
(12) United States Patent
Ungar et al.

USOO7036112B2

US 7,036,112 B2
Apr. 25, 2006

(10) Patent No.:
(45) Date of Patent:

(54) MULTI-MODE SPECIFICATION-DRIVEN
DISASSEMBLER

(75) Inventors: David M. Ungar, Mountain View, CA
(US); Mario I. Wolczko, San Carlos,
CA (US); Bernd J. W. Mathiske,
Cupertino, CA (US)

(73) Assignee: SUN Microsystems, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 683 days.

(21) Appl. No.: 10/222,613

(22) Filed: Aug. 16, 2002

(65) Prior Publication Data

US 2004/OO34851 A1 Feb. 19, 2004

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. 717/136; 717/124; 712/4
(58) Field of Classification Search 717/136,

717/146, 106, 124; 703/23: 712/4

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,175,856 A * 12/1992 Van Dyke et al. 717/151
6,061,513 A * 5/2000 Scandura 717/142
6,748,584 B1* 6/2004 Witchel et al. 717/136
6,886, 111 B1 * 4/2005 Tran 714,38
6,938,185 B1* 8/2005 Bebout et al. T14, 28

OTHER PUBLICATIONS

“Code Size Minimization and Retargetable Assembly for
Custom EPIC and VLIW Instruction Formats', Shail Aditya
et al, ACM, Oct. 2000, pp. 752-773.*

“DERIVE: A Tool That Automatically Reverse-Engineers
Instruction Encodings', Dawson R. Engler et al. ACM 2000,
pp. 12-22.*
“Decompilation of Binary Programs, Cristina Cifuentes et
al, Jahn Wiley & Sons, Ltd. Jan. 1995, pp. 811-829.*
“KAHLUA: A Hierarchial Circuit Disassembler, Bill Linet
al, ACM, 1987 pp. 311-317.*
“Set of Tools for Native Code Generation for the JAVA
Virtual Machine', Oscar AZanon Esteire et al, ACM, Mar.
1998, pp. 73-79.*
“Generation of Software Tools from Processor Descriptions
for Hardware/Software Codesign, Mark R. Hartoog et al.
ACM 1997, 4 pages.*

(Continued)
Primary Examiner Todd Ingberg
(74) Attorney, Agent, or Firm—Park, Vaughn & Fleming,
LLP. Edward J. Grundler

(57) ABSTRACT

One embodiment of the present invention provides a system
that facilitates implementing multi-mode specification
driven disassembler. During operation, the disassembler
receives a machine-code version of a computer program. In
order to disassemble a specific machine-code instruction
from this machine-code version, the system compares the
machine-code instruction against a set of instruction tem
plates for assembly code instructions to identify a set of
matching templates. Next, the system selects a matching
template from the set of matching templates based on the
state of a mode variable, which indicates a specificity mode
for the disassembler. The system then disassembles the
machine-code instruction using the operand fields defined by
the matching template to produce a corresponding assembly
code instruction.

21 Claims, 2 Drawing Sheets

YS

START

receiya MaCHNe-co WERSON
OFARC-RAM 402

SELECT&MACHINE-CODE
INSTRUCTION FROTH PROGRAM

404

SELECTATERPlate FRM THE SET
OF TEMPLATES 48

PERForMITWSEAN BETWEN
NSTRUCTION WORAN MASK808

DOES RESULT
MATCH INSTRUCTION

LATE
410

MC) YES

ISASSEMBLE OPERANS 412

More
TEPLATES

REASSEMBLs. NSTRUCTION 44

NO INSTRUCTION:
Legal?

418

AISPLATE to List of
MATCHES48

SELEGt EMPLATE BASE c
SASSMBLYMode 423

SPLAY ATA TO USR 424

US 7,036,112 B2
Page 2

OTHER PUBLICATIONS "GENOA- A Customizable, Front-End-Retargeting Source
“Assembly Language through the JAVA Virtual Machine'. Code Analysis Framework”. Premkumar T. Devanbu, ACM
Carl Bredlau et al, ACM 2000, pp. 1994-2198.* 1999, pp. 177-212.*
“Automatic Checking of Instruction Specifications, Mary
Fernandez et al, ACM 1997, pp. 326-524.* * cited by examiner

U.S. Patent

3.
USER 102

TEMPLATE 202

SPECIFICITY 204

OPCODE TEMPLATE 206

OPCODE MASK 208

FIG. 2

Apr. 25, 2006 Sheet 1 of 2

COMPUTER 104

GRAPHICAL USER
INTERFACE 106

US 7,036,112 B2

DSASSEMBLER 108

ASSEMBLER 110

MACHINE CODE VERSION
OF PROGRAM 112

SET OF INSTRUCTION
TEMPLATES 114

SET OF MATCHING
TEMPLATES 116

FIG. 1

TEMPLATE 3O2

SPECIFICITY = 32
OPCODE = 7FEOOOO8
MASK = FFFFFFFF

FIG. 3A

TEMPLATE 304

SPECIFICITY - 17
OPCODE = 7COOOOO8
MASK = FCOOO7FF

FIG. 3B

U.S. Patent Apr. 25, 2006 Sheet 2 of 2 US 7,036,112 B2

START

RECEIVE A MACHINE-CODE VERSION
OF A PROGRAM 402

SELECT A MACHINE-CODE
INSTRUCTION FROM THE PROGRAM

404

SELECT A TEMPLATE FROM THE SET
OF TEMPLATES 406

PERFORMBTWISE-AND BETWEEN
NSTRUCTION WORD AND MASK 4.08

DOES RESULT
MATCH INSTRUCTION

TEMPLATE
41 O

DISASSEMBLE OPERANDS 412

REASSEMBLE NSTRUCTION 414

NSTRUCTION
LEGALP
416

YES

MORE
TEMPLATEST

YES 420

NO

YES

ADD TEMPLATE TO LIST OF
MATCHES 418

SELECT TEMPLATE BASED ON
DISASSEMBLY MODE 422

DISPLAY DATA TO USER 424

STOP

FIG. 4

US 7,036,112 B2
1.

MULT-MODE SPECIFICATION-DRIVEN
DISASSEMBLER

BACKGROUND

1. Field of the Invention
The present invention relates to the design of disassem

blers for converting machine code for a computer program
into corresponding human-readable assembly code. More
specifically, the present invention relates to a method and an
apparatus for implementing a multi-mode specification
driven disassembler.

2. Related Art
During development of an application for a computer

system, developers typically write source code for the appli
cation in a higher-level language (HLL). This source code
version of the application is then translated by a compiler (or
an assembler) into corresponding machine code version of
the program that is suitable for execution on a specific target
computer system.
To ensure correctness, developers often desire to examine

the machine code created by the compiler (or assembler).
Unfortunately, this machine code is comprised of a series of
numbers that cannot easily be deciphered by even the most
knowledgeable programmers. Hence, developers typically
examine the machine code by first using a disassembler to
translate the machine code into human-readable assembly
code. This assembly code uses descriptive mnemonics to
represent program instructions, and these mnemonics are
more understandable to a human than the corresponding
machine code numbers.
Some instruction set architectures, such as the instruction

set architecture for the PowerPC, define instructions—such
as branches and traps—that are so general that the general
form Verges on incomprehensibility. For example, an
instruction that branches on equality might be written as,

bc. 12, 2.<destination>.
To simplify life for the programmer, the PowerPC assembler
also defines a shorthand representation for the same instruc
tion, so that the instruction can be more intuitively repre
sented as

beq-destination>.
While it is no problem for the assembler to generate the

same bits for these two different mnemonics, the disassem
bler, which operates in the reverse direction, must choose
one form or the other when it disassembles the bits for such
an instruction.

Current disassemblers are designed to choose one source
form, typically the most specific, such as the beq <destina
tion> form. While this most-specific form is usually desired,
the most general form is useful in specific situations, par
ticularly for debugging compilers.
What is needed is a method and an apparatus that allows

the user to control the assembly code form that the disas
sembler chooses while disassembling machine code.

SUMMARY

One embodiment of the present invention provides a
system that facilitates implementing multi-mode specifica
tion-driven disassembler. During operation, the disassem
bler receives a machine-code version of a computer pro
gram. In order to disassemble a specific machine-code
instruction from this machine-code version, the system
compares the machine-code instruction against a set of
instruction templates for assembly code instructions to iden

10

15

25

30

35

40

45

50

55

60

65

2
tify a set of matching templates. Next, the system selects a
matching template from the set of matching templates based
on the State of a mode variable, which indicates a specificity
mode for the disassembler. The system then disassembles
the machine-code instruction using the operand fields
defined by the matching template to produce a correspond
ing assembly code instruction.

In one embodiment of the present invention, a given
template includes an opcode template, an opcode mask, and
a specificity for the given template.

In one embodiment of the present invention, comparing
the machine code instruction against a specific instruction
template involves first performing a bitwise-AND operation
between the machine code instruction and the opcode mask
and then comparing the result with the opcode template. If
the result of the bitwise-AND operation matches the opcode
template, the system identifies the specific instruction tem
plate as a matching template.

In one embodiment of the present invention, the system
reassembles the corresponding assembly code instruction
into a machine-code instruction. If the resulting machine
code instruction is not a valid machine-code instruction, the
system removes the corresponding instruction template from
the set of matching templates.

In one embodiment of the present invention, the speci
ficity for a given template indicates a number of bits that are
set to one within the opcode mask of the given template.

In one embodiment of the present invention, the speci
ficity mode specifies using either a most specific template or
a least specific template.

In one embodiment of the present invention, the system
allows a user to set the specificity mode for the disassembler
through a graphical user interface.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a computer in accordance with an
embodiment of the present invention.

FIG. 2 illustrates a template in accordance with an
embodiment of the present invention.

FIG. 3A illustrates a template with a high specificity in
accordance with an embodiment of the present invention.

FIG. 3B illustrates a template with a low specificity in
accordance with an embodiment of the present invention.

FIG. 4 presents a flowchart illustrating the process of
disassembling a machine, code instruction in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi
ments shown, but is to be accorded the widest scope
consistent with the principles and features disclosed herein.
The data structures and code described in this detailed

description are typically stored on a computer readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system.
This includes, but is not limited to, magnetic and optical
storage devices such as disk drives, magnetic tape, CDS

US 7,036,112 B2
3

(compact discs) and DVDs (digital versatile discs or digital
Video discs), and computer instruction signals embodied in
a transmission medium (with or without a carrier wave upon
which the signals are modulated). For example, the trans
mission medium may include a communications network,
Such as the Internet.

Computer System
FIG. 1 illustrates computer 104 in accordance with an

embodiment of the present invention. Computer 104
includes graphical user interface 106, disassembler 108,
assembler 110, machine code version of program 112, set of
instruction templates 114, and set of matching templates
116. Computer 104 operates under control of user 102.
User 102 accesses graphical user interface 106 to control

applications executing on computer 104 and receive the
results of these applications. Specifically, user 102 uses
graphical user interface 106 to control disassembler 108 and
to receive results generated by disassembler 108 through
graphical user interface 106.

Disassembler 108 is a multi-mode, specification-driven
disassembler. User 102 can set the mode of disassembler108
to use either the most specific or the least specific assembly
code representation of a machine-code instruction as
described below in conjunction with FIGS. 2, 3A, and 3B.
Disassembler 108 uses templates from set of instruction
templates 114 as specifications for controlling the disassem
bly of individual machine code instructions.

Disassembler 108 operates by taking a machine-code
instruction from a machine code version of a program, for
example, from machine code version of program 112, and
finding matching instruction templates for the machine-code
instruction from set of instruction templates 114. Templates
from the set of instruction templates 114 are described in
detail in conjunction with FIGS. 2, 3A, and 3B. Matching
templates for the machine-code instruction are identified by
first performing a bitwise-AND operation between the
opcode mask within the template and the machine-code
instruction. The result of this bitwise-AND operation is then
compared with the opcode template within the template. If
the result of the bitwise-AND and the opcode template
match, the instruction is disassembled over each of its
operand fields to form a corresponding assembly code
instruction.

Next, assembler 110 receives the opcode and operand
fields from disassembler 108 and reassembles the instruc
tion. If a legal instruction is formed in which the opcode and
operands do not violate any assembly rules, the matching
template is added to set of matching templates 116. Com
puter 104 then selects either the most specific or least
specific matching template from set of matching templates
116 depending on the specificity mode previously selected
by user 102. The selected matching template determines
how the corresponding assembly code instruction is formed.
Template

FIG. 2 illustrates template 202 in accordance with an
embodiment of the present invention. Template 202 includes
specificity 204, opcode template 206, and opcode mask 208.
Opcode mask 208 is used to mask specific bits within a
machine-code instruction as described above. Opcode tem
plate 206 provides a bit pattern to be compared against the
results of the masking operation. If the masked machine
code instruction matches opcode template 208, the machine
code instruction is disassembled, reassembled, and possibly
selected as a matching template as is described above.
Specificity 204 is a count of the number of bits specified as
one in opcode mask 208. In general, specificity 204 defines

10

15

25

30

35

40

45

50

55

60

65

4
which templates within set of instruction templates 114 are
the most specific and which templates are the least specific.
Specific Templates

FIG. 3A illustrates a template with a high specificity in
accordance with an embodiment of the present invention.
Template 302 has a specificity of 32 because there are
thirty-two one bits in its mask. The opcode template within
template 302 is 7FE00008. This opcode template exactly
corresponds to an unconditional trap instruction, thus only
an unconditional trap instruction will be selected by tem
plate 302. Note that the unconditional trap instruction can be
written as either “trap' or “tw 31, 0, 0” as desired by a
programmer.

FIG. 3B illustrates a template with a low specificity in
accordance with an embodiment of the present invention.
Template 304 has a specificity of 17 because there are
seventeen one bits in its mask. The opcode template within
template 304 is 7C0007FF. This opcode template will match
any trap instruction, either conditional or unconditional,
including the unconditional trap instruction 7FE00008.

During operation, both template 302 and template 304
would be placed in the set of matching templates 116 for a
machine-code instruction coded 7FE00008. The system gen
erates different assembly code instructions for a given
machine-code instruction based on the specificity mode for
disassembler 108. User 102 is presented with trap if the
mode is set to most-specific, while user 102 is presented
with tw 31, 0, 0 if the mode is set to least-specific.
Disassembling an Instruction

FIG. 4 is a flowchart illustrating the process of disassem
bling a machine-code instruction in accordance with an
embodiment of the present invention. The process starts
when the system receives a machine code program for
disassembly (step 402). Next, the system selects a machine
code instruction from the program for disassembly (step
404).
The system then selects a template from the set of

templates (step 406). Next, the system performs a bitwise
AND between the machine-code instruction and the mask
within the template (step 408). After performing the bitwise
AND, the system compares the result with the opcode
template within the template (step 410). If there is a match,
the system disassembles the operands for the instruction
(step 412). The system then reassembles the disassembled
instruction (step 414). If the reassembled instruction is a
legal instruction (step 416), the system adds the template to
the set of matching templates 116 (step 418).

After adding the template to the set of matching templates
116, if the reassembled instruction is not legal at step 416,
or if the result of the bitwise-AND does not match the
template at step 410, the system determines if there are more
templates to check (step 420). If so, the process returns to
step 406 to continue processing templates. Otherwise, the
system selects a template from the set of matching templates
116 based on the specificity mode of the disassembler (step
422). As described above, the most-specific or the least
specific template is chosen based on the specificity mode of
the disassembler. Finally, the system displays the data to the
user (step 424). Note that displaying the data to the user can
involve storing the data in a file for later use by the user.
The foregoing descriptions of embodiments of the present

invention have been presented for purposes of illustration
and description only. They are not intended to be exhaustive
or to limit the present invention to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art. Additionally, the

US 7,036,112 B2
5

above disclosure is not intended to limit the present inven
tion. The scope of the present invention is defined by the
appended claims.

What is claimed is:
1. A method for implementing a disassembler, wherein the

disassembler is a mode-settable, specification-driven disas
sembler, comprising:

receiving a machine-code version of a computer program;
comparing a machine-code instruction from the machine

code version of the computer program against a set of
templates for assembly code instructions to identify a
set of matching templates;

Selecting a matching template from the set matching
templates based on the state of a mode variable indi
cating a specificity mode for the disassembler, wherein
the specificity mode variable indicates whether a more
specific or a less-specific assembly code representation
of the machine-code instruction is to be selected; and

disassembling the machine-code instruction using the
operand fields defined by the matching template to
produce a corresponding assembly code instruction.

2. The method of claim 1, wherein a given template
includes an opcode template, an opcode mask, and a speci
ficity for the given template.

3. The method of claim 2, wherein comparing the
machine-code instruction against a specific instruction tem
plate involves:

performing a bitwise-AND operation between the
machine-code instruction and the opcode mask;

comparing a result of the bitwise-AND operation with the
opcode template; and

if the result matches the opcode template, identifying the
specific instruction template as a matching template.

4. The method of claim 3, further comprising:
reassembling the corresponding assembly code instruc

tion into a machine-code instruction; and
if the resulting machine-code instruction is not a valid

machine-code instruction, removing the corresponding
instruction template from the set of matching instruc
tion templates.

5. The method of claim 2, wherein the specificity indicates
a number of bits that are set to one within the opcode mask
of the given template.

6. The method of claim 5, wherein the specificity mode
specifies using either a most specific template or a least
specific template.

7. The method of claim 6, further comprising allowing a
user to set the specificity mode for the disassembler through
a graphical user interface.

8. A computer-readable storage medium storing instruc
tions that when executed by a computer cause the computer
to perform a method for implementing a disassembler,
wherein the disassembler is a mode-settable, specification
driven disassembler, the method comprising:

receiving a machine-code version of a computer program;
comparing a machine-code instruction from the machine

code version of the computer program against a set of
templates for assembly code instructions to identify a
set of matching templates;

Selecting a matching template from the set matching
templates based on the state of a mode variable indi
cating a specificity mode for the disassembler, wherein
the specificity mode variable indicates whether a more
specific or a less-specific assembly code representation
of the machine-code instruction is to be selected; and

10

15

25

30

35

40

45

50

55

60

65

6
disassembling the machine-code instruction using the

operand fields defined by the matching template to
produce a corresponding assembly code instruction.

9. The computer-readable storage medium of claim 8.
wherein a given template includes an opcode template, an
opcode mask, and a specificity for the given template.

10. The computer-readable storage medium of claim 9.
wherein comparing the machine-code instruction against a
specific instruction template involves:

performing a bitwise-AND operation between the
machine-code instruction and the opcode mask;

comparing a result of the bitwise-AND operation with the
opcode template; and

if the result matches the opcode template, identifying the
specific instruction template as a matching template.

11. The computer-readable storage medium of claim 10,
the method further comprising:

reassembling the corresponding assembly code instruc
tion into a machine-code instruction; and

if the resulting machine-code instruction is not a valid
machine-code instruction, removing the corresponding
instruction template from the set of matching instruc
tion templates.

12. The computer-readable storage medium of claim 9.
wherein the specificity indicates a number of bits that are set
to one within the opcode mask of the given template.

13. The computer-readable storage medium of claim 12,
wherein the specificity mode specifies using either a most
specific template or a least specific template.

14. The computer-readable storage medium of claim 13,
the method further comprising allowing a user to set the
specificity mode for the disassembler through a graphical
user interface.

15. An apparatus for implementing a disassembler,
wherein the disassembler is a mode-settable, specification
driven disassembler, comprising:

a receiving mechanism that is configured to receive a
machine-code version of a computer program;

a comparing mechanism that is configured to compare a
machine-code instruction from the machine-code Ver
sion of the computer program against a set of templates
for assembly code instructions to identify a set of
matching templates;

a selecting mechanism that is configured to select a
matching template from the set matching templates
based on the state of a mode variable indicating a
specificity mode for the disassembler, wherein the
specificity mode variable indicates whether a more
specific or a less-specific assembly code representation
of the machine-code instruction is to be selected; and

a disassembling mechanism that is configured to disas
semble the machine-code instruction using the operand
fields defined by the matching template to produce a
corresponding assembly code instruction.

16. The apparatus of claim 15, wherein a given template
includes an opcode template, an opcode mask, and a speci
ficity for the given template.

17. The apparatus of claim 16, further comprising:
a logic mechanism that is configured to perform a bitwise
AND operation between the machine-code instruction
and the opcode mask:

wherein the comparing mechanism is further configured
to compare a result of the bitwise-AND operation with
the opcode template; and

US 7,036,112 B2
7 8

an identifying mechanism that is configured to identify 19. The apparatus of claim 16, wherein the specificity
the specific instruction template as a matching template indicates a number of bits that are set to one within the
if the result of the bitwise-AND matches the opcode opcode mask of the given template.
template.

18. The apparatus of claim 17, further comprising: 5
a reassembling mechanism that is configured to reas

semble the corresponding assembly code instruction

20. The apparatus of claim 19, wherein the specificity
mode specifies using either a most specific template or a
least specific template.

into a machine-code instruction; and 21. The apparatus of claim 20, further comprising a mode
a removing mechanism that is configured to remove the selecting mechanism that is configured to allow a user to set

corresponding instruction template from the set of 10 the specificity mode for the disassembler through a graphical
matching instruction templates if the resulting user interface.
machine-code instruction is not a valid machine-code
instruction. k

