

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

19 July 2018 (19.07.2018)

(10) International Publication Number

WO 2018/130582 A1

(51) International Patent Classification:

C12N 15/113 (2010.01)

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))
- with information concerning incorporation by reference of missing parts and/or elements (Rule 20.6)

(21) International Application Number:

PCT/EP20 18/050582

(22) International Filing Date:

10 January 2018 (10.01.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1715 1384.9 13 January 2017 (13.01.2017) EP

(71) Applicant: ROCHE INNOVATION CENTER COPENHAGEN A/S [DK/DK]; Fremtidsvej 3, 2970 Horsholm (DK).

(72) Inventors: LINDHOLM, Eva Marie W; c/o Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Horsholm (DK). PEDERSEN, Lykke; c/o Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Horsholm (DK). SCHMIDT, Steffen; c/o Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Horsholm (DK).

(74) Agent: TURNER, Mark et al; c/o Roche Innovation Center Copenhagen A/S, Patent Department IP (LPBG....2898), Fremtidsvej 3, 2970 Horsholm (DK).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- of inventorship (Rule 4.17(iv))

(54) Title: ANTISENSE OLIGONUCLEOTIDES FOR MODULATING REL EXPRESSION

(57) Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of c-Rel in a target cell. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of cancer, inflammation or autoimmune diseases using the oligonucleotide.

WO 2018/130582 A1

ANTISENSE OLIGONUCLEOTIDES FOR MODULATING REL EXPRESSION

FIELD OF INVENTION

The present invention relates to oligonucleotides (oligomers) complementary to REL pre-mRNA sequences, which are capable inhibiting the expression of c-Rel. Inhibition of REL expression is

5 beneficial for a range of medical disorders including autoimmunity and cancer.

BACKGROUND

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B) is a key regulator of processes such as immunity, inflammation, gene expression, cancer cell migration, invasion, apoptosis, and proliferation. NF- κ B subunits share a Rel homology domain in their N-terminus.

10 REL (REL proto-oncogene, NF- κ B subunit) codes for a protein (c-Rel) that as homo- or heterodimer can form some members of the NF- κ B family of transcription factors. The most common c-Rel containing NF- κ B proteins are c-Rel homodimers and p50/c-Rel heterodimers but c-Rel can also form heterodimers with other NF- κ B subunits.

15 NF- κ B subunit expression can be altered in disease, and dysfunctional NF- κ B activation contributes to disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors (Park and Hong, 2016, Cells 5:15), as well as asthma and chronic inflammatory airway disease (Schuliga, 2015, Biomolecules, 5:1266).

20 There are >700 compounds described in literature to have NF- κ B inhibitory effect, most of them with broad effect on NF- κ B signaling, but a narrow therapeutic index, poor specificity, short *in vivo* half-life of molecules, and only minor effects on signaling, and have therefore limited the therapeutic use of described NF- κ B inhibitors to date.

25 Some NF- κ B homo- and heterodimers are found in many different tissues and cell types. A special characteristic of c-Rel is a high expression level in B and T cells with a central role in B and T cell differentiation and function. Specific reduction of c-Rel expression and activity has been suggested to give therapeutic benefits for human hematopoietic cancers as well as chronic inflammatory or autoimmune diseases; REL is a susceptibility locus for certain

30 autoimmune diseases such as arthritis, psoriasis, and celiac disease (Gilmore & Gerondakis, 2011, Genes & Cancer 2:695). The REL locus is also frequently altered (amplified, mutated, or rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate c-Rel activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.

WO00/17400 provides DNA phosphorothioate and MOE gapmer oligonucleotides targeting REL.

5 Pizzi *et al*, 2002, JBC 227: 20717 discloses an oligonucleotide targeting REL of sequence 5-tacgcaccggaggccatggct-3', and reports that the balance between cell death and survival in neurons may rely on the distinct activation of NF-KB/Rel proteins.

Ishige *et al*, 2005, Neurochem. Int. 47:545 reports on the effect of an antisense oligodeoxynucleotide targeted against REL on glutamate induced cell death of HT22 cells.

10 Ishige *et al* discloses a phosphorothioate DNA antisense targeting human REL (c-Rel) transcript of sequence 5-TATCCACTCGAGGCCATGGCT-3.

OBJECTIVE OF THE INVENTION

The present invention identifies novel oligonucleotides which inhibit human REL (c-Rel) which are useful in the treatment of a range of medical disorders including autoimmunity, inflammation 15 and cancer.

SUMMARY OF INVENTION

The present invention relates to oligonucleotides targeting a nucleic acid capable of modulating, such as inhibiting the expression of c-Rel.

The invention provides for LNA oligonucleotides targeting human REL.

20 The invention provides for an antisense oligonucleotide targeting human REL, 10 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 10 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10.

25 The invention provides for an LNA antisense oligonucleotide targeting human REL, 10 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 10 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10.

30 The invention provides for an LNA antisense oligonucleotide targeting human REL, 12 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10.

35 The invention provides for an antisense oligonucleotide targeting human REL, 12 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10.

The invention provides for a conjugate comprising the oligonucleotide according to the invention.

In a further aspect, the invention provides pharmaceutical compositions comprising the oligonucleotide or conjugate of the invention and pharmaceutically acceptable diluents, carriers, 5 salts and/or adjuvants.

In a further aspect, the invention provides methods for *in vivo* or *in vitro* method for modulation of Rel expression in a target cell which is expressing c-Rel by administering an oligonucleotide, conjugate, or composition of the invention in an effective amount to said cell.

In a further aspect the invention provides methods for treating or preventing a disease, disorder 10 or dysfunction associated with *in vivo* activity of c-Rel comprising administering a therapeutically or prophylactically effective amount of the oligonucleotide, conjugate or composition of the invention to a subject suffering from or susceptible to the disease, disorder or dysfunction.

In a further aspect the oligonucleotide, conjugate or composition of the invention is used for the treatment or prevention of cancer, autoimmune diseases, and inflammation or an inflammatory 15 disease.

In some embodiments, the oligonucleotide, conjugate or composition of the invention is an antisense oligonucleotide, preferably a gapmer antisense oligonucleotide.

BRIEF DESCRIPTION OF FIGURES

Figure 1A, 1B and 1C: Mouse *in vivo* efficacy, 16 days of treatment, Intravenous injection (tail 20 vein).

Figure 2: Testing *in vitro* efficacy of various antisense oligonucleotides targeting human REL mRNA in HEK293 and HeLa cell lines at single dose concentration.

Figure 3: Testing *in vitro* efficacy of antisense oligonucleotides targeting human REL mRNA in HEK293 and HeLa cell lines at single dose concentration.

25 Figure 4: Testing *in vitro* efficacy of antisense oligonucleotides targeting human REL mRNA in HEK293 and HeLa cell lines at single dose concentration. Zoom in illustrating the data for compounds targeting the hot spot regions.

Figure 5A, 5B & 5C: Testing *in vitro* potency and efficacy of selected oligonucleotides targeting human REL mRNA in HEK-293 and HeLa cell lines in a dose response curve.

30 Figure 6: Human REL pre-mRNA sequence (SEQ ID NO 21) derived from the human genomic sequence NC_000002.12 (60881495..60928171). See sequence listing.

DEFINITIONS

Oligonucleotide

The term "oligonucleotide" as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently

5 bound nucleosides may also be referred to as nucleic acid molecules or oligomers.

Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The oligonucleotide of the invention is man-made, and is 10 chemically synthesized, and is typically purified or isolated. The oligonucleotide of the invention may comprise one or more modified nucleosides or nucleotides.

Antisense oligonucleotides

The term "Antisense oligonucleotide" as used herein is defined as oligonucleotides capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a 15 contiguous sequence (a sub-sequence) on a target nucleic acid. The antisense oligonucleotides are not essentially double stranded and are therefore not siRNAs. Preferably, the antisense oligonucleotides of the present invention are single stranded.

An LNA antisense oligonucleotide is an antisense oligonucleotide which comprises at least one LNA nucleoside. In some embodiments the LNA antisense oligonucleotide is a LNA gapmer 20 oligonucleotide. In some embodiments, the oligonucleotide of the invention is an LNA antisense oligonucleotide.

Targeting

The oligonucleotides of the invention are capable of targeting the human REL transcript.

Targeting refers to the ability of the oligonucleotide to form a functional complementary

25 hybridization across the contiguous nucleotide sequence of the oligonucleotide with the human REL transcript, such as a fully complementary hybridization, and inhibit the expression of the human REL transcript in a cell.

Contiguous Nucleotide Sequence

The term "contiguous nucleotide sequence" refers to the region of the oligonucleotide which is

30 complementary to the target nucleic acid. The term is used interchangeably herein with the term "contiguous nucleobase sequence" and the term "oligonucleotide motif sequence". In some embodiments all the nucleotides of the oligonucleotide constitute the contiguous nucleotide sequence. In some embodiments the oligonucleotide comprises the contiguous nucleotide sequence and may optionally comprise further nucleotide(s), for example a nucleotide linker

region which may be used to attach a functional group to the contiguous nucleotide sequence. The nucleotide linker region may or may not be complementary to the target nucleic acid.

Nucleotides

Nucleotides are the building blocks of oligonucleotides and polynucleotides, and for the

5 purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides. In nature, nucleotides, such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides). Nucleosides and nucleotides may also interchangeably be referred to as "units" or "monomers".

10 Modified nucleoside

The term "modified nucleoside" or "nucleoside modification" as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety. In some 15 embodiments the modified nucleoside comprise a modified sugar moiety. The term modified nucleoside may also be used herein interchangeably with the term "nucleoside analogue" or modified "units" or modified "monomers".

Modified internucleoside linkage

The term "modified internucleoside linkage" is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couples two

20 nucleosides together. Nucleotides with modified internucleoside linkage are also termed "modified nucleotides". In some embodiments, the modified internucleoside linkage increases the nuclease resistance of the oligonucleotide compared to a phosphodiester linkage. For naturally occurring oligonucleotides, the internucleoside linkage includes phosphate groups 25 creating a phosphodiester bond between adjacent nucleosides. Modified internucleoside linkages are particularly useful in stabilizing oligonucleotides for in vivo use, and may serve to protect against nuclease cleavage at regions of DNA or RNA nucleosides in the oligonucleotide of the invention, for example within the gap region of a gapmer oligonucleotide, as well as in regions of modified nucleosides.

In an embodiment, the oligonucleotide comprises one or more internucleoside linkages modified 30 from the natural phosphodiester to a linkage that is for example more resistant to nuclease attack. Nuclease resistance may be determined by incubating the oligonucleotide in blood serum or by using a nuclease resistance assay (e.g. snake venom phosphodiesterase (SVPD)), both are well known in the art. Internucleoside linkages which are capable of enhancing the nuclease resistance of an oligonucleotide are referred to as nuclease resistant internucleoside 35 linkages. In some embodiments at least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are modified, such as at least 60%,

such as at least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are modified. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are modified. It will be recognized that, in some embodiments the 5 nucleosides which link the oligonucleotide of the invention to a non-nucleotide functional group, such as a conjugate, may be phosphodiester. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are nuclease resistant internucleoside linkages.

Modified internucleoside linkages may be selected from the group comprising phosphorothioate, 10 diphosphorothioate and boranophosphate. In some embodiments, the modified internucleoside linkages are compatible with the RNaseH recruitment of the oligonucleotide of the invention, for example phosphorothioate, diphosphorothioate or boranophosphate.

In some embodiments the internucleoside linkage comprises sulphur (S), such as a phosphorothioate internucleoside linkage.

15 A phosphorothioate internucleoside linkage is particularly useful due to nuclease resistance, beneficial pharmakokinetics and ease of manufacture. In some embodiments at least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate, such as at least 60%, such as at least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide 20 sequence thereof, are phosphorothioate. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate.

In some embodiments, the oligonucleotide comprises one or more neutral internucleoside linkage, particularly a internucleoside linkage selected from phosphotriester, 25 methylphosphonate, MMI, amide-3, formacetal or thioformacetal.

Further internucleoside linkages are disclosed in WO2009/1 24238 (incorporated herein by reference). In an embodiment the internucleoside linkage is selected from linkers disclosed in WO2007/03 1091 (incorporated herein by reference). Particularly, the internucleoside linkage may be selected from -O-P(0) ₂-O-, -O-P(0,S)-O-, -O-P(S) ₂-O-, -S-P(0) ₂-O-, -S-P(0,S)-O-, -S- 30 P(S) ₂-O-, -O-P(0) ₂-S-, -O-P(0,S)-S-, -S-P(0) ₂-S-, -O-PO(R^H)-O-, 0-PO(OCH₃)-O-, -O-PO(NR^H)-O-, -O-PO(OCH₂CH₂S-R)-O-, -O-PO(BH₃)-O-, -O-PO(NHR^H)-O-, -O-P(0) ₂-NR^H-, -NR^H-P(0) ₂-O-, -NR^H-CO-O-, -NR^H-CO-NR^H-, and/or the internucleoside linker may be selected from the group 35 consisting of: -O-CO-O-, -O-CO-NR^H-, -NR^H-CO-CH₂-, -O-CH₂-CO-NR^H-, -O-CH₂-CH₂-NR^H-, -CO-NR^H-CH₂-, -CH₂-NR^H-CO-, -O-CH₂-CH₂-S-, -S-CH₂-CH₂-O-, -S-CH₂-CH₂-S-, -CH₂-S0₂-CH₂-, -CH₂-CO-NR^H-, -O-CH₂-CH₂-NR^H-CO-, -CH₂-NCH₃-O-CH₂-, where R^H is selected from hydrogen and C₁₋₄ alkyl.

Nuclease resistant linkages, such as phosphothioate linkages, are particularly useful in oligonucleotide regions capable of recruiting nuclease when forming a duplex with the target nucleic acid, such as region G for gapmers, or the non-modified nucleoside region of headmers and tailmers. Phosphorothioate linkages may, however, also be useful in non-nuclease

5 recruiting regions and/or affinity enhancing regions such as regions F and F' for gapmers, or the modified nucleoside region of headmers and tailmers.

Each of the design regions may however comprise internucleoside linkages other than phosphorothioate, such as phosphodiester linkages, in particular in regions where modified nucleosides, such as LNA, protect the linkage against nuclelease degradation. Inclusion of 10 phosphodiester linkages, such as one or two linkages, particularly between or adjacent to modified nucleoside units (typically in the non-nuclease recruiting regions) can modify the bioavailability and/or bio-distribution of an oligonucleotide - see WO2008/1 13832, incorporated herein by reference.

In an embodiment all the internucleoside linkages in the oligonucleotide are phosphorothioate 15 and/or boranophosphate linkages. In some embodiments, all the internucleoside linkages in the oligonucleotide are phosphorothioate linkages.

Nucleobase

The term nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen

20 bonds in nucleic acid hybridization. In the context of the present invention the term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but are functional during nucleic acid hybridization. In this context "nucleobase" refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are 25 for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1 .

In some embodiments the nucleobase moiety is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobase selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiazolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5-thiazolo-uracil, 2-thio-uracil, 2-thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.

The nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified

35 nucleobases of equivalent function. For example, in the exemplified oligonucleotides, the

nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine. Optionally, for LNA gapmers, 5-methyl cytosine LNA nucleosides may be used.

Modified oligonucleotide

The term modified oligonucleotide describes an oligonucleotide comprising one or more sugar-

5 modified nucleosides and/or modified internucleoside linkages. The term chimeric" oligonucleotide is a term that has been used in the literature to describe oligonucleotides with modified nucleosides.

Complementarity

The term "complementarity" describes the capacity for Watson-Crick base-pairing of

10 nucleosides/nucleotides. Watson-Crick base pairs are guanine (G)-cytosine (C) and adenine (A) - thymine (T)/uracil (U). It will be understood that oligonucleotides may comprise nucleosides with modified nucleobases, for example 5-methyl cytosine is often used in place of cytosine, and as such the term complementarity encompasses Watson Crick base-pairing between non-modified and modified nucleobases (see for example Hirao et al (2012) Accounts 15 of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1).

The term "% complementary" as used herein, refers to the number of nucleotides in percent of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which, at a given position, are complementary to (*i.e.* form Watson Crick base pairs with) a contiguous

20 nucleotide sequence, at a given position of a separate nucleic acid molecule (e.g. the target nucleic acid). The percentage is calculated by counting the number of aligned bases that form pairs between the two sequences, dividing by the total number of nucleotides in the oligonucleotide and multiplying by 100. In such a comparison a nucleobase/nucleotide which does not align (form a base pair) is termed a mismatch.

25 The term "fully complementary", refers to 100% complementarity.

Identity

The term "Identity" as used herein, refers to the number of nucleotides in percent of a

contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which, at a given position, are identical to (*i.e.* in their ability to form Watson Crick base pairs with the

30 complementary nucleoside) a contiguous nucleotide sequence, at a given position of a separate nucleic acid molecule (e.g. the target nucleic acid). The percentage is calculated by counting the number of aligned bases that are identical between the two sequences, including gaps, dividing by the total number of nucleotides in the oligonucleotide and multiplying by 100.

Percent Identity = (Matches x 100)/Length of aligned region (with gaps).

Hybridization

The term "hybridizing" or "hybridizes" as used herein is to be understood as two nucleic acid strands (e.g. an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between

5 two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (T_m) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions T_m is not strictly proportional to the affinity (Mergny and Lacroix, 2003. *Oligonucleotides* 13:515-537). The standard state Gibbs free energy ΔG° is a more accurate representation of binding affinity and is related to the

10 dissociation constant (K_d) of the reaction by $\Delta G^\circ = -RT\ln(K_d)$, where R is the gas constant and T is the absolute temperature. Therefore, a very low ΔG° of the reaction between an oligonucleotide and the target nucleic acid reflects a strong hybridization between the oligonucleotide and target nucleic acid. ΔG° is the energy associated with a reaction where aqueous concentrations are 1M, the pH is 7, and the temperature is 37°C. The hybridization of

15 oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions ΔG° is less than zero. ΔG° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, *Chem.. Comm.* 36-38 and Holdgate et al., 2005, *Drug Discov Today*. The skilled person will know that commercial equipment is available for ΔG° measurements. ΔG° can also be estimated

20 numerically by using the nearest neighbor model as described by SantaLucia, 1998, *Proc Natl Acad Sci USA*. 95: 1460-1465 using appropriately derived thermodynamic parameters described by Sugimoto et al., 1995, *Biochemistry* 34:1 121 1-1 1216 and McTigue et al., 2004, *Biochemistry* 43:5388-5405. In order to have the possibility of modulating its intended nucleic acid target by hybridization, oligonucleotides of the present invention hybridize to a target

25 nucleic acid with estimated ΔG° values below -10 kcal for oligonucleotides that are 10-30 nucleotides in length. In some embodiments the degree or strength of hybridization is measured by the standard state Gibbs free energy ΔG° . The oligonucleotides may hybridize to a target nucleic acid with estimated ΔG° values below the range of -10 kcal, such as below -15 kcal, such as below -20 kcal and such as below -25 kcal for oligonucleotides that are 8-30

30 nucleotides in length. In some embodiments the oligonucleotides hybridize to a target nucleic acid with an estimated ΔG° value of -10 to -60 kcal, such as -12 to -40, such as from -15 to -30 kcal or -16 to -27 kcal such as -18 to -25 kcal.

Target nucleic acid

According to the present invention, the target nucleic acid is a nucleic acid which encodes

35 mammalian c-Rel and may for example be a gene, a RNA, a mRNA, and pre-mRNA, a mature mRNA or a cDNA sequence. The target may therefore be referred to as an REL target nucleic acid.

The oligonucleotide of the invention targets intron regions of a mammalian REL pre-mRNA, such as SEQ ID NO 2 1 (the human REL pre-mRNA sequence). For *in vivo* or *in vitro* application, the oligonucleotide of the invention is typically capable of inhibiting the expression of the REL target nucleic acid in a cell which is expressing the REL target nucleic acid. The 5 contiguous sequence of nucleobases of the oligonucleotide of the invention is typically complementary to the REL target nucleic acid, as measured across the length of the oligonucleotide, optionally with the exception of one or two mismatches, and optionally excluding nucleotide based linker regions which may link the oligonucleotide to an optional functional group such as a conjugate, or other non-complementary terminal nucleotides (e.g. 10 region D' or D"). The target nucleic acid may, in some embodiments, be a REL pre-mRNA

Target Sequence

The term "target sequence" as used herein refers to a sequence of nucleotides present in the target nucleic acid which comprises the nucleobase sequence which is complementary to the oligonucleotide of the invention. In some embodiments, the target sequence consists of a 15 region on the target nucleic acid which is complementary to the contiguous nucleotide sequence of the oligonucleotide of the invention. In some embodiments the target sequence is longer than the complementary sequence of a single oligonucleotide, and may, for example represent a preferred region of the target nucleic acid which may be targeted by several oligonucleotides of the invention.

20 The target sequence may be a sub-sequence of the target nucleic acid.

In some embodiments the sub-sequence is a sequence present in a human REL mRNA intron, such as a REL human pre-mRNA selected from the group consisting of SEQ ID NO 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23.

25 The oligonucleotide of the invention comprises a contiguous nucleotide sequence which is complementary to or hybridizes to the target nucleic acid, such as a sub-sequence of the target nucleic acid, such as a target sequence described herein. In some embodiments, the oligonucleotide consists of the contiguous nucleotide sequence.

30 The oligonucleotide comprises a contiguous nucleotide sequence of at least 10 nucleotides which is complementary to or hybridizes to a target sequence present in the target nucleic acid molecule. The contiguous nucleotide sequence (and therefore the target sequence) comprises of at least 10 contiguous nucleotides, such as 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous nucleotides, such as from 12-25, such as from 14-18 contiguous nucleotides.

Target Cell

The term a "target cell" as used herein refers to a cell which is expressing the target nucleic acid. In some embodiments the target cell may be *in vivo* or *in vitro*. In some embodiments the target cell is a mammalian cell such as a rodent cell, such as a mouse cell or a rat cell, or a 5 primate cell such as a monkey cell or a human cell.

In preferred embodiments the target cell expresses REL pre-mRNA.

In some embodiments the oligonucleotides, conjugates or compositions, of the invention are capable to inhibiting the expression of human REL in a cell selected from the group consisting of HEK293 and HeLa cells.

10 *Naturally occurring variant*

The term "naturally occurring variant" refers to variants of REL gene or transcripts which originate from the same genetic loci as the target nucleic acid, but may differ for example, by virtue of degeneracy of the genetic code causing a multiplicity of codons encoding the same amino acid, or due to alternative splicing of pre-mRNA, or the presence of polymorphisms, such 15 as single nucleotide polymorphisms, and allelic variants. Based on the presence of the sufficient complementary sequence to the oligonucleotide, the oligonucleotide of the invention may therefore target the target nucleic acid and naturally occurring variants thereof.

In some embodiments, the naturally occurring variants have at least 95% such as at least 98% or at least 99% homology to a mammalian REL target nucleic acid, such SEQ ID NO 21.

20 *Modulation of expression*

The term "modulation of expression" as used herein is to be understood as an overall term for an oligonucleotide's ability to alter the amount of REL when compared to the amount of REL before administration of the oligonucleotide. Alternatively modulation of expression may be determined by reference to a control experiment. It is generally understood that the control is 25 an individual or target cell treated with a saline composition or an individual or target cell treated with a non-targeting oligonucleotide (mock). It may however also be an individual treated with the standard of care.

One type of modulation is an oligonucleotide's ability to inhibit, down-regulate, reduce, suppress, remove, stop, block, prevent, lessen, lower, avoid or terminate expression of c-Rel 30 e.g. by degradation of rRNA or blockage of transcription.

High affinity modified nucleosides

A high affinity modified nucleoside is a modified nucleotide which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (T^m). A high affinity modified nucleoside of 35 the present invention preferably result in an increase in melting temperature between +0.5 to

+12°C, more preferably between +1.5 to +10°C and most preferably between +3 to +8°C per modified nucleoside. Numerous high affinity modified nucleosides are known in the art and include for example, many 2' substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in

5 Drug Development, 2000, 3(2), 293-213).

Sugar modifications

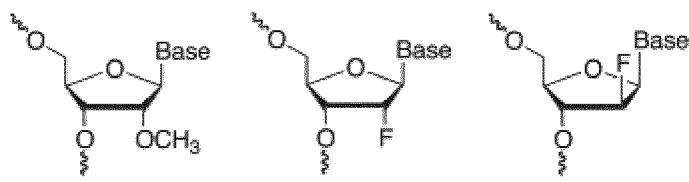
The oligomer of the invention may comprise one or more nucleosides which have a modified sugar moiety, *i.e.* a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA.

10 Numerous nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance.

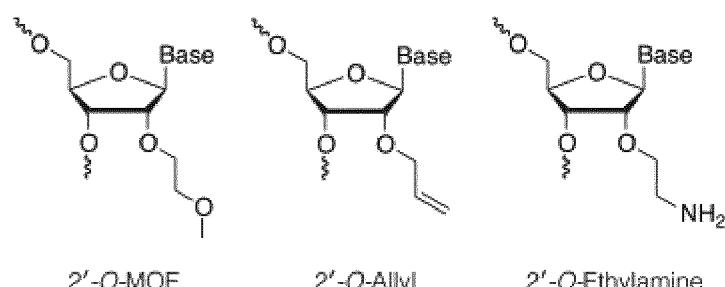
Such modifications include those where the ribose ring structure is modified, *e.g.* by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradicle bridge

15 between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (*e.g.* UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (WO201 1/01 7521) or tricyclic nucleic acids (WO201 3/1 54798). Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic 20 acids (PNA), or morpholino nucleic acids.

Sugar modifications also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2'-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2', 3', 4' or 5' positions.

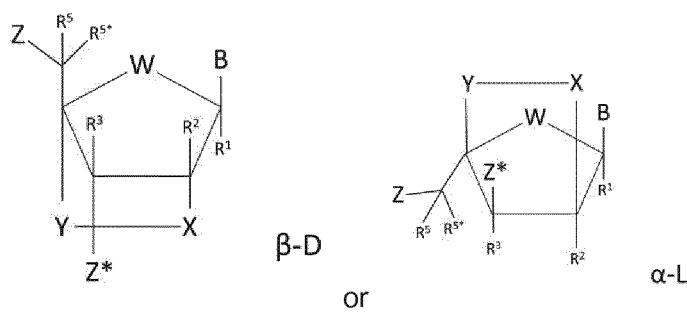

Nucleosides with modified sugar moieties also include 2' modified nucleosides, such as 2'

25 substituted nucleosides. Indeed, much focus has been spent on developing 2' substituted nucleosides, and numerous 2' substituted nucleosides have been found to have beneficial properties when incorporated into oligonucleotides, such as enhanced nucleoside resistance and enhanced affinity.


2' modified nucleosides.

30 A 2' sugar modified nucleoside is a nucleoside which has a substituent other than H or -OH at the 2' position (2' substituted nucleoside) or comprises a 2' linked biradicle, and includes 2' substituted nucleosides and LNA (2' - 4' biradicle bridged) nucleosides. For example, the 2' modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide. Examples of 2' substituted modified nucleosides are 2'-O-alkyl-RNA, 2'-O- 35 methyl-RNA, 2'-alkoxy-RNA, 2'-O-methoxyethyl-RNA (MOE), 2'-amino-DNA, 2'-Fluoro-RNA,

and 2'-F-ANA nucleoside. For further examples, please see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213, and Deleavy and Damha, Chemistry and Biology 2012, 19, 937. Below are illustrations of some 2' substituted modified nucleosides.


5

Locked Nucleic Acid Nucleosides (LNA).

LNA nucleosides are modified nucleosides which comprise a linker group (referred to as a biradicle or a bridge) between C2' and C4' of the ribose sugar ring of a nucleotide. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature.

In some embodiments, the modified nucleoside or the LNA nucleosides of the oligomer of the invention has a general structure of the formula I or II:

Formula I

Formula II

15 wherein W is selected from -O-, -S-, -N(R^a)-, -C(R^aR^b)-, such as, in some embodiments -O-; B designates a nucleobase or modified nucleobase moiety; Z designates an internucleoside linkage to an adjacent nucleoside, or a 5'-terminal group; Z* designates an internucleoside linkage to an adjacent nucleoside, or a 3'-terminal group; X designates a group selected from the list consisting of -C(R^aR^b)-, -C(R^a)=C(R^b)-, -C(R^a)=N-, -O-, -Si(R^a)₂-, -S-, -SO₂-, -N(R^a)-, and >C=Z

In some embodiments, X is selected from the group consisting of: -O-, -S-, NH-, NR^aR^b, -CH₂-, CR^aR^b, -C(=CH₂)-, and -C(=CR^aR^b)-

In some embodiments, X is -O-

Y designates a group selected from the group consisting of -C(R^aR^b)-, -C(R^a)=C(R^b)-, -

5 C(R^a)=N-, -O-, -Si(R^a)₂-, -S-, -SO₂-, -N(R^a)-, and >C=Z

In some embodiments, Y is selected from the group consisting of: -CH₂-, -C(R^aR^b)-, -CH₂CH₂-, -C(R^aR^b)-C(R^aR^b)-, -CH₂CH₂CH₂-, -C(R^aR^b)C(R^aR^b)C(R^aR^b)-, -C(R^a)=C(R^b)-, and -C(R^a)=N-

In some embodiments, Y is selected from the group consisting of: -CH₂-, -CH R^a-, -

10 CHCH₃-, CR^aR^b-

or -X-Y- together designate a bivalent linker group (also referred to as a radicle) together designate a bivalent linker group consisting of 1, 2, 3 or 4 groups/atoms selected from the group consisting of -C(R^aR^b)-, -C(R^a)=C(R^b)-, -C(R^a)=N-, -O-, -Si(R^a)₂-, -S-, -SO₂-, -N(R^a)-, and >C=Z,

In some embodiments, -X-Y- designates a biradicle selected from the groups consisting of: -X-CH₂-, -X-CR^aR^b-, -X-CH R^a-, -X-C(HCH₃)\ -O-Y-, -O-CH₂-, -S-CH₂-, -NH-CH₂-, -O-CHCH₃-, -CH₂-O-CH₂, -O-CH(CH₃CH₃)-, -O-CH₂-CH₂-, OCH₂-CH₂-CH₂-, -O-CH₂OCH₂-, -O-NCH₂-, -C(=CH₂)-CH₂-, -NR^a-CH₂-, N-O-CH₂-, -S-CR^aR^b- and -S-CH R³.

In some embodiments -X-Y- designates -O-CH₂- or -O-CH(CH₃)-.

wherein Z is selected from -O-, -S-, and -N(R^a)-,

20 and R^a and, when present R^b, each is independently selected from hydrogen, optionally substituted C₁₋₆-alkyl, optionally substituted C₂₋₆-alkenyl, optionally substituted C₂₋₆-alkynyl, hydroxy, optionally substituted C₁₋₆-alkoxy, C₂₋₆-alkoxyalkyl, C₂₋₆-alkenyloxy, carboxy, C₁₋₆-alkoxycarbonyl, C₁₋₆-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C₁₋₆-alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)-amino-carbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, mono- and di(C₁₋₆-alkyl)amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkyl-carbonylamino, carbamide C₁₋₆-alkanoyloxy, sulphono, C₁₋₆-alkylsulphonyloxy, nitro, azido, sulphanyl, C₁₋₆-alkylthio, halogen, where aryl and heteroaryl may be optionally substituted and where two geminal substituents R^a and R^b together may designate optionally substituted 25 alkylamino, carbamoyl, mono- and di(C₁₋₆-alkyl)-amino-carbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, mono- and di(C₁₋₆-alkyl)amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkyl-carbonylamino, carbamide C₁₋₆-alkanoyloxy, sulphono, C₁₋₆-alkylsulphonyloxy, nitro, azido, sulphanyl, C₁₋₆-alkylthio, halogen, where aryl and heteroaryl may be optionally substituted and where two geminal substituents R^a and R^b together may designate optionally substituted 30 methylene (=CH₂), wherein for all chiral centers, asymmetric groups may be found in either R or S orientation.

wherein R¹, R², R³, R⁵ and R^{5*} are independently selected from the group consisting of: hydrogen, optionally substituted C₁₋₆-alkyl, optionally substituted C₂₋₆-alkenyl, optionally substituted C₂₋₆-alkynyl, hydroxy, C₁₋₆-alkoxy, C₂₋₆-alkoxyalkyl, C₂₋₆-alkenyloxy, carboxy, C₁₋₆-

alkoxycarbonyl, C_{1-6} -alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)-amino-carbonyl, amino- C_{1-6} -alkyl-aminocarbonyl, mono- and di(Ci-6-alkyl)amino-Ci-6-alkyl-aminocarbonyl, C_{1-6} -alkyl-5 carbonylamino, carbamido, C_{1-6} -alkanoyloxy, sulphono, C_{1-6} -alkylsulphonyloxy, nitro, azido, sulphanyl, C_{1-6} -alkylthio, halogen, where aryl and heteroaryl may be optionally substituted, and where two geminal substituents together may designate oxo, thioxo, imino, or optionally substituted methylene.

10 In some embodiments R^1 , R^2 , R^3 , R^5 and R^{5*} are independently selected from C_{1-6} alkyl, such as methyl, and hydrogen.

In some embodiments R^1 , R^2 , R^3 , R^5 and R^{5*} are all hydrogen.

In some embodiments R^1 , R^2 , R^3 , are all hydrogen, and either R^5 and R^{5*} is also hydrogen and the other of R^5 and R^{5*} is other than hydrogen, such as C_{1-6} alkyl such as methyl.

15 In some embodiments, R^a is either hydrogen or methyl. In some embodiments, when present, R^b is either hydrogen or methyl.

In some embodiments, one or both of R^a and R^b is hydrogen

In some embodiments, one of R^a and R^b is hydrogen and the other is other than hydrogen

In some embodiments, one of R^a and R^b is methyl and the other is hydrogen

In some embodiments, both of R^a and R^b are methyl.

20 In some embodiments, the biradicle -X-Y- is -O-CH₂⁻, W is O, and all of R^1 , R^2 , R^3 , R^5 and R^{5*} are all hydrogen. Such LNA nucleosides are disclosed in WO99/014226, WO00/66604, WO98/039352 and WO2004/046160 which are all hereby incorporated by reference, and include what are commonly known as beta-D-oxy LNA and alpha-L-oxy LNA nucleosides.

25 In some embodiments, the biradicle -X-Y- is -S-CH₂⁻, W is O, and all of R^1 , R^2 , R^3 , R^5 and R^{5*} are all hydrogen. Such thio LNA nucleosides are disclosed in WO99/0 14226 and WO2004/046160 which are hereby incorporated by reference.

In some embodiments, the biradicle -X-Y- is -NH-CH₂⁻, W is O, and all of R^1 , R^2 , R^3 , R^5 and R^{5*} are all hydrogen. Such amino LNA nucleosides are disclosed in WO99/014226 and WO2004/046160 which are hereby incorporated by reference.

30 In some embodiments, the biradicle -X-Y- is -O-CH₂-CH₂⁻ or -O-CH₂-CH₂-CH₂⁻, W is O, and all of R^1 , R^2 , R^3 , R^5 and R^{5*} are all hydrogen. Such LNA nucleosides are disclosed in WO00/047599 and Morita et al, Bioorganic & Med.Chem. Lett. 12 73-76, which are hereby incorporated by reference, and include what are commonly known as 2'-O-4'C-ethylene bridged nucleic acids (ENA).

In some embodiments, the biradicle -X-Y- is -O-CH₂-, W is O, and all of R¹, R², R³, and one of R⁵ and R^{5*} are hydrogen, and the other of R⁵ and R^{5*} is other than hydrogen such as C₁₋₆ alkyl, such as methyl. Such 5' substituted LNA nucleosides are disclosed in WO2007/134181 which is hereby incorporated by reference.

5 In some embodiments, the biradicle -X-Y- is -O-CR^aR^b-, wherein one or both of R^a and R^b are other than hydrogen, such as methyl, W is O, and all of R¹, R², R³, and one of R⁵ and R^{5*} are hydrogen, and the other of R⁵ and R^{5*} is other than hydrogen such as C₁₋₆ alkyl, such as methyl. Such bis modified LNA nucleosides are disclosed in WO2010/077578 which is hereby incorporated by reference.

10 In some embodiments, the biradicle -X-Y- designate the bivalent linker group -O-CH(CH₂OCH₃)- (2' O-methoxyethyl bicyclic nucleic acid - Seth et al., 2010, J. Org. Chem. Vol 75(5) pp. 1569-81). In some embodiments, the biradicle -X-Y- designate the bivalent linker group -O-CH(CH₂CH₃)- (2' O-ethyl bicyclic nucleic acid - Seth et al., 2010, J. Org. Chem. Vol 75(5) pp. 1569-81). In some embodiments, the biradicle -X-Y- is -O-CHR^a-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. Such 6' substituted LNA nucleosides are disclosed in WO1 0036698 and WO07090071 which are both hereby incorporated by reference.

15 In some embodiments, the biradicle -X-Y- is -O-CH(CH₂OCH₃)-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. Such LNA nucleosides are also known as cyclic MOEs in the art (cMOE) and are disclosed in WO07090071 .

20 In some embodiments, the biradicle -X-Y- designate the bivalent linker group -O-CH(CH₃)-, - in either the R- or S- configuration. In some embodiments, the biradicle -X-Y- together designate the bivalent linker group -O-CH₂-O-CH₂- (Seth et al., 2010, J. Org. Chem.). In some embodiments, the biradicle -X-Y- is -O-CH(CH₃)-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. Such 6' methyl LNA nucleosides are also known as cET nucleosides in the art, and may be either (S)cET or (R)cET stereoisomers, as disclosed in WO07090071 (beta-D) and WO2010/036698 (alpha-L) which are both hereby incorporated by reference).

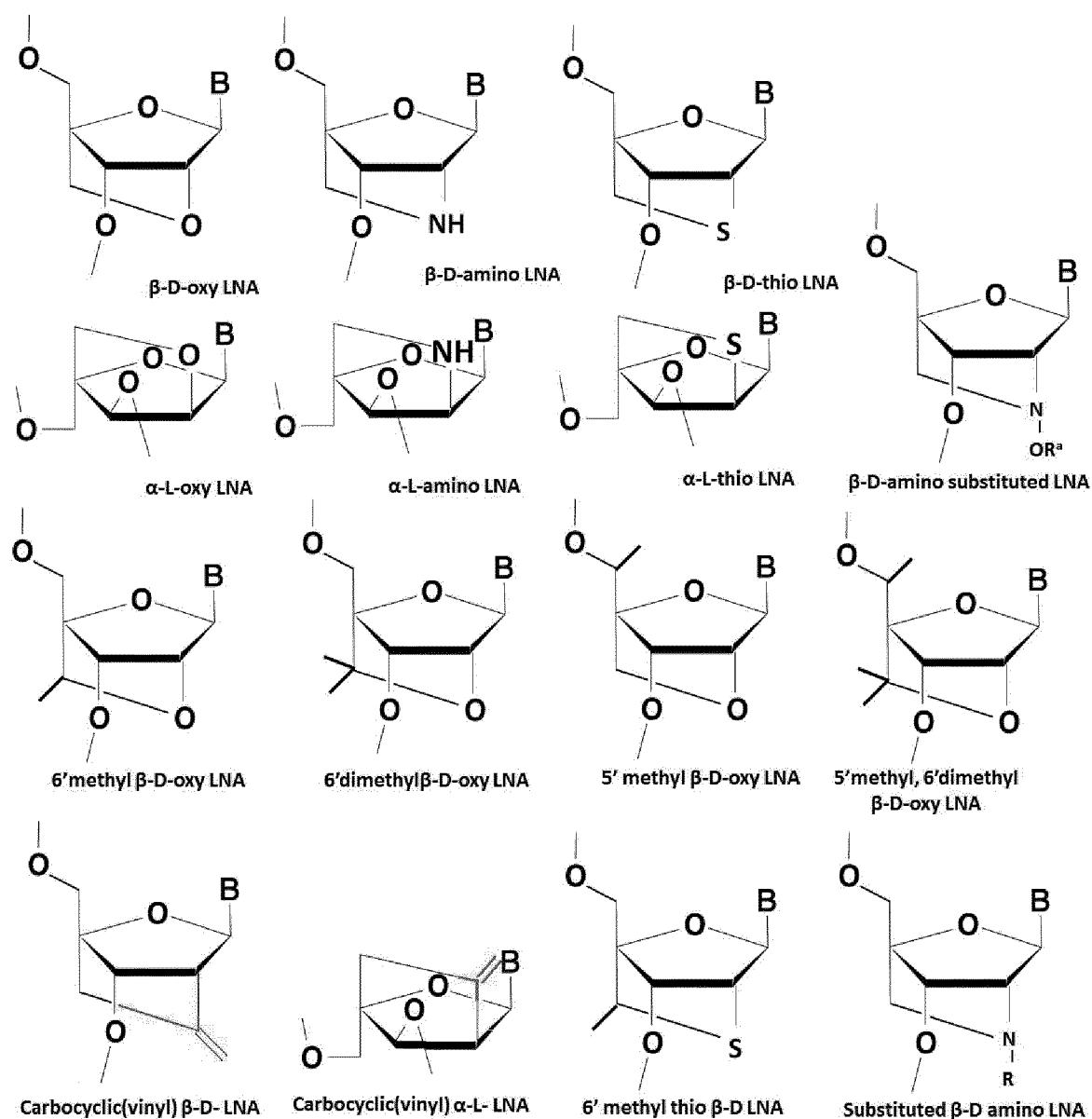
25 In some embodiments, the biradicle -X-Y- is -O-CR^aR^b-, wherein in neither R^a or R^b is hydrogen, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. In some embodiments, R^a and R^b are both methyl. Such 6' di-substituted LNA nucleosides are disclosed in WO 2009006478 which is hereby incorporated by reference.

30 In some embodiments, the biradicle -X-Y- is -S-CHR^a-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. Such 6' substituted thio LNA nucleosides are disclosed in WO1 1156202 which is hereby incorporated by reference. In some 6' substituted thio LNA embodiments R^a is methyl.

In some embodiments, the biradicle -X-Y- is -C(=CH₂)-C(R^aR^b)-, such as -C(=CH₂)-CH₂-, or -C(=CH₂)-CH(CH₃)-W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. Such vinyl carbo LNA nucleosides are disclosed in WO08154401 and WO09067647 which are both hereby incorporated by reference.

5 In some embodiments the biradicle -X-Y- is -N(-OR^a)-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. In some embodiments R^a is C₁₋₆ alkyl such as methyl. Such LNA nucleosides are also known as N substituted LNAs and are disclosed in WO2008/150729 which is hereby incorporated by reference. In some embodiments, the biradicle -X-Y- together designate the bivalent linker group -O-NR^a-CH₃- (Seth et al., 2010, J. Org. Chem.). In some embodiments the 10 biradicle -X-Y- is -N(R^a)-, W is O, and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. In some embodiments R^a is C₁₋₆ alkyl such as methyl.

15 In some embodiments, one or both of R⁵ and R^{5*} is hydrogen and, when substituted the other of R⁵ and R^{5*} is C₁₋₆ alkyl such as methyl. In such an embodiment, R¹, R², R³, may all be hydrogen, and the biradicle -X-Y- may be selected from -O-CH₂- or -O-C(HCRA^a)-, such as -O-C(HCH₃)-.


20 In some embodiments, the biradicle is -CR^aR^b-O-CR^aR^b-, such as CH₂-O-CH₂-, W is O and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. In some embodiments R^a is d-e alkyl such as methyl. Such LNA nucleosides are also known as conformationally restricted nucleotides (CRNs) and are disclosed in WO2013036868 which is hereby incorporated by reference.

25 In some embodiments, the biradicle is -O-CR^aR^b-O-CR^aR^b-, such as O-CH₂-O-CH₂-, W is O and all of R¹, R², R³, R⁵ and R^{5*} are all hydrogen. In some embodiments R^a is C₁₋₆ alkyl such as methyl. Such LNA nucleosides are also known as COC nucleotides and are disclosed in Mitsuoka et al., Nucleic Acids Research 2009 37(4), 1225-1238, which is hereby incorporated by reference.

It will be recognized that, unless specified, the LNA nucleosides may be in the beta-D or alpha-L stereoisomer.

Certain examples of LNA nucleosides are presented in Scheme 1.

Scheme 1

As illustrated in the examples, in some embodiments of the invention the LNA nucleosides in the oligonucleotides are beta-D-oxy-LNA nucleosides.

5 Nuclease mediated degradation

Nuclease mediated degradation refers to an oligonucleotide capable of mediating degradation of a complementary nucleotide sequence when forming a duplex with such a sequence.

In some embodiments, the oligonucleotide may function via nuclease mediated degradation of the target nucleic acid, where the oligonucleotides of the invention are capable of recruiting a

10 nuclease, particularly and endonuclease, preferably endoribonuclease (RNase), such as RNase H. Examples of oligonucleotide designs which operate via nuclease mediated mechanisms are oligonucleotides which typically comprise a region of at least 5 or 6 DNA nucleosides and are

flanked on one side or both sides by affinity enhancing nucleosides, for example gapmers, headmers and tailmers.

RNase H Activity and Recruitment

The RNase H activity of an antisense oligonucleotide refers to its ability to recruit RNase H

5 when in a duplex with a complementary RNA molecule. WO01/23613 provides *in vitro* methods for determining RNaseH activity, which may be used to determine the ability to recruit RNaseH. Typically an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10% or more than 20% of the of the initial rate determined when
10 using a oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers with phosphorothioate linkages between all monomers in the oligonucleotide, and using the methodology provided by Example 91 - 95 of WO01/23613 (hereby incorporated by reference).

Gapmer

15 The term gapmer as used herein refers to an antisense oligonucleotide which comprises a region of RNase H recruiting oligonucleotides (gap) which is flanked 5' and 3' by regions which comprise one or more affinity enhancing modified nucleosides (flanks or wings). Various gapmer designs are described herein. Headmers and tailmers are oligonucleotides capable of recruiting RNase H where one of the flanks is missing, i.e. only one of the ends of the
20 oligonucleotide comprises affinity enhancing modified nucleosides. For headmers the 3' flank is missing (i.e. the 5' flank comprises affinity enhancing modified nucleosides) and for tailmers the 5' flank is missing (i.e. the 3' flank comprises affinity enhancing modified nucleosides).

LNA Gapmer

25 The term LNA gapmer is a gapmer oligonucleotide wherein at least one of the affinity enhancing modified nucleosides is an LNA nucleoside. In some embodiments the LNA gapmer oligonucleotide comprises one or more LNA nucleoside within both of the the wing (or flank regions). In some embodiments, the LNA gapmer is a mixed wing gapmer. In some embodiments the wing (flank) regions of the LNA gapmer comprise of only LNA nucleosides.

Mixed Wing Gapmer

30 The term mixed wing gapmer or mixed flank gapmer refers to a LNA gapmer wherein at least one of the flank regions comprise at least one LNA nucleoside and at least one non-LNA modified nucleoside, such as at least one 2' substituted modified nucleoside, such as, for example, 2'-O-alkyl-RNA, 2'-O-methyl-RNA, 2'-alkoxy-RNA, 2'-O-methoxyethyl-RNA (MOE), 2'-amino-DNA, 2'-Fluoro-RNA and 2'-F-ANA nucleoside(s). In some embodiments the mixed wing
35 gapmer has one flank which comprises only LNA nucleosides (e.g. 5' or 3') and the other flank

(3' or 5' respectfully) comprises 2' substituted modified nucleoside(s) and optionally LNA nucleosides.

Gapbreaker

The term "gapbreaker oligonucleotide" is used in relation to a gapmer capable of maintaining

5 RNaseH recruitment even though the gap region is disrupted by a non-RNaseH recruiting nucleoside (a gap-breaker nucleoside, E) such that the gap region comprise less than 5 consecutive DNA nucleosides. Non-RNaseH recruiting nucleosides are for example nucleosides in the 3' endo conformation, such as LNA's where the bridge between C2' and C4' of the ribose sugar ring of a nucleoside is in the beta conformation, such as beta-D-oxy LNA or ScET
10 nucleoside. The ability of gapbreaker oligonucleotide to recruit RNaseH is typically sequence or even compound specific - see Rukov et al. 2015 Nucl. Acids Res. Vol. 43 pp. 8476-8487, which discloses "gapbreaker" oligonucleotides which recruit RNaseH which in some instances provide a more specific cleavage of the target RNA.

In some embodiments, the oligonucleotide of the invention is a gapbreaker oligonucleotide. In

15 some embodiments the gapbreaker oligonucleotide comprise a 5'-flank (F), a gap (G) and a 3'-flank (F'), wherein the gap is disrupted by a non-RNaseH recruiting nucleoside (a gap-breaker nucleoside, E) such that the gap contain at least 3 or 4 consecutive DNA nucleosides. In some embodiments the gapbreaker nucleoside (E) is an LNA nucleoside where the bridge between C2' and C4' of the ribose sugar ring of a nucleoside is in the beta conformation and is placed
20 within the gap region such that the gap-breaker LNA nucleoside is flanked 5' and 3' by at least 3 (5') and 3 (3') or at least 3 (5') and 4 (3') or at least 4(5') and 3(3') DNA nucleosides, and wherein the oligonucleotide is capable of recruiting RNaseH.

The gapbreaker oligonucleotide can be represented by the following formulae:

F-G-E-G-F'; in particular F₁₋₇-G₃₋₄-E₁-G₃₋₄-F'₁₋₇

25 D'-F-G-F', in particular D'₁₋₃-F₁₋₇-G₃₋₄-E₁-G₃₋₄-F'₁₋₇

F-G-F'-D", in particular F₁₋₇-G₃₋₄-E₁-G₃₋₄-F'₁₋₇-D"₁₋₃

D'-F-G-F'-D", in particular D'₁₋₃-F₁₋₇-G₃₋₄-E₁-G₃₋₄-F'₁₋₇-D"₁₋₃

Where region D' and D" are as described in the section "Gapmer design".

In some embodiments the gapbreaker nucleoside (E) is a beta-D-oxy LNA or ScET or another

30 beta-LNA nucleosides shown in Scheme 1).

Conjugate

The term conjugate as used herein refers to an oligonucleotide which is covalently linked to a non-nucleotide moiety (conjugate moiety or region C or third region).

Conjugation of the oligonucleotide of the invention to one or more non-nucleotide moieties may

35 improve the pharmacology of the oligonucleotide, e.g. by affecting the activity, cellular

distribution, cellular uptake or stability of the oligonucleotide. In some embodiments the conjugate moiety modify or enhance the pharmacokinetic properties of the oligonucleotide by improving cellular distribution, bioavailability, metabolism, excretion, permeability, and/or cellular uptake of the oligonucleotide. In particular the conjugate may target the oligonucleotide to a 5 specific organ, tissue or cell type and thereby enhance the effectiveness of the oligonucleotide in that organ, tissue or cell type. At the same time the conjugate may serve to reduce activity of the oligonucleotide in non-target cell types, tissues or organs, e.g. off target activity or activity in non-target cell types, tissues or organs. WO 93/07883 and WO2013/033230 provides suitable conjugate moieties, which are hereby incorporated by reference. Further suitable conjugate 10 moieties are those capable of binding to the asialoglycoprotein receptor (ASGPr). In particular tri-valent N-acetylgalactosamine conjugate moieties are suitable for binding to the ASGPr, see for example WO 2014/076196, WO 2014/207232 and WO 2014/179620 (hereby incorporated by reference).

Oligonucleotide conjugates and their synthesis has also been reported in comprehensive 15 reviews by Manoharan in *Antisense Drug Technology, Principles, Strategies, and Applications*, S.T. Crooke, ed., Ch. 16, Marcel Dekker, Inc., 2001 and Manoharan, *Antisense and Nucleic Acid Drug Development*, 2002, 12, 103, each of which is incorporated herein by reference in its entirety.

In an embodiment, the non-nucleotide moiety (conjugate moiety) is selected from the group 20 consisting of carbohydrates, cell surface receptor ligands, drug substances, hormones, lipophilic substances, polymers, proteins, peptides, toxins (e.g. bacterial toxins), vitamins, viral proteins (e.g. capsids) or combinations thereof.

Linkers

A linkage or linker is a connection between two atoms that links one chemical group or segment 25 of interest to another chemical group or segment of interest via one or more covalent bonds.

Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety (Region C), to a first region, e.g. an oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A).

30 In some embodiments of the invention the conjugate or oligonucleotide conjugate of the invention may optionally, comprise a linker region (second region or region B and/or region Y) which is positioned between the oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A or first region) and the conjugate moiety (region C or third region).

35 Region B refers to biocleavable linkers comprising or consisting of a physiologically labile bond that is cleavable under conditions normally encountered or analogous to those encountered

within a mammalian body. Conditions under which physiologically labile linkers undergo chemical transformation (e.g., cleavage) include chemical conditions such as pH, temperature, oxidative or reductive conditions or agents, and salt concentration found in or analogous to those encountered in mammalian cells. Mammalian intracellular conditions also include the presence of enzymatic activity normally present in a mammalian cell such as from proteolytic enzymes or hydrolytic enzymes or nucleases. In one embodiment the biocleavable linker is susceptible to S1 nuclease cleavage. In some embodiments the nuclease susceptible linker comprises between 1 and 10 nucleosides, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleosides, more preferably between 2 and 6 nucleosides and most preferably between 2 and 4 linked nucleosides comprising at least two consecutive phosphodiester linkages, such as at least 3 or 4 or 5 consecutive phosphodiester linkages. Preferably the nucleosides are DNA or RNA. Phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195 (hereby incorporated by reference).

Region Y refers to linkers that are not necessarily biocleavable but primarily serve to covalently connect a conjugate moiety (region C or third region), to an oligonucleotide (region A or first region). The region Y linkers may comprise a chain structure or an oligomer of repeating units such as ethylene glycol, amino acid units or amino alkyl groups. The oligonucleotide conjugates of the present invention can be constructed of the following regional elements A-C, A-B-C, A-B-Y-C, A-Y-B-C or A-Y-C. In some embodiments the linker (region Y) is an amino alkyl, such as a C2 - C36 amino alkyl group, including, for example C6 to C12 amino alkyl groups. In some embodiments the linker (region Y) is a C6 amino alkyl group.

Treatment

The term 'treatment' as used herein refers to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease, *i.e.* prophylaxis. It will therefore be recognized that treatment as referred to herein may, in some embodiments, be prophylactic.

DETAILED DESCRIPTION OF THE INVENTION

The Oligonucleotides of the Invention

The invention relates to oligonucleotides capable of inhibiting the expression of c-Rel. The modulation is may achieved by hybridizing to a target nucleic acid encoding REL or which is involved in the regulation of REL. The target nucleic acid may be a mammalian REL sequence, such as SEQ ID NO 21.

The oligonucleotide of the invention is an antisense oligonucleotide which targets a REL sequence.

In some embodiments the antisense oligonucleotide of the invention is capable of modulating the expression of the target by inhibiting or down-regulating it. Preferably, such modulation produces an inhibition of expression of at least 20% compared to the normal expression level of the target, more preferably at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% inhibition

5 compared to the normal expression level of the target. In some embodiments oligonucleotides of the invention may be capable of inhibiting expression levels of REL mRNA by at least 60% or 70% *in vitro* using HEK-293 or HeLa cells. In some embodiments compounds of the invention may be capable of inhibiting expression levels of Rel protein by at least 50% *in vitro* using HEK-293 or HeLa cells. Suitably, the examples provide assays which may be used to measure 10 reduction of REL RNA and subsequently the protein. The target modulation is triggered by the hybridization between a contiguous nucleotide sequence of the oligonucleotide and the target nucleic acid. In some embodiments the oligonucleotide of the invention comprises mismatches between the oligonucleotide and the target nucleic acid. Despite mismatches hybridization to the target nucleic acid may still be sufficient to show a desired modulation of c-Rel expression.

15 Reduced binding affinity resulting from mismatches may advantageously be compensated by increased number of nucleotides in the oligonucleotide and/or an increased number of modified nucleosides capable of increasing the binding affinity to the target, such as 2' modified nucleosides, including LNA, present within the oligonucleotide sequence.

An aspect of the present invention relates to an antisense oligonucleotide which consists or 20 comprises a contiguous nucleotide sequence of 10 to 30 nucleotides in length with at least 90% complementarity to a human REL sequence.

In some embodiments, the oligonucleotide comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 25 98%, or 100% complementary with a region of the target nucleic acid.

In some embodiments the oligonucleotide of the invention, or contiguous nucleotide sequence thereof is fully complementary (100% complementary) to a region of the target nucleic acid, or in some embodiments may comprise one or two mismatches between the oligonucleotide and the target nucleic acid.

30 In some embodiments the oligonucleotide comprises a contiguous nucleotide sequence of 10 to 15 or 10 to 16 nucleotides in length with at least 90% complementary, such as fully (or 100%) complementary, to a region of a sequence selected from SEQ ID NOS 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23.

35 In some embodiments the oligonucleotide comprises a contiguous nucleotide sequence of 12 to 16 nucleotides in length which is fully (or 100%) complementary, to a region of a sequence selected from SEQ ID NOS 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23.

In some embodiments the oligonucleotide comprises a contiguous nucleotide sequence of 14 nucleotides in length which is fully (or 100%) complementary, to a region of a sequence selected from SEQ ID NOs 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23.

5 In some embodiments the oligonucleotide comprises a contiguous nucleotide sequence of 15 nucleotides in length which is fully (or 100%) complementary, to a region of a sequence selected from SEQ ID NOs 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23.

In some embodiments the oligonucleotide comprises a contiguous nucleotide sequence of 16 nucleotides in length which is fully (or 100%) complementary, to a region of a sequence selected from SEQ ID NOs 11, 12, 13, 14, 15, 17, 18, 19, 20, 22 and 23.

10 In some embodiments, the oligonucleotide of the invention comprises or consists of 10 to 35 nucleotides in length, such as from 10 to 30, such as 11 to 22, such as from 12 to 18, such as from 13 to 17 or 14 to 16 contiguous nucleotides in length. In some embodiments the oligonucleotide comprises or consists of 13, 14, 15, 16 or 17 nucleotides in length.

15 In some embodiments, the oligonucleotide or contiguous nucleotide sequence thereof comprises or consists of 22 or less nucleotides, such as 20 or less nucleotides, such as 18 or less nucleotides, such as 14, 15, 16 or 17 nucleotides. It is to be understood that any range given herein includes the range endpoints. Accordingly, if an oligonucleotide is said to include from 10 to 30 nucleotides, both 10 and 30 nucleotides are included.

20 In some embodiments, the contiguous nucleotide sequence comprises or consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous nucleotides in length. In some embodiments, the oligonucleotide comprises or consists of 14, 15 or 16 nucleotides in length.

25 In some embodiments, the oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, or at least 12 contiguous nucleotides thereof.

In some embodiments, the oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, or at least 13 contiguous nucleotides thereof.

30 In some embodiments, the oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, or at least 14 contiguous nucleotides thereof.

In some embodiments, the oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, or at least 15 contiguous nucleotides thereof.

In some embodiments, the oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, or at least 16 contiguous nucleotides thereof.

Oligonucleotide design

5 Oligonucleotide design refers to the pattern of nucleoside sugar modifications in the oligonucleotide sequence. The oligonucleotides of the invention comprise sugar-modified nucleosides and may also comprise DNA or RNA nucleosides. In some embodiments, the oligonucleotide comprises sugar-modified nucleosides and DNA nucleosides. Incorporation of modified nucleosides into the oligonucleotide of the invention may enhance the affinity of the
10 oligonucleotide for the target nucleic acid. In that case, the modified nucleosides can be referred to as affinity enhancing modified nucleotides, the modified nucleosides may also be termed units.

In an embodiment, the oligonucleotide comprises at least 1 modified nucleoside, such as at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at
15 least 11, at least 12, at least 13, at least 14, at least 15 or at least 16 modified nucleosides. In an embodiment the oligonucleotide comprises from 1 to 10 modified nucleosides, such as from 2 to 9 modified nucleosides, such as from 3 to 8 modified nucleosides, such as from 4 to 7 modified nucleosides, such as 6 or 7 modified nucleosides.

In an embodiment, the oligonucleotide comprises one or more sugar modified nucleosides, such
20 as 2' sugar modified nucleosides. Preferably the oligonucleotide of the invention comprise the one or more 2' sugar modified nucleoside independently selected from the group consisting of 2'-O-alkyl-RNA, 2'-O-methyl-RNA, 2'-alkoxy-RNA, 2'-O-methoxyethyl-RNA, 2'-amino-DNA, 2'-fluoro-DNA, arabino nucleic acid (ANA), 2'-fluoro-ANA and LNA nucleosides. Even more preferably the one or more modified nucleoside is a locked nucleic acid (LNA).

25 In a further embodiment the oligonucleotide comprises at least one modified internucleoside linkage. In some embodiments all the internucleoside linkages within the contiguous nucleotide sequence are phosphorothioate or boranophosphate internucleoside linkages. In some embodiments all the internucleotide linkages in the contiguous sequence of the oligonucleotide are phosphorothioate linkages.

30 In some embodiments, the oligonucleotide of the invention comprises at least one LNA nucleoside, such as 1, 2, 3, 4, 5, 6, 7, or 8 LNA nucleosides, such as from 2 to 6 LNA nucleosides, such as from 3 to 7 LNA nucleosides, 4 to 8 LNA nucleosides or 3, 4, 5, 6, 7 or 8 LNA nucleosides. In some embodiments, at least 75% of the modified nucleosides in the oligonucleotide are LNA nucleosides, such as 80%, such as 85%, such as 90% of the modified
35 nucleosides are LNA nucleosides. In a still further embodiment all the modified nucleosides in the oligonucleotide are LNA nucleosides. In a further embodiment, the oligonucleotide may

comprise both beta-D-oxy-LNA, and one or more of the following LNA nucleosides: thio-LNA, amino-LNA, oxy-LNA, and/or ENA in either the beta-D or alpha-L configurations or combinations thereof. In a further embodiment, all LNA cytosine units are 5-methyl-cytosine. In some embodiments the oligonucleotide or contiguous nucleotide sequence has at least 1 LNA 5 nucleoside at the 5' end and at least 2 LNA nucleosides at the 3' end of the nucleotide sequence.

In some embodiments, the oligonucleotide of the invention comprises at least one modified nucleoside which is a 2'-MOE-RNA nucleoside, such as 2, 3, 4, 5, 6, 7, 8, 9 or 10 2'-MOE-RNA 10 nucleosides. In some embodiments, at least one of said modified nucleoside is 2'-fluoro DNA, such as 2, 3, 4, 5, 6, 7, 8, 9 or 10 2'-fluoro-DNA nucleosides.

In some embodiments, the oligonucleotide of the invention comprises at least one LNA nucleoside and at least one 2' substituted modified nucleoside.

In some embodiments of the invention, the oligonucleotide comprise both 2' sugar modified nucleosides and DNA units. Preferably the oligonucleotide comprises both LNA and DNA 15 nucleosides (units). Preferably, the combined total of LNA and DNA units is 8-30, such as 10 - 25, preferably 12-22, such as 12 - 18, even more preferably 11-16. In some embodiments of the invention, the nucleotide sequence of the oligonucleotide, such as the contiguous nucleotide sequence consists of at least one or two LNA nucleosides and the remaining nucleosides are 20 DNA units. In some embodiments the oligonucleotide comprises only LNA nucleosides and naturally occurring nucleosides (such as RNA or DNA, most preferably DNA nucleosides), optionally with modified internucleoside linkages such as phosphorothioate.

In an embodiment of the invention the oligonucleotide of the invention is capable of recruiting RNase H.

The structural design of the oligonucleotide of the invention may be selected from gapmers, 25 gapbreakers, headmers and tailmers. In some embodiments the oligonucleotide of the invention is a gapmer.

Gapmer design

In some embodiments the oligonucleotide of the invention has a gapmer design or structure also referred herein merely as "Gapmer". In a gapmer structure the oligonucleotide comprises at 30 least three distinct structural regions a 5'-flank, a gap and a 3'-flank, F-G-F' in '5' -> 3' orientation. In this design, flanking regions F and F' (also termed wing regions) comprise a contiguous stretch of modified nucleosides, which are complementary to the REL target nucleic acid, while the gap region, G, comprises a contiguous stretch of nucleotides which are capable of recruiting a nuclease, preferably an endonuclease such as RNase, for example RNase H, 35 when the oligonucleotide is in duplex with the target nucleic acid. Nucleosides which are

capable of recruiting a nuclease, in particular RNase H, can be selected from the group consisting of DNA, alpha-L-oxy-LNA, 2'-Flouro-ANA and UNA. Regions F and F', flanking the 5' and 3' ends of region G, preferably comprise non-nuclease recruiting nucleosides (nucleosides with a 3' endo structure), more preferably one or more affinity enhancing modified nucleosides.

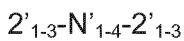
5 In some embodiments, the 3' flank comprises at least one LNA nucleoside, preferably at least 2 LNA nucleosides. In some embodiments, the 5' flank comprises at least one LNA nucleoside. In some embodiments both the 5' and 3' flanking regions comprise a LNA nucleoside. In some embodiments all the nucleosides in the flanking regions are LNA nucleosides. In other embodiments, the flanking regions may comprise both LNA nucleosides and other nucleosides

10 10 (mixed flanks), such as DNA nucleosides and/or non-LNA modified nucleosides, such as 2' substituted nucleosides. In this case the gap is defined as a contiguous sequence of at least 5 RNase H recruiting nucleosides (nucleosides with a 2' endo structure, preferably DNA) flanked at the 5' and 3' end by an affinity enhancing modified nucleoside, preferably LNA, such as beta-D-oxy-LNA. Consequently, the nucleosides of the 5' flanking region and the 3' flanking region

15 15 which are adjacent to the gap region are modified nucleosides, preferably non-nuclease recruiting nucleosides.

Region F

Region F (5' flank or 5' wing) attached to the '5 end of region G comprises, contains or consists of at least one modified nucleoside such as at least 2, at least 3, at least 4, at least 5, at least 6,


20 20 at least 7 modified nucleosides. In an embodiment region F comprises or consists of from 1 to 7 modified nucleosides, such as from 2 to 6 modified nucleosides, such as from 2 to 5 modified nucleosides, such as from 2 to 4 modified nucleosides, such as from 1 to 3 modified nucleosides, such as 1, 2, 3 or 4 modified nucleosides. The F region is defined by having at least one modified nucleoside at the 5' end and at the 3' end of the region.

25 25 In some embodiments, the modified nucleosides in region F have a 3' endo structure.

In an embodiment, one or more of the modified nucleosides in region F are 2' modified nucleosides. In one embodiment all the nucleosides in Region F are 2' modified nucleosides.

30 30 In another embodiment region F comprises DNA and/or RNA in addition to the 2' modified nucleosides. Flanks comprising DNA and/or RNA are characterized by having a 2' modified nucleoside in the 5' end and the 3' end (adjacent to the G region) of the F region. In one embodiment the region F comprise DNA nucleosides, such as from 1 to 3 contiguous DNA nucleosides, such as 1 to 3 or 1 to 2 contiguous DNA nucleosides. The DNA nucleosides in the flanks should preferably not be able to recruit RNase H. In some embodiments the 2' modified nucleosides and DNA and/or RNA nucleosides in the F region alternate with 1 to 3 2' modified nucleosides and 1 to 3 DNA and/or RNA nucleosides. Such flanks can also be termed alternating flanks. The length of the 5' flank (region F) in oligonucleotides with alternating flanks

may be 4 to 10 nucleosides, such as 4 to 8, such as 4 to 6 nucleosides, such as 4, 5, 6 or 7 modified nucleosides. In some embodiments only the 5' flank of the oligonucleotide is alternating. Specific examples of region F with alternating nucleosides are

5 $2'_{1-2}-N'_{1-2}-2'_{1-2}-N'_{1-2}-2'_{1-2}$

Where 2' indicates a modified nucleoside and NT is a RNA or DNA. In some embodiments all the modified nucleosides in the alternating flanks are LNA and the N' is DNA. In a further embodiment one or more of the 2' modified nucleosides in region F are selected from 2'-O-alkyl-RNA units, 2'-O-methyl-RNA, 2'-amino-DNA units, 2'-fluoro-DNA units, 2'-alkoxy-RNA, MOE units, LNA units, arabino nucleic acid (ANA) units and 2'-fluoro-ANA units.

10 In some embodiments the F region comprises both LNA and a 2' substituted modified nucleoside. These are often termed mixed wing or mixed flank oligonucleotides.

In one embodiment of the invention all the modified nucleosides in region F are LNA nucleosides. In a further embodiment all the nucleosides in Region F are LNA nucleosides. In a 15 further embodiment the LNA nucleosides in region F are independently selected from the group consisting of oxy-LNA, thio-LNA, amino-LNA, cET, and/or ENA, in either the beta-D or alpha-L configurations or combinations thereof. In some embodiments region F comprise at least 1 beta-D-oxy LNA unit, at the 5' end of the contiguous sequence.

Region G

20 Region G (gap region) preferably comprise, contain or consist of at least 4, such as at least 5, such as at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16 consecutive nucleosides capable of recruiting the aforementioned nuclease, in particular RNaseH. In a further embodiment region G comprise, contain or consist of from 5 to 12, or from 6 to 10 or from 7 to 9, such as 8 consecutive 25 nucleotide units capable of recruiting aforementioned nuclease.

The nucleoside units in region G, which are capable of recruiting nuclease are in an embodiment selected from the group consisting of DNA, alpha-L-LNA, C4' alkylated DNA (as described in PCT/EP2009/050349 and Vester *et al.*, *Bioorg. Med. Chem. Lett.* 18 (2008) 2296 - 2300, both incorporated herein by reference), arabinose derived nucleosides like ANA and 2'-F-30 ANA (Mangos *et al.* 2003 *J. AM. CHEM. SOC.* 125, 654-661), UNA (unlocked nucleic acid) (as described in Fluiter *et al.*, *Mol. Biosyst.*, 2009, 10, 1039 incorporated herein by reference). UNA is unlocked nucleic acid, typically where the bond between C2 and C3 of the ribose has been removed, forming an unlocked "sugar" residue.

In a still further embodiment at least one nucleoside unit in region G is a DNA nucleoside unit, 35 such as from 1 to 12 DNA units, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 DNA units, preferably

from 2 to 12 DNA units, such as from 4 to 12 DNA units, more preferably from 5 to 11, or from 2 to 10, 4 to 10 or 6 to 10 DNA units, such as from 7 to 10 DNA units, such as 8, 9 or 10 DNA units. In some embodiments, region G consists of 100% DNA units. In some embodiment G consists of 8 - 12 DNA units.

5 In further embodiments the region G may consist of a mixture of DNA and other nucleosides capable of mediating RNase H cleavage. Region G may consist of at least 50% DNA, more preferably 60 %, 70% or 80 % DNA, and even more preferred 90% or 95% DNA.

In a still further embodiment at least one nucleoside unit in region G is an alpha-L-LNA nucleoside unit, such as at least one alpha-L-LNA, such as 2, 3, 4, 5, 6, 7, 8 or 9 alpha-L-LNA.

10 In a further embodiment, region G comprises the least one alpha-L-LNA is alpha-L-oxy-LNA. In a further embodiment region G comprises a combination of DNA and alpha-L-LNA nucleoside units.

In some embodiments the size of the contiguous sequence in region G may be longer, such as 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleoside units.

15 In some embodiments, nucleosides in region G have a 2' endo structure.

In some embodiments region G may comprise a gapbreaker nucleoside, leading to a gapbreaker oligonucleotide, which is capable of recruiting RNase H.

Region F

Region F' (3' flank or 3' wing) attached to the '3 end of region G comprises, contains or consists of at least one modified nucleoside such as at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 modified nucleosides. In an embodiment region F' comprise or consist of from 1 to 7 modified nucleosides, such as from 2 to 6 modified nucleoside, such as from 2 to 4 modified nucleosides, such as from 1 to 3 modified nucleosides, such as 1, 2, 3 or 4 modified nucleosides. The F' region is defined by having at least one modified nucleoside at the 5' end and at the 3' end of the region.

In some embodiments, the modified nucleosides in region F' have a 3' endo structure.

In an embodiment, one or more of the modified nucleosides in region F' are 2' modified nucleosides. In one embodiment all the nucleosides in Region F' are 2' modified nucleosides.

30 In an embodiment, one or more of the modified nucleosides in region F' are 2' modified nucleosides.

In one embodiment all the nucleosides in Region F' are 2' modified nucleosides. In another embodiment region F' comprises DNA or RNA in addition to the 2' modified nucleosides. Flanks comprising DNA or RNA are characterized by having a 2' modified nucleoside in the 5' end (adjacent to the G region) and the 3'end of the F' region. In one embodiment the region F'

comprises DNA nucleosides, such as from 1 to 4 contiguous DNA nucleosides, such as 1 to 3 or 1 to 2 contiguous DNA nucleosides. The DNA nucleosides in the flanks should preferably not be able to recruit RNase H. In some embodiments the 2' modified nucleosides and DNA and/or RNA nucleosides in the F' region alternate with 1 to 3 2' modified nucleosides and 1 to 3 DNA and/or RNA nucleosides, such flanks can also be termed alternating flanks. The length of the 3' flank (region F') in oligonucleotides with alternating flanks may be 4 to 10 nucleosides, such as 4 to 8, such as 4 to 6 nucleosides, such as 4, 5, 6 or 7 modified nucleosides. In some embodiments only the 3' flank of the oligonucleotide is alternating. Specific examples of region F' with alternating nucleosides are

10 $2'_{1-2}-N'_{1-4}-2'_{1-4}$

$2'_{1-2}-N'_{1-2}-2'_{1-2}-N'_{1-2}-2'_{1-2}$

Where 2' indicates a modified nucleoside and N' is a RNA or DNA. In some embodiments all the modified nucleosides in the alternating flanks are LNA and the N' is DNA. In a further embodiment modified nucleosides in region F' are selected from 2'-O-alkyl-RNA units, 2'-O-methyl-RNA, 2'-amino-DNA units, 2'-fluoro-DNA units, 2'-alkoxy-RNA, MOE units, LNA units, arabino nucleic acid (ANA) units and 2'-fluoro-ANA units.

In some embodiments the F' region comprises both LNA and a 2' substituted modified nucleoside. These are often termed mixed wing or mixed flank oligonucleotides.

In one embodiment of the invention all the modified nucleosides in region F' are LNA nucleosides. In a further embodiment all the nucleosides in Region F' are LNA nucleosides. In a further embodiment the LNA nucleosides in region F' are independently selected from the group consisting of oxy-LNA, thio-LNA, amino-LNA, cET and/or ENA, in either the beta-D or alpha-L configurations or combinations thereof. In some embodiments region F' has at least 2 beta-D-oxy LNA unit, at the 3' end of the contiguous sequence.

25 *Region D' and D"*

Region D' and D" can be attached to the 5' end of region F or the 3' end of region F', respectively.

Region D' or D" may independently comprise 1, 2, 3, 4 or 5 additional nucleotides, which may be complementary or non-complementary to the target nucleic acid. In this respect the oligonucleotide of the invention, may in some embodiments comprise a contiguous nucleotide sequence capable of modulating the target which is flanked at the 5' and/or 3' end by additional nucleotides. Such additional nucleotides may serve as a nuclease susceptible biocleavable linker (see definition of linkers). In some embodiments the additional 5' and/or 3' end nucleotides are linked with phosphodiester linkages, and may be DNA or RNA. In another embodiment, the additional 5' and/or 3' end nucleotides are modified nucleotides which may for

example be included to enhance nuclease stability or for ease of synthesis. In an embodiment of the oligonucleotide, the invention comprises a region D' and/or D" in addition to the contiguous nucleotide sequence.

In some embodiments the oligonucleotide of the invention may consist of the contiguous 5 nucleotide sequence and region D' and/or D", and a conjugation group covalently attached to region D' or D".

The gapmer oligonucleotide of the present invention can be represented by the following formulae:

F-G-F'; in particular F₁₋₇-G₄₋₁₂-F'₁₋₇

10 D'-F-G-F', in particular D'₁₋₃-F₁₋₇-G₄₋₁₂-F'₁₋₇

F-G-F'-D", in particular F₁₋₇-G₄₋₁₂-F'₁₋₇-D"₁₋₃

D'-F-G-F'-D", in particular D'₁₋₃-F₁₋₇-G₄₋₁₂-F'₁₋₇-D"₁₋₃

The preferred number and types of nucleosides in regions F, G and F', D' and D" have been described above.

15 The oligonucleotide conjugates of the present invention have a region C covalently attached to either the 5' or 3' end of the oligonucleotide, in particular the gapmer oligonucleotides presented above.

In one embodiment the oligonucleotide conjugate of the invention comprises a oligonucleotide with the formula 5'-D'-F-G-F'-3' or 5'-F-G-F'-D"-3', where region F and F' independently 20 comprise 1 - 7 modified nucleosides, G is a region between 6 and 16 nucleosides which are capable of recruiting RNaseH and region D' or D" comprise 1 - 5 phosphodiester linked nucleosides. Preferably region D' or D" is present in the end of the oligonucleotide where conjugation to a conjugate moiety is contemplated.

Examples of oligonucleotides with alternating flanks can be represented by the following

25 formulae:

2'₁₋₃-N'₁₋₄-2'₁₋₃-G₆₋₁₂-2'₁₋₂-N'₁₋₄-2'₁₋₄

2'₁₋₂-N'₁₋₂-2'₁₋₂-N'₁₋₂-2'₁₋₂-G₆₋₁₂-2'₁₋₂-N'₁₋₂-2'₁₋₂-N'₁₋₂-2'₁₋₂

F-G₆₋₁₂-2'₁₋₂-N'₁₋₄-2'₁₋₄

F-G₆₋₁₂-2'₁₋₂-N'₁₋₂-2'₁₋₂-N'₁₋₂-2'₁₋₂

30 2'₁₋₃-N'₁₋₄-2'₁₋₃-G₆₋₁₂-F'

2'₁₋₂-N'₁₋₂-2'₁₋₂-N₁₋₂-2'₁₋₂-G₆₋₁₂-F'

Where a flank is indicated by F or F' it only contains 2' modified nucleosides, such as LNA nucleosides. The preferred number and types of nucleosides in the alternating regions, and region F, G and F', D' and D" have been described above.

In some embodiments the oligonucleotide is a gapmer consisting of 10, 11, 12, 13, 14, 15 or 16 nucleotides in length, wherein each of regions F and F' independently consists of 1, 2, 3 or 4 modified nucleoside units complementary to the REL target nucleic acid and region G consists of 7, 8, 9, or 10 nucleoside units, capable of recruiting nuclease when in duplex with the REL target nucleic acid.

In a further embodiments, the oligonucleotide is a gapmer wherein each of regions F and F' independently consists of 3, 4, 5 or 6 modified nucleoside units, such as nucleoside units containing a 2'-O-methoxyethyl-ribose sugar (2'-MOE) or nucleoside units containing a 2'-fluoro-deoxyribose sugar and/or LNA units, and region G consists of 8, 9, 10, 11 or 12 nucleoside units, such as DNA units or other nuclease recruiting nucleosides such as alpha-L-LNA or a mixture of DNA and nuclease recruiting nucleosides.

15 In a further specific embodiment, the oligonucleotide is a gapmer wherein each of regions F and F' region consists of two LNA units each, and region G consists of 8, 9 or 10 nucleoside units, preferably DNA units. Specific gapmer designs of this nature include 2-8-2, 2-9-2 and 2-10-2.

In a further specific embodiment, the oligonucleotide is a gapmer wherein each of regions F and F' independently consists of three LNA units, and region G consists of 8, 9 or 10 nucleoside units, preferably DNA units. Specific gapmer designs of this nature include 3-8-3, 3-9-3 and 3-10-3.

In a further specific embodiment, the oligonucleotide is a gapmer wherein each of regions F and F' consists of four LNA units each, and region G consists of 8 or 9 or 10 nucleoside units, preferably DNA units. Specific gapmer designs of this nature include 4-8-4, 4-9-4 and 4-10-4

25 Specific gapmer designs of this nature include F-G-F' designs selected from a group consisting of a gap with 6 nucleosides and independently 1 to 4 modified nucleosides in the wings including 1-6-1, 1-6-2, 2-6-1, 1-6-3, 3-6-1, 1-6-4, 4-6-1, 2-6-2, 2-6-3, 3-6-2 2-6-4, 4-6-2, 3-6-3, 3-6-4 and 4-6-3 gapmers.

Specific gapmer designs of this nature include F-G-F' designs selected from a group consisting of a gap with 7 nucleosides and independently 1 to 4 modified nucleosides in the wings including 1-7-1, 2-7-1, 1-7-2, 1-7-3, 3-7-1, 1-7-4, 4-7-1, 2-7-2, 2-7-3, 3-7-2, 2-7-4, 4-7-2, 3-7-3, 3-7-4, 4-7-3 and 4-7-4 gapmers.

Specific gapmer designs of this nature include F-G-F' designs selected from a group consisting of a gap with 8 nucleosides and independently 1 to 4 modified nucleosides in the wings

including including 1-8-1 , 1-8-2, 1-8-3, 3-8-1 , 1-8-4, 4-8-1 ,2-8-1 ,2-8-2, 2-8-3, 3-8-2, 2-8-4, , 4-8-2, 3-8-3, 3-8-4, 4-8-3, and 4-8-4 gapmers.

Specific gapmer designs of this nature include F-G-F' designs selected from a group consisting of a gap with 9 nucleosides and independently 1 to 4 modified nucleosides in the wings

5 including, 1-9-1 , 2-9-1 , 1-9-2, 1-9-3, 3-9-1 , 1-9-4, 4-9-1 ,2-9-2, 2-9-3, 3-9-2, 2-9-4, 4-9-2, 3-9-3, 3-9-4, 4-9-3 and 4-9-4 gapmers.

Specific gapmer designs of this nature include F-G-F' designs selected from a group consisting of a gap with 10 nucleosides including, 1-10-1 , 2-10-1 , 1-10-2, 1-10-3, 3-10-1 , 1-10-4, 4-10-1 , 2-10-2, 2-10-3, 3-10-2, 2-10-4, 4-10-2, 3-10-3, 3-10-4, 4-10-3 and 4-10-4 gapmers.

10 In some embodiments the F-G-F' design is selected from 3-1 1-2, 2-10-3, 4-9-2, 2-10-4, 4-10-2, 3-10-3, 4-10-2, 3-9-3, 4-9-2, and 3-10-3.

In some embodiments, the F-G-F' design may, optionally, further include region D' and/or D", which may have 1, 2 or 3 nucleoside units, such as DNA units. In some embodiments, the nucleosides in region F and F' are modified nucleosides, while nucleotides in region G are 15 preferably unmodified nucleosides, such as DNA nucleosides.

In each design, in some embodiments the modified nucleoside is LNA.

In another embodiment all the internucleoside linkages in the gap in a gapmer are phosphorothioate and/or boranophosphate linkages. In another embodiment all the internucleoside linkages in the flanks (F and F' region) in a gapmer are phosphorothioate and/or 20 boranophosphate linkages. In another preferred embodiment all the internucleoside linkages in the D' and D" region in a gapmer are phosphodiester linkages.

For specific gapmers as disclosed herein, when the cytosine (C) residues are annotated as 5-methyl-cytosine, in various embodiments, one or more of the Cs present in the oligonucleotide may be unmodified C residues.

25 In a particular embodiment, the gapmer is a so-called shortmer as described in WO2008/1 13832 incorporated herein by reference.

Further gapmer designs are disclosed in WO2004/046160, WO2007/14651 1 and incorporated by reference.

For certain embodiments of the invention, the oligonucleotide is selected from the group of 30 oligonucleotide compounds with CMP-ID-NO: 1,1 ; 2,1 ; 3,1 ; 4,1 ; 5,1 ; 6,1 ; 7,1 ; 8,1 ; 9,1 ; and 10,1 .

Method of manufacture

In a further aspect, the invention provides methods for manufacturing the oligonucleotides of the invention comprising reacting nucleotide units and thereby forming covalently linked contiguous nucleotide units comprised in the oligonucleotide. Preferably, the method uses phosphoramidite

chemistry (see for example Caruthers et al, 1987, Methods in Enzymology vol. 154, pages 287-313). In a further embodiment the method further comprises reacting the contiguous nucleotide sequence with a conjugating moiety (ligand). In a further aspect a method is provided for manufacturing the composition of the invention, comprising mixing the oligonucleotide or 5 conjugated oligonucleotide of the invention with a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.

Pharmaceutical Composition

In a further aspect, the invention provides pharmaceutical compositions comprising any of the aforementioned oligonucleotides and/or oligonucleotide conjugates or salts thereof and a 10 pharmaceutically acceptable diluent, carrier, salt and/or adjuvant. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS) and pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. In some embodiments the pharmaceutically acceptable diluent is sterile phosphate buffered saline. In some embodiments the oligonucleotide is used in the pharmaceutically acceptable diluent at a concentration of 50 - 15 300 μ M solution. The invention provides a sodium or potassium salt of the oligonucleotide or conjugate of the invention.

Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed., 1985. For a brief review of methods for drug delivery, see, e.g., Langer (Science 249:1527-1533, 1990). WO 2007/031091 20 provides further suitable and preferred examples of pharmaceutically acceptable diluents, carriers and adjuvants (hereby incorporated by reference). Suitable dosages, formulations, administration routes, compositions, dosage forms, combinations with other therapeutic agents, pro-drug formulations are also provided in WO2007/031091 .

Oligonucleotides or oligonucleotide conjugates of the invention may be mixed with 25 pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.

These compositions may be sterilized by conventional sterilization techniques, or may be sterile 30 filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the preparations typically will be between 3 and 11, more preferably between 5 and 9 or between 6 and 8, and most preferably between 7 and 8, such as 7 to 7.5. The resulting compositions in solid form may be packaged in multiple single dose units, each containing a 35 fixed amount of the above-mentioned agent or agents, such as in a sealed package of tablets or

capsules. The composition in solid form can also be packaged in a container for a flexible quantity, such as in a squeezable tube designed for a topically applicable cream or ointment.

In some embodiments, the oligonucleotide or oligonucleotide conjugate of the invention is a prodrug. In particular with respect to oligonucleotide conjugates the conjugate moiety is cleaved

5 of the oligonucleotide once the prodrug is delivered to the site of action, e.g. the target cell.

Applications

The oligonucleotides of the invention may be utilized as research reagents for, for example, diagnostics, therapeutics and prophylaxis.

In research, such oligonucleotides may be used to specifically modulate the synthesis of c-Rel

10 protein in cells (e.g. *in vitro* cell cultures) and experimental animals thereby facilitating functional analysis of the target or an appraisal of its usefulness as a target for therapeutic intervention.

Typically the target modulation is achieved by degrading or inhibiting the mRNA producing the protein, thereby prevent protein formation or by degrading or inhibiting a modulator of the gene or mRNA producing the protein.

15 If employing the oligonucleotide of the invention in research or diagnostics the target nucleic acid may be a cDNA or a synthetic nucleic acid derived from DNA or RNA.

The present invention provides an *in vivo* or *in vitro* method for modulating REL expression in a target cell which is expressing c-Rel, said method comprising administering an oligonucleotide of the invention in an effective amount to said cell.

20 In some embodiments, the target cell, is a mammalian cell in particular a human cell. The target cell may be an *in vitro* cell culture or an *in vivo* cell forming part of a tissue in a mammal.

In diagnostics the oligonucleotides may be used to detect and quantitate REL expression in cell and tissues by northern blotting, *in-situ* hybridisation or similar techniques.

For therapeutics, an animal or a human, suspected of having a disease or disorder, which can

25 be treated by modulating the expression of c-Rel, such as cancer, inflammation or an inflammatory disease, or an autoimmune disease.

The invention provides methods for treating or preventing a disease, comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide, an oligonucleotide conjugate or a pharmaceutical composition of the invention to a subject suffering from or 30 susceptible to the disease.

The invention also relates to an oligonucleotide, a composition or a conjugate as defined herein for use as a medicament.

The oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition according to the invention is typically administered in an effective amount.

The invention also provides for the use of the oligonucleotide or oligonucleotide conjugate of the invention as described for the manufacture of a medicament for the treatment of a disorder as referred to herein, or for a method of the treatment of a disorder as referred to herein.

The disease or disorder, as referred to herein, is associated with expression of REL. In some 5 embodiments disease or disorder may be associated with a mutation in the REL gene or a gene whose protein product is associated with or interacts with REL. Therefore, in some embodiments, the target nucleic acid is a mutated form of the REL sequence and in other embodiments, the target nucleic acid is a regulator of the REL sequence.

The methods of the invention are preferably employed for treatment or prophylaxis against 10 diseases caused by abnormal levels and/or activity of c-Rel.

The invention further relates to use of an oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition as defined herein for the manufacture of a medicament for the treatment of abnormal levels and/or activity of c-Rel.

In some embodiments, the invention relates to oligonucleotides, oligonucleotide conjugates or 15 pharmaceutical compositions for use in the treatment of diseases or disorders selected from the group consisting of cancer, inflammation and inflammatory disorders, and autoimmune diseases.

In some embodiments, the invention relates to oligonucleotides, oligonucleotide conjugates or 20 pharmaceutical compositions for use in the treatment of diseases or disorders selected from the group consisting of atherosclerosis, multiple sclerosis, Crohn's disease, inflammatory bowel disease, and rheumatoid arthritis.

In some embodiments, the invention relates to oligonucleotides, oligonucleotide conjugates or pharmaceutical compositions for use in the treatment of cancer, such as hematopoietic cancer, such as lymphoma or leukemia, or lung cancer or breast cancer

25 In some embodiments, the invention relates to oligonucleotides, oligonucleotide conjugates or pharmaceutical compositions for use in the reducing inflammation in a patient who is in need to reduced inflammation.

In some embodiments, the invention relates to oligonucleotides, oligonucleotide conjugates or 30 pharmaceutical compositions for use in the reducing cytokine levels in a patient who is in need to reduced cytokines.

Administration

The oligonucleotides or pharmaceutical compositions of the present invention may be administered by any suitable means, such as via parenteral administration (such as, intravenous, subcutaneous, or intra-muscular).

5 In some embodiments the active oligonucleotide or oligonucleotide conjugate is administered intravenously. In another embodiment the active oligonucleotide or oligonucleotide conjugate is administered subcutaneously.

In some embodiments, the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is administered at a dose of 0.1 - 15 mg/kg, such as from 0.2 - 10
10 mg/kg, such as from 0.25 - 5 mg/kg. The administration can be once a week, every 2nd week, every third week or even once a month.

The invention also provides for the use of the oligonucleotide or oligonucleotide conjugate of the invention as described for the manufacture of a medicament wherein the medicament is in a dosage form for subcutaneous administration.

15 Combination therapies

In some embodiments the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is for use in a combination treatment with another therapeutic agent.

EMBODIMENTS

20 1. An LNA antisense oligonucleotide targeting human REL, 10 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10.

25 2. The oligonucleotide according to embodiment 1, where the oligonucleotide comprises at least one modified internucleoside linkage.

30 3. The oligonucleotide of embodiment 2, wherein the internucleoside linkages within the contiguous nucleotide sequence are phosphorothioate internucleoside linkages.

4. The oligonucleotide of any one of embodiments 1 - 3, wherein the oligonucleotide is capable of recruiting RNase H.

30 5. The oligonucleotide of embodiment 4, wherein the oligonucleotide is a gapmer.

6. The oligonucleotide of embodiment 4 or 5, wherein the oligonucleotide is a gapmer of formula 5'-F-G-F'-3\ where region F and F' independently comprise 1 - 7 modified

nucleosides and G is a region between 6 and 16 nucleosides which are capable of recruiting RNaseH.

7. The oligonucleotide according to any one of embodiments 1 - 6, wherein said oligonucleotide consists or comprises of an oligonucleotide selected from the group

5 consisting of: CGTCagatttagaaCC (SEQ ID NO 3), AGtattggaattgGCG (SEQ ID NO 4), GCAgaaaacaactagGA (SEQ ID NO 1), CACAtcgaataccCA (SEQ ID NO 2), ACACatcgaatacCC (SEQ ID NO 5), CTAttcgtaggcTG (SEQ ID NO 6), ACACatcgaataaccCA (SEQ ID NO 7), CAGgaaattgtaggGA (SEQ ID NO 8), TAGtattggaattgGC (SEQ ID NO 9), and TTAagttctacGCA (SEQ ID NO 10), wherein capital letters represent LNA nucleosides 10 and lower case letters represent DNA nucleosides, and cytosines are optionally 5-methyl cytosine.

8. The oligonucleotide according to embodiment 7, wherein all LNA nucleotides are beta-D-oxy LNA.

9. The oligonucleotide according to embodiments 7 or 8, wherein all LNA cytosines are 5-methyl cytosine.

10. The oligonucleotide according to any one of embodiments 7 - 9, wherein all internucleoside linkages present in the indicated sequence are phosphorothioate internucleoside linkages.

11. The oligonucleotide according to any one of embodiments 1 - 10, wherein the compound is selected from the group consisting of, CGTCagatttagaaCC (SEQ ID NO 3),

20 AGtattggaattgGCG (SEQ ID NO 4), GCAgaaaacaactagGA (SEQ ID NO 1), CACAfcaataccCA (SEQ ID NO 2), ACACafcgaatacCC (SEQ ID NO 5), CTAtfcgtaggcTG (SEQ ID NO 6), ACACat^mcgaataccCA (SEQ ID NO 7), CAGgaaattgtaggGA (SEQ ID NO 8), TAGtattggaattgGC (SEQ ID NO 9), and TTAagttctac^mcgGCA (SEQ ID NO 10), wherein capital letters represent beta-D-oxy LNA 25 nucleosides, all LNA cytosines are 5-methyl cytosine, lower case letters are DNA nucleosides, ^mc indicates a 5-methyl cytosine DNA nucleoside, and all internucleoside linkages are phosphorothioate internucleoside linkages.

12. A conjugate comprising the oligonucleotide according to any one of embodiments 1 - 11, 30 and at least one conjugate moiety covalently attached to said oligonucleotide.

13. A pharmaceutical composition comprising the oligonucleotide of embodiment 1 - 11 or the conjugate of embodiment 12 and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.

35 14. An *in vivo* or *in vitro* method for modulating REL expression in a target cell which is expressing REL said method comprising administering an oligonucleotide of any one of

embodiments 1 - 11, the conjugate according to embodiment 12, or the pharmaceutical composition of embodiment 13 in an effective amount to said cell.

115. A method for treating or preventing a disease comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide of any one of embodiments 1 - 11 or

5 the conjugate according to embodiment 12 or the pharmaceutical composition of embodiment 13 to a subject suffering from or susceptible to the disease.

16. The method of embodiment 14, wherein the disease is selected from the group consisting of cancer, inflammation and inflammatory disorders, and autoimmune diseases.

17. The method according to embodiment 15, wherein the disease is selected from the group 10 consisting of multiple sclerosis, psoriasis, celiac disease, Crohn's disease and rheumatoid arthritis.

18. The method according to embodiment 15, wherein the disease is selected from the group consisting of lymphoma, leukemia, breast cancer and lung cancer.

19. The oligonucleotide of any one of embodiments 1 - 11 or the conjugate according to 15 embodiment 12 or the pharmaceutical composition of embodiment 13 for use in medicine.

20. The oligonucleotide of any one of embodiments 1 - 11 or the conjugate according to embodiment 12 or the pharmaceutical composition of embodiment 13 for use in the treatment or prevention of cancer, inflammation and inflammatory disorders, and autoimmune diseases.

20 21. The use of the oligonucleotide of embodiment 1 - 11 or the conjugate according to embodiment 12 or the pharmaceutical composition of embodiment 13, for the preparation of a medicament for treatment or prevention of cancer, inflammation and inflammatory disorders, and autoimmune diseases.

22. The oligonucleotide or use according to any one of embodiments 1 - 20, wherein the 25 oligonucleotide is for use in the treatment of a disease selected from the group consisting of multiple sclerosis, psoriasis, celiac disease, Crohn's disease and rheumatoid arthritis.

23. The oligonucleotide or use according to any one of embodiments 1 - 20, wherein the oligonucleotide is for use in the treatment of a disease selected from the group consisting of hematopoietic cancer, such as lymphoma or leukemia, lung cancer and breast cancer.

EXAMPLES

The work reported herein has received funding from the European Union Seventh Framework Programme [FP7-2007-2013] under grant agreement "HEALTH-F2-201 3-60211 14" (Athero-B-Cell).

5 Materials and methods

Oligonucleotide synthesis

Oligonucleotide synthesis is generally known in the art. Below is a protocol which may be applied. The oligonucleotides of the present invention may have been produced by slightly varying methods in terms of apparatus, support and concentrations used.

10 Oligonucleotides are synthesized on uridine universal supports using the phosphoramidite approach on an Oligomaker 48 at 1 μ mol scale. At the end of the synthesis, the oligonucleotides are cleaved from the solid support using aqueous ammonia for 5-16hours at 60°C. The oligonucleotides are purified by reverse phase HPLC (RP-HPLC) or by solid phase extractions and characterized by UPLC, and the molecular mass is further confirmed by ESI-MS.

15 *Elongation of the oligonucleotide:*

The coupling of β -cyanoethyl- phosphoramidites (DNA-A(Bz), DNA- G(ibu), DNA- C(Bz), DNA- T, LNA-5-methyl-C(Bz), LNA-A(Bz), LNA- G(dm), or LNA-T) is performed by using a solution of 0.1 M of the 5'-O-DMT-protected amidite in acetonitrile and DCI (4,5-dicyanoimidazole) in acetonitrile (0.25 M) as activator. For the final cycle a phosphoramidite with desired

20 modifications can be used, e.g. a C6 linker for attaching a conjugate group or a conjugate group as such. Thiolation for introduction of phosphorthioate linkages is carried out by using xanthane hydride (0.01 M in acetonitrile/pyridine 9:1). Phosphordiester linkages can be introduced using 0.02 M iodine in THF/Pyridine/water 7:2:1. The rest of the reagents are the ones typically used for oligonucleotide synthesis.

25 For post solid phase synthesis conjugation a commercially available C6 aminolinker phosphoramidite can be used in the last cycle of the solid phase synthesis and after deprotection and cleavage from the solid support the aminolinked deprotected oligonucleotide is isolated. The conjugates are introduced via activation of the functional group using standard synthesis methods.

30 *Purification by RP-HPLC:*

The crude compounds are purified by preparative RP-HPLC on a Phenomenex Jupiter C18 10 μ 150x10 mm column. 0.1 M ammonium acetate pH 8 and acetonitrile is used as buffers at a flow rate of 5 mL/min. The collected fractions are lyophilized to give the purified compound typically as a white solid.

35 *Abbreviations:*

DCI: 4,5-Dicyanoimidazole

DCM: Dichloromethane

DMF: Dimethylformamide

DMT: 4,4'-Dimethoxytrityl

5 THF: Tetrahydrofuran

Bz: Benzoyl

Ibu: Isobutyryl

RP-HPLC: Reverse phase high performance liquid chromatography

T_m Assay:

10 Oligonucleotide and RNA target (phosphate linked, PO) duplexes are diluted to 3 mM in 500 ml RNase-free water and mixed with 500 ml 2x T_m-buffer (200mM NaCl, 0.2mM EDTA, 20mM Naphosphate, pH 7.0). The solution is heated to 95°C for 3 min and then allowed to anneal in room temperature for 30 min. The duplex melting temperatures (T_m) is measured on a Lambda 40 UV/VIS Spectrophotometer equipped with a Peltier temperature programmer PTP6 using PE 15 Templay software (Perkin Elmer). The temperature is ramped up from 20°C to 95°C and then down to 25°C, recording absorption at 260 nm. First derivative and the local maximums of both the melting and annealing are used to assess the duplex T_m.

20 Example 1: Testing *in vitro* potency and efficacy of selected oligonucleotides targeting mouse Nfkb-subunit mRNA in RAW264.7 cells in a dose response curve. RAW 264.7 cell line was purchased from ATCC and maintained as recommended by the supplier in a humidified incubator at 37°C with 5% CO₂. For assays, 2500 cells/well were seeded in a 96 multi well plate in culture media. Cells were incubated for 24 hours before addition of oligonucleotides dissolved in PBS. Concentration of oligonucleotides: from 50 μM, 1:1 dilution in eight steps. Three days 25 after addition of oligonucleotides, the cells were harvested. RNA was extracted using the PureLink Pro 96 RNA Purification kit (Thermo Fisher Scientific) according to the manufacturer's instructions and eluted in 50 μl water. The RNA was subsequently diluted 10 times with DNase/RNase free Water (Gibco) and heated to 90°C for one minute.

30 For gene expressions analysis, One Step RT-qPCR was performed using qScriptTM XLT One-Step RT-qPCR Tough Mix[®], Low ROXTM (Quantabio) in a duplex set up. The following TaqMan primer assays were used for qPCR: Nfkbl, Mm00476361_m1 ; Nfkb2, Mm00479810_g1 ; Rela Mm00501346_m1 ; Relb, Mm00485664_m1 ; or Rel, Mm01239661_m1 (FAM-MGB); each combined with endogenous control Gapdh, Mm99999915_g1 (VIC-MGB). All primer sets were purchased from Thermo Fisher Scientific. IC₅₀ determinations were performed in GraphPad 35 Prism6. The relative mRNA levels at treatment with 50 μM oligonucleotide is shown in the table as % of control (PBS).

SEQ ID NO	Target	Motif	CMP ID NO	Compound	IC50 [μ M]	mRNA level at Max KD
24	NfkB2	agatttcgattagac	M1,1	AGATttcgattagAC	2,5	38
25	RelB	tagaattgaagtaaa	M2,1	TAGAattgaagtTAAA	1,1	13
26	RelA	ataactgtgtttc	M3,1	ATaactgtgtTTC	2,7	41
	Rel				3,5	65

Example 2: Mouse *in vivo* efficacy and tolerance study, 16 days of treatment, intravenous injection (tail vein).

Animals

5 Experiment was performed on female C57BL/6J Bom mice. Five animals were included in each group of the study, including a saline control group.

Compounds and dosing procedures

Animals were injected intravenously (tail vein) with 15mg/kg compound at day 0, 3, 7, 10, 14 until the study was terminated at day 16.

10 Euthanasia

At the end of the study (day 16) all mice were euthanized with CO₂ before tissue samples of liver, kidney and mesenteric lymphnode were dissected and snap frozen.

Quantification of NfkB-subunit RNA expression (Figure 1A, 1B and 1C)

Tissue samples were kept frozen until lysed in MagNA Pure LC RNA Isolation Tissue Lysis

15 Buffer (Product No. 03604721001, Roche) and RNA extraction continued using the MagNA Pure 96 Cellular RNA Large Volume Kit (Product No. 05467535001, Roche) on a MagNA Pure 96 Instrument (Roche) according to the user's manual and RNA diluted to 5ng/ μ l in water.

For gene expressions analysis, One Step RT-qPCR was performed using qScriptTM XLT One-Step RT-qPCR ToughMix[®], Low ROXTM (Quantabio) in a duplex set up. The following TaqMan 20 primer assays were used for qPCR: NfkB1, Mm00476361_m1; NfkB2, Mm00479810_g1; RelA Mm00501346_m1; RelB, Mm00485664_m1; or Rel, Mm01239661_m1 (FAM-MGB); each combined with endogenous control Gapdh, Mm99999915_g1 (VIC-MGB). All primer sets were purchased from Thermo Fisher Scientific. The relative mRNA expression levels are shown as % of control (PBS-treated animals).

Example 3: Testing *in vitro* efficacy of antisense oligonucleotides targeting human REL mRNA in HEK293 and HeLa cell lines at single dose concentration.

REL proto-oncogene, NF- κ B subunit [Homo sapiens (human)] Also known as: p65; NFKB3

Assembly	Chr	Location
GRCh38.p7 (GCF_000001405.33)	11	NC_000011.10 (65653596..65662972, complement)

The Human REL pre-mRNA sequence is provided as SEQ ID NO 21 (Figure 6).

5 HEK-293 and HeLa cell lines were purchased from ATCC and maintained as recommended by the supplier in a humidified incubator at 37°C with 5% CO₂. For assays, 3500 cells/well (HEK-293) or 3000 cells/well (HeLa) were seeded in a 96 multi-well plate in culture media. Cells were incubated for 24 hours before addition of oligonucleotides dissolved in PBS. Final concentration of oligonucleotides: 25 μ M. Three days after addition of oligonucleotides, the cells were

10 harvested. RNA was extracted using the PureLink Pro 96 RNA Purification kit (Thermo Fisher Scientific) according to the manufacturer 's instructions and eluted in 50 μ l water. The RNA was subsequently diluted 10 times with DNase/RNase free Water (Gibco) and heated to 90°C for one minute.

15 For gene expressions analysis, One Step RT-qPCR was performed using qScript™ XLT One-Step RT-qPCR ToughMix®, Low ROX™ (Quantabio) in a duplex set up. The following TaqMan primer assays were used for qPCR: REL, Hs00968436_m1 (FAM-MGB) and endogenous control GAPDH, Hs99999905_m1 (VIC-MGB). All primer sets were purchased from Thermo Fisher Scientific. All primer sets were purchased from Life Technologies. The relative REL mRNA expression level in Table 1 is shown as percent of control (PBS-treated cells) .

20 A total of 77 oligos were designed at a length of 15-16 nucleotides with varying LNA patterns (3x3; 2x4; 4x2; 3x2; 2x3) to target REL across SEQ ID NO 21. A waterfall plot of relative REL expression in the two cell lines is shown in Figure 2.

Table 1:

SEQ ID NO	Motif	CMP ID NO	Compound	Rel. mRNA level HEK-293 at 25 μ M	Rel. mRNA level HeLa at 25 μ M
1	gcagaaaacaacttagga	1,1	GCAgaaaacaacttagGA	9	8

2	cacatcgaataccca	2,1	CACAt ^m cgaataccCA	9	11
3	cgtcagatttaggaacc	3,1	CGTCagatttaggaAC	17	9
4	agtatttggaaattggcg	4,1	AGtatttggaaattGCG	14	13
5	acacatcgaataccca	5,1	ACAcat ^m cgaataccC	15	15
6	ctatttcgttaggctg	6,1	CTAttt ^m cgtaggcTG	22	11
7	acacatcgaataccca	7,1	ACAcat ^m cgaataccCA	18	16
8	caggaaaattgttaggga	8,1	CAGgaaaattgttaggGA	26	10
9	tagtatttggaaattggc	9,1	TAGtatttggaaattGC	28	14
10	ttaagtttctacggca	10,1	TTAagtttcta ^m cgGCA	21	24

For Compounds: Capital letters represent LNA nucleosides (beta-D-oxy LNA nucleosides were used), all LNA cytosines are 5-methyl cytosine, lower case letters represent DNA nucleosides, DNA cytosines preceded with a superscript ^m represents a 5-methyl C-DNA nucleoside. All internucleoside linkages are phosphorothioate internucleoside linkages.

5 The data obtained from the two cell lines is shown in Figure 3, which illustrates that the above compounds were particularly effective in both cell lines in targeting human REL, as compared to a library of other compounds targeting human REL (Figure 2). Each of the 10 sequences aligned to 7 regions of the REL transcript, illustrated in Figure 4, referred to as hotspot regions A, B, C, D, E, F & G:

Hotspot Region	Hotspot Region – REL pre-mRNA position (SEQ ID NO 21)	Sequences	Target Sequence	Target SEQ ID NO
A	43336-43351	1	TCCTAGTTGTTCTGC	11
B	19483-19497	2, 7, 5	TGGGTATTGATGTGT	22
C	1203-1218	3	GGTTCCTAACCTGACG	13
D	40797-40812	4, 9	CGCCAATTCCAATACTA	23
E	22546-22569	6	CAGCCTACGAAATAG	16
F	5539-5554	8	TCCCTACAATTTCCTG	18
G	30972-30987	10	TGCCGTAGAAACTTAA	20

10 SEQ ID NO 11 - 20 are the reverse complement of SEQ ID NO 1 - 10 respectively. SEQ ID NO 12 = TGGGTATTGATGTG; SEQ ID NO 14 = CGCCAATTCCAATACT

Example 4: Testing *in vitro* potency and efficacy of selected oligonucleotides targeting human REL mRNA in HEK-293 and HeLa cell lines in a dose response curve.

15 HEK-293 cell line and HeLa cell line was described in Example 1. The assay was performed as described in Example 1. Concentration of oligonucleotides: from 50 μ M, 1:1 dilution in eight steps. Three days after addition of oligonucleotides, the cells were harvested. RNA extraction and duplex One Step RT-qPCR were performed as described in Example 3. n=2 biological replicates per each cell line. IC₅₀ determinations were performed in GraphPad Prism. The

relative REL mRNA level at treatment with 50 μ M oligonucleotide is shown in the table as % of control (PBS). See figures 5A, 5B & 5C.

SEQ ID NO	CMP ID NO	IC ₅₀ HeLa	mRNA level at Max KD in HeLa	IC ₅₀ HEK-293	mRNA level at Max KD in HEK-293
1	1,1	2,9	10	1,7	7
2	2,1	3,5	6	2,8	5
3	3,1	1,3	12	1,3	15
4	4,1	1,7	15	1,9	13
5	5,1	3,9	9	3,5	8
6	6,1	2,6	10	3,8	11
7	7,1	4,2	10	3,3	7
8	8,1	2,2	13	2,8	23
9	9,1	2,5	15	3,5	20
10	10,1	1,6	27	1,5	19

CLAIMS

1. An LNA gapmer antisense oligonucleotide targeting human REL, 10 to 30 contiguous nucleotides in length, wherein the contiguous sequence of the oligonucleotide comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NO 3, 4, 1, 2, 5, 6, 7, 8, 9 and 10, wherein the oligonucleotide is capable of recruiting RNase H, or a pharmaceutically acceptable salt thereof.
5
2. The LNA gapmer antisense oligonucleotide of claim 1, wherein the oligonucleotide comprises a gapmer of formula 5'-F-G-F'-3', where region F and F' independently comprise 1 - 7 modified nucleosides and G is a region between 6 and 16 nucleosides which are capable of recruiting RNaseH.
10
3. The LNA gapmer antisense oligonucleotide according to any one of claims 1 or 2, wherein said oligonucleotide consists or comprises of an oligonucleotide selected from the group consisting of: CGTCagatttaggaACC (SEQ ID NO 3), AGtattggaattgGCG (SEQ ID NO 4),
15 GCAaaaacaactagGA (SEQ ID NO 1), CACAtcgaataccCA (SEQ ID NO 2), ACACatcgaatacCC (SEQ ID NO 5), CTAttcgttaggcTG (SEQ ID NO 6), ACACatcgaataaccCA (SEQ ID NO 7), CAGgaaattttaggGA (SEQ ID NO 8), TAGtattggaatttGC (SEQ ID NO 9), and TTAagtttctacgGCA (SEQ ID NO 10), wherein capital letters represent LNA nucleosides and lower case letters represent DNA nucleosides, and cytosines are optionally 5-methyl cytosine.
20
4. The LNA gapmer antisense oligonucleotide according to claim 3, wherein all LNA nucleotides are beta-D-oxy LNA.
25
5. The LNA gapmer antisense oligonucleotide according to claims 3 or 4, wherein all LNA cytosines are 5-methyl cytosine.
30
6. The LNA gapmer antisense oligonucleotide according to any one of claims 1 - 5, wherein all internucleoside linkages present in the gapmer are phosphorothioate internucleoside linkages.
35
7. The LNA gapmer antisense oligonucleotide according to any one of claims 1 - 6, wherein the gapmer region (F-G-F') or the compound is selected from the group consisting of, CGTCagatttaggaACC (SEQ ID NO 3), AGtattggaatttGCG (SEQ ID NO 4), GCAaaaacaactagGA (SEQ ID NO 1), CACAt^mcgaataccCA (SEQ ID NO 2), ACACat^mcgaatacCC (SEQ ID NO 5), CTAtt^mcgttaggcTG (SEQ ID NO 6), ACACat^mcgaataaccCA (SEQ ID NO 7), CAGgaaattttaggGA (SEQ ID NO 8), TAGtattggaatttGC (SEQ ID NO 9), and TTAagtttctac^mcgGCA (SEQ ID NO 10), wherein capital letters represent beta-D-oxy LNA nucleosides, all LNA cytosines are 5-methyl

cytosine, lower case letters are DNA nucleosides, ^mc indicates a 5-methyl cytosine DNA nucleoside, and all internucleoside linkages are phosphorothioate internucleoside linkages.

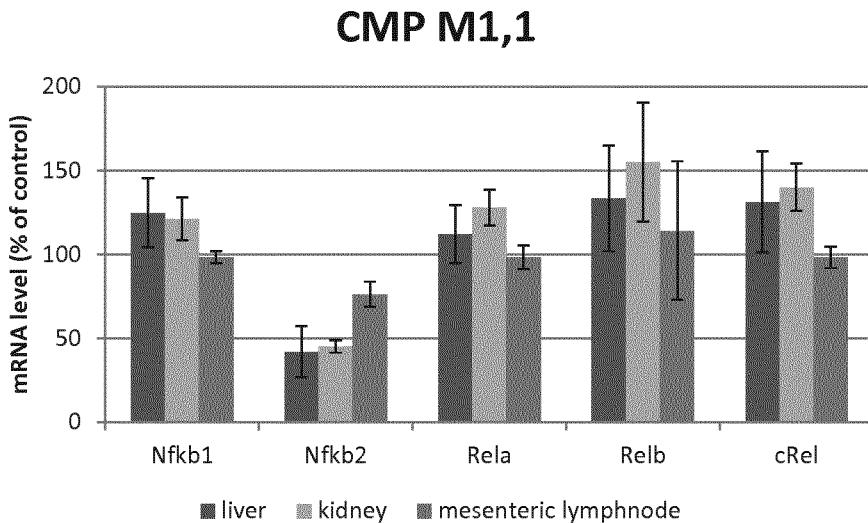
8. A conjugate comprising the LNA gapmer antisense oligonucleotide according to any one of
5 claims 1 - 7, and at least one conjugate moiety covalently attached to said oligonucleotide.

9. A pharmaceutical composition comprising the LNA gapmer antisense oligonucleotide of
claim 1 - 7 or the conjugate of claim 8 and a pharmaceutically acceptable diluent, solvent,
carrier, salt and/or adjuvant.

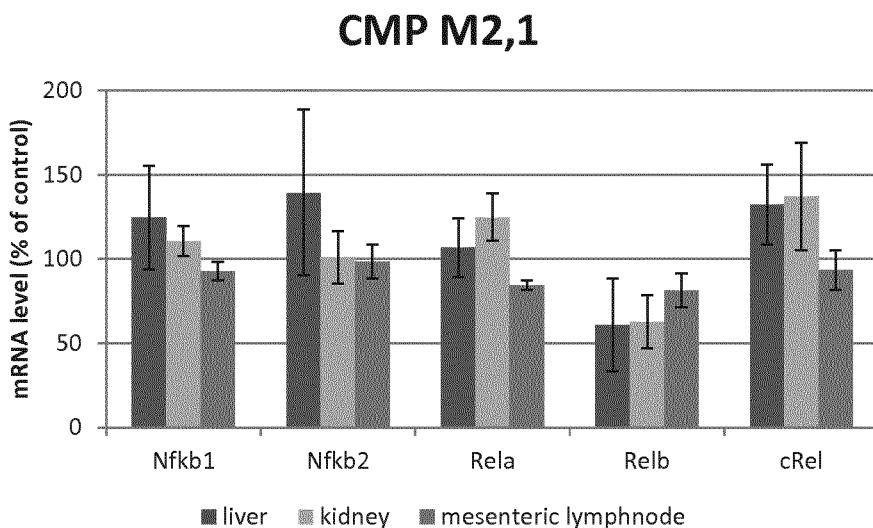
10. An *in vitro* method for modulating REL expression in a target cell which is expressing REL
10 said method comprising administering an LNA gapmer antisense oligonucleotide of any one
of claims 1 - 7, the conjugate according to claim 8, or the pharmaceutical composition of
claim 9 in an effective amount to said cell.

11. The LNA gapmer antisense oligonucleotide of any one of claims 1 - 7 or the conjugate
according to claim 8 or the pharmaceutical composition of claim 9 for use in medicine.

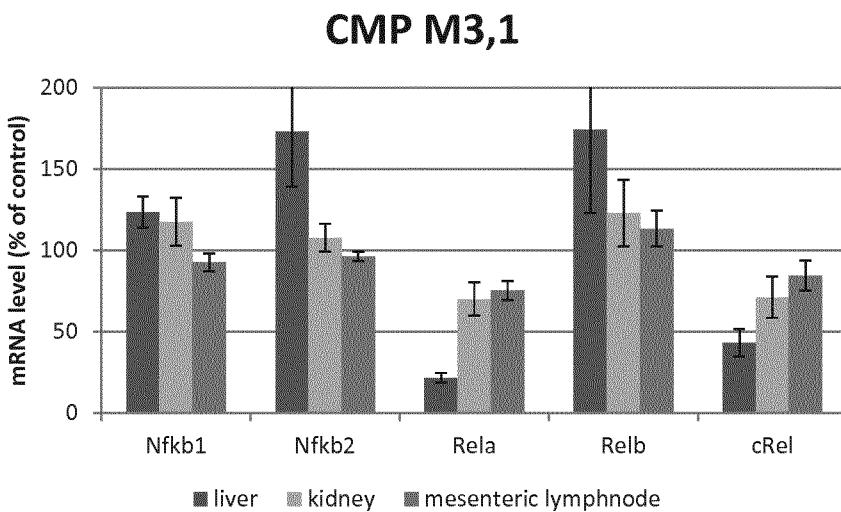
15 12. The LNA gapmer antisense oligonucleotide of any one of claims 1 - 7 or the conjugate
according to claim 8 or the pharmaceutical composition of claim 9 for use in the treatment or
prevention of cancer, inflammation and inflammatory disorders, and autoimmune diseases.

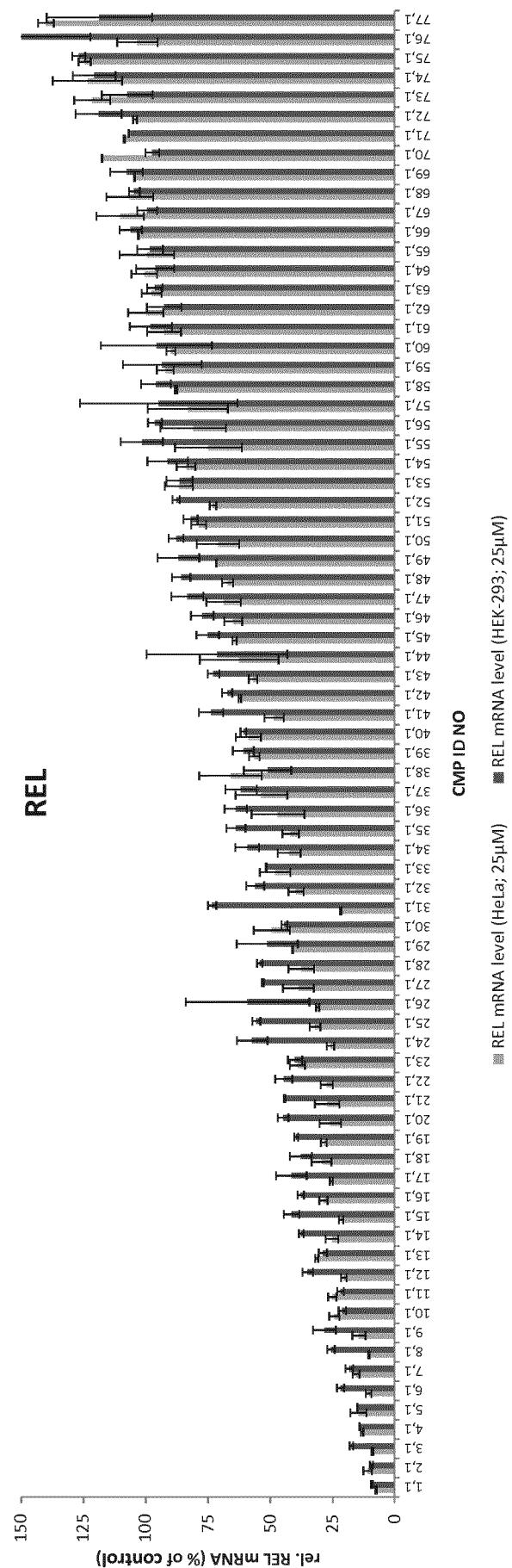

20 13. The use of the LNA gapmer antisense oligonucleotide of claim 1 - 7 or the conjugate
according to claim 8 or the pharmaceutical composition of claim 9, for the preparation of a
medicament for treatment or prevention of cancer, inflammation and inflammatory
disorders, and autoimmune diseases.

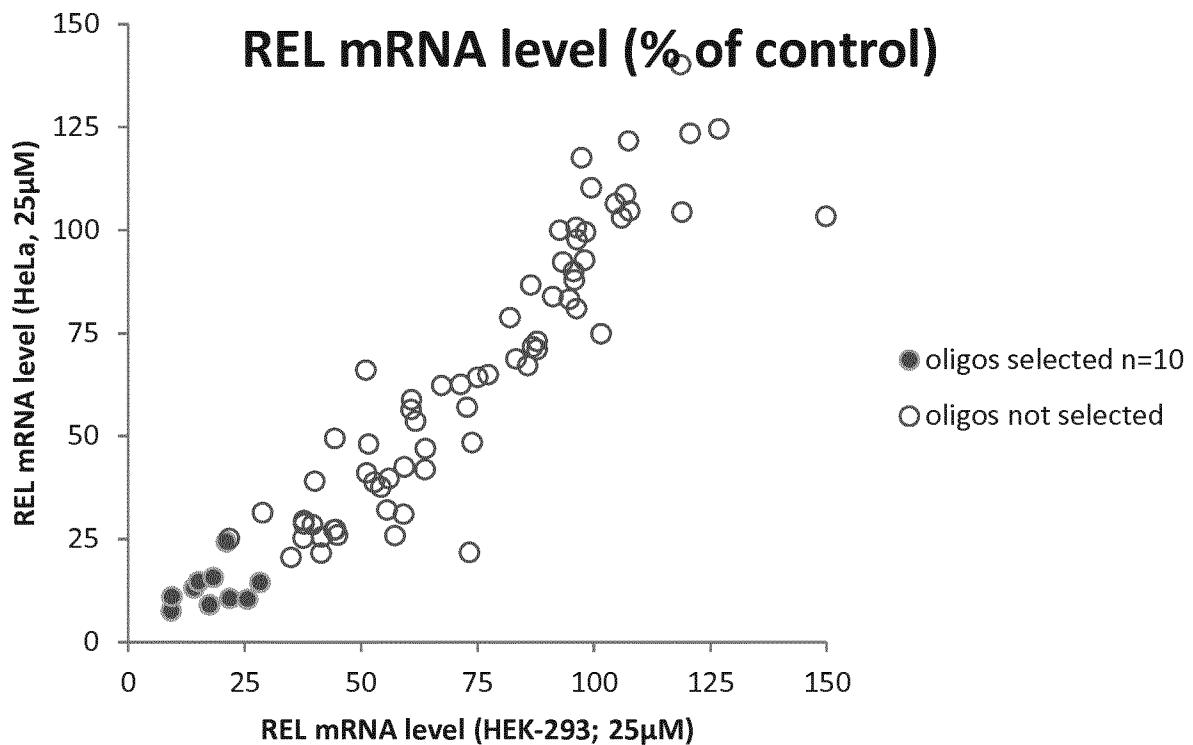
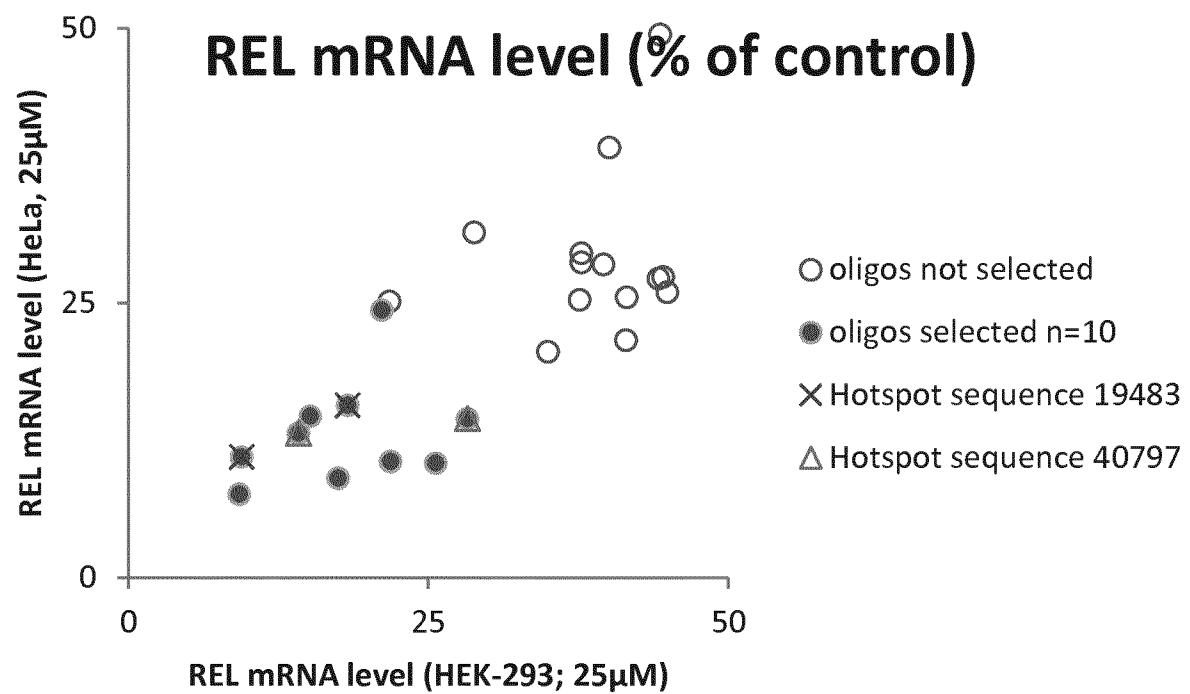
25 14. The LNA gapmer antisense oligonucleotide or use according to any one of claims 1 - 13,
wherein the oligonucleotide is for use in the treatment of a disease selected from the group
consisting of multiple sclerosis, psoriasis, celiac disease, Crohn's disease and rheumatoid
arthritis.


15. The LNA gapmer antisense oligonucleotide or use according to any one of claims 1 - 13,
wherein the oligonucleotide is for use in the treatment of a disease selected from the group
consisting of hematopoietic cancer, such as lymphoma or leukemia, lung cancer and breast
cancer.

FIGURES


Figure 1A





Figure 1B

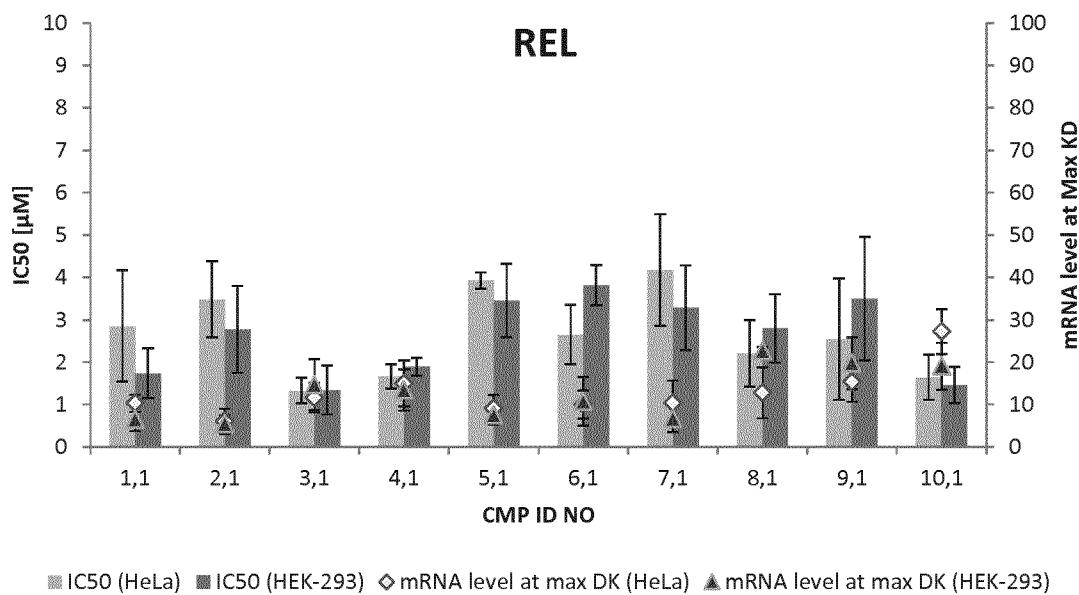
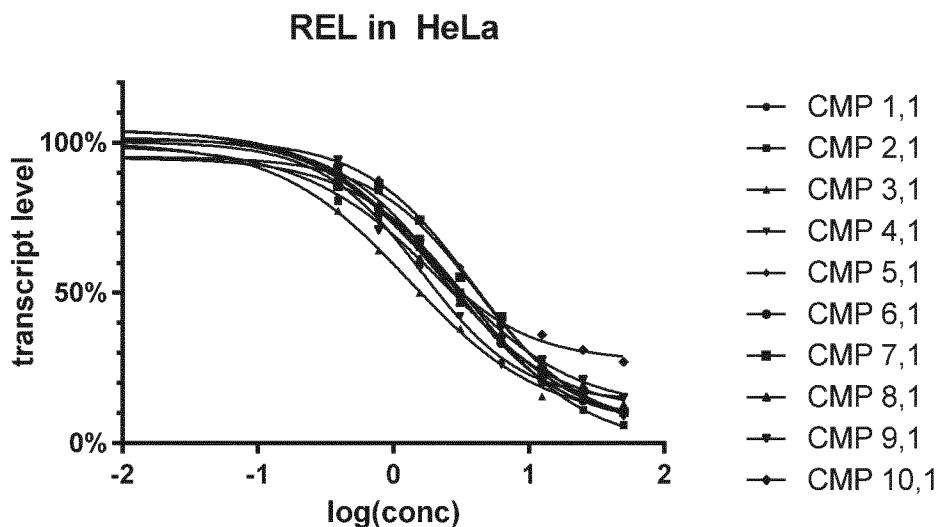
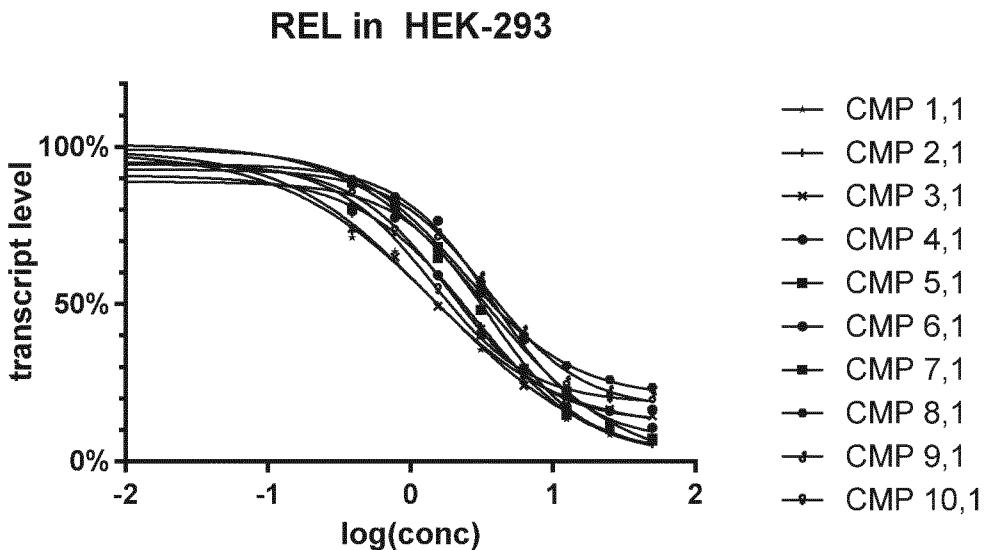




Figure 1C

Figure 2

Figure 3**Figure 4**

Figure 5A**Figure 5B****Figure 5C**

Figure 6

See sequence listing SEQ ID NO 21

agccgcggga	aattccccctc	ccgccaggct	gctcgctct	cggctgggcc	agcactcgcc	60
tctcccgct	ccgccccctg	cccctggctc	ccgtacggtg	gacggcgacg	ctgggtgacc	120
cggggtgcaa	gaattcaggg	gttgggaagg	tgtgagccgc	aaacccagcg	gagggcggga	180
agaaggagga	ggcctctagg	gtggcggggg	gactgggggc	ccggccggca	gaggtccctc	240
ggcctctgt	ctgactgact	gcccggcct	ccggccagga	cgctggagc	tgccctcgaa	300
aagggtcgaa	gagcggagcc	atggcctccg	gtgagtgttc	atggggcgcg	ggcctgggcc	360
gggggaaagg	agctttctg	aagggggtcc	tgccgcgtg	atgttaggaa	gctcagttt	420
tgcgtggcg	cgttctgtct	ttaaaatctc	atatgtaaa	atgtcagct	tttaaaaaaaag	480
ttacctgct	cagggtttgc	gtgcagaatc	caagccacgc	tctgtatattc	gatcctgttg	540
tcatagcagg	aaccttagaa	atcccacgc	acttgatttt	aggattaggg	aagtcatataag	600
cgaacccaaag	gaggacgaag	agttctcatt	aaaaatgtat	atgtattgaa	gatgggtggtt	660
ttatgtttta	gaacaggaat	gaggaacctt	cagacccctgg	gcaagctctc	tccccctttt	720
tagtttaatt	tcatcaaattg	caaagaggtg	atcccccttg	tactgacagt	tgtacaaaat	780
gtgtcacggc	ttaaaaatc	atccgtggta	tttaacacg	aattagaaaa	tccgtggtat	840
ttaagtgtt	aatgttgctt	cgaccaagtg	taggcccggc	gcgggtggctc	atgcctgtat	900
tcccagcact	ttgggaggcc	gaggcgggtg	gataaccaga	gtcaggagt	ttgagaccag	960
cctggcaaac	atggtaaacc	cccgtctcta	ctaaaaatac	aaaaatcagc	ggggcgtgg	1020
ggcgccgcgc	tgtatccca	gctactcggt	aagctgaggc	aggagaatcg	cttgaacctg	1080
ggaggtggag	gttgcagtga	gccgagatcg	cgccctgtca	ctccagcctg	ggcgacagag	1140
ggagaccctg	tctctattta	aaaaaaaaaa	aaatgttagtt	tttactgtga	gataaagctc	1200
aagggtccta	atctgacgaa	tagagacggt	gaatccccct	tcctcctcgc	tggaaataaag	1260
gggaaagagg	agtttagaa	tatccgagct	ttaaaataat	gagtaggaat	gaatacaact	1320
ttatcactta	tgtgactata	tatttccct	taataaatgc	tcgatctctc	ccttgggggg	1380
ggaataagt	tgtaaagaaac	attgcagagc	aagaaagtct	cctataataca	cagatgtgg	1440
tggggctgc	tggagcttaa	gtttaggggg	gacggggagag	ccggggcggg	gggataaaatc	1500
aagttagcctg	gggtcgagtt	ggtctttac	caggattttg	gcaaggtgag	tgggggacac	1560
tttccagaca	gaggaagcag	cgtgagcaa	ggcaggggagg	gctaaatgca	tgttaaatgc	1620
tgtactaaga	aatgtaaagag	ggggccccgt	ttatgaactt	gactcttatac	cccaaactgc	1680
ctggccatgt	gaccctcaga	agttagctga	tgtctagtag	agatgagggaa	gttaggaagct	1740
taaagaacct	ttttaaaagg	ttgagcagaa	caatgccata	gctattgctg	taggcagaaaa	1800
aggaaattgg	gtgtttcac	atgacatttgc	atttcagttt	gtttgtggtt	gtgagaatac	1860
taagtgtat	ttaaaatattt	tcaactttcc	ctttccac	ttaagtgcaca	ccagactttc	1920
agataatcg	gttaatattat	gaattcaaa	catgtgtaga	ttagaagtgc	taagatgact	1980
tcaaataattt	tgttaatgtt	ttgggttatca	gaaagatttt	gtttggaagt	aatggagaat	2040
gcctagcatt	ataagtaagt	tcaggcttt	ggcgatttaa	tcaaactta	ttgatataatt	2100
gcatgaattt	aataactcta	atttttcag	ttgagagagg	aaacaaccat	ttctatata	2160
agattgtaa	gaccacagg	attttaaaat	ttgatataat	ttaaatttgt	tcattgacac	2220
tgtatttgt	gctgtgtga	ggaggaagga	ttccctaaaa	gtaaggagga	aatgtttaaa	2280
gaaatggaaa	gttttaaagg	tttagaagt	gaagggtgt	taacttttt	ttttttttt	2340
ttggcttttt	ctaagagtt	cattaaaatg	ggactattta	aaatgttaaca	agttattttaa	2400
atgttaattt	agttgttaga	aaactgcccag	gcctggataa	aaaaaaaaaa	aatgtttaca	2460
ggaatctgt	tactttccct	taatctgtta	taaagacctt	agagaaagaa	aaagattcac	2520
taataaaaatt	ctaaattcc	attctgtttt	gaaacagttaa	tttaaccgga	agagtgcacca	2580
aaaaaaaaaa	aaaaaaagaaa	ttgcttagtt	tttcattgtc	tagtttagat	tctgtttgt	2640
gtaaggtagt	ataaaaacct	cagaaagttaa	cttttattca	ttacgaagta	tttaagagca	2700
tttcttcatt	tcttaccaga	tgtcatatgt	aaataggtat	atgttagtga	atatgtgata	2760
gctataatgt	aaaagtaaca	taaatcataa	tcttataagc	aaaattatgt	aagttagaat	2820
gtagttaaa	atcatgtata	taatatgatt	ctaaattttt	tttagataag	ttagcagatt	2880
aattaggatt	tcacagctt	tattaagctg	ccttcgtt	ctttttaaaa	aaattacacc	2940
ttgatcacag	tctttgaca	taattaataa	tagatatagt	gaagaaaaat	gttccaaac	3000
ccatctaagg	tatgcatagt	aggcagttt	tgctttgt	tatttattct	atthaatata	3060
agaaaaattt	gatattttat	gtctgaattt	aaacccctc	attgttccag	aaaaagagc	3120
aaaatgtctt	tgtgtggcat	atagctctgt	taactaataa	tttagtgcgt	ctttggtaaa	3180
atgttttaaa	attagataa	tttatttttgc	ttcacattt	tcttagttag	gttcttctgt	3240
gtcacacaaat	aggaaggaag	tacagaaatg	aattgttttt	gtaaacccca	cttcttacca	3300
actatttgc	gtgtgaattt	caagagaatt	gttgggggg	tcgattaaag	gggagaaatg	3360
gaagtaagt	tgaggcaact	taatctttaa	taacagagct	ggaagtttag	aatggatagc	3420
tacagtaaat	gacttctttt	ttaagtaaa	atgccacaca	tgagcatgaa	tgtttcagaa	3480
atgcaacaca	tgaaaaataa	gaaataacaa	tggagttaaa	taattaaggt	gacgtatgat	3540

aggcacagat	aaagggaatg	agttaatgta	atgactaggg	aggagccaga	caatgaatca	3600
taatttagaa	catctaggtt	atgcatagtt	tcttctcaa	atacaatttt	agggactcag	3660
aatttcattt	tgttccaact	ttctctcata	tgggttctct	gaaaatgatt	ttgtttgtag	3720
gcacatgacc	caaattttgc	atggataaaa	attgttttc	tgaaattcat	atttatctgg	3780
gcctcctctg	tttttatttt	taaaacagag	gtgatttggt	cttgccattt	gttttaact	3840
ttaatacctg	tataatctag	gacagctttt	aaaattttt	tattttaccc	ttgcacgtgc	3900
aagagttttt	tcaagactta	cctttttcc	cccttggtaa	cagaatccct	attgccagaa	3960
tcttttacag	tttttacctt	gtagtgcata	aatcagttga	atactcatct	gaaaatttcc	4020
tttctttgat	tcttaaggcc	cagttgaaag	tcagcctgtat	gtattggagt	aataaagtca	4080
gcctgatata	ttggcatagc	cttggctga	tgagagacct	agtttgagga	aaaaaataat	4140
agatcttatt	ttcttttct	ccaaatttgg	tagaggtgtat	atttggaaaa	atatatattg	4200
ttagctccat	tggctcctt	aggctcagg	caaagtctgt	caccgaggac	ctttatgaga	4260
gacatgcagt	ctagtcagct	attctcaact	gtgggttga	cacactgtgt	tgacaatcat	4320
tttgtgtatg	tgttgcaga	gttaaaatat	tttgttgcata	aattattttac	tttttaataa	4380
aatgaaagca	tttgaagggtt	atctctatat	tgtcattttt	tcttgcttgc	atttgaataa	4440
ggttcttttt	taagtggag	ataaacacaa	gttcaagttt	caagtagcca	gaattgcttt	4500
gcctaatttta	ctcacgtccc	agtccatatt	tgtacctgaa	tttttagatt	acttctctca	4560
atatgtgcat	tgttgcctcc	acttcatgtt	ttaagacaat	tattcttaat	caggagtgtg	4620
ttagaatttc	ttggaaggct	ttttcagcaa	cgtgtatctg	ggctttaaaa	actatgaaga	4680
tttctttatc	ttctaaacat	ctcaagtggg	gttaaggacat	gtatgtttt	aaaaaactac	4740
ctaggtgatt	ctgatgtaca	tccccagttat	gaactctgtt	ctagggattt	cttggatct	4800
aaatactcat	ttggctatac	caggatgcata	tattttctta	aattaagttt	catttatttt	4860
agattgcaga	ttatgtgctg	tatcagttat	tacccctagt	tgctttatg	cttgggggg	4920
aaatttggca	ctgccccattt	agcataccat	tcataattca	tttttattat	aacttcataat	4980
aattttcaac	tttagtttta	tcatgtgtaa	gatggataaa	taattttctat	tatttttcaat	5040
atggagatata	aagttaagag	gatcaaatga	gaaatgtata	taaaggggtc	ttaaaataat	5100
gtataattta	caataatttgc	cttttttttc	tgtatacttg	atgctgggtt	ctaattctag	5160
caataaaatgt	tttgttaata	atgtgtctat	ttccgataat	ttatgatcca	tttaaacatt	5220
tcaatgtataat	ttttttattt	taaaagctca	tgcttttata	gataggcact	atgtttttaa	5280
atagcactct	ttcttgccct	agcgccaaata	aaaacataga	tatatcttac	aaacattttt	5340
gctgttatttt	agaaggattt	ctgtatgtata	tttagcctttt	aaaatactat	tcagaatata	5400
ggggtcagtc	ccagcttgc	atagtgttgc	ttaaaagaaaa	atacagtaat	caattttgtt	5460
agagtcaattt	ttggagacgt	tttgggttgc	ttcaaaaactg	tggcgattt	aggttatctt	5520
agtttaagagt	acttattttc	cctacaattt	cctgatttt	tttttaccct	cttgcactcc	5580
atagatgact	acatttcaac	acattttata	ttcaggaaga	atggcattgt	gcaaagcaca	5640
gtactgagga	aggagataac	ttgtgcattt	tactgtatgc	ttatataaat	gatttataagc	5700
tggaaagttt	ttttaaaaatc	ataaacacag	ataaaatcaa	ataggaatga	gtatgaggaa	5760
atactgaggt	gtagcaatcc	ttgttacctat	aaagcactat	ttttttttcc	tttagtagtgg	5820
aatctaatttta	aaaaatctga	ctaatttactt	atatgattat	ttaacgtttt	aataacttgc	5880
ataaaacaaaa	gacctaaga	ttttttatgc	atttatttca	tagatgttt	atgaatatct	5940
ctgtacaagg	cactgtatgc	ttaaacacaa	tttctgcctt	caagtagctt	gaagaaataa	6000
aacaagtagc	tttatttcaaa	gaagaaataa	gacggttgc	tttccctaaa	ttacagttat	6060
ttggaataat	tgcttacac	agaataactat	ggttagttaa	aggaggggg	attatttcca	6120
gctggggggaa	tgttaggtat	tacagtatac	tgtgttactt	ggttgcataa	ctctacattt	6180
ccccagcttgc	ttaattttta	ccaatttaga	gtttctgcag	tagaaaaat	aaatttccaag	6240
gactttaaat	actcaatatt	atatgataac	tgatatttt	gtattttttta	ctatttaaaa	6300
atatttaatc	ttttcaacaa	ctacttttct	gttctttttt	taaacaatct	aaagaagtgt	6360
catgttaacca	atgaagttttt	gggtttttttt	gttgcatttt	tttgtttttt	tttgtttttt	6420
tttttgagac	ggagttctcac	tctgtcaccc	aggcttaggt	gcagttgtac	aatttggct	6480
cactgcagcc	tccacccctt	gggttcaagc	aatttcttgc	cctcagtttc	ccaagtagct	6540
gggattacag	gtgcctgcca	ccacatcccg	ctaatttttt	gtatttttag	tagagatggg	6600
gtttcaccat	gttttccagg	ctgggtctgga	actcttgcacc	tcaagtgtatc	cacccttctt	6660
ggcctcccaa	agtgcggga	ttacaggtat	gagccaccat	gcccagccctc	agtgaaatat	6720
ttaaatgtct	actatgtatcc	tagcattttt	attcacactt	tctttccca	aagttaaaca	6780
cttatttattt	acgtatgtat	tttataatc	tttcccttca	agacacccctt	aaataagtag	6840
tgggcaggga	tttatttggc	tttacttca	gccacataaa	ttatttaaaa	tgtgactttaa	6900
aaagtaatgt	tgatttttac	agtttttaag	aggaaaatat	actttctttaa	atactcttac	6960
aaggatataat	aagggtatga	aatattttgaa	atttcaatgt	gaattttgaaa	tcttttttttt	7020
atgcaaggat	aaaatctgtt	aataacttcatc	tgcataatctt	atgttttttga	gtaaaacttgc	7080
aataaggatt	atgaacttgc	ttaggttaaa	gtcagttttc	tctggcttctt	catttcttgc	7140
ataaaacaaaa	aggttagtata	ttcaaaacaca	ggggatttac	accatacaga	ataaaaatttgc	7200
aagttacagt	aatactttat	ttagtacacc	aaagtagaa	ccatggaaatc	atcaatgtt	7260
ctttaatttc	tgagctatca	gtgatttgc	aatttcttctt	aaccctactt	ttcaggcacc	7320

agggtgcgtc	aattttatct	tttaaataat	ccttcattca	tcttatca	ccatata	7380
agagataccc	tcatcattgc	ccacattatt	atagtggct	ctaaactgat	gacattgctt	7440
tctttttct	atctgttcac	tgtgactaaa	acttttactc	taaaatgaa	atctgatcat	7500
gtgatttgcc	tgcataaaaa	tattcattga	tttcatcaca	cataaaatga	aatccacatt	7560
gccaagtgtg	ctctgacttt	tagttctt	tttaagagag	aaagtgtgtt	ccatttacat	7620
tggtgattct	taaataaaacc	ctcctctgt	gacacactgt	tccctttcc	ctagaatacc	7680
taccttttc	ctcttcattt	cctccgctct	tttgcttcatt	taaccgctct	tttccactg	7740
acacagttgg	gcattcctga	ctcttcgct	cttatttccg	cagaattttg	ttagtgcctt	7800
ccttccttct	gtagtcta	aatatatgtt	gttgcctt	ctcttctata	aggtccttta	7860
gagtgacagt	tggatacca	ccatagtac	actaaatcat	tgtttcaag	aaagcatctg	7920
aaataataga	caccat	tttattttt	tat	cacttaagt	tttagggta	7980
atgtacacat	cgtgcggctt	tg	ttacat	gtatacatgt	gccatgttgg	8040
ccattaactt	gtcatttaac	attaggtata	tctccta	ctttccctcc	ccccttcccc	8100
caccccacaa	caggccctgg	tgtgtatgt	ttccctt	gtgtccatgt	gttctcattt	8160
atcaattccc	accatgagt	gagaacatgc	ggtgttgg	tttttgc	tcacgatagt	8220
ttccagcttc	atctatgtcc	ctacaagga	catgagcta	tccttttta	tggctgcata	8280
gtattccatg	gtgtatgt	gccacat	tttcaatccag	tctatcattt	ttggacattt	8340
gggttggttc	caagtctt	ctattgt	gagtgccgca	ataaacatac	ttgtgcattt	8400
gtctttatag	cagcatgatt	tataatctt	ttggtatata	cccagtaat	ggatggctgg	8460
gtaaaatgg	atttctagt	ctagatccct	gaggaatcgc	cacactgact	tccacaatgg	8520
ttgaactagc	ttacagtccc	accaactgt	taaaagtgtt	cctatttctt	cacatccct	8580
ccagcacctg	ttgttcc	actttttaat	gatgcccatt	ctaactgg	taagatgta	8640
tctcattgt	gtttgattt	gcatttct	gatggcc	gatgatg	at	8700
gtagacaaca	tttattgaat	gtgtatgt	atatgacact	tcgtaagaat	ttagcacata	8760
taatctgtca	tcttcacaac	aaccaatga	ggttaggt	attatgatta	ttccttattt	8820
acagaggagg	aaactaagag	at	tttaatc	ttccttgg	ttactgtt	8880
gaagtagctg	gggtaggatt	ctaaaggc	cttctcc	ctgttct	aaggcccact	8940
gtgttaccat	ttctcaggat	tgcttgc	ctaacaggat	aagcctt	cagcactaa	9000
gtgattaagg	gacacattat	tattttt	taatggaaa	catctcaca	ccccttattaa	9060
ctcccctact	tgc	gttga	gttac	ttcccc	atttggataa	9120
taaaagtaaa	gttgcata	ttttaatag	cttattgac	atataattt	tgtacaacaa	9180
actgtactt	taaagtatgc	aatttgacaa	g	ttttgacat	atgtatacaa	9240
atcatcacaa	gataatgtcc	cccctgc	tcctatcc	catatatccc	ccctggaa	9300
caaccagtga	tctgc	tatcg	ttactt	atatcct	ttttcatata	9360
aatggaaatca	tacagtatgt	gctcttct	tcaactt	ttcactc	at	9420
tgagagtcgt	ccatgtt	atatgt	gca	ctgcagat	atattt	9480
ttttagttat	tatagaaagt	gaatactt	tttctctat	tatgtctt	aaaagg	9540
gcatgggact	gattgcacat	tctt	gagcc	cttggg	gtttgat	9600
actgtgt	atgc	tta	tatt	aaactt	atgc	9660
aaggatttaa	atgcattt	at	ttc	at	ttatgaa	9720
gatgtaaaat	caagc	actt	act	tt	ttttactt	9780
tgaatactgc	cttctt	acc	ttt	aa	tttgc	9840
cacgtggag	gcagat	atct	ttt	aa	tttgc	9900
tagatattaa	gctataa	at	ttt	aa	tttgc	9960
tacataggga	ctcaattt	ga	at	ttt	tttgc	10020
aacatttcgg	tctt	gtt	taat	ttt	tttgc	10080
tataaaaaaa	acagaatgtt	aaaatcc	att	ttt	tttgc	10140
ctccttttta	aaaactt	ttt	aggt	ttt	tttgc	10200
aggcagaggg	gaatgc	gtt	at	ttt	tttgc	10260
ggggagcaca	gcacag	aca	ta	ttt	tttgc	10320
tctgtgtct	tctc	actt	ag	ttt	tttgc	10380
ccagtttctt	cacagt	cat	ttt	ttt	tttgc	10440
aacggatctg	tcaaaa	agac	at	ttt	tttgc	10500
aatggagtct	tccc	actgc	at	ttt	tttgc	10560
gactcaatgt	tgagag	tac	at	ttt	tttgc	10620
agataataag	gaaaacccat	tctc	tg	ttt	tttgc	10680
tggatttgag	aactcaat	taattt	tg	ttt	tttgc	10740
ctccttttca	ttaactt	tg	ttt	ttt	tttgc	10800
taccacttta	taa	atgc	ttt	ttt	tttgc	10860
aatgactt	gtaa	acata	ttt	ttt	tttgc	10920
tttttgagac	ggagt	ttt	ca	ttt	tttgc	10980
tcactgcaac	ctccgc	c	tg	ttt	tttgc	11040
tgggattaca	gacgccc	acc	tg	ttt	tttgc	11100

ggtttcacca	tgttggccag	gctggtctcc	aactcttgcac	atcaggtgat	ccacccatct	11160
cggcctccca	aaggcgtgg	attataggcg	tgagccactg	cgtccagcca	agatgtacta	11220
aatttattta	ttttttattt	tttattttt	ttgagacgga	gtctcaactct	gttgcccagg	11280
ctggagggca	gtggcgtgat	ctcagctcac	tgcaagctcc	acctcccagg	ttaaaggcagt	11340
tctcccgct	cagccccc	agtagctgg	actacaggcg	ccccctacca	cggccagcta	11400
atttttgtat	ttttagtaga	gacagggtt	caccatgtt	gccaggatgg	tctcaatctc	11460
ctgacctcgt	gatccgactg	ccttggtctc	ccaaagtgc	gagattatag	gtgtgagcca	11520
acatgcccag	cccaatgtac	taaatttcta	ttttctattt	gtaaactatt	tttctttgac	11580
ttcaatgaa	gggttatcc	ttaaatgcc	aattaaaaac	ttaatggca	aagtagattt	11640
tgaaaagtgt	tgcttttgt	ttttgtttt	gaaaagtgtt	acttttatca	acagatctta	11700
attcactgtt	ttataactag	attatttaca	aaatctattc	tgttgatgaa	cttaaaggga	11760
attgctgaat	tatagaataa	accatggca	aaattatata	tattgaattc	cagatttcta	11820
tttttatcac	attttggca	gtaatatgga	tttgggttat	ctaagtcttt	taaatgttaa	11880
aatggatgag	atgctaataa	aaaggaaata	aggaaatact	atttgcacag	tttttgagt	11940
catttttaaa	cttttctca	taattcatct	tatcctatgc	atctctattt	ctaagatatg	12000
tatTTTacc	attccagtag	gtcctaaaca	ctttacagct	tgagtttgc	atttgctac	12060
ttatagtctt	gagcaattac	cttcttttc	atacagaaag	aatgtataa	cttcttggtt	12120
actttcaaat	tctatTTaaa	ttcaaaatta	tggattttag	tgccctotac	cttgcataagct	12180
accatttctt	actttacctt	gtcctttgt	ggtatgctgg	ttttatagt	ccctgcTTTg	12240
ttcttgcaac	tttactagct	ttcaaaactaa	gcattaattc	ctgtcctcct	tcctcttcca	12300
tgttaaactc	tccttttac	tctgtgttct	agctataactt	tctatgtgaa	atttgatgtt	12360
gttaaactca	atttgcatttta	ttgcctattc	taggttac	acttggggta	tgcTTactga	12420
acaaatattt	ttgtgaagtg	aatgtcata	tattaaagtaa	aatgtatcata	tttatgtgct	12480
atccTTTcca	atacggctta	aatatatttt	caaggaatgt	ttatggatg	acagtcgtt	12540
aaagagctgg	gcatttagtg	acttaacatc	tgtttctca	tgttctatgg	ataaaaatttgc	12600
ggtagagtt	tacttgcTTttt	gaaaggaaaa	taagccagt	caaattgtat	gaccaattga	12660
aatttagggca	gaaaatatgt	caagaaactg	agaggtaatg	tttctgtac	tggatttctc	12720
tgaaaagttt	catctaaact	gcagttgttc	gtcagctgg	ttttatttt	ctagtgcacaa	12780
ttacattata	attaatgtaa	attgaatttct	catttagtag	atcagtttat	aatgcagtct	12840
atttggatca	tgtatTTaat	ttcccccttt	tttcagatTT	tgaactattt	tggaaaaggaa	12900
aaagtgagaa	ttacattatgt	aacaaagaat	gaccatata	aacctcatcc	tcatgtatttta	12960
gttggaaaag	actgcagaga	cggctactat	gaagcagaat	ttggacaaga	acgcagacct	13020
ttgttgcTTa	tacacagtta	cagacatctt	cagaataaag	ataagacata	ggatgttctg	13080
tttcttctcc	atgacaatct	gttactttt	agcagaataa	tttctcatt	ctacttctat	13140
ttactgtatt	ttacacttac	atttttacta	tttgcattag	aactaccctt	tcattcttta	13200
tttagtagaca	catcttatga	tagttgcag	gaagacattt	ttattgttat	taaaaagttaaa	13260
cgtaaacttc	ttgtatactg	tgatTTcTT	tcttgggggt	gacagttttt	gaaataatta	13320
ttcactctgt	ttttttttt	ttttttttt	tttgagatgg	agttttaccc	ttgttgccta	13380
ggctaaagtgt	caatggcgca	atctcggtc	actgcaacct	ccacccctcg	ggttcaagcg	13440
attcttctgc	ctcagccTcc	cgagtagctg	ggattacagg	catgcaccc	cacgcctggc	13500
taattttttt	gtatTTtag	taggtatgg	gtttctccat	gttggcagg	ctggctgg	13560
actcccggacc	tcaggtgatc	tgcctgcctc	ggccTccaa	agtgcgg	ttacagggtgt	13620
gagacaccgt	gcctagcctc	tgtctttca	ttttagtta	acttattatt	attattattt	13680
tgagacaagg	tctcgctctg	ttacccaggc	tggagtgcag	tggcatgatc	tcggcccatt	13740
gcaaccttca	cctccagact	caagtgtatc	tcagcctcag	cctcctgagt	agctgggact	13800
gcaggcatgt	accaccatgc	ccggcttaatt	tttgcatttt	ttgttagagat	ggggTTTgc	13860
ttgttgcTTa	gggtggTctt	gaactcctgg	actcaggcag	tctgtccacc	ttggcctccc	13920
aaagtgcTTg	ggattacagg	cgtgagctgc	tgtgccacgc	ccatttacag	ttaacataaaa	13980
aatgcctgga	tgtgagaaaa	atcaactgga	aaactctaga	gttattattt	agaaaagtggc	14040
agtttataga	attaacatac	aacaatagg	ctaagataaa	aatgtatc	taataacttca	14100
tgtatagtgt	gctaccagaa	gatggggcca	ttcatcatgt	taggtatgg	attaataaaag	14160
acgtctggta	ggcaattttaa	ctacatggca	aaaggctgaa	aatattttat	gcctcttgag	14220
ccagctgttc	cacttctagg	agtttagct	cagaaaataa	ttaagtgtgt	tcagacattt	14280
tgtcttaatgt	ctgttcatgt	cagttcttt	tgtatggca	aaaagctaga	agcaatccaa	14340
atagtaagca	aaggggatta	attaaataaa	ctgatTTat	catgcatgt	actcctgtac	14400
agccttaaaa	atcatattgc	caatatgtct	attggatgt	aatatagtc	acaatatatt	14460
agataaatag	gttttctgtt	ttttgtttt	ttttttctt	ttgagacagt	tttgctttgt	14520
tggccaggcgt	gcagtgaaat	ggtgtgattt	cggctactg	caacccctcac	ctccctgggt	14580
caagtgattc	tcctgcctca	gcctcccatt	ttagtgcata	ttacaggcat	gtgccaccat	14640
gcccgactaa	tttttggta	ttaaaccat	taggtacagg	gtttcaccat	gttggctgg	14700
ctggTctcga	attcctgacc	tcaaggTgatc	cacgtgcctc	agcctccaa	agtgcgg	14760
ttacaagcgt	gagccacggc	acctggccag	ataaaatagg	tttaaaacaa	tatgtaaaga	14820
ataattttat	ttttgtttaa	gataaaattt	tacatataca	tgtatgtat	atgttaatac	14880

taaggtatta atagtagttg tctgggtggg taagattgt a	gggttttatg ttttctttt	14940
aacttatatt ttataattca ttttgtaat gaacatgtat	tggctttgg gaaaaaatga	15000
actaatggca acagaaaaga gattaatagt ctccacatat	attagtaata accatttaga	15060
aaaaaaatact ttaaatgctc ctcttacaat aataacacaa	aagaaaatat ctatgttat	15120
acacacttgg caaatatttg tctatattac ttgacctccc	aacaacattt tacactgtga	15180
tcactcctta cttgaaacat ttttattctc tgcttctgt	gaaaacaaac ttccatattta	15240
cttcctgctt ttctggctgt tctttcttag ttacaggcag	ttaaattttt ggaccacctc	15300
acttattgtc ctaataatgc tctttatggc tgttccaact	ctctcccaa ttcatggatcc	15360
cattaaggat tacacactat aggtaacatt atattaaca	tgaataacat gaataatatt	15420
ttcatgttaa catgaaacat tttgggcaag aaatctatag	aagtgtatgc gtataactct	15480
aaaaatatacc cttcagttt ttacattatt ggcgatatta	tcttggcatt ctattataaa	15540
gaagaactt cccttcctct ctttctccat ttaaaaagta	tcactgtaaa ctcatgcatt	15600
cttgttattt atatattata gttattctgt tattctttt	atttcaaat tgacccagat	15660
ttgactaatg caagcctctt caaactgtct cctgttttt	tttgatatgc cgtcatctt	15720
cttgagcac tttttactt tctgacaaaaa tgaatgttc	aagacttgc ttttctttt	15780
ttctttttt tttctttt ttttgagac agaggcttgc	tctgttggcc aggtggagt	15840
gcggtggtgc gatctcacct cactgcaacc ttcccctccc	aagttcatgc aattttgtg	15900
ccttggccctc ccaagtagct ggaattacag gcgtgcacta	ccacaccagg gtaattttt	15960
tatTTTtagt agatacgggg tttcatcatg ttggccaggc	ttgtctcaaa ctctgtgac	16020
caggtgatcc tcctgcctca gcctcccgaa atgctgagat	tacaggcatg agccaccgtg	16080
cctggccaac ttgtgtttt cttggggccag ccctgaagtc	atcagctttt tccagagatt	16140
cttggttcct tctgggggg aatggtagta agtctgattt	ccttctcaac atattccctt	16200
aaatgtctca aaagtacctt aagtagcggg gcacagtggc	ccatgcctgt agttacagct	16260
actcaggagg ccaaagcagg aggattgtt gagcccagga	gtttgagtc agcctggca	16320
acagagcggg attgtatctc ttaaaaaaaaa aaaaaaaaaa	agcacttcaa atagaatatt	16380
ccccaaacgt gatTTTactg tgatcatatc tcttcccct	cataacttgc ttcttccaa	16440
tgtgccgtat gtttagtgcgataaaaaa acctataggt	gtcatcttg acattcctca	16500
tccagggtgt acaattgaat ctactaacag ttacattctc	aactggttt gaatctatcc	16560
acttcactca gtgaaattca tcaccgtcat actaccacta	tagcttaaac tggggctgct	16620
ggaataacct cctgactgg tttgcattaa ccattttgt	cctttccaa accctctatc	16680
tttcctcgct ttagccagtg tgatctttt aaatacaaaat	gaaattgtct ttcccttgct	16740
taaaacattt taatgggtt atttggctc tggaaataaaag	acagcatcc ttctatata	16800
cctataaggc ccacatgacc caccttatt tctagccctc	tattaaactc tgctttcc	16860
aatttttata ctccactcac aatgccttcc ttagtttcc	tctgtttcca ctgctcttt	16920
ctaggggtct ttgtgtggcc ttgtgtttt gcctggaaat	gtttttttc tggtccagca	16980
taggctccca taacatcatg tatacctc tcaaaaaact	tggtatgtt gcagtttagc	17040
atttgtgtat gtgtgattat ttaatgtata tccacttgac	cagagactac cagactttt	17100
ctgtaaagta cttagatgt aatgtttggg gttttgcag	ctgtatggc tctgttgctc	17160
agctctgtct ttgttagcatg aaagcagcca tagataat	gtaaacatca gttggctgt	17220
gttccaataa aacttattt gcaaagacag acaagatgtt	ggatttggc catgagttac	17280
agtttgccaa tctttccact agactgtaa ctcttgcagg	aaaggattt tatatcccc	17340
ttactttgca gagttttgg tatatagtac gaacccaaa	gcttggaa tgcgttgaa	17400
tgaatgaatg aataattgtat ccaaacaatc tcttgatct	tcatttcaga atttcaaaa	17460
ttaccaccac ccctaattt ccgtgaatag cagtcataa	tgagattt cagatgaaac	17520
aaaatgaagt aatataatg tattaatatg aagaattcta	taaaatctt taccaaagaa	17580
aaagaatcaa accaagaatc tttcaaagaa gtggaaatac	ttttgaggaa gaggattata	17640
gttgcaagat ttcaagaaag gattaagaat tcaagattt	gctgaccaag catagtggct	17700
catgcctata atccgagcac ttggggaggc tgaggcagg	ggactgctt agtccaggag	17760
cttaagacca gcctgggcaa cctggtaaaa ccctggctc	acaaaaatac aaaaattagc	17820
caggtagggt gtcatgtacc tttttttttt ctactcagga	ggctgaggtg ggaggatcac	17880
ccgagcctgg gaggcagagg ttgcagttag ccggatgtt	gccactgcat tccagcctgg	17940
gtggcagagt gagatcatct caaaaaaaaaa tgtttttt	gattttttt tgtagtttt	18000
ggaggcagag gaaggaaatg tggaaagat ttttagatgt	agcaaaattt tagatgtaa	18060
gaacatgagc ataagacagc atgagtagtg agacaggcag	acaaagttagc ctccgggtc	18120
aagtggccatg tgaagttga acaatagtaa tgttattata	atttgatttt gcttcctt	18180
tcacgcccac ccaattttac tgatgtcatg tttttccat	gtggaaacaa gtatgactgg	18240
tgtgtgtggg ggagttcccc ccaccatgt ctatgtaca	catatgcaaa ttagtagtat	18300
ttgttagctat tggaaagttt ttcataaaatg acattttgaa	acttggtaaa tattgttagc	18360
attaaacttc tttctaaatc aaaaacattt tagtaatttt	ttatgtatgaa tggctataac	18420
tttatataat gtggcacaatc acatattcta ctgctaataa	cagtgaattt aggctcaaa	18480
aagcaaatct ctgtggagct aggcaaggcag cataatgag	tgggtgtggat caagtgtagg	18540
aggactaaca ggcactgttag caaactaaag agccctgaat	aatggggct tagtccctag	18600
cctgttgtttt ctgtgccaac ctatgttgc caggtctta	aatgtacaa gagaagccgg	18660

aaatccagat	gttcatatgc	aattacctga	tttctaaatg	tagataacct	gtgcagattt	18720
ttaaaaatat	aggcaacact	tttgtgagcc	tagcaaaaaca	tacctgtggg	cttcaacctg	18780
tgaacatctc	tttacagctt	ttgctttaca	ttatcaaaca	gactttattt	atttgattct	18840
gaatttgttt	gggaggcaaa	tttaccatt	taatattgt	ttactgttaa	tctatatttt	18900
ggatgtttt	acataggcat	atttagtaatt	gtaaaacact	gtatgttaaa	atgatatagt	18960
atatattatt	tttctttaa	cagttcttag	aagtacaacc	ccacttctt	tttttttttt	19020
gaggcagagt	tttgctttt	ttgcccagc	tggagtgaa	tggcgtgatc	tcggcttacc	19080
gcaacctctg	cctcccaaggc	tcaagtgatt	ctcctgcctc	agcctccgaa	gtagctgaga	19140
ttacaagcat	gtgccactat	gcctggctaa	ttttgttattt	tttagtagaga	cggggtttct	19200
ccatgttcat	caggctggc	ttgaactcct	gacccaggt	gatccacctg	ccttggcctc	19260
ccaaagtgc	gggattacag	gcacaagcca	cgcggccagc	catataatcc	cacttcttac	19320
tctctcatct	ttatcagagc	aatttggaa	acgttcatgc	tttggatgt	acaactgaca	19380
gcatgataac	ttcagtattt	ctatgtttt	gatttttgc	atattcctt	tgtttataat	19440
gcagtttga	atattttttt	tttcctgcta	gtttccaaa	tttgggtatt	cgatgtgtga	19500
agaaaaaaaga	agtaaaagaa	gctattattt	caagaataaa	ggcaggaatc	aatccattca	19560
atggtaagta	tgtttgataa	atcattttt	atttattttt	gtgttggattt	ctgtttctt	19620
tttctttctc	ttttttttt	ttttttttt	tttgagacgg	agttttgtct	ttgtcgccag	19680
gctggagtgc	aatggcgcga	tctcagctca	ctgcaaccc	cgcctccag	gttcaagcaa	19740
tttctctgcc	tcagcctcag	cctccggag	agctgggatt	ataggcgccc	accatcacac	19800
ccagctaatt	tttgttattt	aagtagagac	gggggttccac	catgttagcc	aggctggct	19860
cgaactcctg	acatcagggt	atctaccgc	tttggcatcc	caaagtgc	ggattacagg	19920
cgtgagccat	tgtgcccagc	tatttatac	ttcaacctgt	gttttaagtt	ctgtgtttac	19980
ttttctactt	gttgacatgt	acctgtatct	gaggaatgac	gtatactatt	taaaaatagtt	20040
tcttcacagt	tgtgaaaaaa	aatcttgc	acagagaggt	ttttggatt	gttggagag	20100
gtcactgttt	tatataataa	aacttcaaaa	tgttgtgatc	cttttgaaca	tggccttcct	20160
tatgccactt	ccagcagaca	acatacactc	ccccctttt	agtgtaaat	aggcactgt	20220
tttataaggt	attggagtgc	atttagctca	aggtaacac	ttaatccaa	tgtggaagaa	20280
gaagcataga	aataatagaa	atcacacaaa	gtattttcat	agcatattt	tgtatata	20340
tagatattt	ctgttcagtg	aattttattt	gggatagcat	ttttaagta	tttataactt	20400
tgttactatc	tgcctcatgc	tgttaagtata	aatgcttaat	actccctggc	taactgttac	20460
ttgtaagcac	tctgttattt	ttgaatagat	aagtactacc	acactagat	ctggcatcct	20520
atacttagag	tagcctccat	tctgaagtt	ttgcagctac	ttaaatatgc	agaagtca	20580
aattaaatga	ctgtaatatt	ttcaaagaat	atatttctt	gtcatattt	agacatcctt	20640
atactgttg	tttgttattt	tcctggatgt	ataaaaataa	tttaagagat	atgttgataa	20700
ttaaggaat	atattcacag	gtattttact	ttttatgaac	cataagatct	gcattctt	20760
agtttttatt	tttcacacta	tttagtataa	agcggaaagt	aaaagtca	ttttccctt	20820
ccagtcttac	caggggagac	tgcttataa	tttggatgt	atttttctag	attttctt	20880
atacatgtgt	agtttatgt	agacatata	attttataaa	aaaggaatca	tgtatata	20940
cctattctac	tccttcattt	ttttccactc	aggaatatac	cttaaactt	ccatgtcaat	21000
acttacaaat	ctgtttttt	ttttaacaga	atattttatt	gtttgggt	aacataattt	21060
gtttatttt	tcatctttt	ttttttttt	tttggatgt	tcttgctct	tgcggccagga	21120
tggagtgcag	tgtgtgatc	acagatca	gccccgtt	catcctggc	tcaagcggtc	21180
atcccacctc	agcctccaa	gttgggg	caccaccat	ccatgccc	gctagttt	21240
gtatttttt	tagagacagg	gtctcgccat	gttggccagg	ctggtctca	aactcctgag	21300
ctcagcaatc	cacttgcctc	ggccttctaa	agtgtgg	ttacaggcat	gagccactgc	21360
accgggtcta	tttagtctt	tattaatgaa	catgtatgtt	gttttcattt	tgtttaaaa	21420
gctccactga	atatacactg	tgagctctt	tgtgatttt	tccctaggat	aaatttttgg	21480
aagtggaaaa	tttctgggtc	aagagtatgc	tcattttaaa	ttgtgattca	ttgccaattt	21540
aataggccag	acttttaaag	aggcaggtaa	gtctagatgc	aatataaaac	aaggaaatta	21600
taagtgtatag	ctatcattt	ttaagcactt	tttgtatgtc	agggagtaaa	cgttagtgct	21660
ttatgcacac	tactttattt	aatcggtt	acaattctgc	tttatggaa	agaatgc	21720
gacttttgtt	atthaactgt	cccaatcat	gctgcaata	taagtggc	acctggatt	21780
catatgcagg	ttcctgtact	ccagtggt	aggcattaa	aaggaaat	ctgtctgtgg	21840
aattttttt	tcttagttt	ggcagct	aatcaggctt	gttttttgg	atgcccggc	21900
tggagtgcag	tgtgtgatc	acagctca	gcagcctt	cctccag	tcaagtgatt	21960
ctcccacctc	agcctccaa	gtagtggtt	ttacagggt	gcatcaccat	gcccgactaa	22020
ttttttttt	tgagacagag	tctcactct	tcacccagg	tggagtgcag	tgtcacaatc	22080
tcgacttgct	gcaaccctca	cctcctgggt	tcaagcgatt	ctcgtgcctc	agcctctcg	22140
gtagttggaa	ttgttagatgt	atactacg	tggcttaattt	ttgttatttt	atagacaca	22200
gggtttcacc	atgtcagcca	gcctgggtt	gaactccaa	cctcaagtg	tcctcctg	22260
tcagcctccc	aaagtgttgg	gattacaggt	gttagccacc	acgcctggcc	agagtttct	22320
tattttttgc	agagatgggt	tttgcctat	tctccaggct	gatttcaa	tcctgggtc	22380
cagtgtatcc	cctgccttgg	cctccaaag	tgctgggatt	acaggtgt	gccactggc	22440

ccgactcagg	catgatatta	atagtgaatt	ctcataatgg	caattaaaat	agtgttgtt	22500
agatagtaag	tgcttataat	attttatttc	atthaatcct	tataacagcc	tacgaaatag	22560
gtactattaa	taactcaatt	ttaaaaataa	gaaaatggaa	gcatagaaaa	gtgaactca	22620
gcttgtaatc	ccagcacttt	gggaggccga	ggtgggggga	tcacgagatc	aggagttcga	22680
gaccagcctg	accaacatgg	tgaaacacccctg	tctctactaa	aaacacaaaa	aattggctgg	22740
acgtgggtgc	acgcgcctgt	agtcccagct	acttgggagg	ctgaagcagg	agattcgctt	22800
gaacccagga	ggtggaggtt	gcagtaagcc	aagattgctc	cactgcactc	cagcctggc	22860
gacagaacga	gactctgtct	caattaaaaaa	aaaaaaaaaa	attagccgg	cgtggtggcg	22920
cacacctgtg	atcccagcta	ctcaggagcc	taaggcagga	gaatcgottt	aacccaggag	22980
gcccgggttg	tggtgagccg	agatcacgcc	attggactcc	aacctggca	acaagagtga	23040
aactccatct	caaaaaaaaaat	aattaaaaaa	aaaaaaaaatc	aagttaggcca	ggcacgggtgt	23100
cttatgcctg	taatcccagc	actttgggag	gccaagggtt	agaggatttc	ttgagccag	23160
gagtttgaga	tcagcctggg	caacatggta	aaaccccatc	tctacaaaaa	tttttttaa	23220
ttaaccagat	gcaggggtgc	acaactgtgg	tcttagctac	tcaggaggcc	gaggttagaa	23280
aattgttca	gcctgggagg	tcaaggctgc	agtgaacgg	gttctacta	ttgcacttca	23340
gcctgagcg	cggaacaaga	ccccgtctct	aagtaaagaa	aaggaaagta	atttggttca	23400
ggttatata	ctgatgagtg	gtagagctag	gatttgaaca	tagggagccc	ctgactctaa	23460
ggtcatgggt	ttaacaactc	taccatgccc	cctggatgaa	tattgattt	gggaagggaaac	23520
aatcctgcca	gttaatcctt	cccactattt	atgttccctg	ttgttgttta	cttgggggg	23580
ctttagttgt	ttgtgatgga	gtctccctct	gtcgcccagg	ctggagtgca	gtggcacgt	23640
ctcggctcac	tgcaagctcc	gcctcccggg	ttcacaccat	tctcctgcct	cagcctcccg	23700
agtagctgg	actataggca	cccgccaccc	caccggct	atttttgtt	tttttagtag	23760
agatgggggt	tcatcgtgtt	agccaggatg	gtctcaatct	cctgacccctt	tgtccggccc	23820
gcctcagcc	cccaaagtgc	ttggattaca	ggcatgagcc	accacaccca	gcctgtttgc	23880
aaattcattc	cttcccgagc	cttcagcag	tggttctcaa	tttgaatgtt	cataggaata	23940
tcttagtact	gttaaaaaatg	tagattttag	gccacacttc	cactaattt	atagggtgtt	24000
tatgggtcct	gggaatctac	atttttaaaa	atattttaa	aataataact	tatccgagtc	24060
acatggcacc	aaagtgtgtt	agcagccaaa	agtatcttt	cgggtctgca	gcagccccaa	24120
ttcttgccctc	ctcaggagac	agaaggagag	accgagacaa	gttttagagc	aggagtgaaa	24180
gtttattaaa	aagccttaga	gcaggaagga	aaggaagaaa	aataacactt	gaagagggcc	24240
aagcaggtga	cttgaagac	aggtgtgtc	ggaatctgca	ttttaaacaa	cacttagatc	24300
agtatttctt	aactcttca	ccatgaccca	cagtaagaaa	tagattttt	tttttagttt	24360
aatatatata	catacaccac	acccttagga	cagcgatacc	ctatgttata	gtccgtttt	24420
actctgctga	taaagacaca	cctgagactg	tgaaaaaaaa	gaagtttaat	tggacttaca	24480
gttccacatg	gctggggagg	cctcagaatc	atggcggagg	tgaaaggcac	tttttagatg	24540
gtggcagcaa	gagaaaaatga	ggaaaaatgca	aaagcgaaa	tccctgataa	aaccatcata	24600
tcttgtgaga	cttatttact	accacgagag	cagtatgggg	gaaaccaccc	ccatgattca	24660
aattatctcc	cactgggtcc	ctccccacaac	acatgagaat	tatgggagta	caattcaaga	24720
tgagattttgg	gtggagacac	agagccaaac	catatcgccc	cactacatgc	agtgtactca	24780
attctattct	gtaccttcc	tttcccttct	ttttctttct	ctcttgcatt	gtttagtgctt	24840
acccagccca	ctaaattaaat	tttacaatca	gtgggttccca	agctacaatt	tgaaaaatctc	24900
tatctgagat	gattctgatg	caagtgatcc	acagagtata	ctctgagaaa	ctttgatctg	24960
atctacatgc	tgagttcagc	ttctcaaaata	tggcctttaa	agcccttcat	aatctggaaag	25020
ccttcctttc	cattctagct	ttcattctgt	acctcagctt	cctacccttc	cttcctctac	25080
caactgagtgc	acacatgcac	ttacttggtt	ttgcgcgtt	gaactatctg	cactgtttaga	25140
agagccatgt	tctttcttac	ctctgtgtt	ttatacatgc	agttccttt	catgaaataac	25200
cctgatctgc	ctggtaattt	tttcttactc	accctccaag	tttaaggatc	acatcgcttt	25260
taaagccttc	cctgacccctc	tctctgtttt	cccaaagtac	ctgtgtgtt	gtgtatata	25320
atatgtgtgt	gtatgtatgt	gtgtgtgtt	gctgtgtgt	atgtgtgtt	gtgtatata	25380
atatatata	atattttttt	ttttttttt	ttttccgaga	cagagtttgc	ctttgttgc	25440
ccaggctgga	gtgcaatggt	gcaatcttgg	cttaccgcaa	cctccaccc	ccaggttcaa	25500
gcaattctcc	tgcctcagcc	ttctgagtag	ctgggactac	aggcacgcgc	caccatgccc	25560
agctaatttt	ttttgtattt	ttagtagaga	tggggttca	ccatggccag	gctggcttgc	25620
aactcttgc	ctcagggtat	ccgcccaccc	tggcctccca	gagttactgg	attacaggcg	25680
tgagccaccc	cacccagcca	gtacctgtac	atatttctaa	tatggtttgc	tataacttt	25740
attacatgtt	tttccttacac	taaatcatga	aattctggag	gatgaggact	gttttccttgc	25800
tatctctggc	acatgaaaga	agcttaatta	aaatgtgtt	aaagggccag	gcacgggtggc	25860
tcatgcctgt	aatcccagcc	cttggggagg	ccaagatgg	tggatca	gagtcttagtt	25920
cgagaccagc	ctggcaatg	ttgtgaaacc	ccatctctac	aaaaaattgg	ctggggcatgg	25980
gtgcgtgtct	caagttccag	cctgctccag	aggctgaggt	aggaggatca	cttgagccct	26040
tcaggctggg	ttgcagttag	cccagattgt	gccactgcac	ttcagcttgg	gtgacagtga	26100
gaccccgat	aaaaaaaaaca	aacaaactaa	aacggttga	agaataaaatg	gacgaacatg	26160
tcatattttt	acttttctt	ttttttttt	tacggagtct	cgctctgtt	cccaggctgg	26220

agtgcagtgg	tgtgatctcg	gctcaactgca	agctctgtct	cccaggtca	caccattctc	26280
ctgcctcagc	ctcccgagta	gctaggacta	caggtgccc	ccaccatgcc	cagctaattt	26340
ttttagtattt	tttagtagag	acagggttcc	accgtgttag	ccaggatggc	ctcggtctcc	26400
tgtatctcg	ttccgtccac	ctcgccctcc	caaagtgtcg	ggattacagg	cttgagccac	26460
cacgccccgc	cttatttgt	cttttctacc	aaaaatatac	cagttgttt	ccttacactga	26520
gatgccctga	aagccttctc	agttctctta	agtctgagat	aacatctcc	taattatacg	26580
gtatactcag	caattaatca	tgaaaagttt	tgtgttatct	gttagatcat	ttgattcttc	26640
agaattttc	ttaaaatattt	aatttcatgc	tacttgtgga	cagggtctgt	gatggaatct	26700
tgtttccattt	tcacttggc	acctaaacaa	tgtatttgtt	ttactgttat	ctctatcttc	26760
tcagctaagt	gccttggagct	atttaggtttc	ctacactgcac	acaatagatt	ccccaaactag	26820
tgtgttttaa	ggccggcctt	tatcttttt	gccattttgtt	ctttaaaact	aagaaacagt	26880
ctctagcaaa	cggggcataa	agcagtctaa	tactgtcaaa	tttgaggcctt	caagtaaagg	26940
attattcaaa	ttgtctaattt	gccaaagttt	aaattgggtt	aggaatttaa	tttagggactc	27000
caatatcaga	ttttaacagt	gtttacttag	ctagaacaaag	agtggcaattt	agactttgtt	27060
gaggactctt	aactgcaaaaa	gctgaaaaaaa	attttaattt	atataatcatt	ttcttagttat	27120
gtacttttgtt	aatgaaatgt	taggattttt	agtagtgcggc	agttaaactc	catagaatat	27180
ctaaactgtt	tattaaattt	tgtgcaataa	aatttattttt	gacaataaag	aatttgcaat	27240
taagttttat	taggttagttt	actgtttttcc	catgtagaga	atctttagttt	gttatgagag	27300
taaaaggctg	ctatacagtt	gagtttggga	aaactacattt	acttagtagt	ctgaaaggga	27360
atacagtttta	ataagtagtc	taacatagat	tcttatctct	aaagtctgg	ctaatacaag	27420
aaaaaggcctt	tccttacaac	tgaaaactta	aagtttggaa	aaatggctca	tgtgtacttc	27480
attgtccctt	ctttatttgc	gtcagagttt	tcgaaggcctt	tttttcattt	cccttagggcag	27540
aaacctgtgt	ctttcttgc	ttcagttatcc	cttgagcata	tttccattat	aaagtttttc	27600
atgttgtattt	atataatttt	agtttatgtt	tctatttctc	atccagatac	tcatctact	27660
aagggtcaggc	attgtctttt	caaattttgtt	tctaacaactt	tactatggta	gcacataata	27720
gatactcaat	aagtatgttg	aaagggttag	taaattaatg	atataacttct	agtataacttc	27780
tagcaccttt	actgtttgcc	tgccacatga	acacttaat	gtcaactttt	attattatac	27840
ataggggata	ctttatatac	tttttaagta	acaaaaaatgt	aaattaattt	taactaaatt	27900
ttatattttt	ccttaagtga	gacttagttt	attttttttt	tttctattat	ttgttagagac	27960
agggtctccg	tatgttgccc	aggctggctt	tgaactcctg	ggcttaagt	atcctcctgc	28020
ctcgggtttcc	aaaagtgtgt	agattacagg	catgagccac	catgcccac	tgagacatag	28080
ttcttaaaat	tgttatttcca	ggctgggcgc	agtggctcac	gcctgtatc	ccagcacttt	28140
gggaggccga	gatgggcgg	tcacgaggc	aagagataca	gaccatcctg	gccaacataa	28200
tggaaacccta	tctctactaa	aaatacaaaa	attagctggg	catggtggcg	tgcacctcta	28260
gtccttagcta	cttgggaggc	tgaggcagga	ggagaatcag	ttgaaccagg	aggcgggggt	28320
tgcagtcagc	tgagatggcg	ccactgcact	ccagcctggc	gacagagcaa	gactccatct	28380
caaaaaaaaaat	aaaatttata	ttccatatgc	tgtgtatttt	tgccttggta	tttattttta	28440
tttcagtagt	gtttgacagt	attagaattt	tagaaatgtt	acacttctag	agcttagtata	28500
cataatttgc	ttttaaaattt	taatttgc	ttatgaaaaa	tatagcatga	taatatcttc	28560
ttgggtaaga	atgaaattct	cattacacac	ctactgattt	tagggttaaaa	ggagtgtat	28620
ttctttctaa	aggttagatta	aacatttaaac	ataaaaaagga	aggggctggg	cacggtggct	28680
cacacgtgt	atcccagcac	tttgggaggc	tgaggtgcgc	agatcacgag	ttcaggagat	28740
caagaccatc	ctggctaaca	gggtgaaact	ccgtctctac	taaaaataca	aaaaattagc	28800
cgggcatgg	ggcgggccc	tgtgtccca	gctactcggg	aggctgagac	gggagaatgg	28860
cgtgaacccg	ggaggcggag	cttgcaggga	gccaagctca	catcaactgca	ctccagcctg	28920
ggtgacagag	tgagactcca	tctcaaaaaa	aaaacaaaaa	acaaaaaaaaa	aaaaaacata	28980
aaaaggaagg	agaacaggag	aacagttattt	accttattat	ttgactaact	acaaagtgaa	29040
attttaaact	agtttaagag	gaatttgaga	gaagtcattt	ggtctcatgc	ttccttccgt	29100
tagtttctgc	aaatgttaaa	actgagttatc	aggccaggca	cggccactca	cacctgtat	29160
cccaacactg	ggggcccaag	gtgggtggat	cacttgaggt	caggagttcc	agaccacctt	29220
ggccaacatg	gtgaaacccc	gtctctacta	aaaatacaaa	acttagccag	gcatggtggt	29280
gcatgcctgt	aatccttagct	gcttgggagg	ctgagggcgtt	agaatcttt	gaaccctgg	29340
ggcagaggct	gcagtgagcc	aagatcaca	cactgcactc	taacctggc	gacagagtga	29400
gactctgtct	caaacaaaac	aaacaaaact	gagttcaat	tttgacat	cagaataaaa	29460
cactgcattt	tgtattatag	aatgatatgt	atcttattaa	atgcctacag	caagcattat	29520
ccttaataag	agaaatatac	gaaacattcg	ctttgaagtt	aagaatgaga	aaccaaggca	29580
cacttttac	acttgttattc	aacatcgtag	tgaaggtcat	agccagagca	gtgagcattt	29640
tagccagtgt	acagtaagac	cccccaaaaa	gtagaggcat	aggattgaaa	aatgaggaaa	29700
taaaactata	attatttgc	attattatag	tgataaccca	aaagatataat	aatggatta	29760
tttagataag	tttaaaagag	tgagctttgt	gcattggcag	tatagccaa	tgagggtttat	29820
cttaggagtg	gttattgtt	attgaaaact	ttttcttaat	atcctgctgt	catgacttgc	29880
agtagtagtca	gcattggcaa	tttttgacag	tctttttgg	gactgaataa	aaaataaaagt	29940
ttaaaagggt	tagtggatgt	aaaattaata	tataaaggc	agtcataattt	ccatatctca	30000

gcagcaaata	actggaaaac	atcattaaaa	caaataattgt	caggagat	gaagtatgt	30060
gaaacaaatc	aaagaaatga	taagattct	ttagggaaaa	ttataaaatt	ttattatgag	30120
atcttagaga	atacttaaat	aatggagag	gtatccgt	ttctctaata	gtaatattgt	30180
aaaaatgtca	tttcccagg	ccggcgtgg	tagtcacac	ctgtaatccc	agcaacttgg	30240
gaggccgagg	cggccggatc	acaaggtaa	gaggtgaga	ccatcttgc	caagatgatg	30300
aaaccccatc	tctacttaaa	atacaaaaatt	agctggcgt	ggtgcacag	gcctgttagc	30360
ccagctactc	gggagggctga	g gcaggagaa	tcacttgaac	ccgggaggcg	gaggttgcag	30420
tgagctgaga	tcgtgccact	gcaactccagc	ctggcaaaag	agcaagactg	tctcaaaaaaa	30480
aaaaaaaaaa	aaaaaaaaag	tcattttccc	ccaattgata	agtagattca	atgcaactcc	30540
atattaaatg	tgataattct	aaacagggaa	agaatataga	aaaagaacaa	tgaggagaaa	30600
ttgacctcat	cagatagaag	tattaatact	aattaaggca	gtgtcatatt	gggataagaa	30660
tagatagatt	gactcattgg	agttagaattg	agagccaga	agagactcca	atcacctgt	30720
accctgaact	ggaataattg	gttaatcat	tatcttaact	tgttttatt	aatctttctt	30780
aatgtatgt	atagctcaga	tttatttcaa	tatttaat	tgcaagcgtt	ttggcttat	30840
aaattttagt	atgttttgc	gaccatagt	ctgccgtaga	aacttaactc	ttattaat	30900
tgatttagcct	atggtttttt	atgggttgt	ttcgttgc	gttgcattt	30960	
ccaagaacct	atagacatca	tcctagaaga	cattaagtga	agacttactg	tgtatataag	31020
cagatttgaa	attaaaaata	taaaagatct	tctgaagttg	caacagtgc	cagaagtatt	31080
ataaaataga	aataaatcat	ttccaaaaga	gagatttcat	tttgcccaa	aatctttctt	31140
ctaagctata	aaagacaaaa	ctgtcaata	cacagtttg	tcaatttaaa	tctacatatt	31200
cacccaattt	ttataagata	aaataaaaat	gtataattat	tgaaaaaaga	attgagagcc	31260
cagaaacaga	gctaaaggaaa	tatgcgactt	tagtgtatga	cagaggtggc	atgtcatatc	31320
aagaggaaag	gaggaaatgt	ttgagaaatg	aagcttgc	aaaaaatagt	tatttaatta	31380
agtcggattc	cctacccatc	atcatataca	aatatcagct	gaagatggat	taaaggctt	31440
aaaagtgaat	caacattttt	aaaacttttgc	gtagactatg	ttggtaaaca	tttaatcct	31500
tgaggtataa	aaagacaaga	cacaaagtgt	tttctataaa	actttgata	aatttgatta	31560
tattcttaat	ttcaattttat	tatattttc	agttctagaa	tttgattcct	tttttcagt	31620
tcaagttct	ccagtaaact	ctcaatctta	attccttgc	tatattaatgt	atagttactt	31680
taaattatat	gtctaaaaac	ttcattattt	ggatcccttgc	tgttatgtt	ttattgcctg	31740
ttgcttctt	ttaaaaaaaa	atttttattt	ttgcctcctc	atatgtgtgg	ttatthaaga	31800
taaaatacca	gtcattttct	gtgaaaaaaga	gtaaagattt	taggcctaca	atattatctc	31860
cctgcagaaa	attttcttct	ggctagtgc	cgggtacact	agcaatccca	ggtcacccaa	31920
aatcagtgaa	tgatttagt	tatttgaat	tggttgc	tccctgaaat	ctgatatgtt	31980
tccagttcac	ccttactcct	agggtatagc	tcttcagac	ctcaaattcc	ccaaagcctt	32040
ggttatttat	catatccac	atccttgc	aactctcaac	tcctttattt	tttccctata	32100
gtttatttag	agttcatctc	aatcttctta	accatcttt	agaaaattgt	caggctat	32160
tcagataaaa	gtggcctc	attctgaact	gtgggtttc	ttctctcata	tcttggcgc	32220
atggtttttc	atgaccttgc	tagctctcta	atgtcattag	agaaatttttgc	tttcatattt	32280
tgtccactt	attctcatgg	ttgaatttgc	ccagtttaca	gattatcatc	tatcattacc	32340
aaagttagaaac	ttctttttat	taacgtttac	tttatgttt	tttcagtaac	ttgtaaaatgt	32400
atctaaatgt	ttgggtgttc	aataggactt	taagtaattt	ttcagtcatt	tatgttaatt	32460
gagaaaatgt	ataataata	tcactactag	gttcaacacc	tagtggat	acatcagaca	32520
tcccttctga	tttcatttgc	aactttgtct	aataggatag	aagaggcata	cataaatgtat	32580
tatcatgtaa	gattttaaa	cttttaaggg	cataagaaag	gtataggtca	agtcgtgcac	32640
tgatttagag	aggagaaata	ttccctccat	tgcagaggat	gaagttaggc	tttataaaaa	32700
agaagcttgc	agctgggg	tcagccttac	actgaatctt	gcattggta	aaaacgggta	32760
tctgtcatga	ttcttgcctg	tcagtagttt	ttaaccatgt	tgtgcagaga	tgaaagtaat	32820
tctgtatgc	tagtaattgt	atttccacac	attgagaaga	ttcaaagcaa	aatctcataa	32880
acagtgattt	tttttgagaa	gtaaatgtt	tttcttccct	gtagtagaaac	tattatgtga	32940
ctaaatgttt	ttgaactttg	gttatttgc	cagtttgc	attttttttgc	tatgtgccat	33000
ttaaaaatata	ttaaaaataaa	cttttatttgc	gatacaataa	aatctaccgc	aatatgtcct	33060
gctacataac	cacaatcaag	ctatggaaaca	tttccatcac	cccctaaaat	ttccctggc	33120
ccttctcgc	tcagttccct	accctgc	tgcctcaggc	aattactaaat	ctgccccttgc	33180
tcactggaga	ttaatcttt	ctaaaactgc	atgtttatgg	aagcatacag	tatacttttgc	33240
tatctgggtt	cttttgc	acatgggttt	gagatcatt	catttgggag	tgtatacc	33300
tagcttgc	tttttttttt	tttttttttt	tgagatggag	tcttgc	tcgcccaggc	33360
tggagttgc	tggcacaatt	tcggctca	gcaagctgc	cctctcggt	tcaccattct	33420
cctgcctcag	cctcccaagt	agctgggatt	ataggcgc	gccaccacgc	ctggcttaatt	33480
ttttgttattt	tttagtagagg	cggggtttca	ccgtgttagc	caggatgtgc	tcgatctccc	33540
aacctcatga	tccaccacc	tcggcctccc	aaagtgc	gattacagg	gtgagccacc	33600
acgcctggcc	agtttgc	ttttattgc	tgagtttatt	ccattgtagg	tctataacc	33660
actttgc	tccattcaca	gagttcacat	aggttgc	ttaaacttac	caggaacatc	33720
tagctacaaa	tttacccat	ttgcatatttgc	attactcatc	tttgcatttgc	agagacacta	33780

atatcttcaa	tgctacattt	ataatgctgt	aaaaatggat	tttgaagagg	tagctctcat	33840
attgcctaca	caatagtgcc	agtagagtat	gctgctgtaa	cacaagtgtt	ggtatcataa	33900
cattttgacc	tttcagttgt	acagagtaca	gatgtgttt	tatgcactgt	ttcaaagatt	33960
aagcataaga	atgctaatac	tgggatactt	ataaatgtt	tgatagctaa	gtagactctc	34020
aatgtcatta	aataaaaaca	gtacaaaata	cattatca	tttatttagt	attgcctgt	34080
aaataaggaa	tttgggctta	actatgttc	taaatttagt	gtttcaaaat	ttaataactt	34140
gcaaagtaaa	attgttatgt	aaataatgt	catgtcttgc	tttttaaaaa	tatgacttat	34200
tgcstatagct	tatggcattt	gaaaaggcaa	tatttctt	tggacttgg	tttctgggtc	34260
aaataactaat	ttaacaaact	attataactat	attctatcat	gagctttct	agttttatag	34320
aactgtaaaa	ttttaatta	aaacatttt	taagtttgc	cgtaaaattt	cttatggaaa	34380
ctagctatct	taacatttt	ttgtttctt	gtatttcatc	cttaaaatgt	tatccacat	34440
tttagtagata	ctcttgcgt	tgtcatttt	atgtacaaca	catgtacaat	tttctaata	34500
atttcaattt	ttaaaagcat	aggctctaaa	ttaatgact	tgagttcaca	tttccaccct	34560
gtcactgtga	aacttgggc	agtaattca	tctcttaca	gtcagttcca	ggccaggctc	34620
agtggtcac	gcccataatc	ccaacactt	gggaggccaa	gggggttgg	tcaacttgagc	34680
ctgggagtt	gagaccaccc	ttggcaacat	agtggaaaccc	catctctaca	aaaaataga	34740
aaaatttagct	gggcgtgg	gcatgtgcct	gtagtcccag	ctactcagga	ggctgagatg	34800
ggaagatcac	ttgagcctgg	gaggcggagg	ttgaggtgaa	ccaaaatcgc	atcaactgcac	34860
tccagcctgg	gcaacagagt	gagaccccca	tgtcaaaaaa	acgaactaaa	ctcagttcct	34920
cgttgcata	atgggatga	aagtaattct	tgtacagatt	taggagataa	tttacagagt	34980
ccttaacaca	acaactggac	caaatacata	cttgcata	gaatggtaa	atgccattct	35040
ttgttgcgt	caaaccgtca	actattttt	aaaacttga	tttgcattt	atgtcaactt	35100
gggattttgc	ttaaaatccc	aggtgagggg	atagttactt	cctgaacatg	gctataattt	35160
atcaaatact	gttagatagt	gattacttga	taagaatgat	aaaaggcatt	cttgcagattg	35220
tatactgttc	tattttatt	catacatatt	tggatgctat	tcaaggttat	ttgctataat	35280
ggcagggag	gaggacctag	caagtctta	ggtctatgt	actattacat	ttaaaaaatt	35340
ttttttct	attcagtccc	tgaaaaacag	ctgaatgata	ttgaagattt	tgacctcaat	35400
gtggtgagac	tgttttca	agttttctc	cctgatgac	atggtaattt	gacgactgct	35460
cttcctcctg	ttgtctcgaa	cccaatttt	gacaaccgt	agtacttcat	tttcttata	35520
ttgttagtct	aacttgcattt	ttgttaatgt	ttaattctt	aaattatttt	ggtaattagg	35580
aaaacaatat	attcatgata	gaaaaacttc	cagacattag	agaaatata	aacagaaagg	35640
aaatcttctc	taatctcattc	ctccagagat	aatcaactatc	cttaggtgca	tattttacca	35700
gtttcttctt	cctgtatata	cacagataca	ttgtcatcat	catcattttt	gacacagtac	35760
aattttggca	actaaaaatc	ataagtgtat	attgtttaa	aaactaactt	tcttcttacc	35820
atatatctt	gacattttcc	ttttaatcac	cttattctt	tcaatgcag	catattttat	35880
tatgttagtta	tatcataatt	ttattaattt	ccctcttaca	aggcatttgg	tttgcatttt	35940
ttctcatttt	ttctttttgg	cctagcaaaac	tgtactgca	tacatattct	tgtatatttt	36000
tttttattgg	ttttttttt	ttttttggag	acagggtctc	actctgtcac	ccaggcttgg	36060
gtgcagtgtt	gcagtcattt	ctcactgcat	ggcaatgt	ggctcaaagg	atatggat	36120
atctcatttt	gaaagattat	gaaactttcc	cccaaaatac	tgtgtgtgt	tgtgtgtgt	36180
tgtgtgtgt	tgtgtacgt	tgtgtgtgt	tacatagact	tagatatacg	tccaccaatg	36240
gtgtatgata	tacctgtttt	atgtgttagaa	ggatagagag	acttagggct	ataaaggaag	36300
catgaaagtt	gtattgccc	agggagatgt	attgcccatt	ggaaaattgt	attgcccatt	36360
ggatgtggc	atgatttatt	aagattaatc	tggtgacagt	ggtaggatt	gattggcgg	36420
atcagaattt	agaagcagg	agatgtattt	agagaatatg	tcattaccta	gaaatgaagc	36480
cacaaagtct	aaagtaaaagc	agttagaaag	gaagtgaca	gataaataga	tgattatgt	36540
atttagtgctc	atttatctat	acactaaaac	ttttattctg	tgaatgcattt	tcctcaatt	36600
ctccctcgca	aaaagaaata	aaatattact	aaggtacaa	ctcatttttt	tgaaaatcct	36660
ttatatttt	gtgctccaaa	tactgcagaa	ttaaggattt	gtcggtttaaa	caagaattgt	36720
ggaagtgtca	gaggaggaga	tgaaaatattt	ctactttgt	acaaagttca	gaaaggtatt	36780
tattttattt	attgaattt	gaataaaattt	tagattaata	gatgcagtt	cttgcatttt	36840
ccattttttt	ttttttgg	tcttatttgc	tagatgacat	agaagttcg	tttgcatttga	36900
acgattggaa	agcaaaaggc	atcttttac	aagctgatgt	acaccgtcaa	gtaccat	36960
tttcaaaatc	tccaccat	tgcaaaagcta	tcacagaacc	cgtaacagta	aaaatgcagt	37020
tgcggagacc	ttctgaccag	gaagtttagt	aatctatgt	tttttagat	ctgcccatt	37080
aaaaaggtat	gacatttgc	tggtaataat	ttatatttt	cttgaagtgg	tcctgctaat	37140
aacatcttct	tgtatattt	atttgagttt	agttatgtat	attcataatt	tatgtttttt	37200
ttccttggaa	ctttctgtt	gttttttttt	tatgtctttt	gcatctcttt	atttgcattt	37260
ttgtttttt	ttttgtttt	ttttgtttt	gagacagat	ctcactgtca	cccaggctt	37320
agtgcagtgg	cgcaatctt	gctcaactgt	acctccctt	ccgggttca	agcgatttt	37380
ctgcctcagc	ctcctgagta	gctgggacta	taggcacgt	ccaccacgt	gggctactac	37440
tttgcatttt	tttagtagaga	cagggtttca	ccatgttgc	taggcgttgc	tctgcattt	37500
tttcttcaag	aagaggtttt	attgtatgtt	aataatttca	aagtatctaa	actgttact	37560

aaaatttcta	ttttatTTTT	gaaggTctgt	tttagtcttt	gtgcacttac	cactcagaga	37620
gtagtctcta	tattgtttc	ttatcaaacc	ttattgcatt	agttgacatt	attgacttgt	37680
gtgataagaa	aacaagatga	atattttaa	cagcttgtt	tgggtttttt	ttgagacagg	37740
gtctcactct	gtcactcaag	ctggagtaca	gtggcatgtat	cgtggctcac	cagagcctca	37800
gctcctggg	ctcagggtat	catcccac	cagctcgtg	agtacctggg	actataggtg	37860
cgcaccacca	cacttggcta	atttttgtgg	ggttttttgg	ttttttgtt	tttttgtttt	37920
tgagatggag	tcttgcTCTG	tcttgcCcag	gctggagtac	agtggcgcaa	tcctggctca	37980
ctgcagcttc	tgcctcCTgg	gttcaagcaa	ttctcctgtc	tcagcctccc	aggtagctgg	38040
gactacaggc	atgcGCCacc	acacccgact	cattttgtat	tttttagtaga	gatggggttt	38100
caccatgtt	gccaggctgg	tctcaaactc	ctgacccTAG	gtgattcacc	cacccagcc	38160
tcccaaagtg	ctgggattgc	aggtatgagc	cactgcgcct	ggccaatttt	tctgtttttt	38220
tatggagaca	gggtttgtc	atgttgcTTA	ggttggcctc	aaactcctgc	gctcaagtga	38280
tccacctgCC	tcagcctccc	aaagtgcTGA	gattactta	aacaattttt	tactaagaga	38340
aaaatatcct	tttctactga	tactactgt	ttgggacata	ttctataata	cttattaaat	38400
ccaaacttaca	tacatattta	ttgaaaacat	tttctatatg	tgaataaaaat	atttgcTTat	38460
taaaggagag	gatacaatcc	tataattttt	tatctgcTT	cctggTTTCT	ttctaatcag	38520
atacttacgg	caataaAGCA	aagaaacaaa	agacaactct	gctttccag	aaactgtGCC	38580
aggatcacgg	taagaatagt	ttggatcgt	tcatatttaa	ataggTTTg	tttattttac	38640
tttattcagt	tttcaaattt	ttattatttt	tgTTTgtt	tgttgcTTgt	ttgttttttgg	38700
agatagcattc	tctctctgtc	acccaggctg	gagtgcagta	gggcaatctc	aactcactgc	38760
aacctctgCC	ccccaggTTc	aacaattctc	ctgcctcagc	ctcccggtt	gctgagatta	38820
caggcatgtt	ccaccacacc	cggctaattt	ttgtattttt	agtagaaaca	gggtttcgcc	38880
atgttgcacca	ggatggTCTT	gaactcctga	catcaggtga	tccaccacc	ttggcctccc	38940
aaagtgcTgg	gattacaggt	gggagccacc	acgcccggcc	agtttttcag	attttaactg	39000
ataatgttat	tttcaaaatg	acatttaata	atggaaaaac	tttacccaa	cagttaattt	39060
tcctgagaga	ccaagacctg	gtctcctcgg	ttcaatttgg	gaaggaagat	acttcaaaaa	39120
agttattttt	ttccctatag	catattttt	gtgtcagaa	agaccagta	tttgacaaat	39180
atatttggat	tctattttt	ggaatgaata	actgcTTCT	tgaaaatttt	cttccagat	39240
tttcatgct	ttcagtagat	aatgaattaa	gcatggctc	tgaaggTTgt	gttagaaact	39300
gattatgtt	ttgggattta	ttgttcaaga	aattacatgt	tgTTcatatg	gtaccaattt	39360
tattaattac	attgcgtt	gaaaaaatgt	tactgattt	tttagttacc	tgtttttata	39420
aataacattt	tactgaaca	cgGCCatgaa	tatttgatta	aatattatct	ctaaactgc	39480
ttttttttt	aacactatgg	caacagggtt	gaatagtcc	aacagaggct	gtatatagct	39540
cacaaagcct	aaaatattta	caatctgact	tttacagaa	aaaaaaattt	ccaatcccta	39600
gtttaggtaa	ttcaaccgag	ggcttaattag	aagaagtctt	ttttcccca	cgtacattct	39660
taaatcattt	cttttcctg	gtttagttt	taaagcattt	gtataatatg	taaatagata	39720
cagaatttaat	tttttctgt	atttttttct	gactgtgaat	tttatagtct	cttagggttc	39780
tgttgcata	tatcttaaaa	gttatgtgt	ttttcttatac	cctaatgagt	gttgtctcca	39840
tcctccattt	ttctcctaaa	agtgaagagt	aagagatgt	tttggttatt	ttggatccca	39900
ttaattgtaa	ttctaataatt	tatcttttag	tttcaaaaaa	tacctttata	gagcctcaga	39960
aactagattt	tcatatttaa	ttgaagtgt	attacatatg	ccaaagtaac	ttgccaaaat	40020
cattttacct	gtatttgcTT	aatggtat	acgttacaga	atttcatttt	ggattcgtgt	40080
aataattttt	gtgcTTTT	cattttttt	tttgaatgt	tacattgtt	tccttgacat	40140
ttttctttat	atatatttgc	gtgcTTatgc	aattttaaatt	tagaaatgt	ttttataatt	40200
ttgttgcattt	taatttgc	aaataaaattt	ttcctcccac	agaaccaaac	ttgttttctc	40260
atgatgcagt	tgtgagagaa	atgcctacag	gggtttcaag	tcaagcagaa	tcctactatc	40320
cctcacctgg	gcccacTCTA	agtggattgt	cacatcatgc	ctcaatggca	cctctgcctt	40380
cttcaagctg	gtcatcagt	gcccacccca	ccccacgctc	aggcaataca	aacccactga	40440
gtagttttc	aacaaggaca	tttccttct	attcgaagg	tatcccacca	ttcctgagaa	40500
tacctgttgg	gaatgattt	aatgttctt	atgttgcatt	ttacaacaat	ggccatgaca	40560
tagtcggat	ggaagcgtca	tccatgcat	cagcagattt	atatggattt	tctgtatccca	40620
acatgctgtc	taatttgcTT	gtgaatatga	tgacaaccag	cagtgcacagc	atgggagaga	40680
ctgataatcc	aagacttctg	agcatgaatc	ttgaaaaccc	ctcatgtat	tcaagtgttag	40740
acccaagaga	cttggacacag	ctccatcaga	tgtcctctt	cagtatgtca	gcaggcgcca	40800
atcccaatac	tactgtttt	gttgcataat	cagatgcatt	tgagggatct	gacttcagtt	40860
gtgcagatata	cagcatgata	aatgagtgcgg	gaccatcaa	cagtactaat	ccaaacagtc	40920
atggTTTgt	tcaagatagt	cagtattcag	gtatggcag	tatgcAAAT	gagcaatttga	40980
gtgactcctt	tccatATGAA	ttttttcaag	tataacttgc	aagattttaa	tcctttttaaa	41040
tcttgcata	accttatata	atgcgcgtt	ttgttatttgc	ctactgggg	atataatact	41100
atatttatac	tgtatata	atactgcact	agaatataat	actgtatttgc	agaatataaaa	41160
aaactttttt	cagggaagaa	gcatacaca	ttggacatag	cgaataca	attggaaagct	41220
gtcataaaaa	gacaactcag	aggccaggcg	caggggctca	cacctgtat	cctagcactt	41280
tgggaggc	aggcgggtgg	atcacttgag	accaggaatt	cgagaccagc	ctggccaaca	41340

tgtgtaaaacc	ccgtctctac	taaaaataca	aaaattagct	gagcatggtg	gtacgtgcct	41400
gtactgtcag	ctactggga	ggctgaggca	caataattgt	ttgaaccag	gaagcagagg	41460
ttgcagttag	ctgagatcac	accaccgcac	tccagcctgg	gtgacagagt	gagactctgt	41520
ctcaaaaaaa	aaaaaaacaaa	aaaaacacac	tttttatat	ttcttttat	aatgtttaa	41580
tgtattctta	aatttcaagc	aaatttaaga	taaaacttgt	aatggctatg	ccattgaaaaa	41640
acttaatttt	ttatTTTga	ggcccatggg	ccaaggtaac	ccctaagggg	ttttcttagg	41700
cttcttggag	cttagatttg	tatgtatatac	aaaatgtctt	taaaatgtta	agttggcag	41760
aaggcagttt	aagttagctt	tcaaggatgt	ggaggtttc	tacattttat	actatttcaa	41820
tctatgcctt	taaaggtagt	tatgattta	gctgtacact	catttttaa	ggggaagaag	41880
tttccttggaa	ccatttcgcct	ttcttagatg	tcctcactcc	ctgtgatctc	ataaaaactgc	41940
ctatttgaca	tctctatcta	gaaatcta	taaagctcac	actcagcata	tccaaaactg	42000
aattcttggt	cttccttccc	aaacttgctt	ctccttcagt	cttctccaaac	tcaagttaaatg	42060
gcaatgccat	acttctggtt	gctcaggcca	aaaaccctga	agtcatcctt	gattcttctt	42120
tttagcacccca	tatccaatcc	attagcaat	ctggtagacc	ctaccttcac	aatatatcta	42180
aagctgacca	cctctttga	cctctactat	taacccctta	ttccaagcca	ccatcatctc	42240
ttcccttggat	tgaagctgtc	atctacaaa	atttttctta	tatccttgc	ttcttacagt	42300
ctgttcccca	taaagtagcc	agaatgatata	tttttaaaac	aagtcaactc	ataccattca	42360
tctgctcaaa	accattcatt	ggcttctcat	ctcactcaga	gcagtcaaaag	tcctttaaaag	42420
ttgcaggcct	agactccctg	tcctacctca	ggtaccacca	tatcccacct	cctcatgcag	42480
ctccaggcac	cttggcctca	gtgctcctca	aagcatcaag	tatgcacttg	ccttggacag	42540
tctgtacttg	gtattccctc	tgcccttgaat	gttggcttcc	cagaaaaatg	catagttcac	42600
tcttacatcc	ttcaggtgtc	actccactgt	tacctgagca	ggtcgtcctt	gaatataatac	42660
atcagcattc	cctttcccc	ctgctttatg	tatgtccata	gcactcacca	cgatctgact	42720
ttactaagta	tttattcatt	tactgtttgt	tttccatatac	cgaaatataa	actttcttaag	42780
gacagaaaatt	tttggcttt	attgttgaat	ctccaaatttg	tagaaaaatg	cctaccttat	42840
attaaacact	cagtaatgt	ttattgaaca	ttaaaagtat	tactaataga	actttggttt	42900
ttgaaagaaa	taataacttt	aattataaga	cgtatatagt	ttttgcagtt	ttacttagt	42960
tgacatttggg	tttatggagaa	tcgtgtacat	tcaagtccag	gaataataat	ggtcatccaa	43020
atgtttgaa	aggaaaataa	tcccagtggc	aaaatgtatgg	tagaatttgg	gtaatctttt	43080
ttttcctttt	atgaaaagag	attttattga	aggtaaaaca	tttagaggttc	attgagaatc	43140
tctaaatcca	tgtttgaca	ttgtcaagct	cattgcaact	tccagatgt	gtaacactta	43200
taacacattt	cctttcaaa	gtgcaagatt	tttaaaagag	acttgcacata	tattcatttg	43260
gctggttca	aatggtgagc	tgaatgctgg	gtaatctcta	ctagctcctt	aatcagattt	43320
aaaattctca	gtgtttccta	gttggttctg	catactttat	gtgagttgtt	atagctgtaa	43380
cattacactt	tatttgcgt	ttgtgtttcg	tgacttttg	taattctggc	atttagaaac	43440
cttcacttt	gcttccaaac	gtagttatata	tttggagttt	tcatttgata	tataattatt	43500
tatttgcctt	tttttattcc	caaagacatt	gtaagggtta	attagatcat	tatattttat	43560
tattacagat	taaagttggg	cagtaatctt	aattatgtat	gaattatcat	tatgtctaagt	43620
aatttaactt	acctagttt	tttttacaact	agaacctgccc	ctaaatgttg	aatatcttcc	43680
tagcaagaaa	cagtctgtca	tttttacttac	acgatgtcta	accaaaccat	aactttacat	43740
aaactagtcg	tttcggtcaa	atagaaaaat	gtgtgaatgc	cataaaaaaca	aaaattctca	43800
gttaaatgt	actggaaat	agggaaagaca	gcaaaagttag	acttgggctc	aggatggttc	43860
aggaagaaaa	aaaaagaaag	accctgagt	accattaata	ttcctcagaa	attattattt	43920
caaaggaaaa	tatttctgt	ttataaaattt	ttcatgagca	gccattatga	aatctcacaa	43980
gaatcataga	attcaataaa	aaaggtagaa	agtaattttt	ttactaaaaa	atataaatta	44040
aaataaaattt	ttaaaatcat	aagcacataa	atagaactta	ccagggagaa	agaaaaacct	44100
gaaggcacaa	tttctttct	gttcaaaatg	tgaaccagg	atgtctctag	atgatgatgg	44160
atgataggtt	gggagatttt	ttttttttt	aatacagaat	ctcatagttt	tggattaatt	44220
agcaccatc	agtttaaaca	ctgactgtt	gaatagctgc	atgggttttt	ttctttaaac	44280
taattaagcg	ttggctactt	agtataagta	agtataagcc	gaattaaggt	tctgtctacat	44340
ctgtgttttag	aatattttt	taaaaactaa	taagtgttgg	ctagtttgc	gggtgtaaagca	44400
gaattaaggt	tctgtacct	ctgtgtgtag	aatattccca	atggattttt	catttttcag	44460
gtgctatttt	ttgaccctgt	atagactta	atttaaaatg	atttggtaa	cgtttctcct	44520
ctgtctctac	atataattcat	gtttcacct	gctttttaa	cacctgcctt	tagtatctga	44580
ggcacttttt	ctgaactcta	cttggcact	ggatccctcc	tcctttctct	gccaggctgt	44640
gtttacttta	tccttacatc	accacttagt	gattcccttc	tttgtataaa	catggtaat	44700
gtcttcattt	gcctaaaagg	aaagacaaa	taaaacctt	cctaccactt	ggatgcattt	44760
gcatcctgac	ttctgaaatg	cctccagct	ccattttctc	ccttcccagt	tattccttag	44820
cccagccatc	tctgtcttta	gctcctacaa	ttttcttagg	atattctggg	aaagatgagc	44880
ggagactgccc	cgcctgtca	aatcttagt	cttttttca	gtcctcacac	tgcttgacct	44940
atgtataacc	tcctataactt	ccctcttgc	atactccct	gggtttctg	tggttagtcaa	45000
gattcctccc	tgagatttat	ttcccatgag	tcttgacccc	tccctcagt	tggtgctatt	45060
tcccccttacc	cgccctccga	tgatcttatac	agagccaca	ggttcagttt	tcttcatgc	45120

tacctgaatg	tcctgataaaa	ctggctcgct	ctctcttta	ccttccataa	tggcattacc	45180
atttaccacg	ccacccaaga	tacttactag	gaacctcaaa	gtattgtatt	cttttctcc	45240
atcacactca	tacttaatca	tcaagtcctt	ttgagctgt	ctccctctga	atatgtccct	45300
tcttaattcc	tgctgccttc	ttagtaaagg	ccttcattct	ttttcccta	gtaataatct	45360
tttccatatg	ttccagttaa	aataccatgt	tctccctatt	ccttattaca	tagctagcat	45420
tcctgaaaaa	aaaacaattc	tctcaggcct	ccataccctt	agcatgttac	ccactctgcc	45480
tctgctcttc	tggaactaga	acactcatcc	ttgaaggctg	ggcttctgta	tgaagggtgg	45540
tcctgcctcc	ttacttgagg	tgaagcttg	tacatgcctg	tattacggac	atcctcttat	45600
ttaagtgttt	gtctctttcg	tcattggac	tccagcaccc	agcatagtcc	ctagtatact	45660
agttgggtct	gaataaaatag	tagctattat	tagaaaagga	agggtgaat	tgacatggga	45720
gttagtaaaa	tgtatatgga	aatgatttt	aaaggggaaag	gtaatgatt	tctggcagga	45780
aaagcagcaa	tgacaagatt	acttaagtct	tgtgaaataa	cacttcttct	ccttgacactg	45840
ctgcttccct	tttttaccac	acacacacgc	acacatacca	cagccctttg	agactgaaag	45900
cagctctatt	gagaatagta	gtgtcaactg	tattatgtag	aaattctaaa	gtttttggga	45960
ttatttcata	gccctgacct	tgctacttct	ctccacttta	tgtggcaagg	ttaatctcag	46020
gtctccctca	tacacttctc	agcctcagca	cctaaccctc	acacaacact	ccagttattga	46080
tgcagtcaat	cttgtataac	atttttgaa	tgtccaatgt	gcaaaggcag	atgttgaaaa	46140
ttatacagag	gtgaataaga	caaaaactct	tgctctcaaa	gatgtcaatc	tttttctttg	46200
caaggataac	acatgttagag	taaaaatgcat	aaaggggact	aattttaaat	gtacagctta	46260
attaatttt	atgtatgtta	acacccatgt	caccacatg	tttaggacat	ttccagcacc	46320
cctgaaattt	ccttcatgcc	ccttcccagt	ctgtacctac	acctctaaat	ctatttctaa	46380
tcttaatggc	cttttaataa	actgggcttc	tcacaaccat	agtgaacaga	aacagctggg	46440
ttgtcaacgt	ctaaccataat	acttcaggaa	aactcatgtat	ggtttccatg	ttaagagaga	46500
catggagcag	ggcactggca	tggtggatgg	atcacgcctg	taatcccagc	actttgggag	46560
gccgaggtag	ggggattgct	tgagcccaagg	agttcaagac	tagcctgggt	aatataagga	46620
aaacctgtct	ctgaaaaaaaaa	aaaaaaaaaa	agaggataca	accaaattgga	agaacattcc	46680
atgctcatgg	gttaggaagaa	tcaatatcgt	gaaaatggcc	atactgcccc	aggttaattta	46740
cagattcagt	gccatccccca	tcaagctacc	aatgccttc	ttcacagaat	tggaaaaaac	46800
tactttaaag	ttcatatgga	accaaaaaaaaa	agcccatatc	gccaagtcaa	tcctaagccaa	46860
aaagaacaaa	gctggaggca	tcacactacc	tgacttcaaa	ctatactaca	aggctacagt	46920
aacccaaaaca	gcatgtact	ggtacccaaa	cagagatata	gatcaactgga	acagaacaga	46980
gccctcagaa	ataacgcgc	atatctacaa	ctatctgatc	tttgacaaac	ctgagaaaaaa	47040
caagcaatgg	ggaaaggatt	cccttattaa	taaatgggtc	tggaaaaact	ggctagccat	47100
atgtagaaag	ctgaaactgg	atccccttc	tacacccatt	acaaaaatca	attcaagatg	47160
gattaaagac	ttaaacgtta	gacctaaaac	cataaaaacc	ctagaagaaa	acotaggcat	47220
taccattcag	gacataggca	ttggcaagga	cttcatgtct	aaaacaccaa	aagcaatggc	47280
aacaaaagcc	aaaattgaca	aatgggatct	aattaaacta	aagagctgct	gcacagcaaa	47340
agaaaactacc	atcagagtga	acaggcaacc	tacaaaatgg	gagaaaattt	tcgcaaccta	47400
cttatctgac	aaagggctaa	tatccagaat	ctacaatgaa	ctcaaacaaa	tttacaagaa	47460
aaaaacaacc	ccataaaaaaaaa	gtgggcgaag	gacatgaaca	gacacttctc	aaaagaagac	47520
atttatgcag	ccaaaaaaaaa	catgaaaaaaaaa	tgctcatcat	gactggccat	cagagaaatg	47580
caaataaaaa	ccacaatgag	ataccatctc	acaccaggta	gaatggcaat	cataaaaaag	47640
tcaggagaca	acaggtgctg	gagaggatgt	ggagaaaatag	gaacactttt	acactgttgg	47700
tgggactgt	aactagttca	accattgtgg	aagtcaatgt	ggcgattcc	cagggatgt	47760
gaactggaaa	taccgttga	cccagccatc	ccattactgg	gtatatacc	aaaggactat	47820
aaatcatgct	gctataaaaga	cacatgcaca	cgtatgtta	ttgcggcatt	attcacaata	47880
gcaaagactt	ggaaccaacc	caaatgtcca	acaatgatag	actggatcaa	gaaaatgtgg	47940
cacatataca	ccatggaaata	ctatgcagcc	ataaaaaatg	atgaattcat	gtcctttgt	48000
gggacatgg	tgaaattgga	aaacatcatt	ctcagtaaac	tatcgcaaga	acaagaaacc	48060
aaacaccaca	tatttcact	cataggtggg	aattgaacaa	tgagaacaca	tggacacagg	48120
aaggggaata	tcacactggg	gactgttgg	gggtgggggg	aggggggagg	gatagcattg	48180
ggagatatac	ctaattgttag	atgacgagg	agtgggtgc	gtgcaccagc	atggcacatg	48240
tatacatatg	taagtaacct	gcacaatgtg	cacatgtacc	ctaaagctta	aagtataata	48300
aaaaataataat	aaataataaa	ataagaaaaa	gaaagccagg	catggtgaca	tgtgcctgt	48360
gtcccagcta	ttagggaggc	tgaggtggga	ggatccctg	aacccaggag	gttgagtctg	48420
tagtggcag	tgattacgccc	actgcactcc	agcctggca	agaccctgtc	tcaaaaaaaaaa	48480
aaaagactta	gaatttggta	tccaggccgc	ctaattggcat	caaataattt	gttatatatctt	48540
taatttatttg	aaggatcacc	acatgcttt	aaatagcatg	gagaaaatgga	aagaataggg	48600
actttttact	caggtaatac	ccagcctgct	acctaaccagg	ttgtgttgc	ctaaataaaaa	48660
tgttacataa	gaagaaacac	tgtaaattat	atagtgcgaa	tcaaataattt	ttaataaaacc	48720
aatatctgta	tatcctatgt	cccgaggattaa	tctttaattt	agataactcc	tcttagttatc	48780
taatacacacag	cagagtgaga	aaaatcatta	tggatttagt	tcttttagtaa	gaaacctgag	48840
atggacttct	cattagcatt	aactagttat	tgcccagctt	tggagagcc	tctttggct	48900

tatcatttat tataagcccc gaaataggtg actaatcaga gataaatgta tgggttgtct	48960
gtatctagtt ttatgccttt ttttgccta agacgttagc aaattaatat tttaactaat	49020
acatcttagc agagtttagt taagcacaaa gttAACAGTG ggtAGGATTG aatCTTgaaa	49080
gtaatcatgt ctgtaatgtt tttcatgcat gcaaaaagca cagacaaaac cactcatgcc	49140
ctattaataa acaaataaca gatcaaagg ttcaaaagta atcactctat ttattctaaa	49200
tgtctgtggc ttttagaaaaa taccaccagc tagtactac ctatTTAAAG atgtagaatt	49260
tattatcctc taatattctt atcagttgtt tccacaactt tagttacta ttggactttc	49320
aaaaatttaa agaattacaa gtaaaattca ttaaacactt gtgtgtgaat agtaatacac	49380
agtaattagt acagcatgtt gtttcttcaa caaattgagt tttcaggaa atcagcaagt	49440
aaatgaaata taaatttttgc gtaaaagtat caaacattca tcttgcccat ttttcctctt	49500
aaactttatt atctaatacaa acatagttt ccataagatg taataaaaata tagataaggt	49560
tggaatattt gaggatccat ttgtggaact gaatttaatg agacttcatt ggtgatacac	49620
tcaattttta ctggtaatt agctaataat gttggtaact gtctcacagt tcaagtagct	49680
ttaagatgat gtggcaagga aaacacaag ctttggta accagcggtc ttaaatgtat	49740
ggttttgac caggtgaacc cttagaaatg gattctgtt ttAAAAGTAT gtactaaaa	49800
tacctttggc tgtgatgaat gtagatccca gcagaataacc aaaatccat ttttttgac	49860
ttagtatttg tagatgctt atgactgaaa tgaatttgga ggcactgtatg aaagtgattt	49920
ttttaaagtat ctcaggtact gttcaattat ttaatgttaa gtttagtatac aagataacagt	49980
tgtttttaaa atgccaaaat gctgtttattt atacagaata ttatttaca ttgcataat	50040
cttgtatata agtgatTTT ttcttgataa taaatggaaa aattctaaaa	50090

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2018/050582

A. CLASSIFICATION OF SUBJECT MATTER
INV. C12N15/113

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, Sequence Search, CHEM ABS Data, WPI Data, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/17400 A1 (ISIS PHARMACEUTICALS INC [US]; MONIA BRETT P [US]; BAKER BRENDA F [US]) 30 March 2000 (2000-03-30) cited in the application the whole document ----- PIOTR J. KAMOLA ET AL: "In silico and in vitro evaluation of exonuclease and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization", NUCLEIC ACIDS RESEARCH, vol. 43, no. 18, 3 September 2015 (2015-09-03), pages 8638-8650, XP055463091, ISSN: 0305-1048, DOI: 10.1093/nar/gkv857 page 8648, right-hand column, paragraph 2 page 8649, left-hand column, paragraph 2 ----- -/- -	1-15
A		1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 27 March 2018	Date of mailing of the international search report 13/04/2018
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Wimme, Use

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2018/050582

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	wo 2009/114724 A2 (INTRADIGM CORP [US] ; XIE FRANK Y [US] ; YANG XIAODONG [US] ; LIU YING [U] 17 September 2009 (2009-09-17) abstract; sequences 401 ,402 -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2018/050582

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0017400	A1 30-03-2000	AU 6045499 A US 6001652 A WO 0017400 A1	10-04-2000 14-12-1999 30-03-2000
WO 2009114724	A2 17-09-2009	US 2011053861 A1 WO 2009114724 A2	03-03-2011 17-09-2009