L’invention concerne un acide fumarique de 2-[3-[4-(2-t-butyl-6-trifluorométhylpyrimidin-4-yl) pipérazin-1-yl] propylmercapto] pyrimidin-4-ol et des substances pharmaceutiques contenant ce sel. Ce sel peut être utilisé pour le traitement de maladies qui répondent aux ligands dopamine-

D3. Grâce à une stabilité améliorée pour un faible pH, ce sel convient particulièrement à une administration par voie orale.
PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE—
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patenklassifikation ⁶:
C07D 239/56, A61K 31/505

A1

(11) Internationale Veröffentlichungsnummer: WO 99/09015
(43) Internationales Veröffentlichungsdatum: 25. Februar 1999 (25.02.99)

(21) Internationales Aktenzeichen: PCT/EP98/05178

(30) Prioritätendaten:
197 35 410.6 14. August 1997 (14.08.97) DE

(72) Erfinder; und
TREIBER, Hans–Jörg [DE/DE]; Sperberweg 1, D–68782 Brühl (DE).
KOSER, Stefan [DE/DE]; Brahmsstrasse 9, D–67061 Ludwigshafen (DE).
SCHÄFER, Bernd [DE/DE]; Hauptstrasse 22, D–76889 Dierbach (DE).
THYES, Marco [LU/DE]; Mendelssohnstrasse 31, D–67061 Ludwigshafen (DE).
HÖGER, Thomas [DE/DE]; Rathenaustrasse 12, D–68535 Edingen–Neckarhausen (DE).

(74) Anwalt: REITSTÖTTER, KINZEBACH & PARTNER; Sternwartstrasse 4, D–81579 München (DE).

(57) Abstract

The invention relates to the fumaric acid salt from 2–(3-[4–(2–T–butyl–6–trifluoromethylpyridin–4–yl) piperazin–1–yl] propylmercapto) pyrimidin–4–ol and to pharmaceutical agents containing said salt. The salt can be used for treating diseases which respond to dopamine–D₃ ligands. It is very stable at a low pH and is therefore especially suitable for oral administration.

(57) Zusammenfassung

2-(3-{4-(2-t-butyl-6-trifluoromethylpyridin-4-yl)\ Piperazin-1-yl} Propylmercapto} Pyrimidin-4-ol-fumarate

The invention relates to the fumaric acid salt of 2-{3-{4-(2-t-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl}propylthio}-4-pyrimidinol and to a pharmaceutical composition comprising this compound. This compound has valuable therapeutic properties and is particularly useful for treating disorders which respond to dopamine D₃ ligands.

WO 96/02519 describes said compound in the form of the free base of the formula

\[
\text{OH} \\
\text{N} \\
\text{N} \\
\text{S} \quad \text{C(CH₃)$_3$} \\
\text{CF₃}
\]

which is likewise useful for treating disorders which respond to dopamine D₃ ligands. However, a salt of this compound is not disclosed.

It has now been found, surprisingly, that the acid addition salt of this compound with fumaric acid has particular advantages.

The present invention therefore relates to the fumaric acid salt of 2-{3-{4-(2-t-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl}propylthio}-4-pyrimidinol and to a pharmaceutical composition comprising this compound.

The present invention also relates to tautomeric forms (pyridone structure) as well as solvates and hydrates of the fumaric acid salt.

The fumaric acid salt has very good affinity and high selectivity for the D₃ receptor, i.e. it is a selective dopamine D₃ receptor ligand which acts regioselectively in the limbic system. It has a selectivity, \(K_i \text{ D}_2/K_i \text{ D}_3\) of 120 (cf. WO 96/02519). The compound is therefore useful for treating disorders which respond to dopamine
D₃ ligands, eg. for treating disorders of the central nervous system, in particular schizophrenia, depressions, neuroses and psychoses. It is additionally useful for treating sleep disturbances and nausea and as antihistamine. Solubility tests of the substances showed a substantially higher solubility of the salt in water compared to that of the free base. Thus, resorption is significantly enhanced when the substance is administered orally and especially parenterally.

Furthermore, the fumarate is more soluble in polar solvents such as C₁-C₆-alkanols than the free base. Because of the altered solubility characteristics, it can also be purified more simply using physiologically unacceptable solvents.

The free base can be prepared by the general processes described in WO 96/02519, preferably by process (ii). The fumarate is obtainable by reacting the free base with fumaric acid in a suitable solvent such as C₁-C₆-alkanols, in particular methanol, ethanol, n-propanol, isopropanol and n-butanol, a mixture of water and one of the said alcohols, or an ester such as ethyl acetate. An elevated temperature will generally be used so that the required fumarate crystallizes out on cooling and can be isolated in a straightforward manner. The fumaric acid is generally added in equimolar amounts or with a slight excess of up to about 10%. The fumarate produced in this way already has high purity. It can also be additionally purified by stirring in or recrystallization from a suitable solvent, e.g. water, one of the abovementioned alkanols, esters or mixtures thereof.

For treating the abovementioned disorders, the novel compound is administered orally or parenterally (subcutaneously, intravenously, intramuscularly, intraperitoneally) in a conventional way. Oral administration is preferred.

The dosage depends on the age, condition and weight of the patient and on the mode of administration. As a rule, the daily dose of active substance is about 10 to 1000 mg per patient and day on oral administration and about 1 to 500 mg per patient and day on parenteral administration.

The invention also relates to pharmaceutical compositions comprising the novel compound. These compositions are in the form of the usual solid or liquid pharmaceutical forms, for example as uncoated or (film-)coated tablets, capsules, powders, granules, suppositories, solutions or sprays. The active substances can for this purpose be processed with conventional pharmaceutical aids
such as tablet binders, bulking agents, preservatives, tablet disintegrants, flow regulators, plasticizers, wetting agents, dispersants, emulsifiers, solvents, release-slowing agents, antioxidants and/or propellant gases (cf. H. Sucker et al., Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). The administration forms obtained in this way normally contain from 1 to 99% by weight of active substance.

The following examples serve to illustrate the invention without restricting it.

Example 1

Preparation of the fumaric acid salt of 2-\{3-[4-(2-t-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio\}-4-pyrimidinol

2-t-Butyl-4-hydroxy-6-trifluoromethylpyrimidine (1)

The starting materials are known from the literature.

To 50 g (0.37 mol) of 2,2-dimethylpropionamide hydrochloride, dissolved in 200 ml of ethanol, were added, at room temperature, 66.6 g (0.37 mol) of sodium methoxide (30% strength in methanol) and, after a further 30 minutes, 52 g (0.28 mol) of ethyl trifluoroacetate. After refluxing for 17 hours, the solvent was removed under reduced pressure, 200 ml of water were added to the residue and, after acidification to pH 4, the crystallized solid was isolated by filtration.

Yield: 62.2 g (98% of theory)

C$_9$H$_{11}$F$_3$N$_2$O (MW 220) m.p. 187-188°C

2-t-Butyl-4-chloro-6-trifluoromethylpyrimidine (2)

Firstly 86.5 ml of thionyl chloride and then 8 ml of DMF were added dropwise to a solution of 60 g (0.27 mol) of 2-t-butyl-4-hydroxy-6-trifluoromethylpyrimidine in 800 ml of dichloromethane, and then the mixture was refluxed. The volatile constituents were removed under reduced pressure, the residue was taken up in 100 ml of dichloromethane, the pH was adjusted to 7 with saturated NaHCO$_3$ solution and, after workup by extraction, 67 g (96%) of a clear oil were obtained.

Yield 67 g (96% of theory)
C_{9}H_{10}ClF_{3}N_{2}
(MW 239)

2-t-Butyl-4-(1-piperazinyl)-6-trifluoromethylpyrimidine (3)

A solution of 60 g (0.25 mol) of the chloropyrimidine described above in 200 ml of ethanol was added dropwise to a boiling solution of 129 g (1.5 mol) of piperazine in 500 ml of ethanol over the course of 2 h, and then the mixture was boiled for a further 6 h. After the reaction was complete, the solvent was removed under reduced pressure, and the residue was mixed with 2 l of water. The product crystallized on cooling and was then filtered off with suction.

Yield: 56 g
(C_{13}H_{19}ClF_{3}N_{4} (MW 288) m.p. 78-80°C

^{1}H-NMR (250 MHz, CDCl_{3}): δ = 1.3 (s, 9H); 1.8 (s, 1H); 3.0 (m, 4H); 4.7 (m, 4H); 6.6 (s, 1H) ppm.

2-t-Butyl-4-[4-(3-chloropropyl)-1-piperazinyl]-6-trifluoromethylpyrimidine (4)

43.2 g (0.15 mol) of the piperazine described above, dissolved in 130 ml of THF, were added dropwise to a boiling mixture of 35.1 g (0.22 mol) of 1-bromo-3-chloropropane and 16.0 g (0.16 mol) of triethylamine in 90 ml of THF, and the mixture was stirred at this temperature for 8 hours. After cooling to 4°C, the inorganic salts were filtered off, the THF phase was concentrated under reduced pressure, and the residue was recrystallized from isopropanol.

Yield: 32.1 g
(C_{16}H_{24}ClF_{3}N_{4} (MW 365) m.p. 83-84°C

^{1}H-NMR (250 MHz, CDCl_{3}): δ = 1.3 (s, 9H); 1.9 (q, 2H); 2.5 (m, 6H); 3.7 (t, 2H); 3.8 (m, 4H); 6.6 (s, 1H) ppm.

2-(3-[4-(2-t-Butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio)-4-pyrimidinol (5)

8.4 g (0.066 mol) of thiouracil, 1.6 g (0.066 mol) of lithium hydroxide and 1.0 g (0.066 mol) of sodium iodide were dissolved in 200 ml of DMF and heated to 100°C. At this temperature, 20.1 g (0.055 mol) of the chlorine base described above, dissolved in
50 mL of DMF, were added, followed by stirring at 100°C for 30 min. Then 300 mL of sodium chloride solution were added and the mixture was extracted twice with 200 mL of ethyl acetate. The organic phase was dried with sodium sulfate and, after filtration, evaporated under reduced pressure.

The residue was purified by column chromatography (silica gel, dichloromethane with 1 - 4% methanol).

Yield: 18 g (72% of theory).

C_{20}H_{27}F_{3}N_{6}OS (MW 457) m.p. 138-140°C

^1H-NMR (270 MHz, DMSO-d_6): δ = 1.3 (s, 9H); 1.8 (q, 2H); 2.4 (m, 6H); 3.3 (t, 2H); 3.75 (m, 4 H); 6.1 (d, 2H); 7.1 (s, 1H); 7.9 (2, 2H) ppm.

Preparation of the fumarate (6):
4.56 g (0.01 mol) of the base described above were dissolved in 25 mL of hot isopropanol, and a hot solution of 1.16 g (0.01 mol) of fumaric acid in 15 mL of isopropanol was added. The substance crystallized out on cooling and was filtered off, resulting in 4.4 g of the title compound as colorless crystals.

Yield: 4.4 g (76% of theory)

C_{20}H_{27}F_{3}N_{6}OS x C_4H_4O_4 (MW 573) m.p. 200 - 202°C

^1H-NMR (250 MHz, DMSO-d_6): δ = 1.3 (s, 9H); 1.9 (q, 2H); 2.5 (m, 6H); 3.2 (t, 2H); 3.8 (mbr, 6H); 6.2 (d, 2H); 6.7 (s, 2H); 7.1 (s, 1H); 7.9 (d, 2H).
We claim:

1. The fumaric acid salt of 2-{3-[4-(2-t-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio}-4-pyrimidinol of the formula

\[
\begin{align*}
&\text{OH} \\
&\text{N} \\
&\text{S} \text{N} \text{N} \text{C} \text{(CH}_3\text{)}_3 \\
&\text{CF}_3
\end{align*}
\]

and the tautomeric forms, solvates and hydrates thereof.

2. A pharmaceutical composition comprising the fumaric acid salt as claimed in claim 1, with or without physiologically acceptable vehicles and/or ancillary substances.

3. The use of the fumaric acid salt or a tautomeric form, a solvat or hydrate thereof as claimed in claim 1 for producing a pharmaceutical composition for treating disorders which respond to dopamine D\text{3} ligands.