发明名称 在慢放模式中用于控制跟踪的装置及方法

摘要

在慢放模式中控制跟踪的装置与方法。该跟踪控制装置包括：用于检测记录于一磁带上的视频信号的视频头；用于检测来自所说视频头已检视频信号的选路的视频信号处理电路；用于响应来自所说视频信号处理电路的被检选路而输出伺服数据和一个慢放跟踪控制信号的微计算机；用于响应来自所说控制装置的伺服数据而输出主轴位置控制信号的伺服装置；以及用于响应属于来自所说伺服装置的信号而来自所说控制装置的慢跟踪信号组合的一个信号而驱动一个主轴的主轴马达。
权利要求书

1. 一种用于在慢放模式中控制跟踪的装置，它包括：
用于检测记录在磁带上的视频信号的视频头；
用于检测来自所述视频头拍摄的视频信号的包络的视频信号处理装置；
用于响应来自所述视频信号处理装置的被检包络而输出伺服数据和慢放跟踪信号的控制装置；
用于响应来自所述控制装置的伺服数据而输出主轴相位控制信号的伺服装置；以及
用于响应属于来自所述伺服装置及来自所述控制装置的慢放跟踪信号所组合的一个信号而驱动一个主轴的主轴马达。

2. 权利要求1的用于在慢放模式中控制跟踪的装置，其中所述的装置包括：
用于输入来自所述视频信号处理装置的视频信号包络的一个包络输入单元；
一个数据识别/处理单元，对于在系统基准信号的一个周期由所述的包络输入单元所输入的包络取和，将该取和值与一先前取和值进行比较，并在若其二者差异在一预定值之上，则根据该比较结果自动地控制慢放跟踪数据，以寻找最佳跟踪点；
用于存储常规重放模式跟踪数据的一个常规跟踪数据存储单元；
用于补偿慢跟踪数据，由所述数据识别/处理单元所控制的一
个慢跟踪补偿器；
用于对经跟踪补偿器所补偿的慢跟踪数据进行存储的一个慢跟踪数据存储单元；
用于响应来自数据识别/处理单元的受控慢跟踪数据而输出一控制信号以便相位控制主轴马达的一个伺服控制器；
响应来自伺服控制器的控制信号,用于输出伺服数据到伺服装置的一个伺服数据输出单元；及
响应来自伺服控制器的控制信号,用于输出慢跟踪信号到主轴马达的慢跟踪信号输出单元。

3. 一种用于在慢放模式中控制跟踪的方法，包括以下步骤：
 (a) 对于一磁头转换信号的一个周期取和视频信号的包络；
 (b) 将该取和值与先前的取和值相比较，并根据比较结果，若其差在一预定值之上，则自动地控制慢跟踪数据，以检测到一个最佳跟踪点，以及
 (c) 如果该最佳跟踪点被检测到，则执行涉及在正常重放中一个被改变的跟踪值，一个在正常重放中的初始跟踪值和一个慢跟踪值的计算，以获得一个慢跟踪信号。

4. 一种用于在慢放模式中控制跟踪的方法，包括以下步骤：
 (a) 检查当前的重放模式是否是慢放模式，如果是，且检测到所获取样的最小值之一的话，则在主轴相位控制信号的一个减速间隔的检测之后，对于一个磁头转换信号被输入的一个所希望的获得视频信号包络的所期望取样数；
 (b) 存储已检的最小值，进而通过一个步骤自动跟踪操作，再次执行上面的步骤以检测另一个最小值并对所检测到的最小值之间
作比较；及

(c) 如果当前被检测的最小值大于前面的最小值则重复前面步骤, 如果当前最小值不大于前面的最小值, 则停止前面步骤并输出被检的最小值中的最大的一个作为最佳跟踪值。

5. 一种如权利要求4中在慢放模式中控制跟踪的方法，其中的所希望的取样数是64。
在慢放模式中用于控制跟踪的装置及方法

本发明涉及视频盒式记录器（VCR）的慢放模式中的跟踪控制，尤其涉及在慢放模式中用于控制跟踪的装置及方法，其中，当慢放模式在视屏出现噪声时，自动地控制其跟踪误差，以获得最佳图象状态。

通常，由一磁头将视频号记录在磁带的磁迹上，且由该磁头跟踪磁带的磁迹而重放记录的视频信号。此时，磁带的磁迹必须精确地被磁头所追踪，此情景称为跟踪。

参见图1，它示出用于在慢放模式中用于控制跟踪的传统装置，如所示，该传统跟踪控制装置包括用于检测记录于磁带上的视频信号的视频磁头1，用于放大由视频磁头1以一预定电平所检视频信号的预放大器2，用于将来自预放大器2的输出信号转变成直流电压（DC）并将该所转的DC电压转送到微机5的一个包络检波器3以及用于响应来自用户的键入信号输出一个跟踪控制信号到微机5的一个手动跟踪控制器4。

响应来自包络检波器3的DC电压和来自手动跟踪控制器4的跟踪控制信号，微机5用来提供一个伺服控制信号。

传统的跟踪控制装置还包括用于响应来自微机5的伺服控制信号以输出一个主导轴相位控制信号的一个伺服装置6，以及一个响应来自伺服装置6的主导轴相位控制信号以驱动一主导轴的一个主
轴马达7。

上述的结构的传统跟踪控制装置被采用来通过重复地执行常速重放-静放-常速重放-静放的过程，对记录在磁带上的视频信号做慢速模式的重放。这将参考图5A至5D的来自图1中各部件处波形信号作详细描述。

首先，一经以图5A所示的伺服装置6收到主轴相位控制信号，该主轴马达7则重复地执行加速运行（图5A中的间隔A）、正常速度运行（图5A中间隔B）和减速运行（图5A中间隔C）。在此时，视频头1跟踪如图2所示的磁带。在图2中，重放在间隔A中从静止模式进入正常速度模式。在间隔B中执行正常速度重放。在间隔C中，重放从正常速度模式变成静止模式。在间隔D中执行静放。以这种方式，记录在磁带上的视频信号由图5D所示的视频头1所检测并随之送到预放大器2。该预放大器2以预定的电平放大来自视频头1的被检测的视频信号，并将已放大的视频信号输出到包络检波器3。包络检波器3检波来自预放大器2的如图5C所示已放大信号的包络，随之，该包络检波器3将已检的包络转变成DC电压并将已转变的DC电压输出到微机5。在此，一个磁头转换信号如图5B所示是一个系统的基准信号。

响应于来自包络检波器3的DC电压，微机5将伺服控制信号送到伺服装置6，响应来自微机5的伺服控制信号，伺服装置6将主轴相位控制信号送到主轴马达7，控制主轴马达7的相位，以使跟踪精确。

另一方面，在慢放模式产生在屏上噪声的情况下，用户利用遥控器（未示出）将一个控制信号送到手动跟踪控制器4，响应来自用户的控制信号，该手动跟踪控制器4把跟踪信号输出到微机5。一旦
收到来自于手动跟踪控制器的控制信号，该微机将产生的伺服控制信号送到伺服装置，从而使跟踪得以控制。

然而，在上述传统跟踪控制装置中，加到处于慢放模式的主轴马达上的主轴相位控制信号如图5所示由微机的预定程序所控制。为此原因，一旦出现屏上噪声的产生时，用户必须手动地利用跟踪控制键控制跟踪。这种方式导致了不方便。

因此本发明针对上述的问题，其目的是提供用于在慢放模式中控制跟踪的装置及方法，其中使慢放模式中的跟踪误差被自动地控制，以获得最佳图象状态。

根据本发明的一个方面，它提供用于在慢放模式中用于控制跟踪的一个装置，包括用于检测记录在磁带上的视频信号的视频头；用于检测来自所述视频头已检视频信号的包络的视频信号处理装置；用于响应来自所述视频信号处理装置的被检包络而输出伺服数据和一个慢跟踪信号的控制装置；用于响应来自所述控制装置的伺服数据而输出主轴相位控制信号的伺服装置；以及用于响应来自所述伺服装置的信号及来自所述控制装置的慢跟踪信号所组合的一个信号而驱动一个主轴的主轴马达。

根据本发明的另一方面，提供了在慢放模式中控制跟踪的方法，有如下步骤：(a) 检查当前慢放模式是否为慢放模式，如果检测到当前慢放模式是慢放模式且检测到所获取样的最小之一的话，在主轴相位控制信号的一个减速间隔的检测之后，对于一磁头转换信号被输入的一个所希望的间隔获得视频信号包络的所期望取样数；(b) 存储被检测的最小值，进而通过一个步骤自动跟踪操作，再次执行上面步骤以检测另一个最小值并对所检测的最小值之间作比较；(c)
如果当前被检测最小值大于前面的最小值，则重复前面过程，如果当前最小值不大于前面最小值则停止前面步骤并输出被检的最小值中的最大的一个作为最佳跟踪值。

据本发明又一方面，提供了在慢放模式中控制跟踪的方法，包括如下步骤 (a) 对于一磁头转换信号的一周期的视频信号包络取和；(b) 将一取和值与先前一取和值作比较，并根据比较结果，若其差在一个预定值之上，则自动地控制慢跟踪数据，以检测一个最佳跟踪点；(c) 如果最佳跟踪点被检测到，则执行涉及在正常重放中一个被改变跟踪值，一个在正常重放中的初始跟踪值和一个慢跟踪值的计算操作，以获得一个慢跟踪信号。

本发明的上述及其它目的和特征及优点将结合附图在下述详细描述中变得更明了。

图1是用于控制慢放重放的跟踪的传统设备的方框图；
图2是图1的慢放模式中视频头的跟踪示意图；
图3是根据本发明的用于控制慢放跟踪的装置的示意框图；
图4A到4C是图3中部件的信号波形图；
图5A至图5D是图1中部件的信号波形图；
图6A至6D 是根据本发明的优选慢放的一个静态间隔中的信号波形图；
图7A至7D 是表示在噪声产生在屏的上部情况下依照本发明而
在静止间隔中的信号波形图；
图8A至8D 是表示在噪声出现在屏的下部情况下依照本发明而
在静止间隔中的信号波形图；
图9是说明依照本发明表示在慢放模式中控制跟踪的方法的流
参考图3，它示出了依照本发明用于在慢重量放中控制跟踪的装置的一个方框图。如图所示，该跟踪控制装置包括：用于检测记录在磁带上的视频信号的视频头100和用于检测记录来自该视频头100的视频信号的包络的视频信号处理电路200，用于将检测的包络转变成DC电压并将已转变的DC电平输出到一个微机300。

该微机300是用于响应来自视频信号处理电路200的DC电输出伺服数据的一个慢跟踪信号。

而且，跟踪控制装置包括有利于响应来自微机300的伺服数据以输出主轴相位控制信号的伺服装置，以及用于响应由来自伺服装置400的主轴相位控制信号和来自微机300的慢跟踪信号组合而成的一个信号而驱动一主轴的一个主轴马达500。

微机300包括用于输入来自视频信号处理电路200的视频信号的包络的一个包络转入单元301，和一个数据识别/处理单元302，该单元302对于作为系统基准信号的磁头转换信号的一个周期的包络输入单元301所输入的包络进行取和，将该取和值与一先前的取和值进行比较，并且根据比较的结果，如果其间差值是高于一预定值时，则自动地对慢跟踪数据进行控制，以寻求一个最佳跟踪点。

而且微机300包括用于存储常规重放模式跟踪数据的一个常规跟踪数据存储单元，一个用于补偿慢跟踪数据、由数据识别/处理单元302所控制的慢跟踪补偿器303，一个对于经过慢跟踪补偿器303所补偿的慢跟踪数据进行存储的慢跟踪数据存储单元304，一个用于响应来自数据识别/处理单元302受控慢跟踪数据而输出一个控制信号以相位控制主轴马达500的伺服控制器306，一个响应来自
伺服控制器306的控制信号用于输出伺服数据到伺服装置400的伺服数据输出单元307，以及一个响应来自伺服控制器306的控制信号用于输出慢跟踪信号到主轴马达500的慢跟踪信号输出单元308。

根据本发明的上述结构的跟踪控制装置的操作将参考图3中的部件，如图4A至4C的波形在随后作详述。

首先，录在磁带上的视频信号由视频头100所检测，并被放大后送到视频信号处理电路200。该处理电路200检验来自视频头100的已检视频信号的包络。而后，该电路200将已检包络转变成DC电压并将送到在微机300中的包络转入单元301。在微机300中，数据识别/处理单元302对于磁头转换信号的一个周期对经包络输入单元301所输入的包络取和，作为系统的基准信号。该数据识别/处理单元302随之将该取和值与先前的取和值比较。如果比较结果是这二值之差高于一预定值，则对该数据输入点的跟踪值PE(即在常规重放中被改变跟踪值)被存储并随后用在常规重放的起始跟踪值P1和一个起始慢放跟踪值S1进行计算，以获得慢放跟踪信号的最佳间隔(x)。因此，数据识别/处理单元302自动地控制了慢放跟踪数据，以改变跟踪点。

响应来自数据识别/处理单元302的受控慢放跟踪数据，伺服控制器306把用于主轴马达500相位控制的控制信号输送到伺服数据输出单元307和慢跟踪信号输出单元308。响应来自伺服控制器306的控制信号，伺服数据输出单元307把伺服数据送到伺服装置400，从而使伺服装置400在图4C中的间隔a和c中将主轴相位控制信号送到主轴马达500。而且，响应来自伺服控制器306的控制信号，慢跟踪信号输出单元308在图4C的间隔b中将慢跟踪信号送到主轴马达。
因此，如图4C所示，根据由来自伺服装置400的主轴相位控制信号和来自微机300的慢跟踪信号所组合的信号对主轴马达500进行控制。

在上述两信号的组合过程中，主轴相位控制信号的第一半周期（图4C中的间隔a），在伺服控制器306的控制下首先输出。一旦检测到记录于磁带较低部分的控制信号CTL，则在伺服控制器306的控制下输出慢跟踪信号，随后，在伺服控制器306的控制下输出主轴相位控制信号的静脉冲。此时，慢跟踪信号的间隔(\(X\))可由下列等式(1)得到：

\[X = S_i + (P_C - P_i) \cdots \cdots (1) \]

其中，\(S_i\)是初始慢跟踪值，\(P_C\)是在常规重放中被改变的跟踪值，而\(P_i\)是在常规重放中的初始跟踪值。

具体地说，主轴相位控制信号的静脉冲是从该时刻起其慢跟踪间隔(\(X\))经过之后才被输出的，该时刻是指在主轴相位控制信号的第一半周期被输出之后该控制信号CTL被检测之时，从而使主轴马达500的相位被控制。

另一方面，一旦完成在慢放模式中的自动跟踪操作之后，通过将慢跟踪值与初始慢跟踪值相比较而由慢跟踪补偿器303对该慢跟踪数据予以补偿。来自慢跟踪补偿器303的经补偿的慢跟踪数据被存储在慢跟踪数据存储单元304中。

参考图9示出依照本发明在慢放模式中对跟踪予以控制的方法的流程图，首先检测当前重放模式是否属慢放模式。如果是慢放模式，则首先检测图6A中由参考符号A所引的主轴相位控制信号，并
随之检测图6B中由参考符号B和C所示的第一与第三磁头转换信号。随后，在被检的第一和第三磁头转换信号之间的视频信号的包络波形取样以获得64个取样值。由图6C中的D-G所示的64个取样值的最小的一个被存储，记为An。随之，自动跟踪控制被提升或下降一个步骤。上述步骤再度执行，以获得另一最小值A_{n+1}。所获的最小值An和A_{n+1}被彼此比较。若最小值A_{n+1}大于最小值An，则前面过程被重复。反之；如果最小值A_{n+1}不大于最小值An，则自动跟踪操作被停止，并且在该过程中，这两个最小值的最大的一个An被作为跟踪值而输出到伺服装置400。在此情况中，到达伺服装置400的跟踪值为在慢放模式中的最佳跟踪点。图6A至6D是依照本发明上述过程所获的最佳慢放重放模式状态的信号波形图，图7A至7D表示在屏幕上产生噪声情况下而依照本发明在图5A至5D的间隔D中的信号波形图，而图8A至8D表示在屏幕上部产生噪声的情况下依照本发明在图5A至5D的间隔D中的信号波形图。

由上述显见，依照本发明，源于跟踪误差的噪声在慢放模式中被自动地控制而没有用户手操作，因而可获得最佳图像状态。

虽然是为了阐明的目的而通过的最佳实施例对本发明予以介绍，本专业技术人员将可能对此予以修改，添加和取代不偏离所附权利要求的本发明的精神范围。
图1
先有技术

图2
先有技术
图9

起始

慢放模式？
是
检测主轴相位控制信号并随之检测第一与第三磁头转换信号
获得64个在第一和第三磁头转换信号之间的取样
64个取样的最小一个

n = n + 1

An+1 > An
是
继续自动跟踪操作向上或向下一个步骤

否

n > 64
是
获得Ans的最大一个
输出最大值作为跟踪值到伺服装置
结束

否

结束