To all whom it may concern:

Be it known that I, THOMAS H. HERNDON, a citizen of the United States, residing at
Washington, in the District of Columbia,
5 have invented certain new and useful Improvements in Magnetic-Wave Therapeutic
Apparatus, of which the following is a specifica-
tion.

This invention relates to certain new and
10 useful improvements in therapeutic apparatus, and it has for its objects among others
to provide a simple and practical apparatus
and an easy way of sending a magnetic
impulse or wave through the human body as a
therapeutic mode of eliminating diseases.

The apparatus, as a whole, is compact,
15 readily portable, of comparatively light
weight and composed of few parts, readily
assembled, yet reliable in use and adapted to
bring about the desired results at minimum
cost, the amount of electric current con-
sumed being practically nil compared with the
benefits obtained.

Other objects and advantages of the in-
20 vention will hereinafter appear and the
novel features thereof will be particularly
pointed out in the appended claims.

The invention, in its preferred form, is
clearly illustrated in the accompanying
drawing, which, with the numerals of refer-
ence marked thereon, form a part of this
specification, and in which—

Figure 1 is a vertical section through a
case containing my improved apparatus, the
30 members of the latter being shown in elevation.

Fig. 2 is an enlarged elevation with parts
in section and portions broken away, of the
vibratory apparatus.

Fig. 3 is a bottom end view of the parts
shown in Fig. 2.

Like numerals of reference indicate like
parts throughout the different views.

Referring to the drawings,

1 designates a handle by which the vibra-
tory apparatus may be manipulated so that
it may be quickly and easily applied to any
part of the body. This handle is provided
with a bore 2 for the passage of the wires
soon to be described, and carried by this
handle is the plate or block 3 which may be
integral therewith or affixed thereto in any
suitable manner.

4, 4 are magnets each pivotally sus-
55 pended from the member 3. The mode of sus-
pension may be that found most expedient. In
the present instance, I have shown the cores
5 of the magnets pivotally supported, as by
suitable pivots 6, the cores at their upper
ends being shown as disposed within recesses
7 in the member 3. By this means the mag-
60 nets are suspended for independent move-
ment, each being limited in its outward
movement by engagement with the wall 8
with which the core contacts when the mag-
net is in its farthest outward position,
65 there being a space left at 9, however, be-
 tween the core and the other or opposite
wall of the recess, as seen clearly in Fig. 2,
so as to permit the magnets to vibrate to-
ward each other.

In the present instance I have shown
springs 10 secured to the under side of the
member 3 and bearing against the adjacent
dges of the cores, thus tending to normally
70 keep the magnets away from each other, but
yielding when the magnets are energized so
as to allow the latter to vibrate to and from
each other. Any other suitable arrangement of
spring, however, may be provided.

The cores of the magnets may be hollow
cylinders or solid, as desired, the former
being preferable on account of lightening
75 the weight where larger instruments are
required.

In order to protect the covering of the
magnets from wear at their outer ends, I
provide the protectors 11, which may be of
the inverted bell-shape shown, or any other
80 form, and these may be screw or otherwise
affixed on the end portions 12 of the cores,
as seen in Fig. 2. These members 11, which
may be of metal or hard rubber, serve
85 further to make more distinct the click when
they come together during the vibration of
the magnets and also render the vibration of
greater volume. To give greater contact
surface, the adjacent edges of these members
11 may be flattened, as seen at 12, in Figs.
8 and 3.

The magnets are oppositely wound, as
shown in Fig. 3, for an obvious purpose, and
the wires are connected by suitable wire 13,
as shown in Fig. 2, while the wires 14 and
90 18 leading from the windings of the magnets
extend through the bore 2 of the handle 1
and out through the end thereof, as seen at
18, where they are provided with plugs or
terminals 16 for connection with the bind-
ing posts 17 on the case 18, as seen in Fig. 1.

The case 18 is designed to contain cells 19
constituting a battery, of which there may
be any desired number connected up by wires 20, as shown in Fig. 1, the end cells being connected by wires 22 with the binding posts 17. The case 18 is provided with a compartment 21 for the reception of the vibratory device, as seen in Fig. 1, as well as with a handle 23 by which the case may be readily carried about.

In order to provide for hand control of the make and break of the current, I provide the thumb key 24, seen in Fig. 1, mounted upon the outer wall of the case and carrying a contact 25 for cooperation with the contact 26 connected with one of the batteries, as by wire 27.

In use, the vibratory implement is removed from its compartment in the case and connected up by means of its terminals with the binding posts 17 and the vibratory apparatus, by means of its cord which may be of any desired length, can be readily applied to the desired part of the body. By means of the thumb key, (or a push button or analogous device may be employed) the current may be broken at intervals as may be required, which is essential to the proper operation of the device, not only in order to give intermittent impulses, but to avoid heating of the magnets. Furthermore, the current can be measured more accurately in this way. The approach of the magnets toward each other increases the strength and effectiveness of the magnetic wave or force. Again, vibration of the magnets, as well as the sound of the click when the members 11 come in contact with each other, indicates that the current is functioning.

From the foregoing, it will be seen that I have devised a simple and efficient device for the purpose described and one which from actual use has proved to be most beneficial in the treatment of all the organs of the body and for the relief of pain and cure of many of the diseases and ailments from various causes, and while the structural embodiment of the invention as herein disclosed, is what I at the present time consider preferable, it is evident that the same is subject to variations and modifications in details, proportions of parts, etc., and I, therefore, do not wish to restrict myself to the particular construction herein shown and described, but reserve the right to make such changes, variations and modifications as come properly within the scope of the protection prayed.

What is claimed as new is:

1. In a magnetic wave therapeutic apparatus independently vibratorily mounted magnets, and a support therefor on which they are mounted for movement toward and from each other and resilient means tending to normally keep said magnets separated.

2. In a magnetic wave therapeutic apparatus, vibratory mounted magnets, and a support therefor on which they are mounted for movement toward and from each other, resilient means tending to normally keep said magnets separated, and means for limiting the movement of such magnets toward each other.

3. In a magnetic wave therapeutic apparatus, a supporting member, a handle therefor, and vibratory mounted magnets independently pivotally carried by said supporting member and movable toward and from each other.

4. In a magnetic wave therapeutic apparatus, a supporting member, a handle therefor, vibratory mounted magnets carried by said supporting member, and means on the free ends of said magnets adapted to contact with each other to prevent direct contact of the magnets.

5. In a magnetic wave therapeutic apparatus, a supporting member, a handle therefor, vibratory mounted magnets carried by said supporting member, means on the free ends of said magnets adapted to contact with each other to prevent direct contact of the magnets, and resilient means carried by said supporting member and acting on the magnets in proximity to their pivots, tending to normally separate the magnets.

In testimony whereof I affix my signature.

THOMAS H. HERNDON.