

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/060086 A1

(43) International Publication Date

24 April 2014 (24.04.2014)

WIPO | PCT

(51) International Patent Classification:

H01H 33/666 (2006.01)

(21) International Application Number:

PCT/EP2013/003081

(22) International Filing Date:

14 October 2013 (14.10.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12007146.9 15 October 2012 (15.10.2012) EP

(71) Applicant: ABB TECHNOLOGY AG [CH/CH]; Affolternstrasse 44, CH-8050 Zürich (CH).

(72) Inventors: HYRENBACH, Maik; Gerhardstrasse 76, 40878 Ratingen (DE). SAUER, Manfred; Im Kleinen Feld 54, 40885 Ratingen (DE).

(74) Agent: SCHMIDT, Karl-Michael; c/o ABB AG/GF-IP, Oberhausener Strasse 33, 40472 Ratingen (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

(54) Title: ASSEMBLED POLE PART WITH POLE PART FRAME

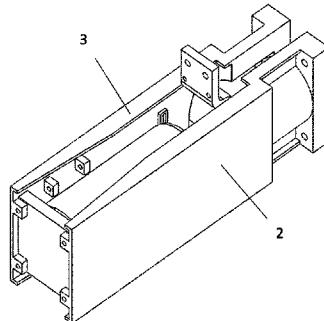
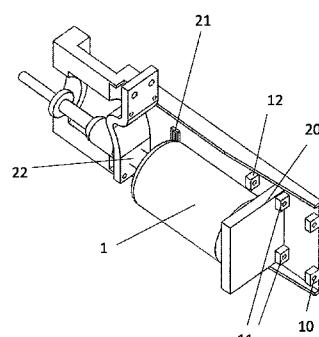



Figure 1

(57) Abstract: The invention relates to an assembled pole part with two pole part frames (2, 3) made of insulating material, between which a vacuum interrupter (1) is mounted, and that the vacuum interrupter is applied with a fixed contact and a moving contact, so that at one end of the frame is applied with a support (21) in order to fix the vacuum interrupter at the moving contact side, and fixation means (10, 11, 12) for the fixed contact side at the other end of the frame. In order to apply common pole part frames for different vacuum interrupter sizes, the invention is, that at least two fixation means or fixation points (10, 11, 12) are arranged pairwise in parallel along different distances to each along the long axis of the frame, wherein the second support is the fixation means for the fixed contact side of the vacuum interrupter, in order to be able to use one uniform constructed frame design for different vacuum interrupter lengths, in that way, that independent of the used vacuum interrupter length, the moving contact fixation support keeps at the same fixation position (21). Alternatively, support plates (20) of different thicknesses may be used.

WO 2014/060086 A1

5

Assembled pole part with pole part frame

10

The invention relates to an assembled pole part with two pole part frames made of insulating material, between which a vacuum interrupter is mounted, and that the vacuum interrupter is applied with a fixed contact and a moving contact, so that at one end of the frame is applied with a first support in order to fix the vacuum interrupter at 15 the moving contact side, and fixation means for the fixed contact side at the other end of the frame, according to preamble of claim 1.

20

An assembled pole part like that is disclosed in the EP 0 763 248 B1. The insulating frame parts are made of plastic. The vacuum interrupter is fixed via fastening elements which are implemented in the frame parts at definite fixation points.

By this construction the frame parts are applied for definite vacuum interrupter size. After the fixation of the vacuum interrupter on the first frame part, the second frame part is fixed from the other side, so that the vacuum interrupter is fixed between both frame parts.

25

Assembled pole parts like that are used in switching devices, particularly in gas filled switching devices.

30

A disadvantage for this known construction is, that the frame parts are applied only to one vacuum-interrupter size.

So it is an object of the invention, to apply common pole part frames for different vacuum interrupter sizes, in order to alleviate the manufacture of such pole parts.

This is realized by, that at least two fixation means or fixation points are arranged pairwise in parallel along different distances to each along the long axis of the frame, wherein the second support is the fixation means for the fixed contact side of the vacuum interrupter, in order be able to use one uniform constructed frame design for different vacuum interrupter lengths, in that way, that independent of the used vacuum interrupter length, the moving contact fixation support keeps at the same fixation position.

Alternatively, but with the same technical effect, a pair of fixation points are arranged pairwise in parallel at one defined distance at the long axis of the frame, in order to be connected with the second support in that way, that the support is applicable with a distance adapter with choosable thickness, in order to be able to use one uniform constructed frame design for different vacuum interrupter lengths, in that way, that independent of the used vacuum interrupter length, the moving contact fixation support keeps at the same fixation position.

In the first alternative, the different length measures are considered by having several pairs of fixations points.

In the second alternative, the different length measures are considered by having only one pair of fixations points, but using additionally a support adapter with different thickness. Both results in the use of a uniformed construction for different possible lengths of vacuum interrupters.

A further advantageous embodiment is given by that at each fixation point a pair of fixation means are arranged in parallel at the same distance. By that the arrangement of two parallel frame parts result in four fixation points at each distance in order to fix there a plate. The dimensions of that plate refers to the diameter of the used vacuum interrupter.

Consequently to the use for different vacuum interrupter lengths it is advantageous, that at least two fixation points are implemented at two distances.

Furthermore, the fixation points on both frame parts are arranged like that at each fixation distance are arranged two fixations point in each frame part in that way, that in the mounted condition of the pole part, four fixation point at each defined distance are arranged.

5

In context with that, it is advangeous, that at each fixation point or distance a plate can be fixed to the fixation means at each defined distance.

In a further embodiment, the fixation means are integrally formed in the frame parts.

10

This is easy to manufacture in sense of a common construction type manufacture for different vacuum interrupter use.

Advantageous is also that guiding means for the movable contact stem of the vacuum interrupter are implementable between the two frame parts as well.

15

The frame parts are made of insulating material, so that the vacuum interrupter of the completed assembled pole part is sandwiched between the insulating frame parts.

Figure 1 shows an embodiment of the invention. The assembled pole part consist of a

20

vacuum interrupter 1 which is arranged and will be finally fixed between two frame parts 2 and 3. At the right side of figure 1, the assembled pole part is open, or not completed, and shows the positioned vacuum interrupter 1. The fixed contact side of the vacuum interrupter is mounted on a metal plate 20, which is fixed at the fixation points 11. The fixations points 11 are integrally implemented in the frame parts.

25

The vacuum interrupter 1 shown in this figure has such a length, that the plate 20 is mounted in the middle position of the possible 3 positions, implemented in that embodiment.

Further fixation points 10 are implemented for longer vacuum interrupters and further

30

fixation points 12 for shorter vacuum interrupters are also implemented. So this uniform frame design can be used for three different vacuum interrupter length dimensions.

Further guiding means 21 for the movable contact stem 22 of the vacuum interrupter 1 is also implemented in the frame parts 2 and 3.

5 The left side of figure 1 shows the closed arrangement with two complementary designed frame parts 2 and 3, with a ready positioned vacuum interrupter between them. In result, the plate 20 is fixed in each frame part at the adjacent positions fixation points.

10 Such assembled pole parts are for medium voltage circuit breakers. The a.m. described pole parts are screwed to a base plate, not further shown, for all three pole-parts at the one side and a smaller metal-plate between the isolation-parts at the other side. The metal plate 20, as shown in figure 1, is screwed to the insulating frame parts 2 and 3, and the position of the metal plate 20 is applied to the length of the inserted vacuum interrupter 1.

15 At the other side of the vacuum interrupter, its movable contact is connected to a current-lamination and further to an operating stud, which is not shown in figure 1.

20 So because the frame of the pole part is made by two parallel insulating frame parts 2 and 3, the position of the metal plate 20 can be chosen, according to the length of the used vacuum interrupter 1.

25 Alternatively only one pair of fixations points is needed, if different support plates are used in different thickness, in order to consider different lengths of possibly usable vacuum interrupters. The enormous advantage is, that also in this case only one uniform construction of frame parts 2 and 3 can be used for different vacuum interrupter lengths. Important is, that the frame parts 2 and 3 are identical, so that this is reducing the costs of manufacture.

30 In addition the distance between the parallel insulating frames can be varied with the diameter of the used vacuum interrupter, means for smaller diameter the width of the created pole is smaller, too. This gives a high grade of flexibility and allows a variancy of poles taking care of the used vacuum interrupter and the required pole distance.

So in result the function as well as the advantage of the invention is, that the basical construction and dimensions of the frame parts keep the same for use for different vacuum interrupter lengths and diameters.

Position numbers

- 1 Vacuum interrupter
- 5 2 Frame part
- 3 Frame part

- 10 further fixation points
- 11 fixation points
- 10 12 further fixation points

- 20 metal plate
- 21 further guiding means
- 22 movable contact stem

Claims

1. Assembled pole part with two pole part frames made of insulating material, between which a vacuum-interrupter is mounted, and that the vacuum interrupter is applied with a fixed contact and a moving contact, so that at one end of the frame is applied with a first support in order to fix the vacuum interrupter at the moving contact side, and fixation means for the fixed contact side at the other end of the frame,
characterized in
that at least two fixation means or fixation points are arranged pairwise in parallel along different distances to each along the long axis of the frame, wherein the second support is the fixation means for the fixed contact side of the vacuum interrupter, in order be able to use one uniform constructed frame design for different vacuum interrupter lengths, in that way, that independent of the used vacuum interrupter length, the moving contact fixation support keeps at the same fixation position.
2. Assembled pole part with two pole part frames made of insulating material, between which a vacuum-interrupter is mounted, and that the vacuum interrupter is applied with a fixed contact and a moving contact, so that at one end of the frame is applied with a first support in order to fix the vacuum interrupter at the moving contact side, and fixation means for the fixed contact side at the other end of the frame, especially according to claim 1,
characterized in
that a pair of fixation points are arranged pairwise in parallel at one defined distance between each at the long axis of the frame, in order to be connected with the second support in that way, that the support is applicable with a distance adapter with choosable thickness, in order be able to use one uniform constructed frame design for different vacuum interrupter lengths, in that way, that independent of the used vacuuminterruption length, the moving contact fixation support keeps at the same fixation position.

3. Assembled pole part according to claim 1,
characterized in that at each fixation point a pair of fixation means are arranged in parallel at the same distance from the first support.

- 5 4. Assembled pole part according to claim 1,
characterized in that at least two fixation points are implemented at two distances from the first support.

- 10 5. Assembled pole part according to claim 1 or 2,
characterized in that the fixation points on both frame parts are arranged like that at each fixation distance are arranged two fixations point in each frame part in that way, that in the mounted condition of the pole part, four fixation point at each defined distance from the first support are arranged.

- 15 6. Assembled pole part according to claim 5,
characterized in that at each fixation point or distance from the first support a plate can be fixed to the fixation means at each defined distance.

- 20 7. Assembled pole part according to one of the aforesaid claims,
characterized in that the fixation means are integrally formed in the frame parts.

- 25 8. Assembled pole part according to one of the aforesaid claims,
characterized in that guiding means (21) for the movable contact stem (22) of the vacuum interrupter are implementable between the two frame parts (2, 3).

- 30 9. Assembled pole part according to one of the aforesaid claims,
characterized in that the frame parts (2, 3) are made of insulating material.

10. Assembled pole part according to one of the aforesaid claims,
characterized in that the frame parts (2, 3) will be positioned in parallel in a distance which can be chosen according to the diameter of the vacuum interrupter.

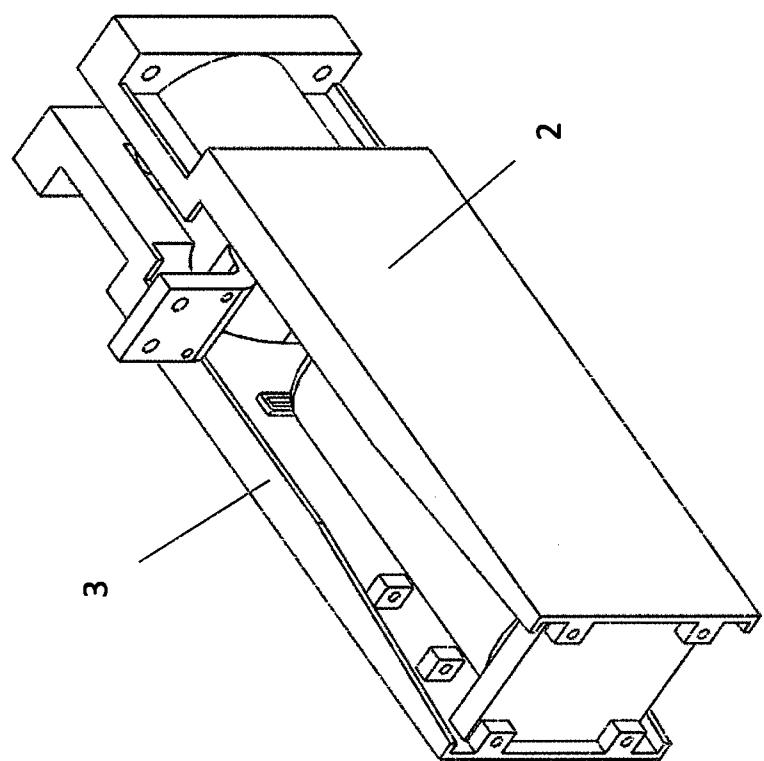
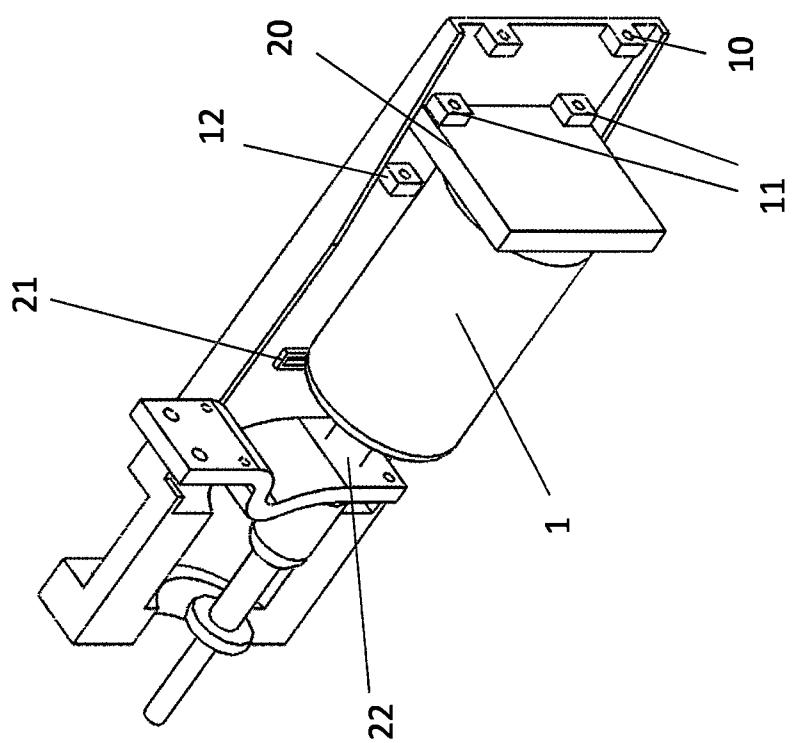



Figure 1

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/003081

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01H33/666
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE WPI Section EI, Week 199138 Thomson Scientific, London, GB; Class X13, AN 1991-279331 XP002693983, & SU 1 601 653 A1 (SKAZKO V A) 23 October 1990 (1990-10-23) abstract; figures 1-4</p> <p>-----</p> <p>US 2001/025830 A1 (ALLARD HERVE [FR] ET AL) 4 October 2001 (2001-10-04) paragraph [0027] - paragraph [0032]; figures 1,2</p> <p>-----</p> <p>-/-</p>	1-10
X		1-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
11 December 2013	20/12/2013
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Dobbs, Harvey

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/003081

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 767 451 A (ROEHLING CHRISTOPH [DE] ET AL) 16 June 1998 (1998-06-16) column 1, line 55 - column 2, line 4; figures 1A, 1B column 2, line 31 - line 59 -----	1-10
X	US 6 395 990 B1 (SCHOENTAG HARTMUT [DE] ET AL) 28 May 2002 (2002-05-28) column 2, line 38 - column 3, line 23; figures 1,3 -----	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2013/003081

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
SU 1601653	A1	23-10-1990	NONE	
US 2001025830	A1	04-10-2001	BR 0101164 A CN 1319864 A DE 60113755 D1 DE 60113755 T2 EP 1139358 A1 FR 2808117 A1 JP 4717242 B2 JP 2002025399 A MY 117079 A PL 346602 A1 TW 517255 B US 2001025830 A1	30-10-2001 31-10-2001 10-11-2005 29-06-2006 04-10-2001 26-10-2001 06-07-2011 25-01-2002 30-04-2004 08-10-2001 11-01-2003 04-10-2001
US 5767451	A	16-06-1998	CN 1148904 A DE 9409006 U1 EP 0763248 A1 ES 2113750 T3 JP 3729851 B2 JP H10500804 A RU 2118027 C1 US 5767451 A WO 9533272 A1	30-04-1997 28-07-1994 19-03-1997 01-05-1998 21-12-2005 20-01-1998 20-08-1998 16-06-1998 07-12-1995
US 6395990	B1	28-05-2002	AU 752482 B2 AU 1547400 A DE 19850207 A1 EP 1123554 A2 US 6395990 B1 WO 0025335 A2	19-09-2002 15-05-2000 27-04-2000 16-08-2001 28-05-2002 04-05-2000