Abstract: An electronic device (2) comprising a touch-sensitive surface (4) and a touchless detecting system (8, 10) for detecting movement of a finger (12) towards the surface (4). The device (2) is configured to associate said movement with a predicted touch on said surface (4) and to issue a report of said predicted touch.
Control of Electronic Devices

This invention relates to interfaces with which a user can interact with an electronic device in order to control some aspect of it.

Particularly with the increasing popularity of smartphones and tablets, touch-screens and touch-pads have become an accepted way for users to interact with electronic devices in a simple and intuitive way. Nonetheless, the Applicant believes that functionality and user experience of such devices can be enhanced using some aspects of touchless technology.

When viewed from a first aspect, the invention provides an electronic device comprising a touch-sensitive surface and a touchless detecting system for detecting movement of a finger towards the surface; the device being configured to associate said movement with a predicted touch on said surface and to issue a report of said predicted touch.

The invention extends to a method of operating an electronic device comprising a touch-sensitive surface and a touchless detecting system, the method comprising:

- detecting movement of a finger towards the surface using the touchless detecting system;
- associating said movement with a predicted touch on said surface; and
- issuing a report of said predicted touch.

A computer software product, either on a carrier or not, comprising instructions for operating an electronic device comprising a touch-sensitive surface and a touchless detecting system, the instructions comprising:

- instructions for detecting movement of a finger towards the surface using the touchless detecting system;
- instructions for associating said movement with a predicted touch on said surface; and
- instructions for issuing a report of said predicted touch.
Thus it will be seen by those skilled in the art that in accordance with the present invention touchless detection of finger movement is used to make a prediction about a user touching the screen. For example if the touchless detecting system determines that a user's finger is approaching a touch-screen within a certain range of speeds and from a close enough distance, touching the screen is inevitable. However knowing in advance that a user will touch the screen, an optionally some additional information about the touch event, can be exploited to give an improved experience of additional functionality.

In a set of embodiments the report of said predicted touch comprises information relating to a position on the surface that it is predicted the user will touch. This can be deduced, for example, from the position of the finger and its trajectory as determined by the touchless detecting system.

The report of predicted touch, especially where it includes position information, can enhance the operation of the touch-sensitive surface (which may be a touch-screen or touch-pad for example) in some embodiments by allowing the sensitivity of the touch-sensitive surface to be increased. Typically in touch-sensitive surfaces the sensitivity, that is the threshold for detecting a touch event, can be selected to some extent. This would normally be chosen to balance the competing requirements of making the surface as responsive as possible whilst avoiding false detections. However the Applicant has appreciated that with the additional information provided by the report of predicted touch, the sensitivity can be enhanced with the report being used to reduce the likelihood of false detections.

In a set of embodiments the report of said predicted touch comprises information relating to the speed and/or direction of the user's finger prior to touching the screen. This allows, for example, applications running on the device to distinguish different inputs for the same point touched on the surface depending on the speed and/or direction. For example the speed of the approaching finger could be used to allow an application to distinguish between a light touch and a heavy touch and to perform different operations accordingly. The direction from which the finger approached could be used, for example, initiate a scroll as soon as the touch is detected without needing the touch-sensitive detection to determine a (or an initial) direction.
In a set of embodiments the device provides feedback in response to said predicted touch. The feedback could be general - such as waking up from a sleep state or switching on or increasing the brightness of a screen. Additionally or alternatively feedback regarding the predicted position of the touch could be given - e.g. to display a highlight, enlarge a button, or display an icon - when the report includes position information as in some embodiments. It should be appreciated that the feedback being discussed here is not akin to that provided in known interfaces where buttons are enlarged on the basis of proximity of a user's finger to the button on the screen (or even after it is touched). Here the feedback is based on a prediction of where the user will touch the touch-sensitive surface based on movement of the finger towards the screen. Feedback may be visual, audible, haptic or any combination thereof. The feedback could be static or dynamic - e.g. based on the distance from the screen. For example a predicted touch could result in a circle or 'cross-hair' icon being displayed with diminishing diameter as the finger approaches the surface.

In a set of embodiments, the feedback comprises a GUI element being enlarged as the finger approaches the touch-sensitive surface. The size of the GUI element may be inversely proportional to the distance of the finger from the screen over at least a range of distances. The GUI element which is affected is dependent on the position of the predicted touch. It may be an icon on the screen, e.g. a button or a keypad, but in a set of embodiments, it is the whole screen that is enlarged as the finger approaches the screen. This has the effect of 'zooming in' on the region in which a touch is predicted, rather than generally enlarging the screen.

The touchless detection system could give a single report or could give a plurality of reports of predicted touch, especially where the report includes information relating to the predicted position of the touch or the speed or direction of approach. This could be used, for example, to update the feedback given. Thus in the example mentioned above of an icon such as a circle, the icon could move to reflect the updates in the predicted position.

The Applicant has appreciated that as well or instead of feedback which is apparent to a user, the report of predicted touch could be used to initiate or alter a process in the device which is not apparent to a user. In one exemplary set of embodiments
the report is used to launch a software application - e.g. running in the background. This could have several benefits. For example it could allow the device to respond more quickly to the user's touch by reducing any lag necessary for an application to start. Thus, where the report includes position information, this could be used to start to launch an application before the user presses the icon at the location of the predicted touch.

If the lag between a user touching a surface and an application or function being operational can be reduced or eliminated in the embodiments outlined above, this could also allow some functions of the device to be put into a lower power sleep mode more readily thus saving power overall.

The Applicant has further realised that if a reliable prediction of touch is available, it may not actually be necessary for the user to touch the touch-sensitive surface of the device in order to determine the user's intended input. Thus whilst in some embodiments a certain function is not carried out unless and until the touch-sensitive surface is touched by the user (even though some other action or function may be carried out before this), in another set of embodiments an action or function is carried out on the basis of the report of predicted touch but no further action or function is carried out if/when the surface is touched. As well as giving greater flexibility to the designers of devices and software applications for them, the Applicant sees a benefit in this in helping to enhance users' familiarity with the idea of interacting with a device without having to touch it and thereby facilitating acceptance of, and familiarity with, devices which have more extensive touchless capability.

The touchless detecting system could be based on any suitable technology such as capacitive sensing, optical cameras, or infra-red cameras. In a preferred set of embodiments the touchless detecting system comprises an acoustic touchless detecting system. As will be familiar to those skilled in this particular art, these are arranged to transmit acoustic signals such as chirps and then to measure the echoic profile of the signals reflected from a user's finger/hand to determine its location and/or motion. Preferably the signals employed are ultrasonic - i.e. have at least a mean or median frequency above 20 kHz. A combination of touchless technologies could be employed.
In one set of embodiments time impulse responses for some or all transmitter-receiver combinations subset are obtained. To this end short impulses may be employed as transmit signals in which case \(r_i(\tau) \sim h_j(\tau) \) - i.e. an approximation of the impulse response can be obtained directly. Although this approach has certain advantages from an implementational point of view, the received echoes may be susceptible to both environmental and internal noise in the apparatus due to limitations on the peak power generated by the transmitter. Alternatively, codes such as chirps or pseudo-random noise sequences may be used as transmit signals in order to increase the accumulated energy returned from a particular reflector. Such an approach may be accompanied by pulse compression processing at the receiver in order to improve the resolution in the measured impulse response. One particular example is matched filtering where the received signal is convolved with the time reverse of the transmit signal yielding an approximation to the true impulse response, i.e.

\[
h_j(\tau) = s_j(-\tau) \ast r_i(\tau)
\]

Other impulse response estimation techniques are described in more detail in WO 2006/067436. Further details on the analysis of impulse responses to determine position and movement of objects are given in the Applicant's earlier published applications, e.g. WO 2009/1 5799.

The touch-sensitive surface could be a touch-screen as used in many devices such as smart-phones and tablet computers or a separate touch-pad - as provided for example in laptops, netbooks etc.

The touchless system could be used solely for touch predictions as outlined herein but may additionally be used for 'pure' touchless tracking or gesture recognition.

In a set of embodiments the touchless detecting system is configured to detect preferentially the position of a user's fingertip over other parts of the hand. This makes it easier to predict more accurately when, and possibly where, the finger will touch the surface as opposed to a general movement of the hand in the vicinity of the surface. There are several ways in which this could be done. One possibility would be to use edge detection in echoic profiles such as impulse response...
An embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Fig. 1 is a schematic illustration of an electronic device in accordance with the invention; and

Fig. 2 is a diagram representing an impulse response image for a hand with an extended finger moving towards a touch-screen

Fig. 1 shows a portable electronic device in the form of a tablet computer 2. The major part of the front face of the tablet 2 is taken up by a touch-screen 4 and in Fig. 1 this is shown as depicting a number of icons 6 representing different software applications ("apps") which the user can launch and run by touching the corresponding icon.

Within the bezel surrounding the touch-screen 4 are an ultrasonic transmitter 8 and four ultrasonic receivers 10. These could be dedicated ultrasonic transducers or they could also be used as audible loudspeakers and microphones when driven at the appropriate frequencies. More transmitters could be used and more or fewer receivers depending on the application.

In operation the device causes the transmitter 8 to transmit a regular series of ultrasonic chirps (signals with rising or falling frequency). By transmitting these chirps towards the user's finger 12 and hand 14, their position and movement within the scene can be inferred from the reflected echo signals which are received by the receivers 10. The underlying principle used is that time difference between transmission and reception of an echo signal is directly proportional to the combined distance from the transmitter to the reflector and back to the receiver. In principle, by combining the time-of-flight measurements from three or more transmitter-receiver combinations the position of the reflector in XYZ space can be uniquely identified.

The relationship between the transmit and receive signals may be represented as
\[r_i(T) = h_j(T) * s_j(T) + n_i(T) \]

where

- \(s_j(\tau) \) is the transmitted signal on the \(j \)th transmitter
- \(h_y(\tau) \) is the channel's impulse response
- \(n_i(\tau) \) is an environmental noise term
- \(r_i(\tau) \) is the resulting signal on the \(i \)th microphone

and \(* \) denotes a convolution operator.

The time argument \(\tau \) in the above transmit-receive relationship refers to the time passed from the onset of the transmit signal \(s_j(\tau) \). To specify the time of the onset one may introduce a second argument, \(t \), i.e.

\[r_i(\tau, t) = h_y(\tau, t) * s_j(\tau, t) + n_i(\tau, t) \]

The first argument \(\tau \) is sometimes referred to as local time while the second argument \(t \) is referred to as global time. Whenever there is a change in the echo environment the impulse response \(h_y(\tau, t) \) changes as a function of global time.

This is simply to say that the received echo signals changes with the onset of the transmit signal. Note that in order to estimate the impulse response for a specific time \(t \) a signal \(s_j(\tau, t) \) must be transmitted. For the purpose of finger tracking the signals are typically transmitted at intervals of milliseconds. In one set of embodiments the duration of the transmit signals may equal the repetition interval in which case the transmit signals can be viewed as one continuous signal.

For each point \(x \) in space there is an associated distance-of-flight \(d_y \) (distance from transmitter \(j \) to \(x \) and back to receiver \(i \)). A reflector positioned at \(x \) at time \(t \) will cause a non-zero amplitude in the impulse response signal \(h_y(T, t) \) for

\[\tau = d_y/c \]

where \(c \) is the speed of sound. The exact amplitude of the impulse response will depend on the distance-of-flight and the reflective properties of the reflector.
At the receiver the estimated impulse response signals are stored and manipulated as discrete-time signals \(Z_v(m,n) = \hat{h}_v(\tau_m, t_n) \) where \(\tau_m = mA \tau \) and \(t_n = nAt \). Here \(\Delta \tau \) is typically the sampling interval of the analog-to-digital converter and \(\Delta t \) is the time difference between consecutive transmit signals. As long as \(\Delta \tau \) and \(At \) are chosen sufficiently small, i.e. satisfying Nyquist sampling criterion, this representation causes no loss of information relative to the continuous counterpart.

The 2D signals \(Z_v(m,n) \) are commonly referred to as impulse response images.

Since the position of a reflector can only change gradually over time the impulse response \(Z(m,n) \) will not change abruptly with \(n \), again assuming \(At \) to be small (e.g. on the order of milliseconds). This can be exploited to improve the estimation of the impulse responses and the tracking of the underlying hand motion. If it is postulated that there exists a reflector at time step \(n \) positioned at \(x(n) \) and moving in space with direction \(Ax(n) \), the next point in space will be:

\[
x(n + 1) = x(n) + Ax(n)
\]

assuming a locally linear motion. Both \(x(n) \) and \(x(n+1) \) give rise to distance-of-flights \(\{dy(n)\} \) and \(\{dy(n+1)\} \) for each transmitter/receiver pair. The change in distance-of-flight from \(dy(n) \) to \(dy(n+1) \) aligns with a line in the corresponding impulse response image, having the angle

\[
\alpha_y(n) = \tan^{-1}\left(\frac{dy(n + 1) - dy(n)}{c}\right)
\]

Hence, a way to test whether there is a reflector located in \(x(n) \) moving in the direction \(Ax(n) \), is to test for a matching line segment each impulse response image. Matching of line segments by means of 2D filter blocks has been explained by the applicant in WO 2009/1 15799.

Clearly, once an initial position \(x(t_0) \) has been found, this test could be used to track an object throughout the scene, since a test can be conducted as to where the point has moved from one time step to the next. To improve tracking quality, one
could at each stage try out a limited number of different \(Ax(n) \)'s, i.e. only the ones that correspond with a reasonable guess at a possible physical motion. More generally one can use a Kalman filter to combine physical measurements with a kinematic model of the motion.

The tracking process could also be applied to a neighbourhood of points \(\{x_i(t)\} \), thereby improving the robustness of the tracking process, particularly for reflectors which are not represented as point reflectors within the frequency band of the system. The possible set of reflective points \(\{v_i(t)\} \) could be related to prior knowledge of the object being tracked, e.g. they could represent the model of a hand. Such motion model tracking in the impulse response domain allows more accurate tracking of particular objects.

An exemplary impulse response image corresponding to the finger 12 moving towards the touch-screen 4 is shown in Fig. 2. This plots local time \(T \) on the vertical axis against global time \(t \) on the horizontal axis. The narrower, upper group of lines 18 in this diagram which are nearer to the origin of the vertical axis represent echoes from the finger 12 since that is closer to the screen. The other lines 20 represent echoes from the rest of the hand 14. Using the techniques described above, the position and slope of the line 18 corresponding to the trajectory of the finger 12 (shown by the thick arrow 16 in Fig. 1) can be determined.

When the finger 12 is travelling towards the screen 4 at a certain speed and when the finger is within a certain distance (both of which can be obtained empirically) it can be concluded with a high degree of probability that the user will touch the icon 6' which the trajectory 16 intercepts. The touchless detection system reports the predicted touch and the location to the operating system of the device. This can be used by the device to display alter how the icon 6' appears. Moreover it can be used to launch the app associated with the icon before the user actually touches the screen in order to make the device appear more responsive.

Thus it will be appreciated that the embodiment described above demonstrates that a touch detection system comprising a touchless tracking system and a conventional touch-screen working together may have advantages over either
system alone. As explained, in a normal working mode the touch event will be
detected by the touchless tracking system prior to the touch event itself. However,
if the touch event cannot be detected conclusively by the touchless system (since
tracking near to a screen is generally more challenging than further away) the event
will be detected by the touch-sensitive screen. A missed detection by the touchless
subsystem will therefore not be critical to the operation of the touch detection
system as a whole. A missed detection by the touchless subsystem will only incur
a small increase in delay in the ascribed response to the touch event. The
detection criteria for the touchless tracking subsystem may therefore be more
restrictive than in the absence of a touch sensitive screen, thereby avoiding false
positive detections by the touchless tracking system.

It is important to note that in this embodiment the user will perceive the two
separate subsystems (touchless detection and touch-screen) as a single touch
detection system, but with a smaller delay than a conventional touch sensitive
screen. However in other embodiments this may not be the case: the invention
could be used instead to add new functionality for example.
Claims

1. An electronic device comprising a touch-sensitive surface and a touchless
detecting system for detecting movement of a finger towards the surface; the device
being configured to associate said movement with a predicted touch on said surface and to issue a report of said predicted touch.

2. A device as claimed in claim 1 wherein the report of said predicted touch
comprises information relating to a position on the surface that it is predicted the user will touch.

3. A device as claimed in claim 1 or 2 wherein the report of said predicted touch comprises information relating to a speed and/or direction of the user's finger prior to touching the screen.

4. A device as claimed in any preceding claim arranged to provide feedback in response to said predicted touch.

5. A device as claimed in claim 4 arranged to provide feedback regarding a predicted position of the touch.

6. A device as claimed in claim 4 or 5 wherein the feedback is at least one of: visual, audible or haptic.

7. A device as claimed in any of claims 4 to 6 wherein the feedback comprises a GUI element being enlarged as the finger approaches the touch-sensitive surface.

8. A device as claimed in claim 7 wherein the size of the GUI element is inversely proportional to the distance of the finger from the screen over at least a range of distances.

9. A device as claimed in any of claims 4 to 8 wherein the feedback is dependent on a position of the predicted touch.
10. A device as claimed in any preceding claim arranged to give a plurality of reports of predicted touch.

11. A device as claimed in any preceding claim arranged such that the report of predicted touch initiates or alters a process in the device which is not apparent to a user.

12. A device as claimed in any preceding claim arranged to carry out an action or function on the basis of the report of predicted touch, but to carry out no further action or function if/when the surface is touched.

13. A device as claimed in any preceding claim wherein the touchless detecting system comprises an acoustic touchless detecting system.

14. A device as claimed in claim 13 wherein said touchless detecting system uses ultrasonic signals.

15. A device as claimed in any preceding claim wherein the touchless detecting system is configured to detect preferentially the user's fingertip over other parts of the user's hand.

16. A method of operating an electronic device comprising a touch-sensitive surface and a touchless detecting system, the method comprising:

 detecting movement of a finger towards the surface using the touchless detecting system;
 associating said movement with a predicted touch on said surface; and
 issuing a report of said touch.

17. A method as claimed in claim 16 wherein the report of said predicted touch comprises information relating to a position on the surface that it is predicted the user will touch.

18. A method as claimed in claim 16 or 17 wherein the report of said predicted touch comprises information relating to a speed and/or direction of the user's finger prior to touching the screen.
19. A method as claimed in any of claims 16 to 18 comprising providing feedback in response to said predicted touch.

20. A method as claimed in claim 19 comprising providing feedback regarding the predicted position of the touch.

21. A method as claimed in claim 19 or 20 comprising feedback which is at least one of: visual, audible or haptic.

22. A method as claimed in any of claims 19 to 21 comprising enlarging a GUI element as the finger approaches the touch-sensitive surface.

23. A method as claimed in claim 22 wherein the size of the GUI element is inversely proportional to the distance of the finger from the screen over at least a range of distances.

24. A method as claimed in any of claims 19 to 23 wherein the feedback is dependent on a position of the predicted touch.

25. A method as claimed in any of claims 16 to 24 comprising giving a plurality of reports of predicted touch.

26. A method as claimed in any of claims 16 to 25 comprising using the report of predicted touch to initiate or alter a process in the device which is not apparent to the user.

27. A method as claimed in any of claims 16 to 26 comprising carrying out an action or function on the basis of the report of predicted touch but carrying out no further action or function if/when the surface is touched.

28. A method as claimed in any of claims 16 to 27 comprising using an acoustic touchless detecting system.
29. A method as claimed in claim 28 wherein said touchless detecting system uses ultrasonic signals.

30. A method as claimed in any of claims 16 to 29 comprising detecting preferentially the position of a user's fingertip over other parts of the user's hand.

31. A computer software product, either on a carrier or not, comprising instructions for operating an electronic device comprising a touch-sensitive surface and a touchless detecting system, the instructions comprising:

instructions for detecting movement of a finger towards the surface using the touchless detecting system;

instructions for associating said movement with a predicted touch on said surface; and

instructions for issuing a report of said predicted touch.

32. A computer software product as claimed in claim 31 wherein the report of said predicted touch comprises information relating to a position on the surface that it is predicted the user will touch.

33. A computer software product as claimed in claim 31 or 32 wherein the report of said predicted touch comprises information relating to a speed and/or direction of the user's finger prior to touching the screen.

34. A computer software product as claimed in any of claims 31 to 33 comprising instructions for providing feedback in response to said predicted touch.

35. A computer software product as claimed in claim 34 comprising instructions for providing feedback regarding a predicted position of the touch.

36. A computer software product as claimed in claim 34 or 35 comprising instructions for providing feedback which is at least one of: visual, audible or haptic.

37. A computer software product as claimed in any of claims 34 to 36 comprising instructions for enlarging a GUI element as the finger approaches the touch-sensitive surface.
38. A computer software product as claimed in claim 37 wherein the size of the GUI element is inversely proportional to the distance of the finger from the screen over at least a range of distances.

39. A computer software product as claimed in any of claims 34 to 38 wherein the feedback is dependent on a position of the predicted touch.

40. A computer software product as claimed in any of claims 31 to 39 comprising instructions for giving a plurality of reports of predicted touch.

41. A computer software product as claimed in any of claims 31 to 40 comprising instructions for using the report of predicted touch to initiate or alter a process in the device which is not apparent to the user.

42. A computer software product as claimed in any of claims 31 to 41 comprising instructions for carrying out an action or function on the basis of the report of predicted touch but carrying out no further action or function if/when the surface is touched.

43. A computer software product as claimed in any of claims 31 to 42 comprising using an acoustic touchless detecting system.

44. A method as claimed in claim 43 wherein said touchless detecting system uses ultrasonic signals.

45. A computer software product as claimed in any of claims 31 to 44 comprising instructions for detecting preferentially the position of a user's fingertip over other parts of the hand.
A. CLASSIFICATION OF SUBJECT MATTER

INV. G06F3/0488

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paragraphs [0040], [0041], [0045], [0084] - [0087], [0151], [0165] - [0168]</td>
<td>11, 26, 41</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * **A** document defining the general state of the art which is not considered to be of particular relevance
 * **E** earlier application or patent but published on or after the international filing date
 * **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * **O** document referring to an oral disclosure, use, exhibition or other means
 * **P** document published prior to the international filing date but later than the priority date claimed

* Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* Document member of the same patent family

Date of the actual completion of the international search: 24 October 2013

Date of mailing of the international search report: 04/11/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer: Wiedmeyer, Vera
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2006161871 A1</td>
<td>20-07-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011170834 A</td>
<td>01-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011175832 A1</td>
<td>21-07-2011</td>
</tr>
</tbody>
</table>