
(19) United States
US 20080235260A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0235260 A1
HAN et al. (43) Pub. Date: Sep. 25, 2008

(54) SCALABLE ALGORITHMS FOR Publication Classification
MAPPING-BASED XML TRANSFORMATION

(51) Int. Cl.
(75) Inventors: WOOK-SHIN HAN, DAEGU G06F 7/00 (2006.01)

(KR): CHING-TIEN HO, SAN
JOSE, CA (US); HAIFENG (52) U.S. Cl. 707/102; 707/E17.005
JIANG, SANJOSE, CA (US);
LUCIAN POPA, SANJOSE, CA
(US) (57) ABSTRACT

Correspondence Address: A computer-implemented method for use with an extensible
SHMOKAUI & ASSOCIATES PC markup language (XML) document includes inputting a
8911 RESEARCH DRIVE 9 Lew e high-level mapping specification for a schema mapping; and
IRVINE, CA 92618 (US) generating a target XML document based on the mapping.

9 The method may perform Schema mapping-based XML
(73) Assignee: INTERNATIONAL BUSINESS transformation as a three-phase process comprising tuple

MACHINES CORPORATION extraction, XML-fragment generation, and data merging. The
Armonk, NY (US) s tuple extraction phase may be adapted to handle streamed

s XML data (as well as stored/indexed XML data). The data
(21) Appl. No.: 11/690,639 merging phase may use a hybrid method that can dynamically

Switch between main memory-based and disk-based algo
22) Filed: Mar 23, 2007 rithms based On the S17e Of the ata to be merged. (22) 9 ithms based on the size of the XML d b rged

106 108 104. Logical Mapping 1 d Y
112 114 116

102A
Tuple 115XML-Fragment 110

XML/RDB Extraction Generation
102 -- 117 118

XML-Fragment
Logical Mapping N merging grouping

S-2 Tuple 115XML-Fragment
XML/RDB Extraction Generation r

US 2008/0235260 A1 Patent Application Publication

Patent Application Publication Sep. 25, 2008 Sheet 2 of 6 US 2008/0235260 A1

Dept 1208 Emps (208
Employee() r ^ Employee()

---> eid — H > eid
name name 20 emp pr() te, projects 206

204 (---- eid project()

----.pid (20 pid pa) up title
!---> pi l N
/ title 4. 207

FIG. 2

Patent Application Publication Sep. 25, 2008 Sheet 3 of 6 US 2008/0235260 A1

dblp 308 AuthOrDB (310
309/ inproceedings() M author() / 321
30- author() name 1-312

Conf inl()
title -
bOOktitle |

A.

FIG. 3

DBLP

404 4 N -S / 08 inproceedings inproceedings inproceedings

-1N, -1N
title author author booktitle title booktitle author title bOOktitle author

IT "A1 "A2" "VLDB" "T2" "ICD E" "A1 "T3" "VLDB" "A1

402

FIG. 4

Patent Application Publication

504 506
a1 la? a2

a1

508 (5
|p1 p2) a3

502
p1

a1 a1
a2 a2

10 514

Sep. 25, 2008 Sheet 4 of 6

la2

US 2008/0235260 A1

Output Tuples:

Output Tuples:

At pE T2)

fa3

(A1, VLDB, T1)
(A2, VLDB, T1)

?

512

FIG. 5

604 AirpoB 602 AuthOrDB 606
\ author author /

na?e Conf inl na?e Conf inl

(authori) /N "A1" /N
62. Ca?e pub 631 Ca?e pub

(booktitle#) "VLDB"
title J title

622 (title#) 632 "T1"

623 63'
FIG. 6

US 2008/0235260 A1 Sep. 25, 2008 Sheet 5 of 6

Z0/

Patent Application Publication

US 2008/0235260 A1

908

Sep. 25, 2008 Sheet 6 of 6

709

Patent Application Publication

-7

US 2008/0235260 A1

SCALABLE ALGORTHMS FOR
MAPPING-BASED XML TRANSFORMATION

BACKGROUND OF THE INVENTION

0001. The present invention relates generally to the field of
data transformation and integration and, more specifically, to
providing Scalable extensible markup language (XML) trans
formation based on schema mappings.
0002 Transforming data from one format to another is
frequently required in modern information systems and Web
applications that need to exchange or integrate data. As XML
becomes more of a standard for data exchange among appli
cations (especially over the Web), transforming XML data
(also referred to as XML-to-XML transformation) may
become increasingly important. XML-to-RDB (relational
database) transformation (known as XML shredding) and
RDB-to-XML transformation (known as XML publishing)
are special cases of XML-to-XML transformation.
0003 Writing data transformation programs manually—
even in high-level languages such as XOuery (XML Query),
XSLT(eXtensible Stylesheet Language Transformation), or
SQL/XML, which is an SQL (Sequential Query Language)
extension for publishing tables as XML is often time con
Suming and error-prone. This is because a typical data trans
formation task may involve restructuring, cleansing and
grouping of data, and implementing Such operations can eas
ily lead to producing large programs (queries) that are hard to
comprehend and often hide the semantics of the transforma
tion. Maintaining the transformations correctly, for example
as database schemas evolve, can also involve similar prob
lems. As a result, it is desirable to have tools to assist Such data
transformation tasks.
0004 Clio is an existing schema-mapping tool that pro
vides user-friendly means to manage and facilitate the com
plex task of transformation and integration of heterogeneous
data such as XML over the Web or in XML databases. By
means of mappings from Source to target schemas, Clio can
help users conveniently establish the precise semantics of
data transformation and integration. One of the aims of Clio is
to provide high-level mapping languages and more intuitive
graphical user interfaces (GUI) for users to specify transfor
mation semantics in convenient ways. For example, the Clio
system can be used to create mappings from a source schema
to a target schema for data migration purposes. Also, Clio can
be used for generating mappings between relational Schemas
and XML schemas. The user can be presented with the struc
ture and constraints of two schemas and asked to draw cor
respondences between the parts of the schemas that represent
the same real world entity. Correspondences can also be
inferred by Clio and verified by the user. Given the two
schemas and the set of correspondences between them, Clio
can generate the SQL/XML (or XSLT or XQueries) queries
that drive the translation of data conforming to the first
(Source) schema to data conforming to the second (target)
schema. In the first schema-matching phase, the Clio System
establishes, semi-automatically, matchings between Source
XML-schema elements and target XML-schema elements. In
the second schema-mapping phase, the Clio system gener
ates, also semi-automatically, a set of logical constraints (or
logical mappings) that capture the precise relationship
between an instance (or document) conforming to the Source
schema (the input to the transformation) and an instance (or
document) that conforms to the target schema (the output of
the transformation).

Sep. 25, 2008

0005 Schema mapping tools such as Clio provide user
friendly means to manage and facilitate the complex tasks of
heterogeneous data transformation and integration. By means
of mappings from Source to target schemas. Such mapping
tools can help users conveniently establish the semantics of
data transformation and integration. Other examples of sys
tems that are focused on the high-level specification and
generation of data transformations and data integration appli
cations include Rondo, a generic platform for managing and
manipulating models, such as Schemas, together with the
mappings between them. As in Clio, mappings may be speci
fied by using logical constraints. Other examples include
Piazza and HePToX (HEterogeneous Peer TO peer Xml data
base system), which are also based on mappings but focus on
query rewriting for data integration, instead of data transfor
mation. In addition, many industry tools such as Microsoft
ADO.NET v3 (ER-to-SQL (Entity Relationship-to-SQL)
mapping system), IBM Web Sphere Data Stage TX, Stylus
Studio's XML Mapper, and IBM Rational Data Architect
(which uses Clio) support the development of mappings.
0006. The aforementioned examples of schema mapping
tools solve many problems of specifying transformation
semantics. The problems, however, of efficiently implement
ing such mapping-driven transformations and of correctly
and efficiently executing mapping-driven data transforma
tions still remain. Current practice for Such data transforma
tion is to use XSLT or XQuery generated from the mapping
tools. Directly using these general query languages for trans
formation, however, often leads to performance problems.

SUMMARY OF THE INVENTION

0007. In one embodiment of the present invention, a com
puter-implemented method for use with an extensible markup
language (XML) document, comprises inputting a high-level
mapping specification for a schema mapping; performing a
tuple extraction phase; performing a data merging phase; and
generating a target XML document based on the mapping.
0008. In another embodiment of the present invention, a
system for Scalable extensible markup language (XML)
transformation based on Schema mappings executes pro
cesses for: performing a streaming operation for tuple extrac
tion on a streamed XML input; and generating, based on the
schema mappings, target XML fragments from the tuples
extracted from streamed XML input.
0009 Instill another embodiment of the present invention,
a computer program product, for use with extensible markup
language (XML) data having a size, comprises a computer
useable medium including a computer readable program,
wherein the computer readable program when executed on a
computer causes the computer to: execute a main memory
based set of instructions for merging XML fragments from
the XML data; execute a disk-based set of instructions for
merging XML fragments from the XML data; and dynami
cally switch between the main memory-based set of instruc
tions and the disk-based set of instructions based on the size
of the XML data to be merged.
0010. These and other features, aspects and advantages of
the present invention will become better understood with
reference to the following drawings, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a system block diagram illustrating a sys
tem for mapping-based XML transformation in accordance
with one embodiment of the present invention;

US 2008/0235260 A1

0012 FIG. 2 is a schematic diagram of an XML schema
mapping example used to illustrate operation of an embodi
ment of the present invention;
0013 FIG. 3 is a schematic diagram of an XML schema
mapping example used to illustrate operation of an embodi
ment of the present invention;
0014 FIG. 4 is diagram providing a source data for an
example related to the XML schema mapping example shown
in FIG. 3;
0015 FIG. 5 is a diagram of streaming matching, related
to the example shown in FIG.3, and illustrating operation of
one embodiment of the present invention:
0016 FIG. 6 is a diagram of a template for the example
shown in FIG. 3;
0017 FIG. 7 is a diagram of a target XML document for
the example shown in FIG. 3; and
0018 FIG. 8 is a diagram of a process of creating hash
tables, related to the example shown in FIG.3, and illustrating
operation of one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

I0019. The following detailed description is of the best
currently contemplated modes of carrying out the invention.
The description is not to be taken in a limiting sense, but is
made merely for the purpose of illustrating the general prin
ciples of the invention, since the scope of the invention is best
defined by the appended claims.
0020 Broadly, embodiments of the present invention pro
vide XML-to-XML transformation for mapping tools—such
as, but not limited to, the Clio system—and provide systems
for Scalable XML transformation based on schema mappings.
In one embodiment of the present invention, a mapping-based
XML transformation system takes source XML documents
together with a high-level mapping specification as input and
generates target XML documents based on the schema map
p1ng.
0021. The XML transformation system of the present
invention may be "scalable” in the sense that the system is
adaptable to inputs with large data size—achieving scalabil
ity for example, by dynamically switching between main
memory and disk-based procedures based on the size of the
XML data input in contrast to prior art approaches that
work for inputs of smaller data size but breakdown for inputs
of larger data size and have no such dynamic switching. For
example, for a transformation that requires merging (group
ing) in the target, four typical XQuery engines failed (e.g., by
running out of memory) at input document size of four mega
bytes (MB) or less. In contrast to the prior art, a transforma
tion system according to the present invention did not fail
with inputs scaled up to gigabyte (GB) size-range. Even when
the prior art approaches using existing XQuery engines do
run, their overall runtime performance may be one to two
orders of magnitude lower (proportional to input size) than
embodiments of the present invention run on the same input.
0022. Embodiments of the invention may perform schema
mapping-basedXML transformation as a three-phase process
comprising tuple extraction, XML-fragment generation, and
data merging phases, in contrast to prior art approaches to
transformation that lack such a phase structure. Embodiments
of the invention may perform two computation-intensive
phases, tuple-extraction and data merging, during XML
transformation with novel methods not seen in the prior art.
For tuple extraction, one embodiment may adapt an extrac
tion method (for stored/indexed XML data) to handle
streamed XML data, in contrast to prior art algorithms inca
pable of handling streamed XML data. For data merging, one
embodiment may use a hybrid algorithmic method that can

Sep. 25, 2008

dynamically switch between main memory-based and disk
based algorithms based on the size of the XML data to be
merged, in contrast to prior art algorithms that do not employ
any such type of switching.
0023 FIG. 1 illustrates mapping-based XML transforma
tion system 100 in accordance with one embodiment of the
present invention. System 100 may comprise a multiple num
ber N of logical mappings 102a through 102N, any particular
one of which may be referred to as a logical mapping 102. A
mapping-based XML transformation 104 prescribed by a
logical mapping 102 may be described as a three-phase pro
cess comprising a tuple extraction phase 106, an XML-frag
ment generation phase 108, and an XML-fragment merging
phase 110 (also referred to as “data merging”). Mapping
based XML transformation 104 may receive input from one
or more databases 112, which may contain, for example,
XML data or relational database (RDB) data. The input data
113 may be fed to one or more tuple extraction modules 114.
Output 115 of a tuple extraction module (also referred to as
"input of an XML-fragment generation module”) may be fed
as input to an XML-fragment generation module 116. Output
117 of an XML-fragment generation module 116 may be fed
as input to a data merging module 118. The output 119 of the
mapping-basedXML transformation 104 (which may also be
output of a data merging module 118) may, for example, be
written to a database 120, which may, for example, be iden
tical with or distinct from any or all of databases 112.
0024. The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment or an
embodiment containing both hardware and software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident software, microcode, etc.
0025. Furthermore, the invention can take the form of a
computer program product accessible from a computer-us
able or computer-readable medium providing program code
for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.
0026. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid
State memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD.
0027. A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
10028. Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
System to enable the data processing system to become
coupled to other data processing systems or remote printers or

US 2008/0235260 A1

storage devices through intervening private or public net
works. Modems, cable modem and Ethernet cards are just a
few of the currently available types of network adapters.
0029 FIGS. 2 and 3 show examples illustrating schema
mappings as represented by the Clio system. An embodiment
of the present invention may conveniently (but not necessar
ily exclusively) be described using the Clio system represen
tation as shown in FIGS. 2 and 3. FIG. 3 shows a simplified
example of a schema mapping, which may comprise one
logical mapping 302, also labeled as 1 in FIG. 3, and the
semantics of which can be expressed as the following tgd
(tuple-generating dependency):

l: for i indblp.inproceedings, a in i.author
exists a' in Author DB.author, c in a'..conf inl, p in c. pub
where a '...name = a and p.title = i. title and c.cname = i.booktitle

As shown in FIG. 2, Schema mappings in Clio can be repre
sented as a set oftgds 202. The term “logical mapping may
also be used to refer to one tgd 202. Logical mappings land
ls, as set out in the text representation below, are so labeled in
FIG 2.

12: fore in Dept.employee, ep in Dept.emp pri, p in Dept.project
where e.eid = ep.eid and ep-pid = p.pid

exists e' in Emps.employee. p' in e' projects..project
where e.eid = e.eid and ename = e.name

and pipid = p.pid and p".title = p.title
ls: fore in Dept.employee

exists e' in Emps.employee
where e.eid = e.eid and ename = e.name

Atgd 202 may be a constraint between a source schema 204
and a target schema 206 that expresses what pattern 207 of
target data should exist (see the exists clause, above, and its
associated where clause) given a specific pattern 205 of
Source data (satisfying the for clause and its associated where
clause, if any). Repeatable elements (e.g., repeatable ele
ments 208, 210) may be marked with (*). In a tyd, variables
may be used to range over repeatable elements, while a simple
projection operator (...) may be used to navigate through
non-repeatable elements. In general, a schema mapping may
consist of multiple logical mappings 202, as illustrated in
FIG 2.
0030 Referring to FIG.3, the logical mapping 1 may map
from the DBLP schema304 (source schema) to an AuthorDB
schema306 (target schema). “DBLP may be, for example, a
collection of computer Science bibliography entries pub
lished in XML format. The structure of DBLP data may be
relatively flat, as reflected, e.g., by only two levels of inden
tation shown in DBLP schema 304 in FIG. 3. In contrast,
AuthorDB may present a more hierarchical view of the data,
where entries can be grouped based on author names and
conferences—as reflected, e.g., by the four levels of indenta
tion shown in AuthorDB schema 306 in FIG. 3. For simplic
ity, FIG. 3 and like figures and examples may use a simple
nested representation of XML (and relational) schemas that
abstracts away certain details that are not essential. For
example, repeatable elements (e.g., repeatable elements 308,
310,312) may be marked with (*). Also, for example, it may
not be required that sibling elements in a source document
need to exactly match the ordering given in the schema (e.g.,

Sep. 25, 2008

DBLP schema304 could have title appear before author). The
leaf nodes (e.g. leaf nodes 321, 322, 323) may be atomic
elements that can be mapped. In particular, for example,
correspondences between Such atomic elements in the Source
and in the target can be entered by a user in Clio’s GUI (or,
alternatively, can be inferred by an automated Schema
matcher). Based on Such correspondences, Clio can generate
a more precise mapping semantics.
0031. The result of tuple extraction (e.g., output 115 of
tuple extraction phase 106) may be a table of flat tuples, such
as Table 1, presented below.

TABLE 1

Extracted tuples for 1

author booktitle title

t A1 VLDB T1
t2 A2 VLDB T1
t3 A1 ICDE T2
t4 A1 VLDB T3

Each tuple, e.g., t-t, may be obtained by taking all the
possible instantiations with respect to the source data of the
variables in the for clause (see logical mapping 1 above)
provided that the associated where clause is satisfied. Then,
for each such variable, tuple extraction phase 106 may
include all of the variable's atomic subelements that are
exported into the target—i.e., the variable's atomic Subele
ments that appear in the where clause of the exists clause(see
logical mapping 1 above). For example, given the mapping in
FIG.3 and the source data 402 shown in FIG. 4, tuple extrac
tion phase 106 may produce the four extracted tuples t-ta,
shown in Table 1. The three columns of Table 1 may corre
spond to the three exported atomic expressions: a, i. booktitle,
and i. title (see logical mapping 1 above). The column names
in the table may be for reference purposes and can be arbitrary
in implementation.
0032 For the logical mapping 1 and the data shown in
Table 2, the extracted tuples may be as shown in Table 3.

TABLE 2

Relational data for the example of FIG. 2

eid l8le eid pid pid title

e1 Jack e1 p1 p1 Schema mapping
e2 Mary e1 p2 p2 DB2
e3 Linda e2 p2 (c) project
(a) employee (b) emp pri

TABLE 3

Extracted tuples for 12

eid l8le pid title

t e1 Jack p1 Schema mapping
t2 e1 Jack p2 DB2
t3 e2 Mary p2 DB2

A table of the extracted tuples for the logical mapping 1 may
appear the same as Table 20a). To implement tuple extraction,

US 2008/0235260 A1

tuple extraction phase 106 may employ different set of
instructions based on the types of data sources and also the
semantics of the extraction.
0033. In XML data, repeatable elements (or concepts)
may nest among each other according to their application
semantics. For example, in the source schema 304 in FIG. 3,
we have a set of inproceedings 308 elements under the root
element 309 dblp. In turn, each inproceedings element 308
can have a number of author 310 elements. The non-repeat
able elements (those not marked (*)) can be seen as the
attributes of their parent/ancestor repeatable elements (those
marked (*)). The goal to tuple extraction (phase 106) from
XML data (e.g. data 113) may be described as being to unnest
the nested concepts and form flat tuples for transformation.
0034. The extraction of flat tuples from XML data (e.g.
data 113) can be seen as matching of a set-path expression. A
set-path expression may be similar to an XPath expression
except that each location step may end with a repeatable
element (those marked (*) in FIG. 3) and each repeatable
element can have multiple atomic Subelements or attributes
for extraction (e.g. leaf nodes 321,322,323). Each repeatable
element in a set-path expression may correspond to a bound
variable in the for statement of a tpd (see, e.g., mapping 1.
above). In addition, as in logical mappings, projection (...)
may be used to express navigation through multiple levels of
non-repeatable elements. For the example of FIG. 3, the set
path expression for tuple extraction may be:

0035 Q1=/DBLPinproceedings{title,
thor{...}

Here, the two repeatable elements inproceedings and author
may be the end points of the two location steps. Their
attributes (within braces) may be the element values to be
extracted. To match a set-path expression against an XML
document, a publicly available SAX (Simple API for XML, a
programming interface (API) for accessing the contents of an
XML document. SAX does not provide a random access
lookup to the document's contents. It scans the document
sequentially and presents each item to the application only
one time. If the application does not save the data, it is no
longer available.) parser may be used to assemble records
corresponding to the set-elements in the set-path expression
and then match these records based on their parent-child
relationship specified in the expression, as further described
by example.
0036. For the set-path expression Q1 (see above) and the

first two inproceedings elements 404, 406 shown in FIG. 4.
the record sequence (generated from the record assembler)
may be:

0037 a1 = (A1), p1), fa1, a2=(A2), p1), fa2, p1=(T1,
VLDB), -, ?p1, p2=(T2, ICDE), -, a3=(A1), p2, fa3.
?p2. (R1)

A record prefixed with a slash (such as fa1) may be an end
record. An end-record must (to be grammatical) have a pre
ceding start-record. Such as a1. Each start-record may have
two components: the tuple with extracted values and the id of
its parent record. When there is no ambiguity, a start-record
may also be called a record. For the record a1, its tuple may be
(A1) and the id of its parent record may be p1. The record p1
may have the extracted tuple (T1, VLDB). Since p1 does not
have a parent record, record p1 may have a dash symbol (.-.)
in its second (id of parent) component.
0038. The record-creation process exemplified by FIG. 4
and the example set-path expression Q1 may illustrate the
following points. First, a parent start-record may come after

book title}/au

Sep. 25, 2008

its child start-records. For the example of FIG. 4 and set-path
expression Q1, p1 may come after its children a1 and a2.
Second, if all the extraction elements of a set-element have
arrived, the start-record can be sent on for set-path expres
Sion-matching before the set-element closes (i.e., its end
element SAX event arrives). For the example of FIG. 4 and
set-path expression Q1, the start-record p2 may be sent before
its child record a3. Third, if a set-element has a missing
subelement that is specified for extraction, fill the correspond
ing field may be filled with a null value when the set-element
closes. A missing extraction Subelement is possible if the
corresponding schema Subelement is optional.
0039 FIG. 5 illustrates that actual matching of the set-path
expression can take place concurrently as new records arrive
from the record assembler. If each record can be regarded as
a start-element SAX event, the streamed matching (e.g.,
matching performed on a streaming input) of simple path
expression queries may be performed. For a set-path expres
sion—such as Q1—the parent start-element event may come
after the child start-element event, violating the assumption
of most prior art streamed matching algorithms, which
assume SAX events of elements come in document order. An
embodiment of the present invention may handle disordered
SAX events by using blocking. For example, if the parent
record has not arrived, all its descendant records may be
blocked and kept in a buffer, as described by example below.
FIG. 5 shows the matching process of the example of FIG. 4
and set-path expression Q1 given the sequence of records
(R1, above) generated for the example of FIG. 4.
0040. In FIG. 5, before the start-record p1 (502) comes
(e.g., arrives in the sequential output from the SAX parser), its
child records a1 (504) and a2 (506) may be blocked by storing
them in a record buffer. On the other hand, since p2 (508)
comes before its childa3 (510), the matching can be done for
p2 and output the result (tuple 512) as soon as a3 (510) arrives.
In the worst-case scenario, if a blocked parent record has a
large number of child records, all these child records may
need to be buffered. A hybrid record buffer may be imple
mented, for example, which may automatically Swap records
to a temporary file (e.g., on disk) when the record buffer runs
out of allocated physical memory. The Swapped records can
be read back from disk sequentially.
0041. When there are multiple set-path expressions (from
multiple logical mappings) on the same input XML docu
ment, it may be possible to coordinate the matching of set
path expressions to achieve better performance. In a first
exemplary alternative having a loose-integration approach,
all the set-path expressions may share the same SAX parser
for reading the XML document while each of them has a
separate record assembler and matching module. This first
approach may only require one scan of the input document
but the computation of matching may not be shared. In a
second exemplary alternative having a tight-integration
approach, multiple set-path expressions can be merged into a
complex (e.g., tree) structure and the multiple set-path
expressions matched together. For example, if there is another
set-path expression Q2 on top of Q1,

0.042 Q2/DBLPinproceedings{title, booktitle}
then Q1 and Q2 can be combined and matched together. In
this particular example, the combined structure is the same as
Q1. The difference is that, in addition to the outputs (tuple 512
and tuples 514) shown in FIG. 5, the two tuples (VLDB, T1)
and (ICDE, T2) should also be output for Q2.

US 2008/0235260 A1

0043. For relational databases, as compared to the descrip
tion given above for XML data sources, SQL queries can be
generated to extract tuples from relational data sources so that
the mature relational technology can be taken advantage of.
For example, tuple extraction phase 106 can use the following
rules to translate the tuple extraction of a logical mapping into
an SQL query: (1) the referenced tables in the for statement of
the logical mapping appear in the from clause of the SQL
query; (2) the conditions in the where statement appear in the
SQL where clause, and (3) the referred fields appear in the
select clause of the SQL query. For example, the two corre
sponding SQL queries for the two logical mappings 1 and 1.
shown in FIG. 2, may be as follows:

q2: Select eid, name, pid, title
from employee e, emp prep, project p
where e.eid = ep.eid and p-pid = ep-pid

q3: Select eid, name
from employee

In particular, the result of q is listed in Table 3. The results of
the two SQL queries q and q may overlap on the employees
that have projects. Sometimes there is an advantage to com
bining these two SQL queries q and q into one outer-join
query q, for example:

q2: Select eid, name, pid, title
from employee e left Outer join

(emp prep inner join project p on p.pid = ep.pid)
on e.eid = ep.eid

0044) Referring again to FIG. 1, the XML-fragment gen
eration phase 106 may take one flattuple at a time (e.g., from
input 115) and transform it into an XML-fragment based on
each logical mapping (for example, logical mapping 102a
may be logical mapping 1). The transformation 602 may be
represented with an XML-fragment template 604 as shown
on the left side of FIG. 6. The template 604 may correspond
to the exists clause and its associated where clause in a tyd,
e.g., logical mapping 302. The leaf nodes (e.g., leaf nodes
621, 622, 623) may be atomic elements and their text values
631, 632, 633 may be instantiated with extracted source
fields, e.g., “A1”, “VLDB', and “T1, respectively, as shown
in FIG. 6. The right side of FIG. 6 shows the resulting XML
fragment 606 for the source tuplet (see Table 1). It is possible
that the same source field can appear multiple times in the
XML-fragment template 604. Conversely, multiple source
fields (e.g., in the XML-fragment template 604) can be
mapped to the same field in an XML-fragment (e.g., in the
XML-fragment 606) in such a case, a function may be used
in the field mapping in order to “combine' the multiple fields
into the template field.
0045 Referring once again to FIG. 1, the data merging
phase 110 may merge the resulting XML-fragments (e.g.,
output 117) into one XML document (e.g., output 119 of
mapping-based XML transformation 104). Data merging
phase 110 may assemble a coherent and non-redundant target
instance (such as, e.g., XML document 702, shown in FIG. 7),
by eliminating duplicate XML-fragments and, furthermore,
by merging XML-fragments that share the same “key
(where “key may be as described below). For example, the
four XML fragments—such as XML-fragment 606 result

Sep. 25, 2008

ing from the four tuples t-t, shown in Table 1 and the
template 604 shown in FIG. 6 may be merged into the final
XML-document 702 shown in FIG. 7. In the final XML
document 702, each author name may appear only once, the
relevant conferences may be grouped under each author
(again, without duplication for each author), and for each
conference, all the relevant publications may be listed under
neath (also, without duplication).
0046 For the data merging phase 110 to achieve this merg
ing, name (see FIG. 7, and also see FIG. 7 for the following
underlined terms) may be considered to be a key for the
top-level authorelements, cname may be a key for the confinil
elements under each author, and title may be a key for each
Mb element under a confinil element. In Clio, the default key
value of a repeatable element may be the combination of all
the atomic values that can be reached from that element
without passing through another repeatable element. More
over, the key of the parent repeatable element may also be
included so that, for example, there may be a positively
defined reference to the set of confinil elements that are nested
under a certain author element and not under a different
author element.
0047. The data merging phase 110 may include the fol
lowing two steps: 1) obtain a single document by merging
XML fragments on their common root node (thus, all the
resulting XML fragments may be viewed as being Stitched
together by their root element); and 2) merge sibling repeat
able elements that have the same tag and moreover have the
same key (to merge such elements, the commonstructure (the
key) may be used to union their corresponding sets of repeat
able Subelements (tag-wise) and the same merging may then
be applied recursively for each of those sets (if any)). The
foregoing may be referred to as “nested merging.
0048. The data merging phase 110 may include a hybrid
merging method that performs the nested merge of XML
fragments in main memory with linked hash tables and then
dynamically switches to sort-based methods (also referred to
as “disk-based') if hash tables use up available memory. In
particular, the worst-case I/O cost of the sort-based method
may be O(N log N), where N may be the size of XML
fragments being merged.
0049 Data merging phase 110 may perform nested merg
ing of XML fragments using main-memory hash tables. Data
merging phase 110 may create a chain of hash tables (such as
chain 802 seen in FIG. 8) to do the grouping in a top-down
fashion defined by the grouping semantics. Since the merging
takes place for repeatable elements based on the key values of
their parents, data merging phase 110 may create one hash
table (e.g., hash tables 804, 806, 808 in FIG. 8) for each
repeatable element (e.g., author(*), conf jnl(*), pub(*).
respectively, as seen in FIG. 3) under each distinct parent key
entry (e.g., parent key entry 810 A1, seen in FIG. 8). The
process is further described below.
0050 FIG. 8 shows the process of creating hash tables
when merging the four XML-fragments for the example of
FIG. 3 (one fragment for each of the tuples t-t, FIG. 6
illustrating the fragment generated for tuple t, for example).
There may be only one hash table for the top-level author
set-element. For each key entry (e.g., key entry 810 with key
“name="A1) of the authorelement, data merging phase 110
may create a conf jnl hash table (e.g., hash table 806). Simi
larly, for each distinct key entry (e.g., key entry 812 with key
“cname="VLDB) in such a hash table (e.g., hash table
806), data merging phase 110 may create a pb hashtable (e.g.,

US 2008/0235260 A1

hash table 806) whose entries may be the distinct values of
“title', e.g., “T1”, “T2”, or “T3). FIG.8 shows the evolution
of the hash tables with the incoming XML-fragments, in other
words, a chain of hash tables is shown for each of the tuples
t-t extracted for the example of FIG.3. Recall, for example,
that these XML-fragments were obtained (e.g., in XML-frag
ment generation phase 108) from the tuplest, t, ts, and t by
applying the transformation 602 described in FIG. 6. Data
merging phase 110 may generate the XML document 702 in
FIG.7 by flushing the hash tables (e.g., hash tables 804, 806,
808) for each tuple (e.g., t, t, t, and ta).
0051. The hash-based merging (also referred to as main
memory-based merging) can handle target schemas with
multiple sibling set-elements. Suppose, in the example illus
trated by FIG. 3, the conf jnl set-element has a sibling set
element book that has the same Subtree structure as confinil.
The content of the book subtree may be mapped from other
data sources on books. With Such a mapping, each key in the
author hash table (e.g., hash table 804) of FIG.8 may have
two child hash tables, one for conf jnl (e.g., hash table 806)
and the otherfor book in other words, these two (child) hash
tables share the same key entry (key entry 810 for this
example).
0052 Although efficient, the hash-based merging may be
limited by the amount of available main memory because all
the hash tables must reside in memory for them to work
effectively. Data merging phase 110 may provide scalability
(e.g., ability to handle XML data having size too large for the
hash-based merging to work efficiently) with a sort-based
merging (also referred to as diskl-based merging) that builds
on top of the hash-based merging to produce a hybrid sort
based merging.
0053 When the hash tables take up all the allocated physi
cal memory, data merging phase 110 may write the hash
tables to a disk file as a file-run (see example below) and then
free up all the hash tables for subsequent incoming XML
fragments. When all the XML fragments are processed into
file-runs, data merging phase 110 may merge the disk-resi
dent file-runs.
0054 When outputting a file-run from the linked hash
tables (e.g., chain 802 of hash tables 804, 806, 808), to
achieve linear I/O cost when merging file-runs, data merging
phase 110 may enforce an appropriate ordering among the
keys of the same hash table. Specifically, data merging phase
110 may start the serialization from the root hash table (the
author hash table in FIG. 8, e.g., hash table 821), sort the key
values (e.g., “A1 and A2 for hash table 821) in a predeter
mined order (for example, ascending order: A1, A2) and then
output the keys in that order. After the output of each key, data
merging phase 110 may recursively serialize the output key’s
child hash tables (e.g., key A1 of hash table 821 has child hash
tables 822, 824, 826). (The number, for example, of hash
tables may be the same as the number of corresponding sib
ling set-elements.) For example, the file-run for the final (after
t is merged) hash tables (e.g., chain 820 of hash tables 821,
822, 823, 824, 825, and 826) in FIG.8 may be as follows:

0055 A1 ICDET2), VLDBT1, T3, A2IVLDBT1
0056. For clarity, each list of keys may be enclosed by a
pair of and (except for the outer-most list, e.g., A1, A2 in this
example), and is separated by a comma. In this example, the
key “ICDE'' (from hash table 822) may appear ahead of (and
be said to be “preceding” or “before” or “foremost of) the
key “VLDB (as children of key “A1” from hash table 821)
according to the ascending order Sorting.

Sep. 25, 2008

0057 Data merging phase 110 may merge multiple file
runs in one sequential scan (e.g., of XML data input 113).
Suppose, for example, data merging phase 110 produces
another file-run as follows:

0.058 A2IVLDBT4), WWWIT5
0059. To merge the above two file-runs, data merging
phase 110 may compare the two first keys (i.e., A1 and A2,
respectively) from the file-runs. The current point in each file
run may be said to be at the first key of each file run. Since A1
precedes A2 (or is “foremost of the two keys) in the prede
termined (e.g., ascending) order, (and because the keys in
each file run are sorted in the predetermined order) there may
be nothing else in the second file-run that can merge with A1
so data merging phase 110 may directly output all the content
for A1 (including the nested content). Now, the current point
in the first file-run becomes A2. The two file-runs then have
the same key at the current point of each file run. As a result,
data merging phase 110 may output key A2 and then recur
sively merge the two smaller file-runs nested inside these two
keys (e.g., VLDBIT1 and VLDBIT4), WWWIT5), respec
tively). The result of the merge may be as follows:

0060 A1 ICDET2: VLDBT1: T3:A2IV LDBT1:

0061 Data merging phase 110 may perform scalable data
merging by creating file-runs from hash tables and merging
file-runs in one sequence Scan. Usually, each file-run may
require a Small amount of physical memory (such as the size
of one disk page, for example) during the data merging phase
110. If the number of file-runs becomes extremely large,
however, there may not even be enough main memory to
allocate one disk page for each file-run. In that case, since the
output of the sort-based merge may also be a valid file-run,
data merging phase 110 can apply multi-stage merging as
commonly used in relational databases.
0062. It should be understood, of course, that the forego
ing relates to exemplary embodiments of the invention and
that modifications may be made without departing from the
spirit and scope of the invention as set forth in the following
claims.

1.-16. (canceled)
17. A computer-implemented method for use with an

extensible markup language (XML) document, comprising:
receiving an input stream of source data from one or more

data bases, said stream selected from one of an XML
data and a relational database data;

inputting a high-level mapping specification for a schema
mapping, said mapping represented as a set of tuple
generating dependency (tgd) entities, wherein said tgd
expresses a pattern of a source data and a target data;

performing a tuple extraction phase by taking all possible
instantiations of the input stream source data provided
that an associated target data pattern is satisfied, said
extraction employing an instruction set based on types of
data sources and semantics of said extraction, wherein
nested concepts in said input stream source data are
unnested to form flat tuples;

performing a fragment generation phase, wherein each of
said flat tuples is transformed into a fragment based on
an associated logical mapping represented by a template
determined by a tyd;

performing a data merging phase to create a target docu
ment from coherent and non-redundant target instances,
wherein fragments are merged into said target document
by merging fragments identified with a same key value

US 2008/0235260 A1

and eliminating duplicate fragments that have compa
rable tags values, wherein said merging comprising:
creating a chain of hash tables for each of said tuples

wherein each hash table is associated with a key value
and said key value is associated with a document
content attribute;

flushing the chain of hash tables to remove duplicate
tables

dynamically Switching between a main memory-based
and a sort-based algorithm based on the available
memory used by said hash tables, wherein said hash
tables are written to a disk file as a file-run, said
file-run an ordered serialization of said hash tables
from a root hash table and associated child hash
tables;

merging said file-runs when said incoming fragment are
processed as file-runs; and

outputting said merged file-runs as said target document to
a database, said database being identical with or distinct
from said XML or rationale database providing said
input stream.

18. A system for Scalable extensible markup language
(XML) transformation based on Schema mappings, the sys
tem executing processes for:

performing a streaming operation for tuple extraction on a
streamed XML input comprising:

matching a set-path expression against an XML document
provided by the streamed XML input using a blocking
process;

assembling records corresponding to set-elements in a set
path expression, wherein a parent record comes after one
of the parent record's child elements and the set element
has a start-record and an end-record;

storing the parent record's child elements in a buffer until
the parent record arrives; and

performing a set-path expression matching concurrently
with arrival of new records wherein if all extraction
elements of the set-element have arrived, sending the
start-record to set-path expression matching before the
end-record arrives; and

generating, based on the schema mappings, a target XML
document from the streamed XML input.

Sep. 25, 2008

19. A computer program product, for use with extensible
markup language (XML) data having a size, the computer
program product comprising a computer readable medium
including a computer readable program, wherein the com
puter readable program when executed on a computer causes
the computer to:

execute a main memory-based set of instructions for merg
ing XML fragments from the XML data, wherein the
main memory-based set of instructions comprises:

instructions for hash-based merging;
instructions for writing hash tables generated by the hash

based merging instructions to disk when the hash tables
fill the main memory allocated to the hash tables; and

freeing up the hash tables in main memory for Subsequent
XML fragments from the XML data;

execute a disk-based set of instructions for merging XML
fragments from the XML data wherein the disk-based
set of instructions comprises:

outputting one file run from a group of linked hash tables in
response to the hash tables using up all the available
main memory, wherein outputting a file run comprises:

starting serialization from a root hash table of the group of
linked hash tables;

sorting keys by key value in a predetermined order, and
outputting the keys in the sorted order wherein after each

key is output, recursively serializing the child hash
tables of the key; and

merging, in a single sequential scan, multiple file runs
output from the hash tables, wherein merging multiple
file runs comprises:

comparing the current keys of all the file runs;
in response to the current keys of all the file runs not being

equal, outputting the content for the foremost key and
updating the current key for the file run with the fore
most key:

in response to the current keys of all the file runs being
equal, outputting the current key and recursively merg
ing the Smaller file runs nested inside the current keys;
and

dynamically Switching between the main memory-based
set of instructions and the disk-based set of instructions
based on the size of the XML data to be merged.

c c c c c

