at R² are
hydrogen, halogen, aryl, alkyl and alkoxy, especially preferred substituents include C₁₋₆ alkyl,
fluorine, chlorine, methoxy and phenyl.

The following novel compounds are preferred compounds within this preferred subgenus:

4-(4-{3-[(4-fluorophenyl)sulfonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(2,4-difluorophenyl)sulfonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(4-fluorophenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(3,4-difluorophenyl)sulfonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(4-methoxyphenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(4-methoxyphenyl)sulfonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide;
4-(4-{3-[(4-chlorophenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide; and
4-(4-{3-[(2,4-difluorophenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide.
Another preferred subgenus of compounds that can be employed in the present invention include compounds of Formula VI:

\[
\begin{align*}
R^x & \\
R^y & \\
R^z & \\
R^1 & \\
R^4 & \\
Y & \\
Z & \\
NR^4 & \\
\end{align*}
\]

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

5. \(R^x\) is aryl or aralkyl, wherein said aryl moiety of said aryl or aralkyl is optionally substituted by one or more substituents;

5. \(R^y\) is optionally substituted alkyl;

5. \(Z\) is \(NR^2R^6\);

5. \(R^1\) is hydrogen, amino, hydroxy or halogen, preferably hydrogen; and

10. \(R^4, R^5\) and \(R^6\) are independently hydrogen, \(C_{1-4}\) alkyl, amino, \(C_{1-4}\) alkoxy or hydroxy, and are preferably all hydrogen.

Preferred substituents for the aryl moiety of said aryl or aralkyl at \(R^x\) are hydrogen, halogen, alkyl and alkoxy.

The following novel compounds are preferred compounds within this preferred subgenus:

15. 4-[4-(1-phenyl-5-propylpyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;

15. 4-[4-(1-(4-chlorophenyl)-5-amidinopyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine; and
2-[(4-((tert-butyl)1-benzylpyrazol-4-yl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidin e.

When any variable occurs more than one time in any constituent or in any Formula, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. Pharmaceutical compositions comprising an effective amount of the C1's inhibitors of the invention, in combination with any conventional pharmaceutically acceptable carrier or diluent, are included in the present invention.

Methods of Use

The present invention provides a method for treating acute and chronic immunological disorders associated with activation of the classical pathway of the complement system by administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Formula I. These acute and chronic conditions include inflammation, tissue damage, and other disease states such as the autoimmune diseases, as a result of rapid and aggressive enzyme activity of the complement cascade. Often inflammation causes tissue damage associated with many of these conditions.

In one embodiment, compounds of Formula I can be administered to a mammal to treat complement-mediated inflammation and tissue damage. Examples of conditions that can be treated include intestinal inflammation of Crohn's disease, thermal injury (burns, frostbite), and post pump syndrome in cardiopulmonary bypass.

The compounds of Formula I can be used to treat chronic or acute inflammation that is the result of transplantation rejection, arthritis, rheumatoid arthritis, infection, dermatosis, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease. Additionally, inflammation associated with psoriasis and restenosis can also be treated.

The term “treatment of inflammation” or “treating inflammation” is intended to include the administration of compounds of the present invention to a subject for purposes which can
include prophylaxis, amelioration, prevention or cure of an inflammatory response. Such treatment need not necessarily completely ameliorate the inflammatory response. Further, such treatment can be used in conjunction with other traditional treatments for reducing the inflammatory condition known to those of skill in the art.

The compounds of Formula I can be provided as a "preventive" treatment before detection of an inflammatory state, so as to prevent the same from developing in patients at high risk for the same, such as, for example, transplant patients.

In another embodiment, efficacious levels of the C1s inhibitors of the invention are administered so as to provide therapeutic benefits against the secondary harmful inflammatory effects of inflammation. By an "efficacious level" of a composition of the invention is meant a level at which some relief is afforded to the patient who is the recipient of the treatment. By an "abnormal" host inflammatory condition is meant a level of inflammation in the subject at a site which exceeds the norm for the healthy medical state of the subject, or exceeds a desired level. By "secondary" tissue damage or toxic effects is meant the tissue damage or toxic effects which occur to otherwise healthy tissues, organs, and the cells therein, due to the presence of an inflammatory response, including as a result of a "primary" inflammatory response elsewhere in the body.

In a second embodiment, compounds of the present invention can be administered to a mammal suffering from the symptoms of adult respiratory distress syndrome (ARDS). ARDS is a complex pulmonary disorder affecting 150,000 people in the U.S. yearly with a 50% mortality rate. Leukocytes, platelets and the proteolytic pathways of coagulation and complement mediate ARDS. ARDS involves activation of the contact activation pathway and depletion of C1 inhibitor. Sepsis induced ARDS results in more severe DIC and fibrinolysis, more fibrin degradation products and reduced ATIII levels compared to trauma induced ARDS (Carvalho et al., J. Lab. Clin. Med. 112:270-277 (1988)).

In a third embodiment, compounds of Formula I can be administered to a mammal to treat complement-mediated complications in sepsis and complement-mediated tissue injury associated with autoimmune diseases. Examples of conditions that can be treated include immune-complex-induced vasculitis glomerulonephritis, hemolytic anemia, myasthenia gravis, type II collagen-induced arthritis, and allergic neuritis.
Septic shock is the most common cause of death of humans in intensive care units in the United States (Parillo et al., Ann. Int. Med. 113:227-242 (1990); Schmeichel C. J. & McCormick D., BioTechnol. 10:264-267 (1992)). It is usually initiated by a local nidus of infection that invades the blood stream. Incidences of sepsis and shock can arise from infections with either gram negative bacteria, gram positive bacterial or fungal microorganisms. All these organisms seem to induce a common pattern of cardiovascular dysfunction. In recent years aggressive fluid infusion therapy has been accepted as a primary means of treatment for septic shock. Adequate repletion of fluid is associated with an elevated cardiac output and low vascular resistance. Despite treatment, septic shock results in a severe decrease in systemic vascular resistance and generalized blood flow maldistribution. Aggressive therapy reverses shock and death in about 50% of the cases. Unresponsive hypotension resulting from a very low vascular resistance cannot be corrected by fluid infusion. Among those subjects that die from septic shock, approximately 75% die from persistent hypotension and the remainder due to multiple organ system failure.

The complement system is also involved in hyperacute allograft and hyperacute xenograft rejection. Complement activation during immunotherapy with recombinant IL-2 appears to cause the severe toxicity and side effects observed from IL-2 treatment. Thus, in a fourth embodiment, compounds of Formula I can be administered to a mammal before, during or after the transplant of an organ or a graft to ameliorate the rejection of such organ or graft by the mammal. Grafts can include an allograft or xenograft. In a fifth embodiment of the present invention, a compound of Formula I is administered to a mammal before, during or after treatment of said mammal with IL-2 in an amount effective to reduce the toxicity and side-effects of the IL-2 treatment.

A sixth embodiment of the present invention is directed to administering a therapeutically effective compound of Formula I to a mammal that has been diagnosed with an auto-immune disease. Autoimmune diseases that are treatable according to the present invention include Hashimoto's thyroiditis, glomerulonephritis and cutaneous lesions of systemic lupus erythematosus, other glomerulonephritides, bullous pemphigoid, dermatitis herpetiformis, Goodpasture's syndrome, Graves' disease, myasthenia gravis, insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, and rheumatoid arthritis. Preferred autoimmune diseases which can be treated by inhibitors of the present invention are myasthenia
gravis (MG), rheumatoid arthritis (in which the substance can be administered directly into a joint capsule to prevent complement activation), and systemic lupus erythematosus.

A seventh embodiment of the present invention is directed to administering a therapeutically effective compound of Formula I to a mammal that has been diagnosed with a neurodegenerative disease. Neurodegenerative diseases in which inhibitors of the complement cascade system will be therapeutically useful include the demyelinating disorder multiple sclerosis (MS), the neuropathies Guillain-Barré syndrome (GBS) and Miller-Fisher syndrome (MFS), and Alzheimer’s disease (AD).

Other diseases and conditions that can be treated include hereditary angioedema, septic shock, paroxysmal nocturnal hemoglobinurea, organ rejection (transplantation), burns (wound healing), brain trauma, asthma, platelet storage, hemodialysis, and cardiopulmonary bypass equipment.

Preferably, the treatment methods of the invention deliver the C1s inhibitor by either contacting cells of the animal with a C1s inhibitor described above or by administering to the animal a C1s inhibitor described above.

The "animals" referred to herein are preferably mammals. Both terms are intended to include humans.

The compounds of the present invention are believed to inhibit the functioning of the protease activity of C1s. This protease-inhibition activity results in the inhibition or blocking of a variety of complement-mediated immunological functions.

The inhibitors can be used in vitro or in vivo. They can be administered by any number of known routes, including orally, intravenously, intramuscularly, subcutaneously, intrathecally, topically, and by infusion (Platt et al., U.S. Patent No. 4,510,130; Badalamente et al., Proc. Natl. Acad. Sci. U.S.A. 86:5983-5987 (1989); Staubli et al., Brain Research 444:153-158 (1988)) and will generally be administered in combination with a physiologically acceptable carrier (e.g., physiological saline) or diluent. The effective quantity of inhibitor given will be determined empirically and will be based on such considerations as the particular inhibitor used, the condition of the individual, and the size and weight of the individual. It is to be expected that the general end-use application dose range will be about 0.01 to 100 mg per kg per day, preferably 0.1 to 75 mg per kg per day for an effective therapeutic effect.
Amounts and regimens for the administration of C1s inhibitors and compositions of the invention can be determined readily by those with ordinary skill in the clinical art of treating inflammation-related disorders such as arthritis, tissue injury and tissue rejection. Generally, the dosage of the composition of the invention will vary depending upon considerations such as: type of pharmaceutical composition employed; age; health; medical conditions being treated; kind of concurrent treatment, if any; frequency of treatment and the nature of the effect desired; extent of tissue damage; gender; duration of the symptoms; and, counter indications, if any, and other variables to be adjusted by the individual physician. A desired dosage can be administered in one or more applications to obtain the desired results. Pharmaceutical compositions containing the C1s inhibitors of the invention can be provided in unit dosage forms.

The C1s inhibitors are useful for treating such conditions as tissue rejection, arthritis, local infections, dermatoses, inflammatory bowel diseases, autoimmune diseases, etc. The C1s inhibitors of the present invention can be employed to prevent the rejection or inflammation of transplanted tissue or organs of any type, for example, heart, lung, kidney, liver, skin grafts, and tissue grafts.

Inhibition of the complement cascade is also expected to lead to downstream utilities associated with the contact system of coagulation and the complement system. This interaction between components of the complement and coagulation systems at the surface of blood platelets and endothelium can generate inflammatory and chemotactic peptides at sites of vascular thrombus formation and may contribute to the altered hemostasis associated with immune disease states. In addition, immune reactions affecting blood platelets and endothelium can lead to platelet aggregation, the secretion of proteolytic enzymes and vasoactive amines from platelet storage granules, and increase adherence of platelets and leukocytes to the endothelial lining of blood vessels.

It has been demonstrated that membrane-uptake of C3b and C5b-9 proteins can occur spontaneously during incubation of platelets in citrated plasma. Complement activation can also occur during blood collection as a result of exposure to plastic surfaces supporting the C3-convertase reaction. While the implications of complement activation during blood collection and in vitro storage for transfusion have not been directly addressed it is, nevertheless, known that plasma levels of coagulation factors V and VIII rapidly decline in stored platelet concentrates.
at a rate considerably faster than their decay in cell-free plasma, suggesting consumptive loss. Further, platelet collection and storage is associated with an increase in vesicular plasma membrane microparticles, a product of C5b-9 initiated platelet secretion. These physiological and enzymatic changes greatly reduce the potential shelf life of stored platelets, particularly platelet-rich plasma concentrates used for transfusions, which is generally only 72 hours at best. Furthermore, this interaction of activated C5b-9, platelets, and coagulation factors in stored platelet concentrates will adversely affect the hemostatic effectiveness of these units when infused.

In vitro human organ and tissue storage and survival of the transplanted graft is also adversely affected by the spontaneous activation of the complement system, resulting in membrane insertion of the C5b-9 proteins into vascular endothelium. Activation of C5 to C5a and C5b has been shown to be catalyzed by plastics and other synthetic membranes required to maintain perfusion of vascular beds during in vitro tissue and organ storage. In addition, membrane deposition of C5b-9 in vivo has been implicated in the acute rejection of transplanted tissue due to immune activation of the recipient's plasma complement system against the endothelial cells within the donor's organ.

Platelet and endothelial cell activation by C5b-9 also has ramifications in autoimmune disorders and other disease states. The importance of spontaneous complement activation and the resulting exposure of platelets and endothelium to activated C5b-9 to the evolution of vaso-occlusive disease is underscored by consideration that a) leukocyte infiltration of the subendothelium, which is known to occur in regions of atheromatous degeneration and suggests localized generation of C5a at the vessel wall, is potentially catalyzed by adherent platelets and b) local intravascular complement activation resulting in membrane deposition of C5b-9 complexes accompanies coronary vessel occlusion and may affect the ultimate extent of myocardial damage associated with infarction.

It is therefore an aspect of the present invention to provide a means and method for the modulation and inhibition of complement mediated platelet and endothelial cell activation in vivo and in vitro.
It is a further aspect of the present invention to provide a means and method for increasing the survival and therapeutic efficacy of platelets and tissues or organs collected and stored *in vitro*.

It is another aspect of the present invention to provide methods of treatment for selected autoimmune disorders and other disease states.

The contact system of intrinsic coagulation and the complement system are excessively activated in sepsis and septic shock, especially in cases of fatal septic shock. The contact system can participate in the generation of many vasoactive mediators such as bradykinin, FXIIa, FXIIif and C5a, which are thought to play a role in the pathogenesis of fatal shock. Bradykinin, FXIIa, and XIIIf are potent inducers of hypotension while C5a is an inducer of vasodilation and vasopermeability. The levels of FXII, prekallikrein, and high molecular weight kininogen are decreased significantly during non-fatal shock, but are most severely depressed during fatal septic shock to approximately 30%, 57% and 27% of normal values respectively. These changes are noted regardless of whether the septic state is caused by gram positive or gram negative bacteria.

The contact activation pathway is also involved in both fibrin deposition and lysis, as well as triggering neutrophil activation, activation of complement and modulation of blood pressure.

The increase in cardiac output and vasodilation in septic shock is attributed to the action of inflammatory mediators. In septic shock, components of the kallikrein-kinin system are depleted suggesting activation of this system. This is not the case in cardiogenic shock suggesting that the kallikrein-kinin system is a key player in septic shock (Martinez-Brotons F. *et al.*, *Thromb. Haemostas*. 58:709-713 (1987)). While the actual events leading to septic shock, DIC and hypotension have not been established, the known interactions among various components of the many physiological systems suggest that activation of the contact pathway may lead to a state of septic shock, multiorgan failure, and death (Bone, R. C., *supra*).

Disseminated intravascular coagulation (DIC) is a disorder that occurs in response to tissue injury and invading microorganisms characterized by widespread deposition of fibrin and depleted levels of fibrinogen (Muller-Berghaus, G., *Semin. Thromb. Hemostasis*, 15:58-87 (1989)). There are prolonged prothrombin and activated partial thromboplastin times. DIC has been observed in the clinical settings of a wide variety of diseases (Fruchtman, S. M. & Rand,

Hypotension, DIC, and neutrophil activation are all triggered by the interaction of Factor XIIa, plasma kininogens and kallikrein. Deficiency of any of these 3 proteins does not give rise to hemostatic disorders due to redundancy in the system due to platelets, other coagulation factors, and endothelial cells.

It has been suggested that the contact activation system plays a significant role in a variety of clinical states including septic shock, cardiopulmonary bypass surgery, adult respiratory distress syndrome, and hereditary angioedema (Bone, R. C., *Arch. Intern. Med.* 152:1381-1389 (1992); Colman, R. W., *N Engl. J. Med.* 320:1207-1209 (1989)). Inhibitors of the contact system may therefore play important roles in the regulation of inflammatory and/or thrombotic disorders.

In one embodiment, dosing will be by intravenous injection or short term infusion. To achieve optimal therapeutic effect, maintenance dosing may be required. Such maintenance dosing may be given repeatedly during the course of a day by, for instance, repeated individual injections or by introduction into a continuous drip infusion. Effective dosages can be readily determined by one of ordinary skill in the art through routine trials establishing dose response curves.

Pharmaceutical Compositions

For medicinal use, the pharmaceutically acceptable acid addition salts, those salts in which the anion does not contribute significantly to toxicity or pharmacological activity of the organic cation, are preferred. The acid addition salts are obtained either by reaction of an organic base of Formula I with an organic or inorganic acid, preferably by contact in solution, or by any of the standard methods detailed in the literature available to any practitioner skilled in the art. Examples of useful organic acids are carboxylic acids such as maleic acid, acetic acid, tartaric acid, propionic acid, fumaric acid, isethionic acid, succinic acid, cyclamic acid, pivalic acid and the like; useful inorganic acids are hydrohalide acids such as HCl, HBr, HI; sulfuric acid; phosphoric acid and the like. Preferred acids for forming acid addition salts include HCl and acetic acid.
The pharmaceutical compositions of the invention can be administered to any animal that can experience the beneficial effects of the compounds of the invention. Foremost among such animals are humans, although the invention is not intended to be so limited.

The pharmaceutical compositions of the present invention can be administered by any means that achieve their intended purpose. For example, administration can be by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, buccal, or ocular routes. Alternatively, or concurrently, administration can be by the oral route. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

In addition to the pharmacologically active compounds, the new pharmaceutical preparations can contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations that can be used pharmaceutically.

The pharmaceutical preparations of the present invention are manufactured in a manner that is, itself, known, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes. Thus, pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.

Suitable excipients are, in particular, fillers such as saccharides, for example, lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example, tricalcium phosphate or calcium hydrogen phosphate, as well as binders, such as, starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents can be added, such as, the above-mentioned starches and also carboxymethyl-starch, cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as, sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as, magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings that, if desired, are resistant to gastric juices. For this purpose, concentrated saccharide
solutions can be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol, and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations, such as, acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used. Dye stuffs or pigments can be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses.

Other pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as, glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules that may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as, fatty oils or liquid paraffin. In addition, stabilizers may be added.

Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts, alkaline solutions and cyclodextrin inclusion complexes. Especially preferred salts are hydrochloride and acetate salts. One or more modified or unmodified cyclodextrins can be employed to stabilize and increase the water solubility of compounds of the present invention. Useful cyclodextrins for this purpose are disclosed in U.S. Patent Nos. 4,727,064, 4,764,604, and 5,024,998.

In addition, suspensions of the active compounds as appropriate oily injection suspensions can be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides or polyethylene glycol-400 (the compounds are soluble in PEG-400). Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers.

When employed as thrombin inhibitors, the compounds of the present invention may be administered in an effective amount within the dosage range of about 0.1 to about 500 mg/kg, preferably between 0.1 to 10 mg/kg body weight, on a regimen in single or 2-4 divided daily doses.
Methods of Making

Many synthetic methods used to form compounds of the present invention generally involve the formation of an amidine from a carboxylic acid derivative, such as an ester. In the process a Lewis acid, such as trimethylaluminum, is added to a source of ammonia, such as ammonium chloride in an aprotic solvent, such as a toluene, under an inert atmosphere (e.g., under an atmosphere of nitrogen or argon gas) at a temperature between -15°C and 5°C, preferably at 0°C. An appropriate carboxylic acid derivative is added to the mixture and the mixture is heated at reflux for a predetermined period of time, preferably between 1 hr. and 24 hrs., and most preferably between 1 hr. and 4 hrs. The resulting solution is allowed to cool to room temperature and the amidine product isolated by known methods.

Description of Syntheses

Scheme 1a

Scheme 1a illustrates a general approach to compounds of Formula I where X = 0 or S, R² = alkylthio, aralkylthio, arylthio, alkylxoy, aralkyloxy or arylexy, Y = bond and Z = NR³R⁶. When R²² and R³¹ of compounds 2 and 3 are retained in the final product, they correspond to R² and R³ of Formula I, respectively. Otherwise R²² and R³¹ represent groups which, after further transformations, will become R² and R³ of Formula I.

Starting with the heterocycle where X = O or S appropriately substituted by two leaving groups, the leaving groups can be sequentially displaced by appropriate nucleophiles (preferably the anion of the group R³¹ or R²² to be substituted) to produce the mono- or disubstituted heterocycles. Examples of leaving groups include halogens (chlorine, bromine or iodine), sulfonates (methanesulfonate, toluenesulfonate or trifluoromethanesulfonate) or sulfones (methylsulfonyl). Preferable nucleophiles include anions of thiols or alcohols having as the counterion an alkali or alkali earth metal such as sodium, lithium, potassium, magnesium or cesium, or in some cases, a transition group metal such as zinc, copper or nickel. In certain cases where the nucleophile used contains an anion on carbon, catalysis of the displacement may be
useful for this transformation. Examples of catalysts would include compounds containing palladium, silver or Ni salts.

Scheme 1b

Scheme 1b illustrates approaches to providing the functionality of \(\text{Y}(\text{CNR}^6)\text{Z} \) in compounds of Formula 1 where \(X = \text{N}, \text{O} \) or \(S \), \(R^{22} \) and \(R^{21} \) are defined as in Scheme 1a. Depending on the nature of the group \(W \) in 3, several methods may be employed in the transformation of \(W \) to \(\text{Y}(\text{CNR}^6)\text{Z} \).

When \(W \) in 3 is a cyano group (CN), primary amide (CONH\(_2\)) or ester (CO\(_2\)R\(^{23}\)), direct conversion to an unsubstituted amidine 5 (i.e. Formula 1 where \(Y = \text{bond}, Z = \text{NR}^2\text{R}^6 \) and \(R^4, R^5, R^6 = \text{H} \)) can be effected by treatment with a reagent consisting of a Lewis acid complexed to ammonia. This complex is produced by treatment of ammonia or an ammonium salt, preferably an ammonium halide and most preferably ammonium chloride or bromide, with an appropriate Lewis acid, preferably a trialkylaluminum and most preferably trimethyl- or triethylaluminum in a solvent inert to the Lewis acid employed. For example, when a trialkylaluminum Lewis acid is employed with an ammonium halide, reaction occurs with loss of one equivalent of alkane to produce the dialkylhaloaluminum complex of ammonia (see for example Sidler, D.R., *et al.*, *J. Org. Chem.*, 59:1231 (1994)). Examples of suitable solvents include unsaturated hydrocarbons such as benzene, toluene, xylenes, or mesitylene, preferably toluene, or halogenated hydrocarbons such as dichloroethane, chlorobenzene or dichlorobenzene. The amidination reaction is generally carried out at elevated temperatures, preferably 40-200 °C, more preferably 80-140 °C, and most preferably at the reflux temperature of a solvent in the range of 80-120 °C.

When \(W \) is a cyano group (CN), direct conversion to a mono- or disubstituted amidine 5 (\(R^4, R^5, R^6 = \text{H} \)) is also possible by treatment with a reagent consisting of a Lewis acid, preferably a trialkylaluminum, complexed to a mono- or disubstituted amine \(\text{H}_2\text{NR}^3 \) or \(\text{HNRR}^5\text{R}^6 \) (Garigipati, R., *Tetrahedron Lett.* 31: 1969 (1990)). Alternatively the same addition of a mono- or disubstituted amine may catalyzed by a copper salt such as Cu(I) chloride (Rousselet, G., *et al.*, *Tetrahedron Lett.* 34: 6395 (1993)).

When \(W \) in 3 is a carboxyl group (CO\(_2\)H), indirect conversion to an unsubstituted amidine 5 can be carried out by initial esterification to 4 by any of a number of well-known dehydrating
agents (for example, dicyclohexylcarbodiimide) with an alcohol (R^{23}OH). More preferably 4 can be made by initial formation of an acid chloride by treatment of 3 with any of a number of anhydrides of HCl and another acid, such as thionyl chloride, POCl₃, PCl₅, PCl₆, or more preferably oxalyl chloride, with or without an added catalyst such as N,N-dimethylformamide (DMF), followed by the alcohol R^{23}OH. Conversion to the unsubstituted amidine 5 (R⁴, R⁵, R⁶ = H) can be carried out by treatment with a Lewis acid complexed to ammonia.

Amidines 5 also can be produced indirectly by conversion of 3 (W = CN) to iminoethers 6 by exposure to a strong acid such as a hydrogen halide, HBF₄ or other non-nucleophilic acid, preferably gaseous HCl in the presence of an alcohol R^{23}OH (R^{23} = alkyl, branched alkyl or cycloalkyl, preferably Me or Et) and most preferably with the alcohol as solvent. Alternatively when W = CONH₂, conversion to an iminoether can be carried out by treatment with a trialkylxoxonium salt (Meerwein's salts). In either case, treatment of the iminoether with ammonia (R⁵, R⁶ = H) or a mono- or disubstituted amine (HNR⁵R⁶) provides the corresponding unsubstituted or substituted amidines 5 (i.e. via classical Pinner synthesis: Pinner, A., Die Iminoaether und ihre Derivate, Verlag R. Oppenheim, Berlin (1892)).

When W = NH₂ in 3, treatment with a reagent Z(CNR⁴)L where Z = alkyl and L is a leaving group such as O-alkyl and preferably OMe, provides the subclass of amidines 135 (Z = alkyl) which are isomeric to 5 (Formula I, where Y = NH, Z = H or alkyl). Examples of reagents for this reaction include methyl or ethyl acetimidate hydrochloride. Alternatively treatment of 3 (W = NH₂) with a trialkyl orthoformate ester, preferably trimethyl- or triethyl orthoformate, followed by an amine R⁴NH₂ affords the corresponding formidines 135 (Z = H) (Formula I, where Y = NH, Z = H).

Also, when W = NH₂, 3 can be treated with a reagent Z(CNR⁴)L where R₄ = H and Z = NR⁵R⁶ and L is a leaving group such as pyrazole, methylpyrazole, SO₂H, S-alkyl, S-aryl, trifluoromethanesulfonate (OTf) or trifluoromethanesulfonamide (NHTf), preferably pyrazole, SO₃H or trifluoromethanesulfonamide (NHTf). Examples of these reagents include aminosulfonic acid (Miller, A.E. and Bischoff, J.J., Synthesis, 777 (1986) and 1H-pyrazole-1-carboxamidine hydrochloride (Bernatowicz, M.S., et al., J. Org. Chem. 57:2497 (1992)). Such treatment provides guanidines 136 directly (Formula I where Y = NH, Z = NR⁵R⁶). Alternatively
a reagent Z(CNP₁)L may be also used where Z = NHP₂ and L again a leaving group such as pyrazole, methylpyrazole, SO₃H, S-alkyl, S-aryl, trifluoromethanesulfonate (OTf) or trifluoromethanesulfonamide (NHTf), to provide protected guanidines (P₁, P₂ = alkoxycarbonyl, aralkoxycarbonyl or polymer-bound alkoxycarbonyl similar to those described below in Scheme 4a) where the protecting groups P₁ and P₂ can then be removed to give unsubstituted 136 (R¹, R² and R⁶ = H). Protected guanidines are advantageous when further transformations are required after introduction of the guanidine functionality where an unprotected guanidine would not be stable. Examples of these protected reagents include reagents such as N,N'-bis(tert-butoxycarbonyl)-S-methylthiourea (Bergeron, R.J. and McManis, J.S., J. Org. Chem. 52:1700 (1987)), N,N'-bis(benzyloxy carbonyl)-1 H-pyrazole-1-carboxamidine or N,N'-bis(tert-butoxycarbonyl)-1 H-pyrazole-1-carboxamidine (Bernatowicz, M.S., et al., Tetrahedron Letters, 34: 3389 (1993)), N,N'-bis(benzyloxy carbonyl)-N''-trifluoromethanesulfonylguanidine, and N,N'-bis(tert-butoxycarbonyl)-N''-trifluoromethanesulfonylguanidine (Feichtinger, K., et al, J. Org. Chem. 63:3804 (1998)).

Detailed descriptions and examples of these protecting groups and their use as protection for amidines are further outlined in Schemes 4a, 4b and 5.

When W in 3 is an ester (CO₂R²³) or carboxyl group (CO₂H), indirect conversion to an N-substituted or unsubstituted methylamidine (Formula I where Y = CH₂, Z = NR²R₆) can be carried out by initial reduction of the ester or carboxyl by any of a number of well-known reducing agents. When W in 3 is an ester (CO₂R²³), examples of reducing agents include reducing agents such lithium aluminum hydride (LAH) and lithium borohydride. When W in 3 is a carboxyl group (CO₂H), examples of reducing agents include LAH and borane complexed to THF, dimethyl sulfide, dimethylamine or pyridine. The resulting hydroxymethyl derivative (W = CH₂OH) is converted to a cyanomethyl derivative (W = CH₂CN) by initial formation of a leaving group (W = CH₂L) where the leaving group L is a halogen (chlorine, bromine or iodine) or sulfonate ester (for example methanesulfonate, toluenesulfonate or trifluoromethanesulfonate). Displacement of L by cyanide can then be performed by treatment with a metal cyanide such as LiCN, NaCN, KCN or CuCN in a polar solvent such as DMF and with or without a catalyst such as a crown ether, to afford the cyanomethyl derivative (see for example Mizuno, Y., et al, Synthesis, 1008 (1980)). More preferably, the conversion of W = CH₂OH to W = CH₂CN may
be effected by a Mitsunobu reaction (Mitsunobu, O., *Synthesis*, 1 (1981)) using an azodicarboxylate ester such as diethyl azodicarboxylate or diisopropyl azodicarboxylate, Ph₂P and a source of cyanide such as HCN or more preferably acetone cyanohydrin (Wilk, B. *Synthetic Commun.* 23:2481 (1993)). Treatment of the resulting cyanomethyl intermediate (W = CH₂CN) under the conditions described for the conversion of 3 (W = CN) to 5 (either directly or indirectly via 6) provides the corresponding amidinomethyl products.

Scheme 1c

When not commercially available, alkylthiothiophenones (3, X = S, R¹ = OH or NH₂, R²¹ = SR²⁴, W = CN, CO₂R²³, CONH₂) can be synthesized by the methods illustrated in Scheme 1c.

Condensation of carbon disulfide and a malonic acid derivative (R⁵²CH₂R²²) in the presence of two alkylating agents R¹⁴L and WCH₂L and a base in a suitable medium provide 3 (Dolman, H., European Patent Application No. 0 234 622 A1 (1987)). When R²² = R⁵² = CN, the resulting R¹ will be NH₂; when R²² = R⁵² = CO₂R²³, the resulting R¹ will be OH; and when R²² and R⁵² = CN, CO₂R²³, the resulting R¹ can be selected to be OH or NH₂ (and R²² = CN or CO₂R²³) depending on the reaction conditions and order of reagent addition. Examples of malonic acid derivatives suitable for this transformation include but are not limited to malonate diesters such as dimethyl malonate or diethyl malonate (R⁵², R²² = CO₂R²³, R²³ = Me or Et), malononitrile (R⁵², R²² = CN), or methyl or ethyl cyanoacetate (R⁵² = CO₂R²³, R²² = CN, R²³ = Me or Et). Leaving groups L include halides such as chloride, bromide or iodide, preferably bromide or iodide, or sulfonates such as toluenesulfonate, benzenesulfonate, methanesulfonate or trifluoromethanesulfonate.

Examples of alkylating agent R¹⁴L include primary or secondary alkyl, allyl or aralkyl halides or sulfonates, such as methyl iodide, isopropyl bromide, allyl bromide, benzyl chloride or methyl trifluoromethanesulfonate, or a 2-haloacetate ester such as tert-butyl 2-bromoacetate. Examples of alkylating agents WCH₂L include 2-chloroacetonitrile, methyl 2-bromoacetate or 2-bromoacetamide. Suitable media are generally polar aprotic solvents, for example, *N*,*N*-dimethylformamide (DMF), *N*,*N*-dimethylacetamide (DMA), *N*-methylpyrrolidinone (NMP) or dimethylsulfoxide (DMSO), preferably DMF.
Alternatively compounds 3 (R^{22} = CN) can be synthesized from precursors 138 (derived from malononitrile, R^{34}L and carbon disulfide), a thioglycolate WCHSH and a base in a suitable polar solvent, preferably methanol (Tominaga, Y., et al., J. Heterocyclic Chem. 31:771 (1994)).

When 3 contains an amino group at R^1, it can be diazotized with subsequent loss of nitrogen to give 3, R^1 = H by treatment with a nitrosating agent in a suitable solvent. Nitrosating agents include nitrosonium tetrafluoroborate, nitrous acid or, more preferably and alkyl nitrite ester such as tert-butyl nitrite. Suitable solvents are those which are stable to the nitrosating agents, preferably DMF, benzene or toluene.

Scheme 1d

When not commercially available, heterocyclic precursors 1 or 2 (X = O, S; W = CO_{2}R^{23}, COOH; L = halogen) used in Scheme 1a can be synthesized by the methods illustrated in Scheme 1c. Depending on the conditions used, treatment of compounds such as 139 with elemental halogen (Cl_{2}, Br_{2} or I_{2}, preferably Br_{2}) or an N-halosuccinimide reagent, preferably N-bromosuccinimide (NBS), affords either 1 or 2 directly. Description of suitable solvents and conditions to selectively produce 1 or 2 are found in Karminski-Zamola, G. et al, Heterocycles 38:759 (1994); Divald, S., et al, J. Org. Chem. 41:2835 (1976); and Bury, P., et al, Tetrahedron 50:8793 (1994).

Scheme 2a

Scheme 2a illustrates the synthesis of compounds 12 representing the subclass of compounds for which R^2 is Formula II, where Ar = 2-thiazolyl, Y = bond and Z = NR^{5}R^{6}. Starting with compound 1 (L = Br) and using the sequential displacement methodology discussed for Scheme 1a, R^{21} can be first introduced to give 7. This is followed by a second displacement with a metal cyanide such as copper (I) cyanide, sodium cyanide or lithium cyanide and most preferably copper (I) cyanide at a temperature of 80-200 °C and preferably at 100-140 °C, in a polar aprotic solvent, preferably DMF or DMSO, to give 8. After esterification by any of the means described for the conversion of 3 to 4, conversion to the thioamide is carried out by treatment of the nitrile with any of the methods well known in the art (see for example Ren, W., et al., J. Heterocyclic Chem. 23:1757 (1986) and Paventi, M. and Edward, J.T., Can. J. Chem.
65:282 (1987)). A preferable method is treatment of the nitrile with hydrogen sulfide in the presence of a base such as a trialkyl or heterocyclic amine, preferably triethylamine or pyridine, in a polar solvent such as acetone, methanol or DMF and preferably methanol. Conversion to the thiazole can be executed by classical Hantzsch thiazole synthesis followed by amidine formation as discussed in Scheme 1b.

Scheme 2b

Scheme 2b illustrates the synthesis of compounds representing the subclass of compounds for which R² is Formula II where, in addition to being an alternate route to Ar = 2-thiazolyl (20) (see 12, Scheme 2a) also provide compounds of Formula II where Ar = 2-oxazolyl (16) or 2-imidazolyl (18) (Y = bond and Z = NR²R⁶). Starting with compound 9, a selective hydrolysis of the nitrile with a tetrahalophthalic acid, preferably tetrafluor- or tetrachlorophthalic acid, can be used to give 7 according to the method of Gribble, G. W., et al., Tetrahedron Lett. 29: 6557 (1988). Conversion to the acid chloride can be accomplished using the procedures discussed for conversion of 3 to 4, preferably with oxaly chloride in dichloromethane in the presence of a catalytic amount of DMF. Coupling of the acid chloride to an aminoketone (R²⁶COCH(R²⁷)NH₂) can be performed in the presence of an acid scavenger, preferably N,N-diisopropylethylamine (DIEA) or pyridine in a suitable solvent such as DMF, dichloromethane or tetrahydrofuran (THF) to afford the common intermediate 14. Alternatively coupling of the acid chloride to a less-substituted aminoketone (R²⁶COCH₂NH₂) can be used followed by optional alkylation with alkylation agent R²⁷L in the presence of a base, preferably NaH or t-BuOK. Transformation of 14 to the corresponding 2-oxazolyl (15), 2-imidazolyl (17) or 2-thiazolyl (19) esters can carried out by the methodology of Suzuki, M., et al., Chem. Pharm. Bull. 34:3111 (1986) followed by amidination according to Scheme 1b. In addition, direct conversion of ketoamide 14 to imidazolyl derivative 18 is possible under the same conditions for conversion of 17 to 18 when conducted for extended periods, preferably greater than 2 h.

Scheme 2c

Scheme 2c describes a general route to the synthesis of oxazoles, imidazoles and thiazoles of structure 27, 29 and 31 respectively. Acid 2 (see Scheme 1a) is converted to the ester by
methods that are well known in the art (Theodora W. Greene and Peter G. M. Wuts, John Wiley
and Sons, Inc. 1991). For example methyl ester 21 is formed by treating the acid in an
appropriate solvent such as methanol with trimethylsilyldiazomethane. Alternatively the acid is
treated with oxalyl chloride and catalytic amounts of dimethylformamide (DMF) in an
appropriate solvent such as dichloromethane to form the acid chloride, which is then treated with
methanol to give the methyl ester. Ester 21 is treated with a palladium (0) catalyst such as
palladium tetrakis(triphenylphosphine), and an alkylstannane such as hexa-n-butylstannane or
tri-n-butyltin chloride in an appropriate solvent such as DMF at elevated temperatures (50 °C -
120 °C) to give the arylstannane of general structure 22 (Stille, J.K., Angew. Chem. Int. Ed. Engl.
25:508-524 (1986)). The stannane 22 is then treated with acid chlorides in the presence of a
palladium(0) catalyst to give ketone 23. The ketone is treated with ammonia/ammonium chloride
to give amine 24. Alternatively the ketone is reacted with an azide such as sodium azide in a
suitable solvent such as DMF, and the resulting azidoketone is reduced to amine 23 with a
suitable reducing agent such as catalytic hydrogenation in the presence of palladium on carbon
and an acid such as HCl (Chem. Pharm. Bull. 33:509-514 (1985)). Ketoamides 25 are formed
by coupling the ketoamine 24 with a variety of suitably functionalized acid chlorides.
Alternatively amide coupling may be performed using any of a number of peptide coupling
reagents such as 1,3-dicyclohexylcarbodiimide (Sheehan, J. C. et al., J. Am. Chem. Soc., 77:1067
(1955)) or Castro’s reagent (BOP, Castro, B., et al., Synthesis 413 (1976)). In another approach,
amides 25 are formed directly from ketones 23 by reacting with various amide salts in an
appropriate solvent such as DMF. The amide salts are generated by treating the amides with a
suitable base such as sodium hydride (NaH). For example acetamide is treated with NaH in DMF
at 0 °C to give sodium acetamide. Keto amide 25 is cyclized to the oxazole 26, imidazole 28 and
thiazole 30 using procedures similar to that shown in scheme 2b. Oxazole 26, imidazole 28 and
thiazole 30 are treated with trimethylaluminum and ammonium chloride in refluxing toluene to
give the amidines 27, 29 and 31 respectively.

Scheme 2d

Scheme 2d illustrates to the preparation of compounds of Examples 42-43, where R²¹ and
R²³ correspond in Formula I to groups R³ and R², respectively. The acids 2 can be converted to
the stannane by treatment with base, such as n-butyl lithium or sec-butyl lithium, followed by trimethyltin chloride. The resulting acid can be then converted to the ester 22 by methods that are well known in the art (Theodora W. Greene and Peter G. M. Wuts, John Wiley and Sons, Inc. 1991). For example the methyl ester can be made by treating the acid 2 in a suitable solvent such as methanol with trimethylsilyldiazomethane. The stannane 22 can be reacted with suitable halides in the presence of catalytic amounts of a palladium catalyst, such as palladium tetrakistriphenylphosphine, to give the esters 32 (Stille, J.K., Angew. Chem. Int. Ed. Engl. 25:508-524 (1986)). These esters are then treated with trimethylaluminum and ammonium chloride in refluxing toluene to give the amidines 33. In the case where $R^{43}L_n (n = 2)$, this can be cross-coupled to an aryl, heteroaryl or vinyl boronic acid or ester to give compounds 34 (Miyaura, N. and Suzuki, A., Chem. Rev. 95:2457-2483 (1995)). This can usually be done in the presence of catalytic amounts of a palladium (0) catalyst such as tetrakistriphenylphosphine palladium and a base such as potassium carbonate in DMF at 90°C. Similar cross-coupling reactions can also be achieved by using aryl, heteroaryl and vinyl stannanes instead of boronic acids or esters. These esters are converted to the amidines 35 in the manner previously described.

Scheme 2e

Scheme 2e represents a modification to the methodology outlined in Scheme 2b which allows synthesis of compounds of Formula II where Ar = 2-thiazolyl, 2-oxazolyl or 2-imidazolyl ($Y =$ bond and $Z = NR^5R^6$) but which are regioisomeric to 16, 18 or 20 in the relative positions of substituents R^{26} and R^{27}. This is illustrated in Scheme 2b by the synthesis of 2-oxazolyl derivative 39. Thus, acid 13 can be coupled to an hydroxy-containing amine $R^{27}CH(NH_2)CH(R^{26})OH$ to give amide 36 by any of a number of amide coupling reagents well known in the art (see Bodanszky, M. and Bodanszky, A., *The Practice of Peptide Synthesis*, Springer-Verlag, New York (1984)). More preferably 13 can be converted to the corresponding acid chloride using any of the procedures mentioned for conversion of 3 to 4 followed by treatment with the $R^{27}CH(NH_2)CH(R^{26})OH$ in the presence of an acid scavenger, preferably N,N-diisopropylethylamine (DIEA) or pyridine in a suitable solvent such as DMF, dichloromethane or tetrahydrofuran (THF) to give 36. Oxidation of the alcohol 36 to the aldehyde 37 ($R^{26} = H$) or ketone 37 ($R^{26} =$ alkyl, aryl, aralkyl, heterocycle) can be effected by any of a number of

Scheme 2f

Scheme 2f illustrates a general approach to the synthesis of thiazoles of structure 43 (Formula II, X = S, Ar = thiazolyl). Nitriles of structure 40 can be treated with hydrogen sulfide (H$_2$S) in a suitable solvent such as methanol, or pyridine in the presence of a base such as triethylamine to give thioamides 41 (Ren, W. et al., J. Heterocyclic Chem. 23:1757-1763 (1986)). Thioamides 41 can be then treated with various haloketones 42 preferably bromoketones under suitable reaction conditions such as refluxing acetone or DMF heated to 50° C - 80° C to form the thiazoles 43 (Hantzsch, A. R. et al., Ber. 20:3118 (1887)).

Scheme 2g

Scheme 2g illustrates one synthetic route to 2-haloketones of structure 42 which are employed in the synthesis of thiazolyl derivatives as in Schemes 2a and 2f. 2-Bromoketones 42 (L = Br) are prepared by treating the ketone 44 with a suitable brominating agent such as Br$_2$ or N-bromosuccinimide in a suitable solvent such as chloroform or acetic acid (EP 0393936 A1). Alternatively, the ketone 44 is treated with a polymer-supported brominating agent such as poly(4-vinyl)pyridinium bromide resin (Skit, B., et al., Synthetic Communications 19:2481-2487 (1989)) to give bromoketones 42. In a similar fashion 2-chloroketones are obtained by treating
44 with copper (II) chloride in a suitable solvent such as chloroform (Kosower, E. M., et al., J. Org. Chem. 28:630 (1963)).

Scheme 2h

Scheme 2h illustrates another synthetic route to 2-haloketones of structure 42 which is particularly useful in that it employs acids 45 or activated carbonyl compounds such as 46 as precursors which are more readily available than the ketones 44. The acid 45 is converted to the acid halide 46 (L = Cl, Br or OCOR\(^{39}\)) by treating with a suitable halogenating reagent. For example, an acid chloride is formed by treating 45 with oxalyl chloride and catalytic amounts of DMF in dichloromethane. The acid chloride is converted to a diazoketone by treatment with trimethylsilyldiazomethane (Aoyama, T. et al., Tetrahedron Lett. 21:4461-4462 (1980)). The resulting diazoketone is converted to a 2-haloketone of structure 42 by treatment with a suitable mineral acid. For example a bromoketone is formed by treating the diazoketone in a suitable solvent such as acetonitrile (CH\(_2\)CN) with a solution of 30% hydrogen bromide (HBr) in acetic acid (Organic Synthesis Collective Vol III, 119, John Wiley and Sons, New York, Ed. Horning E. C.). In an alternative approach the acid 45 is converted to the mixed-anhydride 46 by treatment with a suitable chloroformate such as isobutyl chloroformate or tert-butyl chloroformate in a suitable solvent, such as tetrahydrofuran or dichloromethane, in the presence of a base such as N-methylmorpholine. The mixed anhydride 46 is converted to a diazoketone by treatment with trimethylsilyldiazomethane and the resulting diazoketone is converted to a haloketone in the manner described above.

Scheme 2i

When amide coupling as described in Scheme 2e is followed directly by amidination, compounds of Formula I where \(R_2\) or \(R_3\) is aminoacyl or aminooiminomethyl can be derived. Thus, coupling of acid 13 (or the corresponding acid chloride as previously described) with an amine \(R^{81}R^{82}NH\) can afford 130 which can be carried on to the amidine 131. Upon either longer or more vigorous additional treatment (for example, higher temperatures) with a Lewis acid-ammonia reagent as described in Scheme 1b, the amide group can be converted to an aminooiminomethyl group to give a bisamidine compound 132.
Scheme 3a

Acid 13 can also be converted to an amine 47 from which sulfonamides, ureas and urethanes can be formed (Formula I where \(R^2 \) or \(R^3 = \text{NR}^{32}\text{SO}_2\text{R}^{31} \), \(\text{NHCONR}^{51}\text{R}^{52} \) or \(\text{NHCOR}^{31} \), respectively). Scheme 3a illustrates this methodology for introduction of these three groups at \(R^2 \) of Formula I. Conversion of the acid 13 to an intermediate acyl azide can be followed by heating of such azide in the presence of an alcohol under Curtius rearrangement conditions to form the carbamate ester of the alcohol. Subsequent carbamate ester hydrolysis yields amine 47. The intermediate acyl azide may be synthesized by coupling the acid 13 to hydrazine through the acid chloride or by any of the amide coupling procedures discussed for Scheme 2e followed by nitrosation of the resulting hydrazide by any of the nitrosating agents discussed for conversion of 3 (\(R^1 = \text{NH}_2 \)) to 3 (\(R^1 = \text{H} \)) in Scheme 1c. More preferably conversion of 13 to 47 is carried out through treatment of acid 13 with diphenylphosphoryl azide in the presence of an alcohol, preferably tert-butanol, and a base, preferably triethylamine or DIEA, as shown in Scheme 3a, to give a tert-butyl carbamate that is readily decomposed to the salt of amine 47 on exposure to an acid, preferably HCl or trifluoroacetic acid in a suitable solvent such as CH\(_2\)Cl\(_2\). Further treatment with a base such as NaOH or preferably K\(_2\)CO\(_3\) or NaHCO\(_3\) provides the free base 47. Treatment of amine 47 with a sulfonyl chloride \(\text{R}^{31}\text{SO}_2\text{Cl} \) in the presence of an acid scavenger, such as pyridine or DIEA, followed by optional alkylation on nitrogen with an alkylating agent \(\text{R}^{32}\text{L} \) in the presence of a base such as K\(_2\)CO\(_3\), DIEA or more preferably sodium hydride, in a solvent such as THF, MeCN or CH\(_2\)Cl\(_2\) affords the sulfonamide functionality at \(R^2 \) (48). When necessary, this transformation can be catalyzed by the presence of 4-dimethylaminopyridine for less reactive sulfonyl chlorides. Similar treatment of amine 47 with an isocyanate \(\text{R}^{31}\text{NCO} \) or carbamyl chloride \(\text{R}^{31}\text{R}^{52}\text{COCl} \) affords the aminocarbonylamine functionality at \(R^2 \) (50). Similar treatment of amine 47 with an acid chloride \(\text{R}^{31}\text{COCl} \) affords the carbonylamine functionality at \(R^2 \) (52). Conversion of the esters in 48, 50 and 52 to amidines as previously mentioned gives the products 49, 51 and 53. Further conversion of the acylamino group of 53 as discussed for synthesis of 132 also provides access to the iminomethylamino group at \(R^2 \) (54).
Scheme 3b

Introduction of an aminosulfonyl group (including monoalkylaminosulfonyl and dialkylaminosulfonyl groups) for \(R^2 \) of Formula I can be carried out starting from amine such as 47 as well. Conversion to a sulfonyl chloride by the method of Gengnagel, et al. (U.S. Patent No. 3,947,512 (1976)) and treatment with an amine \(R^{34} \text{NH}_2 \) followed by optional alkylation on nitrogen with \(R^{35} \text{L} \) (under the sulfonylation and alkylation conditions described in Scheme 3a) provides 56 which is further converted to amidines 57 as previously described.

Scheme 4a

Scheme 4a illustrates the preparation of the compounds of Formula III and Examples 48-59 and 61-77. The amidine moiety of compounds of structure 60 can be protected with a protecting group \(P^1 \) that can be readily removed from 62 and 64 using methods known to those skilled in the art (Theodora W. Greene and Peter G. M. Wuts, John Wiley and Sons, Inc. 1991). For example, a t-butoxycarbonyl (BOC) protecting group can be removed by exposure to strongly acidic medium such as hydrogen chloride in a suitable solvent such as dioxane, or by trifluoroacetic acid in a suitable solvent such as methylene chloride. Benzylxycarbonyl (Cbz) protecting groups can be removed by catalytic hydrogenation using palladium on carbon as a catalyst in solvents such as ethanol or tetrahydrofuran.

In some cases, \(P^1 \) can be a solid support such as polystyrene or polyethylene glycol-grafted polystyrene which can be attached to the amidine moiety via a cleavable linker such as 4-(benzylxoy)benzylxoy-carbonyl (using carbonate Wang resin). Attaching an amidine to a solid support can be achieved by treating a solid support having a linker containing an appropriately activated functional group with the amidine under suitable conditions. For example, an amidine can be attached to Wang resin by treating para-nitrophenylcarbonate Wang resin with the amidine and a suitable base such as DBU in a suitable solvent such as DMF. When \(D \) is OH or SH the protected amidines 61 can be alkylated with carboxy-protected (protecting group is \(R^{36} \)) haloaliphatic acids, such as bromoacetic acid or bromopropionic acid in the presence of a suitable base such as cesium carbonate or DIEA, in a suitable solvent such as DMF with heating when necessary to give compounds of structure 62. When \(D \) is \(\text{NO}_2 \), the nitro group can be reduced prior to alkylation using an appropriate reducing agent, such as tin (II) chloride, in a suitable
solvent such as DMF, or by catalytic hydrogenation using palladium on carbon as a catalyst in solvents such as ethanol or tetrahydrofuran. Other useful carboxy protecting groups are well known in the art (Theodora W. Greene and Peter G. M. Wuts, John Wiley and Sons, Inc. 1991). For example, tert-butyl ester can be removed by exposure to strongly acidic medium such as hydrogen chloride in a suitable solvent such as dioxane or trifluoroacetic acid in a suitable solvent such as methylene chloride. Benzyl ester can be removed by catalytic hydrogenation using palladium on carbon as a catalyst in solvents such as ethanol or tetrahydrofuran or by base hydrolysis.

When protecting groups P¹ and R³⁶ in compounds 62 are orthogonal (as defined by the ability to remove one protecting group preferentially in the presence of the other), R³⁶ can be preferentially removed to give acids 63. For example when P¹ is BOC and R³⁶ is OME, the methyl ester can be removed by treating with a base such as sodium hydroxide in a suitable solvent such as aqueous tetrahydrofuran leaving the BOC group intact. When protecting groups P¹ and R³⁶ in compounds 62 are not orthogonal, both protecting groups are removed, and the amidine can be protected with a suitable protecting group such as BOC or a suitably functionalized resin. The protected amidine 63 can be treated with various amines under suitable amide coupling conditions, such as in the presence 1-hydroxy-7-azabenzotriazole (HOAt), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and DIEA to form amides of structure 64. The amidine protecting group can be then removed, for example by treating with an acid, such as trifluoroacetic acid in a suitable solvent such as methylene chloride, when a BOC protecting group is employed, to give amidines 65.

Scheme 4b

Scheme 4b illustrates a specific example which utilizes the method described in Scheme 4a. The amidine moiety of 66 can be monoprotected with a tert-butyloxy carbonyl group. The monoprotected phenoxyamidine 67 can be alkylated on the phenolic hydroxy group with an ester of 2-bromoacetic acid to give 68. In the case where the ester can be removed by base, it can be hydrolyzed with aqueous base, such as NaOH, to give the acid 69. This acid can be treated with various amines in the presence of 1-hydroxy-7-azabenzotriazole (HOAt), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and DIEA to form amides of
structure 70. The amines are unsubstituted, di- or mono-substituted aliphatic or aromatic amines. In some cases the amines are cyclic-amines such as piperazine and piperidine. The amides 70 are then treated with trifluoroacetic acid to give the amidines 71. In the case where the ester 68 is acid-labile, it can be treated with trifluoroacetic acid to give the amidino-acid 72. This amidine can be loaded on to an insoluble support, such as polystyrene or polyethyleneglycol-grafted polystyrene via a cleavable linker, such as Wang, which is functionalized as an activated carbonate such as p-nitrophenylcarbonate or succinimidyl carbonate. Generally this can be done by treating the activated carbonate resin with the amidine and a suitable base such as DBU in a suitable solvent such as DMF. The support-bound acid 73 can be treated with various amines in the presence of 1-hydroxy-7-azabenzotriazole (HOAt), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and DIEA to form amides. These amides are then cleaved from the solid support by treating with trifluoroacetic acid to give compounds of structure 71.

Scheme 5

Scheme 5 illustrates a synthetic route to amidines containing di-substituted thiazoles represented by compounds for which R² is Formula II and both R⁴ and R⁵ are non-hydrogen substituents. The ketoamide 74 can be converted to the mono-bromoketoamide by treating with bromine in acetic acid. Thiazoles 76 are formed by reacting the bromoketoamide with 10 under suitable conditions, preferably by heating the mixture in DMF or acetone. Amidines 77 are formed by heating 76 in toluene with trimethylaluminum and ammonium chloride. The amidines 77 are treated with strong acid such as HCl to give the acids 78. The amidines 78 are in one route protected with a suitable protecting group such as BOC to give 79. The protected amidines 79 are treated with various amines under suitable coupling conditions, such as in the presence of HOAt, HATU, and DIEA to form various amides. The amide protecting group can be then removed, for example by treating with trifluoroacetic acid in a suitable solvent such as methylene chloride, when a BOC protecting group is employed to give amidines 80. In a second route, the amidines 78 can be loaded onto an insoluble support, such as polystyrene or polyethyleneglycol-grafted polystyrene via a cleavable linker, such as Wang resin, which is functionalized as an activated carbonate ester, such as p-nitrophenylcarbonate or succinimidyl carbonate, to give a
resin-bound scaffold 81. The resin-bound acid 81 can be treated with various amines under suitable coupling conditions such as in the presence of HOAT, HATU and DIEA to form amides. These amides are then cleaved from the solid support by treating with trifluoroacetic acid to give amidines 80.

Scheme 6a

Scheme 6a illustrates the preparation of compounds of Examples 34, 35, 36, 37, 38, 39, 40, and 41. Compounds of this invention correspond to those of Formula I where R^2 is Formula II and where Ar is thiazole and R^{37} and R^{38} (R^8 and R^9 of Formula II) are phenyl, which can be additionally substituted. Starting from 2,5-dibromothiophene 90, treatment with lithium diisopropylamide followed by R^{21}L, where L is a leaving group, preferably a halogen, mesylate, tosylate, or methyl sulfate, and more preferably iodomethane or methyl sulfate, according to the procedure of Kano, et al., *Heterocycles* 20(10):2035 (1983), gives 91. Compound 91 can be treated with an appropriate base, preferably a lithium alkyl like n-butyllithium, sec-butyllithium, or t-butyllithium, and more preferably n-butyllithium, followed by carbon dioxide gas and conversion of the resulting carboxylate salt to the free acid with a mineral acid, preferably hydrochloric acid. Conversion to ester 21 can be carried out by preparation of the acid chloride using oxalyl chloride and treatment of this intermediate acid chloride with an alcohol R^{23} in an appropriate solvent, preferably dichloromethane, with an appropriate base, preferably pyridine. Compound 21 can be treated with copper (I) cyanide in refluxing dimethylformamide to give compound 9. Compound 9 can be treated with hydrogen sulfide gas in an appropriate solvent, preferably methanol, containing an appropriate base, preferably triethylamine to give compound 10. Compound 10 can be treated with an appropriate ketone where L is a leaving group, preferably halogen, mesyl, or tosyl, and most preferably bromo, refluxing in a suitable solvent, preferably, acetone, dimethylformamide, dimethyl acetamide, methyl ethyl ketone, or other polar aprotic solvents, and most preferably acetone to give compound 92. Compound 92 is treated with an appropriate reagent, preferably the aluminum amide reagent to give amidine 93.
Scheme 6b

Scheme 6b illustrates the preparation of the compound of Example 34, which corresponds to a compound for which R² is Formula II, and where Ar is thiazole and R⁸ and R⁹ (R³⁷ and R³⁸ in Scheme 6b) are phenyl, which can be optionally substituted. Starting from 2,5-dibromothiophene 90, treatment with n-butyllithium produces an anion which undergoes a rearrangement (Kano, S., et al, Heterocycles 20:2035 (1983)). Quenching with carbon dioxide gas and conversion of the resulting carboxylate salt to the free acid with a mineral acid, preferably hydrochloric acid, gives acid 94. Conversion to ester 95 can be carried out by preparation of the acid chloride using oxalyl chloride and treatment of this intermediate acid chloride with an alcohol R²²-OH in an appropriate solvent, preferably dichloromethane, with an appropriate base, preferably pyridine. Compound 95 can be treated with copper (I) cyanide in refluxing dimethylformamide to give compound 96. Compound 96 can be treated with hydrogen sulfide gas in an appropriate solvent, preferably methanol, containing an appropriate base, preferably triethylamine to give compound 97. Compound 97 can be treated with an appropriate ketone where L is a leaving group, preferably halogen, mesyl, or tosyl, and most preferably bromo, refluxing in a suitable solvent, preferably, acetone, dimethylformamide, dimethyl acetamide, methyl ethyl ketone, or other polar aprotic solvents, and most preferably acetone to give compound 98. Compound 98 is treated with an appropriate reagent, preferably the aluminum amide reagent (Al(CH₃)₂/Al₂(NH₂)₂Cl) to give amidine 99.

Scheme 7a

Scheme 7a illustrates the preparation of compounds for which R² is Formula II and Ar is thiazol-4-yl. As illustrated, the acids 13 can be converted to their acid chlorides by treatment with oxalyl chloride with dimethylformamide catalysis in methylene chloride, or by using thionyl chloride, either neat or in an organic solvent, at ambient or elevated temperature. Compounds are then homologated to the desired α-haloketones 100 by sequential treatment with trimethylsilyldiazomethane and hydrogen bromide. An alternative would be to substitute diazomethane (generated from Diazald⁰, Aldrich Chemical Co., Milwaukee, WI) for the trimethylsilyldiazomethane. Also, the conversion of 13 to 100 can be effected using the procedure derived for the synthesis of compound 42 from compound 46.
The alpha-haloketones 100 are then allowed to react with the appropriate thiourea (Scheme 7b) or thioamide derivative in an organic solvent, preferably acetone or dimethylformamide at 70 °C to give 2-aminothiazoles or thiazoles 101.

The thiazoles 101 can be treated with the aluminum amine reagent (Al(CH₃)₃/NH₄CL) formed at ambient temperature by the reaction of trimethylaluminum with ammonium chloride in an organic solvent, preferably toluene. The ester can then be converted to the amidines 102 at elevated temperatures, preferably higher than 80 °C.

Scheme 7b

As shown in Scheme 7b, amines 110 (or their hydrochloride salts) can be converted to their respective mono-substituted thioureas (methan-1-thiones) 112 by treatment with thiophosgene to form the intermediate isothiocyanates 111. Preferred conditions include treating the amine with thiophosgene in a biphasic solvent system composed of a halogenated solvent such as chloroform and an aqueous phase of saturated sodium bicarbonate. Alternatively, the reaction may be effected by treatment of 110 with a hindered amine and thiophosgene such as triethylamine or diisopropylethylamine in an organic solvent such as tetrahydrofuran or methylene chloride. Another alternative to forming isothiocyanates 111 is the direct treatment of primary amines and carbon disulfide in pyridine with dicyclohexylcarbodiimide (Jochims, Chem. Ber. 101:1746 (1968)).

Isothiocyanates 111 can be converted to thioureas 112 by treatment with an ammonia-alcohol solution, preferably a 2M ammonia in methanol or ethanol solution, at room temperature or elevated temperatures (>70°C). Alternatively, the thioureas 112 can be prepared directly form the appropriate urea (or thioamide from the appropriate amide when R⁸ =alkyl or aryl)) by treatment with Lawesson’s reagent (Lawesson, S.-O., et. al. Bull. Soc. Chim. Belg. 87:223, 293 (1978)).

Scheme 8

Scheme 8 illustrates the preparation of compounds of this invention where R² is Formula II and Ar is thiazole and R³⁷ and R³⁸ are phenyl which is further substituted by a sulfonlamino or carbonylamino group. Starting from thioamide 10, treatment with a nitro substituted 2-halo-
acetophenone, where the halogen is chloro, bromo, or iodo, preferably bromo, refluxing in a suitable solvent, preferably acetone, dimethylformamide, dimethyl acetamide, methyl ethyl ketone, or other polar aprotic solvents, and most preferably acetone. The reduction of nitroaryl compound 113 can be carried out with a suitable reducing agent, preferably tin (II) chloride, titanium (II) chloride, iron (III) chloride, lithium metal, sodium metal, catalytic hydrogenation over platinum or palladium catalyst, and most preferably 20% aqueous solution of titanium (III) chloride. The acylation of aniline 114 can be carried out with an appropriate acyl compound R^42 where L is a halogen, preferably chloro, in an appropriate solvent, preferably dichloromethane, containing a base, preferably pyridine, N-methylmorpholine, or diisopropylethylamine. Alternatively, the acylation of aniline 114 is carried out with an activated carboxylic acid compound R^42 where L is hydroxy activated with dicyclohexylcarbodiimide, ethyl-3-(diethylamino)propylcarbodiimide (EDAC), O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), or pentafluorophenyl. The sulfonation of aniline 114 can be carried out with and appropriate sulfonyl chloride compound R^41 in an appropriate solvent, preferably dichloromethane, containing a base, preferably N-methyl morpholine, diisopropylethylamine, or pyridine, most preferably N-methyl morpholine, with or without a condensation catalyst, preferable dimethylaminopyridine (DMAP). The amidinylation of compounds 115 and 117 can be carried out with an appropriate reagent, preferably the aluminum amide reagent (Al(Ch₃)₂/NH₄Cl).

Scheme 9

Scheme 9 illustrates the preparation of compounds of Formula I, for which one of R⁵ and R⁶ is a non-hydrogen substituent. The amidines 5 are converted to the amidoximes 119 by heating with hydroxylamine in a suitable solvent such as ethanol. The cyanoamidines 120 are prepared by heating the amidines 5 with cyanamide in a suitable solvent such as ethanol. (Huffman, K.R. and Schaeffer, F., J. Amer. Chem. Soc. 28:1812 (1963). Alternatively 5 can be heated with an amine such as methylamine to give the N-alkylated amidines 121.

The following examples are illustrative, but not limiting, of the method and compositions of the present invention. Other suitable modifications and adaptations of the variety of
conditions and parameters normally encountered and obvious to those skilled in the art are within the spirit and scope of the invention.
Scheme 1a

\[
\begin{align*}
\text{X} = \text{O, S} \\
\text{W} = \text{CN, COOH, CONH}_2, \text{CO}_2\text{R}^{23} \\
\text{L} = \text{Br}
\end{align*}
\]

Scheme 1b

\[
\begin{align*}
\text{Z} = \text{H, alkyl} \\
\text{Z} = \text{NR}^2\text{R}^6
\end{align*}
\]
Scheme 1c

$$\text{CS}_2 + R^{22}CH_2R^{22} + R^{34}L + \text{WCH}_2L \rightarrow \text{base}$$

$$R^{22} = \text{CN, CO}_2R^{23}, \text{CONH}_2$$
$$R^{34} = \text{CN, CO}_2R^{23}$$
$$W = \text{CN, CO}_2R^{23}, \text{CONH}_2$$
$$L = \text{Cl, Br, I, OTs, OMs, OTf}$$

$$X = \text{S}$$
$$R^{21} = \text{SR}^{54}$$
$$R^1 = \text{OH, NH}_2$$
$$W = \text{CN, CONH}_2, \text{CO}_2R^{23}$$

$$\text{diacetatization}$$
$$R^1 = \text{NH}_2$$

Scheme 1d

$$R^{21} = \text{H}$$
$$L = \text{Br}$$

$$X = \text{O, S}$$
$$W = \text{CN, COOH, CONH}_2, \text{CO}_2R^{23}$$
Scheme 2a

1. \(X = O, S \)
 \(W = \text{COOH} \)
 \(L = \text{Br} \)

2. \(R^{21}M \)
 \(M = \text{Li, Na, K} \)

3. \(R^{21} \)

4. \(\text{MCN} \)

5. \(\text{(COCl)}_2 \)
 \(\text{then } R^{23} \text{OH} \)
 \(\text{or } \text{CH}_2\text{N}_2 \)
 \((R^{23} = \text{Me}) \)

6. \(R^{24} \)

7. \(L = \text{Cl, Br, I, OMs, OTs} \)

8. \(\text{All(CH}_3\text{)}_2 \)
 \(\text{NH}_4\text{Cl} \)
 \(\text{Toluene} / \Delta \)

9. \(R^{23} \)

10. \(L = \text{Cl, Br, I, OMs, OTs} \)

11. \(R^{24} \)

12. \(R^{25} \)
Scheme 2b

1) (COCl)$_2$
2) R26COCH(R27)NH$_2$

or

1) (COCl)$_2$
2) R26COCH$_2$NH$_2$
3) Optional alkylation with base / R27L

L = Cl, Br, I, OMs, OTs

POCl$_3$

NH$_2$OAc

HOAc

P$_2$S$_5$

or Lawesson's reagent

Al(CH$_2$)$_3$/ NH$_2$Cl

Toluene / Δ

Al(CH$_2$)$_3$/ NH$_2$Cl

Toluene / Δ

H$_2$N

NH

H$_2$N

NH

H$_2$N

NH
Scheme 2c

2

\[
\begin{align*}
CH_3NH_2 \\
(\text{R}^{23} = \text{Me}) \\
\text{or (COCl)}_2 \\
\text{then R}^{23}\text{OH}
\end{align*}
\]

\[X = \text{O, S}\]

\[W = \text{COOH}\]

\[L = \text{Cl, Br, I, OTf}\]

\[\text{Pd(0) catalyst} \quad \text{SnR}^{28}_{3}\]

\[\text{NH}_3 / \text{NH}_4\text{Cl} \quad \text{or} \]

\[1) \text{ Mn}_3 \]

\[2) \text{ H}_2 / \text{Pd (cat)} \quad \text{HCl}\]

\[\text{R}^{28}\text{CONHMe}\]

\[\text{POCl}_3 \quad \text{NH}_4\text{OAc} \quad \text{HOAc} \quad \text{or Lawesson's reagent}\]

\[\text{Al(} \text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \quad \text{Toluene} / \Delta \]

\[\text{Al(} \text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \quad \text{Toluene} / \Delta \]

\[\text{Al(} \text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \quad \text{Toluene} / \Delta \]

\[\text{R}^{28}\text{CONHMe}\]

\[\text{R}^{23}\text{CONHMe}\]

\[\text{R}^{23}\text{CONHMe}\]

\[\text{R}^{23}\text{CONHMe}\]

\[\text{R}^{23}\text{CONHMe}\]
Scheme 2d

1. base
 \((\text{CH}_3)_2\text{SnCl}\)

2. \((\text{CH}_3)_2\text{SiCHN}_2\) or \(\text{R}^2\text{L}/\text{base}\)

\(\text{R}^{21}\)

\((\text{CH}_3)_2\text{SnCl}\)

\(\text{R}^{21}\)

\(\text{Sn}(\text{R}^{20}_3)\)

\(\text{R}^{43}\text{L}_n\) \((n = 1-2)\)

\(\text{Pd}(\text{PPh}_3)_4\)

\(\text{DMF}, 120^\circ\text{C}\)

\(\text{L} = \text{Br, I, OTf}\)

\(\text{R}^{43} = \text{aryl, heteroaryl, allyl, vinyl}\)

When \(n = 1\)

\(\text{NH}_4\text{Cl}\)

\(\text{Al}(\text{CH}_3)_3\)

\(\text{Toluene}/\Delta\)

\(\text{R}^{44}\) \(= \text{aryl, hetero-aryl}\)

When \(n = 2\)

\(\text{R}^{44}\) \(= \text{aryl, hetero-aryl}\)

\(\text{R}^{44}\text{B(OH)}_2\)

\(\text{Pd}(\text{PPh}_3)_4\)

\(\text{DMF}, 90^\circ\text{C}\)

\(\text{K}_2\text{CO}_3\)

\(\text{NH}_4\text{Cl}\)

\(\text{Al}(\text{CH}_3)_3\)

\(\text{Toluene}/\Delta\)

\(\text{HN} = \text{NH}_2\)

\(\text{R}^{21}\)

\(\text{R}^{43}\)

\(\text{R}^{44}\)

\(\text{HN} = \text{NH}_2\)

\(\text{R}^{21}\)

\(\text{R}^{43}\)

\(\text{R}^{44}\)

\(\text{HN} = \text{NH}_2\)

\(\text{R}^{21}\)

\(\text{R}^{43}\)

\(\text{R}^{44}\)

\(\text{HN} = \text{NH}_2\)
Scheme 2e

Scheme 2f
Scheme 2g

\[
\begin{align*}
R^{37}C_{R^{38}} & \xrightarrow{\text{halogenation}} R^{37}C_{L} \\
44 & \xrightarrow{\text{L = halogen}} 42
\end{align*}
\]

Scheme 2h

\[
\begin{align*}
R^{37}COOH & \xrightarrow{\text{1) TMSCHN}_2} R^{37}C_{L} \\
45 & \xrightarrow{\text{2) HL \quad L = Cl, Br \quad R^{38} = H}} 42 \\
& \quad \text{L = Cl, Br, OCOR}^{39} \\
& \quad (R^{39} = \text{iBu, tBu})
\end{align*}
\]

Scheme 2i

\[
\begin{align*}
& X = N, O, S \\
& 13 & \xrightarrow{\text{1) (COCl)}_2} 130 \\
& \quad \xrightarrow{\text{2) R}^{37}\text{R}^{38}\text{NH}} 130 \\
& \quad \xrightarrow{\text{Al(CHO)}_3/\text{NH}_4\text{Cl \quad Toluene/\Delta}} 132
\end{align*}
\]
Scheme 3a

\[
\begin{align*}
\text{R}^{21} \text{COOH} & \xrightarrow{1)} (\text{PhO})_3\text{P(O)N}_3 \quad \text{Et,NH-BuOH} \\
& \quad 2)} \text{CF}_{3}\text{COO} / \text{CH}_{2}\text{Cl}_2 \\
& \quad 3)} \text{aq NaHCO}_3 \\
\end{align*}
\]

\[
\begin{align*}
\xrightarrow{1)} \text{R}^{21}\text{SO}_2\text{Cl} \\
\xrightarrow{2)} \text{R}^{21}\text{L} / \text{base} \quad \text{(optional)}
\end{align*}
\]

\[
\begin{align*}
\text{R}^{21}\text{NCO} & \quad \text{or} \quad \text{R}^{21}\text{R}^{22}\text{NCOCl} \\
\xrightarrow{\text{R}^{21}\text{COCl}}
\end{align*}
\]

\[
\begin{align*}
\text{R}^{21}\text{SO}_2\text{R}^{21} & \xrightarrow{\text{Al(\text{CH}_3)_2\text{NH}_2Cl}} \text{Toluene/\Delta} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{Al(\text{CH}_3)_2\text{NH}_2Cl}} \text{Toluene/\Delta} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{Al(\text{CH}_3)_2\text{NH}_2Cl}} \text{Toluene/\Delta} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{Al(\text{CH}_3)_2\text{NH}_2Cl}} \text{Toluene/\Delta}
\end{align*}
\]

\[
\begin{align*}
\text{R}^{21}\text{NHCO} & \xrightarrow{\text{R}^{21}\text{COCl}} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{R}^{21}\text{COCl}} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{R}^{21}\text{COCl}} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{R}^{21}\text{COCl}} \\
\text{R}^{21}\text{NHCONR}^{21}\text{R}^{22} & \xrightarrow{\text{R}^{21}\text{COCl}} \\
\end{align*}
\]
Scheme 3b

\[
\begin{align*}
47 & \xrightarrow{\text{HCl/NaNO}_2, \text{CuSO}_4/\text{NaHSO}_3} 55 \\
55 & \xrightarrow{1) \text{R}^{24}\text{NH}_2} \xrightarrow{2) \text{R}^{25}\text{L}/\text{base} (\text{optional}) 57 \\
56 & \xrightarrow{\text{Al(}\text{CH}_3)_2/\text{NH}_2\text{Cl}, \text{Toluene}/\Delta} 57
\end{align*}
\]

Scheme 3c

\[
\begin{align*}
\text{X} = \text{O, S} \\
\text{L} = \text{Cl, Br, I, OTs, OMs}
\end{align*}
\]
Scheme 4a

\[\text{ protecting (P1) group introduction} \]

\[\text{1. optional reduction} \]
\[\text{2. Br(CH}_2\text{)}_3\text{COR}^{36} \]
\[\text{DMF, 78°C} \]
\[\text{n = 1-4} \]

\[\text{When P1 and R}^{36} \text{ are orthogonal} \]
\[\text{R}^{36} \text{ removal} \]

\[\text{When P1 and R}^{36} \text{ are not orthogonal} \]
\[\text{1. P1 and R}^{36} \text{ removal} \]
\[\text{2. protecting (P1) group introduction} \]

\[\text{HOAT} \]
\[\text{HATU} \]
\[\text{DMF} \]

\[\text{P1 removal} \]
Scheme 4b

\[\text{HN-} \text{NH}_2 \quad 65 \]

\[\text{HN-} \text{NH}_2 \quad 68 \]

When \(R^{36} = \text{OMe} \)

\[\text{HN-} \text{NH}_2 \quad 69 \]

When \(R^{36} = \text{OBu}^t \)

50% TFA/DCM

2% H\(_2\)O

\[\text{HN-} \text{NH}_2 \quad 70 \]

DBU, DMF

Hoat, HATU

DMF

TFA salt

Insoluble support

\[\text{HN-} \text{NH}_2 \quad 72 \]

1. HOAt

HATU

HN

Hoat

DMF

2. 50% TFA/DCM

2% H\(_2\)O

\[\text{HN-} \text{NH}_2 \quad 73 \]

Linker

Insoluble support

\[\text{HN-} \text{NH}_2 \quad 71 \]
Scheme 5

[Chemical structures and reactions as shown in the image]
Scheme 6a

1) LDA, -78°C, 2) R^{21}-L
L = Cl, Br, I, OMe, OTs, OSO_2OMe

1) base, -78°C
2) CO_2(g)
3) 6N HCl (aq)

1) (COCl)_2, CH_2Cl_2, DMF
2) R^{23}-OH, Pyridine

CuCN, DMF, reflux

H_2S, TEA, MeOH

Acetone, reflux

Al(CH_3)_3, NH_4Cl
Toluene, reflux
Scheme 6b

1) Butyllithium, -78°C.
2) CO₂(g)
3) 6N HCl (aq)

1) (COCl)₂, CH₂Cl₂, DMF
2) R₃₃-OH, Pyridine

CuCN, DMF, reflux

H₂S, TEA, MeOH

L = Cl, Br, I, OTs, OMs

Al(CH₃)₃, NH₄Cl
toluene, reflux

Scheme 6b
Scheme 7a

\[
\begin{align*}
\text{13} & \quad \text{OR}^{23} \\
\text{R}^{23} & = \text{CH}_3 \\
\end{align*}
\]

1. oxalyl chloride
2. TMSCHN\textsubscript{2}, then 30\% HBr-acetic acid

\[
\begin{align*}
\text{100} & \quad \text{OR}^{23} \\
\text{R}^9 & = \text{H} \\
\text{acetone or DMF} \\
70^\circ\text{C} \\
\end{align*}
\]

\[
\begin{align*}
\text{102} & \quad \text{NH}_2 \\
\text{AlMe}_3, \text{NH}_4\text{Cl} \\
toluene, 118^\circ\text{C} \\
\end{align*}
\]

Scheme 7b

\[
\begin{align*}
\text{110} & \quad \text{H}_2\text{NR}^{40} \\
\text{CHCl}_3, \text{sat'd. NaHCO}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{111} & \quad \text{NH}_2\text{-solvent} \\
\text{H}_2\text{N} \quad \text{NR}^{40} \\
\text{112} & \\
\end{align*}
\]
Scheme 8

\[\text{Scheme 8 diagram with chemical structures and reactions.} \]
 Scheme 9

![Chemical structures and reactions](image)

 Scheme 10

![Chemical structures and reactions](image)
Scheme 11

\[
\begin{align*}
& \text{X} = \text{O, S} \\
& \text{L} = \text{Cl, Br, I, OSO}_2\text{CF}_3 \\
& \text{R}^{56}, \text{R}^{57}, \text{R}^{58} \\
& \text{Pd catalyst ligand base} \\
& \text{Al(}\text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \\
& \text{Toluene} / \Delta
\end{align*}
\]

Scheme 12

\[
\begin{align*}
& \text{X} = \text{O, S} \\
& \text{R}^{56}, \text{R}^{57}, \text{R}^{58} \\
& \text{reducing agent} \\
& \text{Al(}\text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \\
& \text{Toluene} / \Delta
\end{align*}
\]

Scheme 13

\[
\begin{align*}
& \text{1)} \text{CSCl}_2, \text{CH}_2\text{Cl}_2, \text{aq. NaHCO}_3 \\
& \text{47} \\
& \text{2)} \text{NH}_3 - \text{MeOH} \\
& \text{R}^{29} \\
& \text{X} = \text{O, S} \\
& \text{R}^{37}, \text{R}^{38} \\
& \text{Al(}\text{CH}_3\text{)}_3 / \text{NH}_4\text{Cl} \\
& \text{Toluene} / \Delta
\end{align*}
\]
Example 1

4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine

Trimethylaluminum (2.0 M in toluene, 2 mL) was added dropwise over 10 min to a suspension of ammonium chloride (216 mg) in toluene (2 mL), stirred under N₂ at 0°C. When gas evolution moderated, the mixture was stirred at 25°C for 30 min, when most of the solid had dissolved, methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (100 mg, Maybridge Chemical Co., Cornwall, U.K.) was added in one portion. This solution was heated to reflux in stages over 1 h. After 2.5 h of reflux, the reaction mixture was allowed to cool to 25°C, and was poured on to a vigorously stirred slurry of silica gel (2 g) in CHCl₃ (20 mL). After 20 min the solids were collected by suction filtration, and washed with MeOH (3×10 mL). The combined filtrates were evaporated to dryness, and the residual yellow solid was subjected to preparative thin-layer chromatography to obtain 77 mg of 4-[4-(4-chlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine as a yellow solid. ¹H-NMR (DMSO-d₆; 300 MHz) δ 2.80 (s, 3H), 7.55-7.59 (m, 1H), 8.04-8.13 (m, 1H), 8.31 (s, 1H), 8.69 (s, 1H), 9.2 (broad s, 4H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C₁₄H₁₂ClN₃S₃, 365.9 (M+H), found 366.9.

Example 2

5-Methylthiothiophene-2-carboxamidine

5-(Methylthio)thiophene-2-carbonitrile (100 mg, Maybridge Chemical Company, Cornwall, UK) was taken in a dry 2 dram vial. To this a solution of saturated HCl in anhydrous MeOH (4 mL) was added. The vial was tightly capped and the mixture was stirred for 24 h. The vial was cooled in an ice bath, uncapped and N₂ was bubbled through the solution to remove dissolved HCl. The solvent was removed under reduced pressure and the resulting residue was dried under high vacuum for 24 h. A solution of methanolic ammonia (2M NH₃ in MeOH) was added to the vial, and the mixture was stirred for 3 days. Methanol was removed under vacuum and the resulting residue was subjected to preparative thin-layer chromatography to obtain 5-(methylthio)thiophene-2-carboxamidine as a yellow solid. ¹H-NMR (DMSO-d₆; 300 MHz) δ 2.64 (s, 3H), 7.22 (d, J = 3.75 Hz, 1H), 7.95 (broad
d, J = 3.33 Hz, 1H), 9.4 (broad s, 4H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C_{8}H_{8}N_{2}S_{2}, 172.3 (M+H), found 173.0.

Example 3

5-Methylthio-4-phenylthiophene-2-carboxamide

Methyl 5-methylthio-4-phenylthiophene-2-carboxylate (100 mg, Maybridge Chemical Company, Cornwall, UK) was treated in a manner similar to that for Example 1, to give 50 mg of 4-phenyl-5-methylthiothiophene-2-carboxamide as an off-white solid. ^1H-NMR (DMSO-d$_6$; 300 MHz) δ 2.65 (s, 3H), 7.39-7.60 (m, 5H), 8.27 (s, 1H), 9.2 (broad s, 4H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{12}$H$_{12}$N$_2$S$_2$, 248.4 (M+H), found 249.0.

Example 4

4-[4-(2,4-Dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide

Methyl 4-[4-(2,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (100 mg, Maybridge Chemical Company, Cornwall, UK) was treated in a manner similar to that for Example 1, to give 60 mg of 4-[4-(2,4-dichlorophenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamide as a yellow solid. ^1H-NMR (DMSO-d$_6$; 300 MHz) δ 2.77 (s, 3H), 7.6 (dd, J = 2.2 and 8.5 Hz, 1H), 7.79 (d, J = 2.2 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 8.3 (s, 1H), 8.6 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{15}$H$_{11}$N$_3$S$_2$Cl$_2$, 400.0 (M+H), found 400.1.

Example 5

4-(4-Methyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide

Methyl 4-(4-methyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (100 mg, Maybridge Chemical Company, Cornwall, UK) was treated in a manner similar to that for Example 1, to give 40 mg of 4-(4-methylthiazol-2-yl)-5-methylthiothiophene-2-carboxamide as a yellow solid. ^1H-NMR (DMSO-d$_6$; 300 MHz) δ 2.43 (s, 3H), 2.7 (s, 3H), 7.38 (s, 1H), 8.28 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{16}$H$_{11}$N$_3$S$_3$, 270.0 (M+H), found 270.1.
Example 6

a) **Methyl 5-methylthio-4-(4-(2-naphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate:** Methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (40 mg, Maybridge Chemical Company, Cornwall, UK) was reacted with 2-bromo-2’-acetonaphthone (1.1 eq) in a manner similar to Example 13 step (a) to give 40 mg of methyl 5-methylthio-4-(4-(2-naphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate. ¹H NMR (CDCl₃/CD₃OD; 300 MHz) δ 3.71 (s, 3H), 3.94 (s, 3H), 7.47-7.55 (m, 2H), 7.67 (s, 1H), 7.84-7.99 (m, 3H), 8.08 (dd, J = 1.75 Hz and 8.6 Hz, 1H), 8.3 (s, 1H), 8.5 (s, 1H).

b) **5-Methylthio-4-(4-(2-naphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine:** Methyl 5-methylthio-4-(4-(2-naphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate, (40 mg) as prepared in the previous step was treated in a manner similar to that for Example 1, to give 30 mg of 4-[4-(naphth-2-yl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine. ¹H NMR (DMSO-d₆; 300 MHz) δ 2.83 (s, 3H), 7.52-7.69 (m, 2H), 7.95-8.01 (m, 2H), 8.05 (d, J = 8.6 Hz, 1H), 8.24 (dd, J = 1.69 Hz and 8.6 Hz, 1H), 8.4 (s, 1H), 8.65 (s, 1H), 8.74 (s, 1H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Caled. for C₁₉H₁₂N₃S₃, 382.1 (M+H) found 382.0.

Example 7

Synthesis of 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride

a) **Synthesis of methyl 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate:** 27 mg (0.109 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 2 mL of reagent grade acetone. 4’-Phenyl-2-bromoacetophenone (33 mg; 0.120 mmol; Aldrich Chemical Co., Milwaukee, WI) was added and the solution was allowed to reflux for 2.5 h. The solution was allowed to cool and solid was filtered and washed with methanol and dried *in vacuo* to afford 30 mg (65% yield) of methyl 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate. ¹H NMR (DMSO-d₆, 300 MHz) δ
b) Synthesis of 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride: To a stirred suspension of 0.473 mmol (25 mg) of ammonium chloride (Fisher Scientific Pittsburgh, PA) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 237 μL (0.473 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 0°C for 30 min after which 20 mg (0.0473 mmol) of methyl 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ to afford 10 mg (53% yield) of 5-methylthio-4-[4-(4-phenylphenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride. Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₃₁H₂₇N₅S₂: 408.1(M+H), found 408.0.

Examples 8 & 9

Synthesis of 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride and 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 32 mg (0.133 mmol) of methyl 4-(aminothiooxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 2 mL of reagent grade acetone. 3'-Methoxy-2-bromo acetophenone (0.155 mmol; 36 mg; Aldrich Chemical Co.) was added and the solution was allowed to reflux for 2.5 h. The solution was allowed to cool and a solid was filtered and washed with methanol and dried in vacuo. The solid was purified on 1 mm silica plate eluting with 25% ethyl acetate/hexane to afford 31 mg (63% yield) of methyl 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.
b) **Synthesis of 4-(4-(3-methoxyphenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamidine hydrochloride and 4-(4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamidine hydrochloride:** To a stirred suspension of 0.821 mmol (44 mg) of ammonium chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, was added 411 μL (0.821 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) via syringe over 10 min and then let stir at 0°C for 30 min after which 31 mg (0.0821 mmol) of methyl 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ to afford 4.4 mg (15% yield) of 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride and 4.2 mg (15% yield) of 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. 4-[4-(3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: ¹H-NMR (CD₃OD; 300 MHz) δ 8.5 (s, 1H), 7.9 (s, 1H), 7.59-7.65 (m, 2H), 7.33-7.38 (m, 1H), 6.91-6.95 (m, 1H), 3.87 (s, 1H), 2.8 (s, 3H) Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁ᵢH₁₃N₄OS₂: 361.5(M+H), found 362.2. 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: ¹H-NMR (CD₃OD; 300 MHz) δ 8.5 (s, 1H), 7.81 (s, 1H), 7.26-7.51 (m, 2H), 7.22-7.25 (m, 1H), 6.77-6.81 (m, 1H), 2.8 (s, 3H) Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₁H₁₅N₄OS₂: 347.5(M+H), found 348.0.

Example 10

Synthesis of 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine hydrochloride

a) **Synthesis of methyl 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate:** 33 mg (0.133 mmol) methyl 4-(aminothiooxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 2 mL of reagent grade acetone. 2-Bromoacetophenone (0.133 mmol; 27 mg; Aldrich Chemical Co.)
was added and the solution was allowed to reflux for 2.5 h. The solution was allowed to cool and the solid was filtered and washed with methanol and dried in vacuo. The solid was purified on 1 mm silica plate eluting with 25% ethyl acetate/hexane mixture to afford 46 mg (90% yield) of methyl 5-methylthio-4-(4-phenyl[(1,3-thiazol-2-yl)]thiophene-2-carboxylate.

b) Synthesis of 5-methylthio-4-(4-phenyl[(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride: To a stirred suspension of 1.32 mmol (71 mg) of ammonium chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 662 µL (1.32 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 0°C for 30 min after which 46 mg (0.133 mmol) of methyl 5-methylthio-4-(4-phenyl[(1,3-thiazol-2-yl)]thiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 2 g silica SPE column eluting with 10% methanol/CH₂Cl₂ to afford 32.5 mg (75% yield) of 5-methylthio-4-(4-phenyl[(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride.

¹H-NMR (DMSO-d₆; 300 MHz) δ 8.7 (s, 1H), 8.25 (s, 1H), 8.07-811 (m, 2H), 7.37-7.53 (m, 3H), 2.8 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₅H₁₀N₃S₃: 331.5(M+H), found 332.1.

Example 11

Synthesis of 5-methylthio-4-[(4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 5-methylthio-4-[(4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate: 38 mg (0.141 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 2 mL of reagent grade acetone. 2-Bromo-4'-nitroacetophenone (0.155 mmol; 38 mg; Aldrich Chemical Co.) was added and the solution was allowed to reflux for 2.5 h. The solution was allowed to cool and a solid was filtered and washed with methanol and dried in vacuo. The crude product was dissolved in CH₂Cl₂ and 0.141 mmol of N-(2-mercaptopo)aminoethyolphostyrene resin (Calbiochem, San Diego, CA; 1.28mmol/g; 110 mg)
was added and allowed to stir overnight. The solution was filtered, concentrated and dried to afford 60 mg (90% yield) of crude methyl 5-methylthio-4-[4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate.

b) **Synthesis of 5-methylthio-4-[4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride:** To a stirred suspension of 1.66 mmol (90 mg) of ammonium chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 830 μL (1.66 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 0°C for 30 min after which 60 mg (0.166 mmol) of 5-methylthio-4-[4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ to afford 12 mg (19% yield) of 5-methylthio-4-[4-(4-nitrophenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride. ¹H-NMR (CD₂OD, 300 MHz) δ 8.58 (s, 1H), 8.32-8.33 (m, 4H), 8.24 (s, 1H), 2.83 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₁H₁₂N₄O₂S₂: 376.5(M+H), found 377.3.

Example 12

Synthesis of 4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) **Synthesis of methyl 4-(4-(2H,3H-benzo[3,4-e]1,4-dioxin-6-yl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate:** 40 mg (0.162 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 2 mL of reagent grade acetone. 1-(2H,3H-benzo[e]1,4-dioxin-6-yl)-2-bromoethan-1-one (0.162 mmol; 42 mg; Maybridge Chemical Co. LTD., Cornwall, U.K.) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and allowed to stir for 2 days after which the reaction solution was concentrated in vacuo. The crude product was dissolved in 50 mL of CH₂Cl₂, and partitioned between 50 mL of 1 N NaOH (aq.). The organic layer was obtained and dried over sodium
sulfate and concentrated to afford 60 mg (90% yield) of methyl 4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate.

b) **Synthesis of 4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride:** To a stirred suspension of 1.62 mmol (86 mg) of ammonium chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 810 μL (1.62 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 0°C for 30 min after which 60 mg (0.162 mmol) of methyl 4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ to afford 47 mg (75% yield) of 4-[4-(3,4-ethylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride.

1H-NMR (CD₃OD, 300 MHz) δ 8.53 (s, 1H), 7.73 (s, 1H), 7.56 (d, J = 2 Hz, 1H), 7.5 (dd, J = 2.1 Hz and 8.4 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.28 (s, 4H), 2.8 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₇H₁₅N₃O₂S₃: 389.5(M+H), found 390.1.

Example 13

Synthesis of 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) **Synthesis of methyl 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate:** 30 mg (0.122 mmol) of methyl 4-(aminothiooxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 1.2 mL of reagent grade acetone. 2-bromo-4'-methoxy acetophenone (0.146 mmol; 28 mg; Aldrich Chemical Co.) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and a solid was filtered and washed with methanol and dried *in vacuo* to afford 46 mg (90% yield) of methyl 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) **Synthesis of 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:** To a stirred suspension of 1.22 mmol (66 mg) of ammonium
chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 612 μL (1.22 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 0°C for 30 min after which 46 mg (0.122 mmol) of 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 500 mg of silica in 10 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ to afford 32 mg (73% yield) of 4-[4-(4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride.

¹H-NMR (CD₃OD; 300 MHz) δ 8.53 (s, 1H), 7.99-7.96 (d, J = 7 Hz, 2H), 7.75 (s, 1H), 7.00-7.02 (d, J = 5 Hz, 2H), 3.9 (s, 3H), 2.8 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₆H₁₅N₂O₂S: 362.0(M+H), found 362.2.

Example 14

Synthesis of 4-[4-(3,4-propylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(3,4-propylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate: 42 mg (0.170 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 5 mL of reagent grade acetone. 3',4'-Propylenedioxy-2-bromoacetophenone (0.170 mmol; 28 mg; Maybridge Chemical Co. LTD., Cornwall, U.K.) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and a solid was filtered and purified on a 1 mm silica prep plate eluting with 20% ethyl acetate/hexane and dried in vacuo to afford 42 mg (59% yield) of methyl 4-[4-(3,4-propylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(3,4-propylenedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride: To a stirred suspension of 1.01 mmol (54 mg) of ammonium chloride (Fisher Scientific) in 2 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 510 μL (1.01 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and
then let stir at 0°C for 30 min after which 42 mg (0.101 mmol) of methyl 4-[4-(3,4-
proplynedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-carboxylate was added to
solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a
slurry of 500 mg of silica in 20 mL of chloroform. The silica was poured onto a sintered
glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated to afford 20
mg (50% yield) of 4-[4-(3,4-proplynedioxyphenyl)thiazol-2-yl]-5-methylthiothiophene-2-
carboxamidine hydrochloride. ¹H-NMR (CD₂OD; 300 MHz) δ 8.53 (s, 1H), 7.78 (s, 1H),
7.68 (d, J = 2.2 Hz, 1H), 7.6 (dd, J = 2.2 Hz and 8.4 Hz, 1H), 7.0 (d, J = 8.3 Hz; 1H), 4.19-
4.28 (m, 4H), 2.77 (s, 3H), 2.18-2.23 (m, 2H). Mass Spectrum (MALDI-TOF, CHCA matrix,
m/z) Calcd. for C₁₅H₁₇N₅O₂S₂: 404.1 (M+H), found 404.1.

Example 15

Synthesis of 5-methylthio-4-(4-(2-thienyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine
acetate

a) Synthesis of 2-bromo-1-(2-thienyl)ethan-1-one: To a solution of 500 mg (3.96
mmol) of 2-acetyl thiophene (Aldrich Chemical Co.) dissolved in 20 mL of CHCl₃, was
added 1 drop of 30% HBr/CH₂COOH (Aldrich Chemical Co.) followed by 3.96 mmol (633
mg; 204 µL) of bromine (Aldrich Chemical Co.) added dropwise over 30 min. The reaction
was allowed to stir for 1 h. The solution was concentrated to an oil and dried in vacuo. The
 crude product was purified on 1 mm silica prep plates eluting with neat CH₂Cl₂ to obtain 300
mg (37% yield) of 2-bromo-1-(2-thienyl)ethan-1-one. ¹H-NMR (CDCl₃; 300 MHz) δ 7.8 (m,
2H), 7.18 (m, 1H), 4.37 (s, 2H).

b) Synthesis of methyl 5-methylthio-4-(4-(2-thienyl)(1,3-thiazol-2-yl))thiophene-2-
carboxylate: 44 mg (0.176 mmol) of methyl 4-(aminothiooxomethyl)-5-
methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was
dissolved in 3 mL of reagent grade acetone. 2-Bromo-1-(2-thienyl)ethan-1-one (0.176 mmol;
36 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to
cool and was concentrated. The crude product was dissolved in 20 mL of CH₂Cl₂ and
washed with 20 mL of 1N HCl (aq.). The organic layer was obtained and dried over sodium
sulfate to afford 115 mg (80% yield) of crude methyl 5-methylthio-4-(4-(2-thienyl)(1,3-
thiazol-2-yl))thiophene-2-carboxylate.
c) **Synthesis of 5-methylthio-4-(4-(2-thienyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine acetate:** To a stirred suspension of 2.80 mmol (150 mg) of ammonium chloride (Fisher Scientific) in 5 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 1.5 mL (2.8 mmol) was added 2M trimethylaluminum in toluene (Aldrich Chemical Co.) via syringe over 15 min and then let stir at 0°C for 25 min. After which 115 mg (0.280 mmol) of methyl 5-methylthio-4-(4-(2-thienyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate in 5 mL of anhydrous toluene was added to solution and allowed to reflux for 1.5 h. The reaction mixture was quenched by pouring over a slurry of silica in CH₂Cl₂. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ with 1% CH₃COOH to afford 40 mg (43% yield) of 5-methylthio-4-(4-(2-thienyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine acetate.

1H-NMR (CD₃OD; 300 MHz) δ 8.52 (s, 1H), 7.74 (s, 1H), 7.58-7.6 (dd, J = 2 Hz and 5 Hz, 1H), 7.43-7.41 (dd, J = 2 Hz and 5 Hz, 1H), 7.12-7.09 (m, 1H), 2.79 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₃H₁₁N₃S₄: 338.0 (M+H), found 337.9.

Example 16

Synthesis of 4-[4-(3-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride

a) **Synthesis of methyl 4-[4-(3-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate:** 99 mg (0.400 mmol) of methyl 4-(aminothioxoromethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 25 mL of reagent grade acetone. 2-bromo-3'-Bromo acetophenone (0.4 mmol; 111 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and a solid was filtered and dissolved in 5 mL of hot tetrahydrofuran (THF), (Aldrich Chemical Co.) and purified on a 1 mm silica prep plate eluting with 20% ethyl acetate/hexane and dried in vacuo to afford 66 mg (40% yield) of methyl 4-[4-(3-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) **Synthesis of 4-[4-(3-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:** To a stirred suspension of 1.55 mmol (83 mg) of ammonium chloride (Fisher Scientific) in 10 mL of anhydrous toluene (Aldrich Chemical Co.) placed
under nitrogen atmosphere at 0°C, 774 μL (1.55 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir at 25°C for 20 min after which 66 mg (0.155 mmol) of 4-(4-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a slurry of 5 g of silica in 25 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on a 1 mm silica plates eluting with 10% methanol/CH₂Cl₂ to afford 63 mg (90% yield) of 4-(4-(3-bromophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride. ¹H-NMR (CD₂OD; 300 MHz) δ 8.49 (s, 1H), 8.21 (m, 1H), 7.94-7.98 (m, 2H), 7.50 (m, 1H), 7.5 (m, 1H), 7.31-7.37 (m, 1H), 2.8 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C₁₅H₁₅BrNₛS₃: 411.9 (M+H), found 411.9.

Example 17

Synthesis of 4-(4-chloro-3-nitrophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride

a) Synthesis of methyl 4-(4-chloro-3-nitrophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 50 mg (0.202 mmol) of methyl 4-(aminothiophenyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 10 mL of reagent grade acetone. 2-Bromo-4'-chloro-3'-nitroacetophenone (0.212 mmol; 59 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and a solid was filtered and dissolved in hot tetrahydrofuran (THF) (Aldrich Chemical Co.) and purified on a 1 mm silica prep plate eluting with 20% ethyl acetate/hexane and dried in vacuo to afford 60 mg (70% yield) of methyl 4-(4-(4-chloro-3-nitrophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-(4-chloro-3-nitrophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride: To a stirred suspension of 1.40 mmol (75 mg) of ammonium chloride (Fisher Scientific) in 10 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 700 μL (1.40 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir for 20 min after which 60 mg (0.140 mmol) of 4-(4-(4-chloro-3-nitrophenyl)(1,3-
thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a slurry of 5 g of silica in 50 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on 1 mm silica plates eluting with 10% methanol/CH₂Cl₂ to afford 17 mg (32% yield) of 4-[4-(4-chloro-3-nitrophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H-NMR (CD₃OD; 300 MHz) δ 8.53-8.58 (m, 2H), 8.24-8.28 (dd, J = 2.2 Hz and 8.5 Hz, 1H), 8.16 (s, 1H), 7.70-7.73 (d, J = 8.5 Hz, 1H), 2.8 (s, 3H).

Example 18

Synthesis of 4-[4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 155 mg (0.627 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 10 mL of reagent grade acetone. 2-Bromo-1-(4-chloro-3-methylphenyl)ethan-1-one (0.658 mmol; 163 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and the reaction mixture was concentrated and dissolved in 50 mL of CH₂Cl₂. The organic layer was washed with 50 mL of 1N HCl (aq.), dried over sodium sulfate and concentrated. The crude product was purified on a 1 mm silica plate eluting with 20% ethyl acetate/hexane to afford 168 mg (68% yield) of methyl 4-[4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: To a stirred suspension of 4.24 mmol (227 mg) of ammonium chloride (Fisher Scientific) in 15 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 2.2 mL (4.24 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir for 20 min at 25°C after which 168 mg (0.424 mmol) of methyl 4-[4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of 5g silica in chloroform. The silica was poured onto a sintered glass funnel and washed
with a 10% methanol/CH₂Cl₂ solution and concentrated to afford 117 mg (73% yield) of 4-
(4-(4-chloro-3-methylphenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide
hydrochloride. ¹H-NMR (CD₂OD; 300 MHz) δ 8.53 (s, 1H), 7.97-8.07 (dd, J= 1.2 Hz and 27
Hz, 1H), 7.9 (s, 1H), 7.83-7.87 (dd, J= 2 Hz and 8.5 Hz 1H), 7.34-7.42 (dd, J= 8.3 Hz and
17.4 Hz, 1H), 2.8 (s, 3H) 2.45 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z)
Calcd. for C₁₆H₁₁CIN₃S₅: 380.0 (M+H), found 380.3.

Example 19

Synthesis of 4-(5-methyl-4-phenyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide hydrochloride

a) Synthesis of methyl 4-(5-methyl-4-phenyl(1,3-thiazol-2-yl))-5-
methylthiothiophene-2-carboxylate: 48 mg (0.194 mmol) of methyl 4-(aminothiooxomethyl)-
5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was
dissolved in 5 mL of reagent grade acetone. 2-Bromo-1-phenylpropan-1-one (0.223 mmol;
48 mg) was added and the solution was allowed to reflux for 5 h. The solution was allowed
to cool and the reaction mixture was concentrated and dissolved in 50 mL of CH₂Cl₂. The
organic layer was washed with 50 mL of 1N HCl (aq.), dried over sodium sulfate and
concentrated. The crude product was purified on a 1 mm silica plate eluting with 20% ethyl
acetate/ hexane to afford 53 mg (76% yield) of methyl 4-(5-methyl-4-phenyl(1,3-thiazol-2-
yl))-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-(5-methyl-4-phenyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamide hydrochloride: To a stirred suspension of 1.47 mmol (78 mg) of ammonium
chloride (Fisher Scientific) in 5 mL of anhydrous toluene (Aldrich Chemical Co.) placed
under nitrogen atmosphere at 0°C, 735μL (1.47 mmol) of 2M trimethylaluminum in toluene
(Aldrich Chemical Co.) was added via syringe over 10 min and then let stir for 20 min at
25°C then, 53 mg (0.147 mmol) of methyl 4-(5-methyl-4-phenyl(1,3-thiazol-2-yl))-5-
methylthiothiophene-2-carboxylate were added to solution and allowed to reflux for 2.5 h.
The reaction mixture was quenched by pouring over a slurry of 5g silica in chloroform. The
silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂;
solution and concentrated to afford 26 mg (51% yield) of 4-(5-methyl-4-phenyl(1,3-thiazol-2-
yl))-5-methylthiothiophene-2-carboxamide hydrochloride. ¹H-NMR (CD₂OD; 300 MHz) δ
8.45 (s, 1H), 7.74-7.77 (m, 2H), 7.44-7.50 (m, 2H), 7.38-7.41 (m, 1H), 2.8 (s, 3H) 2.6 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA matrix, m/z) Calcd. for C_{16}H_{18}N_{2}S_{3}: 346.0 (M+H), found 345.6.

Example 20

Synthesis of 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate

a) Synthesis of methyl 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 103 mg (0.416 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 5 mL of reagent grade acetone. 2-Bromo-4'-methyl acetophenone (0.416 mmol; 89 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and crude product was filtered and washed two times with acetone and purified on a 1 mm silica plate eluting with 20% ethyl acetate/hexane to afford 104 mg (69% yield) of methyl 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate: To a stirred suspension of 2.87 mmol (154 mg) of ammonium chloride (Fisher Scientific) in 10 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 144μL (2.87 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stirred for 20 min at 25°C after which 104 mg (0.287 mmol) of 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a slurry of 5 g of silica in 50 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH₂Cl₂ solution and concentrated. The crude product was then purified on a 1 mm silica prep plate eluting with 10% methanol/CH₂Cl₂ with 1% CH₃COOH. The product was then basified with aq. NaOH and extracted with CHCl₃ and concentrated. TFA was added and the product was crystallized from methanol as 4-[4-(4-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate (20 mg; 30% yield). ¹H-NMR (DMSO-d₆; 300 MHz) δ 8.62 (s, 1H), 8.12 (s, 1H), 7.96-7.99 (d, 1H, J= 8.1 Hz) 7.29-7.32 (d,
1H, J= 8.1 Hz), 2.8 (s, 3H) 2.5 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C_{16}H_{14}N_{3}S_{3}: 346.0 (M+H). found 346.1.

Example 21

Synthesis of 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxylate: 105 mg (0.424 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothioiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 5 mL of reagent grade acetone. 2-Bromo-2'-methoxy acetophenone (0.467 mmol; 110 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and the solution concentrated. The crude product was dissolved in 100 mL of CH_{2}Cl_{2} and washed one time with 50 mL of 1N NaOH. The organic layer was obtained, dried over sodium sulfate, concentrated and purified on a 1 mm silica plate eluting with 20% ethyl acetate/ hexane to afford 160 mg (95% yield) of methyl 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxylate.

b) Synthesis of 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxamidine hydrochloride: To a stirred suspension of 4.23 mmol (227 mg) of ammonium chloride (Fisher Scientific) in 10 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 2.12 mL (4.23 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stir for 20 min at 25°C after which 160 mg (0.287 mmol) of methyl 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxylate in a solution of 5 mL of anhydrous toluene was added to solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a slurry of 5 g of silica in 30 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH_{2}Cl_{2} solution and concentrated. The crude product was then purified on a 2 mm silica prep plate eluting with 10% methanol/CH_{2}Cl_{2} with 1% NH_{4}OH. The product was then dissolved in 2 mL of 4N HCl/dioxane and concentrated to afford 45 mg (29% yield) of 4-[4-(2-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothioiophene-2-carboxamidine hydrochloride.
1H-NMR (DMSO-d6; 300 MHz) δ 8.68 (s, 1H), 8.34-8.38 (dd, J= 1.6 Hz and 7.74 Hz, 1H), 8.21 (s, 1H), 7.36-7.42 (m, 1H), 7.05-7.22 (m, 3H), 3.97 (s, 3H), 2.8 (s, 3H).

Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C16H13N3O3S3: 362.0(M+H), found 361.7.

Example 22

Synthesis of 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 99 mg (0.424 mmol) of methyl 4-(aminothiooxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was dissolved in 5 mL of reagent grade acetone. 2-Bromo-2’,4’-dimethoxyacetophenone (0.440 mmol; 114 mg) was added and the solution was allowed to reflux for 2.5 h. The solution was allowed to cool and the crude product was collected as a solid and washed with methanol and dried yielding 91 mg (56% yield) of methyl 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: To a stirred suspension of 2.23 mmol (119 mg) of ammonium chloride (Fisher Scientific) in 10 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 1.1 mL (2.23 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 10 min and then let stirred for 20 min at 25°C after which 81 mg (0.223 mmol) of methyl 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was added to solution and allowed to reflux for 2.5 h. The reaction mixture was quenched by pouring over a slurry of silica in chloroform. The silica was poured onto a sintered glass funnel and washed with a 10% methanol/CH2Cl2 solution and concentrated. The crude product was then purified on a 0.5 mm silica prep plate eluting with 10% methanol/CH2Cl2 to afford 32 mg (37% yield) of 4-[4-(2,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H-NMR (CD3OD; 300 MHz) δ 8.49 (s, 1H), 8.29-8.32 (d, J= 8.5 Hz, 1H), 7.93 (s, 1H), 6.61-6.67 (m, 2H), 3.97 (s, 3H), 3.85 (s, 3H), 2.79 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C17H17N3O3S3: 392.1(M+H), found 392.4.
Example 23

Synthesis of 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 176 mg (0.712 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-3’,4’-dichloroacetophenone (0.854 mmol; 330 mg) in a manner similar to Example 22, step (a) to afford 270 mg (91% yield) of methyl 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: 270 mg (0.648 mmol) of methyl 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 135 mg (52% yield) of 4-[4-(3,4-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H-NMR (CD₃OD; 300 MHz) δ 8.54 (s, 1H), 8.21-8.22 (d, J= 2 Hz, 1H), 8.02 (s, 1H), 7.92-7.96 (dd, J= 2 Hz and 8.4 Hz, 1H), 7.56-7.59 (d, J= 8.5 Hz, 1H), 2.79 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C₁₅H₁₁Cl₂N₂S₃: 400.0 (M+H), found 400.6.

Example 24

Synthesis of 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: Methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate, 106 mg (0.428 mmol) (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-3’ methylacetophenone (0.428 mmol, 91 mg) in a manner similar to Example 22, step (a) to afford 98 mg (63% yield) of methyl 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.
b) *Synthesis of 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:* 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate, (98 mg, 0.271 mmol) was treated in a similar manner to Example 22, step (b) to afford 75 mg (80% yield) of 4-[4-(3-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H-NMR (CD$_3$OD; 300 MHz) δ 8.56 (s, 1H), 7.88 (s, 1H), 7.83-7.88 (d, J= 14 Hz, 2H), 7.30-7.35 (m, 1H), 7.18-7.20 (m, 1H), 2.79 (s, 3H), 2.42 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C$_{16}$H$_{13}$N$_3$S$_3$: 346.0 (M+H), found 346.7

Example 25

Synthesis of 5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine hydrochloride

a) *Synthesis of methyl 5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate:* Methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate, (160 mg, 0.647 mmol) (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-1-(2-5,6,7,8-tetrahydronaphthyl)ethanol-1-one (0.712 mmol; 180 mg) in a manner similar to Example 22, step (a) to afford 106 mg (41% yield) of methyl 5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate.

b) *5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine hydrochloride:* 106 mg (0.264 mmol) of methyl 5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxylate was treated in a similar manner to Example 22, step (b) to afford 88 mg (80% yield) of 5-methylthio-4-(4-(2-5,6,7,8-tetrahydronaphthyl)(1,3-thiazol-2-yl))thiophene-2-carboxamidine hydrochloride. 1H-NMR (CD$_3$OD; 300 MHz) δ 8.49 (s, 1H), 7.78 (s, 1H), 7.72-7.74 (m, 2H), 7.09-7.12 (m, 1H), 2.79 (m, 7H), 1.82-1.86 (m, 4H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C$_{16}$H$_{19}$N$_3$S$_3$: 386.1 (M+H), found 386.2

Example 26

Synthesis of 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride
a) **Synthesis of methyl 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate:** 100 mg (0.404 mmol) of methyl 4-(aminothiooxymethyl)-5-methylthiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-3',5'-dimethoxy acetophenone (0.444 mmol) in a manner similar to Example 22, step (a) to afford 44 mg (27% yield) of methyl 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate.

b) **Synthesis of 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine hydrochloride:** 44 mg (0.108 mmol) of methyl 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 25 mg (60% yield) of 4-[4-(3,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine hydrochloride.

1H-NMR (CD3OD; 300 MHz) δ 8.52 (s, 1H), 7.91 (s, 1H), 7.22-7.23 (d, J= 2.2 Hz, 1H), 6.49-6.51 (t, 1H), 3.85 (s, 6 H), 2.89 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C17H17N3O2S2: 392.11 (M+H), found 392.4.

Example 27

Synthesis of 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine hydrochloride

a) **Synthesis of methyl 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate:** 160 mg (0.647 mmol) of methyl 4-(aminothiooxymethyl)-5-methylthiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-2'-methyl acetophenone (0.711 mmol, 152 mg) in a manner similar to Example 22, step (a) to afford 124 mg (53% yield) of methyl 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate.

b) **Synthesis of 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine hydrochloride:** 124 mg (0.343 mmol) of methyl 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 60 mg (50% yield) of 4-[4-(2-methylphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine hydrochloride. 1H-NMR (CD3OD; 300 MHz) δ 8.50 (s, 1H), 7.63-7.66 (m, 2H), 7.22-7.32 (m, 3H), 2.79 (s, 3H), 2.51 (s, 3H). Mass
Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C_{18}H_{17}N_{3}S_{3}: 346.0 (M+H), found 346.2.

Example 28

Synthesis of 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 132 mg (0.534 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-2',5'-dimethoxy acetophenone (0.587 mmol; 152 mg) in a manner similar to Example 22, step (a) to afford 97 mg (45% yield) of methyl 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

b) Synthesis of 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: 97 mg (0.238 mmol) of methyl 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 30 mg (32% yield) of 4-[4-(2,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride.

1H-NMR (CD_{3}OD; 300 MHz) δ 8.46 (s, 1H), 8.10 (s, 1H), 7.98-7.99 (d, J = 3.2 Hz, 1H), 7.03-7.06 (d, J = 9 Hz, 1H), 6.92-6.93 (d, J = 3.2 Hz, 1H), 6.89-6.90 (d, J = 3.2 Hz, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 2.51 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C_{17}H_{17}N_{3}O_{2}S: 392.1 (M+H), found 392.1.

Example 29

Synthesis of 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of methyl 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 240 mg (0.970 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 2-bromo-1-(4-chloro(3-pyridyl))ethan-1-one (1.06 mmol; 250 mg) in a manner similar to Example 22, step (a) to afford 286 mg (77% yield) of methyl 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.
b) **Synthesis of 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride:** 286 mg (0.747 mmol) of methyl 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 134 mg (49% yield) of 4-[4-(4-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride. Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C₁₅H₁₁N₄ClS₂: 366.9 (M+H), found 366.6

Example 30

Synthesis of 4-(4-(2H-benzo[d]1,3-dioxolen-5-yl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide hydrochloride

a) **Synthesis of 1-(2H-benzo[3,4-d][1,3-dioxolen-5-yl]-2-bromoethan-1-one:** To a solution of 2.5 g (15.23 mmol) of 3,4-methylenedioxy acetophenone in 200 mL of anhydrous methanol was added 61 mmol (20 g) of poly (4-vinylpyridinium tribromide), Aldrich Chemical Co., and allowed to reflux for 2.5 h. The solution was filtered and concentrated. 1-(2H-benzo[3,4-d][1,3-dioxolen-5-yl]-2-bromoethan-1-one (1.4 g, 38% yield) was obtained methylene chloride/hexanes as off-white crystals. 1H-NMR (DMSO-d₆; 300 MHz) δ 8.2 (s, 1H), 8.07 (s, 1H), 7.61-7.64 (m,2H), 7.01-7.04 (dd, J= 1.2 Hz and 7.1 Hz, 1H), 6.09 (s, 2H), 3.86 (s, 3H), 2.75 (s, 3H).

b) **Synthesis of methyl 4-(4-(2H-benzo[d][1,3-dioxolen-5-yl/(1,3-thiazol-2-yl)])-5-methylthiothiophene-2-carboxylate:** 1.4 g (5.66 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted 1-(2H-benzo[3,4-d][1,3-dioxolen-5-yl]-2-bromoethan-1-one (5.66 mmol, 1.37 g) in a manner similar to Example 22, step (a) to afford 1.55 g (70% yield) of methyl 4-(4-(2H-benzo[d][1,3-dioxolen-5-yl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate.

c) **Synthesis of 4-(4-(2H-benzo[d][1,3-dioxolen-5-yl/(1,3-thiazol-2-yl)])-5-methylthiothiophene-2-carboxamide hydrochloride:** 1.55 g (3.95 mmol) of methyl 4-(4-(2H-benzo[d][1,3-dioxolen-5-yl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate was treated in a manner similar to Example 22, step (b) to afford 130 mg (9% yield) of 4-(4-(2H-benzo[d][1,3-dioxolen-5-yl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide hydrochloride. 1H-NMR (CD₃OD; 300 MHz) δ 8.51 (s, 1H), 7.73 (s, 1H), 7.53-7.59 (m, 2H),
6.88-6.90 (d, J= 8 Hz, 1H), 6.00 (s, 2H), 2.79 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix. m/z) Calcd. for C_{18}H_{17}N_{3}O_{2}S_{2}: 376.0 (M+H). found 376.1.

Example 31

Synthesis of 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Synthesis of 1-(3,4-dimethoxyphenyl)-2-bromoethan-1-one: 2 g of 1-(3,4-dimethoxyphenyl)ethan-1-one (11.1 mmol) was reacted in a manner similar to Example 15, step (a), to yield 1.2 g (42% yield) of 1-(3,4-dimethoxyphenyl)-2-bromoethan-1-one.

b) Synthesis of methyl 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 105 mg (0.424 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Co. LTD., Cornwall, U.K.) was reacted with 1-(3,4-dimethoxyphenyl)-2-bromoethan-1-one (0.467 mmol; 120 mg) in a manner similar to Example 22, step (a) to afford 148 mg (85% yield) of methyl 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate.

c) Synthesis of 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: 148 mg (0.363 mmol) of methyl 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate was reacted in a manner similar to Example 22, step (b) to afford 70 mg (50% yield) of 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride.

1H-NMR (CD_{3}OD; 300 MHz) δ 8.50 (s, 1H), 7.76 (s, 1H), 7.58-7.64 (m, 2H), 7.22-7.39 (d, J= 51 Hz, 1H), 6.99-7.02 (d, J= 8 Hz, 1H), 3.9 (s, 3H) 3.86 (s, 3H), 2.78 (s, 3H). Mass Spectrum (MALDI-TOF, CHCA Matrix, m/z) Calcd. for C_{17}H_{17}N_{3}O_{2}S_{2}: 392.1 (M+H), found 392.4.

Example 32

4-[4-(2-Chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[4-(2-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 2-Chloropyridine-3-carbonyl chloride (300 mg, 1.7 mmol) was dissolved in anhydrous CH_{3}CN (4 mL). While stirring well with a
magnetic stirrer, trimethylsilyldiazomethane (4 mL, 2M solution in hexane, 8 mmol) was dripped into the reaction mixture. The resulting yellow solution was stirred for 2h at room temperature, at which time the mixture was cooled in an ice bath. To the cold solution, 30% HBr in acetic acid (2 mL) was added dropwise with vigorous evolution of gas. This solution was stirred for 1h during which time 2-bromo-1-(2-chloro(3-pyridyl))ethan-1-one precipitated. This solid was collected by filtration and dried under vacuum. The dry solid (142 mg, 0.6 mmol) was dissolved in acetone (10 ml). To this solution 5-(methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (100 mg, 0.4 mmol, Maybridge Chemical Company, Cornwall, UK) was added and heated at reflux for 5 h. At this point the solid that precipitated was filtered off and washed with methanol and dried under vacuum to give 110 mg (71%) of methyl 4-[4-(2-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate. 1H-NMR (CDCl$_3$; 300 MHz) δ 2.70 (s, 3H), 3.92 (s, 3H), 7.39 (dd, J = 4.7 and 7.7 Hz, 1H), 8.11 (s, 1H), 8.22 (s, 1H), 8.38 (dd, J = 1.9 and 4.7 Hz, 1H), 8.62 (dd, J = 1.9 and 7.7 Hz, 1H).

b) 4-[4-(2-Chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine: Methyl 4-[4-(2-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (100 mg, 0.26 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, to give 50 mg (52%) of 4-[4-(2-chloro(3-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 2.79 (s, 3H), 7.62 (dd, J = 4.89 and 7.43 Hz, 1H), 8.41 (s, 1H), 8.47-8.51 (m, 2H), 8.69 (s, 1H), 9.1 (broad s, 2H), 9.4 (broad s, 2H). Mass spectrum (ESI, m/z): Calcd. for C$_{16}$H$_{14}$N$_2$S$_2$Cl: 367.0 (M+H), found 369.0.

Example 33

4-(4-Cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-(4-cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate: Cyclohexanecarbonyl chloride (300 mg, 2.0 mmol) was treated in a manner similar to that for Example 32 to give 2-bromo-1-cyclohexylethan-1-one. The dry solid (125 mg) was dissolved in acetone (10 ml). To this solution 5-(methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (100 mg, 0.4 mmol,
Maybridge Chemical Company, Cornwall, UK) was added and heated at reflux for 5 h. At this point the solid that precipitated was filtered off and washed with methanol and dried under vacuum to give 100 mg (70%) of methyl 4-(4-cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate which was used without further purification in the following step.

b) 4-(4-Cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine: Methyl 4-(4-cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (100 mg, 0.28 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, to give 60 mg (63%) of 4-(4-cyclohexyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 1.21-1.53 (m, 5H), 1.61-1.78 (m, 3H), 2.03-2.07 (m, 2H), 2.7 (s, 3H), 2.73-2.75 (m, 1H), 7.33 (s, 1H), 8.32 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{15}$H$_{19}$N$_3$S$_3$, 338.1 (M+H), found 338.1.

Example 34

4-Phenyl-5-(trifluoromethyl)thiophene-2-carboxamidine

Methyl 4-phenyl-5-(trifluoromethyl)thiophene-2-carboxylate (100 mg, 0.37 mmol, Maybridge Chemical Company, Cornwall, UK) was treated in a manner similar to that for Example 1 to give 80 mg (85%) of 4-phenyl-5-(trifluoromethyl)thiophene-2-carboxamide as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 7.45-7.52 (m, 5H), 7.79 (d, J = 1.4 Hz, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{15}$H$_8$F$_3$N$_2$S, 271.1 (M+H), found 271.2.

Example 35

5-Methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxamidine

a) Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate: 5-(Methoxycarbonyl)-2-methylthiothiophene-3-carboxylic acid (200 mg, 0.86 mmol) as prepared in Example 95 was taken in a round bottomed flask and anhydrous CH$_2$Cl$_2$ (10 mL) was introduced to the flask. This solution was cooled in an ice bath under an argon atmosphere. To this mixture oxalyl chloride (328 mg, 2.6 mmol) was added followed by anhydrous DMF (500 μL). The resulting solution was stirred at 4°C for
30 min and then allowed to warm up to room temperature, while monitoring for the disappearance of the acid by TLC. After 2 h solvents were removed under vacuum and the residual oxalyl chloride was removed azeotropically with toluene. The resulting residue was dried under high-vacuum to give the acid chloride as a gray solid. This solid was dissolved in anhydrous CH$_3$CN (8 mL). While stirring well with a magnetic stirrer trimethylsilyldiazomethane (4 mL, 8 mmol, 2M solution in hexane) was dripped into the reaction mixture. The resulting yellow solution was stirred for 2 h at room temperature, at which time the mixture was cooled in an ice bath. To the cold solution 30% HBr in acetic acid (2 mL) was added dropwise, with vigorous evolution of gas. This solution was stirred for 1 h, during which methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate precipitates. This solid was collected by filtration and dried under vacuum to give 120 mg (45%). 1H-NMR (CDCl$_3$; 300 MHz) δ 2.64 (s, 3H), 3.91 (s, 3H), 4.27 (s, 2H), 8.10 (s, 1H).

b) **Methyl 5-methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxylate:** 5-(Methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (100 mg, 0.4 mmol, Maybridge Chemical Company, Cornwall, UK) was dissolved in acetone (20 ml). To this solution, methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (112 mg) as prepared in previous step was added and heated at reflux for 3 h. At this point the solid that precipitated was filtered off and washed with acetone and dried under vacuum to give 82 mg (65%) of methyl 5-methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxylate. 1H-NMR (CDCl$_3$; 300 MHz) δ 2.67 (s, 3H), 3.91 (s, 3H), 7.44-7.49 (m, 3H), 7.61 (s, 1H), 8.03-8.06 (m, 2H), 8.28 (s, 1H).

c) **5-Methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxamidine:**

Methyl 5-methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxylate (80 mg) as prepared in previous step was treated in a manner similar to that for Example 1, to give 50 mg of 5-methylthio-4-(2-phenyl(1,3-thiazol-4-yl))thiophene-2-carboxamidine as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 2.75 (s, 3H), 7.51-7.60 (m, 3H), 8.02 (s, 1H), 8.03-8.09 (m, 2H), 8.70 (s, 1H), 9.06 (broad s, 2H), 9.38 (broad s, 2H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{15}$H$_{13}$N$_3$S$_3$, 332.0 (M+H), found 332.1.
Example 36

4-[4-(2-Chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide

a) Methyl 4-[4-(2-chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate: 2-Chloropyridine-4-carboxyl chloride (300 mg, 1.7 mmol) was dissolved in anhydrous CH₃CN (4 mL). While stirring well with a magnetic stirrer trimethylsilyldiazo methane (4 mL, 8 mmol, 2M solution in hexane) was dripped into the reaction mixture. The resulting yellow solution was stirred for 2 h at room temperature, at which time the mixture was cooled in an ice bath. To the cold solution 30% HBr in acetic acid (2 mL) was added dropwise, with vigorous evolution of gas. This solution was stirred for 1 h, during which time 2-bromo-1-(2-chloro(4-pyridyl))ethan-1-one precipitates. This solid was collected by filtration and dried under vacuum. The dry solid (142 mg, 0.6 mmol) was dissolved in acetone (10 ml). To this solution 5-(methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (100 mg, 0.4 mmol, Maybridge Chemical Company, Cornwall, UK) was added and heated at reflux for 5 h. At this point the solid that precipitated was filtered off and washed with methanol and dried under vacuum to give 100 mg of methyl 4-[4-(2-chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate. ¹H-NMR (CD₃OD; 300 MHz) δ 2.73 (s, 3H), 3.94 (s, 3H, overlapping H₂O peak), 7.92-7.99 (m, 2H), 8.05 (s, 1H), 8.24 (s, 2H), 8.47-8.49 (m, 1H).

b) 4-[4-(2-Chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide: Methyl 4-[4-(2-chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (100 mg, 0.26 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, to give 50 mg of 4-[4-(2-chloro(4-pyridyl))(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide as a solid. ¹H-NMR (CDCl₃/CD₃OD; 300 MHz) δ 2.82 (s, 3H), 7.95 (dd, J = 1.42 and 5.25 Hz, 1H), 8.08 (d, J = 1.03 Hz, 1H), 8.23 (s, 1H), 8.42 (d, J = 5.34 Hz, 1H), 8.56 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C₁₄H₁₁N₄S₂Cl, 367.0 (M+H), found 367.1.

Example 37
4-[4-(4-Chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine (35 mg, 0.1 mmol) prepared according to Example 1 was dissolved in a mixture of MeOH and CH$_2$Cl$_2$ (1:1, 6 mL). While stirring well, m-chloroperoxybenzoic acid (100 mg) was added in portions to this solution over a 3 h period. The mixture was stirred for a further 2 h and the solvents were removed under vacuum. The resulting residue was dissolved in MeOH (8 mL). Strong anion exchange resin (AG 1-X8, 5 ml, 1.4 meq/mL) was packed into a disposable chromatography column and washed with H$_2$O (5x5 mL) and MeOH (3x5 mL). The methanolic solution from the reaction was slowly introduced into this column, and the column effluent was collected. The column was washed with MeOH (2x5 mL) and these washings were also collected. The combined effluents were evaporated under vacuum and the residue was subjected to preparative thin layer chromatography (silica gel, 10% MeOH in CH$_2$Cl$_2$ with 2% acetic acid). The major band was isolated and suspended in CH$_2$Cl$_2$ and filtered. The filtrate was collected and the residue was washed with 10% MeOH in CH$_2$Cl$_2$ saturated with NH$_3$. The washings were combined with the original filtrate and the solvents were removed under vacuum. The resulting solid was dissolved in 10% MeOH in CHCl$_3$ and filtered through a 0.45 micron filter. The filtrate was collected and evaporated under vacuum to give 20 mg (53%) of an off-white solid. 1H-NMR (CDCl$_3$/CD$_3$OD; 300 MHz) δ 3.78 (s, 3H), 7.47 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.7 Hz, 1H), 8.00 (s, 1H), 8.35 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C$_{13}$H$_{12}$O$_2$N$_2$S$_3$Cl, 398.0 (M+H), found 398.0.

Example 38

Hydrazino[5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))(2-thienyl)]methanimine

a) 5-Methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide:

Liquid ammonia (5 mL) was condensed into a cold (-78°C) Teflon-lined steel bomb. Methyl 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (0.6 g, 1.7 mmol) as prepared in Example 10 step (a) was introduced in one portion and the bomb was sealed and heated in an oil bath at 80°C for 48 h. The bomb was cooled to
-78°C, opened and the ammonia was allowed to evaporate at room temperature. The residual solid was collected and dried under vacuum to give 0.5 g (88%) of 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide. 1H-NMR (DMSO-d6; 300 MHz) δ 2.75 (s, 3H), 7.35-7.40 (m, 1H), 7.40-7.51 (m, 2H), 8.04-8.18 (m, 2H), 8.19 (s, 1H), 8.20 (s, 1H).

b) 5-Methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carbonitrile: A slurry of P2O5 (2.7 g, 19 mmol) and hexamethyldisiloxane (6.7 mL) in dichloroethane (13 mL) was heated to 90°C, while stirring under a N2 atmosphere. After stirring for 2 h, the resulting clear solution was allowed to cool to 40°C. 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide (0.9 g, 2.7 mmol) as prepared in previous step was added to this solution and the mixture was heated at 75°C for 5 h. This solution was cooled to room temperature and stirred with aqueous NaCl (6 M, 100 mL) for 10 min. As the aqueous solution is added a yellow solid precipitated. After 10 min this solid was separated by filtration, and dried under vacuum to give (0.5 g, 59%) of 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carbonitrile as a yellow solid. 1H-NMR (DMSO-d6; 300 MHz) δ 2.76 (s, 3H), 7.35-7.40 (m, 1H), 7.45-7.50 (m, 2H), 8.05-8.08 (m, 2H), 8.22 (s, 1H), 8.51 (s, 1H).

c) Hydrazino[5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))(2-thienyl)]methanimine: 5-Methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carbonitrile (100 mg, 0.32 mmol) as prepared in previous step was dissolved in EtOH (10 mL). To this solution hydrazine monohydrate (10 eq) was added and the mixture was heated at reflux for 3 h. The EtOH solution was concentrated down to 1 mL and water (2 mL) was added to this solution. This resulted in the formation of a white solid. The solid was collected by filtration washed with a small amount of water and dried under vacuum to give 50 mg (45%) of hydrazino[5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))(2-thienyl)]methanimine. 1H-NMR (CD3OD/CDCl3; 300 MHz) δ 2.69 (s, 3H), 7.35-7.43 (m, 1H), 7.44-7.49 (m, 2H), 7.52 (s, 1H), 7.96-7.99 (m, 2H), 8.10 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C15H14N2S1, 347.04 (M+H), found 347.1.

Example 39
\[\text{Imino}[5\text{-methylthio}-4-(4\text{-phenyl}(1,3\text{-thiazol}-2\text{-yl})(2\text{-thienyl})\text{methyl}]methylamine} \]

5-Methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (20 mg, 0.06 mmol) as prepared in Example 10 step (b) was dissolved in MeOH, and to this solution methyamine (0.6 mL, 2M solution in tetrahydrofuran) was added. This solution was refluxed for 6h, at which time the solvents were removed under vacuum to give a solid. This solid was dissolved in a small amount of MeOH. H₂O was added dropwise to the methanolic solution until a precipitate was formed. This solid was isolated, washed with a small amount of water and dried under vacuum to give 15 mg (72%) of \{imino[5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))(2-thienyl)]methyl\}methylamine. ¹H-NMR (DMSO-d₆; 300 MHz) δ 2.77 (s, 3H), 3.00 (s, 3H), 7.36-7.42 (m, 1H), 7.47-7.52 (m, 2H), 8.07-8.10 (m, 2H), 8.23 (s, 1H), 8.55 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C₁₆H₁₄N₂S₃, 346.5 (M+H), found 346.2.

Example 40

2-{3-[2-(5-\text{Amido}-2\text{-methylthio}-3\text{-thienyl})-1,3\text{-thiazol}-4\text{-yl}]\text{phenoxy}}\text{acetic acid}

\[\text{a) 2-Bromo-1-(3-hydroxyphenyl)ethan-1-one:} \]

2-Bromo-1-(3-methoxyphenyl)ethan-1-one (2 g, 8.7 mmol) was taken in a round bottomed flask equipped with magnetic stir bar. The flask was put under a N₂ atmosphere and CH₂Cl₂ was introduced into the flask. The resulting solution was cooled in a dry ice acetone bath and BBr₃ (27 mL, 1M in CH₂Cl₂) was introduced dropwise. The resulting solution was allowed to warm up to room temperature over-night. The solvents were removed under vacuum and the residue was purified by passing through a short pad of silica gel (50 g) to give 1.3 g (69%) of 2-bromo-1-(3-hydroxyphenyl)ethan-1-one as an oil. ¹H-NMR (CDCl₃; 300 MHz) δ 4.47 (s, 2H), 6.21 (s, 1H), 7.08-7.19 (m, 1H), 7.23-7.48 (m, 1H), 7.52-7.82 (m, 2H).

\[\text{b) Methyl 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate:} \]

2-Bromo-1-(3-hydroxyphenyl)ethan-1-one (229 mg, 1.1 mmol) as prepared in previous step was treated in a manner similar to that of Example 13, step (a) to give 225 mg (61%) of methyl 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-
methylthiothiophene-2-carboxylate as a solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 2.76 (s, 3H), 3.86 (s, 3H), 6.77–6.97 (m, 1H), 7.27 (t, \(J = 7.8\) Hz, 1H), 7.47–7.51 (m, 2H), 8.12 (s, 1H), 8.20 (s, 1H).

c) \((\text{tert-Butoxy})\)-N-\((4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthio(2-thienyl))iminomethyl)carboxamide: \(4-[4-(3-Hydroxyphenyl)(1,3-thiazol-2-yl)]-5\)-methylthiothiophene-2-carboxamide (2 g, 5.8 mmol), prepared by treating methyl \(4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5\)-methylthiothiophene-2-carboxylate in a manner similar to that for Example 1, was dissolved in anhydrous DMF (10 mL). To this solution di-tert-butyl dicarbonate (1.38 g, 6.3 mmol) and DIEA (2 mL, 11.5 mmol) was added, and the mixture was stirred at room temperature for 18 h. DMF was removed under vacuum and the residue was purified by silica gel column chromatography to give 1.8 g (70%) of \((\text{tert-Butoxy})\)-N-\((4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5\)-methylthio(2-thienyl))iminomethyl)carboxamide as an oil. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 1.58 (s, 9H), 2.81 (s, 3H), 6.79–6.83 (m, 1H), 7.28 (t, \(J = 8.0\) Hz, 1H), 7.49–7.52 (m, 2H), 8.09 (s, 1H), 8.71 (s, 1H).

d) \(\text{tert-Butyl} \ 2-\{3-[2-(5-\{([\text{tert-Butoxy}\text{carbonylamino}]\text{iminomethyl})-2\text{-methylthio-3-thienyl}\}-1,3\text{-thiazol-4-yl}\text{]}\text{phenoxy}\}\text{acetate:} \ (\text{tert-Butoxy})\)-N-\((4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5\)-methylthio(2-thienyl))iminomethyl)carboxamide (23 mg, 0.05 mmol) as prepared in previous step was dissolved in anhydrous DMF (1 mL). To this solution tert-butyl 2-bromoacetate (20 mg, 0.1 mmol), Cs\(_2\)CO\(_3\) (33.5 mg, 0.1 mmol) and KI (5 mg) was added and the mixture was heated at 70°C for 18 h. The solvents were removed under vacuum and the residue was purified by preparative silica gel thin-layer chromatography to give 12 mg (42%) of \(\text{tert-Butyl} \ 2-\{3-[2-(5-\{([\text{tert-Butoxy}\text{carbonylamino}]\text{iminomethyl})-2\text{-methylthio-3-thienyl}\}-1,3\text{-thiazol-4-yl}\text{]}\text{phenoxy}\}\text{acetate which was used in the following step.}

e) \(2-[3-[2-(5-\text{Amidino-2-methylthio-3-thienyl})-1,3\text{-thiazol-4-yl}\text{]}\text{phenoxy}\}\text{acetic acid:} \ \text{tert-Butyl} \ 2-\{3-[2-(5-\{([\text{tert-Butoxy}\text{carbonylamino}]\text{iminomethyl})-2\text{-methylthio-3-thienyl}\}-1,3\text{-thiazol-4-yl}\text{]}\text{phenoxy}\}\text{acetate (12 mg, 0.02 mmol) as prepared in previous step was dissolved in 1 ml 50% TFA in CH\(_2\)Cl\(_2\) containing 2% H\(_2\)O and stirred for 4h. The solvents were removed under vacuum. The residual TFA was removed by azeotroping with toluene to give 8.7 mg (100%) of
2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid as a buff colored solid. \(^1\)H-NMR (CD$_3$OD/CDCl$_3$; 300 MHz) \(\delta\) 2.77 (s, 3H), 4.74 (S, 2H), 6.91–6.95 (m, 1H), 7.35 (t, J = 7.91 Hz, 1H), 7.60–7.63 (m, 1H), 7.67–7.68 (M, 1H), 7.84 (s, 1H), 8.46 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{17}$H$_{13}$N$_3$O$_3$S$_3$, 406.5 (M+H), found 406.3.

Example 41

2-{2-[2-(5-\textit{Amidino}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid

\(a)\) tert-Butyl 2-{2-[2-(5-\{(\textit{t}e\textit{r}-butoxy)\textit{carbonylamino}\textit{jiminomethyl}\}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetate: 4-[4-(2-Hydroxyphenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamide (100 mg, 0.29 mmol) as prepared in Example 196 step (b) was treated in a manner similar to that shown in Example 40 step (c) to give 100 mg (0.22 mmol, 77%) of (\(\text{t}e\text{r}-\text{butoxy}\)-N-\{(4-[4-(2-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthio(2-thienyl))jiminomethyl\}carboxamide. This compound was treated in a manner similar to that shown in Example 40, step (d) to give 63 mg (50 %) of tert-butyl 2-{2-[2-(5-{\{(\textit{t}e\textit{r}-\text{butoxy})\textit{carbonylamino}\textit{jiminomethyl}\}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetate. \(^1\)H-NMR (CDCl$_3$; 300 MHz) \(\delta\) 1.55 (s, 9H), 1.56 (s, 9H), 2.69 (s, 3H), 4.66 (s, 2H), 6.88 (dd, J = 0.81 and 8.31 Hz, 1H), 7.14 (dt, J = 1.0 and 7.63 Hz, 1H), 7.27–7.32 (m, 1H), 8.08 (s, 1H), 8.48 (dd, J = 1.8 and 7.77 Hz, 1H), 8.51 (s, 1H).

\(b)\) 2-{2-[2-(5-\textit{Amidino}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid: tert-Butyl 2-{2-[2-(5-{\{(\textit{t}e\textit{r}-\text{butoxy})\textit{carbonylamino}\textit{jiminomethyl\}}}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetate (60 mg, 0.12 mmol) as prepared in previous step was treated in a manner similar to that shown in Example 40, step (e) to give 22 mg (50 %) of 2-{2-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid. \(^1\)H-NMR (DMSO-d$_6$; 300 MHz) \(\delta\) 2.80 (s, 3H), 4.90 (S, 2H), 7.09–7.25 (m, 2H), 7.34–7.38 (m, 1H), 8.41 (d, J = 6.32 Hz, 1H), 8.60 (s, 1H), 8.62 (s, 1H), 9.00 (broad s, 2H), 9.37
(broad s, 2H). Mass spectrum (ESI, m/z): Calcd. for C₁₁₇H₁₈₅N₉O₃S₃, 406.5 (M+H), Found 406.1.

Example 42

5-Methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxamidine

a) Methyl 4-(1,1-dimethyl-1-stannaethyl)-5-methylthiothiophene-2-carboxylate: 4-Bromo-5-methylthiothiophene-2-carboxylic acid (EP 0676395 A2) (4.67 g, 18.4 mmol) was dissolved in anhydrous THF (30 mL), taken in a round bottomed flask and cooled to -78°C under a N₂ atmosphere. To this solution n-butyllithium (20.3 mL, 40.6 mmol, 2M in cyclohexane) was introduced in a dropwise manner. The resulting solution was stirred at -78°C for 45 min and then allowed to warm up to -60°C. To this solution trimethyltin chloride (40.6 mL, 40.6 mmol, 1M in THF) was added dropwise. This solution was stirred at -60°C for 30 min and then allowed to warm up to room temperature. The THF was removed under vacuum and the residue was treated with HzO and extracted with hexane. The hexane layer was evaporated and the residue was dissolved in Et₂O. The Et₂O solution was washed with 10% HCl, saturated NaCl and dried over anhydrous MgSO₄. Et₂O was removed under vacuum and the residue was taken in MeOH. The MeOH solution was treated with trimethylsilyldiazomethane (18.5 mL, 2M in hexane) and stirred at room temperature for 1h. The solvents were removed under vacuum to give 2 g (31%) of methyl 4-(1,1-dimethyl-1-stannaethyl)-5-methylthiothiophene-2-carboxylate as an oil. ¹H-NMR (CDCl₃, 300 MHz) δ 0.31 (S, 9H), 2.57 (s, 3H), 3.86 (s, 3H), 6.98 (s, 1H).

b) Methyl 4-(6-bromo(2-pyridyl))-5-methylthiothiophene-2-carboxylate: Methyl 4-(1,1-dimethyl-1-stannaethyl)-5-methylthiothiophene-2-carboxylate (195 mg, 0.56 mmol) as prepared in previous step, and 2,6-dibromopyridine (398 mg, 1.7 mmol) were taken in anhydrous DMF (2 mL). To this mixture tetrakis(diphenylphosphine)palladium (20 mg) was added and heated at 120°C for 24 h. DMF was removed under vacuum and the residue was purified by preparative silica gel thin layer chromatography to give 78 mg (41%) of methyl 4-(6-bromo(2-pyridyl))-5-methylthiothiophene-2-carboxylate as a solid. ¹H-NMR (CDCl₃, 300
-119-

MHz) δ 2.60 (S, 3H), 3.78 (s, 3H), 7.19 (S, 1H), 7.47 (dd, J = 1.09 and 7.67 Hz, 1H), 7.58 (t, J = 7.70, 1H), 7.65 (dd, J = 1.12 and 7.43 Hz, 1H).

c) *Methyl 5-methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxylate:* Methyl 4-(6-bromo(2-pyridyl))-5-methylthiothiophene-2-carboxylate (78 mg, 0.23 mmol) as prepared in previous step, phenylboronic acid (33 mg, 0.27 mmol) and tetrakis(triphenylphosphine)-palladium (10 mg) were taken in DMF (1 mL). To this solution K$_2$CO$_3$ (75 mg, 0.54 mmol) and H$_2$O (0.3 mL) were added and the mixture was stirred and heated at 90°C for 18 h. Solvents were removed under vacuum and the residue was dissolved in EtOAc and extracted with H$_2$O, washed with saturated NaCl and dried over anhydrous Na$_2$SO$_4$. Thin-layer chromatography of the aqueous layer indicated the presence of some hydrolyzed product. Therefore the aqueous layer was separated acidified with 10% HCl and extracted with EtOAc. The EtOAc layer was washed with saturated NaCl and dried over anhydrous Na$_2$SO$_4$. This second EtOAc fraction was evaporated and the residue was dissolved in MeOH and treated with trimethylsilyldiazomethane (1.2 eq). This methanolic solution and the first EtOAc fraction were combined and evaporated. The residue was subjected to preparative thin-layer chromatography (10% EtOAc in Hexane) to give 40 mg (51%) of methyl 5-methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxylate which was used directly in the next step.

d) *5-Methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxamidine:* Methyl 5-methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxylate (40 mg, 0.12 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, to give 10 mg of 5-methylthio-4-(6-phenyl(2-pyridyl))thiophene-2-carboxamidine as a solid. 1H-NMR (CD$_3$OD, 300 MHz) δ 2.69 (s, 3H), 7.45–7.60 (m, 3H), 7.62 (s, 1H), 7.79 (dd, J = 0.92 and 7.79 Hz, 1H), 7.96 (dd, J = 0.85 and 7.98 Hz, 1H), 8.03–8.12 (m, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{17}$H$_{13}$N$_3$S$_2$, 326.1 (M+H), found 326.1.

Example 43

5-Methylthio-4-(3-phenylphenyl)thiophene-2-carboxamidine
a) \textit{Methyl 5-methylthio-4-(3-phenylphenyl)thiophene-2-carboxylate:}\n
Methyl 4-(1,1-dimethyl-1-stannaethyl)-5-methylthiothiophene-2-carboxylate (200 mg, 0.57 mmol, as prepared in Example 42, step a) and 1-bromo-3-phenylbenzene (266 mg, 1.14 mmol) were taken in anhydrous DMF (2 mL). To this mixture tetrakistriphenylphosphine-palladium (20 mg) was added and heated at 120°C for 24 h. DMF was removed under vacuum and the residue was purified by preparative silica gel thin-layer chromatography to give 39 mg (20%) methyl 5-methylthio-4-(3-phenylphenyl)thiophene-2-carboxylate as a solid. 1H-NMR (CD$_3$OD; 300 MHz) δ 2.60 (s, 3H), 3.75 (s, 3H), 7.3-7.5 (m, 6H), 7.6-7.66 (m, 4H).

b) \textit{5-Methylthio-4-(3-phenylphenyl)thiophene-2-carboxamidine:}\n
Methyl 5-methylthio-4-(3-phenylphenyl)thiophene-2-carboxylate (35 mg, 0.1 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, to give 17 mg of 5-methylthio-4-(3-phenylphenyl)thiophene-2-carboxamidine as a solid. 1H-NMR (CD$_3$OD; 300 MHz) δ 2.60 (s, 3H), 7.3-7.6-7.66 (m, 10H). Mass spectrum (ESI, m/z): Calcd. for C$_{18}$H$_{16}$N$_2$S$_2$, 325.4 (M+H), found 325.2.

\section*{Example 44}

\textbf{5-Methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine}

a) \textit{Methyl 5-methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate:}\n
2-Phenylthioacetyl chloride (1 g, 5.4 mmol) was treated in a manner similar to that for Example 32 step (a) to give 2-bromo-1-phenylthiomyethylthiathan-1-one. The dry solid (1.3 g, 5.3 mmol) was dissolved in acetone (25 ml). To this solution 5-(methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (1.32 g, 5.3 mmol, Maybridge Chemical Co.) was added and heated at reflux for 5 h. At this point the solid that precipitated was filtered off and washed with acetone and dried under vacuum to give 1.5 g (71%) of methyl 5-methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate which was used without further purification in the following step.

b) \textit{5-Methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine:}\n
Methyl 5-methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxylate (1.5 g, 3.8 mmol) as prepared in previous step was treated
in a manner similar to that for Example 1, however the product was purified by crystallizing from methanol to give 0.86 g (60%) 5-methylthio-4-[4-(phenylthiomethyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine as a solid. \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 2.72 (s, 3H), 4.38 (s, 2H), 7.18-7.39 (m, 5H), 7.57 (s, 1H), 8.46 (s, 1H). Mass spectrum (MALDI-TOF, m/z): Calcd. for \(C_{16}H_{18}N_5S_4\), 378.0 (M+H), found 378.1.

Example 45

4-[4-(2-Chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine

\(a\) **Methyl 4-[4-(2-chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate:** 2-Chloro-4,5-dimethoxybenzoic acid (0.5 g, 2.3 mmol) and PCl\(_5\) (0.54 g, 2.6 mmol) were placed in a round bottomed flask fitted with a reflux condenser. The mixture was heated in an oil bath at 120 °C for 70 min. The mixture was allowed to cool and the formed phosphorus oxychloride was removed under vacuum to give 0.52 g (96%) of 2-chloro-4,5-dimethoxybenzoyl chloride as a solid. 2-Chloro-4,5-dimethoxybenzoyl chloride (0.52 g, 2.2 mmol) was treated in a manner similar to that for Example 32 step (a) to give 2-bromo-1-(2-chloro-4,5-dimethoxyphenyl) ethan-1-one. The dry solid (0.65 g, 2.2 mmol) was dissolved in acetone (25 ml). To this solution 5-(methoxycarbonyl)-2-(methylthio)-thiophene-3-thiocarboxamide (0.55 g, 2.2 mmol) was added and heated at reflux for 5 h. At this point the solid that precipitated was filtered off and washed with acetone and dried under vacuum to give 0.53 g (54%) of methyl 4-[4-(2-chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate. \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 2.73 (s, 3H), 3.83 (s, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 7.13 (s, 1H), 7.69 (s, 1H), 8.13 (s, 1H), 8.17 (s, 1H).

\(b\) **4-[4-(2-Chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine:** Methyl 4-[4-(2-chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (0.53 g, 1.2 mmol) as prepared in previous step was treated in a manner similar to that for Example 1, however the product was purified by crystallizing from methanol to give
to give 0.3 g (60%) 4-[4-(2-chloro-4,5-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophiophene-2-carboxamidine as a solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\)
2.77 (s, 3H), 3.84 (s, 6H), 7.13 (s, 1H), 7.71 (s, 1H), 8.17 (s, 1H), 8.69 (s, 1H), 9.16 (broad s, 2H), 9.48 (broad s, 2H). Mass spectrum (MALDI-TOF, m/z): Calcd. for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_2\)S\(_3\)Cl, 426.0 (M+H), found 426.6.

Example 46

4-[(Methylethyl)sulfonyl]-5-methylthiophiophene-2-carboxamidine

Methyl 4-[(methylene)sulfonyl]-5-methylthiophiophene-2-carboxylate (100 mg, Maybridge Chemical Company, Cornwall, UK) was treated in a manner similar to that for Example 1, to give 50 mg of 4-[(methylethyl)sulfonyl]-5-methylthiophiophene-2-carboxamidine. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 1.21 (d, \(J = 6.77\) Hz, 6H), 2.66 (s, 3H), 3.25-3.84 (m, 1H), 7.85 (s, 1H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_9\)H\(_{14}\)N\(_2\)O\(_2\)S\(_3\), 279.0 (M+H), found 279.3.

Example 47

Synthesis of methyl 2-\{3-\{2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl\}phenoxy\}acetate trifluoroacetate

To a solution of 42 mg (0.094 mmol) of (tert-butoxy)-N-\{4-[4-(3-hydroxyphenyl)](1,3-thiazol-2-yl)]-5-methylthio(2-thienyl)\}iminomethyl\}carboxamide, prepared in a manner similar to Example 40, step (c), in 2 mL of anhydrous N'N'-dimethylformamide (DMF) was added potassium iodide (0.006 mmol, 1 mg, Aldrich Chemical Co.), cesium carbonate (0.187 mmol, 61 mg, Aldrich Chemical Co.), and methyl bromoacetate (0.187 mmol, 18 \(\mu\)L, Aldrich Chemical Co.) and heated to 60\(^\circ\)C overnight. The reaction solution was concentrated and purified on a 1 mm silica prep plate eluting with 3% methanol/CH\(_2\)Cl\(_2\) to afford 11 mg (23% yield) of methyl 2-\{3-\{2-(5-\{[(tert-butoxy]carbonylamino)iminomethyl\}-2-methylthio-3-thienyl)-1,3-thiazol-4-yl\}phenoxy\}acetate which was then subjected to a solution of 50% trifluoroacetic acid/CH\(_2\)Cl\(_2\) for 1 h then concentrated and triturated with diethyl ether and dried to afford 7 mg (77% yield) of methyl 2-\{3-\{2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl\}phenoxy\}acetate trifluoroacetate. \(^1\)H-NMR (CD\(_3\)OD; 300 MHz) \(\delta\) 8.51 (s, 1H), 7.92 (s,
1H), 7.64-7.68 (m, 2H), 7.34-7.39 (t, 1H), 6.91-6.95 (m, 1H), 4.8 (s, 2H) 3.80 (s, 3H), 2.78 (s, 3H). Mass Spectrum (LC-Q ESI, m/z) Calcd. for C_{18}H_{23}N_{4}O_{3}S_{5}: 419.5 (M+H). found 420.3.

Example 48

Synthesis of 5-methylthio-4-[4-[(N-benzylcarbamooyl)methoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine trifluoroacetate

100 mg (0.197 mmol) of 2-(3-[2-(5-[(tert-butoxy)carbonylamino]iminomethyl]-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy)acetic acid, as prepared in the previous step, were dissolved in 1 mL of anhydrous DMF and PyBOP (0.396 mmol, 206 mg), benzylamine (0.396 mmol, 42 mg), and diisopropylethylamine (0.494 mmol; 86 µL) were added to the solution and stirred for 18 hrs after which the solution was concentrated and purified on a 2 g silica SPE column and deprotected with 50% trifluoroacetic acid/ methylene chloride to afford 60 mg (67% yield) of 5-methylthio-4-[4-[(N-benzylcarbamooyl)methoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine trifluoroacetate.

'H-NMR (CDCl₃/TFA-d; 300 MHz) δ 8.97 (s, 1H), 7.86 (s, 1H), 7.50-7.56 (t, 1H), 7.26-7.39 (m, 7H), 7.16-7.18 (d, 1H), 4.79 (s, 2H) 4.59 (s, 2H), 2.95 (s, 3H). Mass Spectrum (ESI, m/z) Calcd. for C_{24}H_{24}N_{4}O_{3}S_{5}: 494.6 (M+H), found 495.2.

Example 49

Synthesis of 4-[4-[3-[(N-[3,4-dimethoxyphenyl)methyl]carbamooyl)methoxy]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate

Dissolved 100 mg (0.197 mmol) of 2-(3-[2-(5-[(tert-butoxy)carbonylamino]iminomethyl]-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy)acetic acid, prepared in a manner similar to Example 48, step (c), in 1 mL of anhydrous DMF and added PyBOP (0.396 mmol, 206 mg), 3,4-dimethoxybenzylamine (0.396 mmol,66 mg), and diisopropylethylamine (0.494 mmol; 86 µL) and let stir for 18 hrs after which solution was concentrated and purified on a 2 g silica SPE column and deprotected with 50% trifluoroacetic acid/ methylene chloride to afford 45 mg (41% yield) 4-
{4-[3-[(N-[3,4-dimethoxyphenyl)methyl]carbamoyl]methoxy]phenyl}(1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxamide trifluoroacetate. 1H-NMR (CD3Cl2/TFA-d) 300 MHz) δ 8.48 (s, 1H), 7.78 (s, 1H), 7.71-7.73 (m, 1H), 7.65-7.67 (d, 1H), 7.36-7.41 (t, 1H), 7.00-7.04 (d, 1H) 4.68 (s, 2H), 4.43 (s, 2H), 3.75 (s, 3H). 3.56 (s, 3H). 2.78 (s, 3H). Mass Spectrum (LC-Q ESI, m/z) Calcd. for C26H26N4O4S3: 554.6 (M+H), found 555.2

Example 50

Synthesis of 5-methylthio-4-[4-[3-[(N-[2-(phenylamino)ethyl]carbamoyl)methoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamide trifluoroacetate

Dissolved 100 mg (0.197 mmol) of 2-[(2-(5-{{[(tert-butoxy)carbonylamino]iminomethyl}-2-methylthio-3-thienyl}-1,3-thiazol-4-yl)phenoxy]acetic acid, prepared in a manner similar to Example 48, step (c), in 1 mL of anhydrous DMF and added PyBOP (0.396 mmol, 206 mg), N-phenylethylendiamine (0.396 mmol, 54 mg), and diisopropylethylamine (0.494 mmol; 86 µL) and let stir for 18 hrs after which solution was concentrated and purified on a 2 g silica SPE column and deprotected with 50% trifluoroacetic acid/ methylene chloride to afford 65 mg (63% yield) 5-methylthio-4-[4-[3-[(N-[2-(phenylamino)ethyl]carbamoyl)methoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamide trifluoroacetate 1H-NMR (CD3Cl2/TFA-d 300 MHz) δ 8.50 (s, 1H). 7.82 (s, 1H), 7.77 (s, 1H), 7.65-7.67 (d, 1H), 7.36-7.41 (t,1H), 7.00-7.04 (d, 1H) 4.68 (s, 2H), 4.43 (s, 2H), 3.75 (s, 3H). 3.56 (s, 3H). 2.78 (s, 3H). Mass Spectrum (LC-Q ESI, m/z) Calcd. for C25H25N5O4S3: 523.6 (M+H), found 524.1

Example 51

Synthesis of 5-methylthio-4-[4-[(N-[2-morpholin-4-yl ethyl]carbamoyl)methoxy]phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamide trifluoroacetate

83 mg (0.164 mmol) of 2-[(2-(5-{{[(tert-butoxy)carbonylamino]iminomethyl}-2-methylthio-3-thienyl}-1,3-thiazol-4-yl)phenoxy]acetic acid, prepared in a manner similar to Example 40, step (c), was reacted with 2-morpholin-4-yl ethylamine (0.328 mmol, 43 µL) in a manner similar to Example 48 to afford 46 mg (54% yield) of 5-methylthio-4-[4-[(N-[2-
morpholin-4-ylethyl)carbamoyl)methoxy)phenyl)(1,3-thiazol-2-yl)thiophene-2-
carboxamidine trifluoroacetate. 1H-NMR (DMSO-d$_6$, 300 MHz) δ 9.38 (bs, 2H), 9.08 (bs,
2H), 8.61 (s, 1H), 8.45 (t, 1H), 8.27 (s, 1H), 7.69-7.74 (m, 2H) 7.42-7.47 (t, 1H), 7.00-7.03
(d, J= 8 Hz, 1H), 4.62 (s, 2H), 3.53-3.64 (m, 5H), 3.24-3.38 (m, 5H), 2.80 (s, 3H), 1.1 (t, 2H).

Mass Spectrum (ESI, m/z) Calcd. for C$_{23}$H$_{27}$N$_2$O$_3$S$_3$: 517.6 (M+H), found 518.2.

Example 52

*Synthesis of 5-methylthio-4-{4-[3-(2-morpholin-4-yl-2-oxoethoxy)phenyl](1,3-thiazol-2-
yl)}thiophene-2-carboxamidine trifluoroacetate*

73 mg (0.144 mmol) of 2-{3-[2-(5-[[[tert-butoxy]carbonylamino]iminomethyl]-2-
methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to
Example 48, step (c), was reacted with morpholine (0.288 mmol; 25 µL) in a manner similar
to Example 48 step (b) to afford 50 mg (75% yield) 5-methylthio-4-{4-[3-(2-morpholin-4-yl-
2-oxoethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine trifluoroacetate. 1H-NMR
(DMSO-d$_6$/TFA-d 300 MHz) δ 9.38 (bs, 1H), 9.08 (bs, 2H), 8.66 (s, 1H), 8.22 (s, 1H), 7.69-
7.74 (m, 2H) 7.39-7.45 (t, 1H), 6.98-7.00 (dd, J= 2.3 Hz and 8.2 Hz, 1H), 4.95 (s, 2H), 3.53-
3.67 (m, 8H), 2.82 (s, 3H). Mass Spectrum (ESI, m/z) Calcd. for C$_{23}$H$_{27}$N$_2$O$_3$S$_3$: 474.6
(M+H), found 475.2.
Example 53

Synthesis of 5-methylthio-4-{4-[3-(2-oxo-2-piperazinylethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine trifluoroacetate

100 mg (0.198 mmol) of 2-{3-[2-(5-[[[(tert-butoxy)carbonylamino]iminomethyl]-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with tert-butyl piperazinecarboxylate (0.396 mmol; 74 mg) in a manner similar to Example 48 step (b) to afford 40 mg (43% yield) of 5-methylthio-4-{4-[3-(2-oxo-2-piperazinylethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamidine trifluoroacetate. \(^1\)H-NMR (DMSO-d\(_6\)/TFA-d); 300 MHz) \(\delta\) 8.68 (s, 1H), 8.20 (s, 1H), 7.75 (m, 2H) 7.40-7.46 (t, 1H), 6.99-7.03 (dd, J = 2.3 Hz and 8.1 Hz, 1H), 5.02 (s, 2H), 3.76 (bs, 4H), 3.17-3.26 (m, 4H). 2.82 (s, 3H). Mass Spectrum (LC-Q ESI, m/z) Calcd. for C\(_{21}\)H\(_{23}\)N\(_2\)O\(_2\)S\(_3\): 473.6 (M+H), found 474.2.

Example 54

Synthesis of 4-{4-[3-{[(N-(2-aminoethyl)carbamoyl)methoxy]phenyl}(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

51 mg (0.101 mmol) of 2-{3-[2-(5-[[[(tert-butoxy)carbonylamino]iminomethyl]-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with N-(2-aminoethyl)(tert-butoxy)carboxamide (0.202 mmol; 32 mg) in a manner similar to Example 48 step (b) to afford 80 mg (80% yield) of 4-{4-{3-[[N-2-{[(tert-butoxy)carbonylamino]ethyl}carbamoyl)methoxy]phenyl}(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine which was then deprotected with 4N HCl in dioxane to afford 36 mg (68% yield) of 4-{4-{3-{[(N-(2-aminoethyl)carbamoyl)methoxy]phenyl}(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\)H-NMR (CD\(_3\)OD); 300 MHz) \(\delta\) 8.55 (s, 1H), 7.95 (s, 1H), 7.69-7.76 (m, 2H) 7.38-7.44 (t, 1H), 7.03-7.06 (m, 1H), 4.80 (s, 2H), 3.43-3.59 (m, 2H), 3.13-3.31 (m, 2H), 2.83 (s, 3H). Mass Spectrum (ESI, m/z) Calcd. for C\(_{19}\)H\(_{23}\)N\(_2\)O\(_2\)S\(_3\): 447.5 (M+H), found 448.2.
Example 55

Synthesis of 4-(4-[(3-[[2-(4-acetylpiperazinyl)-2-oxoethoxy]phenyl](1,3-thiazol-2-yl)])-5-methylthiothiophene-2-carboxamidine trifluoroacetate

52 mg (0.103 mmol) of 2-{3-[2-(5-{[(tert-butoxy)carbonylamino]iminomethyl}-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with 1-acetyl piperazine (0.154 mmol, 20 mg), 1-hydroxy-7-azabenzotriazole (HOAt)) (0.154 mmol, 21 mg), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.154 mmol, 58 mg) and diisopropylethylamine (0.258 mmol, 44 µL) in DMF to afford crude product which was then purified on 1 mm silica prep plates eluting with 3% methanol/methylene chloride to afford 28 mg (53% yield) of N-{4-(4-{3-[2-(4-acetylpiperazinyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthio(2-thienyl)iminomethyl}((tert-butoxy)carboxamide. This was subsequently reacted with a solution of trifluoroacetic acid: methylene chloride: water (47.5: 47.5: 2.5%) for 1 hour, concentrated and purified on a silica SPE column eluting with 15% methanol/methylene chloride to afford 20 mg (80% yield) of 4-(4-{3-[2-(4-acetylpiperazinyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate. \(^1\)H-NMR (CD\(_2\)OD); 300 MHz) δ 8.48 (s, 1H), 7.91 (s, 1H), 7.66-7.71 (m, 2H) 7.35-7.41 (t, 1H), 6.97-7.00 (dd, J= 2 Hz and 8.1 Hz, 1H), 4.93 (s, 2H), 3.52-3.67 (m, 8H), 2.78 (s, 3H), 2.12 (s, 3H). Mass Spectrum (ESI, m/z) Calcd. for C\(_{25}\)H\(_{23}\)N\(_5\)O\(_3\)S\(_2\): 515.6 (M+H), found 516.2.

Example 56

Synthesis of 4-(4-[(3-[[2-(4-methylpiperazinyl)-2-oxoethoxy]phenyl](1,3-thiazol-2-yl)])-5-methylthiothiophene-2-carboxamidine trifluoroacetate

54 mg (0.107 mmol) of 2-{3-[2-(5-{[(tert-butoxy)carbonylamino]iminomethyl}-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with N-methyl piperazine (0.128 mmol, 14 µL), 1-hydroxy-7-azabenzotriazole (HOAt) (0.128 mmol, 17 mg), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.128 mmol, 49 mg) and diisopropylethylamine (0.268 mmol, 56 µL) in DMF to afford crude product which was then partitioned between methylene chloride and 1N NaOH and washed. The organic layer was
obtained and similarly washed with 10% citric acid and saturated aq. sodium chloride, dried over sodium sulfate and concentrated to a yellow oil. The oil was then purified on 1 mm silica prep plates eluting with 5% methanol/methylene chloride to afford (tert-butoxy)-N-(imino{4-(4-{3-[2-(4-methylpiperazinyl)-2-oxoethoxy]phenyl}(1,3-thiazol-2-yl))-5-methylthio(2-thienyl)methyl}carboxamide. This was subsequently reacted with a solution of trifluoroacetic acid: methylene chloride: water (47.5%: 47.5%: 2.5%) for 1 hour, concentrated and purified on a silica SPE column eluting with 10-15% methanol/methylene chloride to afford 17 mg (33% yield) of 4-(4-{3-[2-(4-methylpipera-5

Example 57

\[\text{Synthesis of 5-methylthio-4-}[4-(3-\text{[2-oxo-2-(4-benzylpiperazinyl]ethoxy}]phenyl})(1,3

54 mg (0.107 mmol) of 2-{3-[2-(5-{[(tert-butoxy)carbonylamino]iminomethyl}-2-methylthio-3-thienyl}-1,3-thiazol-4-yl]phenoxy}acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with N-benzylpiperazine (0.128 mmol, 22 µL), 1-hydroxy-

7-azabenzotriazole (HOAt) (0.128 mmol, 17 mg), O-(7-azabenzotriazol-1-yl)-1,1,3,3-
tetramethylyuronium hexafluorophosphate) HATU (0.128 mmol, 48 mg) and diisopropylethylamine (0.267 mmol, 50 µL) in DMF to afford crude product which was then partitioned between methylene chloride and 1 N NaOH and washed. The organic layer was obtained and similarly washed with 10% citric acid and saturated aq. sodium chloride, dried over sodium sulfate and concentrated to a yellow oil. The oil was then purified on 1 mm silica prep plates eluting with 5% methanol/methylene chloride to afford (tert-butoxy)-N-(imino{5-methylthio-4-[4-(3-[2-oxo-2-[4-benzylpiperazinyl]ethoxy]phenyl})(1,3-thiazol-2-

30

yl)](2-thienyl)methyl}carboxamide. This was subsequently reacted with a solution of trifluoroacetic acid: methylene chloride: water (47.5%: 47.5%: 2.5%) for 1 hour, concentrated and purified on a 5 g silica SPE column eluting with 10-15% methanol/methylene chloride to afford 36 mg (60% yield) of 5-methylthio-4-[4-(3-[2-oxo-2-[4-
benzyl[piperazinyl]ethoxy]phenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine trifluoroacetate. \(^1\)H-NMR (CD\(_3\)OD; 300 MHz) \(\delta\) 8.54 (s, 1H), 7.93 (s, 1H), 7.69-7.72 (m, 2H), 7.50 (s, 5H) 7.36-7.41 (t, 1H), 6.97-7.01 (dd, J= 2 Hz and 8.1 Hz, 1H), 4.94(s, 2H), 4.37(s, 2H), 3.3 (m, 4H), 2.81 (s, 3H), 2.49-2.57 (m, 4H), 2.35 (s, 3H). Mass (ESI, m/z) Calcd. for C\(_{28}\)H\(_{30}\)N\(_4\)O\(_3\)S\(_3\): 563.7 (M+H), found 564.3.

Example 58

Synthesis of (D,L)-4-(4-[2-(3-aminopyrrolidinyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate

41 mg (0.081 mmol) of 2-[2-(5-[[tert-butoxy]carbonylamino]iminomethyl]-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy)acetic acid, prepared in a manner similar to Example 48, step (c), was reacted with (D,L) (tert-butoxy)-N-pyrrolidin-3-ylcarboxamide (0.122 mmol, 23 mg), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.122 mmol, 46 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.122 mmol, 17 mg) and diisopropylethylamine (0.203 mmol, 35\(\mu\)L) in a manner similar to Example 56 to afford 20 mg (53% yield) of (D,L)- 4-(4-[2-(3-aminopyrrolidinyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate. \(^1\)H-NMR (CD\(_3\)OD; 300 MHz) \(\delta\) 8.54 (s, 1H), 7.94 (s, 1H), 7.69-7.72 (m, 2H) 7.36-7.41 (t, 1H), 6.97-7.01 (dd, J= 2 Hz and 8.1 Hz, 1H), 4.85 (s, 2H), 4.37(s, 2H), 3.60-4.01 (m, 5H), 2.81 (s, 3H), 2.15-2.71 (m, 2H). Mass Spectrum (ESI, m/z) Calcd. for C\(_{21}\)H\(_{23}\)N\(_4\)O\(_3\)S\(_3\): 473.6 (M+H), found 474.3.

Example 59

Synthesis of 5-methylthio-4-[4-[2-(2-oxo-2-piperidylethoxy)phenyl](1,3-thiazol-2-yl)]thiophene-2-carboxamidine trifluoroacetate

33 mg (0.065 mmol) of 2-(5-[2-[(tert-butoxy)carbonylamino]iminomethyl]-2-methylthio-3-thienyl]-1,3-thiazol-4-yl]phenoxy)acetic acid, prepared in a manner similar to Example 40, step (c), was reacted with piperidine (0.078 mmol, 8 \(\mu\)L), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.078 mmol, 30 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.078 mmol, 11 mg) and diisopropylethylamine (0.163 mmol, 56\(\mu\)L) in a manner similar to Example 57 to afford 15 mg (41% yield) of 5-
methylthio-4-{4-[3-(2-oxo-2-piperidylethoxy)phenyl](1,3-thiazol-2-yl)} thiophene-2-carboxamidine trifluoroacetate. \(^1\)H-NMR (CD\(_3\)OD; 300 MHz) \(^{\delta}\) 8.54 (s, 1H), 7.92 (s, 1H), 7.65-7.71 (m, 2H) 7.35-7.40 (t, 1H), 6.96-6.99 (dd, J= 2 Hz and 8.1 Hz, 1H), 4.95 (s, 2H), 3.52-3.60 (m, 4H), 2.80 (s, 3H), 1.57-1.70 (m, 6H). Mass Spectrum (ESI, m/z) Calcd. for C\(_{22}\)H\(_{24}\)N\(_6\)O\(_3\)S\(_5\): 472.6 (M+H), found 473.2.

Example 60

Synthesis of 2-{3-[2-(5-imino[4-polystyryloxyphenyl]methoxy[carbonylamino)methyl]-2-methylthio-3-thienyl]-1,3-thiazol-4-yl][phenoxy]acetic acid

2 g (1.86 mmol) of p-Nitrophenyl carbonate Wang resin (0.93 mmol/g) (Calbiochem-Novabiochem, San Diego, CA) was suspended in 9 mL of a 2:1 mixture of anhydrous DMSO:DMF. 2 g (4.93 mmol) of 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid was added to suspension followed by the addition of 1 mL of 1,8-diazabicyclo[5.4.0]undec-7-ene, (DBU, Aldrich Chemical Co., 6.69 mmol) and let shake vigorously for 5 days after which resin was washed thoroughly with DMF, MeOH, and diethyl ether and dried in vacuo to afford 2 g of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid.

Example 61

Synthesis of (D,L)-ethyl 1-{2-[3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl][phenoxy][acetyl]piperidine-2-carboxylate trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was suspended 1 mL of anhydrous DMF. O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg), ethyl piperidine-2-carboxylate (0.5 M; 78 \(\mu\)L) and diisopropylethylamine (0.233 mmol, 40 \(\mu\)L) were added and allowed to shake vigorously for 18 hrs, after which the resin was washed thoroughly with DMF, methanol, methylene chloride, and diethyl ether. After drying, crude product was removed from resin by reaction with a solution of trifluoroacetic acid: methylene chloride: water (47.5%: 47.5%: 2.5%) for 1
hour. The solution was filtered and concentrated to a yellow oil. After purification on a 2 g silica SPE column, eluting with a gradient of 3%-10% MeOH/methylene chloride, 15 mg (30% yield) of (D,L)-ethyl 1-(2-[(2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy)acetyl)piperidine-2-carboxylate trifluoroacetate was obtained. Mass Spectrum (ESI, m/z) Calcd. for C_{25}H_{28}N_{4}O_{5}S_{2}: 544.70 (M+H), found 545.2

Example 62

Synthesis of 5-methylthio-4-{4-[3-(2-oxo-2-pyrrolidinylethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamide trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was suspended in 1 mL of anhydrous DMF. O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg), pyrrolidine (0.5 M; 42 μL) and diisopropylethylamine (0.233 mmol, 40 μL) were added and allowed to shake vigorously for 18 hours, after which the resin was washed thoroughly with DMF, methanol, methylene chloride, and diethyl ether. After drying, crude product was removed from resin by reaction with a solution of trifluoroacetic acid: methylene chloride: water (47.5%; 47.5%; 2.5%) for 1 hour. After trituration with diethyl ether and drying, 18 mg (42% yield) of 5-methylthio-4-{4-[3-(2-oxo-2-pyrrolidinylethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamide trifluoroacetate was obtained. Mass Spectrum (ESI, m/z) Calcd. for C_{31}H_{22}N_{4}O_{5}S_{2}: 458.6 (M+H), found 459.2

Example 63

Synthesis of 5-methylthio-4-4-(3-{2-oxo-2-[4-benzylpiperidyl]ethoxy}phenyl)(1,3-thiazol-2-yl)}thiophene-2-carboxamide trifluoroacetate

80 mg (0.074 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was suspended in 1 mL of anhydrous DMF. O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg), 4-benzyl piperidine (0.5 M; 88 μL) and
diisopropylethylamine (0.185 mmol, 32 μL) were added and allowed to shake vigorously for 18 hrs, after which the resin was washed thoroughly with DMF, methanol, methylene chloride, and diethyl ether. After drying, crude product was removed from resin by reaction with a solution of trifluoroacetic acid: methylene chloride: water (47.5%: 47.5%: 2.5%) for 1 hour. After trituration with diethyl ether and drying, 17 mg (40% yield) of 5-methylthio-4-[4-(3-[2-oxo-2-[4-benzylpiperidyl]ethoxy]phenyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine trifluoroacetate was obtained. Mass Spectrum (ESI, m/z) Calcd. for C_{29}H_{39}N_{4}O_{2}S_{3}: 562.7 (M+H), found 563.3.

Example 64

Synthesis of (D,L)-4-(4-[2-(3-methylpiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate

80 mg (0.074 mmol) of resin-bound 2-[3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy]acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with (+/-)-3-methyl piperidine (0.5 M, 59 μL) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.185 mmol, 32 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 10 mg (28% yield) of 4-(4-[2-(3-methylpiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{23}H_{26}N_{4}O_{2}S_{3}: 486.6 (M+H), found 487.3.

Example 65

Synthesis of 4-(4-[2-(4-methylpiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate

80 mg (0.074 mmol) of resin-bound 2-[3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy]acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with 4-methyl piperidine (0.5 M, 59 μL) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.185 mmol, 32 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 12 mg (33% yield) of
4-(4-\{3-[2-(4-methylpiperidyl)-2-oxoethoxy]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C$_2$H$_{20}$N$_4$O$_2$S$_3$: 486.6 (M+H), found 487.3.

Example 66

Synthesis of 4-(4-\{3-[2-(2-azabicyclo[4.4.0]dec-2-yl)-2-oxoethoxy]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide trifluoroacetate

80 mg (0.074 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thiényl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with decahydroquinoline (0.5 M, 75 µL) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.185 mmol, 32 µL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 16 mg (41% yield) of 4-(4-\{3-[2-(2-azabicyclo[4.4.0]dec-2-yl)-2-oxoethoxy]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C$_{25}$H$_{36}$N$_4$O$_2$S$_3$: 526.7 (M+H), found 527.2.

Example 67

Synthesis of (D,L)-ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thiényl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-3-carboxylate trifluoroacetate

80 mg (0.074 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thiényl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with ethyl nipecotate (0.5 M, 78 µL) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5 M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.185 mmol, 32 µL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 18 mg (45% yield) of ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thiényl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-3-carboxylate trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C$_{25}$H$_{36}$N$_4$O$_2$S$_3$: 545.7 (M+H), found 545.2.
Example 68

Synthesis of 5-methylthio-4-{4-[3-(2-oxo-2-(1,2,3,4-tetrahydroquinolyl)ethoxy)phenyl][1,3-thiazol-2-yl]thiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with 1,2,3,4-tetrahydroisoquinoline (0.5M) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 µL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 20 mg (42% yield) of 5-methylthio-4-{4-[3-(2-oxo-2-(1,2,3,4-tetrahydroquinolyl)ethoxy)phenyl][1,3-thiazol-2-yl]thiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{26}H_{28}N_{4}O_{8}S_{3}: 520.7 (M+H), found 521.2.

Example 69

Synthesis of ethyl 1-(2-[3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy]acetyl)piperidine-4-carboxylate trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with ethyl isonipecotate (0.5M, 77 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 µL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 21 mg (42% yield) of ethyl 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-4-carboxylate trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{23}H_{30}N_{4}O_{5}S: 545.7 (M+H), found 545.3.
Example 70

Synthesis of 4-((3-[2-((3R)-3-hydroxypiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy} acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with R-(-)-3-hydroxy piperidine (0.5M, 69 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 16 mg (36% yield) of 4-(4-((3-[2-((3R)-3-hydroxypiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{22}H_{23}N_{6}O_{5}S_{3}: 489.7 (M+H), found 489.2.

Example 71

Synthesis of D,L-4-(4-[(2-ethylpiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy} acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with 2-ethyl piperidine (0.5M) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 11 mg (23% yield) of D,L-4-(4-((3-[2-(2-ethylpiperidyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{24}H_{27}N_{6}O_{5}S_{3}: 501.4 (M+H), found 501.4.

Example 72

Synthesis of 4-(4-((3-[2-((3S)-3-hydroxypyrrolidinyl)-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy} acetic acid (0.93 mmol/g), as prepared in a manner
similar to Example 60, was reacted with R-(−)-3-pyrrolidinol (0.5M, 62 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 10 mg (23% yield) of 4-(4-3-[2-((3S)-3-hydroxy[1H-pyrrolinyl]-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl))-2-thienyl)-2-thiophene-2-carboxamide trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C₂₁H₂₆N₅O₃S₂; 475.2 (M+H), found 475.2.

Example 73

Synthesis of 5-methylthio-4-(4-3-[N-(5,6,7,8-tetrahydro[naphthyl]carbamoyl)ethoxy]phenyl)(1,3-thiazol-2-yl))thiophene-2-carboxamide trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-((5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl)phenoxy]acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with 5,6,7,8-tetrahydro-1-naphthylamine (0.5M, 73 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5 M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 15 mg (30% yield) of 5-methylthio-4-(4-3-[N-(5,6,7,8-tetrahydro[naphthyl]carbamoyl)ethoxy]phenyl)(1,3-thiazol-2-yl))thiophene-2-carboxamide trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C₂₁H₂₆N₅O₃S₂; 535.2 (M+H), found 535.3.

Example 74

Synthesis of D, L-4-[4-3-[2-((hydroxymethyl)piperidyl]-2-oxoethoxy]phenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-((5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl)phenoxy]acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with 3-piperidine methanol (0.5M, 58 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and
diisopropylethylamine (0.233 mmol, 40 μL in 1 mL of anhydrous DMF in a manner similar to Example 40 to afford to 19 mg (40% yield) of D,L-4-[4-(3-{2-[3-(hydroxymethyl)piperidyl]-2-oxoethoxy}phenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{23}H_{28}N_{4}O_{2}S_{2}: 503.2 (M+H), found 503.2.

Example 75

Synthesis of 4-[4-[(2R)-2-[(phenylamino)methyl]pyrrolidinyl]-2-oxoethoxy]phenyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenox}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with (S)-(+)2-anilino methyl pyrrolidine (0.5M, 88 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethylyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 13 mg (25% yield) of 4-{4-[3-[(2R)-2-[(phenylamino)methyl]pyrrolidinyl]-2-oxoethoxy]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{28}H_{34}N_{4}O_{2}S_{2}: 563.8 (M+H), found 564.2.

Example 76

Synthesis of 4-[4-[(3R)-3-[(methoxymethyl)pyrrolidinyl]-2-oxoethoxy]phenyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenox}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with (S)-(+)2-methoxymethyl pyrrolidine (0.5M, 58 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethylyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford...
mg (35% yield) of 4-[4-(3-{2-[((3R)-3-(methoxymethyl)pyrrolidinyl]-2-oxoethoxy}phenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{25}H_{22}N_{4}O_{5}S_{3}: 503.2 (M+H), found 503.3.

Example 77

Synthesis of 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-3-carboxamide trifluoroacetate

100 mg (0.093 mmol) of resin-bound 2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetic acid (0.93 mmol/g), as prepared in a manner similar to Example 60, was reacted with nipecotamide (0.5M, 64 mg) and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) HATU (0.5M, 190 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (0.5M; 68 mg) and diisopropylethylamine (0.233 mmol, 40 μL) in 1 mL of anhydrous DMF in a manner similar to Example 63 to afford 11 mg (23% yield) 1-(2-{3-[2-(5-amidino-2-methylthio-3-thienyl)-1,3-thiazol-4-yl]phenoxy}acetyl)piperidine-3-carboxamide trifluoroacetate. Mass Spectrum (ESI, m/z) Calcd. for C_{25}H_{23}N_{4}O_{5}S_{3}: 516.2 (M+H), found 516.3.
Example 78

Synthesis of 5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamide hydrochloride

a) Synthesis of methyl 5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxylate: 435 mg (1.76 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate was dissolved in 10 mL of reagent grade acetone. 2-bromo-3′-trifluoromethoxy acetophenone, prepared in a manner similar to Example 95, step (a), (1.76 mmol; 497 mg) was added and the solution was allowed to reflux for 3 h. The solution was allowed to cool and concentrated to an oil which was then dissolved in 150 mL of methylene chloride and washed with 50 mL of 10% HCl (aq.) and 50 mL of 2N NaOH (aq.). The organic layer was obtained and dried over magnesium sulfate and concentrated affording 877 mg (90% yield) of a methyl-5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxylate.

b) Synthesis of 5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamide hydrochloride: To a stirred suspension of 19.4 mmol (1.04 g) of ammonium chloride (Fisher Scientific) in 20 mL of anhydrous toluene (Aldrich Chemical Co.) placed under nitrogen atmosphere at 0°C, 9.7 mL (19.4 mmol) of 2M trimethylaluminum in toluene (Aldrich Chemical Co.) was added via syringe over 15 min and then let stir at 0°C for 30 min after which 837 mg (1.94 mmol) of methyl-5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxylate was added to solution and allowed to reflux for 3 h. The reaction mixture was quenched by pouring over a slurry of 10 g of silica in 50 mL of chloroform. The silica was poured onto a sintered glass funnel and washed with ethyl acetate and eluting with a 15% methanol/CH₂Cl₂ solution and concentrated. The crude product was purified on 1 mm silica prep plates eluting with 15% methanol/CH₂Cl₂ and treated with 4N HCl/dioxane to afford 37 mg (5% yield) of 5-methylthio-4-{4-[3-(trifluoromethoxy)phenyl](1,3-thiazol-2-yl)}thiophene-2-carboxamide hydrochloride. ¹H-NMR (DMSO-d₆; 300 MHz) δ 9.43 (bs, 1.9 H), 9.05 (bs, 1.9 H), 8.67 (s, 1H), 8.43 (s, 1H), 8.05-8.14 (m, 2H), 7.62-7.67 (t, 1H), 7.38-7.42 (m, 1H), 2.8 (s, 3H). Mass Spectrum (LCQ-ESI, m/z) Calcd. for C₁₆H₁₂F₃N₃OS₂: 415.5(M+H), found 416.2.
Example 79

5-Methylthio-4-(5-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxamidine hydrochloride

5a) Methyl 5-methylthio-4-[N-(2-oxo-2-phenylethyl)carbamoyl]thiophene-2-carboxylate: To a stirred suspension of 300 mg (1.29 mmol) of 5-(methoxycarbonyl)-2-methylthiothiophene-3-carboxylic acid (as prepared in Example 95) in 10 mL of anhyd CH₂Cl₂ (under a CaSO₄ drying tube) was added 135 µL (1.55 mmol) of oxalyl chloride followed by 30 µL of anhyd DMF. After stirring for 2 h at room temperature, the mixture was concentrated *in vacuo*. The resulting yellow solid was dissolved in 10 mL of anhyd CH₂Cl₂, cooled (0°C) and 266 mg (1.55 mmol) of 2-aminoacetophenone was added. N,N-diisopropylethylamine (DIEA) (756 µL, 4.34 mmol) was added dropwise over 3 min and the mixture stirred for 1 h at room temperature. The mixture was concentrated to an oil and partitioned between 125 mL of EtOAc and 80 mL of 1 M HCl. The aqueous layer was extracted with ethyl acetate (2 x 30 mL) and the combined organic phases were washed with 1 M HCl (60 mL), saturated NaHCO₃ (120 mL), and brine (120 mL) and dried over Na₂SO₄. After removing the solvent *in vacuo*, the residue was recrystallized from MeOH to afford the title compound as a cream-colored powder (314 mg, 70%). ¹H-NMR (300 MHz, DMSO-d₆) δ 8.82 (t, 1H, J = 6 Hz), 8.43 (s, 1H), 8.02 (d, 2H, J = 7 Hz), 7.69 (t, 1H, J = 7 Hz), 7.57 (t, 2H, J = 7 Hz), 4.72 (d, 2H, J = 6 Hz), 3.84 (s, 3H) and 2.57 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C₁₆H₁₅NO₄S₂: 372.0 (M + Na). Found: 372.1.

b) Methyl 5-methylthio-4-(5-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxylate: To a cooled (0°C) solution of 80.1 mg (0.229 mmol) of methyl 5-methylthio-4-[N-(2-oxo-2-phenylethyl)carbamoyl]thiophene-2-carboxylate (as prepared in the previous step) in 2 mL of anhyd DMF was added 26.7 µL (0.286 mmol) of phosphorus oxychloride. After stirring for 20 h at room temperature, the mixture was concentrated *in vacuo*. The resulting yellow solid was recrystallized twice from MeOH to afford the title compound as a beige powder (48.8 mg, 64%). ¹H-NMR (300 MHz, DMSO-d₆) δ 8.26 (s, 1H), 7.88 (s, 1H), 7.86 (d, 2H, J = 7 Hz),
7.51 (m, 2H), 7.40 (m, 1H), 3.86 (s, 3H), and 2.79 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C_{16}H_{13}NO_{3}S_{2}: 332.0 (M + H). Found: 331.9.

c) 5-Methylthio-4-(5-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-(5-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxylate (37.0 mg, 0.112 mmol, as prepared in the previous step) was treated according to the procedure in Example 10, step (b) using 59.9 mg (1.12 mmol) of ammonium chloride in 0.50 mL of toluene and 0.560 mL (1.12 mmol) of 2 M trimethylaluminum in toluene. The resulting residue was chromatographed on a 5 g silica SPE column (Waters Sep-Pak) with 10% MeOH-CH$_2$Cl$_2$ to elute an impurity followed by 20% MeOH-CH$_2$Cl$_2$ to give 39 mg of a light yellow glass. Crystallization from MeOH-MeCN afforded the title compound as a cream-colored solid (33.4 mg, 85 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.45 (broad s, 2H), 9.13 (broad s, 2H), 8.72 (s, 1H), 7.93 (s, 1H), 7.84 (d, 2H, J = 7 Hz), 7.53 (t, 2H, J = 7 Hz), 7.42 (t, 1H, J = 7 Hz), and 2.80 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C$_{15}$H$_{13}$N$_2$OS$_2$: 316.1 (M + H). Found: 316.5.

Examples 80 and 81

5-Methylthio-4-(4-phenylimidazol-2-yl)thiophene-2-carboxamidine trifluoroacetate and 5-Methylthio-4-[N-(2-oxo-2-phenylethyl)carbamoyl]thiophene-2-carboxamidine trifluoroacetate

Methyl 5-methylthio-4-[N-(2-oxo-2-phenylethyl)carbamoyl]thiophene-2-carboxylate (39.4 mg, 0.100 mmol, as prepared in Example 79, step (a)) was treated according to the procedure in Example 10, step (b) using 64.2 mg (1.20 mmol) of ammonium chloride in 0.2 mL of toluene and 0.600 mL (1.20 mmol) of 2 M trimethylaluminum in toluene. The resulting residue was chromatographed on a 5 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20% MeOH-CH$_2$Cl$_2$ to elute an impurity followed by 20% MeOH-CH$_2$Cl$_2$ to give a yellow resin. Crystallization from MeOH-Et$_3$O-MeCN afforded 16 mg of a yellow solid consisting of two products by 1H-NMR spectra. A portion of the mixture (11 mg) was purified by reverse-phase
HPLC (5μ C_{18} column, 4.6 x 100 mm, gradient 5-100% solvent B over 15 min, solvent A = 0.1% TFA/H_{2}O, solvent B = 0.1% TFA/MeCN, detection at 215 nm) to afford 6 mg of 5-methylthio-4-(4-phenylimidazol-2-yl)thiophene-2-carboxamidine trifluoroacetate as a colorless glass. 1H-NMR (300 MHz, CD_{3}OD) δ 8.23 (s, 1H), 7.80 (s, 1H), 7.79 (d, 2H, J = 7 Hz), 7.48 (m, 2H), 7.39 (m, 1H), and 2.78 (s, 3H). Mass spectrum (electrospray ionization) calcd. for C_{15}H_{14}N_{4}S_{2}: 315.1 (M + H). Found: 315.3. Also isolated was 4 mg of 5-methylthio-4-[N-(2-oxo-2-phenylethyl)carbamoyl]-thiophene-2-carboxamidine trifluoroacetate as a colorless glass. 1H-NMR (300 MHz, DMSO-d_{6}) δ 9.30 (broad s, 2H), 8.86 (broad s, 2H), 8.68 (t, 1H, J = 5.4 Hz), 8.43 (s, 1H), 8.04 (d, 2H, J = 7 Hz), 7.70 (t, 1H, J = 7 Hz), 7.58 (t, 2H, J = 7 Hz), 4.78 (d, 2H, J = 5.4 Hz), and 2.63 (s, 3H). Mass spectrum (electrospray ionization) calcd. for C_{15}H_{13}N_{4}O_{2}S_{2}: 334.1 (M + H). Found: 334.3.

Example 82

4-(4-Phenyl-1,3-thiazol-2-yl)thiophene-2-carboxamidine hydrochloride

a) 4-Bromo thiophene-2-carboxylic acid: To a cooled (0°C) solution of 10.0 g (47.1 mmol based on 90 % purity) of 4-bromothiophene-2-carbaldehyde (Aldrich Chemical Company, Milwaukee, WI) in 200 mL of t-butanol was added 100 mL of 20 % (w/v) NaH_{2}PO_{4} followed by 60 mL (0.566 mol) of 2-methyl-2-butene. Sodium chlorite (70.8 mmol based on 80 % purity) in 60 mL of water was added with stirring. After stirring the two-phase mixture vigorously for 16 h at room temperature, the pH of the aqueous layer was adjusted to 1-2 with 20 % HCl. The layers were separated and the aqueous layer extracted with EtOAc (2 x 120 mL). The combined organic layers were dried (Na_{2}SO_{4}) and concentrated in vacuo to afford 9.8 g of an off-white solid. Recrystallization from a minimum of MeCN (three crops) gave the title compound as a white solid (9.02 g, 93%). 1H-NMR (300 MHz, CDCl_{3}) δ 7.79 (d, 1H, J = 1.5 Hz), and 7.55 (d, 1H, J = 1.5 Hz).

b) Methyl 4-bromothiophene-2-carboxylate: To a cooled (-20°C) solution of 6.02 g (29.1 mmol) of 4-bromothiophene-2-carboxylic acid (as prepared in the previous step) in 100 mL of anhyd MeOH under nitrogen was added 2.55 mL (34.9
mmol) of thionyl chloride dropwise at a rate to keep the temperature below -5°C (ca. 8-10 min). After stirring for 1 h at room temperature, the mixture was refluxed for 8 h, cooled, and concentrated in vacuo. The resulting 6.7 g of pale amber oil was passed through a 150 g pad of silica gel with ca. 600 mL of CH₂Cl₂ (discarding the first 120 mL which contained a minor impurity) to afford, after concentration in vacuo, the title compound as a colorless oil (6.11 g, 95 %). ¹H-NMR (300 MHz, CDCl₃) δ 7.69 (d, 1H, J = 1.5 Hz), 7.45 (d, 1H, J = 1.5 Hz), and 3.90 (s, 3H).

c) **Methyl 4-cyanothiophene-2-carboxylate**: To a solution of 3.82 g (17.3 mmol) methyl 4-bromothiophene-2-carboxylate (as prepared in the previous step) in 10 mL of anhyd DMF was added 3.10 g (34.6 mmol) of copper (I) cyanide. The mixture was heated to reflux with stirring for 18 h, cooled and poured into 100 mL of 10 % (w/v) KCN. The mixture was extracted with EtOAc (3 x 60 mL) and the combined extracts were washed with 150 mL each of water and brine. The dark solution was dried over Na₂SO₄, treated with decolorizing carbon, filtered and the resulting colorless solution concentrated in vacuo. The resulting light yellow solid was recrystallized from MeOH to afford the title compound as a cream-colored solid (1.67 g, 58 %). ¹H-NMR (300 MHz, CDCl₃) δ 8.09 (d, 1H, J = 1.4 Hz), 7.93 (d, 1H, J = 1.4 Hz), and 3.93 (s, 3H). IR (film): 2235 and 1712 cm⁻¹.

d) **Methyl 4-(aminothioxomethyl)thiophene-2-carboxylate**: A solution of 1.32 g (7.89 mmol) of methyl 4-cyanothiophene-2-carboxylate (as prepared in the previous step) in 200 mL of reagent grade MeOH was degassed with nitrogen through a fritted gas dispersion tube for 10 min. Triethylamine (5.50 mL, 39.5 mmol) was added and hydrogen sulfide gas was bubbled into the solution at a vigorous rate for 5 min and then at a minimal rate (as measured through an outlet oil bubbler) for 5 h with stirring. The gas introduction was stopped and the mixture was capped and stirred for 19 h at room temperature. The mixture was concentrated in vacuo to a yellow solid which was suspended in 10 mL of EtOH, cooled to -20°C, and filtered washing with 5 mL of cold (-20°C) EtOH. The resulting solid was dried under suction followed by high vacuum to afford the title compound as a beige solid (1.31 g, 82 %). ¹H-NMR (300 MHz, DMSO-d₆) δ 9.85 (broad s, 1H), 9.51 (broad s, 1H), 8.50 (d, 1H, J = 1.5 Hz), 8.28 (d, 1H, J = 1.5 Hz), and 3.84 (s, 3H).
e) **Methyl 4-(4-phenyl-1,3-thiazol-2-yl)thiophene-2-carboxylate:** To a solution of 150 mg (0.745 mmol) of methyl 4-(aminothioxomethyl)-thiophene-2-carboxylate (as prepared in the previous step) in 6 mL of acetone was added 148 mg (0.745 mmol) of 2-bromoacetophenone. After refluxing for 2 h, the mixture was concentrated by boiling to a volume of ca. 2 mL. The resulting mixture was cooled (-10°C) and filtered washing with cold acetone (2 x 0.5 mL). A second crop was obtained from the mother liquors and the combined crops dried to afford the title compound as a beige solid (202 mg, 90 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 8.56 (d, 1H, J = 1.5 Hz), 8.25 (d, 1H, J = 1.5 Hz), 8.18 (s, 1H), 8.04 (d, 2H, J = 7 Hz), 7.48 (t, 2H, J = 7 Hz), 7.38 (t, 1H, J = 7 Hz), and 3.89 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C$_{16}$H$_{13}$NO$_2$S$_2$: 302.0 (M + H). Found: 301.8.

f) **4-(4-Phenyl-1,3-thiazol-2-yl)thiophene-2-carboxamidine hydrochloride:** Methyl 4-(4-phenyl-1,3-thiazol-2-yl)thiophene-2-carboxylate (160 mg, 0.531 mmol, as prepared in the previous step) was treated according to the procedure in Example 10, step (b) using 284 mg (5.31 mmol) of ammonium chloride in 2.6 mL of toluene and 2.65 mL (5.30 mmol) of 2 M trimethylaluminum in toluene. The resulting light yellow solid was chromatographed on a 10 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20% MeOH-CH$_2$Cl$_2$. The resulting pale amber glass was triturated with CH$_2$Cl$_2$-MeCN and concentrated in vacuo to afford the title compound as a beige solid (68 mg, 45 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.51 (broad s, 2H), 9.09 (broad s, 2H), 8.71 (d, 1H, J = 1.5 Hz), 8.61 (d, 1H, J = 1.5 Hz), 8.21 (s, 1H), 8.05 (d, 2H, J = 7 Hz), 7.50 (t, 2H, J = 7 Hz), and 7.40 (t, 1H, J = 7 Hz). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C$_{16}$H$_{11}$N$_3$S$_2$: 286.0 (M + H). Found: 286.3.
Example 83

5-Methylthio-4-[4-benzyl(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride

a) Bromo-3-phenylacetone: To a solution of 132 μL (1.00 mmol) of phenylacetyl chloride in 1.0 mL of anhyd MeCN was added 1.05 mL (2.10 mmol) of a 2 M solution of trimethylsilyldiazomethane in hexane. After stirring 1 h at room temperature, the mixture was cooled (0°C) and 300 μL (1.50 mmol) of 30 wt % HBr in acetic acid was added dropwise (gas evolution). After stirring 15 min, the mixture was concentrated in vacuo and rapidly chromatographed on a 2 g silica SPE column (Waters Sep-Pak) with 50 % CH₂Cl₂-hexane to afford the title compound as a pale yellow oil (201 mg, 94 %). ¹H-NMR (300 MHz, CDCl₃) δ 7.2-7.4 (m, 5H), 3.95 (s, 2H), 3.92 (s, 2H).

b) Methyl 5-methylthio-4-[4-benzyl(1,3-thiazol-2-yl)]thiophene-2-carboxylate: Using a procedure similar to that of Example 10 with 171 mg (0.690 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (as prepared in Example 82, step (e)) in 4 mL of acetone and 147 mg (0.690 mmol) of 1-bromo-3-phenylacetone (as prepared in the previous step) afforded the title compound as a light tan powder (236 mg, 95 %). ¹H-NMR (300 MHz, DMSO-d₆) δ 8.11 (s, 1H), 7.2-7.4 (m, 5H), 4.11 (s, 2H), 3.84 (s, 3H), and 2.72 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C₁₇H₁₅NO₂S₃: 362.0 (M + H). Found: 362.3.

c) 5-Methylthio-4-[4-benzyl(1,3-thiazol-2-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-[4-benzyl(1,3-thiazol-2-yl)]thiophene-2-carboxylate (60 mg, 0.166 mmol, as prepared in the previous step) was treated according to the procedure in Example 10, step (b) using 88.8 mg (1.66 mmol) of ammonium chloride in 0.5 mL of toluene and 0.830 mL (5.30 mmol) of 2 M trimethylaluminum in toluene to afford, after trituration from MeOH with Et₂O, the title compound as a yellow solid (38.2 mg, 60 %). ¹H-NMR (300 MHz, CD₃OD) δ 8.43 (s, 1H), 7.16-7.33 (m, 5H), 4.15 (s, 2H), and 2.75 (s, 3H). Mass spectrum
(MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C_{16}H_{13}N_{3}S_{2}: 346.0 (M + H). Found: 346.0.

Example 84

5-Methylthio-4-({4-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxamidine
hydrochloride HCl

**a) Methyl 4-{N-(2-hydroxy-1-phenylethyl)carbamoyl}]-5-
methylthiothiophene-2-carboxylate:** To a stirred suspension of 1.23 g (5.29 mmol) of 5-(methoxycarbonyl)-2-methylthiothiophene-3-carboxylic acid (as prepared in Example 79, step (a)) in 20 mL of anhyd CH_{2}Cl_{2} (under a CaSO_{4} drying tube) was added 1.85 mL (21.2 mmol) of oxalyl chloride followed by 30 µL of anhyd DMF. After stirring for 2 h at room temperature, the mixture was concentrated in vacuo. The resulting yellow solid was dissolved in 20 mL of anhyd CH_{2}Cl_{2}, cooled (0°C) and 1.85 mL of N,N-diisopropylethylamine (10.6 mmol) and 1.02 g (7.41 mmol) of phenylglycinol was added and the mixture stirred for 1 h at room temperature. The mixture was concentrated to an oil and partitioned between 200 mL of EtOAc and 200 mL of saturated NaHCO_{3}. The organic phase was washed with saturated NaHCO_{3} (200 mL), 10 % (w/v) citric acid, and brine (200 mL), and dried over Na_{2}SO_{4}. After removing the solvent in vacuo, the residue was chromatographed on a 10 g silica SPE column (Waters Sep-Pak) with a gradient of 0-20 % EtOAc-CH_{2}Cl_{2} to afford the title compound as a light yellow solid (1.26 g, 68 %). ^{1}H-NMR (300 MHz, CDCl_{3}) δ 8.00 (s, 1H), 7.30-7.42 (m, 5H), 7.08 (d, 1H, J = 7.2 Hz), 5.26 (m, 1H), 3.99 (t, 2H, J = 5.4 Hz), 3.89 (s, 3H), 2.60 (s, 3H), and 2.33 (t, 1H J = 6.1 Hz). Mass spectrum (electrospray ionization) calcd. for C_{18}H_{17}NO_{3}S_{2}: 352.1 (M + H). Found: 352.0.

**b) Methyl 5-methylthio-4-{N-(2-oxo-1-phenylethyl)carbamoyl]thiophene-2-
carboxylate:** To a solution of 505 mg (1.44 mmol) methyl 4-{N-(2-hydroxy-1-phenylethyl)carbamoyl]5-methylthiothiophene-2-carboxylate (as prepared in the previous step) in 20 mL of anhydrous CH_{2}Cl_{2} was added 856 mg (2.02 mmol) of Dess Martin reagent (Omega Chemical Company, Inc., Levis (Qc) Canada). After stirring in an open flask for 1.5 h at room temperature, the mixture was concentrated in vacuo to ca. 10 % volume and partitioned between 50 mL of EtOAc and 50 mL of saturated
NaHCO$_3$-brine (1:1). The organic phase were washed with brine (200 mL), dried over Na$_2$SO$_4$ and concentrated *in vacuo*. Concentrated again from CH$_2$Cl$_2$ followed by high vacuum afforded the title compound as a light yellow foam (495 mg, 98 %) which was used in the next step without further purification. 1H-NMR (300 MHz, CDCl$_3$) δ 9.64 (s, 1H), 8.04 (s, 1H), 7.59 (d, 1H, J = 5 Hz), 7.36-7.46 (m, 5H), 5.76 (d, 1H, J = 5 Hz), 3.90 (s, 3H), and 2.62 (s, 3H).

c) **Methyl 5-methylthio-4-(4-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxylate**: To a cooled (0°C) solution of 465 mg (1.33 mmol) methyl 5-methylthio-4-[N-(2-oxo-1-phenylethyl)carbamoyl]thiophene-2-carboxylate (as prepared in the previous step) in 6 mL of anhyd DMF was added 186 μL (2.00 mmol) of phosphorus oxychloride. After stirring for 14 h at room temperature, the mixture was treated with 10 mL of saturated NaHCO$_3$ and concentrated to dryness under high vacuum. The resulting residue was partitioned between 80 mL of EtOAc and 60 mL of water. The aqueous layer was extracted with EtOAc (2 x 10 mL) and the combined organic phases washed with brine (60 mL), and dried over Na$_2$SO$_4$. The resulting 406 mg of amber-colored solid was recrystallized from CH$_2$Cl$_2$-Et$_2$O to remove the majority of a polar impurity as a cream-colored solid. The remaining mother liquors were chromatographed on a 10 g silica SPE column (Waters Sep-Pak) with a gradient of 40-100 % CH$_2$Cl$_2$-hexane and the resulting residue triturated with Et$_2$O-hexane (2:1) to afford the title compound as a light beige solid (114 mg, 26 %). 1H-NMR (300 MHz, CDCl$_3$) δ 8.24 (s, 1H), 7.93 (s, 1H), 7.83 (m, 2H), 7.43 (m, 2H), 7.33 (m, 1H), 3.91 (s, 3H), and 2.72 (s, 3H). Mass spectrum (ESI) calcd. for C$_{16}$H$_{11}$NO$_2$S$_2$: 332.0 (M + H). Found: 332.2.

d) **5-Methylthio-4-(4-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxamidine hydrochloride**: Methyl 5-methylthio-4-(4-phenyl(1,3-oxazol-2-yl))thiophene-2-carboxylate (80.3 mg, 0.242 mmol, as prepared in the previous step) was treated according to the procedure in Example 10, step (b) using 155 mg (2.90 mmol) of ammonium chloride in 1.45 mL of toluene and 1.45 mL (2.90 mmol) of 2 M trimethylaluminum in toluene. The resulting light yellow solid was chromatographed on a 5 g silica SPE column (Waters Sep-Pak) with 10% MeOH-CH$_2$Cl$_2$ to give a light
yellow resin. Crystallization from MeOH- Et₂O (ca. 1:3) afforded the title compound as a yellow solid (62.2 mg, 82%). ¹H-NMR (300 MHz, DMSO-d₆) δ 9.39 (broad s, 2H), 8.97 (broad s, 2H), 8.78 (s, 1H), 8.60 (s, 1H), 7.89 (d, 2H, J = 7 Hz), 7.49 (t, 2H, J = 7 Hz), 7.38 (t, 1H, J = 7 Hz), and 2.80 (s, 3H). Mass spectrum (ESI) calcd. for C₁₅H₁₃N₅O₂S₂: 316.1 (M + H). Found: 316.2.

Example 85

4-[4-(4-hydroxy-3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) 4-(Chlorocarbonyl)-2-methoxyphenyl acetate: To a stirred suspension of 1.00 g (4.76 mmol) of 4-acetoxy-3-methoxybenzoic acid (Pfaltz and Bauer, Inc.) in 4 mL of anhyd CH₂Cl₂ (under a CaSO₄ drying tube) was added 4.15 mL (47.6 mmol) of oxalyl chloride followed by 25 μL of anhyd DMF. After stirring for 4 h at room temperature, the mixture was concentrated in vacuo to afford the title compound as light yellow crystals (1.12 g, 103%). ¹H-NMR (300 MHz, CDCl₃) δ 7.81 (dd, 1H, J = 8.4, 2.1 Hz), 7.66 (d, 1H, 2.1 Hz), 7.19 (d, 1H, 8.4 Hz), 3.91 (s, 3H), and 2.35 (s, 3H).

b) 4-(2-Bromoacetyl)-2-methoxyphenyl acetate: To a solution of 1.09 g (4.6 mmol) of 4-(chlorocarbonyl)-2-methoxyphenyl acetate (as prepared in the previous step) in 10 mL of anhyd CH₂Cl₂ was added 10.0 mL (20.0 mmol) of a 2 M solution of trimethylsilyldiazomethane in hexane. After stirring 2 h at room temperature, the mixture was cooled (0°C) and 3.20 mL (16.0 mmol) of 30 wt % HBr in acetic acid was added dropwise (gas evolution). After stirring 5 min, the mixture was concentrated in vacuo and rapidly chromatographed on a 10 g silica SPE column (Waters Sep-Pak) with CH₂Cl₂ to afford the title compound as a light yellow crystalline solid (1.28 g, 97%). ¹H-NMR (300 MHz, CDCl₃) δ 7.63 (d, 1H, 1.9 Hz), 7.59 (dd, 1H, J = 8.2, 1.9 Hz), 7.16 (d, 1H, 8.2 Hz), 4.43 (s, 2H), 3.91 (s, 3H), and 2.35 (s, 3H).

c) 2-Methoxy-4-[2-[5-(methoxycarbonyl)-2-methylthio(3-thienyl)](1,3-thiazol-4-yl)]phenyl acetate: Using a procedure similar to that of Example 82, step (e) with 1.00 g (4.04 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-
2-carboxylate (Maybridge Chemical Company, Cornwall, UK) in 15 mL of reagent acetone and 1.16 g (4.04 mmol) of 4-(2-bromoacetyl)-2-methoxyphenyl acetate (as prepared in the previous step) afforded the title compound as 1.42 g of a yellow solid which, according to the 1H-NMR spectrum, consisted of a ca. 1:1 mixture of the title compound and the corresponding compound resulting from partial loss of the acetate.

1H-NMR (300 MHz, DMSO-d$_6$) δ 8.27 (s, 1H), 8.22 (s, 1H), 8.19 (s, 1H), 8.00 (s, 1H), 7.78 (d, 1H, 1.9 Hz), 7.67 (dd, 1H, J = 8.2, 1.9 Hz), 7.61 (d, 1H, 1.9 Hz), 7.51 (dd, 1H, J = 8.2, 1.9 Hz), 7.19 (d, 1H, 8.2 Hz), 6.86 (d, 1H, 8.2 Hz), 8.87 (m, 12H), 7.92 (d, 1H, 1.9 Hz), and 2.75 (s, 3H). Mass spectrum (ESI) calcd. for C$_{16}$H$_{15}$NO$_3$S$_3$ and C$_{15}$H$_{13}$NO$_3$S$_3$, 436.0 (M + H) and 394.1 (M + H). Found: 436.1 and 394.2. The mixture was used without further purification in the following step where formation of the amide involves concomitant removal of the acetate.

d) 4-[4-(4-hydroxy-3-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: A portion of the mixture (500 mg, ca. 1.21 mmol as based on the 1H-NMR integration) containing the 2-methoxy-4-(2-[5-(methoxycarbonyl)-2-methylthio(3-thienyl)](1,3-thiazol-4-yl))phenyl acetate (as prepared in the previous step) was treated according to the procedure in Example 10, step (b) using 610 mg (11.4 mmol) of ammonium chloride in 5.7 mL of toluene and 5.70 mL (11.4 mmol) of 2 M trimethylaluminum in toluene. After chromatography of the resulting residue on a 10 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20 % MeOH-CH$_2$Cl$_2$ to obtain a yellow glass which was recrystallized from MeOH-CH$_2$Cl$_2$ to afford the title compound as a pale yellow solid (192 mg, 42 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.35 (broad s, 2H), 9.27 (s, 1H), 8.97 (broad s, 2H), 8.62 (s, 1H), 8.04 (s, 1H), 7.62 (s, 1H), 7.54 (d, 1H, J = 8.2 Hz), 6.88 (d, 1H, J = 8.2 Hz), 3.87 (s, 3H), and 2.79 (s, 3H). Mass spectrum (ESI) calcd. for C$_{16}$H$_{15}$N$_3$O$_2$S$_3$: 378.0 (M + H). Found: 378.1.
Example 86

4-[(3-Hydroxy-4-methoxyphenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamidine hydrochloride

a) 3-Acetyloxy-4-methoxybenzoic acid: To a suspension of 600 mg (3.57 mmol) of 3-hydroxy-4-methoxybenzoic acid (Aldrich Chemical Company, Milwaukee, WI) in 5 mL of anhyd CH₂Cl₂ was added 1.31 mL (7.50 mmol) of N, N-diisopropylethylamine and the mixture stirred until homogeneous (ca. 5 min). Acetyl chloride (305 µL, 4.28 mmol) was added dropwise over 2 min followed by 2.0 mg ((0.016 mmol) of 4-dimethyaminopyridine. After stirring at room temperature for 1 h, the mixture was poured into 50 mL of EtOAc and washed with 1 M HCl (3 x 25 mL). The organic phase was extracted with saturated NaHCO₃ (6 x 15 mL) and the combined extracts saturated with solid NaCl and acidified to pH 2 with conc HCl. The resulting suspension was extracted with EtOAc (3 x 20mL) and the combined extracts were dried over Na₂SO₄ and concentrated in vacuo to afford the title compound as a light beige powder (463 mg, 62 %). ¹H-NMR (300 MHz, CDCl₃) δ 8.00 (dd, 1H, J = 8.7, 2.0 Hz), 7.79 (d, 1H, 2.0 Hz), 7.00 (d, 1H, 8.7 Hz), 3.91 (s, 3H), and 2.34 (s, 3H).

b) 3-(Chlorocarbonyl)-6-methoxyphenyl acetate: Using the procedure in Example 85, step (a), 400 mg (1.90 mmol) of 3-acetyloxy-4-methoxybenzoic acid (as prepared in the previous step) was treated with 663 µL (7.60 mmol) of oxalyl chloride and 25 µL of anhyd DMF for 2 h to afford, after workup, the title compound as a beige crystalline solid which was used in the following step without further purification.

c) 5-(2-bromoacetyl)-2-methoxyphenyl acetate: Using the procedure in Example 85, step (b), the entire sample of 3-(chlorocarbonyl)-6-methoxyphenyl acetate (as prepared in the previous step) in 5 mL of anhyd CH₂Cl₂ was treated with 2.09 mL (4.18 mmol) of a 2 M solution of trimethylsilyldiazomethane in hexane and 456 µL (2.28 mmol) of 30 wt % HBr in acetic acid. Chromatography as in Example 85, step (b) followed by recrystallization from CH₂Cl₂-hexane afforded the title compound as a faintly yellow solid (366 mg, 67 %). ¹H-NMR (300 MHz, CDCl₃) δ
d) **2-Methoxy-5-(2-[6-(methoxycarbonyl)-2-methylthio(3-thienyl)](1,3-thiazol-4-yl))phenyl acetate:** Using a procedure similar to that of Example 82, step (e) with 282 mg (1.14 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge Chemical Company, Cornwall, UK) in 4 mL of acetone and 3.27 mg (1.14 mmol) of 5-(2-bromoacetyl)-2-methoxyphenyl acetate (as prepared in the previous step) afforded a yellow solid (374 mg) which, according to the 1H-NMR spectrum, consisted of a 3:7 mixture of the title compound and the corresponding compound resulting from partial loss of the acetate. Mass spectrum (ESI) calcd. for $C_{19}H_{17}NO_5S_3$ and $C_{17}H_{15}NO_5S_3$ 436.0 (M + H) and 394.1 (M + H). Found: 436.0 and 394.0. The mixture was used without further purification in the following step where formation of the amidine involves concomitant removal of the acetate.

e) **4-[4-(3-Hydroxy-4-methoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:** A portion of the mixture (320 mg, ca. 0.788 mmol as based on the 1H-NMR spectrum) containing the 2-methoxy-5-(2-[5-(methoxycarbonyl)-2-methylthio(3-thienyl)](1,3-thiazol-4-yl))phenyl acetate (as prepared in the previous step) was treated according to the procedure in Example 10, step (b), using 415 mg (7.76 mmol) of ammonium chloride in 3.5 mL of toluene and 3.88 mL (7.66 mmol) of 2 M trimethylaluminum in toluene. After chromatography of the resulting residue on a 10 g silica SPE column (Waters Sep-Pak) with 10-40 % MeOH-CH$_2$Cl$_2$, a light yellow solid was obtained which was dissolved in 45 mL of DMF and filtered to remove silica gel. Concentration under high vacuum and recrystallization from MeOH-Et$_2$O afforded the title compound as a light tan solid (132 mg, 44 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.49 (broad s, 2H), 9.16 (broad s, 2H), 8.67 (s, 1H), 7.98 (s, 1H), 7.5 (obscured m, 3H), 7.00 (obscured d, 1H, $J = 8.3$ Hz), 3.82 (s, 3H), and 2.79 (s, 3H). Mass spectrum (ESI) calcd. for $C_{18}H_{15}N_3O_5S_3$: 378.0 (M + H). Found: 378.1.
Example 87

5-Methylthio-4-(N-phenylcarbamoyl)thiophene-2-carboxamidine hydrochloride

a) Methyl 5-methylthio-4-(N-phenylcarbamoyl)thiophene-2-carboxylate:

To 182 mg (0.785 mmol) of 5-(methoxycarbonyl)-2-methylthiothiophene-3-carboxylic acid (as prepared in Example 95) in 4 mL of anhyd CH₂Cl₂ was treated with 275 μL (3.15 mmol) of oxalyl chloride and 6 μL of anhyd DMF for 2 h similar to Example 79, step (a); followed by 206 μL (1.18 mmol) of N,N-diisopropylethylamine and 85.9 μL (0.942 mmol) of aniline in 3 mL of anhyd CH₂Cl₂ for 20 min. The mixture was poured into 25 mL of EtOAc and washed with 1 M HCl (2 x 25 mL), saturated NaHCO₃ (2 x 25 mL), and brine (25 mL), and dried over Na₂SO₄. Removal of the solvent in vacuo, afforded the pure title compound as a light yellow solid (163 mg, 68 %). ¹H-NMR (300 MHz, CDCl₃) δ 8.23 (broad s, 1H), 8.10 (s, 1H), 7.63 (d, 2H, J = 7 Hz), 7.36 (t, 2H, J = 7 Hz), 7.15 (t, 2H, J = 7 Hz), 3.90 (s, 3H), and 2.64 (s, 3H).

b) 5-Methylthio-4-(N-phenylcarbamoyl)thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-(N-phenylcarbamoyl)thiophene-2-carboxylate (60.0 mg, 0.195 mmol, as prepared in the previous step) was treated similarly to the procedure in Example 10, step (b) using 310 mg (5.80 mmol) of ammonium chloride in 2 mL of toluene and 2.90 mL (5.80 mmol) of 2 M trimethylaluminum in toluene for 6 h. Chromatography of the resulting residue on a 2 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20 % MeOH-CH₂Cl₂, followed by crystallization from MeOH-Et₂O afforded the title compound as a beige solid (40.3 mg, 71 %). ¹H-NMR (300 MHz, DMSO-d₆) δ 10.24 (s, 1H), 9.34 (broad s, 2H), 9.05 (broad s, 2H), 8.75 (s, 1H), 7.73 (d, 2H, J = 8 Hz), 7.36 (t, 2H, J = 8 Hz), 7.11 (m, 1H), and 2.67 (s, 3H). Mass spectrum (ESI) calcd. for C₁₃H₁₁N₅O₃S₂: 292.1 (M + H). Found: 292.4.
Example 88 and 89

5-Methylthio-4-[N-benzylcarbamoyl]thiophene-2-carboxamidinehydrochloride and 4-{Imino[benzylamino]methyl}-5-methylthiophene-2-carboxamidine hydrochloride

a) Methyl 5-methylthio-4-[N-benzylcarbamoyl]thiophene-2-carboxylate:
The identical procedure of Example 87, step (a) was used with 103 µL (0.942 mmol) of benzylamine and the same amounts of all other reagents to afford the title compound as a light yellow solid (167 mg, 66 %). 1H-NMR (300 MHz, CDCl$_3$) δ 7.93 (s, 1H), 7.28-7.38 (m, 5H), 6.58 (broad s, 1H), 4.62 (s, 2H, J = 5.7 Hz), 3.87 (s, 3H), and 2.60 (s, 3H).

b) 5-Methylthio-4-[N-benzylcarbamoyl]thiophene-2-carboxamidinehydrochloride and 4-{Imino[benzylamino]methyl}-5-methylthiophene-2-carboxamidinehydrochloride: Methyl 5-methylthio-4-[N-benzylcarbamoyl]thiophene-2-carboxylate (62.7 mg, 0.195 mmol, as prepared in the previous step) was treated similarly to the procedure in Example 10, step (b) using 310 mg (5.80 mmol) of ammonium chloride in 2 mL of toluene and 2.90 mL (5.80 mmol) of 2 M trimethylaluminum in toluene for 6 h.

Chromatography of the resulting residue on a 2 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20 % MeOH-CH$_2$Cl$_2$, followed by crystallization from MeOH-Et$_2$O afforded 5-methylthio-4-[N-benzylcarbamoyl]thiophene-2-carboxamidinehydrochloride as a beige solid (21.1 mg, 35 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 7.93 (s, 1H), 7.28-7.38 (m, 5H), 6.58 (broad s, 1H), 4.62 (s, 2H, J = 5.7 Hz), 3.87 (s, 3H), and 2.60 (s, 3H). Mass spectrum (ESI) calcd. for C$_{14}$H$_{15}$N$_3$OS$_2$: 306.1 (M + H). Found: 306.6.

Also isolated and crystallized from MeOH-Et$_2$O was the more polar 4-{imino[benzylamino]methyl}-5-methylthiophene-2-carboxamidinehydrochloride as a beige solid (32.0 mg, 54 %). 1H-NMR (300 MHz, DMSO-d$_6$) consistent with desired product as broad mixture of rotomers. Mass spectrum (ESI) calcd. for C$_{14}$H$_{16}$N$_3$S$_2$: 305.1 (M + H). Found: 305.8.
Example 90 and 91

4-[N-Methyl-N-benzylcarbamoyl]-5-methylthiothiophene-2-carboxamidine hydrochloride and 4-{Imino[methylbenzylamino]methyl}-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Methyl 4-[N-methyl-N-benzylcarbamoyl]-5-methylthiothiophene-2-carboxylate: The identical procedure of Example 87, step (a) was used with 122 µL (0.942 mmol) of N-benzylmethylamine and the same amounts of all other reagents to afford the title compound as a light yellow solid (169 mg, 64%). 1H-NMR (300 MHz, CDCl$_3$) δ 7.68 (s, 1H), 7.34 (m, 5H), 4.6 (broad m, 2H), 3.86 (s, 3H), 2.91 (m, 3H), and 2.60 (s, 3H).

b) 4-[N-Methyl-N-benzylcarbamoyl]-5-methylthiothiophene-2-carboxamidine hydrochloride and 4-{Imino[methylbenzylamino]methyl}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-[N-methyl-N-benzylcarbamoyl]-5-methylthiothiophene-2-carboxylate (65.4 mg, 0.195 mmol, as prepared in the previous step) was treated similarly to the procedure in Example 10, step (a) using 310 mg (5.80 mmol) of ammonium chloride in 2 mL of toluene and 2.90 mL (5.80 mmol) of 2 M trimethylaluminum in toluene for 6 h.

Chromatography of the resulting residue on a 2 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20 % MeOH-CH$_2$Cl$_2$ afforded 4-[N-methyl-N-benzylcarbamoyl]-5-methylthiothiophene-2-carboxamidine hydrochloride as a amber-colored glass (34.3 mg, 55 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.32 (broad s, 2H), 9.06 (broad s, 2H), 8.11 (s, 1H), 7.36 (m, 5H), 4.66 (m, 2H), 2.88 (s, 3H) and 2.66 (s, 3H). Mass spectrum (ESI) calcd. for C$_{15}$H$_{17}$N$_2$O$_3$: 320.1 (M + H). Found: 320.4.

Also isolated and then crystallized from MeOH-Et$_2$O was the more polar 4-{Imino[methylbenzylamino]methyl}-5-methylthiothiophene-2-carboxamidine hydrochloride as a beige solid (19.8 mg, 32 %). 1H-NMR (300 MHz, DMSO-d$_6$) consistent with desired product as broad mixture of rotomers. Mass spectrum (ESI) calcd. for C$_{15}$H$_{18}$N$_4$S$_2$: 319.1 (M + H). Found: 319.6.
Example 92 and 93

5-Methylthio-4-[N-(2-phenylethyl)carbamoyl]thiophene-2-carboxamide hydrochloride and 4-[imino[(2-phenylethyl)amino]methyl]-5-methylthiothiophene-2-carboxamide hydrochloride

a) Methyl 5-methylthio-4-[N-(2-phenylethyl)carbamoyl]thiophene-2-carboxylate: The identical procedure of Example 87, step (a) was used with 118 µL (0.942 mmol) of phenethylamine and the same amounts of all other reagents to afford the title compound as a light yellow solid (165 mg, 63 %). 1H-NMR (300 MHz, CDCl3) δ 7.86 (s, 1H), 7.30-7.35 (m, 5H), 6.44 (m, 1H), 3.87 (s, 3H), 3.70 (q, 2H, J = 7 Hz), 2.93 (t, 2H, J = 7 Hz), and 2.53 (s, 3H).

b) 5-Methylthio-4-[N-(2-phenylethyl)carbamoyl]thiophene-2-carboxamide hydrochloride and 4-[imino[(2-phenylethyl)amino]methyl]-5-methylthiothiophene-2-carboxamide hydrochloride: Methyl 5-methylthio-4-[N-(2-phenylethyl)carbamoyl]thiophene-2-carboxylate (65.4 mg, 0.195 mmol), as prepared in the previous step, was treated similarly to the procedure in Example 10, step (a) using 310 mg (5.80 mmol) of ammonium chloride in 2 mL of toluene and 2.90 mL (5.80 mmol) of 2 M trimethylaluminum in toluene for 6 h.

Chromatography of the resulting residue on a 2 g silica SPE column (Waters Sep-Pak) with a gradient of 5-20 % MeOH-CH2Cl2, followed by crystallization from MeOH-Et2O afforded 5-methylthio-4-[N-(2-phenylethyl)carbamoyl]thiophene-2-carboxamide hydrochloride as a beige solid (17.4 mg, 28 %). 1H-NMR (300 MHz, DMSO-d6) δ 8.8-9.3 (broad m, 4H), 8.48 (m, 1H), 8.35 (s, 1H), 7.26 (m, 5H), 3.44 (m, 2H), 2.82 (t, 3H, J = 7.5 Hz), and 2.61 (s, 3H). Mass spectrum (ESI) calcd. for C16H17N3O2S2: 320.1 (M + H). Found: 320.4.

Also isolated and crystallized from MeOH-Et2O was the more polar 4-[imino[(2-phenylethyl)amino]methyl]-5-methylthiothiophene-2-carboxamide hydrochloride as a beige solid (19.1 mg, 31 %). 1H-NMR (300 MHz, DMSO-d6) δ 8.37 (s, 1H), 7.2-7.4 (m, 5H), 3.70 (t, 2H, J = 7.6 Hz), 2.96 (t, 2H, J = 7.6 Hz), and 2.71 (s, 3H). Mass spectrum (ESI) calcd. for C15H18N4S3: 319.1 (M + H). Found: 319.5.
Example 94

3-Amino-2-aza-3-[3-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))(2-thienyl)]prop-2-enenitrile

To 100 mg (0.302 mmol) of 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (as prepared in Example 10, step b) in 3 mL of EtOH was added 29.6 mg (0.604 mmol) of cyanamide as a solution in 0.3 mL of water. The mixture was heated to reflux and 0.302 mL (0.302 mmol) of 1 M aqueous KOH was added. After 3 h, the mixture was cooled (0°C) and filtered washing with ice-cold EtOH. The resulting solid was dried in vacuo to afford the title compound as a light yellow powder (78.4 mg, 73 %). 1H-NMR (300 MHz, DMSO-d$_6$) δ 9.31 (broad s, 1H), 8.70 (broad s, 1H), 8.63 (s, 1H), 8.19 (s, 1H), 8.09 (d, 2H, J = 7 Hz), 7.49 (t, 2H, J = 7 Hz), 7.39 (t, 1H, J = 7 Hz), and 2.75 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C$_{16}$H$_{12}$N$_4$S$_3$: 357.0 (M + H). Found: 357.1.

Example 95

5-(Methoxycarbonyl)-2-methylthiothiophene-3-carboxylic acid

Methyl 4-cyano-5-methylthiothiophene-2-carboxylate (2.20 g, 10.3 mmol, Maybridge Chemical Company, Cornwall, UK) and tetrafluorophthalic acid (2.45 g, 10.3 mmol) in an 8-mL sealable pressure tube (Ace Glass Company) with stir bar was heated to 160°C. The molten mixture was stirred for 4 days, cooled and the resulting residue broken up and extracted by refluxing with 80 mL chloroform. The mixture was cooled, decolorizing carbon (ca. 0.5 g) was added and the mixture filtered (Celite). The resulting solution was extracted with saturated NaHCO$_3$ (4 x 30 mL) and the combined aqueous extracts acidified to pH 1-2 with conc HCl and filtered to provide a light tan solid. After dissolving the solid in a minimum of 1 M K$_2$CO$_3$ (35-40 mL) and filtering (washing with 10-20mL of water) to clarify the solution, it was slowly acidified to pH 6.5-7.0 with stirring and filtered (Celite) to remove a brown precipitate. The pH adjustment and filtration was repeated and the resulting solution was saturated with solid NaCl and acidified to pH 1-2 with conc HCl. The precipitate
was filtered, washed with water (3 x 10 mL) and dried over P₂O₅ under high vacuum to afford the title compound as a cream-colored powder (1.24 g, 52%). ^1H-NMR (300 MHz, DMSO-d₆) δ 13.14 (broad s, 1H), 7.89 (s, 1H), 3.82 (s, 3H) and 2.64 (s, 3H). Mass spectrum (ESI, negative mode) calcd. for C₉H₈O₂S₂: 232.0 (M-). Found: 231.7.

Example 96

5-Ethylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide hydrochloride

a) Methyl 4-(4-phenyl(1,3-thiazol-2-yl))-5-(methylsulfonyl)thiophene-2-carboxylate: Using the procedure of Example 141, step (a) with 600 mg (1.73 mmol) of methyl 5-methylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate as prepared in Example 10, step (a) afforded 642 mg (98%) of the title compound as a light yellow powder. ^1H-NMR (300 MHz, CDCl₃) δ 7.93 (s, 1H), 7.90 (m, 2H), 7.63 (s, 1H), 7.47 (m, 2H), 7.39 (m, 1H), 3.98 (s, 3H) and 3.73 (s, 3H). Mass spectrum (ESI, m/z): calcd. for C₉H₁₃NO₂S₂ 380.0 (M+H), found 380.2.

b) 4-(4-Phenyl)(1,3-thiazol-2-yl))-5-(methylsulfonyl)thiophene-2-carboxamide hydrochloride: Using the procedure of Example 141, step (b) with 560 mg (1.48 mmol) methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxylate as prepared in the previous step afforded 392 mg (66%) of the title compound as a off-white solid. ^1H-NMR (300 MHz, DMSO-d₆) δ 9.7 (broad s, 2H), 9.4 (broad s, 2H), 8.58 (s, 1H), 8.43 (s, 1H), 8.02 (d, 2H, J = 7 Hz), 7.52 (t, 2H, J = 7 Hz), 7.43 (t, 1H, J = 7 Hz), and 3.90 (s, 3H). Mass spectrum (ESI, m/z): calcd. for C₁₂H₁₃N₂O₂S₂ 364.0 (M+H), found 364.1.

c) 5-Ethylthio-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide hydrochloride: Using the procedure of Example 141, step (c) with 23.1 mg (0.0578 mmol) of the 4-(4-phenyl)(1,3-thiazol-2-yl))-5-(methylsulfonyl)thiophene-2-carboxamide hydrochloride (as prepared in the previous step), 64.1 μL (0.867 mmol) of ethanethiol (in 2 portions over 2 h) and 40.3 μL (0.231 mmol) of DIEA in 3 mL of methanol gave a yellow resin which was chromatographed on a 2 g silica SPE
column (Waters Sep-Pak) with a gradient of 0-15 % MeOH-CH₂Cl₂, followed by
trituration with CH₂Cl₂ to afford the title compound as an off-white solid (21.7 mg, 98
%). ¹H-NMR (300 MHz, DMSO-d₆) δ 9.45 (broad s, 2H), 9.07 (broad s, 2H), 8.68 (s,
1H), 8.28 (s, 1H), 8.09 (d, 2H, J = 7 Hz), 7.51 (t, 2H, J = 7 Hz), 7.40 (t, 1H, J = 7 Hz),
3.23 (q, 2H J = 7 Hz) and 1.42 (t, 3H, J = 7 Hz). Mass spectrum (ESI) calcd. for

Example 97
5-Methylthio-4-[4-(phenoxy methyl)(1,3-thiazol-2-yl)]thiophene-2-carboxamidine
hydrochloride

a) 3-Bromo-1-phenoxyacetone: To a solution of 6.0 (0.050 mmol) of
phenoxyacetyl chloride in 250 µL of anhyd MeCN in a 1-dram short vial (Wheaton
Glass) was added 50 µL (0.100 mmol) of a 2 M solution of
trimethylsilyldiazomethane in hexane and the vial capped with a PTFE-lined cap.
After stirring 1 h at room temperature on a vortex shaker, the mixture was cooled (0
°C) and 21 µL (0.105 mmol) of 30 wt % HBr in acetic acid was added dropwise (gas
evolution). After vortexing for 10 min, the mixture was concentrated in vacuo on a
vacuum centrifuge concentrator (Speed-Vac, Savant Instruments, Inc.) to provide an
amber-colored oil which was used directly in the following step.

b) Methyl 5-methylthio-4-[4-(phenoxy methyl)(1,3-thiazol-2-yl)]thiophene-2-
carboxylate: To the 3-bromo-1-phenoxyacetone (as prepared in the previous step in a
1-dram vial) was added 14.8 mg (0.060 mmol) of methyl 4-(aminothioxomethyl)-5-
methylthiophenone-2-carboxylate (Maybridge Chemical Company, Cornwall, UK)
as 1.48 mL of a 10 mg /mL solution in acetone. The vial was tightly capped and
placed on a heated platform shaker (Innova model 4080, New Brunswick Scientific
Co., Inc.) and vortexed at 55 °C and 250 rpm for 4 h. To the resulting mixture was
added 50 mg (0.150 mmol) of diethylaminomethyl-poly styrene resin (Fluka Chemika-
Biochemika, 3.0 mmol / g) as 0.50 mL of a 100 mg / mL suspension in acetone and
the mixture vortexed briefly. Chloroacetylpolystyrene resin (30 mg, 0.150 mmol,
Advanced ChemTech Inc., 5.0 mmol / g) was then added followed by (0.750 mg,
0.005 mmol) NaI as 100 µL of a 7.5 mg / mL solution in acetone. The mixture was
again capped tightly and placed on a heated platform shaker and vortexed at 55°C and 250 rpm for 22 h. The mixture was filtered through a 2 mL fritted column (BioRad Biospin minicolumn) washing with acetone (2 x 0.5 mL) and MeOH (2 x 0.5 mL) into a 2 dram vial and concentrated on a vacuum centrifuge concentrator to afford 21.0 mg of the title compound as an off-white solid. ¹H-NMR (300 MHz, DMSO-d₆) δ 8.17 (s, 1H), 7.82 (s, 1H), 7.13 (m, 2H), 7.07 (m, 2H), 6.96 (m, 1H), 5.22 (s, 2H), 3.85 (s, 3H), and 2.74 (s, 3H). Mass spectrum (MALDI-TOF, α-cyano-4-hydroxycinnamic acid matrix) calcd. for C₁₉H₁₅NO₃S₂: 378.0 (M + H). Found: 378.3.

c) 5-Methylthio-4-[4-(phenoxy)methyl](1,3-thiazol-2-yl)thiophene-2-carboxamidine hydrochloride: The methyl 5-methylthio-4-[4-(phenoxy)methyl](1,3-thiazol-2-yl)thiophene-2-carboxylate (as prepared in the previous step) under nitrogen in a 2 dram vial with a micro magnetic stir bar was capped with an open-top phenolic cap containing a PTFE-backed silicone septum. A 1 M solution of the reagent freshly prepared from trimethylaluminum and ammonium chloride in toluene according to the procedure in Example 10, step b (0.750 mL, 0.750 mmol) was added by syringe by puncturing the septum once to allow venting of gas followed by a second puncture to inject the reagent. The vial was placed in an aluminum heating block under nitrogen (Fisher Scientific Dry Bath Incubator fitted with a custom-made nitrogen manifold cover). The manifold was flushed with nitrogen and the reaction stirred by means of a large magnetic stir motor placed inverted on top of the manifold. The reaction was heated to 100°C for 4 h, and cooled to room temperature over ca. 2 h. The contents of the vial were quenched carefully into 0.5 g of silica gel in 2 mL of CH₂Cl₂, capped and shaken to homogeneity. The slurry was filtered through a 4-mL fritted column (Isolab microcolumn) into a 2-dram vial washing with CH₂Cl₂ (2 x 1 mL), CH₂Cl₂-MeOH (1:1, 1 x 1 mL) and MeOH(2 x 1 mL) and the filtrate concentrated on a vacuum centrifuge concentrator to a yellow solid. Filtration through a 500 mg silica SPE column (Supelco LC-Si) with 10 % MeOH -CH₂Cl₂ afforded the title compound as a yellow solid (14.8 mg). ¹H-NMR (300 MHz, DMSO-d₆) δ 9.45 (d, 2H, J = 8.2 Hz), 9.11 (d, 2H, J = 8.2 Hz), 8.97 (broad s, 2H), 8.65 (s, 1H), 7.90 (s, 1H), 7.0-7.5 (m, 5H), 5.25 (s, 2H), and 2.79 (s, 3H). Mass
Examples 98-126

Examples 98-104 were carried out using the procedure of Example 97, steps (b) and (c) using 0.050 mmol of the reagent specified in the table. Examples 105-126 were carried out using the procedure of Example 97, steps (a), (b) and (c) using 0.05 mmol of reagent.

<table>
<thead>
<tr>
<th>Example</th>
<th>Reagent</th>
<th>Compound</th>
<th>Formula</th>
<th>Mass Spectrum (ESI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Calcd (M+H)</td>
</tr>
<tr>
<td>98</td>
<td>1-bromo-pinacolone</td>
<td>4-[(4-tert-butyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C13 H17 N3 S3</td>
<td>312.1</td>
</tr>
<tr>
<td>99</td>
<td>4-fluorophenacyl bromide</td>
<td>4-[(4-(fluorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C15 H12 F N3 S3</td>
<td>350.0</td>
</tr>
<tr>
<td>100</td>
<td>4-cyano-phenacyl bromide</td>
<td>4-[(4-amidinophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C16 H15 N5 S3</td>
<td>374.1</td>
</tr>
<tr>
<td>101</td>
<td>3-fluorophenacyl bromide</td>
<td>4-[(4-(3-fluorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C15 H12 F N3 S3</td>
<td>350.0</td>
</tr>
<tr>
<td>102</td>
<td>4-(diethylamino)-phenacyl bromide</td>
<td>4-[(4-(diethylamino)-phenyl)(1,3-thiazol-2-y)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C19 H22 N4 S3</td>
<td>403.1</td>
</tr>
<tr>
<td>103</td>
<td>3-chlorophenacyl bromide</td>
<td>4-[(4-(3-chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride</td>
<td>C15 H12 C1 N3 S3</td>
<td>366.0</td>
</tr>
<tr>
<td>Example</td>
<td>Reagent</td>
<td>Compound</td>
<td>Formula</td>
<td>Mass Spectrum (ESI)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(3,4-difluorophenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C15 H11 F2 N3 S3</td>
<td>368.0</td>
</tr>
<tr>
<td>104</td>
<td>3,4-difluorophenacyl bromide</td>
<td></td>
<td></td>
<td>368.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(2,6-difluorophenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C15 H11 F2 N3 S3</td>
<td>368.0</td>
</tr>
<tr>
<td>105</td>
<td>2,6-difluorobenzoyl chloride</td>
<td></td>
<td></td>
<td>368.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(4-ethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C17 H17 N3 O S3</td>
<td>376.1</td>
</tr>
<tr>
<td>106</td>
<td>4-ethoxy-benzoyl chloride</td>
<td></td>
<td></td>
<td>376.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(4-chlorophenoxy)-methyl</td>
<td>(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C16 H14 C1 N3 O S3</td>
</tr>
<tr>
<td>107</td>
<td>4-chlorophenoxyacetyl chloride</td>
<td></td>
<td></td>
<td>396.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-(4-cyclopentyl(1,3-thiazol-2-yl))-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C14 H17 N3 S3</td>
<td>324.1</td>
</tr>
<tr>
<td>108</td>
<td>cyclopentane-carbonyl chloride</td>
<td></td>
<td></td>
<td>324.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-methylthio-4-(4-naphthyl(1,3-thiazol-2-yl))thiophene-2-carboxamide hydrochloride</td>
<td>C19 H15 N3 S3</td>
<td>382.1</td>
</tr>
<tr>
<td>109</td>
<td>1-naphthoyl chloride</td>
<td></td>
<td></td>
<td>382.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(3,5-dichlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C15 H11 C12 N3 S3</td>
<td>400.0</td>
</tr>
<tr>
<td>110</td>
<td>3,5-dichlorobenzoyl chloride</td>
<td></td>
<td></td>
<td>400.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-[4-(2,5-difluorophenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C15 H11 F2 N3 S3</td>
<td>368.0</td>
</tr>
<tr>
<td>111</td>
<td>2,5-difluorobenzoyl chloride</td>
<td></td>
<td></td>
<td>368.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-methylthio-4-[4-(9-oxo-2-fluoren-4-y1)(1,3-thiazol-2-yl)]thiophene-</td>
<td>C22 H15 N3 O S3</td>
<td>434.1</td>
</tr>
<tr>
<td>112</td>
<td>9-fluorenone-4-carbonyl chloride</td>
<td></td>
<td></td>
<td>434.2</td>
</tr>
<tr>
<td>Example</td>
<td>Reagent</td>
<td>Compound</td>
<td>Formula</td>
<td>Calcd (M+H)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>113</td>
<td>3-methoxyphenyl-acetyl chloride</td>
<td>4-{4-{(3-methoxyphenyl)methyl}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C17 H17 N3 O S3</td>
<td>376.1</td>
</tr>
<tr>
<td>114</td>
<td>4-methyl valeroyl chloride</td>
<td>4-{4-{(3-methylbutyl)(1,3-thiazol-2-yl)}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C14 H19 N3 S3</td>
<td>326.1</td>
</tr>
<tr>
<td>115</td>
<td>3-(2-chlorophenyl)-5-methylisoxazole-4-carbonyl chloride</td>
<td>4-{4-{[3-(2-chlorophenyl)]-5-methylisoxazol-4-yl}(1,3-thiazol-2-yl)}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C19 H15 Cl N4 O S3</td>
<td>447.0</td>
</tr>
<tr>
<td>116</td>
<td>4-n-amyl oxy-benzoyl chloride</td>
<td>5-methylthio-4-{4-(4-pentyloxyphenyl)(1,3-thiazol-2-yl)}thiophene-2-carboxamidine hydrochloride</td>
<td>C20 H23 N3 O S3</td>
<td>418.1</td>
</tr>
<tr>
<td>117</td>
<td>1-(4-chlorophenyl)-1-cyclopentane carboxynyl-chloride</td>
<td>4-{4-{[4-chlorophenyl]-cyclopenyl](1,3-thiazol-2-yl)}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C20 H20 Cl N3 O S3</td>
<td>434.1</td>
</tr>
<tr>
<td>118</td>
<td>4-(trifluoromethoxy)benzoyl chloride</td>
<td>5-methylthio-4-{4-4-(trifluoromethoxyphenyl]thiophene-2-carboxamidine hydrochloride</td>
<td>C16 H12 F3 N3 O S3</td>
<td>416.0</td>
</tr>
<tr>
<td>119</td>
<td>3-chloro-benzo[b] thiophene-2-carbonyl chloride</td>
<td>4-{4-3-chlorobenzo[b]thiophene-2-yl}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C17 H12 Cl N3 S4</td>
<td>422.0</td>
</tr>
<tr>
<td>120</td>
<td>3-(2-chloro-6-fluorophenyl)-5-methylisoxazole-4-carbonyl chloride</td>
<td>4-{4-{[3-(6-chloro-2-fluorophenyl)]-5-methylisoxazol-4-yl}(1,3-thiazol-2-yl)}-5-methylthiophene-2-carboxamidine hydrochloride</td>
<td>C19 H14 Cl F N4 O S3</td>
<td>465.0</td>
</tr>
<tr>
<td>Example</td>
<td>Reagent</td>
<td>Compound</td>
<td>Formula</td>
<td>Mass Spectrum (ESI)</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carboxamidine hydrochloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>3-cyanobenzoyl chloride</td>
<td>4-[4-(3-aminophenyl)[1,3-thiazol-2-yl]]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C16 H15 N5 S3</td>
<td>374.1 374.7</td>
</tr>
<tr>
<td>122</td>
<td>4-methoxyphenyl-acetyl chloride</td>
<td>4-[4-[4-(methoxyphenyl)-methyl][1,3-thiazol-2-yl]]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C17 H17 N3 O S3</td>
<td>376.1 376.2</td>
</tr>
<tr>
<td>123</td>
<td>3-(t-buty)-1-benzylpyrazole-5-carbonyl chloride</td>
<td>4-[3-(3-tet-butyl)pyrazol-5-yl][1,3-thiazol-2-yl]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C16 H19 N5 S3</td>
<td>378.1 378.2</td>
</tr>
<tr>
<td>124</td>
<td>3-(4-chlorophenyl)-2,2-dimethylpropanoyl chloride</td>
<td>5-methylthio-4-[4-(1-methylvinyl)[1,3-thiazol-2-yl]]thiophene-2-carboxamide hydrochloride</td>
<td>C12 H13 N3 S3</td>
<td>296.0 296.2</td>
</tr>
<tr>
<td>125</td>
<td>n-(1-naphthalene-sulfonyl)-1-phenylalanyl chloride</td>
<td>5-methylthio-4-[4-[1-naphthylsulfonamino]-2-phenylethyl][1,3-thiazol-2-yl]]thiophene-2-carboxamide hydrochloride</td>
<td>C27 H24 N4 O2 S4</td>
<td>565.1 565.1</td>
</tr>
<tr>
<td>126</td>
<td>2-bromo-5-methoxybenzoyl chloride</td>
<td>4-[4-(2-bromo-5-methoxyphenyl)[1,3-thiazol-2-yl]]-5-methylthiophene-2-carboxamide hydrochloride</td>
<td>C16 H14 Br N3 O S3</td>
<td>440.0 440.2</td>
</tr>
</tbody>
</table>

Example 127

a) **1-[3,5-bis(trifluoromethyl)phenyl]-2-bromoethan-1-one**: A stirred suspension of 1 g (3.9 mmol) of 3,5-bis(trifluoromethyl)acetophenone (Lancaster, Windham, NH, USA) in dry methanol (20 mL) and 1 g (15 mmol, 2.6 eq) of poly(4-vinyl pyridinium tribromide) (Aldrich, Milwaukee, WI, USA) was protected from moisture with dry nitrogen, and heated at reflux for 70 min. The polymer was filtered from the cooled solution and washed with methanol and twice with dichloromethane.
The solvents were removed in vacuo to give 1-[3,5-bis(trifluoromethyl)phenyl]-2-bromoethan-1-one (1.2 g, 92%). \(^1\)H-NMR (DMSO-d$_6$; 300 MHz) \(\delta\) 8.43 (m, 2H), 8.12 (m, 1H), 4.46 (s, 3H).

b) **Methyl 4-\{4-[3,5-bis(trifluoromethyl)phenyl](1,3-thiazol-2-yl)\}-5-methylthiothiophene-2-carboxylate:** A solution of 75 mg (0.3 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with 101 mg (0.3 mmol) of 1-[3,5-bis(trifluoromethyl)phenyl]-2-bromoethane-1-one in a manner similar Example 8, step (a) to give methyl 4-\{4-[3,5-bis(trifluoromethyl)phenyl](1,3-thiazol-2-yl)\}-5-methylthiothiophene-2-carboxylate (7 mg, 5%) as a solid. \(^1\)H-NMR (DMSO-d$_6$; 300 MHz) \(\delta\) 8.75 (s, 1H), 8.73 (m, 2H), 8.29 (s, 1H), 8.13 (m, 1H), 3.87 (s, 3H), 2.79 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{18}$H$_{11}$N$_2$O$_2$F$_6$, 484.0 (M+H), found 484.0.

c) **4-\{4-[3,5-bis(trifluoromethyl)phenyl](1,3-thiazol-2-yl)\}-5-methylthiothiophene-2-carboxamidine:** Methyl 4-\{4-3,5-bis(trifluoromethyl)phenyl](1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxylate (7 mg, 14.5 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-\{4-[3,5-bis(trifluoromethyl)phenyl](1,3-thiazol-2-yl)\}-5-methylthiothiophene-2-carboxamidine (6 mg, 89%) as a yellow solid. \(^1\)H-NMR (DMSO-d$_6$; 300 MHz) 8.78 (s, 1H), 8.74 (s, 2H), 8.62 (s, 1H), 8.15 (s, 1H), 2.82 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{17}$H$_{11}$N$_2$S$_1$F$_6$, 468.0 (M+H), found 468.0.

Example 128

a) **2-Bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]ethan-1-one:** A stirred suspension of 1 g (4.5 mmol) of 3-fluoro-5-(trifluoromethyl)acetophenone (Lancaster, Windham, NH, USA) was treated in a manner similar to that for Example 127, step (a) to give of a 1:1 mixture of 2-bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]ethan-1-one and dibrominated product (1.6 g, 100%). \(^1\)H-NMR (DMSO-d$_6$; 300 MHz) \(\delta\) 8.25-7.52 (m, 6H), 6.54 (s, 1H), 4.42 (s, 2H).

b) **Methyl 4-\{4-[3-fluoro-5-(trifluoromethyl)phenyl](1,3-thiazol-2-yl)\}-5-methylthiothiophene-2-carboxylate:** A solution of 75 mg (0.3 mmol) of methyl 4-
(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with of 86 mg (0.3 mmol) 2-bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]ethan-1-one in a manner similar to Example 8, step (a) to give, methyl 4-{4-[3-fluoro-5-(trifluoromethyl)phenyl](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxylate (41 mg, 31%) as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 8.59 (s, 1H), 8.29 (m, 1H), 8.27 (s, 1H), 8.25 and 8.21 (m, 1H, 1:1 ratio conformers), 7.73 and 7.70 (m, 1H, 1:1 ratio conformers). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{17}$H$_{11}$NO$_2$S$_2$F$_4$, 434.0 (M+H), found 434.0.

c) 4-{4-[3-Fluoro-5-(trifluoromethyl)phenyl](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxamide: Methyl 4-{4-[3-fluoro-5-(trifluoromethyl)phenyl](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxylate (40 mg, 0.92 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-{4-[3-fluoro-5-(trifluoromethyl)phenyl](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxamide (31 mg, 81%) as a yellow solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 9.36 (br s, 2H), 9.01 (br s, 2H), 8.68 (s, 1H), 8.63 (s, 1H), 8.30 (m, 1H), 8.25 and 8.22 (m, 1H, 1:1 ratio conformers), 7.75 and 7.73 (m, 1H, 1:1 ratio conformers), 2.82 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{16}$H$_{11}$N$_3$S$_3$F$_4$, 418.5 (M+H), found 418.0.

Example 129

a) 2-Bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]propan-1-one: A stirred suspension of 1 g (4.5 mmol) of 1-[3-fluoro-5-(trifluoromethyl)phenyl]propan-1-one (Lancaster, Windham, NH, USA) was treated in a manner similar to that for Example 127, step (a) to give 2-bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]propan-1-one (1.33 g, 99%). 1H-NMR (DMSO-d$_6$; 300 MHz) δ 8.07 (m, 1H), 7.92 and 7.89 (m, 1H, 1:1 ratio conformers), 7.57 and 7.55 (m, 1H, 1:1 ratio conformers), 5.20 (q, 1H, J=6.6 Hz), 1.93 (d, 3H, J=6.6 Hz).

b) Methyl 4-{4-[3-fluoro-5-(trifluoromethyl)phenyl]-5-methyl(1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxylate: A solution of 75 mg (0.3 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with 90 mg (0.3 mmol) of 2-bromo-1-[3-fluoro-5-
(trifluoromethyl)phenyl)propan-1-one in a manner similar to Example 8, step (a) to give, methyl 4-{3-fluoro-5-(trifluoromethyl)phenyl}-5-methyl(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxylate (31.9 mg, 24 %) as a solid. \(^1\)H-NMR (DMSO-\(_d_6\); 300 MHz) \(\delta\) 8.17 (s, 1H), 7.98 (m, 1H), 7.95 and 7.92 (m, 1H, 1:1 ratio conformers), 7.77 and 7.74 (m, 1H, 1:1 ratio conformers), 3.87 (s, 3H), 2.75 (s, 3H), 2.70 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{18}\)H\(_{13}\)NO\(_2\)S\(_3\)F\(_4\), 448.0 (M+H), found 448.0.

c) 4-{3-Fluoro-5-(trifluoromethyl)phenyl}-5-methyl(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamidine: Methyl 4-{3-fluoro-5-(trifluoromethyl)phenyl}-5-methyl(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxylate (30 mg, 0.067 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-{3-fluoro-5-(trifluoromethyl)phenyl}-5-methyl(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxamidine (32 mg, quantitative yield) as a yellow solid. \(^1\)H-NMR (DMSO-\(_d_6\); 300 MHz) \(\delta\) 9.42 (br s, 2H), 9.03 (br s, 2H), 8.60 (s, 1H), 7.98 (m, 1H), 7.95 and 7.92 (m, 1H, 1:1 ratio conformers), 7.79 and 7.76 (m, 1H, 1:1 ratio conformers), 2.78 (s, 3H), 2.71 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{19}\)H\(_{13}\)N\(_3\)S\(_3\)F\(_4\), 432.0 (M+H), found 432.6.

Example 130

a) 1-[3,5-Bis(trifluoromethyl)phenyl]-2-bromopropan-1-one: A stirred suspension of 1 g (3.7 mmol) of 1-[3,5-bis(trifluoromethyl)phenyl]propan-1-one (Lancaster, Windham, NJ, USA) treated in a manner similar to that for Example 127, step (a) to give 2-bromo-1-[3-fluoro-5-(trifluoromethyl)phenyl]propan-1-one (1.1 g, 86 %). \(^1\)H-NMR (DMSO-\(_d_6\); 300 MHz) \(\delta\) 8.46 (m, 2H), 8.09 (m, 1), 5.26 (q, 1H, J=6.6Hz), 1.96 (d, 3H, J=6.5 Hz). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{11}\)H\(_{10}\)OBrF\(_6\), 349.0 (M+H), found 349.9.

b) Methyl 4-{3-[3,5-bis(trifluoromethyl)phenyl]-5-methyl(1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxylate: A solution of 75 mg (0.3 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with 105 mg 1-[3,5-Bis(trifluoromethyl)phenyl]-2-bromopropan-1-one in a manner similar to Example 8, step (a) to give, after preparative thin-layer

chromatography purification, methyl 4-[4-(3,5-bis(trifluoromethyl)phenyl)-5-methyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (16.2 mg, 11%) as a solid. \(^{1}\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.41 (m, 2H), 8.18 (m, 2H), 3.86 (s, 3H), 2.75 (s, 3H), 2.71 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): calcd. for \(\text{C}_{19}\text{H}_{13}\text{NO}_{2}\text{S}_{2}\text{F}_{6}\), 498.0 (M+H), found 497.6.

c) 4-[4-(3,5-Bis(trifluoromethyl)phenyl)-5-methyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide: Methyl 4-[4-(3,5-bis(trifluoromethyl)phenyl)-5-methyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (15 mg, 0.031 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-[4-(3,5-bis(trifluoromethyl)phenyl)-5-methyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide (13 mg, 88%) as a yellow solid. \(^{1}\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.39 (br s, 2H), 8.94 (br s, 2H), 8.58 (s, 1H), 8.40 (m, 2H), 8.19 (m, 1H), 2.79 (s, 3H), 2.73 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for \(\text{C}_{18}\text{H}_{13}\text{N}_{2}\text{S}_{3}\text{F}_{6}\), 482.0 (M+H), found 482.5.

Example 131

a) 2-Bromo-1,2-diphenylethan-1-one: A stirred suspension of 0.2 g (1 mmol) of deoxybenzoin was treated in a manner similar to that for Example 127, step (a) to give 2-bromo-1,2-diphenylethan-1-one (270 mg, 98%). \(^{1}\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.10-8.06 (m, 2H), 7.95-7.31 (m, 8H), 7.21 (s, 1H).

b) Methyl 4-(4,5-diphenyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate: A solution of 75 mg (0.3 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylic acid (Maybridge, Cornwall, UK) was reacted with 92 mg, 0.3 mmol) of 2-bromo-1,2-diphenylethan-1-one in a manner similar to Example 8, step (a) to give, after preparative thin-layer chromatography purification, methyl 4-(4,5-diphenyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (9 mg, 7%) as a solid. \(^{1}\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.94 (br s, 0.4H), 8.66 (s, 1H), 8.60 (br s, 0.3 H), 8.08 (s, 1H), 7.93 and 7.20 (AB quartet, 2H, J = 8.7 Hz), 7.68 and 7.35 (AB quartet, 2H, J = 8.2 Hz), 2.77 (s, 3H), 2.33 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for \(\text{C}_{22}\text{H}_{13}\text{NO}_{2}\text{S}_{3}\), 424.0 (M+H), found 424.3.
c) 4-(4,5-Diphenyl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxamidine: Methyl 4-(4,5-diphenyl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxylate (9 mg, 0.021 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-(4,5-diphenyl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxamidine (3 mg, 35 %) as a brown oil. Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C_{21}H_{19}N_5S_3, 408.1 (M+H), found 408.0.

Example 132

a) Methyl 4-(4-benzo[b]thiophen-2-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxylate: A solution of 75 mg (0.3 mmol) of methyl 4-(aminothiooxomethyl)-5-methylthiobenzothiophene-2-carboxylate was reacted with 77 mg (0.3 mmol) of 3-bromoacetylbenzo[b]thiophene (Maybridge, Cornwall, UK) in a manner similar to Example 8, step (a) to give, after preparative thin-layer chromatography purification, methyl 4-(4-benzo[b]thiophen-2-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxylate (28 mg, 23 %) as a solid. ^1H-NMR (DMSO-d_6; 300 MHz) δ 8.63 (d, 1H, J=7.4 Hz), 8.30 (s, 1H), 8.25 (s, 1H), 8.22 (s, 1H), 7.53-7.46 (m, 2H), 3.87 (s, 3H), 2.78 (s, 3H).

b) 4-(4-Benzo[b]thiophen-2-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxamidine: Methyl 4-(4-benzo[b]thiophen-2-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxylate (28 mg, 0.69 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-(4-benzo[b]thiophen-2-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxamidine (17 mg, 64 %) as a brown solid. ^1H-NMR (DMSO-d_6; 300 MHz) δ 9.22 (br s, 4H), 8.68 (s, 1H), 8.66 (d, 1H, J=7.6 Hz), 8.30 (s, 1H), 8.25 (s, 1H), 8.10 (d, 1H, J=7.3 Hz), 7.55-7.45 (m, 2H), 2.81 (s, 3H). Mass spectrum (MALDI-TOF, GA matrix, m/z): Calcd. for C_{17}H_{13}N_5S_4, 388.0 (M+H), found 388.2.

Example 133

a) Methyl 4-(4-benzo[4]benzo[3,4-b]furan-3-yl(1,3-thiazol-2-yl))-5-methylthiobenzothiophene-2-carboxylate: A solution of 75 mg (0.3 mmol) of methyl 4-(aminothiooxomethyl)-5-methylthiobenzothiophene-2-carboxylate (Maybridge, Cornwall,
UK) was reacted with 86 mg (0.3 mmol) of 2-(bromoacetyl)-dibenzo-furan (Aldrich, Milwaukee, WI, USA) in a manner similar to Example 8, step (a) to give, after preparative thin-layer chromatography purification, methyl 4-(4,5-diphenyl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (45 mg, 36 %) as a solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.83-7.44 (m, 7H), 8.29 (s, 1H), 8.27 (s, 1 H), 3.88 (s, 3H), 2.80 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{2n}\)H\(_{15}\)NO\(_3\)S\(_3\), 438.0 (M+H), found 438.5.

b) 4-4-Benzol[d]benzo[3,4-b]furan-3-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide: Methyl 4-(4-benzo[d]benzo[3,4-b]furan-3-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (45 mg, 0.11 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-4-benzo[d]benzo[3,4-b]furan-3-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide (16.8 mg, 36 %) as a yellow solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.72-9.10 (m, 3H), 8.84 - 7.31 (m, 9H), 2.84 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{2n}\)H\(_{15}\)N\(_3\)O\(_3\)S\(_3\), 422.0 (M+H), found 421.9.

Example 134

a) Methyl 4-(4-(4-nitrophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate: A solution of 1 g (4 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with 987 mg (4 mmol) of 2-bromo-4'-nitroacetophenone in a manner similar to Example 8, step (a) to give methyl 4-(4-(4-nitrophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (1.7 g, quantitative yield) as a brown solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.57 (s, 1H), 8.34 (s, 4H), 8.25 (s, 1H), 3.94 (s, 3H), 3.81 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{16}\)H\(_{12}\)N\(_2\)O\(_3\)S\(_3\), 393.0 (M+H), found 392.8.

b) Methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate: Methyl 4-(4-(4-nitrophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (800 mg, 2 mmol) was dissolved in 150 mL tetrahydrofuran and treated with 20 % titanium chloride solution (Fisher Scientific, Pittsburgh, PA, USA) for 1 h. The mixture was poured into 2 M sodium hydroxide solution (100 mL), extracted
with dichloromethane (4 x 50 mL). The combined organic layers were washed with saturated brine solution and dried over anhydrous sodium sulfate. The solid was filtered off, and the solvent removed in vacuo. This material was purified by column chromatography on silica gel (30 g) eluting with dichloromethane:methanol 98/2 (v:v) to give methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (500 mg, 69%) as a solid. \(^1\)H-NMR (DMSO-d\(_6\); 300 MHz) \(\delta\) 8.17 (s, 1H), 7.77 (s, 1H), 7.74 and 6.62 (AB quartet, 2H, \(J = 8.6\) Hz), 5.35 (s, 2H), 3.86 (s, 3H), 2.74 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{16}\)H\(_{14}\)N\(_2\)O\(_2\)S\(_2\) 363.0 (M+H), found 362.4.

c) Methyl 4-(4-\{methylsulfonyl\}amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate: Methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (200 mg, 0.55 mmol) was dissolved in dry dichloromethane (20 mL). To this, N-methyl morpholine (150 \(\mu\)L, 1.38 mmol) and dimethylaminopyridine (6.1 mg, 0.055 mmol) were added, the mixture was cooled on an ice bath, and methanesulfonyl chloride (43 \(\mu\)L, 0.55 mmol) was added drop-wise. The mixture was then stirred for 8 days at room temperature. The mixture was partitioned between saturated sodium bicarbonate (50 mL) and dichloromethane (20 mL). The aqueous layer was extracted with dichloromethane (3 x 20 mL), and the combined organic layers were washed with saturated sodium bicarbonate (20 mL), brine (2 x 20 mL), and dried over anhydrous sodium sulfate. The solvent was remove in vacuo. Column chromatography on silica gel (100 g) eluting with dichloromethane:methanol 99/1 (v:v), gave methyl 4-(4-\{methylsulfonyl\}amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (155 mg, 64%) as a solid. \(^1\)H-NMR (DMSO-d\(_6\); 300 MHz) \(\delta\) 9.92 (s, 1H), 8.22 (s, 1H), 8.11 (s, 1H), 8.40 and 6.90 (AB quartet, 2H, \(J = 8.7\) Hz), 3.87 (s, 3H), 3.05 (s, 3H), 2.76 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix m/z): Calcd. for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_2\)S\(_4\) 441.0 (M+H), found 441.2.

d) 4-(4-\{Methylsulfonyl\}amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine: Methyl 4-(4-\{methylsulfonyl\}amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (81 mg, 0.184 mmol) was treated in a manner similar to that for Example
10, step (b), to give 4-(4-{4-[(methylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxamidine (24.9 mg, 32 %) as a light brown solid. \textit{¹H-}

NMR (DMSO-\textit{d}$_6$; 300 MHz) \(\delta\) 10.0 (br s, 1H), 9.3 (br s, 2H), 8.98 (s, 1H), 8.65 (s, 1H), 8.21 (s, 1H), 7.98 and 7.5 (AB quartet, 2H, \(J = 8.6\) Hz), 3.05 (s, 3H), 2.79 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, \(m/z\)): Calcd. for C$_{16}$H$_{18}$N$_4$O$_2$S$_4$ 425.0 (M+H), found 425.1.

\textbf{Example 135}

\textit{a) Methyl 4-(4-{4-[(phenylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxylate:} Methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxylate (100 mg, 0.28 mmol) was dissolved in dry dichloromethane (10 mL). To this, N-methyl morpholine (46 \(\mu\)L, 0.42 mmol) and dimethylaminopyridine (3.4 mg, 0.028 mmol) were added, the mixture was cooled on an ice bath, and benzenesulfonyl chloride 35 \(\mu\)L, 0.28 mmol) was added dropwise. The mixture was then stirred for 24 h at room temperature. Workup was carried out as in Example 134, step (c). Trituration with dichloromethane and methanol gave methyl 4-(4-{4-[(phenylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxylate (44 mg, 31 %) as a crystalline solid. \textit{¹H-NMR}

(DMSO-\textit{d}$_6$; 300 MHz) \(\delta\) 10.46 (s, 1H), 8.19 (s, 1H), 8.05 (s, 1H), 7.91 and 7.19 (AB quartet, 2H, \(J = 8.7\) Hz), 7.81 (m, 2H), 7.64-7.54 (m, 3H) 3.85 (s, 3H), 2.74 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, \(m/z\)): Calcd. for C$_{29}$H$_{26}$N$_4$O$_6$S$_4$ 504.2 (M+H), found 504.1

\textit{b) 4-(4-{4-[((phenylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxamidine:} Methyl 4-(4-{4-[(phenylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxylate (30 mg, 0.060 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-{4-{4-[((phenylsulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiophiophene-2-carboxamidine (12.6 mg, 43 %) as a yellow solid. \textit{¹H-NMR}

(DMSO-\textit{d}$_6$; 300 MHz) \(\delta\) 9.13 (br s, 3H), 8.60 (s, 1H), 8.08 (s, 1H) 7.93 and 7.20 (AB quartet, 2H, \(J = 8.7\) Hz), 7.82-7.79 (m, 2H), 7.65-7.53 (m, 3H) 3.85 (s, 3H), 2.74 (s,
3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C_{21}H_{18}N_{6}O_{2}S_{4},
87.0 (M+H), found 487.7.

Example 136

a) *Methyl 4-(4-[(trifluoromethylsulfonyl)amino]phenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxylate:* Methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (200 mg, 0.55 mmol) was dissolved in dry pyridine (20 mL). The mixture was cooled on an ice bath, and trifluoromethanesulfonic anhydride (0.5 mL, 3 mmol) was added. The mixture was then stirred for 1.5 h at room temperature. Workup was carried out as in Example 134, step (c). Column chromatography on silica gel (30 g) eluting with hexanes:ethyl acetate 7/3 (v:v), followed by preparative thin layer chromatography eluting with dichloromethane:methanol 99/1 (v:v) gave methyl 4-(4-[(trifluoromethylsulfonyl)amino]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (160 mg, 59 %) as a solid. 1^H-NMR (DMSO-d_{6}; 300 MHz) δ 8.48 and 7.87(s, 3/2 ratio conformers, 1H), 8.23 (s, 1H), 8.21 (s, 1H), 8.29 and 7.84 (AB quartet, 2H, 2/3 ratio conformers, J=8.7 Hz), 8.10 and 7.37 (AB quartet, 2H, J=8.7 Hz), 3.87 and 3.86 (s, 2/3 ratio conformers, 3H), 2.77 and 2.76 (s, 2/3 ratio conformers, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C_{17}H_{13}N_{6}O_{2}S_{4}F_{4} 495.0 (M+H), found 495.6

b) *4-(4-[(Trifluoromethylsulfonyl)amino]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide:* Methyl 4-(4-[(trifluoromethylsulfonyl)amino]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (30 mg, 0.061 mmol) was treated in a manner similar to that for Example 134, step (b), to give of 4-(4-[(trifluoromethylsulfonyl)amino]phenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide (21.6 mg, 74 %) as a light brown solid. 1^H-NMR (DMSO-d_{6}; 300 MHz) δ 9.39 (br s, 2H), 8.97 (br s, 2H), 8.64 (s, 1H), 8.24 (s, 1H), 8.12 and 7.39 (AB quartet, 2H, J = 8.7 Hz), 4.78 (br s, 1H), 2.79 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C_{15}H_{13}N_{6}O_{2}S_{4}F_{3}, 479.0 (M+H), found 479.5.
Example 137

a) Methyl 4-(4-{4-(toluenesulfonyl)amino}phenyl)(1,3-thiazol-2-yl)-5-methylthiothiophene-2-carboxylate: Methyl 4-(4-(4-aminophenyl)(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (33 mg, 0.09 mmol) was dissolved in dry dichloromethane (5 mL). To this, N-methyl morpholine (10 μL, 0.09 mmol) and p-toluenesulfonyl chloride (17 mg, 0.09 mmol) was added and the mixture was stirred at room temperature for 5 days. Workup was carried out as in Example 134, step (c). Trituration with dichloromethane and methanol gave methyl 4-(4-{4-{[(toluenesulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (20 mg, 43 %) as a brown solid. 'H-NMR (DMSO-d₆, 300 MHz) δ 10.39 (s, 1H), 8.19 (s, 1H), 8.05 (s, 1H), 7.91 and 7.18 (AB quartet, 2H, J = 8.7 Hz), 7.68 and 7.35 (AB quartet, 2H, J = 8.2 Hz), 3.85 (s, 3H), 2.74 (s, 3H), 2.27 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₂₃H₂₃N₂O₄S₄, 517.2 (M+H), found 517.0.

b) 4-(4-{4-{(Toluenesulfonyl)amino}phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine: Methyl 4-(4-{4-{[(toluenesulfonyl)amino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (15 mg, 0.029 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-(4-{4-{(toluenesulfonyl)amino}phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine (17.9 mg, 81 %) as a light brown solid. 'H-NMR (DMSO-d₆, 300 MHz) δ 8.94 (br s, 0.4H), 8.66 (s, 1H), 8.60 (br s, 0.3 H), 8.08 (s, 1H), 7.93 and 7.20 (AB quartet, 2H, J = 8.7 Hz), 7.68 and 7.35 (AB quartet, 2H, J = 8.2 Hz), 2.77 (s, 3H), 2.33 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₂₂H₂₀N₄O₂S₄: 501.1 (M+H), found 501.1.

Example 138

a) Methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfinyl)thiophene-2-carboxylate: To a stirred solution of 764 mg (2 mmol) of methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) dissolved in 1,1,1,3,3,3-hexafluoroisopropanol (2.5 mL) was added 30% hydrogen peroxide (0.45 mL, 4
mmol). This solution was stirred for 45 h at room temperature. Dichloromethane (10 mL) was added after 2 hours. Additional hydrogen peroxide (2 x 0.45 mL portions) was added after 4 hours and 24 hours. The mixture was quenched with 10% sodium sulfite in brine (4 mL). The organic layer was separated, dried over anhydrous sodium sulfate, and the solvents removed in vacuum. Column chromatography on silica gel (45 g), eluting with dichloromethane:methanol 99/1 (v:v) gave methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfinyl)thiophene-2-carboxylate (720 mg, 90%) as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 8.37 (s, 1H), 8.30 (s, 1H), 8.05 and 7.52 (AB quartet, 2H, J = 8.6 Hz), 3.91 (s, 3H), 3.16 (s, 3H). Mass spectrum (MALDI-TOF, GA matrix, m/z): Calcd. for C$_{16}$H$_{13}$NO$_5$S$_2$Cl: 398.0 (M+H), found 397.8.

b) 4-[4-(4-Chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfinyl)thiophene-2-carboxamidine: Methyl 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfinyl)thiophene-2-carboxylate (100 mg, 0.25 mmol) was treated in a manner similar to that for Example 10, step (b), to give, after preparative thin layer chromatography purification eluting with dichloromethane:methanol:acetic acid 9/1/0.5 (v:v:v), 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfinyl)thiophene-2-carboxamidine (18.2 mg, 19%) as a solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 8.33 (s, 1H), 8.22 (s, 1H), 8.05 and 7.57 (AB quartet, 2H, J = 8.6 Hz), 3.12 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix m/z): Calcd. for C$_{15}$H$_{12}$N$_3$O$_5$S$_2$Cl: 382.0 (M+H), found 382.1.

Example 139

a) Methyl 4-cyano-5-(methylsulfonyl)thiophene-2-carboxylate: To a stirred solution of (4.5 g, 21 mmol) of methyl 4-cyano-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was dissolved in dichloromethane (250 mL) and treated with m-chloroperbenzoic acid (15.3 g, 90 mmol) at room temperature for 2.25 h. The mixture was filtered and the solid washed with dichloromethane (2 x 50 mL). The filtrate was washed with sodium bicarbonate (2 x 100 mL), sodium thiosulfate (100 mL), sodium bicarbonate (100 mL), water (100 mL), brine (100 mL), and dried over anhydrous sodium sulfate. The solvent was removed in vacuo to give methyl 4-
onylthiophene-2-carboxylate (4.91 g, 95%) as a solid. 1H-NMR z) δ 8.44 (s, 1H), 3.91 (s, 3H), 3.58 (s, 3H).

5-cyano-5-methoxythiophene-2-carboxylate: Methyl 4-cyano-5-phene-2-carboxylate (2 g, 8 mmol) was refluxed with 0.5 M methanol (16 mL) for 15 minutes. The solution was cooled, the lected on a Büchner funnel and washed with methanol (50 mL) to 5-methoxythiophene-2-carboxylate (1.145 g, 73%) as a solid. (300 MHz) δ 8.87 (s, 1H) 4.19 (s, 3H), 3.82 (s, 3H).

vl 4-(aminothioxomethyl)-5-methoxythiophene-2-carboxylate: ethoxythiophene-2-carboxylate (1 g, 5 mmol) was dissolved in nL and triethylamine (3.5 mL, 25.4 mmol) was added. After on with argon for 10 minutes, hydrogen sulfide gas was bubbled for 5 h. After stirring 18 h at room temperature, the solution was g argon (6 h), concentrated to 20 mL and acetone (20 mL) was d was collected on a Büchner funnel and washed with acetone. om hot ethanol (15 mL) to give methyl 4-(aminothioxomethyl)-2-carboxylate (683 mg, 59%) as a brown oil. Mass spectrum A matrix, m/z): Calcd. for C$_8$H$_5$NO$_3$S$_2$ 232.0 (M+H), found

methoxy-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate: 0 mg (1.73 mmol) of methyl 4-(aminothioxomethyl)-5-carboxylate was reacted with 345 mg (1.73 mmol) of 2-(Aldrich, Milwaukee, WI, USA) in a manner similar to Example methyl 5-methoxy-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (40 mg) and 100 mg (1.73 mmol) of DMSO-d$_6$ (300 MHz) δ 8.22 (s, 1H), 7.47 (m, 2H), 7.36 (m, 1H), 4.26 (s, 3H), 3.85 (s, 3H).

oxy-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamide: 4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (55 mg, ed in a manner similar to that for Example 10, step (b), to give 5-(1,3-thiazol-2-yl))thiophene-2-carboxamide (36 mg, 69%) as a
yellow solid. 1H-NMR (DMSO-d_6; 300 MHz) δ 9.34 (br s, 2H), 8.94 (br s, 2H), 8.70 (s, 1H), 8.20 (s, 1H), 8.07 (m, 2H), 7.49 (m, 2H), 7.38 (m, 1H), 4.32 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{15}$H$_{13}$N$_5$OS$_2$ 316.5 (M+H), found 316.1

Example 140

a) Methyl 4-cyano-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate: To a stirred solution of 2.5 g (10 mmol) of methyl 4-cyano-5-(methylsulfonyl)thiophene-2-carboxylate (Example 139, step (a)) in dry methanol (15 mL) was added p-methoxybenzylmercaptan (3.8 mL, 28 mmol) and triethylamine (1.4 mL, 10 mmol). This solution was refluxed for 15 min and cooled. The resulting solid was collected on a b"uchner funnel and washed with methanol (2 x 25 mL) to methyl 4-cyano-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate (2.84 g, 89%) as a solid.

b) Methyl 4-(aminothioxomethyl)-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate: Methyl 4-cyano-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate (2.5 g, 7.8 mmol) was treated as in Example 139, step (c) to give methyl 4-(aminothioxomethyl)-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate (1.32 g, 48%) as a solid. 1H-NMR (DMSO-d_6; 300 MHz) δ 9.64 (s, 1H), 9.28 (s, 1H), 8.08 (s, 1H), 7.35 and 6.92 (AB quartet, 2H, J=8.7 Hz), 4.27 (s, 2H), 3.82 (s, 3H), 3.75 (s, 3H).

c) Methyl 5-(methoxyphenylthio)-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate: A solution of 1.2 g (3.4 mmol) of methyl 4-(aminothioxomethyl)-5-[(4-methoxyphenyl)methylthio]thiophene-2-carboxylate was reacted with 676 mg (3.4 mmol) of 2-bromocacetophenone (Aldrich, Milwaukee, WI, USA) in a manner similar to Example 8, step (a) to give methyl 5-(methoxyphenylthio)-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (755 mg, 49%) as a solid. 1H-NMR (DMSO-d_6; 300 MHz) δ 8.26 (s, 1H), 8.22 (s, 1H), 8.04 (m, 2H), 7.48 (m, 2H), 7.53 (m, 1H), 6.89 (AB quartet, 2H, J=8.7 Hz), 4.40 (s, 2H), 3.86 (s, 3H), 3.72 (s, 3H).

d) 5-(Methoxyphenylthio)-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine: Methyl 5-(methoxyphenylthio)-4-(4-phenyl(1,3-thiazol-2-
(100 mg, 0.22 mmol) was treated in a manner similar to that for Example 10, step (b), to give 5-methoxy-4-(phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (94 mg, 91%) as an orange solid. 1H-NMR (DMSO-d$_6$, 300 MHz) δ 9.49 (br s, 2H), 9.15 (br s, 2H), 8.70 (s, 1H), 8.26 (s, 1H), 8.07 (m, 2H), 7.49 (m, 2H), 7.40 (m, 1H), 7.35 and 6.90 (AB quartet, 2H, J=8.7 Hz), 4.41 (s, 2H), 3.73 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{23}$H$_{19}$N$_3$OS, 438.5 (M+H), found 438.1.

Example 141

a) Methyl 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxylate: To a stirred solution of 1 g (2.6 mmol) of methyl 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate (Maybridge, Cornwall, UK) was dissolved in dry dichloromethane (50 mL) and treated with m-chloroperbenzoic acid (1.94 g, 11.3 mmol) at room temperature for 1.5 h. The solution was filtered and the solid washed with dichloromethane. The filtrate was washed with sodium bicarbonate solution (2 x 20 mL), sodium thiosulfate solution (20 mL), sodium bicarbonate solution (20 mL), brine (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed in vacuo to give methyl 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxylate (826 mg, 77%) as a tan solid. Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C$_{16}$H$_{18}$N$_4$O$_4$S$_2$Cl 414.0 (M+H), found 414.8.

b) 4-[(4-Chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxamidine: Methyl 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxylate (200 mg, 0.4 mmol) was treated in a manner similar to that for Example 10, step (b), to give 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxamidine (85 mg, 53%) as a yellow solid.

c) 4-[(4-Chlorophenyl)(1,3-thiazol-2-yl)]-5-(phenylmethylthio)thiophene-2-carboxamidine: A stirred solution of 80 mg (0.2 mmol) of 4-[(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(methylsulfonyl)thiophene-2-carboxamidine benzyl mercaptan (115 µl, 0.980 µmol) was treated in a manner similar to that for Example 140, step (a) to give, after silica gel column chromatography (20 g) eluting
with dichloromethane:methanol:acetic acid 9/1/0.5 (v:v:v), 4-[4-(4-chlorophenyl)(1,3-thiazol-2-yl)]-5-(phenylmethylthio)thiophene-2-carboxamide (75 mg, 85%) as a pale orange solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.44 (br s, 2H), 9.03 (br s, 2H), 8.67 (s, 1H), 8.33 (s, 1H), 8.08 and 7.56 (AB quartet, 2H, J=8.7 Hz), 7.54-7.17 (m, 5H), 4.45 (s, 2H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{21}\)H\(_{16}\)N\(_3\)S\(_3\)Cl 442.0 (M+H), found 442.7.

Example 142

a) **1-[5-(tert-butyl)-2-methyl(3-furyl)]-2-bromoethan-1-one**: A solution of 1 g (5 mmol) of 5-(tert-butyl)-2-methylfuran-3-carbonyl chloride (Maybridge, Cornwall, UK) dissolved in dry acetonitrile (4 mL) and 6.25 mL (12.5 mmol) of 2 M trimethylsilyldiazomethane in hexanes (Aldrich, Milwaukee, WI) was stirred 1.75 h at room temperature and the mixture was cooled on an ice bath for 5 min. To this, 30% hydrogen bromide in acetic acid (2 mL, 10 mmol) was added dropwise over 10 min. This was stirred an additional 20 minutes on an ice bath. Evaporation of the solvents gave 1-[5-(tert-butyl)-2-methyl(3-furyl)]-2-bromoethan-1-one (1 g, 77%) as a brown oil. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 6.50 (s, 1H), 4.57(s, 2H), 2.52 (s, 1H), 1.24 (s, 9H). Mass spectrum (LCA, m/z): Calcd. for C\(_{14}\)H\(_{19}\)O\(_2\)Br, 259.1 and 261.1 (M+H), found 259.1 and 261.1.

b) **Methyl 4-[4-[5-(tert-butyl)-2-methyl(3-furyl)](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate**: A solution of 955 mg (3.86 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall, UK) was reacted with 1 g (3.86 mmol) of 1-[5-(tert-butyl)-2-methyl(3-furyl)]-2-bromoethan-1-one (1 g) in a manner similar to Example 8, step (a) to give methyl 4-[4-[5-(tert-butyl)-2-methyl(3-furyl)](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (999 mg, 64%) as a red-brown solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.14 (s, 1H), 7.74 (s, 1H), 6.46 (s, 1H), 3.86 (s, 3H), 2.74 (s, 3H), 2.66 (s, 3H), 1.27 (s, 9H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C\(_{19}\)H\(_{27}\)NO\(_5\)S\(_3\), 408.1 (M+H), found 408.0.

c) **4-[4-[5-(tert-Butyl)-2-methyl(3-furyl)](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine**: Methyl 4-[4-[5-(tert-butyl)-2-methyl(3-
furyl)](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (940 mg, 2.3 mmol)
was treated in a manner similar to that for Example 10, step (b) to give 4-{4-[5-(tert-
butyl)-2-methyl(3-furyl)](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-carboxamidine
(930 mg, quantitative yield) as a yellow solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 9.42
(br s, 2H), 9.03 (br s, 2H), 8.59 (s, 1H), 7.77 (s, 1H), 6.47 (s, 1H), 2.78 (s, 3H), 2.68
(s, 3H), 1.27 (s, 9H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for
C$_{18}$H$_{21}$N$_3$O$_3$S$_3$, 392.1 (M+H), found 392.1.

Example 143

a) 1-[3-(tert-butyl)-1-benzylpyrazol-5-yl]-2-bromoethan-1-one: A solution
of 1 g (3.6 mmol) of 3-(tert-butyl)-1-benzylpyrazole-5-carbonyl chloride (Maybridge,
Cornwall, UK) was dissolved in dry acetonitrile (4 mL) and 4.5 mL (9 mmol) of 2 M
trimethylsilyldiazomethane in hexanes (Aldrich, Milwaukee, WI, USA) was added.
After stirring 1 h 20 min at room temperature, the mixture was cooled on an ice bath
for 5 min. To this, 30% hydrogen bromide in acetic acid (2 mL, 10 mmol) was added
dropwise over 15 min. This was stirred an additional 15 minutes on an ice bath.
Filtration of the precipitated solid and evaporation of the solvents gave 1-[3-(tert-
butyl)-1-benzylpyrazol-5-yl]-2-bromoethan-1-one (1.47 g, quantitative yield) as an
orange solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 7.33-7.06 (m, 5H), 7.08 (s, 1H), 5.64
(s, 2H), 4.57 (s, 2H), 1.28 (s, 9H). Mass spectrum (MALDI-TOF, CHCA matrix,
m/z): Calcd. for C$_{16}$H$_{19}$N$_3$OBr, 335.1 and 337.1 (M+H), found 335.6 and 337.6.

b) Methyl 4-{4-[3-(tert-butyl)-1-benzylpyrazol-5-yl](1,3-thiazol-2-yl)}-5-
methylthiothiophene-2-carboxylate: A solution of 823 mg (3.3 mmol of methyl 4-
(aminothioxomethyl))-5-methylthiothiophene-2-carboxylate (Maybridge, Cornwall,
UK) was reacted with 1.36 g (3.3 mmol) of 1-[3-(tert-butyl)-1-benzylpyrazol-5-yl]-2-
bromoethan-1-one in a manner similar to Example 8, step (a) to give methyl 4-{4-[3-
(tert-butyl)-1-benzylpyrazol-5-yl](1,3-thiazol-2-yl)}-5-methylthiothiophene-2-
carboxylate (1.25 g, 79%) as a crystalline solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ
8.11 (s, 1H), 8.05 (s, 1H), 7.28-6.99 (m, 5H), 6.70 (s, 1H), 5.88 (s, 2H), 3.86 (s, 3H),
2.70 (s, 3H), 1.30 (s, 9H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd.
for C$_{24}$H$_{25}$N$_5$O$_2$S$_3$, 484.1 (M+H), found 483.9.
c) 4-([3-(Tert-butyl)-1-benzylpyrazol-5-yl][1,3-thiazol-2-yl])-5-methylthiothiophene-2-carboxamidine: Methyl 4-([3-(tert-butyl)-1-benzylpyrazol-5-yl][1,3-thiazol-2-yl])-5-methylthiothiophene-2-carboxylate (1.2 mg, 2.6 mmol) was treated in a manner similar to that for Example 10, step (b) to give 4-([3-(tert-butyl)-1-benzylpyrazol-5-yl][1,3-thiazol-2-yl])-5-methylthiothiophene-2-carboxamidine (1.21 g, quantitative yield) as a yellow solid. 1H-NMR (DMSO-d6; 300 MHz) δ 9.43 (br s, 1H), 9.07 (br s, 1H), 8.60 (s, 1H), 8.04 (s, 1H), 7.37-6.97 (m, 5H), 6.70 (s, 1H), 5.92 (s, 2H), 2.73 (s, 3H), 1.30 (s, 9H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C25H23N5S3, 468.1 (M+H), found 468.1.

Example 144

a) 4-Bromo-5-methylthiophene-2-carboxylic acid: A stirred solution of 1 g (3.9 mmol) of 2-methyl-3,5-dibromothiophene (prepared by the method of Kano, S. et al., Heterocycles 20(10):2035, 1983) in dry tetrahydrofuran (10 mL) was cooled to -78°C and 2 M n-butyllithium in cyclohexane (1.93 mL, 3.87 mmol) was added over 3 min. After stirring 3 min at -78°C, the mixture was added to tetrahydrofuran (100 mL) with dry ice suspended. This mixture was allowed to stir and warm to room temperature. To this, 6 N hydrochloric acid (50 mL) was added carefully. Then, water (50 mL) was added and the layers were separated. The aqueous layer was extracted with diethyl ether (4 x 30 mL). The combined organic layers were washed with water, brine, and dried over anhydrous sodium sulfate. The solvents were removed in vacuo to give an 85/15 mixture of 4-bromo-5-methylthiophene-2-carboxylic acid and 5-bromothiophene-2-carboxylic acid (780 mg, 90%) as a tan solid. 1H-NMR (DMSO-d6; 300 MHz) δ 13.33 (br s, 1H), 7.62 (s, 1H), 7.56 and 7.34 (AB quartet, 0.35H, J=3.9 Hz), 2.41 (s, 3H). Gas Chromatography/Mass spectroscopy (m/z): Calcd. for C9H8O2SBr, 220.9 and 222.9 (M+H), found 221.3 and 223.3. Calcd. for C10H9O2SBr, 206.9 and 208.9 (M+H), found 207.3 and 209.3.

b) Methyl 4-bromo-5-methylthiophene-2-carboxylate: A solution of 780 mg (3.5 mmol) of an 85/15 mixture of 4-bromo-5-methylthiophene-2-carboxylic acid and 5-bromothiophene-2-carboxylic acid was dissolved in methanol (50 mL) and treated with 9 ml (18 mmol) 2 M trimethylsilyldiazomethane in hexanes (Aldrich,
Milwaukee, WI, USA). Evaporation of the solvents gave an 8/2 mixture of methyl 4-bromo-5-methylthiophene-2-carboxylate and methyl 5-bromothiophene-2-carboxylate (858 mg, quantitative yield) as a brown oil. Gas Chromatography/Mass spectroscopy (m/z): Calcd. for C₉H₉O₂SBr, 234.9 and 236.9 (M+H), found 235.3 and 237.3. Calcd. for C₉H₈O₂SBr, 220.9 and 222.9 (M+H), found 221.3 and 223.3.

c) **Methyl 4-cyano-5-methylthiophene-2-carboxylate:** A solution of an 8/2 mixture of 823 mg (3.5 mmol) of methyl 4-bromo-5-methylthiophene-2-carboxylate and methyl 5-bromothiophene-2-carboxylate was dissolved in dry dimethylformamide (5 mL) and refluxed with copper cyanide (345 mg, 3.9 mmol) for 7 hours. The cooled solution was poured into 0.1 M aqueous sodium cyanide solution (200 mL) and extracted with diethyl ether (5 x 30 mL). The organic layers were washed with brine (2 x 30 mL), dried over anhydrous sodium sulfate, and the solvents removed in vacuo. The resulting brown solid was purified by column chromatography on silica gel eluting with hexanes:ethyl acetate 9/1 (v:v) to give a 95/5 mixture of methyl 4-cyano-5-methylthiophene-2-carboxylate and methyl 5-methylthiophene-2-carboxylate (369 mg, 68 %) as a yellow solid. ¹H-NMR (DMSO-d₆; 300 MHz) δ 8.06 (s, 1H), 8.05 and 7.90 (2H, 0.1 H, J=4.0 Hz, minor component), 3.87 (s, 3H, minor component), 3.84 (s, 3H) 2.68 (s, 3H).

d) **Methyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate:** A stirred solution of 804 mg (4.4 mmol) of methyl 4-cyano-5-methylthiophene-2-carboxylate was treated in a manner similar to Example 139, step (c) to give, after fractional crystallization ethanol of the unreacted starting nitrile, a 2:3 ratio of methyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate and methyl 4-cyano-5-methylthiophene-2-carboxylate (457 mg, 48 %) as a light brown solid. ¹H-NMR (DMSO-d₆; 300 MHz) δ 9.93 (br s, 1H, minor), 9.34 (br s, 1H, minor), 8.06 (s, 1H, major), 7.77 (s, 1H, minor component), 3.84 (s, 3H, minor), 3.81 (s, 3H, major), 2.68 (s, 3H, major), 2.61 (s, 2H, minor). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₉H₈NO₃S₂ 216.0 (M+H), found 216.4.

e) **Methyl 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate:** A solution of 200 mg (0.93 mmol) of methyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate was reacted with 185 mg (0.93 mmol) of 2-
bromoacetophenone in a manner similar to Example 8, step (a) to give, after purification by preparative thin layer chromatography eluting with hexanes:ethyl acetate 7/3 (v:v), a mixture of methyl 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate and methyl 4-cyano-5-methylthiophene-2-carboxylate (96 mg, 36 %) as a solid.

f) **5-Methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine:** Methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (64 mg, 0.23 mmol) was treated in a manner similar to Example 10, step (b) to give, after preparative high pressure liquid chromatography (Dynamax C18 column, 300Å pore size, 10 μm particle size, 40% to 100% acetonitrile over 30 minutes in 0.1% aqueous trifluoroacetic acid) 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (0.6 mg, 0.9 %) as an an off-white solid. ¹H-NMR (Methanol-d₄; 300 MHz) δ 8.44 (s, 1H), 8.02 (m, 2H), 7.92 (s, 1H), 7.45 (m, 2H), 7.36 (m, 1H), 2.96 (s, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₁₅H₁₃N₅S₂ 300.1 (M+H), found 300.6.

g) **5-(4-phenyl-1,3-thiazol-2-yl)thiophene-2-carboxamide:** From the HPLC purified mixture in the previous step was isolated 5-(4-phenyl-1,3-thiazol-2-yl)thiophene-2-carboxamide as an off-white solid (2 mg). ¹H-NMR (Methanol-d₄; 300 MHz) δ 7.99 (m, 2H), 7.97 (s, 1H), 7.95 and 7.78 (AB quartet, 2H, J=4.2 Hz), 7.48-7.35 (m, 3H). Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₁₄H₁₁N₅O₂S₂ 286.0 (M+H), found 286.2.

Example 145

a) **Methyl 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate:** A solution of 257 mg (0.48 mmol, based on a mixture containing 60% nitrile) of methyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate was reacted with 124 mg (0.48 mmol) of 2-bromo-(3′,4′-dimethoxy)-acetophenone (Example 31, step (a)) was reacted in a manner similar to Example 8, step (a) to give methyl 4-[4-(3,4-dimethoxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxylate (95 mg, 53 %) as a solid. Mass spectrum (MALDI-TOF, CHCA matrix, m/z): Calcd. for C₁₈H₁₃NO₄S₂ 376.1 (M+H), found 376.3.
Example 146

a) 4-Bromo-5-methylthiophene-2-carboxylic acid: A solution of 27.65 g (108 mmol) of 2-methyl-3,5-dibromothiophene (prepared by the method of Kano, S. et al., *Heterocycles* 20(10):2035, 1983) was dissolved in dry tetrahydrofuran (280 mL), cooled to -78°C and 2 M n-butyl lithium in cyclohexane (54 mL, 108 mmol) was added over 10 min. After stirring 20 min at -78°C, dry carbon dioxide gas was bubbled through the solution for 1.5 h as the mixture was allowed to warm to room temperature. To this 6 N hydrochloric acid (100 mL) was added carefully. The layers were separated and the aqueous layer was extracted with diethyl ether (4 × 50 mL). The combined organic layers were washed with brine, and dried over anhydrous sodium sulfate. The solvents were removed *in vacuo* to give 4-bromo-5-methylthiophene-2-carboxylic acid (22.4 g, 94 %) as an off-white solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 13.34 (br s, 1H), 7.61 (s, 1H), 2.41 (s, 3H).

b) Isopropyl 4-bromo-5-methylthiophene-2-carboxylate: A solution of 5 g (22.6 mmol) of 4-bromo-5-methylthiophene-2-carboxylic acid was dissolved in dry dichloromethane (200 mL) and reacted with oxalyl chloride (2 mL, 22.6 mmol) and dimethylformamide (100 μL) stirring on an ice bath for 30 min and then at room temperature for 2.5 h. The solvents were removed *in vacuo* and the residue was passed through silica gel, eluting off with hexanes:ethyl acetate 7/3 (v:v), ethyl acetate, and dichloromethane. The solvents were removed *in vacuo* and the resulting oil dissolved in dry dichloromethane (100 mL). This solution was reacted with dry pyridine (9 mL, 113 mmol) and dry isopropanol (40 mL, 522 mmol) for 88 h. The
solvents were removed \textit{in vacuo} and the residue partitioned between sodium bicarbonate (150 mL) and dichloromethane (75 mL). The aqueous layers were extracted with dichloromethane (2 x 20 mL), and the combined organic layers were washed with sodium bicarbonate (30 mL), brine (30 mL), and dried over anhydrous sodium sulfate. The solvents were removed \textit{in vacuo}. The residue was purified by column chromatography eluting with hexanes:ethyl acetate 9/1 (v:v) to give isopropyl 4-bromo-5-methylthiophene-2-carboxylate (1.91 g, 32 \%) as a pale yellow oil. 1H-NMR (DMSO-d_6; 300 MHz) δ 7.66 (s, 1H), 5.07 (septet, 1H, J=6.2 Hz), 2.42 (s, 3H), 1.29 (d, 6H, J=6.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C$_9$H$_{11}$O$_2$SBr 264.2 (M+H), found 264.8.

c) \textit{Isopropyl 4-cyano-5-methylthiophene-2-carboxylate:} A stirred solution of 1.9 g (7.3 mmol) of isopropyl 4-bromo-5-methylthiophene-2-carboxylate was dissolved in dry dimethylformamide (30 mL) and refluxed with copper cyanide (785 mg, 8.8 mmol) for 16 hours. The cooled solution was poured into 0.1 M aqueous sodium cyanide solution (300 mL) and extracted with diethyl ether (4 x 40 mL). The organic layers were washed with brine (2 x 40 mL), dried over anhydrous sodium sulfate, and the solvents removed \textit{in vacuo}. Column chromatography on silica gel eluting with hexanes:ethyl acetate 9/1 (v:v), gave isopropyl 4-cyano-5-methylthiophene-2-carboxylate (960 mg, 63 \%) as a yellow crystalline solid. 1H-NMR (DMSO-d_6; 300 MHz) δ 8.01 (s, 1H), 5.09 (septet, 1H, J=6.2 Hz), 2.67 (s, 3H), 1.29 (d, 6H, J=6.2 Hz).

d) \textit{Isopropyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate:} A stirred solution of 960 mg (4.59 mmol) of isopropyl 4-cyano-5-methylthiophene-2-carboxylate was treated in a manner similar to Example 139, step (c) to give, after crystallization from diethyl ether, isopropyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate (623 mg, 56 \%) as a solid. 1H-NMR (DMSO-d_6; 300 MHz) δ 9.93 (br s, 1H), 9.34 (br s, 1H), 7.54 (s, 1H), 5.07 (septet, 1H, J=6.2 Hz), 2.60 (s, 3H), 1.29 (d, 6H, J=6.2 Hz). Mass spectrum (MALDI-TOF, GA matrix, m/z): Calcd. for C$_{10}$H$_{13}$NO$_2$S$_2$ 244.0 (M+H), found 243.8.

e) \textit{Isopropyl 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate:} A solution of 375 mg (1.54 mmol) of isopropyl 4-(aminothioxomethyl)-
5-methylthiophene-2-carboxylate was reacted with 307 mg (1.54 mmol) of 2-bromoacetophenone (Aldrich, Milwaukee, WI, USA) in a manner similar to Example 8, step (a) to give, after crystallization from methanol, isopropyl 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (347 mg, 66%) as light brown needles. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.23 (s, 1H), 8.09 (s, 1H), 8.05 (m, 2H), 7.49 (m, 2H), 7.38 (m, 1H), 5.13 (septet, 1H, J=6.2 Hz), 2.86 (s, 3H), 1.33 (d, 6H, J=6.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C\(_{18}\)H\(_{17}\)NO\(_2\)S\(_2\) 344.1 (M+H), found 344.1.

\(f\) 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine:

Isopropyl 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (340 mg, 0.99 mmol) was treated in a manner similar to Example 10, step (b) to give 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (360 mg, quantitative yield) as a yellow solid. This material was dissolved in dry methanol (20 mL) and treated with 1 M HCl (g) in diethyl ether. Evaporation of the solvents \textit{in vacuo} and recrystallization from methanol gave the hydrochloride salt of 5-methyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (252 mg, 76 %) as a light brown crystalline solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.45 (br s, 2H), 9.10 (br s, 2H), 8.56 (s, 1H), 8.27 (s, 1H), 8.06 (m, 2H), 7.50 (m, 2H), 7.40 (m, 1H), 2.93 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{15}\)H\(_{13}\)N\(_2\)S\(_2\) 300.1 (M+H), found 300.2.

\textit{Example 147}

\textit{a) 2-Methyl-5-[(methylethyl)oxycarbonyl]thiophene-3-carboxylic acid:} A stirred mixture of 500 mg (2.39 mmol) of isopropyl 2-methyl-3-cyanothiophene-5-carboxylate and tetrafluorophthalic acid (570 mg, 2.39 mmol) was heated in a glass bomb at 160\(^\circ\)C for 66 hours. The cooled residue was digested in hot chloroform (30 mL), treated with norite, and filtered through celite. The celite was washed with hot chloroform (30 mL). The cooled chloroform extracts were filtered and extracted with saturated sodium bicarbonate (4 x 10 mL). The basic extracts were washed with chloroform, filtered through celite, and acidified to pH 1 with concentrated hydrochloric acid. The solid was collected by filtration and washed with water (3 x 10 mL) to give 2-methyl-5-[(methylethyl)oxycarbonyl]thiophene-3-carboxylic acid
(288 mg, 53 %) as a light brown solid. 'H-NMR (DMSO-d₆; 300 MHz) δ 13.03 (br s, 1H), 7.85 (s, 1H), 5.08 (septet, 1H, J=6.2 Hz), 2.71 (s, 3H), 1.29 (d, 6H, J=6.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C₁₀H₁₂O₅S 229.1 (M+H), found 228.8.

b) Isopropyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate: A stirred solution of 300 mg (1.3 mmol) of 2-methyl-5-[(methylthio)oxycarbonyl]thiophene-3-carboxylic acid was dissolved in dry dichloromethane (10 mL) and treated with oxaly chloride (174 μL, 2 mmol) and dimethylformamide (50 μL). The mixture was stirred at room temperature for 1.25 h, the solvents removed in vacuo, and the residue passed through silica gel (1 inch in a 60 mL sintered-glass Büchner funnel) and eluted off with dichloromethane (150 mL). This material was treated in a manner similar to Example 142, step (a) to give isopropyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (266 mg, 67 %) as a solid.

c) Isopropyl 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiophene-2-carboxylate:
A solution of 260 mg (0.85 mmol) of isopropyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate was reacted with 65 mg (0.85 mmol) of thiourea in a manner similar to Example 8, step (a) to give isopropyl 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiophene-2-carboxylate (257 mg, quantitative yield) as a white solid. 'H-NMR (DMSO-d₆; 300 MHz) δ 7.90 (s, 1H), 6.93 (s, 1H), 5.09 (septet, 1H, J=6.2 Hz), 2.61 (s, 3H), 1.29 (d, 6H, J=6.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C₁₂H₁₆N₂O₂S₂ 283.1 (M+H), found 283.1.

d) 4-(2-Amino(1,3-thiazol-4-yl))-5-methylthiophene-2-carboxamide:
Isopropyl 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiophene-2-carboxylate (240 mg, 0.85 mmol) was treated in a manner similar to Example 10, step (b) to give 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiophene-2-carboxamide (20 mg, 10 %) as a solid. 'H NMR (DMSO-d₆, 300 MHz): δ 9.30 (br s, 2H), 8.99 (bs, 2H), 8.28 (s, 1H), 6.78 (s, 1H), 2.71 (s, 3H); Mass Spectrum (ESI, m/z) calcd. for C₅H₁₆N₁S₂, 238.8 (M+H), found 239.2.

Example 148

a) 4-Bromo-5-ethylthiophene-2-carboxylic acid: A stirred solution of 10 g (35 mmol) of 4,5-dibromo-5-methylthiophene-2-carboxylic acid (Lancaster, Windham, NH,
USA) in dry THF (100 mL) was cooled to -78°C. To this, 35 mL (70 mmol) of 2.0 M n-butyllithium in cyclohexane (Aldrich, Milwaukee, WI, USA) was added dropwise over 15 min, and the reaction was allowed to stir for 15 min at -78°C. The mixture was quenched with ethyl iodide (2.8 mL, 35 mmol) and allowed to warm to room temperature. The mixture was carefully poured into 6N hydrochloric acid (100 mL) and extracted with diethyl ether (4 x 50 mL). The organic layers were washed with water (2 x 50 mL), brine (50 mL), and dried over anhydrous sodium sulfate. The solvents were removed in vacuo to give 2-ethyl-3-bromo-thiophene-5-carboxylate (7 g, 85%) as a dark solid. 1H-NMR (DMSO-d6; 300 MHz) δ 13.25 (br s, 1H), 7.62 (s, 1H), 2.80 (q, 2H, J=7.5 Hz), 1.23 (t, 3H, J=7.5 Hz).

b) Isopropyl 4-bromo-5-ethylthiophene-2-carboxylate: A solution of 7 g (30 mmol) of 4-bromo-5-ethylthiophene-2-carboxylic acid was dissolved in dry dichloromethane (200 mL) and treated with oxalyl chloride (3.2 mL, 36 mmol) and dimethylformamide (0.5 mL) for 18.5 h. The solvents were removed in vacuo and the residual brown oil was passed through silica gel (2 inches in a 350 mL scinttered-glass Büchner funnel) and eluted with 700 mL of hexanes:ethyl acetate 9/1 (v:v). The eluate was concentrated in vacuo and the oil dissolved in dry dichloromethane (200 mL). This solution was treated with pyridine (12 mL, 150 mmol) and dry isopropanol (60 mL, 750 mmol) for 4 h at room temperature. The solvents were removed in vacuo and the residue partitioned between dichloromethane (100 mL) and water (200 mL). The aqueous layers were extracted with dichloromethane (2 x 30 mL). The combined organic layers were extracted with sodium bicarbonate (2 x 30 mL), brine (30 mL), and dried over anhydrous sodium sulfate. The solvent was removed in vacuo. Purification by column chromatography on silica gel (250 g) eluting with hexanes:ethyl acetate 95/5 (v:v) gave isopropyl 2-ethyl-3-bromo-thiophene-5-carboxylate (4 g, 48%) as a yellow oil. 1H-NMR (DMSO-d6; 300 MHz) δ 7.66 (s, 1H), 5.89 (septet, 1H, J=6.2 Hz), 2.80 (q, 2H, J=7.5 Hz), 1.29 (d, 6H, J=6.0 Hz), 1.24 (t, 3H, J=7.5 Hz).

c) Isopropyl 4-cyano-5-ethylthiophene-2-carboxylate: A stirred solution of 4 g (14.4 mmol) of isopropyl 4-bromo-5-ethylthiophene-2-carboxylate was refluxed in dry dimethylformamide (50 mL) with copper cyanide (1.94 g, 22 mmol) for 8 hours.
The cooled mixture was poured into 0.1 M sodium cyanide (500 mL) and extracted with diethyl ether (4 x 50 mL). The organic layers were washed twice with brine (50 mL) and dried over anhydrous sodium sulfate. The solvents were removed in vacuo. Column chromatography on silica gel (400 g), eluting with hexanes:ethyl acetate 9:1 (v:v) gave isopropyl 2-ethyl-3-cyano-thiophene-5-carboxylate (1.7 g, 53%) as a pale yellow oil. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.03 (s, 1H), 5.10 (septet, 1H, \(J=6.2\) Hz), 3.04 (q, 2H, \(J=7.5\) Hz), 1.31 (t, 3H, \(J=7.5\) Hz), 1.30 (d, 6H, \(J=6.2\) Hz). Mass spectrum (ESI m/z): Calcd. for C\(_{13}\)H\(_{15}\)NO\(_2\)S 224.1 (M+H), found 224.0.

d) **Isopropyl 4-(aminothioxomethyl)-5-ethylthiophene-2-carboxylate:** A stirred solution of 1.7 g (7.6 mmol) of isopropyl 4-cyano-5-ethylthiophene-2-carboxylate was treated as in Example 139, step (c) to give isopropyl 5-ethyl-4-(aminothioxomethyl)-5-ethylthiophene-2-carboxylate (1.45 g, 74%) as a yellow solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.93 (br s, 1H), 9.39 (br s, 1H), 8.04 (s, 1H), 5.08 (septet, 1H, \(J=6.2\) Hz), 3.08 (q, 2H, \(J=7.5\) Hz), 1.29 (d, 6H, \(J=6.2\) Hz), 1.24 (t, 3H, \(J=7.5\) Hz).

e) **Isopropyl 5-ethyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate:** A solution of 450 mg (1.75 mmol) of isopropyl 5-ethyl-4-(aminothioxomethyl)-5-ethylthiophene-2-carboxylate was reacted with 348 mg (1.75 mmol) of 2-bromoacetophenone (Aldrich, Milwaukee, WI, USA) in a manner similar to Example 8, step (a) to give isopropyl 5-ethyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (303 mg, 49%) as an off-white solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 8.22 (s, 1H), 8.07 (s, 1H), 8.03 (m, 2H), 7.49 (m, 2H), 7.38 (m, 1H), 5.13 (septet, 1H, \(J=6.2\) Hz), 3.34 (q, 2H, \(J=7.4\) Hz), 1.39 (t, 3H, \(J=7.4\) Hz), 1.33 (d, 6H, \(J=6.2\) Hz). Mass spectrum (ESI m/z): Calcd. for C\(_{19}\)H\(_{19}\)NO\(_2\)S\(_2\) 358.1 (M+H), found 358.1.

f) **5-Ethyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine:** Isopropyl 5-ethyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxylate (250 mg, 0.70 mmol) was treated in a manner similar to that for Example 10, step (b), to give 5-ethyl-4-(4-phenyl(1,3-thiazol-2-yl))thiophene-2-carboxamidine (148 mg, 67%) as a yellow solid. \(^1\)H-NMR (DMSO-\(d_6\); 300 MHz) \(\delta\) 9.44 (br s, 2H), 9.07 (br s, 2H), 8.54 (s, 1H), 8.26 (s, 1H), 8.05 (m, 2H), 7.50 (m, 2H), 8.70 (s, 1H), 7.40 (m, 1H), 3.44 (q,
2H, J=7.4 Hz), 1.42 (t, 3H, J=7.4 Hz). Mass spectrum (ESI, m/z): Calcd. for C_{16}H_{15}N_{3}S_{2} 314.1 (M+H), found 314.2.

Example 149

a) Isopropyl 4-{4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)l-5-methylthiophene-2-carboxylate: A solution of 1.97 g (8.1 mmol) of isopropyl 4-(aminothioxomethyl)-5-methylthiophene-2-carboxylate was reacted with 1.74 g (8.1 mmol) of 3’-hydroxy-2-bromoacetophenone (Example 40, step (a)) were reacted in a manner similar to Example 8, step (a) to give, after column chromatography on silica gel eluting with hexane:ethyl acetate 7:3 (v:v), crystallization from acetonitrile, and recrystallization from hexanes, isopropyl 4-{4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)l-5-methylthiophene-2-carboxylate (1.4 g, 48%) as brown solid. \(^1\)H-NMR (DMSO-d_6; 300 MHz) \(\delta\) 9.57 (br s, 1H), 8.14 (s, 1H), 8.08 (s, 1H), 7.46 (m, 2H), 7.26 (m, 1H), 6.78 (m, 1H), 5.12 (septet, 1H, J=6.2 Hz), 2.85 (s, 3H), 1.33 (d, 6H, J=6.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C_{18}H_{17}NO_{3}S_{2} 360.1 (M+H), found 360.1.

b) 4-{4-(3-Hydroxyphenyl)(1,3-thiazol-2-yl)l-5-methylthiophene-2-carboxamide: Isopropyl 4-{4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)l-5-methylthiophene-2-carboxylate (1.4 g, 3.89 mmol) was treated in a manner similar to Example 10, step (b) to give 4-{4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)l-5-methylthiophene-2-carboxamide (360 mg, 31%) as a brown solid. \(^1\)H-NMR (DMSO-d_6; 300 MHz) \(\delta\) 9.62 (br s, 1H), 9.45 (br s, 2H), 9.09 (br s, 2H), 8.53 (s, 1H), 8.16 (s, 1H), 7.47 (m, 2H), 7.27 (m, 1H), 6.80 (m, 1H), 2.93 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C_{18}H_{17}N_3 OS_2 316.1 (M+H), found 316.2.

Example 150

a) (Tert-butoxy)-N-{(4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methyl(2-thienyl)iminomethyl)carboxamide: A stirred solution of 320 mg (1 mmol) of 4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamide was dissolved in dry dimethylformamide (50 mL) and treated with 262 mg (1.2 mmol) of di-tert-butyl-dicarbonate (Acros, Pittsburgh, PA, USA) and diisopropylethylamine (261 µL, 1.5 mmol) for 64 hours at room temperature. The mixture was poured into
sodium bicarbonate solution (200 mL) and extracted with dichloromethane (6 x 30 mL). The organic extracts were washed twice with brine (50 mL) and dried over anhydrous sodium sulfate. The solvents were in vacuo and column chromatography on silica gel (100 g) eluting with dichloromethane:methanol 95/5 (v:v) gave (tert-butoxy)-N-[(4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methyl(2-thienyl)]iminomethyl|carboxamide (247 mg, 59 %) as a yellow oil. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 9.56 (s, 1H), 9.12 (br s, 2H), 8.47 (s, 1H), 8.09 (s, 1H), 7.46 (m, 2H), 7.26 (m, 1H), 6.78 (m, 1H), 2.83 (s, 3H), 1.45 (s, 9H). Mass spectrum (ESI, m/z): Calcd. for C$_{29}$H$_{27}$N$_3$O$_5$S$_2$ 416.1 (M+H), found 415.7

b) Methyl 2-<![2-((tert-butoxy)carbonylaminomethyl)iminomethyl]-2-methyl-3-thienyl]-1,3-thiazol-4-yl]phenoxycacetate: A stirred solution of 247 mg (0.595 mmol) of (tert-butoxy)-N-[(4-[4-(3-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methyl(2-thienyl)]iminomethyl|carboxamide was dissolved in dry dimethylformamide (4 mL) and treated with cesium carbonate (291 mg, 0.89 mmol) and methyl bromoacetate (136 mg, 0.89 mmol) for 3 h at 60°C. The mixture was poured into water (50 mL) and extracted with dichloromethane (9 x 10 mL). The organic extracts were washed with brine (10 mL) and dried over anhydrous sodium sulfate. The solvents were removed in vacuo and column chromatography on silica gel (50 g) eluting with dichloromethane:methanol 98/2 (v:v) gave methyl 2-<![2-((tert-butoxy)carbonylaminomethyl)iminomethyl]-2-methyl-3-thienyl]-1,3-thiazol-4-yl]phenoxycacetate (178 mg, 61 %) as an oil. Mass spectrum (ESI, m/z): Calcd. for C$_{29}$H$_{25}$N$_3$O$_5$S$_2$ 488.1 (M+H), 388.1 ((M-BOC)+H), found 487.8, 388.2.

c) Methyl 2-<![2-((5-aminido-2-methyl-3-thienyl)-1,3-thiazol-4-yl]phenoxycacetate: Methyl 2-<![2-((5-aminido-2-methyl-3-thienyl)-1,3-thiazol-4-yl]phenoxycacetate (15 mg, 0.031 mmol) treated with dichloromethane:trifluoroacetic acid 1/1 (v:v) with 2.5% water added at room temperature for 1.5 h. Removal of the solvents in vacuo gave methyl 2-<![2-((5-aminido-2-methyl-3-thienyl)-1,3-thiazol-4-yl]phenoxycacetate (8.1 mg, 52 %) as a brown solid. 1H-NMR (DMSO-d$_6$; 300 MHz) δ 9.38 (br s, 2H), 8.94 (br s, 2H), 8.51 (s, 1H), 8.31 (s, 1H), 7.62 (m, 2H), 7.41 (m, 1H), 6.96 (m, 1H), 4.89 (s, 2H), 3.72 (s,
Example 151

a) 2-\{2-\{5-[[\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-\text{methyl-3-thienyl}\}-1,3-thiazol-4-yl\text{phenoxo}\}acetic acid: A stirred solution of 50 mg (0.11 mmol) of methyl 2-\{2-\{5-[[\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-\text{methyl-3-thienyl}\}-1,3-thiazol-4-yl\text{phenoxo}\}acetate was dissolved in tetrahydrofuran (10 mL) and treated with 2\text{M} aqueous sodium hydroxide solution (2 mL) at room temperature for 1 h 10 min. The solvents were removed in vacuo. Purification by passing the solid through silica gel (1 inch in a 60 mL scinttered-glass Büchner funnel) eluting with dichloromethane:methanol 8:2 (v:v) gave 2-\{3-\{2-\{\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-\text{methyl-3-thienyl}\}-1,3-thiazol-4-yl\text{phenoxo}\}acetic acid (44 mg, 88 %) as a yellow solid. 'H-NMR (DMSO-d$_6$, 300 MHz) δ 9.38 (br s, 2H), 8.94 (br s, 2H), 8.51 (s, 1H), 8.31 (s, 1H), 7.62 (m, 2H), 7.41 (m, 1H), 6.96 (m, 1H), 4.89 (s, 2H), 3.72 (s, 3H), 2.92 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{22}$H$_{23}$N$_3$O$_7$S$_2$: 474.1 (M+H), 374.1 ((M-BOC)+H) found 374.2, 473.7.

b) 2-\{3-\{2-\{5-\text{Aimidino-2-methyl-3-thienyl}\}-1,3-thiazol-4-yl\text{phenoxo}\}acetic acid: Methyl 2-\{3-\{2-\{5-[[\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-\text{methyl-3-thienyl}\}-1,3-thiazol-4-yl\text{phenoxo}\}acetate (4 mg, 0.0084 mmol) was treated with dichloromethane:trifluoroacetic acid 1:1 (v:v) with 2.5% water added at room temperature for 2 h 35 min. Removal of the solvents in vacuo gave 2-\{3-\{2-\{5-amidino-2-methyl-3-thienyl\}-1,3-thiazol-4-yl\text{phenoxo}\}acetic acid (2.9 mg, 71 %) as a solid. Mass spectrum (ESI, m/z): Calcd. for C$_{15}$H$_{15}$N$_3$O$_5$S$_2$: 373.1 (M+H), found 374.2.

c) \text{Tert-butyl 4-\{2-\{3-\{2-\{5-[[\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-methyl-3-thienyl\}-1,3-thiazol-4-yl\text{phenoxo}\}acetyl\text{piperazinecarboxylate}: A stirred solution of 40 mg (0.084 mmol) of 2-\{3-\{2-\{5-[[\text{tert-Butoxy}]-\text{carbonylamino}]-\text{iminomethyl}\}-2-methyl-3-thienyl\}-1,3-thiazol-4-yl\text{phenoxo}\}acetic acid dissolved in dry dimethylformamide (5 mL) was treated with
hydroxybenzotriazole (23 mg, 0.17 mmol), 32 mg (0.17 mmol) of N-tert-butoxycarbonyl-piperazine (Lancaster, Windham, NH, USA), 65 mg (0.17 mmol) of O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) at room temperature for 20 h. The mixture was partitioned between dichloromethane (50 mL) and brine (50 mL). The aqueous layers were extracted twice with dichloromethane (50 mL) and the combined organic layers were washed with brine (50 mL) and dried over anhydrous sodium sulfate. The solvents were removed in vacuo. Purification preparative thin layer chromatography eluting with dichloromethane:methanol 95/5 (v:v) gave tert-butyl 4-(2-[[3-[(5-[[[(tert-butoxycarbonyl)amino][iminomethyl]+2-methyl-3-thienyl]-1,3-thiazol-4-yl]phenoxy]acetyl]piperazinecarboxylate (25 mg, 46%) as a white solid.

1H-NMR (DMSO-d6; 300 MHz) δ 9.13 (br s, 2H), 8.50 (s, 1H), 8.20 (s, 1H), 7.63 (m, 2H), 7.39 (m, 1H), 6.95 (m, 1H), 4.93 (s, 2H), 3.47-3.34 (m, 8H), 2.82 (s, 3H), 1.45 (s, 9H), 1.42 (s, 9H). Mass spectrum (ESI, m/z): Calcd. for C31H39N3O6S2 642.3 (M+H), 542.3 ((M-BOC)+H), 442.3 ((M-2 BOC)+H), found 642.0, 542.2, 442.3.

d) 5-Methyl-4-[[3-[[2-oxo-2-piperazinylethoxy]phenyl][1,3-thiazol-2-yl]]thiophene-2-carboxamidine: tert-Butyl 4-(2-[[3-[[2-[[[(tert-butoxycarbonyl)amino][iminomethyl]+2-methyl-3-thienyl]-1,3-thiazol-4-yl]phenoxy]acetyl]piperazinecarboxylate (25 mg, 0.039 mmol) treated with dichloromethane:trifluoroacetic acid 1/1 (v:v) with 2.5% water added at room temperature for 2 h. Removal of the solvents in vacuo gave 5-methyl-4-[[3-[[2-oxo-2-piperazinylethoxy]phenyl][1,3-thiazol-2-yl]]thiophene-2-carboxamidine (27.4 mg, quantitative yield) as an off-white solid.

1H-NMR (Methanol-d4; 300 MHz) δ 8.41 (s, 1H), 7.94 (s, 1H), 7.67 (m, 2H), 7.39 (m, 1H), 7.00 (m, 1H), 4.96 (s, 2H), 3.88 (m, 4H), 3.25 (m, 4H), 2.95 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C21H23N3O4S2 442.1 (M+H), found 442.4.

Example 152

Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate

To a stirring slurry of 2-methylthio-(5-carbethoxymethyl)-thiophene-3-carboxylic acid (2.0 g, 8.61 mmol) in 28 mL of CH2Cl2 under N2 containing 0.8 mL DMF at 0°C
was added oxalyl chloride (1.9 equiv, 16.3 mmol) slowly via syringe. The reaction was allowed to warm to ambient temperature after 1 h, and then stirred an additional 1 h. The reaction mixture was filtered through a 20 cm pad of silica gel in a 30 mL sintered glass funnel wetted with 50% ethyl acetate-hexanes and further eluted with the same solvent system until the eluent showed no product by UV visualization. The solvent was concentrated in vacuo, azeotroped with toluene (1x), and dried under vacuum to afford the acid chloride (1.52 g) as a light yellow solid. The acid chloride was dissolved in 20 mL of CH$_3$CN, cooled to 0°C, and treated with TMSCHN$_2$ (2.1 equiv, 6.3 mL, 2 M in hexanes) dropwise via syringe. The reaction was allowed to warm to ambient temperature (0.5 h), cooled back to 5°C and immediately treated with 30% HBr-acetic acid (0.66 mL) dropwise via an addition funnel. After 15 min. at 0°C, the reaction diluted with 20 mL of ether, filtered and thoroughly washed with ether (3x20 mL). The yellow solids were dried under vacuum to afford methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (1.0 g, 37% yield) as a yellow powder. 1H NMR (DMSO-d$_6$, 300 MHz) & 2.66 (s, 3H), 3.84 (s, 3H), 5.03 (s, 2H), 8.29 (s, 1H).

Example 153

Isopropyl-4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate

To a stirring slurry of 2-methyl-(5-carboisopropyloxy)-thiophene-3-carboxylic acid (0.40 g, 1.75 mmol) in 15 mL of CH$_2$Cl$_2$ under N$_2$ containing 0.8 mL DMF at 0°C was added oxalyl chloride (1.9 equiv, 3.32 mmol) slowly via syringe. The reaction was allowed to warm to ambient temperature after 1 h, and then stirred an additional 1 h. The solvent was concentrated in vacuo, azeotroped with toluene (1x), and dried under vacuum to afford the acid chloride (0.397 g, 1.60 mmol) as a light yellow solid. The acid chloride was dissolved in 7 mL of CH$_3$CN, cooled to 0°C, and treated with TMSCHN$_2$ (2.1 equiv, 1.68 mL, 2 M in hexanes) dropwise via syringe. The reaction was allowed to warm to ambient temperature (0.5 h), cooled back to 5°C and immediately treated with 30% HBr-acetic acid (0.5 mL) dropwise via an addition funnel. After 15 min. at 0°C, the reaction mixture was filtered through a 10 cm pad of silica gel in a 15 mL sintered glass funnel wetted with 50% ethyl acetate-hexanes and
further eluted with the same solvent system until the eluent showed no product by UV visualization. The solvent was concentrated in vacuo dried under vacuum to afford isopropyl-4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (0.329 g, 61% yield) as an oil which solidified upon standing to a tan solid. \(^1\)H NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 1.31 (d, 6H, J=6.3 Hz), 2.71 (s, 3H), 4.60 (s, 2H), 5.09 (m, 1H), 8.08 (s, 1H).

Example 154

a) **Methyl 5-methylthio-4-[2-(phenylamino)-(1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide:** Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60.5 mg, 0.19 mmol) was slurried in 4 mL of acetone with phenyl thiourea (1 equiv, 30 mg) and heated to 70°C. After 3 h the reaction was allowed to cool to room temperature, filtered, and dried in vacuo to give 62.5 mg (69% yield) of methyl 5-methylthio-4-[2-(phenylamino)-(1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide. \(^1\)H NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 2.65 (s, 3H), 3.83 (s, 3H), 6.95-6.99 (m, 1H), 7.28-7.35 (m, 4H), 7.67 (d, 1H, J= 1.4, 7.7 Hz), 8.06 (s, 1H), 10.54 (s, 1H);

Mass Spectrum (ESI) m/z calc'd. for C\(_{16}\)H\(_{14}\)N\(_2\)O\(_2\)S\(_3\), 362.49 (M+H), found 363.7.

b) **5-Methylthio-4-[2-(phenylamino)-(1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride:** To a flame dried flask containing 57.8 mg (8 equiv, 1.08 mmol) of NH\(_4\)Cl under N\(_2\) was charged 1.3 mL of toluene. AlMe\(_3\) (8 equiv, 2M/hexanes, 0.54 mL) was added dropwise to the stirring slurry over a 3 min. period, and allowed to stir another 5 min. At this time methyl 5-methylthio-4-[2-(phenylamino)-(1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide (1 equiv, 60 mg, 0.135 mmol) was quickly added in one portion and the resultant mixture was immersed in a 120°C oil bath. After 2 h 10 min. at this temperature TLC (silica gel 60 F\(_{254}\), Merck KGaA, Darmstadt, Germany, 9:1:0.5 CH\(_2\)Cl\(_2\)-MeOH-AcOH eluent) indicated the reaction to be complete by disappearance of the starting material. The reaction was allowed to cool to ambient temperature, then added via pipette to a stirring slurry of 1.3 g of SiO\(_2\) in 20 mL of CHCl\(_3\). The residual residue in the flask was rinsed with 4 mL of MeOH, briefly sonicated and added to the SiO\(_2\) slurry. The slurry was stirred for 10 min. and then filtered through a 15 mL sintered glass funnel containing 20 cm of SiO\(_2\) with 50% CHCl\(_3\)-MeOH. The yellow fraction is collected,
discarding the forerun. TLC indicated the product was essentially pure. The solvent was removed in vacuo, and the residue triturated with 10% MeOH-CH₂Cl₂. The solids were removed by filtration. The solvent was concentrated in vacuo to give 30.1 mg (66% yield) of 5-methylthio-4-[2-(phenylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride as a red-brown powder. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.73 (s, 3H), 6.94- 7.00 (m, 1H), 7.15 (s, 1H), 7.30-7.35 (m, 1H), 7.78 (d, 1H, J=8.7 Hz), 8.49 (s, 1H), 8.87 (bs, 2H), 9.31 (bs, 2H), 10.38 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₃H₁₄N₃S₄, 346.50 (M+H), found 347.2.

Example 155

a) Methyl 4-{2-[(2-chlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (50 mg) was allowed to react with 2-chlorophenyl thiourea (26.7 mg) as described in Example 154, step (a), to give 58 mg (75%) of methyl 4-{2-[(2-chlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.66 (s, 3H), 3.82 (s, 3H), 7.04 (m, 1H), 7.32-7.38 (m, 2H), 7.47 (dd, 1H, J= 1.4, 8.7 Hz), 8.12 (s, 1H), 8.56 (dd, 1H, J=1.4, 8.3 Hz), 9.75 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₆H₁₅ClN₃O₂S₄, 396.94 (M+H), found 397.1.

b) 4-{2-[(2-Chlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-{2-[(2-chlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide (40 mg, 0.08 mmol) was treated as described in Example 154, step (b) to give 24 mg (71.8%) of 4-{2-[(2-chlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.71 (s, 3H), 7.04 (td, 1H, J=1.4, 7.8 Hz), 7.21 (s, 1H), 7.35 (t, 1H, J=8.5 Hz), 8.42 (s, 1H), 8.57 (dd, 1H, J=1.3, 8.3 Hz), 8.80 (bs, 2H), 9.26 (bs, 2H), 9.79 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₅H₁₄N₃S₄Cl, 380.94 (M+H), found 381.1.
Example 156

a) Methyl 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (50 mg, 0.16 mmol) was allowed to react with thiourea (12 mg) as described in Example 154, step (a), to give 54 mg (70% yield) of methyl 4-(2-amino(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.69 (s, 3H), 3.83 (s, 3H), 7.00 (s, 1H), 8.05 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₀H₁₀O₂S₂N₂, 286.41 (M+H), found 287.1;

b) 4-(2-Amino-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-(2-amino-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide (110 mg, 0.29 mmol) was treated as described in Example 154, step (b). The resultant amidine (74 mg) was stirred in 3 mL of dry methanol under N₂ and treated with ca. 1mL of ether saturated with dry HCl gas. Dry ether (1.5 mL) was then added and the result was allowed to sit for 2 h at ambient temperature and then filtered to give 40 mg (45% yield) of 4-(2-amino-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.69 (s, 3H), 6.90 (s, 1H), 8.44 (s, 1H), 9.20, 9.42 (s, 4H, NH); Mass Spectrum (ESI) m/z calcd.C₉H₁₀N₄S₅, 270.4 (M+H), found 271.2.

Example 157

a) Methyl 4-{2-[(2,5-dimethoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (49.4 mg, 0.15 mmol) was allowed to react with 2,5-dimethoxy phenyl thiourea (37.2 mg) as described in Example 154, step (a), to give 65.5 mg (87% yield) of methyl 4-{2-[(2,5-dimethoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.66 (s, 3H), 3.76 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 6.49 (dd, 1H, J=3.0, 8.8 Hz), 6.92 (d, 1H, J=9.1 Hz), 7.26 (s, 1H), 8.17 (s, 1H), 8.37 (d, 1H, J=3.1 Hz), 9.70 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₈H₁₇N₂O₄S₅, 422.54 (M+H), found 423.1.

b) 4-{2-[(2,5-Dimethoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamidine: Methyl 4-{2-[(2,5-dimethoxyphenyl)
amino)-(1,3-thiazol-4-yl)-5-methylthiothiophene-2-carboxylate hydrobromide (45.5 mg, 0.09 mmol) was treated as described in Example 154, step (b), followed by preparative thin layer chromatography (500 μm silica gel plate, J.T. Baker, Phillipsburg, NJ, 10%-methanol-CH₂Cl₂-sat’d. NH₃ eluent) to give 9.9 mg (27% yield of 4-{2-[(2,5-dimethoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxamidine. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.60 (s, 3H), 3.73 (s, 3H), 3.81 (s, 3H), 6.48 (dd, 1H, J=3.1, 8.8 Hz), 6.92 (d, 1H, J=7.9 Hz), 7.05 (s, 1H), 7.5 (bs, 2H), 8.04 (s, 1H), 8.34 (d, 1H, J=1.0 Hz), 9.6 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₇H₁₆N₄O₂S₅, 406.55 (M+H), found 407.1.

Example 158

a) Methyl 4-{2-[(3-methoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (53.3 mg, 0.17 mmol) was allowed to react with 2-methoxy phenyl thiourea (34.5 mg) as described in Example 154, step (a), to give 61 mg (76% yield) of methyl 4-{2-[(3-methoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.67 (s, 3H), 3.78 (s, 3H), 3.83 (s, 3H), 6.53 (d, 1H, J=6.8 Hz), 7.13-7.24 (m, 2H), 7.29 (s, 3H), 7.59 (m, 1H), 8.16 (s, 3H), 10.32 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₇H₁₆N₂O₅S₅, 392.52 (M+H), found 393.2.

b) 4-{2-[(3-Methoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-{2-[(3-methoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxylate hydrobromide (54.6 mg, 0.11 mmol) was treated as described in Example 154, step (b) to give 25.2 mg (56%) of 4-{2-[(3-methoxyphenyl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.71 (s, 3H), 3.77 (s, 3H), 6.54 (m, 1H), 7.15 (s, 3H), 7.19-7.28 (m, 2H), 7.47 (m, 1H), 8.46 (s, 1H), 8.86 (bs, 2H), 9.28 (bs, 2H), 10.36 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₇H₁₆N₂O₅S₅, 376.52 (M+H), found 377.2.
Example 159

a) Methyl 4-{2-[(4-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (41.3 mg, 0.13 mmol) was allowed to react with 5-methoxy phenyl thiourea (26.8 mg) as described in Example 154, step (a) to give 25 mg (41% yield) of methyl 4-{2-[(4-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 2.64, 2.68 (s, 3H rotamer), 3.72, 3.73 (s, 3H rotamer), 3.83 (s, 3H), 6.91 (dd, 2H, J=6.7, 8.8 Hz), 7.21 (s, 1H), 7.59 (d, 1H, J=9.0 Hz), 7.67 (d, 1H, J=9.0 Hz), 8.05, 8.13 (s, 1H rotamer), 10.16, 10.34 (bs, 1H, rotamer); Mass Spectrum (ESI) m/z calcd. for C$_{17}$H$_{16}$N$_2$O$_2$S$_3$, 392.52 (M+H), found 393.1.

b) 4-{2-[(4-Methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-{2-[(4-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide (22 mg, 0.046 mmol) was treated as described in Example 154, step (b) to give 11.5 mg (61% yield) of 4-{2-[(4-methoxyphenyl)amino][1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.72 (s, 3H), 3.73 (s, 3H), 6.91 (d, 2H, J=9.0 Hz), 7.08 (s, 1H), 7.69 (d, 2H, J=9.1 Hz), 8.44 (s, 1H), 8.83 (bs, 2H), 9.28 (bs, 2H), 10.15 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{16}$N$_4$Os, 376.52 (M+H), found 377.1.

Example 160

a) Methyl 4-(2-{4-(dimethylamino)phenyl}amino)[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (50 mg, 0.16 mmol) was allowed to react with 4-N,N-dimethylaminophenyl thiourea (31.5 mg) as described in Example 154, step (a), to give 53.2 mg (75% yield) of methyl 4-(2-{4-(dimethylamino)phenyl}amino)[1,3-thiazol-4-yl]}-5-methylthiothiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 2.69 (s, 3H), 3.15 (s, 6H), 3.83 (s, 3H), 7.36 (s, 1H), 7.55 (bs, 2H), 7.88 (d, 2H, J=8.3 Hz), 8.16 (s, 1H), 10.56 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{18}$H$_{18}$N$_2$O$_2$S$_3$, 405.56 (M+H), found 406.1.
b) 4-[(4-(Dimethylamino)phenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-[(4-(dimethylamino)phenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide (50 mg, 0.10 mmol) was treated as described in Example 154, step (b) to give 9.4 mg (22% yield) of 4-[(4-methoxyphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) 2.70 (s, 3H), 2.84 (s, 6H), 6.75 (d, 2H, J=9.2 Hz), 7.00 (s, 1H), 7.56 (d, 2H, J=9.1 Hz), 8.31 (s, 1H), 8.68 (bs, 3H), 9.92 (bs, 1H).

Example 161

a) Methyl 4-[(4-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-[(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (50 mg, 0.16 mmol) was allowed to react with 2-methyl-4-chlorophenyl thiourea (32.1 mg) as described in Example 154, step (a), to give 62.2 mg (79% yield) of methyl 4-[(4-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) δ 2.28, 2.29 (s, 3H rotamer), 2.62, 2.66 (s, 3H rotamer), 3.82 (s, 3H), 7.21-7.29 (m, 3H), 8.04, 8.11 (s, 1H rotamer), 8.17 (d, 1H, J=8.8 Hz), 8.30 (d, 1H, J=8.4 Hz), 9.44 (s, 1H), 9.59 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{17}$H$_{13}$ClN$_2$O$_2$S$_3$, 410.96 (M+H), found 411.1.

b) 4-[(4-Chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-[(4-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide (55 mg, 0.17 mmol) was treated as described in Example 154, step (b) to give 16 mg (22% yield) of 4-[(4-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) δ 2.30 (s, 3H), 2.70 (s, 3H), 7.15 (s, 1H), 7.23-7.29 (m, 2H), 8.34 (d, 1H, J=8.6 Hz), 8.44 (s, 1H), 8.86 (bs, 2H), 9.29 (bs, 2H), 9.47 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{13}$ClN$_2$S$_3$, 394.97 (M+H), found 395.1.
Example 162

a) Methyl 4-[[2-(diphenylmethyl)amino][1,3-thiazol-4-yl]]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (50 mg, 0.16 mmol) was allowed to react with diphenylmethane thiourea (38 mg) as described in Example 154, step (a), to give 145 mg (100% yield) of methyl 4-[[2-(diphenylmethyl)amino][1,3-thiazol-4-yl]]-5-methylthiothiophene-2-carboxylate hydrobromide after removal of solvent in vacuo.

1H NMR (DMSO-d$_6$, 300 MHz) δ 2.50 (s, 3H), 2.80 (s, 3H), 6.13, 6.18 (d, 1H rotomer, J=7.9 Hz), 7.23-7.41 (m, 11H), 8.00, 8.02 (s, 1H rotomer), 8.73, 8.86 (d, 1H, rotomer, J=8.0 Hz); Mass Spectrum (ESI) m/z calcd. for C$_{23}$H$_{20}$N$_2$O$_2$S$_3$, 452.62 (M+H), found 453.0.

b) 4-[[2-(diphenylmethyl)amino][1,3-thiazol-4-yl]]-5-methylthiothiophene-2-carboxamidine: Methyl 4-[[2-(diphenylmethyl)amino][1,3-thiazol-4-yl]]-5-methylthiothiophene-2-carboxylate hydrobromide (96.3 mg, 0.18 mmol) was treated as described in Example 154, step (b) to give 16 mg (20% yield) of 4-[[2-(diphenylmethyl)amino][1,3-thiazol-4-yl]]-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) 2.59 (s, 3H), 6.23 (d, 1H, J=7.9 Hz), 6.84 (s, 1H), 7.22-7.40 (m, 10 H), 8.09 (bs, 3H), 8.12 (s, 1H), 8.68 (d, 1H, J=8.4 Hz); Mass Spectrum (ESI) m/z calcd. for C$_{23}$H$_{20}$N$_4$S$_3$, 436.62 (M+H), found 437.1.

Example 163

a) Methyl 5-methylthio-4-[[2-(3-phenylpropyl)amino][1,3-thiazol-4-yl]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (131 mg, 0.42 mmol) was allowed to react with propylphenyl thiourea (82.3 mg) in DMF as described in Example 154, step (a), then filtered through a 5 cm pad of silica gel in a 15 mL glass fritted funnel with 10% methanol-CHCl$_3$. Concentration of the solvent in vacuo gave 203 mg (100% yield) of methyl-5-methylthio-4-[[2-(3-phenylpropyl)amino][1,3-thiazol-4-yl]thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d$_6$, 300 MHz) δ 1.89 (m, 2H), 2.62 (s, 3H), 2.63-2.71 (m, 2H), 3.27-3.39 (m, 2H), 3.82 (s, 3H), 6.97 (s, 1H), 7.15-7.31 (m,
5H), 8.06 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{15}H_{20}N_2O_2S_3, 404.57 (M+H), found 405.1.

b) 5-Methylthio-4-[2-[(3-phenylpropyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxamidine hydrochloride: Methyl -5-methylthio-4-[2-[(3-phenylpropyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxylate hydrobromide (112 mg, 0.23 mmol) was treated as described in Example 154, step (b) to give 16 mg (16% yield) of 4-[(2-diphenylmethyl)amino] (1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride, which was further purified by preparative thin layer chromatography using 20%-methanol-CHCl_3-sat’d. NH_3 as eluent. ¹H NMR (DMSO-d_6, 300 MHz) δ 1.89 (m, 2H), 2.54 (s, 1H), 2.66 (at, 2H, J=7.3 Hz), 3.31 (m, 2H), 6.69 (bs, 3H), 6.76 (s, 1H), 7.15-7.31 (m, 5H), 7.69 (m, 1H), 7.84 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{18}H_{20}N_4S_3, 388.58 (M+H), found 389.2.

Example 164

a) Methyl 5-methylthio-4-[2-(2,4,5-trimethylphenyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.21 mmol) was allowed to react with 2,4,5-trimethylphenyl thiourea as described in Example 154, step (a) to give 42.3 mg (41% yield) of methyl 5-methylthio-4-[2-(2,4,5-trimethylphenyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d_6, 300 MHz) δ 2.16 (s, 3H), 2.18 (s, 3H), 2.19 (s, 3H), 2.64 (s, 3H), 3.82 (s, 3H), 6.97 (s, 1H), 7.18 (s, 1H), 7.86 (s, 1H), 8.12 (s, 1H), 9.29 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{15}H_{20}N_2O_2S_3, 404.57 (M+H), found 405.1.

b) 5-Methylthio-4-[2-(2,4,5-trimethylphenyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxamidine hydrochloride: Methyl -5-methylthio-4-[2-(2,4,5-trimethylphenyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxylate hydrobromide (37.3 mg, 0.07 mmol) was treated as described in Example 154, step (b) to give 28.3 mg (95% yield) of 5-methylthio-4-[2-(2,4,5-trimethylphenyl)amino] (1,3-thiazol-4-yl)] thiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d_6, 300 MHz) δ 2.16 (s, 3H), 2.19 (s, 3H), 2.20 (s, 3H), 2.68 (s, 3H), 6.97 (s, 1H), 7.03 (s, 1H), 7.84 (s,
1H), 8.41 (s, 1H), 8.84 (bs, 2H), 9.26 (bs, 3H); Mass Spectrum (ESI) m/z calcd. for C_{18}H_{20}N_{5}S_{3}, 388.58 (M+H), found 389.2.

Example 165

a) 4-[(2-fluorophenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2-fluorophenyl thiourea as described in Example 154, step (a) to give 55.6 mg (70% yield) of methyl 4-[(2-fluorophenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.68 (s, 3H), 3.83 (s, 3H), 6.96-7.04 (m, 1H), 7.14-7.29 (m, 3H), 7.35 (s, 1H), 8.06, 8.14 (s, 1H rotamer), 8.53, 8.868 (td, 1H rotomer, J=1.5, 8.5 Hz), 10.14, 10.30 (s, 1H rotamer); Mass Spectrum (ESI) m/z calcd. for C_{16}H_{15}FN_{5}O_{2}S_{3}, 380.48 (M+H), found 381.1.

b) 4-[(2-fluorophenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-[(2-fluorophenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide (55.6 mg, 0.13 mmol) was treated as described in Example 154, step (b) to give 12.4 mg (24%) of 4-[(2-fluorophenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d₆, 300 MHz); δ 2.72 (s, 3H), 3.16 (s, 3H), 6.97-7.08 (m, 1H), 7.18-7.36 (m, 4H), 8.49 (s, 1H), 8.70 (td, 1H, 1.4, 8.4 Hz), 8.92 (bs, 2H), 9.32 (bs, 2H), 10.18 (d, 1H, J=1.6 Hz); Mass Spectrum (ESI) m/z calcd. for C_{15}H_{15}FN_{4}S_{3}, 364.49 (M+H), found 365.1.

Example 166

a) Methyl 4-[(3-chloro-2-methylphenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2-methyl-3-chlorophenyl thiourea (39 mg) as described in Example 154, step (a) to give 61.8 mg (66% yield) of methyl 4-[(3-chloro-2-methylphenyl)amino](1,3-thiazol-4-
yl)-5-methylthiothiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for C_{17}H_{15}ClN_{5}O_{2}S_{3}, 410.96 (M+H), found 411.1.

b) 4-[(3-Chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamide hydrochloride: Methyl 4-[(3-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide (61.8 mg, 0.12 mmol) was treated as described in Example 154, step (b) to give 46.7 mg (90% yield) of 4-[(3-chloro-2-methylphenyl)amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamide hydrochloride. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) \(\delta\) 2.34 (s, 3H), 2.69 (s, 3H), 7.15 (s, 1H), 7.18-7.26 (m, 2H), 8.12 (d, 1H, J=7.9 Hz), 8.41 (s, 1H), 8.84 (bs, 2H), 9.27 (bs, 2H), 9.61 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{15}$ClN$_5$O$_2$S$_3$, 394.97 (M+H), found 395.1.

Example 167

a) Methyl 4-[[2-(methylene)phenyl]amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2-isopropyl phenyl thiourea (40 mg) as described in Example 154, step (a) to give 33.1 mg (36% yield) of methyl 4-[[2-(methylene)phenyl]amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) \(\delta\) 1.17 (d, 6H, J=6.7 Hz), 2.60, 2.65 (s, 3H rotamer), 3.27 (s, 1H), 3.82 (s, 3H), 7.13 (s, 1H), 7.14-7.25 (m, 2H), 7.34-7.37 (m, 1H), 7.78 (m, 1H), 7.99, 8.08 (s, 1H rotamer), 9.52, 9.61 (bs, 1H rotamer); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{20}$N$_2$O$_2$S$_3$, 404.57 (M+H), found 405.1.

b) 4-[[2-(Methylene)phenyl]amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamide hydrochloride: Methyl 4-[[2-(methylene)phenyl]amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxylate hydrobromide (33.1 mg, 0.06 mmol) was treated as described in Example 154, step (b) to give 22.4 mg (88%) of 4-[[2-(methylene)phenyl]amino][1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamide hydrochloride. \(^1\)H NMR (DMSO-d$_6$, 300 MHz) \(\delta\) 1.19 (d, 6H, J=6.8 Hz), 2.70 (s, 3H), 3.32 (m, 1H), 7.04 (s, 1H), 7.14-7.25
(m, 2H), 7.35 (dd, 1H, J=1.4, 7.5 Hz), 7.86 (dd, 1H, J=1.4, 7.9 Hz), 8.37 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{18}H_{16}N_{4}S_{3}, 388.58 (M+H), found 389.2.

Example 168

a) Methyl 5-methylthio-4-(2-[[4-(phenylmethoxy)phenyl]amino](1,3-thiazol-4-yl)) thiophene-2-carboxylate: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (336.3 mg, 1.08 mmol) was allowed to react with 4-benzylxyphenyl thiourea (279 mg) as described in Example 154, step (a) to give 450 mg (76% yield) of methyl 4-(2-[[4-phenylmethoxyphenyl]amino](1,3-thiazol-4-yl)) 5-methylthiothiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for C_{23}H_{29}N_{5}O_{3}S_{3}, 468.61 (M+H), found 469.2.

b) 5-Methylthio-4-(2-[[4-(phenylmethoxy)phenyl]amino](1,3-thiazol-4-yl)) thiophene-2-carboxamidine hydrochloride: Methyl 4-(2-[[4-phenylmethoxyphenyl]amino](1,3-thiazol-4-yl)) 5-methylthiothiophene-2-carboxylate hydrobromide (100 mg, 0.18 mmol) was treated as described in Example 154, step (b) to give 23.9 mg (27% yield) 5-methylthio-4-(2-[[4-phenylmethoxyphenyl]amino](1,3-thiazol-4-yl)) thiophene-2-carboxamidine hydrochloride. ^1H NMR (DMSO-d_{6}, 300 MHz) δ 2.73 (s, 3H), 5.08 (s, 2H), 7.00 (d, 2H, J=8.2 Hz), 7.09 (s, 1H), 7.31-7.47 (m, 5H), 7.70 (d, 2H, J=8.0 Hz), 8.47 (s, 1H), 8.88 (bs, 2H), 9.30 (bs, 2H), 10.20 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{22}H_{28}N_{4}O_{3}S_{3}, 452.62 (M+H), found 453.1.

Example 169

a) Methyl 4-(2-[[2-bromophenyl]amino](1,3-thiazol-4-yl)) 5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2-bromophenyl thiourea (44 mg) as described in Example 154, step (a) to give 63.1 mg (64% yield) of methyl 4-(2-[[2-bromophenyl]amino](1,3-thiazol-4-yl)) 5-methylthiothiophene-2-carboxylate hydrobromide. ^1H NMR (DMSO-d_{6}, 300 MHz) δ 2.65 (s, 3H), 3.82 (s, 3H), 7.00 (m, 1H), 7.33 (s, 1H), 7.40 (m, 1H), 7.64 (dd, 1H, J=1.4, 7.9 Hz), 8.04, 8.11 (s, 1H rotamer), 8.27, 8.37 (dd, 1H 9.60, 9.80 (bs, 1H
rotomer, J=1.5, 8.2 Hz), Mass Spectrum (ESI) m/z calcd. for C\textsubscript{16}H\textsubscript{13}BrN\textsubscript{2}O\textsubscript{2}S\textsubscript{3}, 441.39 (M+H), found 441.1, 443.0.

b) **4-[(2-(Bromophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:** Methyl 4-[(2-(bromophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide (63.1 mg, 0.12 mmol) was treated as described in Example 154, step (b) to give 47.9 mg (86% yield) of 4-[(2-(bromophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\)H NMR (DMSO-d\textsubscript{6}, 300 MHz) \(\delta\) 2.70 (s, 3H), 7.01 (m 1H), 7.20 (s, 1H), 7.40 (m, 1H), 7.65 (dd, 1H, J=1.5, 8.0), 8.38 (dd, 1H, J=1.5, 8.3 Hz), 8.44 (s, 1H), 8.89 (bs, 2H), 9.30 (bs, 2H), 9.62 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C\textsubscript{15}H\textsubscript{13}BrN\textsubscript{4}S\textsubscript{3}, 425.39 (M+H), found 425.1, 427.0.

Example 170

a) **Methyl 4-[(2-(6-dichlorophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide:** Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2,6-dichlorophenyl thiourea (42 mg) as described in Example 154, step (a) to give 63.1 mg (65% yield) of methyl 4-[(2-(6-dichlorophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide. \(^1\)H NMR (DMSO-d\textsubscript{6}, 300 MHz) \(\delta\) 2.59 (s, 3H), 3.8 (s, 3H), 7.15 (s, 1H), 7.36 (m, 1H), 7.61 (m, 2H), 7.97 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C\textsubscript{16}H\textsubscript{12}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{2}S\textsubscript{3}, 431.38 (M+H), found 431.0, 433.0.

b) **4-[(2-(6-Dichlorophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride:** Methyl 4-[(2-(6-dichlorophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide (43 mg, 0.08 mmol) was treated as described in Example 154, step (b) to give 14.5 mg (40% yield) of 4-[(2-(6-dichlorophenyl)amino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\)H NMR (DMSO-d\textsubscript{6}, 300 MHz) \(\delta\) 2.69 (s, 3H), 7.15 (s, 1H), 7.18-7.26 (m, 2H), 8.13 (d, 1H, J=7.5 Hz), 8.41 (s, 1H), 8.84 (bs, 2H), 9.27 (bs, 2H), 9.61 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C\textsubscript{15}H\textsubscript{12}Cl\textsubscript{2}N\textsubscript{4}S\textsubscript{3}, 415.39 (M+H), found 415.1, 417.1;
Example 171

a) *Methyl 4-[[2-(2-bromo-4-methylphenyl)amino]-(1,3-thiazol-4-yl)]-5-methylthiophene-2-carboxylate hydrobromide:* Methyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2-bromo-4-methylphenyl thio urea (47 mg) as described in Example 154, step (a) to give 62 mg (61% yield) of methyl 4-[[2-(2-bromo-4-methylphenyl)amino]-(1,3-thiazol-4-yl)]-5-methylthiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 2.28 (s, 3H), 3.82 (s, 3H), 7.19-7.23 (m, 1H), 7.27 (s, 1H), 7.48 (m, 1H), 8.14, 8.17 (s, 1H rotomer), 9.52, 9.72 (bs, 1H rotomer); Mass Spectrum (ESI) m/z calcd. for $C_{17}H_{12}BrN_2O_3S_3$, 455.42 (M+H), found 455.0, 457.0.

b) *4-[[2-(2-Bromo-4-methylphenyl)amino]-(1,3-thiazol-4-yl)]-5-methylthiophene-2-carboxamidine hydrochloride:* Methyl 4-[[2-(2-bromo-4-methylphenyl)amino]-(1,3-thiazol-4-yl)]-5-methylthiophene-2-carboxylate hydrobromide (62 mg, 0.11 mmol) was treated as described in Example 154, step (b) to give 26 mg (50% yield) of 4-[[2-(2-bromo-4-methylphenyl)amino]-(1,3-thiazol-4-yl)]-5-methylthiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.28 (s, 3H), 2.70 (s, 3H), 7.14 (s, 1H), 7.21 (dd, 1H, $J=1.6$, 8.5 Hz), 7.49 (d, 1H, $J=1.5$ Hz), 8.16 (d, 1H, 8.3 Hz), 8.41 (s, 1H), 8.85 (bs, 2H), 9.28 (bs, 2H), 9.53 (s, 1H); Mass Spectrum (ESI) m/z calcd. for $C_{16}H_{15}BrN_4S_3$, 439.42 (M+H), found 439.1, 441.1.

Example 172

a) *Methyl 5-methylthio-4-[[2-(2-morpholin-4-ylethyl)amino]-(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide:* Methyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (100 mg, 0.32 mmol) was allowed to react with 1-ethyl morpholinothiourea (61.2 mg) as described in Example 154, step (a) to give 120.8 mg (79% yield) methyl 5-methylthio-4-[[2-(2-morpholin-4-ylethyl)amino]-(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. 1H NMR (CD$_3$OD, 300 MHz) δ 2.64 (s, 3H), 3.43-3.52 (m, 5H), 3.83-3.86 (m, 10H), 6.95 (s, 1H), 8.04 (s, 1H); Mass Spectrum (ESI) m/z calcd. for $C_{16}H_{21}N_3O_3S_3$, 399.55 (M+H), found 400.1.
b) 5-Methylthio-4-{2-[(2-morpholin-4-ylethyl)amino](1,3-thiazol-4-y1)}thiophene-2-carboxylate hydrochloride: Methyl-5-methylthio-4-{2-[(2-morpholin-4-ylethyl)amino](1,3-thiazol-4-y1)}thiophene-2-carboxylate hydrobromide (62 mg, 0.12 mmol) was treated as described in Example 154, step (b) to give 26 mg (52% yield) of 5-methylthio-4-{2-[(2-morpholin-4-ylethyl)amino](1,3-thiazol-4-y1)}thiophene-2-carboxylate hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.69 (s, 3H), 3.16-3.95 (m, 15H), 6.96 (s, 1H), 8.01 (bs, 1H), 8.49 (s, 1H), 8.84 (bs, 2H), 9.28 (bs, 2H), 10.49 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{21}$N$_2$OS$_3$, 383.56 (M+H), found 384.2.

Example 173

a) Methyl 4-{2-[(2,3-dichlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2,3-dichlorophenylthiourea (42 mg) as described in Example 154, step (a) to give 60.5 mg (62% yield) methyl 4-{2-[(2,3-dichlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.66 (s, 3H), 3.82 (s, 3H), 7.27 (dd, 1H, J=1.5, 6.5 Hz), 7.36 (d, 1H, J=8.2 Hz), 7.43 (s, 1H), 8.14 (s, 1H), 8.62 (dd, 1H, J=1.5, 8.4 Hz), 9.95 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{12}$Cl$_2$N$_2$O$_2$S$_3$, 431.38 (M+H), found 431.1, 433.0.

b) 4-{2-[(2,3-Dichlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxamide hydrochloride: Methyl 4-{2-[(2,3-dichlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxylate hydrobromide (60.5 mg, 0.11 mmol) was treated as described in Example 154, step (b) to give 15 mg (30% yield) of 4-{2-[(2,3-dichlorophenyl)amino](1,3-thiazol-4-y1)}-5-methylthiothiophene-2-carboxamide hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.71 (s, 3H), 7.27-7.28-7.41 (m, 2H), 8.45 (s, 1H), 8.63 (dd, 1H, J=1.5, 8.4 Hz), 8.84 (bs, 2H), 9.29 (bs, 2H), 9.99 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{12}$Cl$_2$N$_4$S$_3$, 415.34 (M+H), found 415.1, 417.1;
Example 174

a) Methyl 5-methylthio-4-[2-[(3,4,5-trimethoxyphenyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 2,3,4-trimethoxyphenylthiourea (46 mg) as described in Example 154, step (a) to give 61.8 mg (63% yield) of methyl 5-methylthio-4-{2-[(3,4,5-trimethoxyphenyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. ^1H NMR (DMSO-d₆, 300 MHz) δ 2.67 (s, 3H), 3.81 (s, 6H), 3.82 (s, 3H), 7.11 (s, 2H), 7.25 (s, 1H), 8.19 (s, 1H), 10.25 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₈H₂₀N₄O₃S₃, 436.56 (M+H), found 437.1.

b) 5-Methylthio-4-{2-[(3,4,5-trimethoxyphenyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-{2-[(3,4,5-trimethoxyphenyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (61.8 mg, 0.11 mmol) was treated as described in Example 154, step (b) to give 14 mg (27% yield) of 5-methylthio-4-{2-[(3,4,5-trimethoxyphenyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. ^1H NMR (DMSO-d₆, 300 MHz) δ 2.70 (s, 3H), 3.61 (s, 3H), 3.80 (s, 6H), 7.08 (s, 2H), 7.14 (s, 1H), 8.44 (s, 1H), 8.84 (bs, 2H), 9.26 (bs, 2H), 10.29 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₈H₂₀N₄O₃S₃, 436.56 (M+H), found 437.1.

Example 175

a) Methyl 5-methylthio-4-[2-[(2-piperidylethyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (100 mg, 0.32 mmol) was allowed to react with N-ethytpiperidylthiourea (60.6 mg) as described in Example 154, step (a) to give 90 mg (59% yield) of methyl 5-methylthio-4-{2-[(2-piperidylethyl)amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. ^1H NMR (DMSO-d₆, 300 MHz) δ 1.41 (m, 2H), 1.70-1.79 (m, 6H), 2.65 (s, 3H), 2.95 (m, 2H), 3.52 (m, 2H), 3.73 (m, 2H), 3.82 (s, 3H), 7.08 (s, 1H), 7.96 (at, 1H, J=5.3 Hz), 8.09 (s, 1H), 9.40 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₇H₂₃N₄O₃S₃, 397.6 (M+H), found 398.1.
b) 5-Methylthio-4-{2-[(2-piperidylethyl)amino]-(1,3-thiazol-4-yl)}thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-{2-[(2-piperidylethyl)amino]-(1,3-thiazol-4-yl)}thiophene-2-carboxylate hydrobromide (72 mg, 0.15 mmol) was treated as described in Example 154, step (b) to give 26.8 mg (43% yield) of 5-methylthio-4-{2-[(2-piperidylethyl)amino]-(1,3-thiazol-4-yl)}thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 1.40 (m, 2H), 1.72-1.79 (m, 6H), 2.69 (s, 3H), 2.96 (m, 2H), 3.51 (m, 2H), 3.76 (m, 2H), 6.97 (s, 1H), 8.08 (t, 1H, J=5.5 Hz), 8.60 (s, 1H), 8.95 (bs, 1H), 9.35 (bs, 2H), 10.25 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{18}$H$_{23}$N$_3$S$_3$, 381.1 (M+H), found 382.2.

Example 176

a) Methyl 4-{(4-methylphenyl)methyl]amino}-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (111 mg, 0.35 mmol) was allowed to react with 4-methylphenylmethylthiourea as described in Example 154, step (a) to give 125 mg (81% yield) of methyl 4-{(4-methylphenyl)methyl]amino}-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for C$_{18}$H$_{16}$N$_3$O$_3$S$_2$, 358.5 (M+H), found 359.1.

b) 4-{(4-Methylphenyl)methyl]amino}-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-{(4-methylphenyl)methyl]amino}-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide (118 mg, 0.26 mmol) was treated as described in Example 154, step (b) to give 58.2 mg (54% yield) of 4-{(4-methylphenyl)methyl]amino}-(1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.27 (s, 3H), 2.66 (s, 3H), 4.49 (d, 2H, J=5.7 Hz), 6.88 (s, 1H), 7.13 (d, 2H, J=7.8 Hz), 7.27 (d, 2H, J=8.0 Hz), 8.20 (t, 1H, J=5.8 Hz), 8.42 (s, 1H), 8.90 (bs, 2H), 9.27 (bs, 2H); Mass Spectrum (ESI) m/z calcd. for C$_{17}$H$_{18}$N$_4$S$_3$, 374.55 (M+H), found 375.2.
Example 177

a) Amino[4-(4-chlorophenoxy)phenyl]amino)methane-1-thione: Unless otherwise indicated, all thioureas, isothiocyanates, thioamides and amines were purchased from Maybridge Chemical Co. Ltd. (Cornwall, U.K.), Transworld Chemical Co. (Rockville, MD), or Aldrich Chemical Co., (Milwaukee, WI). (a) 4-Amino-4’-chlorodiphenylether (TCI America, Portland OR, 520 mg, 2.03 mmol) was slurried in 10 mL of ether and treated with ca. 1 mL of ether saturated with HCl gas. After 5 min. the solvent was removed in vacuo. To a stirring biphasic solution amine-HCl salt in 20 mL CHCl₃-sat’d NaHCO₃ (1:1, v/v) at ambient temperature was added thiophosgene (1.2 equiv, 2.4 mmol) in 5 mL of CHCl₃ dropwise via an addition funnel. The reaction was vigorously stirred for 1 h (TLC, 50% ethyl acetate-hexanes indicates clean conversion to a higher Rf spot), at which time the layers were separated, the aqueous layer extracted with CHCl₃ (1x20 mL), and the combined organic layers washed with brine (1x20 mL) and dried (Na₂SO₄). Concentration of the solvent in vacuo yielded the crude 4-(4-chlorophenoxy)-phenylisothiocyanate (414 mg). (b) The 4-(4-chlorophenoxy)-phenylisothiocyanate was transferred to an Ace Glass pressure tube equipped with a Teflon coated stir bar and treated with a 2.0 M solution of NH₃ in 5 ml methanol (Aldrich Chemical Co., Milwaukee, WI)). The tube was sealed and immersed in a 80°C oil bath. After 2 h, the reaction was cooled to 0°C in an ice bath. The precipitates were filtered and dried under vacuum to yield amino{[4-(4-chlorophenoxy)phenyl]amino)methane-1-thione (328 mg, 79%). "H NMR (DMSO-d₆, 300 MHz) 7.02 (m, 4H), 7.41 (m, 4H), 9.65 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₁₃H₁₁ClN₂O₃S, 278.8 (M+H), found 279.4.

b) Methyl 4-(2-[[4-(4-chlorophenoxy)phenyl]amino]{(1,3-thiazol-4-yl)})-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (309 mg, 1.0 mmol) was allowed to react with amino{[4-(4-chlorophenoxy)phenyl]amino)methane-1-thione (297 mg) as described in Example 154, step (a) to give 410 mg (72% yield) of methyl 4-(2-[[4-(4-chlorophenoxy)phenyl]amino]{(1,3-thiazol-4-yl)})-5-methylthiothiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for C₂₂H₁₇ClN₂O₃S₃, 489.1 (M+H), found 489.1.
c) 4-(2-[[4-(4-Chlorophenoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylothiothiophene-2-carboxamidine hydrochloride: Methyl 4-(2-[[4-(4-chlorophenoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylothiothiophene-2-carboxylate hydrobromide (300 mg, 0.52 mmol) was treated as described in Example 154, step (b) to give 129.9 mg (49% yield) of 4-(2-[[4-(4-chlorophenoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylothiothiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.72 (s, 3H), 6.97 (m, 2H), 7.07 (m, 2H), 7.15 (s, 1H), 7.40 (m, 2H), 7.85 (m, 2H), 8.46 (s, 1H), 8.82 (bs, 2H), 9.27 (bs, 2H), 10.43 (bss, 1H); Mass Spectrum (ESI) m/z calcld. for C$_{31}$H$_{17}$ClN$_4$OS$_3$, 473.1 (M+H), found 473.2, 475.1.

Example 178

a) Methyl 5-methylthio-4-[[4-[[5-(trifluoromethyl)(2-pyridyloxy)]phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (70 mg, 0.23 mmol) was allowed to react with 4-[[5-(trifluoromethyl)pyrid-2-yl]oxy]thiobenzenamide (50 mg) as described in Example 154, step (a) to give 115 mg (98% yield) of methyl 5-methylthio-4-[[4-[[5-(trifluoromethyl)(2-pyridyloxy)]phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate. 1H NMR (DMSO-d_6, 300 MHz) δ 2.70 (s, 3H), 3.85 (s, 3H), 7.38 (m, 3H), 8.10 (m, 1H), 8.18 (s, 1H), 8.28 (dd, 1H, J=2.7, 8.8 Hz), 8.32 (s, 1H), 8.60 (m, 1H); Mass Spectrum (ESI) m/z calcld. for C$_{22}$H$_{15}$F$_3$N$_4$O$_2$S$_4$, 508.56 (M+H), found 509.2.

b) 5-Methylthio-4-[[4-[[5-(trifluoromethyl)(2-pyridyloxy)]phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-[[4-[[5-(trifluoromethyl)(2-pyridyloxy)]phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate (95 mg, 0.18 mmol) was treated as described in Example 154, step (b) to give 30.3 mg (32% yield) of 5-methylthio-4-[[4-[[5-(trifluoromethyl)(2-pyridyloxy)]phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.75 (s, 3H), 7.34 (d, 1H, J=8.7 Hz), 7.41 (m, 2H), 8.01 (s, 1H), 8.10-8.14 (m, 2H), 8.29 (dd, 1H, J=2.5, 8.4 Hz), 8.60 (m, 1H), 8.63 (s, 1H), 8.91 (bs, 2H), 9.31
(bs, 2H); Mass Spectrum (ESI) m/z calcd. for $C_{21}H_{15}F_3N_4OS_3$, 492.6 (M+H), found 493.1.

Example 179

* a) Methyl 4-(2-[[4-phenoxyphenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxylate hydrobromide: * Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (200 mg, 0.64 mmol) was allowed to react with 4-phenoxyphenylthiourea (158 mg) as described in Example 154, step (a) to give 300 mg (88% yield) of methyl 4-[[4-(phenoxy)phenyl]amino](1,3-thiazol-4-yl)-5-methylthiothiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for $C_{22}H_{16}N_2O_5S_2$, 454.6 (M+H), found 455.2.

* b) 4-(2-[[4-Phenoxyphenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride: * Methyl 4-[[4-(phenoxy)phenyl]amino](1,3-thiazol-4-yl)-5-methylthiothiophene-2-carboxylate hydrobromide (230 mg, 0.42 mmol) was treated as described in Example 154, step (b) and purified by preparative thin layer chromatography (20% methanol-CH$_2$Cl$_2$ sat’d. NH$_3$, 500 μm silica gel plate, J.T. Baker, Phillipsburg, NJ) to give 86 mg (47% yield) of the product. A 46 mg aliquot was dissolved in 1 mL of methanol, treated with 3 drops of ether saturated with HCl gas, and concentrated in vacuo with toluene (2x5mL) to give 42.3 mg (21% yield) of 4-[[4-phenoxyphenyl]amino](1,3-thiazol-4-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.71 (s, 3H), 6.97-7.11 (m, 4H), 7.15 (s, 1H), 7.36 (m, 2H), 7.72, 7.85 (d, 2H rotomer, J=8.7 Hz), 8.36, 8.55 (s, 1H rotomer), 9.00 (bs, 2H), 9.35 (bs, 2H), 10.49 (s, 1H); . Mass Spectrum (ESI) m/z calcd. for $C_{21}H_{18}N_2OS_2$, 438.6 (M+H), found 439.2.

Example 180

* a) Amino[[4-(phenylamino)phenyl]amino]methane-1-thione: * 4-Aminodiphenylamine (500 mg, 2.71 mmol) was treated as described in Example 177, step (a) and recrystallized from toluene to give 350 mg (53% yield) of amino[[4-(phenylamino)phenyl]amino]methane-1-thione. 1H NMR (DMSO-d$_6$, 300 MHz) δ
6.80 (m, 1H), 7.01-7.24 (m, 8H), 8.15 (s, 1H), 9.45 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{19}H_{13}N_{3}S, 243.33 (M+H), found 244.2.

b) Methyl 5-methylthio-4-(2-[[4-(phenylamino)phenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (90 mg, 0.28 mmol) was allowed to react with amino[[4-(phenylamino)phenyl]amino]methane-1-thione (70.8 mg) as described in Example 154, step (a) to give 71 mg (47% yield) of methyl 5-methylthio-4-(2-[[4-(phenylamino)phenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. ^{1}H NMR (DMSO-d$_{6}$, 300 MHz) δ 2.66 (s, 3H), 3.82 (s, 3H), 6.73 (m, 1H), 6.96-7.24 (m, 9H), 7.63 (d, 1H, J=8.6 Hz), 8.12 (s, 1H), 10.13 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C_{22}H_{19}N_{3}O_{2}S_{3}, 453.60 (M+H), found 454.2.

c) 5-Methylthio-4-(2-[[4-(phenylamino)phenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-(2-[[4-(phenylamino)phenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (71 mg, 0.13 mmol) was treated as described in Example 154, step (b) to give 23.3 mg (38% yield) of 5-methylthio-4-(2-[[4-(phenylamino)phenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. ^{1}H NMR (DMSO-d$_{6}$, 300 MHz) δ 2.72 (s, 3H), 6.74 (t, 1H, J=7.3 Hz), 6.98 (d, 1H, J=7.6 Hz), 7.08 (m, 2H), 7.18 (m, 2H), 7.66 (d, 2H, J=8.9 Hz), 7.99 (s, 1H), 8.45 (s, 1H), 9.03 (bs, 4H), 10.17 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{23}H_{19}N_{3}S, 437.59 (M+H), found 438.2.

Example 181

a) Amino[[4-benzylphenyl]amino]methane-1-thione: 4-Benzylphenylamine (500 mg, 2.73 mmol) was treated as described in Example 177, step (a) to give 410 mg (62% yield) of amino[[4-benzylphenyl]amino]methane-1-thione. ^{1}H NMR (DMSO-d$_{6}$, 300 MHz) δ 3.89 (s, 2H), 7.14-7.28 (m, 9H), 9.59 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{14}H_{14}N_{2}S, 242.1 (M+H), found 243.2.

b) Methyl 5-methylthio-4-(2-[[4-benzylphenyl]amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (90 mg, 0.28 mmol) was allowed to react with
amino{[4-benzylphenyl]amino}methane-1-thione (70.5 mg) as described in Example 154, step (a) to give 70.1 (47% yield) of methyl 5-methylthio-4-(2-[[4-benzylphenyl]amino]{1,3-thiazol-4-yl})thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 2.66 (s, 3H), 3.82 (s, 3H), 3.87 (s, 2H), 7.14 - 7.30 (m, 8H), 7.66 (d, 2H, J=8.5 Hz), 8.12 (s, 1H), 10.23 (s, 1H); (Mass Spectrum (ESI) m/z calcd. for C$_{22}$H$_{19}$N$_3$O$_2$S$_3$, 453.6 (M+H), found 454.2.

c) 5-Methylthio-4-(2-[[4-benzylphenyl]amino]{1,3-thiazol-4-yl})thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-(2-[[4-benzylphenyl]amino]{1,3-thiazol-4-yl})thiophene-2-carboxylate hydrobromide (82.2 mg, 0.15 mmol) was treated as described in Example 154, step (b) to give 33.4 mg (47% yield) of 5-methylthio-4-(2-[[4-benzylphenyl]amino]{1,3-thiazol-4-yl})thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.72 (s, 3H), 3.89 (s, 2H), 7.12 (s, 1H), 7.16-7.29 (m, 7H), 7.69 (d, 2H, J=8.6 Hz), 8.43 (s, 1H), 9.02 (bs, 4H), 10.28 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{22}$H$_{26}$N$_3$S$_3$, 436.6 (M+H), found 437.2.

Example 182

a) (4-{(Aminothioxomethyl)amino}phenyl)sulfonylpiperidine: Aminophenylsulphonylpiperidine (500 mg, 2.08 mol) was treated as described in Example 177, step (a) to give 382 mg (61% yield) of (4-{aminothioxomethyl)amino}phenyl)sulfonylpiperidine. 1H NMR (DMSO-d_6, 300 MHz) δ 1.34 (m, 2H), 1.53 (m, 4H), 2.85 (m, 4H), 7.62 (m, 2H), 7.78 (m, 2H), 10.10 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{12}$H$_{17}$N$_3$O$_2$S$_2$, 299.4 (M+H), found 300.2.

b) Methyl 5-methylthio-4-(2-[[4-(piperidyl)sulfonyl]phenyl]amino){1,3-thiazol-4-yl})thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (90 mg, 0.28 mmol) was allowed to react with (4-{aminothioxomethyl)amino}phenyl)sulfonylpiperidine (87.1 mg) as described in Example 154, step (a) to give 105 mg (63% yield) of methyl 5-methylthio-4-(2-[[4-(piperidyl)sulfonyl]phenyl]amino){1,3-thiazol-4-yl})thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 1.33 (m, 2H), 1.52 (m, 4H), 2.69 (s,
3H), 2.84 (m, 4H), 3.82 (s, 3H), 7.43 (s, 1H), 7.66 (m, 2H), 7.98 (m, 2H), 8.16 (s, 1H), 10.85 (s, 1H); (Mass Spectrum (ESI) m/z calcd. for C_{27}H_{27}N_{5}O_{2}S_{4}, 509.69 (M+H), found 510.2.

c) 5-Methylthio-4-(2-[[4-(piperidylsulfonfyl)phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamide hydrochloride: Methyl 5-methylthio-4-(2-[[4-(piperidylsulfonfyl)phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (105 mg, 0.17 mmol) was treated as described in Example 154, step (b) to give 30.3 mg (34% yield) of 5-methylthio-4-(2-[[4-(piperidylsulfonfyl)phenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamide hydrochloride. 1H NMR (DMSO-d_{6}, 300 MHz) δ 1.36 (m, 2H), 1.54 (m, 4H), 2.76 (s, 3H), 2.86 (m, 4H), 7.30 (s, 1H), 7.68 (d, 2H, J=8.8 Hz), 8.03 (d, 2H, J=8.8 Hz), 8.51 (s, 1H), 8.84 (bs, 2H), 9.28 (bs, 2H), 10.94 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{20}H_{23}N_{5}O_{2}S_{4}, 493.69 (M+H), found 494.2.

Example 183

da) Amino(3-quinolylamino)methane-1-thione: 3-Aminoquinoline (500 mg, 3.46 mmol) was treated as described in Example 177, step (a) to give 285 mg (41% yield) of amino(3-quinolylamino)methane-1-thione. 1H NMR (DMSO-d_{6}, 300 MHz) δ 7.57 (m, 1H), 7.67 (m, 1H), 7.94 (m, 2H), 8.41 (d, 1H, J=2.4 Hz), 8.85 (d, 1H, J=2.5 Hz), 10.03 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{10}H_{9}N_{5}S, 203.3 (M+H), found 204.1.

b) Methyl 5-methylthio-4-[2-(3-quinolylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxylate: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (90 mg, 0.28 mmol) was allowed to react with amino(3-quinolylamino)methane-1-thione (59.1 mg) as described in Example 154, step (a) to give 107.5 mg (78% yield) of methyl 5-methylthio-4-[2-(3-quinolylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_{6}, 300 MHz) δ 2.75 (s, 3H), 3.84 (s, 3H), 7.52 (s, 1H), 7.92-8.05 (m, 2H), 8.22 (s, 1H), 9.22 (m, 2H); Mass Spectrum (ESI) m/z calcd. for C_{19}H_{19}N_{5}O_{2}S_{3}, 413.54 (M+H), found 414.1.

c) 5-Methylthio-4-[2-(3-quinolylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxamide hydrochloride: Methyl 5-methylthio-4-[2-(3-quinolylamino)(1,3-
thiazol-4-yl)thiophene-2-carboxylate hydrobromide (107.5 mg, 0.21 mmol) was treated as described in Example 154, step (b) to give 4.5 mg (4.9% yield) of 5-methylthio-4-[2-(3-quinolylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.80 (s, 3H), 7.29 (s, 1H), 7.59 (m, 2H), 7.93 (m, 2H), 8.54 (s, 1H), 8.89 (bs, 2H), 8.91 (m, 1H), 9.16 (m, 1H), 9.29 (bs, 2H), 10.97 (s, 1H); Mass Spectrum (ESI) m/z calcd. for $C_{18}H_{13}N_6S_3$, 397.5 (M+H), found 398.1.

Example 184

a) Methyl 5-methylthio-4-[2-(2-naphthylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (65 mg, 0.21 mmol) was allowed react with 2-naphthylthiourea (42.4 mg) as described in Example 154, step (a) to give 82.5 mg (80% yield) of methyl 5-methylthio-4-[2-(2-naphthylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 2.67 (s, 3H), 3.83 (s, 3H), 7.31 (s, 1H), 7.50-7.67 (m, 4H), 7.93 (m, 1H), 8.15 (s, 1H), 8.31-8.35 (m, 1H), 8.46 (d, 1H, J=7.6), 10.22 (s, 1H); Mass Spectrum (ESI) m/z calcd. for $C_{20}H_{16}N_7O_2S_3$, 412.6 (M+H), found 413.1.

c) 5-Methylthio-4-[2-(2-naphthylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-[2-(2-naphthylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (42.7 mg, 0.086 mmol) was treated as described in Example 154, step (b) to give 5.8 mg (16% yield) of 5-methylthio-4-[2-(2-naphthylamino)(1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.72 (s, 3H), 7.12-7.27 (m, 3H), 7.50-7.68 (m, 3H), 7.94 (m, 1H), 8.32-8.35 (m, m, 1H), 8.51 (s, 1H), 8.97 (bs, 2H), 9.34 (bs, 2H), 10.26 (s, 1H); Mass Spectrum (ESI) m/z calcd. for $C_{19}H_{16}N_4S_3$, 396.6 (M+H), found 397.2.

Example 185

a) Methyl 4-[2-(2H-benzo[f3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-
methylthiothiophene-2-carboxylate (65 mg, 0.21 mmol) was allowed to react with 2,3-methylenedioxyphenylthiourea (41.2 mg) as described in Example 154, step (a) to give 51 mg (50% yield) of methyl 4-[2-(2H-benzo[3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.66 (s, 3H), 3.83 (s, 3H), 5.98 (s, 2H), 6.84-6.89 (m, 1H), 6.96, 7.04 (dd, 1H rotomer, J=2.2, 8.5 Hz), 7.25 (s, 1H), 7.46, 7.60 (d, 1H rotomer, J=2.1 Hz), 8.05, 8.13 (s, 1H rotomer), 10.19, 10.34 (s, 1H, rotomer); Mass Spectrum (ESI) m/z calcld. for C$_{17}$H$_{14}$N$_4$O$_5$S$_3$, 406.5 (M+H), found 407.1.

b) 4-[2-(2H-Benzol[3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride: Methyl 4-[2-(2H-benzo[3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide (51 mg, 0.10 mmol) was treated as described in Example 154, step (b) to give 16.6 mg (39% yield) of 4-[2-(2H-benzo[3,4-d]1,3-dioxolan-5-ylamino)(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamide hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.71 (s, 3H), 5.98 (s, 2H), 6.87 (d, 1H, J=8.2 Hz), 7.09-7.13 (m, 2H), 7.67 (d, 1H, J=2.4 Hz), 8.50 (s, 1H), 8.95 (bs, 2H), 9.33 (bs, 2H), 10.30 (s, 1H); Mass Spectrum (ESI) m/z calcld. for C$_{16}$H$_{14}$N$_4$O$_5$S$_3$, 390.51 (M+H), found 391.2;

Example 186

a) Amino[(7-bromofluoren-2-yl)amino]methane-1-thione: 2-Amino-7-bromofluorene (500 mg, 1.90 mmol) was treated as described in Example 177, step (a) to give 128 mg (21% yield) of amino[(7-bromofluoren-2-yl)amino]methane-1-thione. 1H NMR (DMSO-d$_6$, 300 MHz) δ 3.35 (s, 2H), 7.35 (d, 1H, J=8.3 Hz), 7.54 (d, 1H, J=8.0 Hz), 7.66 (s, 1H), 7.77-7.87 (m, 3H), 9.80 (s, 1H); Mass Spectrum (ESI) m/z calcld. for C$_{16}$H$_{11}$BrN$_2$S, 319.2 (M+H), found 320.1, 321.1.

b) Methyl 4-{2-[{(7-bromofluoren-2-yl)amino}(1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (90 mg, 0.28 mmol) was allowed to react with amino[(7-bromofluoren-2-yl)amino]methane-1-thione (92.8 mg) as described in Example 154, step (a) to give 141 mg (82% yield) of methyl 4-{2-[(7-bromofluoren-2-yl)amino](1,3-thiazol-4-yl)}-5-methylthiothiophene-2-carboxylate hydrobromide.
\[\text{H NMR (DMSO-\text{d}_6, 300 MHz) \delta 2.70 (s, 3H), 3.83 (s, 3H), 3.93 (s, 2H), 7.33 (s, 1H), 7.51 (dd, 1H, J=1.9, 8.0 Hz), 7.65 (dd, 1H, J=2.0, 8.4 Hz), 7.74 (ad, 2H, J=8.3 Hz), 7.83 (ad, 1H, J=8.4 Hz), 8.18 (s, 1H), 8.23 (d, 1H, J=1.4 Hz), 10.47 (s, 1H).} \]

5

\[\text{c) 4-\{2-[(7-Bromofluoren-2-yl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-\{2-[(7-bromofluoren-2-yl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxylate hydrobromide (100 mg, 0.15 mmol) was treated as described in Example 154, step (b) to give 3.3 mg (4% yield) of 4-\{2-[(7-bromofluoren-2-yl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxamidine hydrochloride.} \]

\[\text{1H NMR (DMSO-\text{d}_6, 300 MHz) \delta 2.76 (s, 3H), 3.95 (s, 2H), 7.18 (s, 1H), 7.54 (dd, 1H, J=1.8, 10.0 Hz), 7.67-7.76 (m, 3H), 7.85 (d, 1H, J=8.2 Hz), 8.23 (s, 1H), 8.50 (s, 1H), 10.53 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{22}H_{17}BrN_4S_3, 513.5 (M+H), found 513.1, 515.1.} \]

10

\[\text{Example 187} \]

\[\text{a) Methyl 4-\{2-[(4-cyclohexylphenyl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (65 mg, 0.21 mmol) was allowed to react with 4-cyclohexylphenylthiourea (49.2 mg) as described in Example 154, step (a) to give 45 mg (41% yield) of methyl 4-\{2-[(4-cyclohexylphenyl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxylate hydrobromide.} \]

\[\text{1H NMR (DMSO-\text{d}_6, 300 MHz) \delta 1.23-1.39 (m, 5H), 1.71-1.79 (m, 5H), 2.68 (s, 3H), 3.83 (s, 3H), 7.16 (d, 2H, J=8.6 Hz), 7.26 (s, 1H), 7.65 (d, 2H, J=8.7 Hz), 8.14 (s, 1H), 10.19 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{27}H_{32}N_4O_5S_3, 444.64 (M+H), found 445.2.} \]

15

\[\text{b) 4-\{2-[(4-Cyclohexylphenyl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-\{2-[(4-cyclohexylphenyl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxylate hydrobromide (31.1 mg, 0.059 mmol) was treated as described in Example 154, step (b) to give 12.8 mg (47% yield) of 4-\{2-[(4-cyclohexylphenyl)amino](1,3-thiazol-4-yl)\}-5-methylthiothiophene-2-carboxamidine hydrochloride.} \]

\[\text{1H NMR (DMSO-\text{d}_6, 300 MHz) \delta 1.33-1.40 (m, 5H), 1.68-1.79 (m, 5H), 2.44 (m, 1H), 2.73 (s, 3H), 7.12 (s, 1H), 7.18 (d, 2H, J=8.7 Hz), 7.68 (d, 2H, J=8.7 Hz), 8.47 (s, 1H), 8.85 (bs, 2H), 9.32} \]
(bs, 2H), 10.28 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{21}H_{24}N_{4}S_{3}, 428.64 (M+H), found 429.2.

Example 188

a) Amino[4-(phenyl diazenyl)phenyl]amino]methane-1-thione: 4-Phenylazo phenyl isothiocyanate (314 mg, 1.30 mmol) was treated as described in Example 177, step (a), part (b), to give 295 mg (88% yield) of amino[4-(phenyl diazenyl)phenyl]amino]methane-1-thione. 1H NMR (DMSO-d$_6$, 300 MHz) δ 6.84 (m, 1H), 7.57 (m, 2H), 7.73 (m, 2H), 7.85-7.89 (m, 4H), 10.04 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{13}$H$_{12}$N$_4$S, 256.3 (M+H), found 257.2.

b) Methyl 5-methylthio-4-(2-[[4-(phenyl diazenyl)phenyl]amino] (1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methyl thiophene-2-carboxylate (65 mg, 0.21 mmol) was allowed to react with amino[4-(phenyl diazenyl)phenyl]amino]methane-1-thione (53.8 mg) as described in Example 154, step (a) to give 80.6 mg (70% yield) of methyl 5-methylthio-4-(2-[[4-(phenyl diazenyl)phenyl]amino] (1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.72 (s, 3H), 3.84 (s, 3H), 7.46 (s, 1H), 7.49-7.61 (m, 3H), 7.84 (m, 2H), 7.91-8.02 (m, 4H), 8.20 (s, 1H), 10.83 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{22}$H$_{14}$N$_4$O$_2$S$_3$, 466.6 (M+H), found 467.1.

c) 5-Methylthio-4-(2-[[4-(phenyl diazenyl)phenyl]amino] (1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Methyl 5-methylthio-4-(2-[[4-(phenyl diazenyl)phenyl]amino] (1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (47.7 mg, 0.087 mmol) was treated as described in Example 154, step (b) to give 32.8 mg (77% yield) of 5-methylthio-4-(2-[[4-(phenyl diazenyl)phenyl]amino] (1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.78 (s, 3H), 7.26 (s, 1H), 7.49-7.63 (m, 3H), 7.66-7.74 (m, 3H), 7.84-8.08 (m, 3H), 8.60 (s, 1H), 11.02 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{21}$H$_{18}$N$_6$S$_3$, 450.6 (M+H), found 451.1.
Example 189

a) \(\{3-[(\text{Aminothioxomethyl})\text{amino}]\text{phenyl}\}\text{methan-1-ol} \): 3-Aminobenzyl alcohol (550 mg, 4.46 mmol) was treated as described in Example 177, step (a) to give 618 mg (76% yield) of \(\{3-[(\text{aminothioxomethyl})\text{amino}]\text{phenyl}\}\text{methan-1-ol}. \) \(^1\text{H} \) NMR (DMSO-\(d_6 \), 300 MHz) \(\delta \) 4.47 (d, 2H, \(J=5.6 \) Hz), 5.19 (t, 1H, \(J=5.7 \) Hz), 7.06 (d, 1H, \(J=6.2 \) Hz), 7.18-7.30 (m, 3H), 9.73 (s, 1H).

b) \(\text{Methyl-5-methylthio-4-(2-[(3-(\text{hydroxymethyl})\text{phenyl})\text{amino}]\text{(1,3-thiazol-4-yl)})-thiophene-2-carboxylate hydrobromide} \): Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (1.01 g, 3.26 mmol) was allowed to react with \(\{3-[(\text{aminothioxomethyl})\text{amino}]\text{phenyl}\}\text{methan-1-ol} \) as described in Example 154, step (a) to give 1.42 g (92% yield) of methyl-5-methylthio-4-(2-[(3-(hydroxymethyl)phenyl)amino](1,3-thiazol-4-yl))-thiophene-2-carboxylate hydrobromide. \(^1\text{H} \) NMR (DMSO-\(d_6 \), 300 MHz) \(\delta \) 2.67 (s, 3H), 3.83 (s, 3H), 4.49 (s, 2H), 6.92 (m, 1H), 7.23-7.31 (m, 2H), 7.60 (m, 1H), 7.81 (bs, 1H), 8.17 (s, 1H), 10.29 (bs, 1H).

c) \(\text{5-Methylthio-4-(2-[(3-(\text{hydroxymethyl})\text{phenyl})\text{amino}]\text{(1,3-thiazol-4-yl)})-thiophene-2-carboxamidine hydrochloride} \): Methyl-5-methylthio-4-(2-[(3-(hydroxymethyl)phenyl)amino](1,3-thiazol-4-yl))-thiophene-2-carboxylate hydrobromide (700 mg, 1.47 mmol) was treated as described in Example 154, step (b) using 1:9:1 methanol-\(\text{CH}_2\text{Cl}_2 \)-DMF as eluent to give 195 mg (32% yield) of 5-methylthio-4-(2-[(3-(hydroxymethyl)phenyl)amino](1,3-thiazol-4-yl))-thiophene-2-carboxamidine hydrochloride. \(^1\text{H} \) NMR (DMSO-\(d_6 \), 300 MHz) \(\delta \) 2.71 (s, 3H), 4.50 (s, 2H), 6.93 (d, 1H, \(J=7.6 \) Hz), 7.15 (s, 1H), 7.21-7.27 (m, 1H), 7.38 (bs, 1H), 7.65 (d, 1H, \(J=8.1 \) Hz), 7.80 (s, 1H), 8.53 (s, 1H), 8.94 (bs, 2H), 9.32 (bs, 2H), 10.37 (s, 1H); Mass Spectrum (ESI) m/z calcd. for \(\text{C}_{16}\text{H}_{16}\text{N}_{6}\text{OS}_3 \), 376.5 (M+H), found 377.2.

Example 190

a) \(\text{(tert-Butoxy-N-}[\{4-2-[(3-(\text{hydroxymethylphenyl})\text{amino}]\text{(1,3-thiazol-4-yl)}\}-5-methylthio(2-thienyl)iminomethyl]-carboxamide} \): 5-Methylthio-4-(2-[(3-(hydroxymethyl)phenyl)amino](1,3-thiazol-4-yl))-thiophene-2-carboxamidine (103 mg, 0.27 mmol) was slurried in THF (4 mL) and treated with 0.5 mL of 0.5 N \(\text{NaOH} \).
At this time tert-butyldicarbonate (Aldich Chemical Co., Milwaukee, WI, 0.40 mmol) was added in one portion and the result was stirred overnight. The reaction was partitioned in CH₂Cl₂ and water. The organic layer was separated and washed with brine (1x20 mL) and dried (Na₂SO₄). Removal of the solvent in vacuo, followed by purification on preparative thin layer chromatography (500 µm silica gel plate, J.T. Baker, Phillipsburg, NJ, 1% methanol-CH₂Cl₂), gave 45 mg (35% yield) of ((tert-Butoxy)-N-[(4-{2-[(3-hydroxymethylphenyl)amino](1,3-thiazol-4-yl)})-5-methylthio(2-thienyl)]iminomethyl)-carboxamide. ¹H NMR (DMSO-d₆, 300 MHz) δ 1.44 (s, 9H), 2.66 (s, 3H), 4.49 (d, 2H, J=5.7 Hz), 5.15 (t, 1H, J=5.5 Hz), 6.92 (d, 1H, J=7.5 Hz), 6.96 (s, 1H), 7.26 (m, 1H), 7.66 - 7.75 (m, 2H), 8.38 (s, 1H), 8.98 (bs, 2H), 10.24 (s, 1H).

b) ((tert-Butoxy)-N-(imino){4-2-[(3-methylpiperidyl)methyl]phenyl]amino}(1,3-thiazol-4-yl)]-5-methylthio(2-thienyl)]methyl)carboxamide: To a stirring solution of ((tert-butoxy)-N-[(4-{2-[(3-hydroxymethylphenyl)amino](1,3-thiazol-4-yl)})-5-methylthio(2-thienyl)]iminomethyl)-carboxamide (45 mg, 0.094 mmol) under N₂ was added triethylamine (2 equiv, 26.3 µl), followed by methansulfonyl chloride (Aldrich Chemical Co., Milwaukee, WI, 0.13 mmol, 10.2 µl). The reaction was stirred for 1 h, at which time the reaction was partitioned in CH₂Cl₂-water. The organic layer was washed with brine (1x20 mL), filtered through a 5 cm pad of silica gel in a 15 mL fritted glass funnel and dried (Na₂SO₄). Removal of the solvent in vacuo afforded the crude mesylate (44 mg) which was used immediately without further purification. To 25.3 mg (0.045 mmol) of the mesylate in 0.5 mL of DMF was added 3-methyl piperidine (0.18 mmol, 21.4 µl) and the result was heated to 65°C in an oil bath for 4 h. The reaction was concentrated in vacuo and purified by preparative thin layer chromatography (250 µm silica gel plate, 10% methanol-CH₂Cl₂, J.T. Baker, Phillipsburg, NJ) to give 8.2 mg (32% yield) of ((tert-butoxy)-N-(imino){4-[2-((3-methylpiperidyl)methyl]phenyl]amino}(1,3-thiazol-4-yl)]-5-methylthio(2-thienyl)]methyl)carboxamide. Mass Spectrum (ESI) m/z calcd. for C₂₂H₃₅N₅O₂S₃, 557.8 (M+H), found 557.9, 458.2 (-C(O)OC(CH₃)₃).
c) 4-[2-({3-methylpiperidyl}methyl]phenyl]amino)(1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride: (tert-Butoxy)-N-((imino){4-[2-({3-methylpiperidyl}methyl]phenyl]amino)(1,3-thiazol-4-yl]-5-methylthio(2-thienyl)}methyl)carboxamide (8.2 mg, 0.014 mmol) was stirred 2 mL of a 10% 3N HCl-ethyl acetate solution at 0°C for 30 min., at which time the solvent was removed in vacuo to give 8 mg (100% yield) of the 4-[2-({3-methylpiperidyl}methyl]phenyl]amino)(1,3-thiazol-4-yl]-5-methylthiothiophene-2-carboxamidine hydrochloride. \(^1\) H NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 0.83 (d, 3H, J=5.6 Hz), 1.54-2.48 (m, 5H), 2.52-2.63 (m, 4H), 2.66 (s, 3H), 4.23 (d, 2H, J=4.8 Hz), 7.15-7.23 (m, 2H), 7.41 (t, 1H, J=7.8 Hz), 7.86-7.92 (m, 2H), 8.63 (s, 1H), 9.01 (bs, 2H), 9.42 (bs, 2H), 10.63 (s, 1H); (Mass Spectrum (ESI) m/z calcld. for \(C_{22}H_{27}N_8S_3\), 457.7 (M+H), found 458.2.

Example 191

a) Methyl-5-methylthio-4-{2-[(3-hydroxyphenyl)amino](1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide: Methyl 4-(2-bromoacetyl)-5-methylthiothiophene-2-carboxylate (60 mg, 0.19 mmol) was allowed to react with 3-hydroxyphenylthiourea (32.6 mg) as described in Example 154, step (a) to give 80.2 mg (92% yield) of methyl-5-methylthio-4-{2-[(3-hydroxyphenyl)amino](1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide. \(^1\)H NMR (DMSO-\(d_6\), 300 MHz) \(\delta\) 2.67 (s, 3H), 3.83 (s, 3H), 6.38 (d, 1H, J=7.6 Hz), 7.06-7.12 (m, 2H), 7.20-7.29 (m, 2H), 8.14 (s, 1H), 10.17 (s, 1H).

b) 4-{2-[(3-Hydroxyphenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl-5-methylthio-4-{2-[(3-hydroxyphenyl)amino](1,3-thiazol-4-yl)]-thiophene-2-carboxylate hydrobromide (460 mg, 1.0 mmol) was treated as described in Example 154, step (b) to give 215 mg (54% yield) of 4-{2-[(3-hydroxyphenyl)amino](1,3-thiazol-4-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. (Mass Spectrum (ESI) m/z calcld. for \(C_{13}H_{13}N_8O_3\), 362.5 (M+H), found 363.2.

c) (tert-Butoxy)-N-[[4-{2-[(4-hydroxyphenyl)amino](1,3-thiazol-4-yl)]-5-methylthio(2-thienyl)]iminomethyl]carboxamide: To a stirring solution of 4-{2-[(3-
hydroxyphenyl)amino][1,3-thiazol-4-yl])-5-methylthiothiophene-2-carboxamidine hydrochloride (215 mg, 0.48 mmol) in 4 mL of CH₂Cl₂-DMF (3:1, v/v) was added to a solution of di-isopropylethylamine (1.2 equiv). Di-tert-butoxy dicarbonate (1.2 equiv, 127 mg, Aldrich Chemicals, Milwaukee, WI) was then added dropwise in 1 mL CH₂Cl₂ via an addition funnel. The reaction was allowed to stir overnight, partitioned in CH₂Cl₂-H₂O, and the layers separated. The organic layer was dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash chromatography (1% methanol-CH₂Cl₂) to give 60 mg (27% yield) of (tert-butoxy)-N-[(4-{2-[4-hydroxyphenyl]amino}[1,3-thiazol-4-yl])-5-methylthio(2-thienyl)]iminomethyl]carboxamide. ¹H NMR (DMSO-d₆ 300 MHz) δ 1.44 (s, 9H), 2.72 (s, 3H), 6.38 (m, 1H), 6.96 (s, 1H), 7.06-7.12 (m, 2H), 7.28 (m, 1H), 8.35 (s, 1H), 9.00 (bs, 2H), 9.28 (s, 1H), 10.11 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C₂₀H₂₂N₅O₃S₅, 462.6 (M+H), found 462.7, 363.2 [-C(O)OC(CH₃)₃].

d) (tert-Butoxy)-N-[(4-{2-[3-(carbamoylmethoxy)phenyl]amino}[1,3-thiazol-4-yl])-5-methylthio(2-thienyl)]iminomethyl]carboxamide: To stirring solution of (tert-butoxy)-N-[(4-{2-[4-hydroxyphenyl]amino}[1,3-thiazol-4-yl])-5-methylthio(2-thienyl)]iminomethyl]carboxamide (65 mg, 0.14 mmol) in 1.5 mL of DMF was added sequentially Cs₂CO₃ (1.5 equiv, 60.1 mg, Aldrich Chemicals, Milwaukee, WI), bromoacetamide (1.2 equiv, 20.4 mg, Aldrich Chemicals, Milwaukee, WI), and a catalytic amount of KI. The reaction was warmed to 58 °C in an oil bath, stirred for 48 h, at which time another 0.6 equiv of bromoacetamide was added. Stirring was continued for another 24 h, at which time the reaction was filtered and concentrated in vacuo. The residue was purified by preparative thin layer chromatography (50% ethyl acetate-hexanes) to give 9 mg (12% yield) of (tert-butoxy)-N-[(4-{2-[3-(carbamoylmethoxy)phenyl]amino}[1,3-thiazol-4-yl])-5-methylthio(2-thienyl)]iminomethyl]carboxamide. Mass Spectrum (ESI) m/z calcd. for C₂₅H₂₅N₅O₅S₅, 519.7 (M+H), found 519.7, 420.7 [-C(O)OC(CH₃)₃].

e) 4-(2-{4-(Carbamoylmethoxy)phenyl]amino}[1,3-thiazol-4-yl])-5-methylthiothiophene-2-carboxamide trifluoroacetate: To a stirring suspension of (tert-butoxy)-N-[(4-{2-[3-(carbamoylmethoxy)phenyl]amino}[1,3-thiazol-4-yl])-5-methylthio(2-thienyl)]iminomethyl]carboxamide (ca. 4 mg, 0.007 mmol) in CH₂Cl₂-
DMF (4 mL, 3:1 v/v) at 0°C was added 1 mL of trifluoroacetic acid. The homogenous solution was stirred an additional 40 min. at this temperature, warmed to ambient temperature over a 30 min. period and concentrated in vacuo to give 4 mg (100% yield) of 4-(2-[[4-(carbamoylimethoxy)phenyl]amino](1,3-thiazol-4-yl))-5-methylthiophene-2-carboxamidine trifluoroacetate. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.75 (s, 3H), 4.21 (d, 2H, J=5.7 Hz), 6.64 (dd, 1H, J=2.4, 8.2 Hz), 6.97 (dd, 1H, J=1.1, 8.2 Hz), 7.16 (s, 1H), 7.22 (m, 1H), 7.60-7.63 (m, 1H), 7.69-7.72 (m, 1H), 7.88 (t, 1H, J=2.1 Hz), 8.42 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{17}$H$_{19}$N$_2$O$_2$S$_3$, 419.6 (M+H), found 420.1.

Example 192

a) Isopropyl 5-methyl-4-[[2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Isopropyl-4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (84 mg, 0.27 mmol) was allowed to react with 3,4,5-trimethoxyphenylthiourea (66.5 mg) as described in Example 154, step (a) to give 68 mg (48% yield) of isopropyl 5-methyl-4-[[2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. For C$_{21}$H$_{24}$N$_2$O$_2$S$_2$, 448.56 (M+H), found 449.0.

b) 5-Methyl-4-[[2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Isopropyl 5-methyl-4-[[2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (59 mg, 0.11 mmol) was treated as described in Example 154, step (b) to give 24.4 mg (50% yield) of 5-methyl-4-[[2-[[3,4,5-trimethoxyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.81 (s, 3H), 3.61 (s, 3H), 3.77 (s, 6H), 7.04 (s, 2H), 7.09 (s, 1H), 8.40 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{18}$H$_{29}$N$_2$O$_2$S$_2$, 404.5 (M+H), found 405.2.

Example 193

a) Isopropyl 5-methyl-4-[[2-[[4-phenoxypyphenyl]amino](1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Isopropyl-4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (91 mg, 0.29 mmol) was allowed to react with 4-
phenoxyphenylthiourea (72.6 mg) as described in Example 154, step (a) to give 115 mg (75% yield) of isopropyl 5-methyl-4-[(4-phenoxyphenyl)amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. 1H NMR (DMSO-d_6, 300 MHz) δ 1.28 (d, 6H, J=6.2 Hz), 2.70 (s, 3H), 6.06 (quintet, 1H, J=6.2 Hz), 6.92-7.09 (m, 5H), 7.15 (s, 1H), 7.30-7.37 (m, 2H), 7.56-7.70 (m, 2H), 7.98 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{24}$H$_{22}$N$_2$O$_3$S$_2$, 450.6 (M+H), found 451.2, 409.2 [-CH(CH$_3$)$_2$].

b) 5-Methyl-4-[(4-phenoxyphenyl)amino][1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Isopropyl 5-methyl-4-[(4-phenoxyphenyl)amino][1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (95.5 mg, 0.17 mmol) was treated as described in Example 154, step (b) to give 23.8 mg (32% yield) of 5-methyl-4-[(4-phenoxyphenyl)amino][1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride. 1H NMR (DMSO-d_6, 300 MHz) δ 2.76 (s, 3H), 6.95-7.12 (m, 6H), 7.34-7.39 (m, 2H), 7.72-7.78 (m, 2H), 8.33 (s, 1H), 8.98 (bs, 3H), 10.29 (bs, 1H); Mass Spectrum (ESI) m/z calcd. for C$_{21}$H$_{18}$N$_2$O$_3$S, 406.5 (M+H), found 407.2.

Example 194

a) Isopropyl 5-methyl-4-[(2-phenylamino)[1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide: Isopropyl 4-(2-bromoacetyl)-5-methylthiophene-2-carboxylate (64 mg, 0.21 mmol) was allowed to react with phenylthiourea (32.1 mg) as described in Example 154, step (a) to give 80 mg (87% yield) of isopropyl 5-methyl-4-[2-(phenylamino)[1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide. Mass Spectrum (ESI) m/z calcd. for C$_{16}$H$_{18}$N$_2$O$_3$S, 358.5 (M+H), found 359.2.

b) 5-Methyl-4-[2-(phenylamino)[1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride: Isopropyl 5-methyl-4-[2-(phenylamino)[1,3-thiazol-4-yl)]thiophene-2-carboxylate hydrobromide (74 mg, 0.16 mmol) was treated with phenylthiourea (24.3 mg) as described in Example 154, step (b) to give 15 mg (28% yield) (of 5-methyl-4-[2-(phenylamino)[1,3-thiazol-4-yl)]thiophene-2-carboxamidine hydrochloride, which was further purified by recrystallization from methanol-water.

1H NMR (DMSO-d_6, 300 MHz) δ 2.79 (s, 3H), 6.96 (t, 1H, J=7.2 Hz), 7.09 (s, 1H), 7.33 (t, 2H, J=7.5 Hz), 7.71 (d, 2H, J=7.7 Hz), 8.39 (s, 1H), 8.95 (bs, 2H), 9.33 (bs,
2H), 10.37 (s, 1H); Mass Spectrum (ESI) m/z calcd. for C_{15}H_{14}N_{4}S_{3}, 314.4 (M+H), found 315.2.

Example 195

a) **Methyl 4-(4-isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate**: Methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (872 mg, 2.51 mmol) was allowed to react with 2-bromo-1-isoxazol-5-yethan-1-one (737 mg, prepared from from isoxazole-5-carbonyl chloride [Maybridge Chemicals, Cornwall, UK] as described in Example 177, step (a)) as described in Example 154, step (a) to give 704 mg (83% yield) of methyl 4-(4-isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.75 (s, 3H), 3.85 (s, 3H), 6.93 (d, 1H, J=1.8 Hz), 8.22 (s, 1H), 8.38 (s, 1H), 8.70 (d, 1H, J=1.8 Hz).

b) **4-(4-Isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride**: Methyl 4-(4-isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxylate (350 mg, 1.03 mmol) was treated as described in Example 154, step (b) to give 290 mg (78% yield) of 4-(4-isoxazol-5-yl(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine hydrochloride. of which an aliquot was further purified by recrystallization from methanol-isopropanol-water (3:1:0.2, w/v/v). ¹H NMR (DMSO-d₆, 300 MHz) δ 2.79 (s, 3H), 6.93 (d, 1H, J=1.9 Hz), 8.45 (s, 1H), 8.74 (m, 2H), 9.23 (bs, 2H), 9.53 (bs, 2H); Mass Spectrum (MALDI-TOF, CHCA matrix) m/z calcd. for C_{17}H_{18}N_{4}OS_{3}, 322.4 (M+H), found 323.3.

Example 196

a) **Methyl 4-[4-(2-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate**: Methyl 4-(aminothioxomethyl)-5-methylthiothiophene-2-carboxylate (808 mg, 3.26 mmol) was allowed to react with 2-(2-bromoacety1)hydroxybenzene (925 mg, prepared from 2-(chlorocarbonyl)phenyl acetate [Aldrich Chemicals, Milwaukee, WI] as described in Example 177, step (a)) as described in Example 154, step (a) to give 433 mg (37% yield) of methyl 4-[4 Methyl 4-[4-(2-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate. ¹H NMR(DMSO-d₆, 300 MHz) δ 2.77 (s, 3H), 3.86 (s, 3H), 6.91-7.00 (m, 2H), 7.18-7.27
(m, 1H), 8.14-8.19 (m, 2H), 8.24 (s, 1H); Mass Spectrum (ESI) m/z calcd. for
C_{16}H_{13}NO_{3}S_{1}, 363.48 (M+H), found 364.2.

b) 4-[4-(2-Hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride: Methyl 4-[4-(2-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxylate (400 mg, 1.1 mmol) was treated as described in Example 154, step (b) to give 173 mg (41% yield) of 4-[4-(2-hydroxyphenyl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine hydrochloride. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.81 (s, 3H), 6.92-7.02 (m, 2H), 7.22 (m, 1H), 8.20 (dd, 1H, J=1.7, 7.8 Hz), 8.27 (s, 1H), 8.65 (s, 1H), 9.00 (bs, 2H), 9.41 (bs, 2H), 10.58 (s, 1H);
Mass Spectrum (ESI) m/z calcd. for C_{15}H_{13}N_{2}OS_{1}, 347.48 (M+H), found 348.2.
Example 197

5-Methylthio-4-(6-quinolylamino)thiophene-2-carboxamide hydrochloride

a) Methyl 5-methylthio-4-(6-quinolylamino)thiophene-2-carboxylate: To an oven-dried glass vial with stir bar was added a mixture of 65.2 mg (0.244 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 5.2 mg (9.5 mol %) of palladium (II) acetate, 22.2 mg (14.6 mol %) of racemic-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl (BINAP), 125 mg (0.384 mmol) of cesium carbonate and 50.3 mg (0.349 mmol) of 6-aminquinoline. The vial was transferred to a glove bag, flushed with dry argon and anhydrous toluene (488 µL) was added. The vial was capped with a Teflon-lined screw cap and heated at 100°C for 48 h. To the cooled suspension was added ethyl acetate (4 mL), the mixture filtered (Celite), washing with ethyl acetate (2 x 2 mL), and the solvents removed in vacuo. The resulting residue was purified by chromatography on a 10-g silica SPE column with a gradient of 5-12 % ethyl acetate-CH₂Cl₂ to afford 53.3 mg (66%) of the title compound as a pale yellow resin. 1H-NMR (CDCl₃, 400 MHz) δ 8.77 (dd, 1H, J = 4.2, 1.6 Hz), 8.04 (d, 1H, J = 9.4 Hz), 8.02 (d, 1H, J = 8.4 Hz), 7.90 (s, 1H), 7.41 (dd, 1H, J = 9.0, 2.6 Hz), 7.36 (dd, 1H, J = 8.3, 4.2 Hz), 7.27 (d, 1H, J = 2.6 Hz), 3.92 (s, 3H) and 2.45 (s, 3H). Mass spectrum (ESI, m/z): Calcd. For C₁₅H₁₅N₂O₂S₂, 331.1 (M+H), found 331.2.

b) 5-Methylthio-4-(6-quinolylamino)thiophene-2-carboxamide hydrochloride: Trimethylaluminum (2.0 M in toluene, 0.76 mL, 1.52 mmol) was added dropwise to a suspension of ammonium chloride (85.6 mg, 1.60 mmol) in anhydrous toluene (0.76 mL) under Ar at 0°C. The mixture was stirred at 25°C for 30 min and then 50.2 mg (0.152 mmol) of methyl 5-methylthio-4-(6-quinolylamino)thiophene-2-carboxylate (as prepared in previous step) was added. The reaction mixture was heated slowly to 100°C and stirred for 4 h. The cooled mixture was added to a vigorously stirred slurry of silica gel (3 g) in chloroform (15 mL). The suspension was filtered (Celite) washing with 25% MeOH-CH₂Cl₂ (2 x 5 mL), 50% MeOH-CH₂Cl₂ (2 x 5 mL) and 75% MeOH-CH₂Cl₂ (2 x 5 mL). The combined washings were
concentrated and the resulting residue was purified on a 5-g silica SPE column with a gradient of 10-15% MeOH-CH$_2$Cl$_2$ to afford 42.2 mg (79%) of the title compound as a yellow solid. 1H-NMR (DMSO-d$_6$, 400 MHz) δ 9.39 (br s, 2H), 9.12 (br s, 2H), 8.63 (dd, 1H, J = 4.2, 1.6 Hz), 8.44 (s, 1H), 8.16 (m, 2H), 7.89 (d, 1H, J = 8.5 Hz), 7.54 (dd, 1H, J = 9.1, 2.6 Hz), 7.39 (dd, 1H, J = 8.3, 4.2 Hz), 7.20 (d, 1H, J = 2.5 Hz) and 2.55 (s, 3H). Mass spectrum (ESI, m/z): Calcd. For C$_{15}$H$_{14}$N$_4$S$_2$, 315.1 (M+H), found 315.2.

Example 198

5-Methylthio-4-[(3-phenylphenyl)amino]thiophene-2-carboxamide hydrochloride

a) Methyl 5-methylthio-4-[(3-phenylphenyl)amino]thiophene-2-carboxylate: The same procedure as in Example 197, step (a), was followed using 62.2 mg (0.233 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 4.7 mg (9.0 mol %) of palladium (II) acetate, 20.0 mg (13.8 mol %) of racemic-BINAP, 140 mg (0.430 mmol) of cesium carbonate, 48.2 mg (0.285 mmol) of 3-aminobiphenyl and 466 μL of toluene, and chromatographed as before using 20-40% CH$_2$Cl$_2$-hexane to afford 52.3 mg (63%) of the title compound as a yellow resin. 1H-NMR (CDCl$_3$, 400 MHz) δ 7.81 (s, 1H), 7.61 (m, 2H), 7.46 (m, 2H), 7.38 (m, 2H), 7.21 (m, 2H), 7.03 (m, 1H), 6.22 (s, 1H), 3.90 (s, 3H), 2.43 (s, 3H). Mass spectrum (ESI, m/z): Calcd. For C$_{19}$H$_{17}$NO$_2$S$_2$, 356.1 (M+H), found 356.2.

b) 5-Methylthio-4-[(3-phenylphenyl)amino]thiophene-2-carboxamide hydrochloride: The same procedure as in Example 197, step (b) was followed using 46.4 mg (0.131 mmol) of methyl 5-methylthio-4-[(3-phenylphenyl)amino]thiophene-2-carboxylate (as prepared in previous step), 0.76 mL of trimethylaluminum (2.0 M in toluene, 1.57 mmol), 87.7 mg of ammonium chloride (1.64 mmol) and 0.79 mL of toluene, and purified on a 5-g silica SPE column with 5-10% MeOH-CH$_2$Cl$_2$ to afford 46.8 mg (95%) of the title compound as a yellow foam. 1H-NMR (DMSO-d$_6$, 400 MHz) δ 9.04 (br s, 4H), 8.10 (s, 1H), 8.06 (s, 1H), 7.62 (m, 2H), 7.46 (m, 2H), 7.35 (m, 2H), 7.19 (t, 1H, J = 1.9 Hz), 7.12 (d, 1H, J = 8.2 Hz), 6.95 (dd, 1H, J = 7.8,
1.9 Hz), 2.53 (s, 3H). Mass spectrum (ESI, m/z): Calcd. For C_{18}H_{17}N_{3}S_{2}, 340.1 (M+H), found 340.2.

Example 199

5-Methylthio-4-(3-quinolylamino)thiophene-2-carboxamidine hydrochloride

5

a) **Methyl 5-methylthio-4-(3-quinolylamino)thiophene-2-carboxylate:** The same procedure as in Example 197, step (a) was followed using 104 mg (0.389 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 7.1 mg (8.1 mol %) of palladium (II) acetate, 29.3 mg (12.1 mol%) of racemic-BINAP, 192 mg (0.589 mmol) of cesium carbonate, 70.5 mg (0.489 mmol) of 3-aminooquinoline and 778 µL of toluene, and chromatographed as before using 3-8% ethyl acetate-CH_{2}Cl_{2} to afford 34.4 mg (27%) of the title compound as a yellow resin. \(^{1}\)H-NMR (CDCl_{3}, 400 MHz) δ 8.73 (d, 1H, J = 2.5 Hz), 8.04 (d, 1H, J = 8.2 Hz), 7.85 (d, 1H, J = 4.0 Hz), 7.71 (d, 1H, J = 7.9 Hz), 7.62 (m, 1H), 7.56 (m, 2H), 6.34 (s, 1H), 3.93 (s, 3H) and 2.46 (s, 3H). Mass spectrum (ESI, m/z): Calcd. For C_{16}H_{14}N_{2}O_{2}S_{2}, 331.1 (M+H), found 331.3.

b) **5-Methylthio-4-(3-quinolylamino)thiophene-2-carboxamidine hydrochloride:** The same procedures as in Example 197, step (b) was followed using 32.3 mg (0.0977 mmol) of methyl 5-methylthio-4-(3-quinolylamino)thiophene-2-carboxylate (as prepared in previous step), 0.586 mL of trimethylaluminum (2.0 M in toluene, 1.17 mmol) and 65.8 mg of ammonium chloride (1.26 mmol) and 0.59 mL of toluene and purified on a 5-g silica SPE column with 5-12% MeOH-CH_{2}Cl_{2} to afford, after concentration once from MeOH-MeCN (1:1), 17.3 mg (51%) of the title compound as a light tan crystalline solid. \(^{1}\)H-NMR (DMSO-d_{6}, 400 MHz) δ 9.09 (br s, 4H), 8.79 (s, 1H), 8.56 (s, 1H), 8.12 (s, 1H), 7.89 (m, 1H), 7.79 (m, 1H), 7.56 (s, 1H), 7.50 (m, 2H) and 2.55 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C_{15}H_{14}N_{4}S_{2}, 315.1 (M+H), found 315.4.

Example 200

5-Methylthio-4-(pyrimidin-2-ylamino)thiophene-2-carboxamidine hydrochloride
a) **Methyl 5-methylthio-4-(pyrimidin-2-ylamino)thiophene-2-carboxylate**: The same procedure as in Example 197, step (a) was followed using 50.9 mg (0.191 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 2.7 mg (6.3 mol %) of palladium (II) acetate, 11.3 mg (9.5 mol %) of racemic-BINAP, 101 mg (0.310 mmol) of cesium carbonate, 25.9 mg (0.270 mmol) of 2-aminopyrimidine and 381 μL of dioxane, and chromatographed as before using 5-10% ethyl acetate-hexane to afford 16.7 mg (31%) of the title compound as a yellow crystalline solid: 1H-NMR (CDCl₃, 400 MHz) δ 8.72 (s, 1H), 8.49 (d, 1H, J = 4.8 Hz), 6.80 (t, 1H, J = 4.8 Hz), 3.92 (s, 3H), 2.42 (s, 3H) and 1.28 (brs, 2H). Mass spectrum (ESI, m/z): Calcd. for C₁₁H₁₁N₃O₂S₂, 282.0 (M+H), found 282.3.

b) **5-Methylthio-4-(pyrimidin-2-ylamino)thiophene-2-carboxamidine hydrochloride**: The same procedure as in Example 197, step (b) was followed using 15.2 mg (0.0540 mmol) of methyl 5-methylthio-4-(pyrimidin-2-ylamino)thiophene-2-carboxylate (as prepared in previous step), 0.324 mL or trimethylaluminum (2.0 M in toluene, 0.648 mmol) and 36.4 mg of ammonium chloride (0.680 mmol) and 0.32 mL of toluene, and purified on a 2-g silica SPE column with 5-15% MeOH-CH₂Cl₂ to afford, after concentration once from MeOH-MeCN (1:10), 11.4 mg (70%) of the title compound as a light yellow crystalline solid. ¹H-NMR (DMSO-d₆, 300 MHz) δ 9.24 (br s, 2H), 8.85 (br s, 2H), 8.45 (d, 1H, J = 4.8 Hz), 8.25 (s, 1H), 6.87 (t, 1H, J = 4.8 Hz) and 2.53 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C₁₀H₁₁N₃S₂, 266.1 (M+H), found 266.2.

Example 201

4-[(4-Cyclohexylphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) **Methyl 4-[(4-cyclohexylphenyl)amino]-5-methylthiothiophene-2-carboxylate**: The same procedure as in Example 197, step (a) was followed using 122 mg (0.457 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 9.9 mg (9.7 mol %) of palladium (II) acetate, 42.3 mg (14.9 mol %) of racemic-BINAP, 206 mg
(0.632 mmol) of cesium carbonate, 102 mg (0.582 mmol) of 4-cyclohexylaniline and 913 µL of toluene, and chromatographed as before using 20-40% CH₂Cl₂-hexane to afford 73.8 mg (45%) of the title compound as a light green resin: \(^1\)H-NMR (CDCl₃, 400 MHz) \(\delta\) 7.74 (s, 1H), 7.15 (d, 2H, \(J = 8.4\) Hz), 6.98 (d, 2H, \(J = 8.4\) Hz), 6.12 (s, 1H), 3.88 (s, 3H), 2.48 (m, 1H), 2.39 (s, 3H), 1.87 (m, 4H), 1.76 (br d, 1H, \(J = 12.5\) Hz), 1.41 (m, 4H) and 1.28 (m, 1H). Mass spectrum (ESI, m/z): Calcd. for C₁₉H₂₃NO₂S₂, 362.1 (M+H), found 362.4.

b) 4-[(4-Cyclohexylphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride: The same procedure as in Example 197, step (b) was followed using 70.2 mg (0.194 mmol) of methyl 4-[(4-cyclohexylphenyl)amino]-5-methylthiothiophene-2-carboxylate (as prepared in previous step), 0.970 mL or trimethylaluminum (2.0 M in toluene, 1.94 mmol), 109 mg of ammonium chloride (2.04 mmol) and 0.97 mL of toluene, and purified on a 10-g silica SPE column with 4-8% MeOH-CH₂Cl₂ to afford 57.7 mg (78%) of the title compound as a yellow foam. \(^1\)H-NMR (DMSO-d₆, 400 MHz) \(\delta\) 8.45 (br s, 4H), 7.97 (s, 1H), 7.86 (s, 1H), 7.08 (d, 2H, \(J = 8.5\) Hz), 6.92 (d, 2H, \(J = 8.5\) Hz), 2.48 (s, 3H), 1.65-1.85 (m, 5H) and 1.35 (m, 5H). Mass spectrum (ESI, m/z): Calcd. for C₁₈H₂₃N₂S₂, 346.1 (M+H), found 346.4.

Example 202

Methyl 4-amino-5-methylthiothiophene-2-carboxylate

To a pressure tube (Ace Glass, Vineland, NJ) containing 1.0 g (4.30 mmol) of 5-(methoxy carbonyl)-2-methylthiothiophene-3-carboxylic acid (as prepared in Example 95), 1.01 mL (1.1 equiv, 4.73 mmol) of diphenyl phosphoryl azide, and 1.57 mL (2.1 equiv, 9.03 mmol) of \(N,N\)-diisopropylethylamine was charged 7 mL of \(t\)-butanol. The resultant mixture was sealed and heated to 80°C in an oil bath for 6 h. The dark reaction mixture was cooled to ambient temperature and concentrated *in vacuo*. The crude oil was dissolved in 3 mL of CH₂Cl₂ and then treated with 2 mL of 1:1 CH₂Cl₂-trifluoroacetic acid followed by 0.5 mL H₂O. After 6 h, the mixture
was concentrated in vacuo, dissolved in 50 mL of CH$_2$Cl$_2$, washed with sat'd. NaHCO$_3$, dried (Na$_2$SO$_4$), and eluted through a pad of silica gel with 50% ethyl acetate-hexanes. The solvent was concentrated in vacuo and the crude amine was purified by preparative thin layer chromatography (20% ethyl acetate-hexanes, 2000 µm SiO$_2$ gel) to yield 210 mg (24%) of methyl 4-amino-5-methylthiothiophene-2-carboxylate as a honey-colored oil. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.28 (s, 3H), 3.77 (s, 3H), 5.36 (bs, 2H), 7.24 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_7$H$_9$NO$_2$S$_2$, 204.02 (M+H), found 204.0.

Example 203

Methyl 4-{(aminothioxomethyl)amino}-5-methylthiothiophene-2-carboxylate

To a stirring 5 mL biphasic CH$_2$Cl$_2$-NaHCO$_3$ (1:1, v/v) mixture of 98 mg (0.48 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was added 43 µL (1.2 equiv, 0.57 mmol) of thiophosgene (Aldrich Chemical, Milwaukee, WI). The reaction was stirred vigorously overnight, diluted with CH$_2$Cl$_2$ (50 mL), and the layers separated. The organic layer was washed with NaHCO$_3$ (1x15 mL), brine (1x15mL), and dried (Na$_2$SO$_4$). Concentration of the solvent in vacuo yielded the crude isothiocyanate, which was dissolved in 5 mL of 2M NH$_3$ in MeOH and stirred overnight. The reaction was concentrated to ½ volume and filtered. The filtered solids were washed with acetone and dried, yielding 79.8 mg (63.4%) of methyl 4-{(aminothioxomethyl)amino}-5-methylthiothiophene-2-carboxylate as a light tan solid. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.51 (s, 3H), 3.81 (s, 3H), 7.41 (bs, 2H), 8.03 (s, 1H) and 9.27 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{8}$H$_{10}$N$_{2}$O$_{2}$S$_{3}$, 263.00 (M+H), found 263.2.

Example 204

5-Methylthio-4-{(4-phenyl(1,3-thiazol-2-yl))amino}thiophene-2-
carboxamidine

a) Methyl 5-methylthio-4-{(4-phenyl(1,3-thiazol-2-yl))amino}thiophene-2-
carboxylate: To a 25-mL round bottom flask
containing 40 mg (0.15 mmol) of methyl 4-[(aminothioxomethyl)amino]-5-methylthiothiophene-2-carboxylate and 30.3 mg (1 equiv, 0.15 mmol) of bromoacetophenone was added 2 mL of acetone, and the resultant mixture was heated to reflux for 18 h. The reaction was cooled to room temperature and filtered to give 50 mg (92%) of methyl 5-methylthio-4-[(4-phenyl(1,3-thiazol-2-yl)]amino]thiophene-2-carboxylate, which was used without further purification. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.49 (s, 3H), 3.84 (s, 3H), 7.09 (s, 1H), 7.26-7.48 (m, 3H), 7.85 (m, 2H), 8.63 (s, 1H), 10.06 (bs, 1H). Mass spectrum (ESI, m/z): Caled. for C$_{15}$H$_{14}$N$_2$O$_2$S$_3$, 363.03 (M+H), found 363.4.

b) 5-Methylthio-4-[(4-phenyl(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamidine: Using a procedure similar to that of Example 154, step (b), 47 mg (0.13 mmol) of methyl 5-methylthio-4-[(4-phenyl(1,3-thiazol-2-yl)]amino]thiophene-2-carboxylate was allowed to react with 0.5 mL (8 equiv, 1.04 mmol) of the AlMe$_3$/NH$_4$Cl reagent and purified by preparative thin layer chromatography (20% MeOH-CHCl$_3$-sat’d. NH$_3$, 500 µm SiO$_2$ gel plate) to give 19 mg (42%) of 5-methylthio-4-[(4-phenyl(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamidine as a yellow solid. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.43 (s, 3H), 7.27-7.42 (m, 4H), 7.90 (d, 2H, J = 7.1 Hz), 8.41 (s, 1H). Mass spectrum (ESI, m/z): Caled. for C$_{15}$H$_{14}$N$_4$S$_3$, 347.05 (M+H), found 347.1.

Example 205

5-Methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamidine

a) Methyl 5-methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxylate: Using a procedure similar to Example 204, step (a) 53 mg (0.2 mmol) of methyl 4-[(aminothioxomethyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 55.6 mg (0.2 mmol) of 4-phenyl-bromoacetophenone for 3 h to afford 57 mg (65%) of methyl 5-methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxylate. 1H NMR (DMSO-d$_6$, 300 MHz) δ 2.51 (s, 3H), 3.86 (s, 3H), 6.93 (s, 1H rotomer), 7.10 (s, 1H rotomer), 7.27 (s, 1H rotomer), 7.37-7.50 (m, 3H rotomer), 7.72-7.76 (m, 4H rotomer), 8.4 (d, 2H,
8.4 Hz), 8.66 (s, 1H rotomer), 10.10 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C₂₂H₁₈N₂O₂S₃, 439.06 (M+H), found 439.2.

b) 5-Methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamidine: Using a procedure similar to that of Example 154, step (b), 57 mg (0.12 mmol) of methyl 5-methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxylate was allowed to react with 6.7 equiv (0.87 mmol) of the AlMe₃/NH₄Cl reagent and purified by preparative thin layer chromatography (20% MeOH-CHCl₃-sat’d. NH₃, 500 μm SiO₂ plate) to give 20.7 mg (40.7%) of 5-methylthio-4-[(4-(4-phenylphenyl)(1,3-thiazol-2-yl)]amino]thiophene-2-carboxamidine. ¹H NMR (DMSO-d₆, 400 MHz) δ 2.51 (s, 3H), 6.93 (s, 1H), 7.10 (s, 1H), 7.27 (s, 1H), 7.35-7.50 (m, 4H), 7.72-7.76 (m, 4H), 7.94-7.96 (m, 2H), 8.66 (s, 1H), 10.11 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C₂₁H₁₈N₄O₂S₃, 423.08 (M+H), found 423.2.

Example 206

4-[(5-Methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxamidine

a) Methyl-4-[(5-methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxylate: Using a procedure similar to Example 204, step (a), 51 mg (0.19 mmol) of methyl 4-[(aminothioxymethyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 41.4 mg (0.38 mmol) of 2-bromopropiophenone (Aldrich Chemical Co., Milwaukee, WI) in 2 mL of DMF for 4 h. Concentration in vacuo of the reaction mixture afforded 73 mg (100%) of methyl-4-[(5-methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C₁₇H₁₆N₂O₂S₃, 377.05 (M+H), found 377.2.

b) 4-[(5-Methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxamide: Using a procedure similar to Example 154, step (b), 73 mg (0.19 mmol) of methyl-4-[(5-methyl-4-phenyl(1,3-thiazol-2-yl)]amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (1.5 mmol) of the AlMe₃/NH₄Cl reagent and purified by preparative thin layer chromatography (20 %MeOH-CHCl₃-sat’d.
NH₃, 500 μm SiO₂ plate) to afford 17.9 mg (26 %) of 4-[(5-methyl-4-phenyl(1,3-thiazol-2-yl)amino]-5-methylthiothiophene-2-carboxamidine. ¹H NMR (DMSO-d₆, 300 MHz): δ 2.40 (s, 3H), 2.51 (s, 3H rotomer), 2.73 (s, 3H rotomer), 7.29-7.44 (m, 2H rotomer), 7.64-7.73 (m, 3H rotomer), 7.95 (s, 1H rotomer), 8.06 (s, 1H rotomer). Mass spectrum (ESI, m/z): Calcd. for C₇₁H₁₁₂N₆S₇, 361.06 (M+H), found 361.2.

Example 207

4-[[4-Hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxamide
d

a) Methyl 4-[[4-hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxylate: Using a procedure similar to Example 204, step (a), 56 mg (0.21 mmol) of methyl 4-[(aminothioxomethyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 40 mg (0.21 mmol) of bromotrifluoroacetone (Aldrich Chemical Co., Milwaukee, WI) to afford 40.3 mg (54 %) of methyl 4-[[4-hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C₇₁H₁₁₂N₆S₇, 373.00 (M+H), found 373.0.

b) 4-[[4-Hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxamide: Using a procedure similar to Example 154, step (b), 40 mg (0.11 mmol) of methyl 4-[[4-hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.89 mmol) of the AlMe₃/NH₄Cl reagent and purified by preparative thin layer chromatography (20 %-MeOH-CHCl₃-sat’d. NH₃, 500 μm SiO₂ plate) to afford 11 mg (28 %) of 4-[[4-hydroxy-4-(trifluoromethyl)](1,3-thiazolin-2-yl)amino]-5-methylthiothiophene-2-carboxamide as a ca.1:1 mixture of cyclized aminal and open imine tautomers. ¹H NMR (DMSO-d₆, 300 MHz) δ 2.73 (s, 3H tautomer), 2.89 (s, 3H tautomer), 3.36 (d, 2H, J=6.5 Hz), 3.62 (d, 2H, J=7.2 Hz), 7.95 (s, 1H), 8.36 (bs, 2H), 9.79 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C₁₆H₁₁₁F₃N₄OS₅, 357.01 (M+H), found 357.2.
Example 208

5-Methylthio-4-(2-naphthylamino)thiophene-2-carboxamide

a) Methyl 5-methylthio-4-(2-naphthylamino)thiophene-2-carboxylate: To an oven-dried round bottom flask equipped with Teflon-coated stir bar and rubber septum was added 190 mg (0.93 mmol) of methyl 4-aminoc-5-methylthiothiophene-2-carboxylate, 320 mg (2 equiv, 1.86 mmol) of 2-napthalene boronic acid (Lancaster Synthesis, Windham, NH), and 168 mg (1 equiv, 0.93 mmol) of Cu(OAc)_2 (Aldrich Chemical Co., Milwaukee, WI). The flask was flushed with Ar, then charged with 4 mL CH_2Cl_2 followed by 259 µL (2 equiv, 1.86 mmol) of NEt_3. The mixture was stirred vigorously for 48 h and then filtered through a small pad of SiO_2, eluting with 50 % ethyl acetate-hexanes. Concentration of the solvent in vacuo, and purification of the residue by preparative thin layer chromatography (25 % ethyl acetate-hexanes, 1000 µM SiO_2 plate) afforded 170 mg (55 %) of methyl 5-methylthio-4-(2-naphthylamino)thiophene-2-carboxylate and 54 mg (28 %) of recovered methyl 4-aminoc-5-methylthiothiophene-2-carboxylate. ^1^H NMR (CDCl_3, 400 MHz) δ 2.43 (s, 3H), 3.92 (s, 3H), 6.29 (s, 1H), 7.21 (dd, 1H, J= 2.35, 8.7 Hz), 7.33-7.37 (m, 2H), 7.45 (m, 1H), 7.71 (d, 1H, J=8.2 Hz), 7.78 (m, 2H), 7.88 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C_{17}H_{15}NO_2S_2, 330.06 (M+H), found 330.1.

b) 5-Methylthio-4-(2-naphthylamino)thiophene-2-carboxamide hydrochloride: Using a procedure similar to Example 154, step(b), 730 mg (2.21 mmol) of methyl 5-methylthio-4-(2-naphthylamino)thiophene-2-carboxylate was allowed to react with 8 equiv (17.7 mmol) of the AlMe_3/NH_2Cl reagent and purified by preparative thin layer chromatography (20 %MeOH-CHCl_3-sat’d. NH_3, 1000 µm SiO_2 plate) to afford 5-methylthio-4-(2-naphthylamino)thiophene-2-carboxamide, which was dissolved in 4 mL.of dry MeOH, cooled to 0°C and carefully treated with 1.6 mL(1.5 equiv, 3.31 mmol) of 2M HCl in ether. The reaction was stored at 5°C overnight, then concentrated in vacuo with toluene (3x10mL) and then hexanes (2x10 mL). The yellow solid was dried under vacuum to afford 415 mg (53.6 %) of 5-methylthio-4-(2-naphthylamino)thiophene-2-carboxamide.
hydrochloride. 1H NMR (DMSO-d$_6$, 400 MHz) δ 2.53 (s, 3H), 7.20 (d, 1H, J=2.2 Hz), 7.24-7.31 (m, 2H), 7.38 (m, 1H), 7.69 (d, 1H, 8.1 Hz), 7.75-7.79 (m, 2H), 8.13 (s, 1H), 8.24 (s, 1H), 9.06 (bs, 2H), 9.33 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C$_{16}$H$_{15}$N$_3$S$_2$, 314.08 (M+H), found 314.5.

Example 209

4-[(4-Chlorophenyl)amino]-5-methylthiothiophene-2-carboxamidine

a) **Methyl 4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 66.6 mg (0.32 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 100 mg (2 equiv, 0.64 mmol) of 4-chlorophenyl boronic acid to give 11.8 mg (11.7 %) of methyl 4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxylate and 21 mg (31.5 %) of unreacted starting material. 1H NMR (CDCl$_3$, 400 MHz) δ 2.41 (s, 3H), 3.89 (s, 3H), 6.09 (bs, 1H), 6.94 (d, 2H, J=8.6 Hz), 7.25 (d, 2H, J=8.6 Hz), 7.70 (s, 1H).

b) **4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride:** Using a procedure similar to Example 154, step (b), 11.8 mg (0.037 mmol) of methyl 4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (2.96 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 13 mg (100 %) of 4-[(4-chlorophenyl)amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO-d$_6$, 400 MHz) δ 2.41 (s, 3H), 6.91-6.95 (m, 2H), 7.10-7.13 (m, 2H), 7.64 (s, 1H), 7.93 (s, 1H), 8.67 (bs, 2H), 9.11 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C$_{12}$H$_{12}$ClN$_3$S$_2$, 298.02 (M+H), found 298.1.

Example 210

4-[(3-Methylphenyl)amino]-5-methylthiothiophene-2-carboxamidine

a) **Methyl 4-[(3-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 55.7 mg (0.27 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 73.4 mg (2 equiv, 0.54 mmol) of 3-methylphenyl
boronic acid to give 29.2 mg (36.8 %) of methyl 4-[(3-methyl)amino]-5-
methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 2.35 (s,
3H), 2.40 (s, 3H), 3.89 (s, 3H), 6.11 (bs, 1H), 6.80-6.86 (m, 3H), 7.20 (m, 1H),
7.77 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{18}$H$_{15}$NO$_2$S$_2$, 294.06
(M+H), found 294.1.

b) 4-[(3-Methylphenyl)amino]-5-methylthiothiophene-2-
carboxamidine: Using a procedure similar to Example 154, step (b), 29.2 mg
(0.098 mmol) of methyl 4-[(3-methyl)amino]-5-methylthiothiophene-2-
carboxylate was allowed to react with 8 equiv (0.78 mmol) of the
AlMe$_3$/NH$_4$Cl reagent and purified by preparative thin layer chromatography
(20 %-MeOH-CHCl$_3$-sat’d. NH$_3$, 500 µm SiO$_2$ plate) to afford 27 mg (100 %)
of 4-[(3-methylphenyl)amino]-5-methylthiothiophene-2-carboxamidine. 1H
NMR (CDCl$_3$, 400 MHz) δ 2.24 (s, 3H), 2.50 (s, 3H), 6.65 (d, 1H, J=7.3 Hz),
6.74-6.76 (m, 2H), 7.10 (m, 1H), 7.88 (s, 1H), 7.97 (s, 1H), 9.07 (bs, 3H).
Mass spectrum (ESI, m/z): Calcd. for C$_{19}$H$_{15}$N$_3$S$_2$, 278.08 (M+H), found
278.2.

Example 211

4-[(3-Methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamidine

a) Methyl-4-[(3-methoxyphenyl)amino]-5-methylthiothiophene-
2-carboxylate: Using a procedure similar to Example 208, step (a), 73.2 mg
(0.35 mmol) of methyl 4-aminoo-5-methylthiothiophene-2-carboxylate was
allowed to react with 109 mg (2 equiv, 0.70 mmol) of 3-methoxyphenyl
boronic acid to give 25.2 mg (23 %) of methyl 4-[(3-methoxyphenyl)amino]-
5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 2.40 (s,
3H), 3.81 (s, 3H), 3.89 (s, 3H), 6.12 (s, 1H), 6.43-6.63 (m, 2H), 7.20 (m, 1H),
7.78 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{19}$H$_{15}$NO$_3$S$_2$, 310.06
(M+H), found 310.1.

b) 4-[(3-Methylphenyl)amino]-5-methylthiothiophene-2-
carboxamidine hydrochloride: Using a procedure similar to Example 154,
step (b), 25.2 mg (0.081 mmol) of methyl 4-[(3-methyl)amino]-5-
methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.64
mmol) of the AlMe3/NH4Cl reagent to afford 27 mg (100%) of 4-[(3-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO, 400 MHz) δ 2.49 (s, 3H), 3.71 (s, 3H), 6.41 (dd, 1H, J=2.1, 8.0 Hz), 6.49 (m, 1H), 6.50-6.54 (m, 1H), 7.12 (m, 1H), 7.97 (s, 1H), 8.01 (s, 1H), 8.88 (bs, 2H), 9.23 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C13H13N3OS2, 294.07 (M+H), found 294.1.

Example 212

4-[[3-(Methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[[3-(methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate: Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 118 mg (2 equiv, 0.72 mmol) of 3-isopropylphenyl boronic acid to give 22.6 mg (19.5%) of methyl 4-[(3-methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl3, 400 MHz) δ 1.27 (d, 6H, J=6.9 Hz), 2.40 (s, 3H), 2.89 (m, 1H), 3.88 (s, 3H), 6.15 (s, 1H), 6.86-6.89 (m, 3H), 7.24 (m, 1H), 7.77 (s, 1H).

b) 4-[[3-(Methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine: Using a procedure similar to Example 154, step (b), 22.6 mg (0.07 mmol) of methyl 4-[[3-(methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.56 mmol) of the AlMe3/NH4Cl reagent to afford 18.9 mg (78.8%) of 4-[[3-(methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO-d6, 400 MHz) δ 1.18 (d, 6H, J=9.2 Hz), 2.51 (s, 3H), 2.81 (m, 1H), 6.71-6.77 (m, 2H), 6.85 (s, 1H), 7.14 (m, 1H), 7.98 (s, 1H), 8.32 (s, 1H), 8.88 (bs, 2H), 9.23 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C15H19N3S2, 306.11 (M+H), found 306.2.

Example 213

5-Methylthio-4-[[3-nitrophenyl]amino]thiophene-2-carboxamidine

a) Methyl 5-methylthio-4-[[3-nitrophenyl]amino]thiophene-2-carboxylate: Using a procedure similar to Example 208, step (a), 74.4 mg
(0.36 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 120 mg (2 equiv, 0.72 mmol) of 3-nitrophenyl boronic acid to give 14.5 mg (12.4 %) of methyl 5-methylthio-4-[(3-nitrophenyl)amino]thiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 2.45 (s, 3H), 3.93 (s, 3H), 6.21 (s, 1H), 7.41-7.47 (m, 2H), 7.73-7.78 (m, 3H).

b) 5-Methylthio-4-[(3-nitrophenyl)amino]thiophene-2-carboxamidine: Using a procedure similar to Example 154, step (b), 14.5 mg (0.04 mmol) of methyl 5-methylthio-4-[(3-nitrophenyl)amino]thiophene-2-carboxylate was allowed to react with 8 equiv (0.35 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 4.3 mg (34.8 %) of 5-methylthio-4-[(3-nitrophenyl)amino]thiophene-2-carboxamidine. Mass spectrum (ESI, m/z): Calcd. for C$_{13}$H$_{12}$N$_4$O$_2$S$_2$, 309.05 (M+H), found 309.2.

Example 214

4-[[4-(Methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[[4-(methylthethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate: Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 118 mg (2 equiv, 0.72 mmol) of 4-isopropylphenyl boronic acid to give 14.5 mg (12.5 %) of methyl 4-[[4-(methylthethylphenyl)amino]-5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 1.26 (d, 6H, J=6.2 Hz), 2.39 (s, 3H), 2.89 (m, 1H), 3.89 (s, 3H), 6.98-7.01 (m, 2H), 7.17-7.19 (m, 2H), 7.73 (s, 1H).

b) 4-[[4-(Methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine: Using a procedure similar to Example 154, step (b), 14.5 mg (0.045 mmol) of methyl 4-[[4-(methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.36 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 11.4 mg (74 %) of 4-[[4-(methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO-d$_6$, 400 MHz) δ 1.17 (d, 6H, J=9.2 Hz), 2.51 (s, 3H), 2.81 (m, 1H), 6.92 (d, 2H, J=11.4 Hz), 7.10 (d, 2H, J=11.2 Hz), 7.88 (s, 1H), 7.96 (s,
1H), 8.89 (bs, 2H), 9.22 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C₁₂H₁₉N₃S₂, 306.11 (M+H), found 306.2.

Example 215

4-[[3,4-Dimethylphenyl]amino]-5-methylthiophene-2-carboxamidine

a) **Methyl 4-[[3,4-dimethylphenyl]amino]-5-methylthiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiophene-2-carboxylate was allowed to react with 108 mg (2 equiv, 0.72 mmol) of 3,4-dimethylphenyl boronic acid to give 135.9 mg (32.4 %) of methyl 4-[[3,4-dimethylphenyl]amino]-5-methylthiophene-2-carboxylate. \(^1\)H NMR (CDCl₃, 400 MHz) δ 2.24 (s, 3H), 2.26 (s, 3H), 2.38 (s, 3H), 3.88 (s, 3H), 6.11 (bs, 1H), 6.80 – 6.84 (m, 2H), 7.07 (d, 1H, J=7.9 Hz), 7.71 (s, 1H).

b) **4-[[3,4-Dimethylphenyl]amino]-5-methylthiophene-2-carboxamidine:** Using a procedure similar to Example 154, step (b), 35.6 mg (0.116 mmol) of methyl 4-[[3,4-dimethylphenyl]amino]-5-methylthiophene-2-carboxylate was allowed to react with 8 equiv (0.93 mmol) of the AlMe₃/NH₄Cl reagent to afford 26.1 mg (68.5 %) of 4-[[3,4-dimethylphenyl]amino]-5-methylthiophene-2-carboxamidine. \(^1\)H NMR (DMSO-d₆, 400 MHz) δ 2.13 (s, 3H), 2.16 (s, 3H), 2.51 (s, 3H), 6.69-6.78 (m, 2H), 6.99 (d, 1H, J=10.8 Hz), 7.76 (s, 1H), 7.91 (s, 1H), 8.82 (bs, 2H), 9.17 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C₁₄H₁₇N₃S₂, 292.09 (M+H), found 292.2.

Example 216

5-Methylthio-4-[[4-phenylphenyl]amino]thiophene-2-carboxamidine

a) **Methyl 5-methylthio-4-[[4-phenylphenyl]amino]thiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiophene-2-carboxylate was allowed to react with 142.5 mg (2 equiv, 0.72 mmol) of 4-phenylphenyl boronic acid to give 24.5 mg (19.1 %) of methyl 4-[[4-phenylphenyl]amino]-
5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 2.45 (s, 3H), 3.92 (s, 3H), 6.38 (bs, 1H), 7.08-7.14 (m, 2H), 7.33 (m, 1H), 7.43-7.46 (m, 2H), 7.54-7.60 (m, 4H), 7.82 (s, 1H).

b) **5-Methylthio-4-[(4-phenylphenyl)amino]thiophene-2-carboxamidine:** Using a procedure similar to Example 154, step (b), 24.5 mg (0.07 mmol) of methyl 4-[(4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.56 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 16.9 mg (64.1 %) of 5-methylthio-4-[(4-phenylphenyl)amino]thiophene-2-carboxamidine. 1H NMR (DMSO-d$_6$, 400 MHz) δ 2.51 (s, 3H), 7.03 (d, 2H, J=8.6 Hz), 7.26-7.61 (m, 7H), 8.04 (s, 1H), 8.15 (s, 1H), 8.88 (bs, 2H), 9.25 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C$_{19}$H$_{17}$N$_3$S$_2$, 340.09 (M+H), found 340.2.

Example 217

4-[(3-Fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxamidine

a) **Methyl 4-[(3-fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate was allowed to react with 155.5 mg (2 equiv, 0.72 mmol) of 3-fluoro-4-phenylphenyl boronic acid to give 50.6 mg (41.6 %) of methyl 4-[(3-fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 2.44 (s, 3H), 3.91 (s, 3H), 6.19 (s, 1H), 6.78-6.86 (m, 2H), 7.32-7.39 (m, 2H), 7.73-7.47 (m, 2H), 7.55 (d, 1H, J=6.9 Hz), 7.82 (s, 1H).

b) **4-[(3-Fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxamidine:** Using a procedure similar to Example 154, step (b), 50.6 mg (0.13 mmol) of methyl 4-[(3-fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (1.08 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 39 mg (76.1 %) of 4-[(3-fluoro-4-phenylphenyl)amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO-d$_6$, 400 MHz) δ 2.51 (s, 3H), 6.75-6.87 (m, 2H), 7.30-7.50 (m, 6H),
8.06 (s, 1H), 8.37 (s, 1H), 8.90 (bs, 2H), 9.27 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C_{18}H_{16}FN_{3}S_{2}, 358.08 (M+H), found 358.2.

Example 218

4-(2H-Benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxamidine

a) **Methyl 4-(2H-benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiophene-2-carboxylate was allowed to react with 119.4 mg (2 equiv, 0.72 mmol) of 3,4-methylenedioxyphenyl boronic acid to give 24.4 mg (20.9%) of methyl 4-(2H-benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxylate. ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 3.87 (s, 3H), 5.96 (s, 2H), 6.00 (bs, 1H), 6.52 (dd, 1H, J=2.3, 8.3 Hz), 6.63 (d, 1H, J=2.2 Hz), 6.76 (d, 1H, J=8.3 Hz), 7.59 (s, 1H).

b) **4-(2H-Benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxamidine:** Using a procedure similar to Example 154, step (b), 24.4 mg (0.075 mmol) of methyl 4-(2H-benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxylate was allowed to react with 8 equiv (0.6 mmol) of the AlMe₃/Na₂Cl reagent to afford 7.7 mg (29.7%) 4-(2H-benzol[d]1,3-dioxolen-5-ylamino)-5-methylthiophene-2-carboxamidine. ¹H NMR (DMSO-d₆, 400 MHz) δ 2.51 (s, 3H), 5.95 (s, 2H), 6.46 (dd, 1H, J=3.0, 11.2 Hz), 6.65 (d, 1H, J=2.8 Hz), 6.79 (d, 1H, J=11.0 Hz), 7.80 (s, 1H), 7.87 (s, 1H), 8.91 (bs, 2H), 9.24 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C_{13}H_{13}N_{3}O_{2}S_{2}, 308.05 (M+H), found 308.2.

Example 219

4-[(4-Butylphenyl)amino]-5-methylthiophene-2-carboxamidine

a) **Methyl 4-[(4-butylphenyl)amino]-5-methylthiophene-2-carboxylate:** Using a procedure similar to Example 208, step (a), 74.4 mg (0.36 mmol) of methyl 4-amino-5-methylthiophene-2-carboxylate was allowed to react with 128 mg (2 equiv, 0.72 mmol) of 4-butylphenyl boronic
acid to give 22.2 mg (18.3 %) of methyl 4-[(4-butylphenyl)amino]-5-methylthiothiophene-2-carboxylate. 1H NMR (CDCl$_3$, 400 MHz) δ 0.97 (t, 2H, J=7.4 Hz), 1.38 (m, 2H), 1.59 (m, 2H obscured by water), 2.39 (s, 3H), 2.58 (t, 2H, J=7.6 Hz), 3.90 (s, 3H), 6.12 (bs, 1H), 6.97 (d, 2H, J=8.2 Hz), 7.12 (d, 2H, J=8.4 Hz), 7.73 (s, 1H).

b) 4-[(4-Butylphenyl)amino]-5-methylthiothiophene-2-carboxamidine: Using a procedure similar to Example 154, step (b), 22.2 mg (0.06 mmol) of methyl 4-[(4-butylphenyl)amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (0.52 mmol) of the AlMe$_3$/NH$_4$Cl reagent to afford 18.9 mg (88 %) of 4-[(4-butylphenyl)amino]-5-methylthiothiophene-2-carboxamidine. 1H NMR (DMSO-d_6, 400 MHz) δ 0.89 (t, 2H, J=9.7 Hz), 1.23-1.33 (m, 2H), 1.51 (m, 2H), 2.47-2.50 (m, 2H obscured by DMSO-d_6), 2.51 (s, 3H), 6.90 (d, 2H, J=11.3 Hz), 7.05 (d, 2H, J=11.2 Hz), 7.86 (s, 1H), 7.94 (s, 1H), 8.78 (bs, 2H), 9.21 (bs, 2H). Mass spectrum (ESI, m/z): Calcd. for C$_{16}$H$_{21}$N$_3$S$_2$, 320.13 (M+H), found 320.2.

Example 220

5-Methylthio-4-[benzylamino]thiophene-2-carboxamidine

da) Methyl-5-methylthio-4-[benzylamino]thiophene-2-carboxylate: To a 2 dram vial equipped with a stir bar and septum cap was weighed 60 mg (0.29 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate and 30.7 mg (0.29 mmol) of benzaldehyde. The vial was charged with 1 mL CH$_2$Cl$_2$-DMF (2:1, v/v) and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)$_3$ was added. The reaction was flushed with Ar and allowed to stir for 48 h. At this time 2 mL of CH$_3$OH was added, the reaction stirred an additional 15 min then diluted with 20 ml of CH$_2$Cl$_2$. The organic layer was washed with water (2x20 mL), dried (Na$_2$SO$_4$), and concentrated in vacuo into an oven-dried 2 dram vial to give the crude methyl-5-methylthio-4-[benzylamino]thiophene-2-carboxylate together with unreduced imine. The crude reaction mixture was converted to the amidine without further purification. Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{13}$NO$_2$S$_2$, 294.06 (M+H), found 292.2 (imine), 294.2.
b) 5-Methylthio-4-(benzylamino)thiophene-2-carboxamidine:

To a 2-dram vial containing a stir bar and methyl-5-methylthio-4-(benzylamino)thiophene-2-carboxylate (assume 0.29 mmol) was added 2 mL of toluene, followed by 8 equiv (2.32 mmol) of the AlMe3/NH4Cl reagent. The resultant yellow mixture was heated to 110°C for 3 h, cooled to ambient temperature, and then added to a slurry of 1 g of SiO2 gel in 10 mL of CHCl3. After stirring for 15 min, the slurry was eluted through a 15-mL sintered glass funnel containing a pad of silica gel with 50% CHCl3 - CH3OH. The solvent was removed in vacuo and the residue was triturated with 10% CH3OH - CHCl3 and filtered. Removal of the solvent in vacuo gave the crude product which was purified by preparative thin layer chromatography (500 μm SiO2, 20% CH3OH-CHCl3-sat’d. NH3) 14.8 mg (18.3% from methyl 4-amino-5-methyleneithiophene-2-carboxylate) of 5-methylthio-4-[benzylamino]thiophene-2-carboxamidine. 1H NMR (DMSO-d6, 400 MHz) δ 2.49 (s, 3H), 4.35 (d, 2H, J=6.7 Hz), 5.91 (t, 1H, J=6.8 Hz), 7.20-7.38 (m, 6H). Mass spectrum (ESI, m/z): Calcd. for C13H13N3S2, 278.08 (M+H), found 278.3.

Example 221

4-(Indan-5-ylamino)-5-methylthiophene-2-carboxamidine

a) Methyl 4-(indan-5-ylamino)-5-methylthiophene-2-carboxylate: Using the procedure described in Example 220, step (a), 60 mg (0.29 mmol) of methyl 4-amino-5-methylthiophene-2-carboxylate, 42.3 mg (0.29 mmol) of 5-indancarboxaldehyde, and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)3 were allowed to react to give methyl 4-(indan-5-ylamino)-5-methylthiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C13H19NO3S2, 334.09 (M+H), found 332.3 (imine), 333.4.

b) 4-(Indan-5-ylamino)-5-methylthiophene-2-carboxamidine: Using the procedure described in Example 220, step (b), 22.0 mg (27.3% from methyl 4-amino-5-methylthiophene-2-carboxylate) of 4-(indan-5-ylamino)-5-methylthiophene-2-carboxamidine was obtained. 1H NMR (DMSO-d6, 400 MHz) δ 1.94-2.01 (m, 2H), 2.49 (s, 3H), 2.77-2.82 (m, 4H), 4.29 (d, 2H, J=5.6 Hz), 5.78 (t, 1H, J=8.1 Hz), 7.08 (d, 1H, J=7.8 Hz),
7.14 (d, 1H, J=7.5 Hz), 7.20 (s, 1H), 7.23 (s, 1H). Mass spectrum (ESI, m/z):
Calcd. for C_{16}H_{19}N_{3}S_{2}, 318.11 (M+H), found 318.3.

Example 222

4-(2,3-Dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxamide

a) Methyl 4-(2,3-dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxylate: Using the procedure described in Example 220, step (a), 60 mg (0.29 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate, 42.9 mg (0.29 mmol) of 2,3-dihydrobenzo[b]furan-5-carboxaldehyde, and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)₃ were allowed to react to give methyl 4-(2,3-dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C_{16}H_{17}NO_{3}S_{2}, 336.07 (M+H), found 334.3 (imine), 335.3.

b) 4-(2,3-Dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxamide: Using the procedure described in Example 220, step (b), 21.8 mg (23.5% from methyl 4-amino-5-methylthiothiophene-2-carboxylate) of 4-(2,3-dihydrobenzo[b]furan-5-ylamino)-5-methylthiothiophene-2-carboxamide was obtained. ¹H NMR (DMSO-d₆, 400 MHz) δ 2.49 (s, 3H), 3.13 (t, 2H, J=8.7 Hz), 4.24 (d, 2H, J=6.6 Hz), 4.48 (t, 2H, J=8.7 Hz), 5.69 (t, 1H, J=6.7 Hz), 6.68 (d, 1H, J=12.4 Hz), 7.06 (d, 1H, J=7.4 Hz), 7.21 (s, 1H), 7.26 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C_{15}H_{17}N_{3}OS_{2}, 320.09 (M+H), found 320.3.

Example 223

5-Methylthio-4-[(2-phenylimidazol-4-yl)amino]thiophene-2-carboxamide

a) Methyl 5-methylthio-4-[(2-phenylimidazol-4-yl)amino]thiophene-2-carboxylate: Using the procedure described in Example 220, step (a), 60 mg (0.29 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate, 49.9 mg (0.29 mmol) of 4-formyl-2-phenylimidazole, and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)₃ were allowed to react to give
methyl 5-methylthio-4-[(2-phenylimidazol-4-yl)amino]thiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C_{17}H_{17}N_{3}S_{2}, 360.08 (M+H), found 360.0.

b) 5-Methylthio-4-[(2-phenylimidazol-4-yl)amino]thiophene-2-carboxamidine: Using the procedure described in Example 220, step (b), 30.9 mg (30% from methyl 4-amino-5-methylthiothiophene-2-carboxylate) of 5-methylthio-4-[(2-phenylimidazol-4-yl)amino]thiophene-2-carboxamidine was obtained. \(^1\)H NMR (DMSO-d\(_6\), 400 MHz) \(\delta\) 2.49 (s, 3H), 4.30-4.38 (m, 3H), 7.09 (bs, 1H), 7.32 (m, 1H), 7.40-7.44 (m, 3H), 7.90-7.95 (m, 3H), 8.43 (bs, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{16}\)H\(_{17}\)N\(_3\)S\(_2\), 344.10 (M+H), found 344.2.

Example 224

5-Methylthio-4-[(2-quinolylmethyl)amino]thiophene-2-carboxamidine

a) Methyl 5-methylthio-4-[(2-quinolylmethyl)amino]thiophene-2-carboxylate: Using the procedure described in Example 220, step (a), 60 mg (0.29 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate, 45.5 mg (0.29 mmol) of 2-quinolinecarboxaldehyde, and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)\(_3\) were allowed to react to give methyl 5-methylthio-4-[(2-quinolylmethyl)amino]thiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_2\)S\(_2\), 345.07 (M+H), found 343.3 (imine), 345.2.

b) 5-Methylthio-4-[(2-quinolylmethyl)amino]thiophene-2-carboxamidine: Using the procedure described in Example 220, step (b), 2.5 mg (2.6% from methyl 4-amino-5-methylthiothiophene-2-carboxylate) of 5-methylthio-4-[(2-quinolylmethyl)amino]thiophene-2-carboxamidine was obtained. Mass spectrum (ESI, m/z): Calcd. for C\(_{16}\)H\(_{16}\)N\(_4\)S\(_2\), 329.09 (M+H), found 329.3.
Example 225
4-({[(3-Hydroxyphenyl)methyl]amino}-5-methylthiothiophene-2-carboxamidine

5 a) Methyl 4-({[(3-hydroxyphenyl)methyl]amino}-5-methylthiothiophene-2-carboxylate: Using the procedure described in Example 220, step (a), 61.6 mg (0.30 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate, 49.5 mg (0.30 mmol) of 3-acetoxybenzaldehyde, and 135 mg (2.2 equiv, 0.63 mmol) of NaHB(OAc)₃ were allowed to react to give methyl 4-({[(3-hydroxyphenyl)methyl]amino}-5-methylthiothiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. for C₁₄H₁₆NO₅S₂, 352.07 (M+H), found, 350.2 (imine), 352.1.

b) Methyl 4-({[(3-hydroxyphenyl)methyl]amino}-5-methylthiothiophene-2-carboxylate: Using the procedure described in Example 220, step (b), 7.9 mg (8.9 % from methyl 4-amino-5-methylthiothiophene-2-carboxylate) of methyl 4-({[(3-hydroxyphenyl)methyl]amino}-5-methylthiothiophene-2-carboxylate; Mass spectrum (ESI, m/z): Calcd. for C₁₃H₁₃N₃OS₂, 294.07 (M+H), found 294.3.

Example 226
5-Methylthio-4-(phenylcarbonylamino)thiophene-2-carboxamidine

5-Methylthio-4-(phenylcarbonylamino)thiophene-2-carboxylate: To a stirring solution of 114 mg (0.55 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate in 4 mL of CH₂Cl₂ at 0 °C was added 142 µL (1.5 equiv, 0.82 mmol) of N,N-diisopropylethylamine via syringe, followed by 71.3 µL (1.1 equiv, 0.61 mmol) of benzoyl chloride. The reaction was allowed to warm to room temperature, and stirred an additional 4h. At this time the reaction was partitioned in 40 mL of 1:1 CH₂Cl₂-sat’d. NaHCO₃ (v/v) and the organic layer was separated, washed with 20 mL of brine, dried (Na₂SO₄), and concentrated in vacuo to afford 113 mg (66.8 %) of methyl 5-methylthio-4-(phenylcarbonylamino)thiophene-2-carboxylate which was used without further purification. ¹H NMR (DMSO-d₆, 400 MHz) δ 2.55 (s, 3H), 3.83 (s, 3H), 7.47-7.56 (m, 2H), 7.64 (m, 1H), 7.88 (s, 1H), 7.93-7.99 (m, 2H),...
10.12 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C_{14}H_{13}NO_{3}S_{2}, 308.04 (M+H), found 308.2.

b) 5-Methylthio-4-(phenylcarbonylamino)thiophene-2-carboxamide: Using a procedure similar to Example 154, step (b), 100 mg (0.32 mmol) of methyl 4-[(4-methylethyl)phenyl]amino]-5-methylthiothiophene-2-carboxylate was allowed to react with 8 equiv (2.58 mmol) of the AlMe3/NH4Cl reagent to afford 95.4 mg (100 %) of 5-methylthio-4-(phenylcarbonylamino)thiophene-2-carboxamide. 1H NMR (DMSO-d6, 400 MHz) δ 2.59 (s, 3H), 7.30-7.64 (m, 3H), 7.98-8.00 (m, 2H), 8.23 (s, 1H), 9.19 (bs, 2H), 9.41 (bs, 2H), 10.35 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C_{13}H_{14}N_{3}O_{2}S_{2}, 292.06 (M+H), found 292.2.

Example 227 –240: To each of a series of 2-dram vials equipped a with a stir bar and Teflon septum was added between 0.3 and 0.6 mmol an acid chloride (1 equiv), followed by 1 equiv of methyl 4-amino-5-methylthiothiophene-2-carboxylate as a 1M CH2Cl2 solution. An additional 2 mL of CH2Cl2 was charged into each vial, followed by 1.5 equiv of N,N-diisopropylethylamine. Each vial was swept with Ar and allowed to stir for 3 h. At this time 4 mL of sat’d NaHCO3 was added to each vial and stirring was continued for 5 min. The aqueous layers were removed by pipette and Na2SO4 was added to each vial. The vials were allowed to stand overnight, and the contents then eluted through 5-g silica gel (SPE column) cartridges with 0.5 % MeOH-CH2Cl2. The amides were concentrated in vacuo into pre-weighed 2-dram vials equipped with a stir bar and Teflon septum for the subsequent amidination reactions. The vials were purged with Ar and charged with 2 mL of toluene, followed by 8 equiv of the AlMe3/NH4Cl reagent as a 1M solution in toluene. The reactions were heated to 110°C in a heating block for 3 h. They were then cooled to ambient temperature and each was added by pipette to a slurry of 1.5 g silica gel in 15 mL of CH2Cl2. Each slurry was vigorously stirred for 15 min, at which time they were filtered through a 15 mL sintered glass funnel containing 20 cm of silica gel with 50 % CHCl3-MeOH. The yellow fractions were collected and concentrated in vacuo. The solids were triturated with 10 % MeOH-CHCl3 and filtered. Concentration in vacuo yielded the crude amidines, which were purified by preparative thin layer
chromatography (20 % MeOH-CHCl$_3$-sat’d. NH$_3$, 500 µm SiO$_2$) to afford the amidines as their respective free bases.

<table>
<thead>
<tr>
<th>Example</th>
<th>Acid Chloride</th>
<th>Amidine Product</th>
<th>% Yield a</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>cinnamoyl chloride</td>
<td>4-((2E)-3-phenylprop-2-enoylamo)-5-methylthiothiophene-2-carboxamidine</td>
<td>15.3 %</td>
</tr>
<tr>
<td>228</td>
<td>4-chlorobenzoyl chloride</td>
<td>4-((4-chlorophenyl)carbonylamino)-5-methylthiothiophene-2-carboxamidine</td>
<td>44.6 %</td>
</tr>
<tr>
<td>229</td>
<td>cyclohexoyl chloride</td>
<td>4-(cyclohexyl)carbonylamino)-5-methylthiothiophene-2-carboxamidine</td>
<td>17.8 %</td>
</tr>
<tr>
<td>230</td>
<td>3-nitro-4-methylbenzoyl chloride</td>
<td>Methyl 4-[(4-methyl-3-nitrophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate</td>
<td>8.8 %</td>
</tr>
<tr>
<td>231</td>
<td>2-furoyl chloride</td>
<td>4-((2-furyl)carbonylamino)-5-methylthiothiophene-2-carboxamidine</td>
<td>13.3 %</td>
</tr>
<tr>
<td>232</td>
<td>2,2-dimethyl-propanoyl chloride</td>
<td>4-((2,2,2-dimethyl)propanoylamino)-5-methylthiothiophene-2-carboxamidine</td>
<td>8.5 %</td>
</tr>
<tr>
<td>233</td>
<td>5-(3,5-dichlorophenoxy)furan-2-carbonyl chloride</td>
<td>4-((5-(3,5-dichlorophenoxy)(2-furyl)carbonylamino)-5-methylthiothiophene-2-carboxamidine</td>
<td>22.9 %</td>
</tr>
<tr>
<td>234</td>
<td>1-naphthoyl chloride</td>
<td>5-methylthio-4-naphthylcarbonylamino-thiophene-2-carboxamidine</td>
<td>3.1 %</td>
</tr>
<tr>
<td>235</td>
<td>2-quinolinyl chloride</td>
<td>5-methylthio-4-(2-quinolyl)carbonylamino-thiophene-2-carboxamidine</td>
<td>6.8 %</td>
</tr>
<tr>
<td>236</td>
<td>3-methoxybenzoyl chloride</td>
<td>4-[(3-methoxyphenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine</td>
<td>6.8 %</td>
</tr>
<tr>
<td>237</td>
<td>2-(2,5-dimethoxyphenyl)acetyl chloride</td>
<td>4-[[2-(2-hydroxy-5-methoxyphenyl)acetylaminio]-5-methylthiothiophene-2-carboxamidine</td>
<td>18.3 %</td>
</tr>
<tr>
<td>238</td>
<td>4-ethoxybenzoyl chloride</td>
<td>4-[(4-ethoxyphenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine</td>
<td>34 %</td>
</tr>
<tr>
<td>239</td>
<td>2-phenoxyacetyl chloride</td>
<td>5-methylthio-4-(2-phenoxyacetylamo)-thiophene-2-carboxamidine</td>
<td>10 %</td>
</tr>
<tr>
<td>240</td>
<td>3-methylbenzoyl chloride</td>
<td>4-[(3-methylphenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine</td>
<td>21.1 %</td>
</tr>
</tbody>
</table>

a Yield calculated from starting methyl 4-amino-3-methylthiothiophene-2-carboxylate.

Example 227

4-((2E)-3-Phenylprop-2-enoylamo)-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-((2E)-3-phenylprop-2-enoylamo)-5-methylthiothiophene-2-carboxylate: yield: 100%. 1H NMR (DMSO-d$_6$, 400
(2E)-3-Phenylprop-2-enoylamo)-5-methylthiothiophene-2-carboxamidine:
1H NMR (DMSO-d_6, 400 MHz) δ 2.54 (s, 3H), 7.13 (d, 1H, J=15.7 Hz), 7.41-7.51 (m, 3H), 7.59-7.66 (m, 2H), 8.40 (s, 1H), 8.81 (bs, 3H), 10.02 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{13}$H$_{13}$N$_3$O$_2$S$_2$, 318.07 (M+H), 318.2.

Example 228

4-[(4-Chlorophenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[(4-chlorophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate: yield: 53%. 1H NMR (DMSO-d_6, 400 MHz) δ 2.55 (s, 3H), 3.83 (s, 3H), 7.62 (d, 2H, J=8.5 Hz), 7.87 (s, 1H), 7.97 (d, 2H, J=8.5 Hz), 10.21 (s, 1H).

b) 4-[(4-Chlorophenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine: 1H NMR (DMSO-d_6, 400 MHz) δ 2.59 (s, 3H), 7.53-7.66 (m, 2H), 7.93-8.01 (m, 2H), 8.99 (bs, 2H), 9.33 (bs, 2H), 10.39 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{13}$H$_{12}$CIN$_3$O$_2$, 326.02 (M+H), found 326.2.

Example 229

4-(Cyclohexylcarbonylamino)-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-(cyclohexylcarbonylamino)-5-methylthiothiophene-2-carboxylate: yield: 69.9%. 1H NMR (DMSO-d_6, 400 MHz) δ 1.22-1.81 (m, 11H), 2.51 (s, 3H), 3.82 (s, 3H), 7.97 (s, 1H), 9.55 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{19}$NO$_2$S$_2$, 314.09 (M+H), found 314.2.

b) 4-(Cyclohexylcarbonylamino)-5-methylthiothiophene-2-carboxamidine: 1H NMR (DMSO-d_6, 400 MHz) δ 2.59 (s, 3H), 7.53-7.66 (m, 2H), 7.93-8.01 (m, 2H), 8.99 (bs, 2H), 9.33 (bs, 2H), 10.39 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{13}$H$_{20}$N$_3$O$_2$, 298.10 (M+H), found 298.2.
Example 230

Methyl 4-[(4-methyl-3-nitrophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate

a) Methyl 4-[(4-methyl-3-nitrophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate: yield: 80%. 1H NMR (DMSO-d6, 400 MHz) δ 2.56 (s, 3H), 2.61 (s, 3H), 3.82 (s, 3H), 7.70 (d, 1H, J=8.1 Hz), 7.86 (s, 1H), 8.19 (dd, 1H, J=1.7, 8.0 Hz), 8.56 (d, 1H, J=1.7 Hz), 10.41 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C15H14N2O3S2, 367.42 (M+H), found 367.2.

b) Methyl 4-[(4-methyl-3-nitrophenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate: 1H NMR (DMSO-d6, 400 MHz) δ 2.47 (s, 3H), 2.61 (s, 3H), 7.12 (bs, 3H), 7.69-7.73 (m, 2H), 8.20 (dd, 1H, J=1.6, 7.9 Hz), 8.57 (d, 1H, J=1.6 Hz). Mass spectrum (ESI, m/z): Calcd. for C14H14N2O3S2, 351.06 (M+H), found 351.2.

Example 231

4-(2-Furylcarbonylamino)-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-(2-furylcarbonylamino)-5-methylthiothiophene-2-carboxylate: yield: 100%; 1H NMR (DMSO-d6, 400 MHz) δ 2.54 (s, 3H), 3.83 (s, 3H), 6.71 (dd, 1H, J=1.8, 3.4 Hz), 7.33 (d, 1H, J=3.5 Hz), 7.87 (s, 1H), 7.95 (m, 1H), 9.93 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C12H11NO4S2, 298.02 (M+H), found 298.3.

b) 4-(2-Furylcarbonylamino)-5-methylthiothiophene-2-carboxamidine: 1H NMR (DMSO-d6, 400 MHz) δ 2.51 (s, 3H), 6.71 (dd, 1H, J=1.8, 3.5 Hz), 7.18 (bs, 3H), 7.32 (d, 1H, J=3.4 Hz), 7.79 (s, 1H), 7.96 (m, 1H). Mass spectrum (ESI, m/z): Calcd. for C12H11N3O2S2, 282.04 (M+H), found 282.2.
Example 232

4-(2,2-Dimethylpropanoylamino)-5-methylothiophene-2-carboxamidine

a) Methyl 4-(2,2-dimethylpropanoylamino)-5-methylothiophene-2-carboxylate: yield: 93.4%. 1H NMR (DMSO-$_d_6$, 400 MHz) δ 1.23 (s, 9H), 2.51 (s, 3H), 3.81 (s, 3H), 7.74 (s, 1H), 9.04 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{12}$H$_{17}$NO$_3$S$_2$, 288.07 (M+H), found 288.1.

b) 4-(2,2-Dimethylpropanoylamino)-5-methylothiophene-2-carboxamide: 1H NMR (DMSO-$_d_6$, 400 MHz) δ 1.24 (s, 9H), 2.55 (s, 3H), 8.05 (s, 1H), 9.0 (bs, 3H), 9.1 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{11}$H$_{13}$N$_2$O$_3$S$_2$, 272.09 (M+H), found 272.2.

Example 233

4-[[5-(3,5-Dichlorophenoxy)(2-furyl)carbonylamino]-5-methylothiophene-2-carboxamidine

a) Methyl 4-[[5-(3,5-dichlorophenoxy)(2-furyl)carbonylamino]-5-methylothiophene-2-carboxylate: yield: 96.9%. Mass spectrum (ESI, m/z): Calcd. for C$_{18}$H$_{13}$C$_2$NO$_5$S$_2$, 457.97 (M+H), found 457.9.

b) 4-[[5-(3,5-Dichlorophenoxy)(2-furyl)carbonylamino]-5-methylothiophene-2-carboxamide: 1H NMR (DMSO-$_d_6$, 400 MHz) δ 2.53 (s, 3H), 6.12-6.17 (m, 1H), 6.79 (d, 1H, J=1.8 Hz), 7.40-7.43 (m, 2H), 7.70 (m, 1H), 8.13 (s, 1H), 8.92 (bs, 2H), 9.21 (bs, 1H), 10.06 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{17}$H$_{14}$Cl$_2$N$_2$O$_3$S$_2$, 441.99 (M+H), found 442.2.

Example 234

5-Methylthio-4-(naphthylcarbonylamino)thiophene-2-carboxamidine

a) Methyl 5-methylthio-4-(naphthylcarbonylamino)thiophene-2-carboxylate: yield: 80.8 %. 1H NMR (DMSO-$_d_6$, 400 MHz) δ 7.59-7.67 (m, 3H), 7.80 (d, 1H, J=6.8 Hz), 8.02-8.34 (m, 4H), 10.38 (s, 1H).
b) **5-Methylthio-4-(naphthylcarbonylamino)thiophene-2-carboxamidine:** \(^{1}H\) NMR (DMSO-\(d_6\), 400 MHz) \(\delta\) 2.50 (s, 3H), 7.60 (m, 3H), 7.76 (d, 1H, \(J=6.7\) Hz), 7.94 (s, 1H), 8.03 (d, 1H, \(J=6.8\) Hz), 8.09 (d, 1H, 8.3 Hz), 8.30 (d, 1H, \(J=8.8\) Hz). Mass spectrum (ESI, m/z): Calcd. for C\(_{17}\)H\(_{15}\)N\(_3\)OS\(_2\), 342.07 (M+H), found 342.2.

Example 235

5-Methylthio-4-(2-quinolylcarbonylamino)thiophene-2-carboxamidine

a) **Methyl 5-methylthio-4-(2-quinolylcarbonylamino)thiophene-2-carboxylate:** yield: 80.9 %. \(^{1}H\) NMR (DMSO-\(d_6\), 400 MHz) \(\delta\) 2.59 (s, 3H), 3.86 (s, 3H), 8.03-8.06 (m, 3H), 8.24-8.29 (m, 3H), 9.58 (s, 1H), 10.63 (s, 1H).

b) **5-Methylthio-4-(2-quinolylcarbonylamino)thiophene-2-carboxamidine:** \(^{1}H\) NMR (DMSO-\(d_6\), 400 MHz) \(\delta\) 2.53 (s, 3H), 7.21 (bs, 3H), 7.74 (s, 1H), 7.96-7.98 (m, 2H), 8.19-8.22 (m, 4H), 9.77 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C\(_{16}\)H\(_{14}\)N\(_4\)OS\(_2\), 343.45 (M+H), found 343.1.

Example 236

4-{(3-Methoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxamidine

a) **Methyl 4-{(3-methoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxylate:** yield: 90.3 %. \(^{1}H\) NMR (DMSO-\(d_6\), 400 MHz) \(\delta\) 2.55 (s, 3H), 3.83 (s, 3H), 3.85 (s, 3H), 7.19 (m, 1H), 7.39-7.59 (m, 3H), 7.85 (s, 1H), 10.09 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C\(_{13}\)H\(_{15}\)NO\(_4\)S\(_2\), 338.05 (M+H), found 338.3.

b) **4-{(3-Methoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxamidine:** \(^{1}H\) NMR (DMSO-\(d_6\), 400 MHz) \(\delta\) 2.58 (s, 3H), 3.84 (s, 3H), 7.19 (dd, 1H, \(J=2.1, 8.1\) Hz), 7.45-7.57 (m, 3H), 8.15 (s, 1H), 9.11 (bs, 4H), 10.32 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C\(_{14}\)H\(_{13}\)N\(_3\)O\(_2\)S\(_2\), 322.07 (M+H), found 322.2.
Example 237

4-{2-(2, 5-Dimethoxyphenyl)acetylamino}-5-methylthiothiophene-2-carboxamide

a) Methyl 4-{2-(2,5-dimethoxyphenyl)acetylamino}-5-methylthiothiophene-2-carboxylate: 1H NMR (DMSO-d_6, 400 MHz) δ 2.47 (s, 3H), 3.67 (s, 2H), 3.70 (s, 3H), 3.75 (s, 3H), 3.80 (s, 3H), 6.81 (dd, 1H, J=3.0, 8.8 Hz), 6.87 (d, 1H, J=3.0 Hz), 6.93 (d, 1H, J=8.9 Hz), 8.04 (s, 1H), 9.62 (s, 1H);

b) 4-{2-(2,5-Dimethoxyphenyl)acetylamino}-5-methylthiothiophene-2-carboxamide: 1H NMR (DMSO-d_6, 400 MHz) δ 2.38 (s, 3H), 3.66 (s, 2H), 3.70 (s, 3H), 3.76 (s, 3H), 6.81 (dd, 1H, J=3.3, 8.0 Hz), 6.88-6.94 (m, 2H), 7.91 (s, 1H), 9.42 (bs, 1H).

Example 238

4-{(4-Ethoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxamide

a) Methyl 4-{(4-ethoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxylate: 1H NMR (DMSO-d_6, 400 MHz) δ 1.36 (t, 3H, J=7.0 Hz), 2.54 (s, 3H), 3.83 (s, 3H), 4.13 (q, 2H, J=7.0 Hz), 7.05 (d, 2H, J=8.8 Hz), 7.87 (s, 1H), 7.93 (d, 2H, J=8.8 Hz), 9.93 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{16}$H$_{17}$NO$_4$S$_2$, 352.07 (M+H), found 352.2.

b) 4-{(4-Ethoxyphenyl)carbonylamino}-5-methylthiothiophene-2-carboxamide: 1H NMR (DMSO-d_6, 400 MHz) δ 1.36 (t, 3H, J=7.0 Hz), 2.55 (s, 3H), 4.13 (q, 2H, J=7.0 Hz), 7.04-7.08 (m, 2H), 7.94-7.97 (m, 2H), 8.09 (s, 1H);8.73 (bs, 3H), 10.01 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{15}$H$_{17}$N$_3$O$_2$S$_2$, 336.08 (M+H), found 336.2.

Example 239

5-Methylthio-4-(2-phenoxyacetylarnino)thiophene-2-carboxamide

a) Methyl 5-methylthio-4-(2-phenoxyacetylarnino)thiophene-2-carboxylate: yield: 79 %. 1H NMR (DMSO-d_6, 400 MHz) δ 2.48 (s, 3H), 3.82
(s, 3H), 4.78 (s, 2H), 6.97-7.02 (m, 2H), 7.31-7.35 (m, 2H), 8.05 (s, 1H), 9.80 (s, 1H).

b) 5-Methylthio-4-(2-phenoxycetamino)thiophene-2-carboxamidine: 1H NMR (DMSO-d_6, 400 MHz): δ 2.52 (s, 3H), 4.81 (s, 2H), 6.97-7.04 (m, 3H), 7.31-7.35 (m, 2H), 8.26 (s, 1H), 8.84 (bs, 4H). Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{13}$N$_3$O$_2$S$_2$, 322.43 (M+H), found 322.2.

Example 240

4-[(3-Methylphenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[(3-methylphenyl)carbonylamino]-5-methylthiothiophene-2-carboxylate: yield: 79%. 1H NMR (DMSO-d_6, 400 MHz) δ 2.40 (s, 3H), 2.55 (s, 3H), 3.83 (s, 3H), 4.78 (s, 2H), 7.42-7.43 (m, 2H), 7.47-7.77 (m, 2H), 7.86 (s, 1H), 10.06 (s, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{15}$H$_{15}$NO$_3$S$_2$, 322.06 (M+H), found 322.2.

b) 4-[(3-Methylphenyl)carbonylamino]-5-methylthiothiophene-2-carboxamidine: 1H NMR (DMSO-d_6, 400 MHz) 2.40 (s, 3H), 2.55 (s, 3H), 7.43-7.44 (m, 2H), 7.75-7.78 (m, 2H), 8.05 (s, 1H), 8.52 (bs, 3H), 10.12 (bs, 1H). Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{13}$N$_3$OS$_2$, 306.07 (M+H), found 306.2.

Example 241

a) Methyl 4-bromo-5-methylthiothiophene-2-carboxylate: To a stirred solution of 4-bromo-5-methylthiothiophene-2-carboxylic acid (87 mmol), prepared according to the procedure of Kleemann, et al., EP 0676395A2, in dry methanol (750 mL) was added thionyl chloride (7 mL, 96 mmol) dropwise. After stirring for 10 min at room temperature, the solution was heated to reflux and stirred 7.5 h. The solution was cooled and the solvents were removed in vacuo. The resulting solid was dissolved in dichloromethane (1500 mL) and washed with saturated sodium bicarbonate (2 x 300 mL), water (300 mL), saturated brine (300 mL), and dried over anhydrous sodium sulfate. The solvents were removed in vacuo. The resulting solid was recrystallized twice from hexane/ethyl acetate to give
methyl 4-bromo-5-methylthiophene-2-carboxylate (4.4 g, 19 %). 1H-NMR (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 3.90 (s, 3H), 2.60 (s, 3H).

b) Methyl 5-methylthio-4-[[3-(phenylmethoxy)phenyl]amino]thiophene-2-carboxylate: A dry mixture of 60 mg (0.225 mmol) of methyl 4-bromo-5-methylthiophene-2-carboxylic acid, as prepared in the previous step, 3.0 mg (6 mole %) of palladium (II) acetate (Aldrich Chemical Co., Milwaukee, WI), 12.6 mg (9 mole %) of racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (Strem, Newburyport, MA), 110 mg (0.34 mmol, 1.5 eq) of cesium carbonate (Aldrich Chemical Co., Milwaukee, WI), and 54 mg (0.29 mmol, 1.3 eq) of 3-benzylxoyaniline (Aldrich Chemical Co., Milwaukee, WI) was added to an oven-dried 1 dram glass vial. This vial was flushed with dry argon in a glove bag, dry toluene (450 µL, 0.5 M) was added, and the assembly was heated at 100°C for 36 h. To the cooled suspension ethyl acetate (4 mL) was added, the mixture passed through 1 inch of Celite, washed with ethyl acetate (2 × 4 mL) and the solvents removed in vacuo. Purification by preparative thin-layer chromatography (1:1 dichloromethane/hexanes) gave 13 mg of the title compound (15 %) as a pale yellow solid. 1H-NMR (CDCl₃, 400 MHz) δ 7.77 (s, 1H), 7.47-6.59 (m, 9H), 6.11 (s, 1H), 5.07 (s, 2H), 3.89 (s, 3H), 2.47 (s, 3H). Mass spectrum (ESI, m/z): Calcd for C₂₀H₁₉NO₃S₂, 386.1 (M+H), found 386.3.

c) 5-Methylthio-4-[[3-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamidine: Trimethylaluminum (2.0 M in toluene, 2 mL) was added dropwise over 10 min to a suspension of ammonium chloride (216 mg) in toluene (2 mL), stirred under dry nitrogen at 0°C. After the mixture was stirred at 25°C for 30 min, when most of the solid had dissolved, this mixture was taken up in a syringe and added to 13 mg (0.03 mmol) of methyl 5-methylthio-4-[[3-(phenylmethoxy)phenyl]amino]thiophene-2-carboxylate. The reaction mixture was heated to reflux in stages and stirred for 2 h 10 min. The cooled mixture was poured into a vigorously stirred slurry of silica gel (2 g) in chloroform (20 mL). To this suspension methanol (50 mL) was added, the mixture was passed through 1 inch of silica gel in a sintered glass Büchner funnel, washed with methanol (50 mL), and the solvents removed in vacuo. The crude product was purified on a 5 g silica gel SPE column washing first
with dichloromethane and then eluting the product off with 10% methanol in dichloromethane. The product was further purified by preparative High Pressure Liquid Chromatography (HPLC) on a Dynamax C18 column, 60 Å pore size, 10 μM particle size, 40 to 100% methanol over 30 min in 0.1% trifluoroacetic acid to give 5.4 mg of the title compound (45%) as a yellow solid. 1H-NMR (CD3OD, 400 MHz) δ 7.84 (s, 1H), 7.44-6.60 (m, 9H), 5.08 (s, 2H), 2.48 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C19H19N3O2S2, 370.1 (M+H), found 370.2.

Example 242

a) Methyl 5-methylthio-4-[(3-phenoxyphenyl)amino]thiophene-2-carboxylate: A stirred suspension of 80 mg (0.299 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate and 72 mg (0.389 mmol, 1.3 eq) of 3-phenoxyaniline (Aldrich, Milwaukee, WI) was treated as in Example 241, step (b). Further purification of the product by preparative thin layer chromatography eluting with 10% ethyl acetate in hexane gave 36 mg of the title compound (32%) as a yellow oil. 1H-NMR (CDCl3, 400 MHz) δ 7.76 (s, 1H), 7.40-6.65 (m, 9H), 6.26 (s, 1H), 3.89 (s, 3H), 2.40 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C19H17NO3S2, 372.1 (M+H), found 372.2.

b) 5-Methylthio-4-[(3-phenoxyphenyl)amino]thiophene-2-carboxamidine: Methyl 5-methylthio-4-[(3-phenoxyphenyl)amino]thiophene-2-carboxylate (36 mg, 0.097 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 30 mg of the title compound (86%) as an orange glass. 1H-NMR (CDCl3, 400 MHz) δ 9.28 (s, 2H), 8.11 (s, 2H), 7.99 (s, 1H), 7.34-6.50 (m, 9H), 6.29 (s, 1H), 2.35 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C18H17N3O2S, 356.1 (M+H), found 356.2.

Example 243

a) 5-Methylthio-4-[(4-phenoxyphenyl)amino]thiophene-2-carboxamidine: A stirred suspension of 80 mg (0.299 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate and 72 mg (0.389 mmol, 1.3 eq) of 4-phenoxyaniline (Aldrich, Milwaukee, WI) was treated as in Example 241, step (b). Further purification of the product by preparative thin layer
chromatography eluting with 10% ethyl acetate in hexane gave 53 mg of the title compound (48%) as a yellow oil. \(^1H\)-NMR (CDCl\(_3\), 400 MHz) \(\delta\) 7.70 (s, 1H), 7.34-7.00 (m, 9H), 6.11 (s, 1H), 3.89 (s, 3H), 2.42 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{19}\)H\(_{17}\)NO\(_2\)S\(_2\), 372.1 (M+H), found 372.1.

b) 5-Methylthio-4-[(4-phenoxyphenyl)amino]thiophene-2-carboxamide: Methyl 5-methylthio-4-[(4-phenoxyphenyl)amino]thiophene-2-carboxylate (53 mg, 0.14 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 58 mg of the title compound (quantitative yield) as an orange glass. \(^1H\)-NMR (CDCl\(_3\), 400 MHz) \(\delta\) 8.89 (s, 2H), 8.59 (s, 2H), 8.00 (s, 1H), 7.25-6.87 (m, 9H), 6.20 (s, 1H), 2.27 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{18}\)H\(_{17}\)N\(_3\)OS\(_2\), 356.1 (M+H), found 356.2.

Example 244

a) Methyl 4-[(2-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxylate: A stirred suspension of 103 mg (0.386 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate and 57 mg (0.46 mmol, 1.2 eq) of 2-methoxyaniline (Aldrich, Milwaukee, WI) was treated in a manner similar to Example 241, step (b) to give 78 mg the title compound (65%) as a yellow oil. \(^1H\)-NMR (CDCl\(_3\), 400 MHz) \(\delta\) 7.82 (s, 1H), 7.12-6.52 (m, 4H), 6.52 (s, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 2.40 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{14}\)H\(_{15}\)NO\(_2\)S\(_2\), 310.1 (M+H), found 310.2.

b) 4-[(2-Methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamide: Methyl 4-[(2-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxylate (78 mg, 0.25 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 75 mg of the title compound (quantitative yield) as an orange glass. \(^1H\)-NMR (CD\(_3\)OD, 400 MHz) \(\delta\) 7.91 (s, 1H), 7.15-6.93 (m, 4H), 3.93 (s, 3H), 2.48 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C\(_{13}\)H\(_{15}\)N\(_3\)OS\(_2\), 294.1 (M+H), found 294.2.

Example 245

a) Methyl 4-[(2-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate: A dry mixture of 100 mg (0.374 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate, 51 mg (14.9 mole %) of
tris(dibenzyldeneacetone)dipalladium (Lancaster, Pelham, NH), 52 mg (22.3 mole %) of racemic-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (Strem, Newburyport, MA), 183 mg of (0.56 mmol, 1.5 eq) cesium carbonate (Aldrich Chemical Co., Milwaukee, WI), and 71 μL (0.49 mmol, 1.3 eq) of 2-methylaniline (Aldrich Chemical Co., Milwaukee, WI) was added to an oven-dried 1-dram glass vial. This vial was flushed with dry argon in a glove bag, dry toluene (750 μL, 0.5 M) was added, and the assembly was heated at 100°C for 40 h. To the cooled suspension ethyl acetate (4 mL) was added, the mixture passed through 1 inch of Celite, washed with ethyl acetate (2 × 4 mL) and the solvents removed in vacuo. Purification by preparative thin-layer chromatography (1:1 dichloromethane/hexanes) gave 67 mg of the title compound (61%) as a yellow oil. 1H-NMR (CDCl3, 400 MHz) δ 7.64 (s, 1H), 7.23-6.94 (m, 4H), 5.91 (br s, 1H), 3.88 (s, 3H), 2.41 (s, 3H), 2.31 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C14H13NO2S2, 294.1 (M+H), found 294.2.

b) 4-[(2-Methylphenyl)amino]-5-methylthiothiophene-2-carboxamidine: Methyl 4-[(2-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate (67 mg, 0.23 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 20 mg of the title compound (30%) as a yellow glass. 1H-NMR (CD3OD; 400 MHz) δ 7.56 (s, 1H), 7.24-6.99 (m, 4H), 2.49 (s, 3H), 2.29 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C13H15N3S2, 278.1 (M+H), found 278.2.

Example 246

a) Methyl 4-[(3-chlorophenyl)amino]-5-methylthiothiophene-2-carboxylate: A stirred suspension of 80 mg (0.299 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate and 41 μL (0.389 mol, 1.3 eq) of 3-chloroaniline (Aldrich, Milwaukee, WI) was treated in a manner similar to Example 241, step (b) to give 47 mg of the title compound (50%) as a yellow oil. 1H-NMR (CDCl3, 400 MHz) δ 7.75 (s, 1H), 7.23-6.89 (m, 4H), 6.10 (s, 1H), 3.89 (s, 3H), 2.42 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C13H13NO2S2Cl, 314.0 (M+H), found 314.1.
b) 4-[(3-Chlorophenyl)amino]-5-methylthiothiophene-2-carboxamidine: Methyl 4-[(3-chlorophenyl)amino]-5-methylthiothiophene-2-carboxylate (47 mg, 0.15 mmol) was treated as in Example 241, step (c) to give 33 mg of the title compound (75%) as a light yellow solid. 1H-NMR (DMSO-d$_6$, 400 MHz) δ 9.22 (s, 2H), 8.81 (s, 2H), 8.22 (s, 1H), 7.99 (s, 1H), 7.24-6.82 (m, 4H), 2.53 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{12}$H$_{12}$N$_3$S$_2$Cl, 298.0 (M+H), found 298.3.

Example 247

a) Methyl 4-(methylphenylamino)-5-methylthiothiophene-2-carboxylate: A stirred suspension of 100 mg (0.374 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate and 72 μL (0.487 mmol, 1.3 eq) of N-methylaniline (Aldrich Chemical Co., Milwaukee, WI) was treated in a manner similar to Example 245, step (a) to give 23 mg of the title compound (21%) as a yellow oil. 1H-NMR (CDCl$_3$, 400 MHz) δ 7.61 (s, 1H), 7.26-6.68 (m, 5H), 3.89 (s, 3H), 3.25 (s, 3H), 2.50 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{13}$NO$_2$S$_2$, 294.1 (M+H), found 294.3.

b) 4-(Methylphenylamino)-5-methylthiothiophene-2-carboxamidine: Methyl 4-[(2-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate (23 mg, 0.078 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 5.6 mg of the title compound (26%) as a yellow glass. 1H-NMR (CD$_2$OD, 400 MHz) δ 7.83 (s, 1H), 7.24-6.71 (m, 4H), 3.27 (s, 3H), 2.57 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{13}$H$_{15}$N$_3$S$_2$, 278.1 (M+H), found 278.3.

Example 248

a) Methyl 5-methyl-4-(phenylamino)thiophene-2-carboxylate: A stirred suspension of 400 mg (1.7 mmol) methyl 5-methyl-4-bromo-thiophene-2-carboxylate and 192 μL (2.1 mmol, 1.25 eq) of aniline (Aldrich, Milwaukee, WI) was treated in a manner similar to Example 241, step (b) to give 66 mg of the title compound (16%) as a brown glass. 1H-NMR (DMSO-d$_6$, 400 MHz) δ 7.70 (s, 1H), 7.56 (s, 1H), 7.17 (m, 2H), 6.72 (m, 3H), 3.79 (s, 3H), 2.31 (s,
Mass spectrum (MALDI, gentisic acid matrix, m/z): Calcd. for C_{13}H_{13}NO_{2}S, 248.1 (M+H), found 247.5.

b) 5-Methyl-4-(phenylamino)thiophene-2-carboxamide:
Methyl 4-(methylphenylamino)-5-methylthiophene-2-carboxylate (66 mg, 0.27 mmol) was treated as in Example 241, step (c), but without HPLC purification to give 57 mg of the title compound (91%) as a brown glass. \(^1\)H-NMR (DMSO-d$_6$, 400 MHz) \(\delta\) 9.17 (s, 2H), 8.85 (s, 2H), 7.98 (s, 1H), 7.85 (s, 1H), 7.21-6.73 (m, 5H), 2.39 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{12}$H$_{13}$N$_3$S, 232.1 (M+H), found 232.2.

Example 249

a) Methyl 4-[[4-(dimethylamino)phenyl]amino]-5-methylthiophene-2-carboxylate: A stirred suspension of 100 mg (0.267 mmol) methyl 5-methyl-4-bromo-thiophene-2-carboxylate and 66 mg (0.35 mmol, 1.3 eq) of 4-amino-N,N-dimethylaniline (Fluka, Milwaukee, WI) was treated in a manner similar to Example 241, step (b), but eluting with 1:1 ethyl acetate/hexane for preparative thin-layer chromatography purification, to give 86 mg of the title compound (quantitative yield) as an orange glass. \(^1\)H-NMR (CDCl$_3$, 400 MHz) \(\delta\) 7.53 (s, 1H), 7.16 and 6.62 (AB quartet, 4H, J=8.9 Hz), 5.99 (s, 1H), 3.86 (s, 3H), 2.94 (s, 6H), 2.39 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{15}$H$_{18}$N$_2$O$_2$S$_2$, 323.1 (M+H), found 323.3.

b) 4-[[4-(Dimethylamino)phenyl]amino]-5-methylthiophene-2-carboxamide: Methyl 4-(methylphenylamino)-5-methylthiophene-2-carboxylate (86 mg, 0.267 mmol) was treated as in Example 241, step (c), but without HPLC purification. This material was further purified by passing through 1 inch of basic alumina and eluting with 10% methanol in dichloromethane (15 mL) to give 62 mg of the title compound (76%) as a brown glass. \(^1\)H-NMR (DMSO-d$_6$, 400 MHz) \(\delta\) 8.95 (s, 4H), 7.75 (s, 1H), 7.56 (s, 1H), 6.97 and 6.72 (AB quartet, 4H, J=8.9 Hz), 2.83 (s, 6H), 2.44 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C$_{14}$H$_{18}$N$_4$S$_2$, 307.1 (M+H), found 307.3.
Example 250
4-[(4-Ethylphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Methyl 4-[(4-ethylphenyl)amino]-5-methylthiothiophene-2-carboxylate: To an oven-dried glass vial with stir bar was added a mixture of 100 mg (0.374 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 5.8 mg (6.9 mol %) of palladium (II) acetate, 21.7 mg (9.3 mol %) of racemic-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl, 171.5 mg (0.526 mmol) of cesium carbonate and 59 mg (0.487 mmol) of 4-ethylaniline. The vial was transferred to a glove bag, flushed with dry argon and anhydrous toluene (749 μL) was added. The vial was capped with a Teflon-lined screw cap and heated at 100 °C for 48 h. The cooled suspension was filtered (Celite) washing with ethyl acetate (2 x 2 mL), and the solvents removed in vacuo. The resulting residue was purified on 1 mm silica prep plates eluting with 40% methylene chloride-hexanes to afford 14 mg (12 %) of methyl 4-[(4-ethylphenyl)amino]-5-methylthiothiophene-2-carboxylate as a pale yellow resin which was used directly in the following step.

b) 4-[(4-Ethylphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride: Trimethylaluminum (2.0 M in toluene, 0.182 mL, 0.363 mmol) was added dropwise to a suspension of ammonium chloride (19 mg, 0.363 mmol) in anhydrous toluene (1 mL) under Ar at 0°C. The mixture was stirred at 25 °C for 30 min and then 14 mg (0.036 mmol) of methyl 4-[(4-ethylphenyl)amino]-5-methylthiothiophene-2-carboxylate (as prepared in previous step) was added. The reaction mixture was heated slowly to 100 °C and stirred for 4 h. The cooled mixture was added to a vigorously stirred slurry of silica gel (1.3 g) in chloroform (20 mL). The suspension was filtered (silica) washing with 50 % MeOH-CH₂Cl₂ (2 x 50 mL). The washings were concentrated and the resulting residue was purified on a 0.5 mm silica prep plate eluting with a 10 % MeOH-CH₂Cl₂ to afford 8 mg (67 %) of 4-[(4-ethylphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride as a yellow oil. ¹H-NMR (CD₃OD, 400 MHz) δ 7.84 (s, 1H), 7.14 (d, 2H, 8 Hz), 7.01 (d, 2H, 8 Hz), 2.55 (q, 2H, 65.5 Hz), 2.48 (s, 3H), 1.23 (t, 3H, 15.2 Hz). Mass spectrum (ESI, m/z): Calcd. for C₁₄H₁₇N₃S₂, 292.1 (M+H), found 292.5.
Example 251

5-Methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamide hydrochloride

a) Methyl 5-methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxylate: The same procedure as in Example 250, step a was followed using 100 mg (0.374 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 5.5 mg (6.5 mol %) of palladium (II) acetate, 23.6 mg (10.1 mol %) of racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 194 mg (0.595 mmol) of cesium carbonate, 97.3 mg (0.488 mmol) of 4-benzylxoxaniline and 749 µL of toluene, and chromatographed as before using 40 % CH₂Cl₂-hexane to afford 7 mg (5 %) of methyl 5-methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxylate as a yellow resin which was used directly in the following step.

b) 5-Methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamide hydrochloride: The same procedure as in Example 250, step (b) was followed using 7 mg (0.018 mmol) of methyl 5-methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxylate (as prepared in previous step), 0.091 mL of trimethylaluminum (2.0 M in toluene, 0.182 mmol), 10 mg of ammonium chloride (0.182 mmol) and 1 mL of toluene, and purified on a 0.5 mm silica prep plate eluting with 10 % MeOH-CH₂Cl₂ to afford 3 mg (41 %) of 5-methylthio-4-[[4-(phenylmethoxy)phenyl]amino]thiophene-2-carboxamide hydrochloride as a yellow oil. ¹H-NMR (CD₃OD, 400 MHz) δ 7.72 (s, 1H), 7.45 (d, 2H, 7 Hz), 7.39 (t, 2H, 9 Hz), 7.37 (d, 1H, 12 Hz), 7.06 (d, 2H, 12Hz), 6.97 (d, 2H, 12Hz), 5.08 (s, 2H), 2.46 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C₁₉H₁₉N₃OS₂, 370.1 (M+H), found 370.3.
Example 252

5-Methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxamidine hydrochloride

a) Methyl 5-methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxylate: The same procedure as in Example 250, step (a) was followed using 100 mg (0.374 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step a), 5.5 mg (6.5 mol %) of palladium (II) acetate, 21.6 mg (9.3 mol %) of racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 173.7 mg (0.533 mmol) of cesium carbonate, 92.3 mg (0.500 mmol) of N-phenyl-1,4-phenylenediamine, and 749 μL of toluene, and chromatographed as before using 40 % CH₂Cl₂-hexane to afford 58 mg (42 %) of methyl 5-methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxylate as a brown solid. ¹H-NMR (DMSO-d₆, 400 MHz) δ 7.85 (s, 1H), 7.61 (s, 1H), 7.48 (s, 1H), 7.14 (t, 2H, 16 Hz), 6.99 (d, 2H, 16 Hz), 6.90 (q, 4H, 4 Hz), 6.70 (t, 2H, 4 Hz), 3.77 (s, 3H), 2.43 (s, 3H).

b) 5-Methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxamidine hydrochloride: The same procedure as in Example 250, step (b) was followed using 58 mg (0.156 mmol) of methyl 5-methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxylate (as prepared in previous step), 0.783 mL of trimethylaluminum (2.0 M in toluene, 1.56 mmol), 84 mg of ammonium chloride (1.56 mmol) and 10 mL of toluene, and purified by passing through a pad of silica eluting with 50 % MeOH-CH₂Cl₂ to afford 50 mg (75 %) of the 5-methylthio-4-[(4-(phenylamino)phenyl)amino]thiophene-2-carboxamidine hydrochloride as a brown solid. ¹H-NMR (DMSO-d₆, 400 MHz) δ 7.91 (d, 2H, 12 Hz), 7.78 (s, 1H), 7.20 (t, 3H, 12 Hz), 7.04-6.94 (m, 5H), 6.71 (m, 1H), 2.47 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C₁₈H₁₈N₄S₂, 355.1 (M+H), found 355.4.
Example 253

4-[(4-Methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride

a) Methyl 4-[(4-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxylate: To an oven-dried glass vial with stir bar was added a mixture of 120 mg (0.449 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 7.1 mg (7 mol %) of palladium (II) acetate, 29.4 mg (10.5 mol %) of racemic-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl, 205 mg (0.629 mmol) of cesium carbonate and 69.1 mg (0.561 mmol) of p-anisidine. The vial was transferred to a glove bag, flushed with dry argon and anhydrous toluene (0.9 mL) was added. The vial was capped with a Teflon-lined screw cap and heated at 100 °C for 48 h. To the cooled suspension was added ethyl acetate (4 mL), the mixture filtered (Celite) washing with ethyl acetate (2 x 2 mL), and the solvents removed in vacuo. The resulting residue was purified by silica gel preparative thin layer chromatography (40% CH₂Cl₂ in hexane) to afford 83 mg (60 %) of the title compound as a yellow oil. ¹H-NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 3.82 (s, 3H), 3.87 (s, 3H), 6.03 (s, 1H), 6.89 (m, 2H), 7.03 (m, 2H), 7.58 (s, 1H).

b) 4-[(4-Methoxyphenyl)amino]-5-methylthiothiophene-2-carboxamidine hydrochloride: Trimethylaluminum (2.0 M in toluene, 2 mL, 4 mmol) was added dropwise to a suspension of ammonium chloride (216 mg, 4 mmol) in anhydrous toluene (1 mL) under Ar at room temperature. The mixture was stirred at 25 °C for 30 min and then 80 mg (0.259 mmol) of methyl 4-[(4-methoxyphenyl)amino]-5-methylthiothiophene-2-carboxylate (as prepared in previous step) in anhydrous toluene (1 mL) was added. The reaction mixture was heated slowly to 100 °C and stirred for 2.5 h. The cooled mixture was added to a vigorously stirred slurry of silica gel (3 g) in chloroform (20 mL). The suspension was filtered washing with MeOH (4 x 5 mL) and 50 % MeOH-CH₂Cl₂ (4 x 5 mL). The combined washings were concentrated and the resulting residue was purified on a 2-g silica SPE column with 5 % MeOH-CH₂Cl₂ to afford 50 mg (59 %) of the title compound as an orange solid. ¹H-NMR (DMSO-d₆; 400 MHz) δ 2.44 (s, 3H), 3.69 (s, 3H),
6.84 (m, 2H), 6.98 (m, 2H), 7.73 (s, 1H), 7.84 (s, 1H), 9.01 (br s, 2H), 9.24 (br s, 2H). Mass spectrum (ESI, m/z): Calcd. for C_{13}H_{15}N_{5}O_{3}S_{2}, 294.1 (M+H), found 294.2.

Example 254

4-[(3-Fluoro-4-methylphenyl)amino]-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-[(3-fluoro-4-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate: To an oven-dried glass vial with stir bar was added a mixture of 120 mg (0.449 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a), 41 mg (10 mol %) of tris-(dibenzylidyneacetone)dipalladium, 42 mg (15 mol %) of racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 205 mg (0.629 mmol) of cesium carbonate and 70 mg (0.56 mmol) of 3-fluoro-4-methylaniline. The vial was transferred to a glove bag, flushed with dry argon and anhydrous toluene (0.9 mL) was added. The vial was capped with a Teflon-lined screw cap and heated at 100 °C for 48 h. To the cooled suspension was added ethyl acetate (4 mL), the mixture filtered (Celite) washing with ethyl acetate (2 x 2 mL), and the solvents removed in vacuo. The resulting residue was purified by silica gel preparative thin layer chromatography (10% Et$_2$O in hexane) to afford 103 mg (78 %) of the title compound as a yellow oil. 1H-NMR (CDCl$_3$, 400 MHz) δ 2.22 (d, 3H, J = 1.6 Hz), 2.40 (s, 3H), 3.89 (s, 3H), 6.09 (s, 1H), 6.68 (m, 1H), 6.71 (s, 1H), 7.08 (m, 1H), 7.72 (s, 1H).

b) 4-[(3-Fluoro-4-methylphenyl)amino]-5-methylthiothiophene-2-carboxamidine: The same procedure as in Example 253, step (b) was followed using 103 mg (0.349 mmol) of methyl 4-[(3-fluoro-4-methylphenyl)amino]-5-methylthiothiophene-2-carboxylate (as prepared in previous step), 2 mL of trimethylaluminum (2.0 M in toluene, 4 mmol), 216 mg of ammonium chloride (4 mmol) and 2 mL of toluene, and purified on a 2-g silica SPE column with 5 % MeOH-CH$_2$Cl$_2$ to afford 45 mg (44 %) of the title compound as a yellow foam 1H-NMR (DMSO-d$_6$, 400 MHz) δ 2.13 (s, 3H), 2.50 (s, 3H), 6.70 (m, 2H), 7.10 (m, 1H), 7.98 (s, 1H), 8.09 (s, 1H), 9.16
(br s, 4H). Mass spectrum (ESI, m/z): Calcd. for C_{13}H_{14}F_{1}N_{3}S_{2}, 296.1 (M+H), found 296.2.

Example 255

4-(Indan-5-ylamino)-5-methylthiothiophene-2-carboxamidine

a) Methyl 4-(indan-5-ylamino)-5-methylthiothiophene-2-carboxylate: The same procedure as in Example 254, step (a) was followed using 120 mg (0.449 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a), 41 mg (10 mol %) of tris-(dibenzylidinediacetone)dipalladium, 42 mg (15 mol %) of racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 205 mg (0.629 mmol) of cesium carbonate and 74.8 mg (0.56 mmol) of 5-aminoinand in 900 μL of toluene, and chromatographed as before using 40 % CH_{2}Cl_{2}-hexane to afford 100 mg (73 %) of the title compound as a yellow resin. \(^1\)H-NMR (CDCl_{3}, 400 MHz) δ 2.05-2.12 (m, 2H), 2.85-2.90 (m, 4H), 3.86 (s, 3H), 6.09 (s, 1H), 6.82 (d, 1H, J = 8.0 Hz), 6.93 (s, 1H), 7.14 (d, 1H, J = 8.0 Hz), 7.70 (s, 1H).

b) 4-(Indan-5-ylamino)-5-methylthiothiophene-2-carboxamidine: The same procedure as in Example 253, step (b) was followed using 100 mg (0.33 mmol) of methyl 4-(indan-5-ylamino)-5-methylthiothiophene-2-carboxylate (as prepared in previous step), 2 mL of trimethylaluminum (2.0 M in toluene, 4 mmol), 216 mg of ammonium chloride (4 mmol) and 2 mL of toluene, and purified on a 2-g silica SPE column with 5 % MeOH-CH_{2}Cl_{2} to afford 65 mg (65 %) of the title compound as a yellow foam. \(^1\)H-NMR (DMSO-d_{6}, 400 MHz) δ 1.99 (m, 2H), 2.48 (s, 3H), 2.78 (m, 4H), 6.77 (dd, 1H, J = 8.0, 1.78 Hz), 6.86 (s, 1H), 7.08 (d, 1H, J = 8.1 Hz), 7.80 (s, 1H), 7.94 (s, 1H), 9.13 (br s, 4H). Mass spectrum (ESI, m/z): Calcd. for C_{13}H_{17}N_{3}S_{2}, 304.1 (M+H), found 304.3.
Example 256

4-[(9-Ethylcarbazol-3-yl)amino]-5-methylthiothiophene-2-carboxamidine

5 a) Methyl 4-[(9-ethylcarbazol-3-yl)amino]-5-

methylthiothiophene-2-carboxylate: The same procedure as in Example 254, step (a) was followed using 120 mg (0.449 mmol) of methyl 4-bromo-5-
methylthiothiophene-2-carboxylate (as prepared in Example 241, step (a)), 41

mg (10 mol %) of tris-(dibenzylidineacetone)dipalladium, 42 mg (15 mol %)

of racemic-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl , 205 mg (0.629

mmol) of cesium carbonate and 118 mg (0.56 mmol) of 3-amino-9-

ethylcarbazole in 900 μL of toluene, and chromatographed as before using 40

% CH₂Cl₂-hexane to afford 80 mg (47 %) of the title compound as a yellow

resin. ¹H-NMR (CDCl₃, 400 MHz) δ 1.46 (t, 3H, J = 7.2 Hz), 2.44 (s, 3H),

3.85 (s, 3H), 4.39 (q, 2H, J = 7.2 Hz), 6.25 (s, 1H), 7.24 (m, 1H), 7.28 (s, 1H),

7.40 (m, 2H), 7.49 (m, 1H), 7.61 (s, 1H), 7.83 (d, 1H, J = 2.1 Hz), 8.06 (d, 1H, J = 7.8 Hz).

b) 4-[(9-Ethylcarbazol-3-yl)amino]-5-methylthiothiophene-2-

carboxamidine: The same procedure as in Example 253, step (b) was

followed using 80 mg (0.21 mmol) of methyl 4-[(9-ethylcarbazol-3-yl)amino]-

5-methylthiothiophene-2-carboxylate (as prepared in previous step), 2 mL of

trimethylaluminum (2.0 M in toluene, 4 mmol), 216 mg of ammonium

chloride (4 mmol) and 2 mL of toluene, and purified on a 2-g silica SPE

column with 5 % MeOH-CH₂Cl₂ to afford 56 mg (70 %) of the title compound

as a yellow foam. ¹H-NMR (DMSO-d₆, 400 MHz) δ 1.31 (t, 3H, J = 7.0 Hz),

2.50 (s, 3H), 4.42 (q, 2H, J = 7.0 Hz), 7.14 (m, 1H), 7.27 (dd, 1H, J = 8.7, 2.1

Hz), 7.43 (m, 1H), 7.56 (m, 2H), 7.82 (d, 1H, J = 2.0 Hz), 7.87 (s, 1H), 7.92

(s, 1H), 8.10 (d, 1H, J = 7.7 Hz), 9.11 (br s, 4H). Mass spectrum (ESI, m/z):

Calcd. for C₂₀H₂₀N₄S₂, 381.1 (M+H), found 381.3.
Examples 257 and 258

5-Methylthio-4-\{[(4-phenylphenyl)sulfonyl]amino\}thiophene-2-carboxamide trifluoroacetate

4-\{Bis[(4-phenylphenyl)sulfonyl]amino\}-5-methylthiothiophene-2-carboxamide trifluoroacetate

a) Methyl 5-methylthio-4-\{(phenylsulfonyl)amino\}thiophene-2-carboxylate and methyl 4-\{bis[(4-phenylphenyl)sulfonyl]amino\}-5-methylthiothiophene-2-carboxylate: To an oven-dried round bottom flask with stir bar was added a mixture of 50 mg (0.24 mmol) of methyl 4-amino-5-methylthiothiophene-2-carboxylate (as prepared in Example 202), 68 mg (0.27 mmol) of 4-biphenylsulfonyl chloride and 50 mg (0.49 mmol) of 4-dimethylaminopyridine. The flask was flushed with dry argon and anhydrous acetonitrile (3 mL) was added. The reaction was refluxed for 3 hours and then the solvent was removed in vacuo. The crude of the reaction was extracted with ethyl acetate (2 x 25 mL) and 1N HCl (50 mL). The organic layer was collected, dried (Na₂SO₄), filtered and concentrated under vacuum to yield a foam that was chromatographed on silica with 30 % ethyl ether-hexane to obtain 143 mg of a mixture of methyl 5-methylthio-4-\{(phenylsulfonyl)amino\}thiophene-2-carboxylate and methyl 4-\{bis[(4-phenylphenyl)sulfonyl]amino\}-5-methylthiothiophene-2-carboxylate. This mixture was used in the next reaction without further purification. Mass spectrum (ESI, m/z): Calcd. for C₁₉H₁₇NO₄S₃, 420.0 (M+H), found 419.7.

b) 5-Methylthio-4-\{[(4-phenylphenyl)sulfonyl]amino\}thiophene-2-carboxamide trifluoroacetate and 4-\{bis[(4-phenylphenyl)sulfonyl]amino\}-5-methylthiothiophene-2-carboxamide trifluoroacetate: Trimethylaluminum (2.0 M in toluene, 1.36 mL, 2.72 mmol) was added dropwise to a suspension of ammonium chloride (155 mg, 2.89 mmol) in anhydrous toluene (2.0 mL) under Ar at 0 °C. The mixture was stirred at 25 °C for 30 min and then 143 mg of a mixture of methyl 5-methylthio-4-\{(phenylsulfonyl)amino\}thiophene-2-carboxylate and methyl 4-\{bis[(4-phenylphenyl)sulfonyl]amino\}-5-methylthiothiophene-2-carboxylate (as prepared in previous step) in anhydrous toluene (2.0 mL) was added. The reaction mixture was heated slowly to 100 °C and stirred for 4 h. The cooled
mixture was added to a vigorously stirred slurry of silica gel (3 g) in chloroform (15 mL). The suspension was filtered (Celite) washing with 25 % MeOH-CH₂Cl₂ (2 x 5 mL), 50 % MeOH-CH₂Cl₂ (2 x 5 mL) and 75 % MeOH-CH₂Cl₂ (2 x 5 mL). The combined washings were concentrated and the resulting residue was purified on a 10-g silica SPE column with a gradient of 10-15 % MeOH-CH₂Cl₂ saturated with ammonia to afford 66 mg of a mixture of the title compounds as a yellow solid. This mixture was chromatographed by preparative reverse phase HPLC performed with a Rainin SD-1 Dynamax system and a 2-in. C18 reverse phase Dynamax 60A column using a gradient of 30% MeOH /0.1% TFA in water to 100% MeOH and a flow rate of 50 mL/ min. to yield 15 mg 5-methylthio-4-{[(4-phenylphenyl)sulfonyl]amino}thiophene-2-carboxamidine trifluoroacetate; mass spectrum (ESI, m/z): Calcd. for C₁₈H₁₇N₂O₂S₃, 404.0 (M+H), found 404.1; and 11 mg of 4-{bis[(4-phenylphenyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine trifluoroacetate. Mass spectrum (ESI, m/z): Calcd. for C₃₀H₂₅N₃O₄S₄, 619.8 (M+H), found 620.2.

Examples 259 to 282

The same methods as for Examples 257 and 258 were used to synthesize the following compounds:

<table>
<thead>
<tr>
<th>Examp</th>
<th>Reagent</th>
<th>Compound</th>
<th>Formula</th>
<th>Calc, M+H</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>1-Naphthalenesulfonyl chloride</td>
<td>5-Methylthio-4-{[2-naphthylsulfonyl]amino}thiophene-2-carboxamidine</td>
<td>C₁₆H₁₅N₃O₂S₃</td>
<td>378.0</td>
<td>378.1</td>
</tr>
<tr>
<td>260</td>
<td>1-Naphthalenesulfonyl chloride</td>
<td>4-{[Bz(2-naphthylsulfonyl)amino]-5-methylthiothiophene-2-carboxamidine</td>
<td>C₂₆H₂₁N₃O₄S₄</td>
<td>568.0</td>
<td>568.1</td>
</tr>
<tr>
<td>261</td>
<td>7-Bromonaphthalene sulfonyl chloride</td>
<td>4-{[6-(2-bromothiophene-2-sulfonyl)]amino}-5-methylthiothiophene-2-carboxamidine</td>
<td>C₁₆H₁₄BrN₃O₂S₃</td>
<td>455.9</td>
<td>*</td>
</tr>
<tr>
<td>262</td>
<td>7-Bromonaphthalene sulfonyl chloride</td>
<td>4-{[6-bromo(2-naphthyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine</td>
<td>C₂₆H₁₉Br₂N₃O₄S₄</td>
<td>723.9</td>
<td>*</td>
</tr>
<tr>
<td>263</td>
<td>2-Naphthalenesulfonyl chloride</td>
<td>5-Methylthio-4-{[naphthylsulfonyl]amino}thiophene-2-carboxamidine</td>
<td>C₁₆H₁₅N₃O₂S₃</td>
<td>378.0</td>
<td>378.1</td>
</tr>
<tr>
<td>264</td>
<td>2-Naphthalenesulfonyl chloride</td>
<td>4-{[Bz(naphthylsulfonyl)amino]-5-methylthiothiophene-2-carboxamidine</td>
<td>C₂₆H₂₁N₃O₄S₄</td>
<td>568.7</td>
<td>568.3</td>
</tr>
<tr>
<td>265</td>
<td>o-Toluenesulfonyl chloride</td>
<td>4-{[(2-Methylphenyl)sulfonyl]amino}-5-methylthiothiophene-2-carboxamidine</td>
<td>C₁₃H₁₅N₃O₂S₃</td>
<td>342.4</td>
<td>342.1</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>CAS Number</td>
<td>MP (°C)</td>
<td>BP (°C)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>4-{(Bis[(2-methylphenyl)sulfonyl]amino)-5-methylthiophene-2-carboxamidine}</td>
<td>C20H21N3O4S4</td>
<td>496.6</td>
<td>496.1</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>4-{([(3-Methylphenyl)sulfonyl]amino)-5-methylthiophene-2-carboxamidine}</td>
<td>C13H15N3O2S3</td>
<td>342.0</td>
<td>342.1</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>4-{(Bis[(3-methylphenyl)sulfonyl]amino)-5-methylthiophene-2-carboxamidine}</td>
<td>C20H21N3O4S4</td>
<td>496.6</td>
<td>496.0</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>4-{([(4-Methylphenyl)sulfonyl]amino)-5-methylthiophene-2-carboxamidine}</td>
<td>C13H15N3O2S3</td>
<td>342.0</td>
<td>342.1</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>4-{(Bis[(4-methylphenyl)sulfonyl]amino)-5-methylthiophene-2-carboxamidine}</td>
<td>C20H21N3O4S4</td>
<td>496.6</td>
<td>496.1</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>5-Methylthio-4-((benzylsulfonyl)amino)-thiophene-2-carboxamidine</td>
<td>C13H15N3O2S3</td>
<td>342.0</td>
<td>342.1</td>
<td></td>
</tr>
<tr>
<td>Examp</td>
<td>Reagent</td>
<td>Compound</td>
<td>Formula</td>
<td>Calc. M+H</td>
<td>Found</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>272</td>
<td>4-Methoxybenzenesulfonyl chloride</td>
<td>4-(((4-Methoxyphenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C13H15N3O3S3</td>
<td>358.0</td>
<td>358.1</td>
</tr>
<tr>
<td>273</td>
<td>4-Methoxybenzenesulfonyl chloride</td>
<td>4-(((4-Methoxyphenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C20H21N3O6S4</td>
<td>528.0</td>
<td>528.0</td>
</tr>
<tr>
<td>274</td>
<td>4-Iodobenzenesulfonyl chloride</td>
<td>4-(((4-Iodophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C12H12IN3O2S3</td>
<td>453.9</td>
<td>454.0</td>
</tr>
<tr>
<td>275</td>
<td>3,4-Dimethoxybenzenesulfonyl chloride</td>
<td>4-(((3,4-Dimethoxyphenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C14H17N3O4S3</td>
<td>388.0</td>
<td>388.1</td>
</tr>
<tr>
<td>276</td>
<td>3,4-Dimethoxybenzenesulfonyl chloride</td>
<td>4-(((3,4-Dimethoxyphenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C22H25N3O8S4</td>
<td>588.0</td>
<td>588.1</td>
</tr>
<tr>
<td>277</td>
<td>2-Chlorobenzenesulfonyl chloride</td>
<td>4-(((2-Chlorophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C12H12ClN3O2S3</td>
<td>361.9</td>
<td>362.1</td>
</tr>
<tr>
<td>278</td>
<td>3-Chlorobenzenesulfonyl chloride</td>
<td>4-(((3-Chlorophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C12H12ClN3O2S3</td>
<td>361.9</td>
<td>362.1</td>
</tr>
<tr>
<td>279</td>
<td>3-Chlorobenzenesulfonyl chloride</td>
<td>4-(((3-Chlorophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C18H15Cl2N3O4S4</td>
<td>535.9</td>
<td>537.9</td>
</tr>
<tr>
<td>280</td>
<td>4-Chlorobenzenesulfonyl chloride</td>
<td>4-(((4-Chlorophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C12H12ClN3O2S3</td>
<td>361.9</td>
<td>362.1</td>
</tr>
<tr>
<td>281</td>
<td>4-Chlorobenzenesulfonyl chloride</td>
<td>4-(((4-Chlorophenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C18H15Cl2N3O4S4</td>
<td>535.9</td>
<td>*</td>
</tr>
<tr>
<td>282</td>
<td>Benzenesulfonyl chloride</td>
<td>5-Methylthio-4-((phenylsulfonyl)amino)-thiophene-2-carboxamide</td>
<td>C12H13N3O2S3</td>
<td>328.0</td>
<td>328.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examp</th>
<th>Reagent</th>
<th>Compound</th>
<th>Formula</th>
<th>Calc. M+H</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>Benzenesulfonyl chloride</td>
<td>4-(((4-Methylthio-4-((phenylsulfonyl)amino)-thiophene-2-carboxamide</td>
<td>C18H17N3O4S4</td>
<td>468.0</td>
<td>467.9</td>
</tr>
<tr>
<td>284</td>
<td>4-tert-Butylbenzenesulfonyl chloride</td>
<td>4-(((4-(1-Tert-butyl)phenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C16H21N3O2S3</td>
<td>384.0</td>
<td>384.2</td>
</tr>
<tr>
<td>285</td>
<td>4-tert-Butylbenzenesulfonyl chloride</td>
<td>4-(((4-(1-Tert-butyl)phenyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C26H33N3O4S4</td>
<td>580.1</td>
<td>580.2</td>
</tr>
<tr>
<td>286</td>
<td>Trans-β-styrene sulfonyl chloride</td>
<td>4-(((1E)-2-Phenylvinyl)sulfonyl)amino)-5-methylthiophene-2-carboxamide</td>
<td>C14H15N3O2S3</td>
<td>354.0</td>
<td>*</td>
</tr>
<tr>
<td>287</td>
<td>4-Benzensulfonylthiophene-2-sulfonyl chloride</td>
<td>5-Methylthio-4-(((4-phenylsulfonyl)(2-thienyl)sulfonyl)amino)-thiophene-2-carboxamide</td>
<td>C16H15N3O4S5</td>
<td>473.9</td>
<td>474.1</td>
</tr>
</tbody>
</table>

* Mass spectral data inconclusive.
Example 288

5-Methylthio-4-phenoxythiophene-2-carboxamidine trifluoroacetate.

a) Methyl 5-methylthio-4-phenoxythiophene-2-carboxylate: To an oven-dried round bottom flask with stir bar was added a mixture of 100 mg (0.37 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as prepared in Example 241), 20 mg of Cu (0) (Brewster, R.Q. and Groening T., Organic Syntheses, Vol. II, Note 1, pp 445-446) and 42 mg (0.46 mmol) of phenol. The flask was flushed with dry argon and anhydrous tetrahydrofuran (5 mL) was added. The reaction was refluxed for 48 hours and then the solvent was removed in vacuo. The resulting residue was purified on a 10-g silica SPE column with a gradient of 50-100% CH₂Cl₂-hexane to yield 48 mg of methyl 5-methylthio-4-phenoxythiophene-2-carboxylate (37%). ¹H-NMR (CDCl₃, 400 MHz) δ 7.39 (s, 1H), 7.32 (m, 2H), 7.09 (m, 2H), 6.97 (d, 1H, J = 8.4 Hz), 3.86 (s, 3H) and 2.49 (s, 3H).

b) 5-Methylthio-4-phenoxythiophene-2-carboxamidine trifluoroacetate: The same procedure as in Example 257, step (b) was followed using 48.0 mg (0.17 mmol) of methyl 5-methylthio-4-phenoxythiophene-2-carboxylate (as prepared in the step before), 78 mg of ammonium chloride (1.5 mmol), 0.68 ml of trimethylaluminum (2.0 M in toluene, 1.3 mmol) and 3 ml of anhydrous toluene and chromatographed as before using preparative reverse phase HPLC performed with a Rainin SD-1 Dynamax system and a 2-in. C18 reverse phase Dynamax 60A column using a gradient of 30% MeOH /0.1% TFA in water to 100% MeOH and a flow rate of 50 mL/ min. ¹H-NMR (CD₃OD, 400 MHz) δ 7.66 (s, 1H), 7.39 (t, 2H, J = 7.5 Hz), 7.17 (t, 2H, J = 7.4 Hz), 7.02 (d, 1H, J = 7.7 Hz) and 2.58 (s, 3H). Mass spectrum (ESI, m/z): Calcd. C₁₂H₁₂N₂O₃S₂, 265.0 (M+H), found 262.2.

Example 289

5-Methylthio-4-(phenylsulfonfonyl)thiophene-2-carboxamidine trifluoroacetate.

a) 4-Bromo-5-methylthiothiophene-2-carboxylic acid: To 1.0 g (3.7 mmol) of methyl 4-bromo-5-methylthiothiophene-2-carboxylate (as
prepared in Example 241, step (a) dissolved in 25 ml of MeOH was added 450 mg of NaOH dissolved in 10 ml of H₂O. The reaction was stirred for 5 hours at room temperature, and then the solvents were removed under vacuum. The residue of the reaction was extracted with ethyl acetate (2 x 50 mL) and 1N HCl. The organic layer was collected, dried (Na₂SO₄), filtered and concentrated under vacuum to yield 833 mg (89%) of 4-bromo-5-methylthiothiophene-2-carboxylic acid as a white solid.

b) 5-Methythio-4-(phenylsulfonyl)thiophene-2-carboxylic acid:
To an oven-dried round bottom flask with stir bar was added 100 mg (0.39 mmol) 4-bromo-5-methylthiothiophene-2-carboxylic acid (as prepared in Example before). The flask was flushed with dry argon and anhydrous tetrahydrofuran (3 mL) was added. Then the solution was cooled at -78 °C before adding 511 μL of tert-butyl lithium (0.87 mmol, 1.7 M in tetrahydrofuran). The mixture was stirred for a period of 45 minutes and 77 mg of benzenesulfonyl fluoride (0.39 mmol) was added and the reaction was allowed to rise to room temperature. The reaction was stirred for 12 hours and then quenched carefully with H₂O. The solvents were removed under vacuum and the residue of the reaction was extracted with ethyl acetate (2 x 50 ml) and 1N HCl. The organic layer was collected, dried (Na₂SO₄), filtered and concentrated under vacuum to yield 130 mg of a solid. This solid was used in the next step without further purification.

c) Methyl 5-methythio-4-(phenylsulfonyl)thiophene-2-carboxylate: To a solution of 25 mg of the mixture from the previous step dissolved in 3 mL of MeOH was added dropwise 397 μL of trimethylsilyldiazomethane (0.79 mmol, 2 M solution in hexanes) and the reaction was stirred for a period of 1 hour. The solvents were removed under vacuum. The resulting residue was purified on a 10-g silica SPE column with a gradient of 50-100 % ethyl acetate-hexane to yield 13.8 mg of methyl 5-methythio-4-(phenylsulfonyl)thiophene-2-carboxylate. Mass spectrum (ESI, m/z): Calcd. C₁₅H₁₂O₄S₃, 329.0 (M+H), found 329.0.

d) 5-Methythio-4-(phenylsulfonyl)thiophene-2-carboxamidine trifluoroacetate: The same procedure as in Example 257, step (b) was followed using 13.8 mg (0.044 mmol) of methyl 5-methythio-4-
(phenylsulfonyl)thiophene-2-carboxylate (as prepared in the step before), 20 mg of ammonium chloride (0.376 mmol), 0.176 ml of trimethylaluminum (2.0 M in toluene, 0.353 mmol) and 3 ml of anhydrous toluene and chromatographed as before by preparative reverse phase HPLC performed with a Rainin SD-1 Dynamax system and a 2-in. C18 reverse phase Dynamax 60A column using a gradient of 30% MeOH /0.1% TFA in water to 100% MeOH and a flow rate of 50 mL/min to yield 2.3 mg of 5-methylthio-4-(phenylsulfonyl)thiophene-2-carboxamidine. ¹H-NMR (CD3OD, 400 MHz) δ 8.42 (s, 1H), 8.04 (m, 2H), 7.70 (m, 2H), 7.62 (m, 1H) and 2.70 (s, 3H). Mass spectrum (ESI, m/z): Calcd. C12H12N2O2S3, 313.0 (M+H), found 313.2.
Example 290

4-[4-(3-[[((2,4-difluorophenyl)sulfonyl]amino)phenyl](1,3-thiazol-2-yl))-5-methylthiophene-2-carboxamidine

To a solution of 5-(methoxycarbonyl)-2-(methylthio) thiophene-3-thiocarboxamide (1g, 4 mmol) in 25 mL of acetone was added a solution of 2-bromo-3'-nitro acetophenone (1g, 4 mmol) in a single portion at room temperature. The resulting solution was heated at reflux for 16h. After cooling, the precipitate was filtered, washed with cold acetone, and dried under vacuum to provide a brown solid. This material was used directly in the next step. Crude yields 50-60%. 1H NMR (DMSO-d6): δ 7.47 (br s, 2H), 7.30 (br s, 2H), 7.13 (br s, 2H), 3.35 (s, 3H), 2.50 (s, 3H).

The crude nitrobenzene obtained in the last step (0.71g, 1.81mmol) was dissolved, with warming, in 100mL of THF. After cooling to room temperature, a large excess (40mL) of a 20% solution of titanium trichloride was added dropwise via addition funnel at room temperature. After addition was complete, stirring was continued 1 hour at room temperature. The reaction mixture was poured, with stirring, into 100mL of a 2N sodium hydroxide solution. The organic layer was separated. The aqueous layer was washed with methylene chloride and the combined organic layers were then backwashed with brine. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated to give a brown solid. This material was purified by flash chromatography (50% ethyl acetate/hexanes). Yield 70-75%. 1H NMR (DMSO-d6): δ 7.61 (br s, 2H), 7.44 (br s, 2H), 7.27 (br s, 2H), 3.41 (s, 3H), 2.51 (s, 3H).

The aniline from the last step (64mg, 0.17mmol) was dissolved in 5mL of methylene chloride and triethyl amine (0.12mL, 0.85mmol) was added in a single portion at room temperature. The reaction mixture was cooled to 0 and 2,4-difluorophenylsulfonyl chloride (108mg, 0.51mmol) was added in a single portion at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 16h at room temperature. The reaction mixture was diluted with ethyl acetate and washed sequentially with water, 1N hydrochloric acid, water, saturated sodium bicarbonate solution and brine. The organic layer was dried over magnesium sulfate, filtered, and concentrated in vacuo. This material was used without any further purification. Crude
yield >95%.

To a suspension of ammonium chloride (72mg, 1.36mmol) in 2mL of dry toluene was added trimethyl aluminum (0.68mL of a 2M solution in hexanes, 1.36mmol) dropwise via syringe at room temperature. Stirring was continued 5 minutes at room temperature. A solution of all of the sulfonamide obtained in the previous step in 2mL of dry toluene was added in a single portion at room temperature. The reaction mixture was heated at 120 °C for 1.5 hours. After cooling, the reaction mixture was added to a slurry of 500mg of silica gel in 2mL of methylene chloride. This slurry was added to the top of a silica gel column (10g Sep-Pak) and subjected to flash chromatography (10% methanol/methylene chloride) to obtain the desired product. Yield 82% (73mg). ¹H NMR (DMSO-d6): δ 9.55 (br s, 2H), 9.26 (br s, 2H), 8.70 (s, 1H), 8.35 (s, 1H), 7.94-8.24 (m, 2H), 7.69-7.72 (m, 2H), 7.59-7.62 (m, 2H), 7.26-7.32 (m, 1H), 3.16 (s, 3H). MS: m/z (MALDI) 523.1 (M+H)^+.

Example 291

4-[4-[(3,4-difluorophenyl)sulfonyl]amino]phenyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide

This material was prepared according to the procedure described above for Example 290 by substituting 3,4-difluorophenylsulfonyl chloride for 2,4-difluorophenylsulfonyl chloride. ¹H NMR (DMSO-d6): δ 9.54 (br s, 2H), 9.25 (br s, 2H), 8.69 (s, 1H), 8.39 (s, 1H), 8.28 (d, 1H), 7.83-7.95 (m, 2H), 7.65-7.809 (m, 4H), 3.16 (s, 3H). MS: m/z (MALDI) 523.1 (M+H)^+.

Example 292

4-[4-[(4-methoxyphenyl)carbonyl]amino]phenyl(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamide

This material was prepared according to the procedure described above for Example 290 by substituting 4-methoxyphenylcarbonyl chloride for 2,4-difluorophenylsulfonyl chloride. ¹H NMR (DMSO-d6): δ 9.42 (br s, 2H), 9.05 (br s, 2H), 8.67 (s, 1H), 8.36 (s, 1H), 7.77 (d, 2H), 7.32 (d, 2H), 7.10-7.22 (m, 4H), 3.90 (s, 1H),
2.79 (s, 3H). MS: m/z (ESI) 481.2 (M+H)*.

Example 293

4-(4-{3-[(4-methoxyphenyl)sulfonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

This material was prepared according to the procedure described above for Example 290 by substituting 4-methoxyphenylsulfonyl chloride for 2,4-difluorophenylsulfonyl chloride. \(^1\)H NMR (DMSO-d6): δ 9.46 (br s, 2H), 9.11 (br s, 2H), 8.68 (s, 1H), 8.14 (s, 1H), 7.95 (d, 2H), 7.38 (d, 2H), 7.10-7.41 (m, 4H), 3.85 (s, 1H), 2.79 (s, 3H). MS: m/z (MALDI) 516.1 (M+H)*.

Example 294

4-(4-{3-[(4-chlorophenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

This material was prepared according to the procedure described above for Example 290 by substituting 4-chlorobenzoyl chloride for 2,4-difluorophenylsulfonyl chloride. \(^1\)H NMR (DMSO-d6): δ 9.56 (br s, 2H), 9.30 (br s, 2H), 8.76 (s, 1H), 8.15 (s, 1H), 8.05 (d, 2H), 7.55 (d, 2H), 7.22-7.47 (m, 4H), 2.79 (s, 3H). MS: m/z (ESI) 485.2 (M+H)*.

Example 295

4-(4-{3-[(2,4-difluorophenyl)carbonylamino]phenyl}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

This material was prepared according to the procedure described above for Example 290 by substituting 2,4-difluorobenzoyl chloride for 2,4-difluorophenylsulfonyl chloride. \(^1\)H NMR (DMSO-d6): δ 9.59 (br s, 2H), 9.32 (br s, 2H), 8.76 (s, 1H), 8.18 (s, 1H), 7.26-7.58 (m, 7H), 3.16 (s, 3H). MS: m/z (ESI) 487.2 (M+H)*.
Example 296

5-methylthio-4-[4-(1-phenyl-5-propylpyrazol-4-yl)(1,3-thiazol-2-yl)-2-carboxamidine

To a solution of 1-phenyl-5-propylpyrazole-4-carbonyl chloride (2.0g, 8.1 mmol) in 40mL of acetonitrile was added trimethylsilyldiazomethane (8.86 mL of a 2M solution in hexanes, 17.73 mmol) portionwise at 0 °C. The reaction mixture was allowed to come to room temperature and stirred for 16h. The reaction mixture was cooled to 0 °C and a solution of hydrobromic acid in acetic acid (12 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred at room temperature for 1h. Solvents were removed in-vacuo and the residue was purified by flash chromatography using a gradient of 20% to 50% ethyl acetate in hexanes.

To a solution of 5-(methoxycarbonyl)-2-(methylthio) thiophene-3-thiocarboxamide (0.7g, 2.7 mmol) in 25 mL of acetone was added a solution of the 2-bromo-1-(1-phenyl-5-propylpyrazol-4-yl)ethan-1-one (0.8g, 2.7 mmol) prepared in the previous step in a single portion at room temperature. The resulting solution was heated at reflux for 6h. After cooling, the precipitate was filtered, washed with cold acetone, and dried under vacuum to provide a brown solid. This material was used directly in the next step.

To a suspension of ammonium chloride (72mg, 1.36mmol) in 2mL of dry toluene was added trimethyl aluminum (0.68mL of a 2M solution in hexanes, 1.36mmol) dropwise via syringe at room temperature. Stirring was continued 5 minutes at room temperature. A solution of the ester obtained in the previous step (100mg, 0.2 mmol) in 2mL of dry toluene was added in a single portion at room temperature. The reaction mixture was heated at 120 °C for 1.5 hours. After cooling, the reaction mixture was added to a slurry of 500mg of silica gel in 2mL of methylene chloride. This slurry was added to the top of a silica gel column (10g Sep-Pak) and subjected to flash chromatography (10% methanol/methylene chloride) to obtain the desired product.

Yield: 72mg, 84%. 1H NMR (DMSO-d6): δ 9.46 (br s, 2H), 9.12 (br s, 2H), 8.63 (s, 1H), 8.13 (s, 1H), 7.87 (s, 1H), 7.48-7.53 (m, 5H), 3.15 (t, J = 7.37 Hz, 2H), 1.39-1.46 (m, 2H), 0.74 (t, J = 7.37 Hz, 2H). MS: m/z (MALDI) 439.8 (M+H)+.
Example 297

4-{4-[1-(4-chlorophenyl)-5-amidinopyrazol-4-yl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

This material was prepared according to the procedure described above for Example 97 by substituting 1-(4-chlorophenyl)-5-((trifluoromethyl)pyrazole-4-carbonyl chloride for 1-phenyl-5-propylyrazole-4-carbonyl chloride. MS: m/z (ESI) Calc'd for C$_{19}$H$_{16}$ClN$_7$S$_3$: 474.0; found: 474.2 (M+H)$^+$.

Example 298

4-{4-[5-(tert-butyl)-1-benzylpyrazol-4-yl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamidine

This material was prepared according to the procedure described above for Example 296 by substituting 5-(tert-butyl)-1-benzylpyrazole-4-carbonyl chloride for 1-phenyl-5-propylyrazole-4-carbonyl chloride. 1H NMR (DMSO-d$_6$; 300 MHz) δ 9.43 (br s, 2H), 9.04 (br s, 2H), 8.51 (s, 1H), 8.02 (s, 1H), 7.20 (m, 3H), 6.98 (m, 2H), 6.70 (s, 1H), 5.91 (s, 2H), 2.72 (s, 3H), 1.31 (s, 9H). MS: m/z (ESI) Calc'd for C$_{23}$H$_{25}$N$_7$S$_3$: 468.1; found 468.1 (M+H)$^+$.
Example 299

Tablet Preparation

Tablets containing 25.0, 50.0, and 100.0 mg, respectively, of an active compound are prepared as illustrated below:

<table>
<thead>
<tr>
<th>TABLET FOR DOSES CONTAINING FROM 25-100 MG OF THE ACTIVE COMPOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Compound</td>
</tr>
<tr>
<td>Microcrystalline cellulose</td>
</tr>
<tr>
<td>Modified food corn starch</td>
</tr>
<tr>
<td>Magnesium stearate</td>
</tr>
</tbody>
</table>

All of the active compound, cellulose, and a portion of the cornstarch are mixed and granulated to 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 25.0, 50.0, and 100.0 mg, respectively, of active ingredient per tablet.

Example 300

Intravenous Solution Preparation

An intravenous dosage form of the above-indicated active compounds is prepared as follows:

Active Compound	0.5-10.0 mg
Sodium Citrate	5-50 mg
Citric Acid	1-15 mg
Sodium Chloride	1-8 mg
Water for Injection (USP)	q.s. to 1 ml
Utilizing the above quantities, the active compound is dissolved at room temperature in a previously prepared solution of sodium chloride, citric acid, and sodium citrate in Water for Injection (USP, see page 1636 of United States Pharmacopeia/National Formulary for 1995, published by United States Pharmacopeial Convention, Inc., Rockville, Maryland (1994).

Example 301

In vitro Inhibition of C1s

Reagents: All buffer salts were obtained from Sigma Chemical Company (St. Louis, MO), and were of the highest purity available.

K_d Determinations: All assays are based on the ability of the test compound to inhibit the C1s catalyzed hydrolysis of the substrate Z-Gly-Arg-S-Bzl via an intermediate reaction with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). [Complement C1s is available commercially from Enzyme Research, South Bend, IN.] In a typical K_d determination, substrate is prepared in DMSO, and diluted into an assay buffer consisting of 50 mM HEPES, 200 mM NaCl, pH 7.5. Substrate solutions were prepared at a concentration of 45 μM (K_m = 153 μM) with DTNB at a concentration of 200 μM in assay buffer. In general, substrate concentrations are lower than the experimentally determined value for K_m. Test compounds are prepared as a 1 mg/ml solution in DMSO. Dilutions are prepared in DMSO yielding 8 final concentrations encompassing a 200-fold concentration range. Purified activated C1s was diluted into assay buffer to a concentration of 220 nM.

In a typical K_d determination, into each well of a 96-well plate is pipetted 280 μL of substrate solution, 10 μL of test compound solution, and the plate allowed to thermally equilibrate at 37°C for 15 minutes. Reactions were initiated by the addition of a 10 μL aliquot of the enzyme and the absorbance increase at 405 nm is recorded for 5 minutes in a Molecular Devices plate reader. Final DMSO concentration was 4.3%. Final reagent concentrations were: [C1s] = 7.3 nM, [Z-Gly-Arg-S-Bzl] = 45 μM, [DTNB] = 200 μM. The ratio of the velocity (rate of change in absorbance as a function of time) for a sample containing no test compound is divided by the velocity of a sample containing test compound, and is plotted as a function of test compound concentration. The data are fit to a linear regression, and the value of the slope of the line calculated. The inverse of the slope is the experimentally determined K_d value.
Complement Inhibition Data

The following compounds have Ki values in the range of 0.03 to 1.16 micromolar (μM) for C1s:

the compounds of Examples 1, 6(b), 8(b), 9(b), 10(b), 11(b), 12(b), 14(b), 15(b), 17(b),
19, 20(b), 21(b), 22(b), 23(b), 24(b), 25(b), 26(b), 27(b), 28(b), 29(b), 30(c), 32(b), 35(c), 57, 58,
73, 74-76, 83(c), 97(c), 112, 128(c), 132(b), 134(d), 135(b), 136(b), 137(b), 162(b), 163(b),
177(c), 179(b), 185(b), 187, 190(c) and 290-296.

The compound of Example 290 has a Ki value of 0.03 μM for C1s.

The results indicate that the compounds of the present invention are inhibitors of complement, specifically C1s.

Having now fully described this invention, it will be understood to those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations, and other parameters without affecting the scope of the invention or any embodiment thereof. All patents and publications cited herein are fully incorporated by reference herein in their entirety.
What Is Claimed Is:

1. A method for treating the symptoms of an acute or chronic disorder mediated by the classical pathway of the complement cascade, comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Formula I

or a solvate, hydrate or pharmaceutically acceptable salt thereof; wherein:

- X is O, S or NR², where R² is hydrogen, alkyl, aralkyl, hydroxy(C₉₋₄)alkyl, or alkoxy(C₉₋₄)alkyl;
- Y is a direct covalent bond, CH₂ or NH;
- Z is NR⁴R⁶, hydrogen or alkyl, provided that Y is NH whenever Z is hydrogen or alkyl;
- R¹ is hydrogen, amino, hydroxy, halogen, cyano, C₉₋₄ alkyl or -CH₂R, where R is hydroxyamino or C₁₋₃ alkoxy;
- R² and R³ are independently:
 i. hydrogen,
 ii. halogen,
 iii. hydroxy,
 iv. nitro,
 v. cyano,
 vi. amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, monoalkyldioalkylamino, monoaralkylamino, diaralkylamino, alkyldarylamino, alkoxycarbonylamino, aralkoxycarbonylamino, aryloxyarbonylamino, alkylsulfonylamino, aralkylsulfonylamino, arylsulfonylamino, formylamino, acylamino, H(S)CNH⁻, or thioacylamino,
vii. aminocarbonyl, monoalkylaminocarbonyl, dialkylaminocarbonyl, acyl, aminoacyl, or arylaminocarbonyl,
viii. aminothiocarbonyl, monoalkylaminothiocarbonyl, dialkylaminothiocarbonyl, thioacyl or aminothioacyl,
ix. aminocarbonylamino, mono- and dialkylaminocarbonylamino, mono- and diarylaminocarbonylamino, or mono- and diaralkylaminocarbonylamino,
x. aminocarbonyloxy, mono- and dialkylaminocarbonyloxy, mono- and diarylaminocarbonyloxy, mono- and diaralkylaminocarbonyloxy,
xii. aminosulfonyl, mono- and dialkylaminosulfonyl, mono- and diarylaminosulfonyl, or mono- and diaralkylaminosulfonyl,
xiii. alkoxy, or alkylthio, wherein the alkyl portion of each group may be optionally substituted,
xiv. aralkoxy, aryloxy, aralkylthio, or arylthio, wherein the aryl portion of each group can be optionally substituted,
xv. alkylsulfonyl, wherein the alkyl portion can be optionally substituted,
xvi. alkenyl, or alkynyl,
xvii. optionally substituted aryl,
xviii. optionally substituted alkyl,
xix. optionally substituted aralkyl,
x. optionally substituted heterocycle, or
xx. optionally substituted cycloalkyl; and

\[R^4, R^5 \text{ and } R^6 \text{ are independently hydrogen, } C_{1-4} \text{ alkyl, aryl, hydroxyalkyl, aminalkyl, } \]

monoalkylamino(C_{2-10})alkyl, dialkylamino(C_{2-10})alkyl, carboxyalkyl, cyano, amino, alkoxy, or hydroxy, or \(-\text{CO}_2\text{R}^*\), where

\[\text{R}^* \text{ is alkyl, cycloalkyl, phenyl, benzyl,} \]

\[\text{or} \]

\[
\begin{align*}
\text{R}^f & \quad \text{or} \\
\text{R}^g & \quad \text{or} \\
\text{R}^h & \quad \text{or}
\end{align*}
\]
where R² and R⁵ are independently hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl or phenyl, R¹ is hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl or phenyl, R⁶ is hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl or phenyl, and Rʰ is aralkyl or C₁₋₄ alkyl.

2. The method of claim 1, wherein said acute or chronic disorder is inflammation, tissue damage, or an autoimmune disease.

3. The method of claim 1, wherein a compound of Formula I is administered to a mammal in need of treatment of complement-mediated disease selected from the group consisting of inflammation, tissue damage and a combination thereof.

4. The method of claim 3, wherein said disease is intestinal inflammation of Crohn's disease, thermal injury, or post pump syndrome in cardiopulmonary bypass.

5. The method of claim 1, wherein a compound of Formula I is administered to a mammal suffering from the symptoms of adult respiratory distress syndrome

6. The method of claim 1, wherein a compound of Formula I is administered to a mammal in need of treatment of sepsis, immune-complex-induced vasculitis glomerulonephritis, hemolytic anemia, myasthenia gravis, type II collagen-induced arthritis, or allergic neuritis.

7. The method of claim 1, wherein a compound of Formula I is administered to a mammal before, during or after the transplant of an organ or a graft to ameliorate the rejection of such organ or graft by the mammal.

8. The method of claim 1, wherein a compound of Formula I is administered to a mammal before, during or after treatment of said mammal with IL-2 in an amount effective to reduce the toxicity and side-effects of the IL-2 treatment.
9. The method of claim 1, wherein a compound of Formula I is administered to a mammal that has been diagnosed with an auto-immune disease.

10. The method of claim 9, wherein a compound of Formula I is administered to a mammal that has been diagnosed with Hashimoto's thyroiditis, glomerulonephritis and cutaneous lesions of systemic lupus erythematosus, other glomerulonephritides, bullous pemphigoid, dermatitis herpetiformis, Goodpasture's syndrome, Graves' disease, myasthenia gravis, insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, and rheumatoid arthritis.

11. The method of claim 10, wherein a compound of Formula I is administered to a mammal that has been diagnosed with myasthenia gravis (MG), rheumatoid arthritis, or systemic lupus erythematosus.

12. The method of claim 1, wherein a compound of Formula I is administered to a mammal that has been diagnosed with a neurodegenerative disease.

13. The method of claim 12, wherein said neurodegenerative disease is multiple sclerosis (MS), Guillain-Barré syndrome (GBS), Miller-Fisher syndrome (MFS), and Alzheimer's disease (AD).

14. A pharmaceutical composition for treating a complement-mediated disease state comprising a compound of Formula I in an amount effective to inhibit C1s protease function in a mammal, and a pharmaceutically acceptable carrier or diluent.

15. The method of claim 1, wherein,
X is sulfur or oxygen;
Y is a covalent bond or -NH-;
R^1 is hydrogen, amino, hydroxy or halogen;
R⁴, R⁵ and R⁶ are independently hydrogen, C₁₋₆ alkyl, amino, cyano, C₁₋₄ alkoxy or hydroxy;
one of R² or R³ is hydrogen, C₁₋₆ alkyl, C₁₋₆ alkylthio or C₁₋₆ alkoxy, wherein said C₁₋₆ alkyl is optionally substituted with one or more groups selected from hydroxy, amino, carboxy or aminocarbonyl;
and the other of R² or R³ is aminoacyl, acylamino, aminosulfonyl, sulfonylamino, aminocarbonylamino, alkoxy carbonylamino, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted benzothienyl, optionally substituted furanyl, optionally substituted pyrazolyl or optionally substituted pyridyl.

16. The method of claim 1, wherein
X is sulfur or oxygen;
Y is a covalent bond or -NH-;
Z is NR³R⁶;
R¹ is hydrogen, amino, hydroxy or halogen;
R⁴, R⁵ and R⁶ are independently hydrogen, C₁₋₄ alkyl, amino, C₁₋₄ alkoxy or hydroxy;
one of R² or R³ is hydrogen, C₁₋₆ alkylthio, C₁₋₆ alkyl optionally substituted with OH, NH₂, COOH or aminocarbonyl, or C₁₋₆ alkoxy;
and the other of R² or R³ is:

\[
\begin{array}{c}
\text{Ar} \\
\text{R⁸} \\
\text{R⁹}
\end{array}
\]

where:
Ar is selected from the group consisting of phenyl, thiazolyl, thiazolinyl, oxazolyl, isothiazolyl, isoxazolyl, furanyl, imidazolyl, pyridyl, pyrimidinyl, pyrazinyl, thienyl, tetrazolyl, pyrrolyl, pyrazolyl, oxadiazolyl, oxazoliny, isoxazolinyl, imidazolinyl, triazolyl, pyrrolinyl, benzothiazolyl, benzothienyl, benzimidazolyl, 1,3-oxazolidin-2-onyl, imidazolin-2-onyl, any of which can optionally include an exocyclic keto or -NR² group, where R² is alkyl, aryl, aralkyl, alkylamino, arylimino or aralkylimino; and
R₈ and R₉ are independently hydrogen, halogen, amino, mono(C₁₄)alkylaminio, di(C₁₄)alkylaminio, arylaminio, mono- and di-(C₆-14)arylaminio, mono- and di-(C₆-14)ar(C₁₄)alkylaminio, formylaminio, C₂₋₆ acylaminio, aminocarbonyl, C₂₋₆ aminoacil, C₂₋₆ thioacilaminio, aminothiocarbonyl, C₂₋₆ aminothioacil, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₁₋₆ alkoxy, carboxy, carboxy(C₁₋₆)alkyl, C₂₋₆ alkoxycarbonyl, nitro, cyano, trifluoromethyl, thiazolyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl, furanyl, imidazolyl, pyridyl, pyrimidinyl, pyrazinyl, thienyl, tetrazolyl, pyrrolyl, pyrazolyl, oxadiazolyl, oxazolyl, isothiazolyl, imidazolyl, triazolyl, pyrrolinyl, benzothiazolyl, benzothienyl, benzimidazolyl, 1,3-oxazolidin-2-onyl, imidazolin-2-onyl, C₆-14 aryloxy, C₁₋₆ alkythio, C₆-14 arylthio, C₆₋₁₄ aryl, or C₆₋₁₄ ar(C₁₋₄)alkyl, wherein the heteroaryl groups and the aryl portions of said C₆₋₁₄ aryloxy, mono- and di C₆₋₁₄ aryl amino, mono- and di-C₆₋₁₄ ar(C₁₋₄)alkylaminio, C₆₋₁₄ arylthio, C₆₋₁₄ ar(C₁₋₄)alkyl, and C₆₋₁₄ aryl are further optionally substituted by one, two or three of halogen, hydroxy, amino, mono(C₁₋₄)alkylaminio, di(C₁₋₄)alkylaminio, formylaminio, C₁₋₄ acylaminio, C₁₋₄ aminoacil, mono- or di-(C₁₋₄)alkylaminocarbonyl, thiocarbonylaminio, C₁₋₄ thioacilaminio, aminothiocarbonyl, C₁₋₄ alkoxy, C₆₋₁₀ aryloxy, aminocarbonyloxy, mono- or di(C₁₋₄)alkylaminocarbonyloxy, mono- or di(C₆₋₁₀)arylaminocarbonyloxy, mono- or di(C₆₋₁₀)arylaminocarbonyloxy, mono- or di(C₇₋₁₅)aralkylaminocarbonyloxy, C₁₋₄ alkylsulfonfyl, C₆₋₁₀ arylsulfonfyl, (C₇₋₁₅)aralkylsulfonfyl, C₄₋₁₄ alkylsulfonfylaminio, C₆₋₁₀ arylsulfonfylaminio, (C₇₋₁₅)aralkylsulfonfylaminio, aminosulfonfyl, mono- and di-alkylaminosulfonfyl, mono- and di-arylaminosulfonfyl, mono- and di-aralkylaminosulfonfyl, C₁₋₄ alkoxy carbonylaminio, C₇₋₁₅ aralkoxy carbonylaminio, C₆₋₁₀ aryloxy carbonylaminio, mono- or di-(C₁₋₄)alkylaminothiocarbonyl, C₇₋₁₅ aralkoxy, carboxy, carboxy(C₁₋₄)alkyl, C₁₋₄ alkoxy carbonyl, C₁₋₄ alkoxy carbonylalkyl, carboxy(C₁₋₄)alkoxy, alkoxy carbonylalkoxy, nitro, cyano, trifluoromethyl, C₁₋₄ alkythio and C₆₋₁₀ arythio, or by 3,4-methylenedioxy, 3,4-ethylenedioxy, and 3,4-propylenedioxy; and

R² or R³ is alkyl, cycloalkyl, alkoxy, alkythio or alkylsulfonfyl, where the alkyl portion of said alkyl, cycloalkyl, alkoxy, alkythio or alkylsulfonfyl is optionally substituted with 1 to 4 substituents selected from the group consisting of halogen, hydroxy, thiol, amino, monoalkylaminio, dialkylaminio, formylaminio, acylaminio, aminocil, monoalkylaminocarbonyl, dialkylaminocarbonyl, thiocarbonylaminio, thioacilaminio, aminothiocarbonyl, alkoxy, aryloxy, aminocarbonyloxy, monoalkylaminocarbonyloxy, dialkylaminocarbonyloxy,
monoarylaminocarbonyloxy, diarylaminocarbonyloxy, monoaralkylaminocarbonyloxy, diaralkylaminocarbonyloxy, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, alkylsulfonylamino, arylsulfonylamino, aralkylsulfonylamino, alkoxycarbonylamino, aralkoxycarbonylamino, aryloxycarbonylamino, monoalkylaminothiocarbonyl, dialkylaminothiocarbonyl, aralkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, nitro, cyano, trifluoromethyl, alkylthio and arylthio.

17. The method of claim 1, wherein
X is sulfur;
Y is a covalent bond;
Z is NR²R⁶;
R¹ is hydrogen;
R³ is methylthio or methyl;
R⁴, R⁵ and R⁶ are all hydrogen; and
R² is Formula II:

where

Ar is phenyl, thiazolyl, oxazolyl, benzothienyl, pyridyl, or imidazolyl;
R⁸ and R⁹ are independently hydrogen, C₆₋₁₀ aryl or heterocycle, wherein said C₆₋₁₀ aryl and said heterocycle are optionally substituted by one, two or three of chloro, hydroxy, C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₁₋₄ alkoxy, amino, carboxy, phenyl, naphthyl, biphenyl, hydroxyphenyl, methoxyphenyl, dimethoxyphenyl, carboxyalkoxyphenyl, alkoxyalkylalkoxy, carboxyethoxy, alkylsulfonylaminophenyl, arylsulfonylaminophenyl, acylsulfonylaminophenyl, aralkylsulfonylaminophenyl, heteroaryl sulfonlaminophenyl where the heteroaryl portion is optionally halo or C₁₋₆ alkyl substituted, chlorophenyl, dichlorophenyl, aminophenyl, carboxyphenyl, nitrophenyl, or by 3,4-methylenedioxy, 3,4-ethylenedioxy, or 3,4-propylenedioxy.
18. The method of claim 1, wherein
X is sulfur;
Y is a covalent bond;
Z is NR^3R^6;
R^1 is hydrogen;
R^2 is alkyl, ar(alkyl), alkylsulfonyl, aminocarbonyl, amidino, or

where
Ar is an aromatic or heteroaromatic group selected from phenyl, thiazolyl, oxazolyl, imidazolyl and pyridyl;
R^6 and R^9 are independently selected from hydrogen, carboxy, phenyl, naphthyl, alkyl, pyridyl, oxazolyl, furanyl, cycloalkyl and amino, any of which may be optionally substituted with 1 to 3 substituents independently selected from halogen, alkyl, haloalkyl, aralkyl, heteroaryl, phenyl, naphthyl, alkoxy, aryloxy, hydroxy, amino nitro, thiophenyl, benzothiophenyl, fluorenly, 3,4-ethylenedioxy, 3,4-methylenedioxy, 3,4-propylenedioxy, arylsulfonamido, alkylsulfonamido and aryloxy, each of said 1 to 3 substituents may be further optionally substituted with one or more groups selected from haloxy, haloalkyl, halogen, alkyl, amino, acetyl, hydroxy, dialkylamino, dialkylaminoacetyl, monoalkylaminoacetyl, –SO_2–heteroaryl, –SO_2–aryl, or aryl;
R^3 is –SO_2–alkyl, trifluoromethyl, S(O)-alkyl, hydrogen, alkoxy, alkylthio, alkyl, or aralkylthio; and
R^4, R^5, R^6 are hydrogen.

19. The method of claim 1, wherein said compound is of Formula III:
or a pharmaceutically acceptable salt or prodrug thereof, wherein

A is methylthio or methyl;

G' is −O−, −S−, −NH−, or a covalent bond;

n is an integer from 1-10;

m is an integer from 0-1; and

R' and R'' are independently selected from hydrogen, alkyl, aryl or aralkyl, or R' and R'' are taken together with the N atom to which they are attached to form a 3-8 membered heterocyclic ring, optionally containing an additional O, N, or S atom, and when said 3-8 membered heterocyclic ring contains an additional N atom, said additional N atom is optionally substituted by hydrogen, C₁₋₄ alkyl, C₆₋₁₀ aryl, C₆₋₁₀ ar(C₁₋₄) alkyl, acyl, alkoxy carbonyl or benzyloxycarbonyl.

20. The method of claim 1, wherein said compound is of Formula IV:
or a pharmaceutically acceptable salt or prodrug thereof, wherein

A is methylthio or methyl; and

R" is hydrogen, C_{6-14}aryl, C_{1-6}alkyl, C_{1-6}alkoxy (C_{6-14})aryl, amino(C_{6-14})aryl, monoalkylamino(C_{6-14})aryl, dialkylamino(C_{6-14})aryl, C_{6-10}ar(C_{1-6})alkyl, heterocycle(C_{2-6})alkyl, C_{1-6}alk(C_{6-14})aryl, amino(C_{1-6})alkyl, mono(C_{1-6})alkylamino(C_{1-6})alkyl, di(C_{1-6})alkylamino(C_{1-6})alkyl, hydroxy(C_{6-14})aryl, or hydroxy(C_{1-6})alkyl, where the aryl and heterocyclic moiety is further optionally substituted by 1-4 substituents selected from halogen, hydroxy, amino, mono(C_{1-6})alkylamino, di(C_{1-6})alkylamino, formylamino, (C_{1-6})acylamino, amino(C_{1-6})acyl, mono- or di-(C_{1-6})alkylaminocarbonyl, thio carbonylamino, (C_{1-6})thioacylamino, aminothiocarbonyl, (C_{1-6})alkoxy, (C_{6-10})aryloxy, aminocarbonyloxy, mono- or di-(C_{1-6})alkylaminocarbonyloxy, mono- or di-(C_{6-10})arylamino carbonyloxy, mono- or di(C_{6-10})ar(C_{1-6})alkylaminocarbonyloxy, (C_{1-6})alkylsulfonyl, (C_{6-10})arylsulfonyl, (C_{6-10})ar(C_{1-6})alkylsulfonylamino, (C_{6-10})arylsulfonylamino,

(15) C_{6-10}ar(C_{1-6})alkylsulfonylamino,(C_{1-6})alkoxycarbonylamino,(C_{6-10})ar(C_{1-6})alkoxycarbonylamino, C_{6-10}aryloxy carbonylamino, mono- or di-(C_{1-6})alkylaminothiocarbonyl, (C_{6-10})ar(C_{1-6})alkoxy, carboxy, (C_{1-6})carboxy alkyl, C_{1-6}alkoxycarbonyl, (C_{1-6})alkoxycarbonyl(C_{1-6})alkyl, nitro, cyano, trifluoromethyl, (C_{1-6})alkylthio and C_{6-10}aryltio.

21. The method of claim 1, wherein

X is sulfur or oxygen;

Y is a covalent bond or -NH-;
Z is NR³R⁶;
R¹ is hydrogen, amino, hydroxy or halogen;
R⁴, R³ and R⁶ are independently hydrogen, C₁₄ alkyl, amino, C₁₄ alkoxy or hydroxy;
R³ is hydrogen, C₁₄ alkylthio, C₁₄ alkyl optionally substituted with OH, NH₂, COOH or aminocarbonyl, or C₁₆ alkoxy.; and
R² is
 alkylsulfonylamino, aralkylsulfonylamino, aralkenylsulfonylamino,
 arylsulfonylamino, heteroaryl sulfonylamino, di(aralkylsulfonyl)amino,
 di(aralkenylsulfonyl)amino, di(arylsulfonyl)amino, or di-
 (heteroaryl sulfonyl)amino, wherein the aryl or heteroaryl moiety of any
 of said groups are optionally substituted;
 amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino,
 monoalkylmonoarylamino, monoaralkylamino, diaralkylamino,
 monoalkylmonoaralkylamino, monoheterocycleamino,
 diheterocycleamino, monoalkylmonoheterocycleamino, wherein the aryl
 or heteroaryl moiety of any of said groups are optionally substituted;
 alkanoylamino, alkenoylamino, alkynoylamino, aroylamino, aralkanoylamino,
 aralkenoylamino, heteroaroylamino, heteroarylalkanoylamino, wherein
 the aryl moiety of each is optionally substituted;
alcoxy and alkylthio, either of which is optionally substituted, or aryloxy,
 aralkoxy, arylthio, aralkylthio, arylsulfonyl, aralkylsulfonyl,
 aralkenylsulfonyl, any of which is optionally substituted on the aromatic
 ring;
alcoxy carbonylamino, aralkoxy carbonylamino, aryloxy carbonylamino, wherein
 the aryl moiety of any of said groups is optionally substituted; or
 formylamino, H(S)CNH⁻, or thioacrylamino.

22. The method of claim 1, wherein said compound is Formula V:
or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R\(^x\) is arylsulfonyl or arylecarbonyl, wherein said aryl moiety of said arylsulfonyl or arylecarbonyl is optionally substituted;

R\(^y\) is hydrogen or C\(_{1-4}\) alkyl;
Z is NR\(^2\)R\(^4\);
R\(^1\) is hydrogen, amino, hydroxy or halogen; and
R\(^4\), R\(^5\) and R\(^6\) are independently hydrogen, C\(_{1-4}\) alkyl, amino, C\(_{1-4}\) alkoxy or hydroxy.

23. The method of claim 22, wherein said compound is selected from

10 4-(4-[[3-[(4-fluorophenyl)sulfonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-(4-[[3-[(2,4-difluorophenyl)sulfonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-(4-[[3-[(4-fluorophenyl)carbonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-(4-[[3-[(3,4-difluorophenyl)sulfonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-(4-[[3-[(4-methoxyphenyl)carbonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-(4-[[3-[(4-methoxyphenyl)sulfonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine;
4-(4-[[3-[(4-chlorophenyl)carbonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine; or
5 4-(4-[[3-[(2,4-difluorophenyl)carbonylamino]phenyl](1,3-thiazol-2-yl)]-5-methylthiophene-2-carboxamidine.

24. The method of claim 1, wherein said compound is of Formula VI:

![Chemical Structure VI]

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R⁴ is aryl or aralkyl, wherein the aryl moiety of said aryl or aralkyl is optionally substituted;
R⁵ is optionally substituted alkyl;
Z is NR⁵R⁶;
R¹ is hydrogen, amino, hydroxy or halogen; and
R⁴, R⁵ and R⁶ are independently hydrogen, C₁⁻₄ alkyl, amino, C₁⁻₄ alkoxy or hydroxy.
25. The method of claim 24, wherein said compound is selected from
4-[4-(1-phenyl-5-propylpyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-[4-(1-(4-chlorophenyl)-5-amidonopyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-
carboxamidine; or 2-[4-(5-(tert-butyl)1-benzylpyrazol-4-yl)(1,3-thiazol-2-yl)]-5-
methylthiothiophene-2-carboxamidine.

26. A compound of Formula V:

or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R¹ is arylsulfonyl or arylcarbonyl, wherein the aryl moiety of said arylsulfonyl or
arylcarbonyl is optionally substituted;
R² is hydrogen or C₁₋₅ alkyl;
Z is NR³R⁶;
R¹ is hydrogen, alkyl, amino, hydroxy or halogen; and
R⁴, R⁵ and R⁶ are independently hydrogen, C₁₋₄ alkyl, amino, C₁₋₄ alkoxy or hydroxy.

27. A compound of claim 26, which is selected from
4-(4-[3-[(4-fluorophenyl)sulfonylamino]phenyl](1,3-thiazol-2-yl))-5-methylthiothiophene-2-
carboxamidine;
4-(4-\{3-[(2,4-difluorophenyl)sulfonyl]amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
4-(4-\{3-[(4-fluorophenyl)carbonylamino]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
5
4-(4-\{3-[(3,4-difluorophenyl)sulfonyl]amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
4-(4-\{3-[(4-methoxyphenyl)carbonylamino]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
4-(4-\{3-[(4-methoxyphenyl)sulfonylamino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide;
4-(4-\{3-[(4-chlorophenyl)carbonylamino]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide; or
4-(4-\{3-[(2,4-difluorophenyl)carbonylamino]phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide.

28. A compound of claim 27, which is 4-(4-\{3-[(2,4-difluorophenyl)sulfonyl]amino\}phenyl\}(1,3-thiazol-2-yl))-5-methylthiothiophene-2-carboxamide.

29. A compound of Formula \textit{VI}:
or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R⁴ is aryl or aralkyl, wherein the aryl moiety of said aryl or aralkyl is optionally substituted;

R⁵ is optionally substituted alkyl;

Z is NR²R⁶;

R¹ is hydrogen, amino, hydroxy or halogen; and

R², R⁴ and R⁶ are independently hydrogen, C₁₋₄ alkyl, amino, C₁₋₄ alkoxy or hydroxy.

30. A compound of claim 29, which is selected from

4-[4-(1-phenyl-5-propylpyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine;
4-[4-(1-(4-chlorophenyl)-5-amidinopyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine; or 2-[4-(5-(tert-butyl)1-benzy1pyrazol-4-yl)(1,3-thiazol-2-yl)]-5-methylthiothiophene-2-carboxamidine.

31. A pharmaceutical composition, comprising a compound of claim 25 and a pharmaceutically-acceptable carrier or diluent.
32. A pharmaceutical composition, comprising a compound of claim 29 and a pharmaceutically-acceptable carrier or diluent.