Office de la Propriete Canadian CA 2321016 A1 2002/03/27

Intellectuell Intellectual P
du Canada Office o opery en 2 321 016
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2000/09/27 (51) Cl.Int.//Int.Cl.” GO6F 90/45, GO6F 11/36

(41) Mise a la disp. pub./Open to Public Insp.: 2002/03/27 (71) Demandeur/Applicant:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeur/Inventor:
ARCHAMBAULT, ROCH GEORGES, CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : ELIMINATION D'ESPACE MORT ENTRE PROCEDURES
(54) Title: INTERPROCEDURAL DEAD STORE ELIMINATION

20 Procedure n

X _call

n call;

16

(57) Abrége/Abstract:

A system for optimizing computer code generation by carrying out interprocedural dead store elimination. The system carries
out a top down traversal of a call graph in an intermediate representation of the code being compiled. Live on exit (LOE) sets are
defined for variables at call points for functions in the code being compiled. Bit vectors representing the LOE sets for call points
for functions are stored in an LOE table indexed or hashed by call graph edges. For each function definition reached in the call
graph traversal, a LOE set for the function itself is generated by taking the union of the LOE call point sets. The entries in the
LOE table for the LOE call point sets are then removed. The LOE set for each function Is used to determine If variables that are
the subject of a store operation In a function may be subject to a dead store elimination optimization.

SRR VNEEEN
R 5. sas ALy
O
A

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02321016 2000-09-27

INTERPROCEDURAL DEAD STORE ELIMINATION

ABSTRACT

A system for optimizing computer code generation by carrying out interprocedural dead store
elimination. The system carries out a top down traversal of a call graph in an intermediate
representation of the code being compiled. Live on exit (LOE) sets are defined for variables at call
points for functions in the code being compiled. Bit vectors representing the LOE sets for call points
for functions are stored in an LOE table indexed or hashed by call graph edges. For each function
definition reached in the call graph traversal, a LOE set for the function itself is generated by taking
the union of the LOE call point sets. The entries in the LOE table for the LOE call point sets are then
removed. The LOE set for each function is used to determine if variables that are the subject of a

store operation 1n a function may be subject to a dead store elimination optimization.

CA9-2000-0027

10

15

20

CA 02321016 2000-09-27

INTERPROCEDURAL DEAD STORE ELIMINATION

FIELD OF THE INVENTION

The present invention is directed to an improvement in computing systems and in particular to
computer systems which provide for interprocedural dead store elimination in optimized code

generation in the compilation of computer programs.

BACKGROUND OF THE INVENTION

Optimizing compilers permit efficient object code to be emitted given a particular piece of source
code to be compiled. Source code that includes a store operation where the variable stored has a
constant value or 1s not later used in the source code execution path may be the subject of

optimization in compilers. Such an optimization is known as a dead store elimination optimization.

Dead store elimination is a well-understood optimization. Compiler optimizations, such as constant

propagation, which propagate constant values forward in compiled code, often result in opportunities
for store elimination. Such compiler optimizations permit the removal of code for such store
operations if, after the constant propagation, the compiler can determine that the variable subject of
the store operation is not subsequently used. Removing the code for such a store operation reduces

execution path length in the compiled computer code.

If the scope of the code optimization is intraprocedural only restricted to be (within the bounds of
a procedure or function) then it is not possible to eliminate code for a store operation if the variable
subject to the operation is an external (global) variable. Insuch a case the compiler cannot determine
if the variable is used in the execution path that follows execution of the function and is therefore
not able to carry out a dead store elimination optimization. The function is potentially called in other

procedures or functions. Although a particular variable may not be modified or used in the function

CA9-2000-0027

10

15

20

CA 02321016 2000-09-27

itself, the variable may be “live” in one of the procedures or functions that calls the function.

T'o carry out a dead store elimination optimization for an external variable it is therefore necessary
for the optimizing compiler to carry out an interprocedural dead code elimination analysis. One prior
art approach to the interprocedural dead code elimination is to carry out a data flow analysis for the
entire code being compiled to determine future uses of a variable subject to a possible dead code
elimination optimization. Such an approach typically involves an overhead cost which makes its use

In optimizing compilers prohibitive.

[t 1s therefore desirable to have a computer system which carries out the interprocedural dead store
elimination in an optimizing compiler without the requirement of a resource intensive data flow

analysis step.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, there is provided an improved system for dead code

elimination in an optimizing compiler for computer code.

According to another aspect of the invention there is provided a method for determining the
correctness of a potential interprocedural dead store optimization for an optimizing compiler, the
optimizing compiler generating an intermediate representation of code to be compiled including a
call graph, the method including a top-down traversal of the call graph, and including, for each

procedure definition reached in the call graph traversal, the following steps

l. defining a live on exit set of variables for each procedure call point within the reached

procedure definition by

defining a basic block live set for each block of computer code in a control flow

graph for the reached procedure definition, the basic block live set including the

variables used in the block of computer code and the variables used in any

CA9-2000-0027

- oo ——, 3¢

10

15

20

CA 02321016 2000-09-27

procedure called within the block of computer code, and

determining the live on exit set for each procedure call by taking the union of the

basic block live sets for all successor blocks to the block in the control flow graph
containing the procedure call point and by adjusting the union to include uses of
variables 1n the code between the call point for the procedure and the end of the

block containing the call point.

2. storing the said live on exit set of variables for each procedure call point in an entry in

a live on exit data structure including a bit vector indexed by a call graph edge,

3. defining a live on exit set of variables for the reached procedure definition by taking the
union of all stored entries in the live on exit data structure corresponding to call points

for the reached procedure,

4. removing all entries in the live on exit data structure corresponding to call points for the

reached procedure, and

J. using the live on exit set of variables for the reached procedure definition to determine
the variables that are ineligible for interprocedural dead store elimination in the reached

procedure definition.

According to another aspect of the invention there is provided the above method, in which the
variables used in a procedure called within a block of computer code are determined by accessing

the mod/use set for the procedure associated with the procedure definition node in the call graph.

According to another aspect of the invention there is provided the above method in which the step

of using the live on exit set of variables for the reached procedure definition to determine the

variables that are ineligible for interprocedural dead store elimination in the reached procedure

definition includes the step of generating pseudo uses of the members of the live on exit set of

CA9-2000-0027

10

15

20

25

CA 02321016 2000-09-27

variables for the reached procedure definition in the data flow graph for the reached procedure

definition.

According to another aspect of the invention there is provided the above method in which the live

on exit set data structure includes bit vector entries and is indexed by call graph edges.

According to another aspect of the invention there is provided the above method further including

the step of using the live on exit set of variables for the procedure definition to determine whether

the procedure definition may be cloned by the optimizing compiler.

According to another aspect of the invention there is provided a computer program product for the
compilation of computer code, the computer program product including a computer usable medium
having computer readable code means embodied in said medium, including computer readable

program code means to carry out the above method.

According to another aspect of the invention there is provided an optimizing compiler including
means for generating an intermediate representation of computer code, the intermediate
representation including a call graph, means for traversing the call graph in top down order, means
for storing a live on exit data structure, means for generating a record in the live on exit data
structure for each procedure call encountered in the traversal of the call graph, the record including
data representing variables that are live at the point of the procedure call, means for calculating the
live on exit set for a procedure definition reached in traversing the call graph, the means for
calculating the live on exit set including means for retrieving records from the live on exit data
structure corresponding to the reached procedure definition and means for performing a union of the
records to determine the live on exit set for the reached procedure definition, and means for
signalling the availability of a dead store elimination optimization for a store operation contained

in the reached procedure definition based on the live on exit set calculated for the procedure

definition.

According to another aspect of the invention there is provided the above optimizing compiler, further

including means for removing records associated with the reached procedure definition from the live

CA9-2000-0027

10

15

20

25

s AR M el o b

CA 02321016 2000-09-27

on exit data structure following calculation of the live on exit set for the reached procedure

definition.

According to another aspect of the invention there is provided a component for determining the
correctness of a potential interprocedural dead store optimization for an optimizing compiler, the

optimizing compiler generating an intermediate representation of code to be compiled including a

call graph, the component including means to traverse the call graph in top-down order, and further
including means for defining a live on exit set of variables for each procedure call point within the
reached procedure definition by defining a basic block live set for each block of computer code in
a control tlow graph for the reached procedure definition, the basic block live set including the
variables used in the block of computer code and the variables used in any procedure called within
the block of computer code, and determining the live on exit set for each procedure call by taking
the union of the basic block live sets for all successor blocks to the block in the control flow graph
containing the procedure call point and by adjusting the union to include uses of variables in the code
between the call point for the procedure and the end of the block containing the call point; means
for storing the said live on exit set of variables for each procedure call point in an entry in a live on
exit data structure including a bit vector indexed by a call graph edge; means for defining a live on
exit set of variables for the reached procedure definition by taking the union of all stored entries in
the live on exit data structure corresponding to call points for the reached procedure; means for
removing all entries in the live on exit data structure corresponding to call points for the reached
procedure following definition of the live on exit set of variables for the reached procedure
definition, and means for determining the variables that are ineli gible for interprocedural dead store

elimination in the reached procedure definition, using the live on exit set of variables for the reached

procedure definition.

Advantages of the present invention include improvements in compiled code optimization based on
interprocedural dead store elimination. The interprocedural dead code optimization is carried out
by making use of certain data structures available in existing compilers. The optimizing compiler

of the present invention utilizes a dynamic data structure which reduces the need for memory in the

CA9-2000-0027

[0

15

20

CA 02321016 2000-09-27

execution of compilations.

BRIEEF DESCRIPTION OF THE DRAWINGS

The preferred embodiment of the invention is shown in the drawings, wherein:

Figure 1 is a block diagram representing example computer software code fragments potentially

subject to the optimization of the preferred embodiment.

In the drawings, the preferred embodiment of the invention is illustrated by way of example. It is
to be expressly understood that the description and drawings are only for the purpose of illustration

and as an aid to understanding, and are not intended as a definition of the limits of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 illustrates, in a block diagram format, computer software code that may be optimized in
compilation by the preferred embodiment of the present invention. In the example of Figure 1 there
are shown code blocks 10, 12, 14, 16 and procedure code 18 which defines a Procedure n. In code
block 10 there are shown two sections of code 20, 22 as well as a call to Procedure n shown as

n_call;. Code block 14 is shown containing a call to Procedure n (shown as n_call,), and code

section 24. Code block 16 is shown containing a call to Procedure n (n_call,).

In the example of the code represented in the block diagram of Figure 1, the system of the preferred
embodiment is used in or with an optimizing compiler to determine whether interprocedural dead
store elimination may be carried out. In the example, a global variable may be subject to a store
operation in procedure definition 18. As a result, in the compilation of the code, there may be a
consequent interprocedural constant propagation (to Procedure x, referred to by Statement x_call in

procedure definition 8). In such a case, interprocedural dead store elimination is possible.

CA9-2000-0027

10

15

20

25

CA 02321016 2000-09-27

In the system of the preferred embodiment, interprocedural dead store elimination is indicated to be
possible in the compilation of the code shown in the example only where a defined live on exit

(LOE) set for Procedure n (defined in procedure definition 18) does not include the variable in

question. A global variable modified or used in a procedure is determined to be part of the LOE set

for that procedure if the variable is modified or used in code which may be executed following any
call to that procedure in other blocks of code being compiled. In such a case, the variable is said to
be “live” at the exit of the procedure in that the variable is potentially used after the procedure has
been executed. As will be appreciated by those skilled in the art, a variable that is “live” at the end
of a procedure cannot be considered for dead store elimination. On the other hand, if the variable
1s not included in the LOE set for a procedure then the variable is a potential candidate for dead store
elimination. The LOE set for the procedure definition assists in determining the correctness of an

interprocedural dead store elimination optimization.

The preterred embodiment thus indicates that interprocedural dead store elimination may occur

where the global variable subject to the optimization is not part of the LOE set for the procedure in
which the optimization is to occur. In the terminology of the preferred embodiment, there is an LOE

set for the procedure definition (code 18, in the example of Figure 1) and an LOE set associated with
each call point for a procedure (n_call |, n_call, and n_call, in the example of Figure 1). According
to the preferred embodiment, the LOE set for the procedure itself is calculated by taking a union of
the LOE sets for the call points for the procedure, as is described in more detail below. In the
example of the code shown schematically in Figure 1, the union of the LOE sets forn_call,, n_call,

and n_call, is used to determine the LOE set for Procedure n.

The preferred embodiment is described as being integrated in a link-phase portion of a compiler
system. It will be understood by those skilled in the art that the preferred embodiment may be
implemented in other ways such that an appropriate intermediate representation of the computer code
being compiled is accessible and the system for interprocedural dead store elimination may be
implemented without prohibitive overhead costs in the compilation of the code. In the description

of the preferred embodiment, reference is made to procedures and interprocedural dead store

CA9-2000-0027

10

15

20

25

CA 02321016 2000-09-27

elimination. Itis to be understood that functions and other programming language subroutines are

included in the term “procedure” as used in this description of the preferred embodiment.

T'he system of the preferred embodiment is implemented in a compiler that generates an intermediate
representation of the computer code being compiled. In the preferred embodiment the intermediate
representation includes a call graph. The call graph of the preferred embodiment is a directed multi-
graph in which the nodes represent procedures in the code being compiled, and the edges represent
call points. In the preferred embodiment, the nodes of the call graph are augmented with
interprocedural mod/use sets. The mod/use set for a procedure is a data structure that records the
variables that are modified and used, respectively, in the procedure (including those modified and
used by the procedures called in that procedure). The use of interprocedural mod/use sets permits
the compiler to determine the set of global variables which are either modified or used (or both) at

a specitic call point.

The system of the preferred embodiment also makes use of a control flow graph. This is a data

structure that represents the code to be compiled in terms of basic blocks and represents control flow

In the code with reference to these basic blocks. A further data structure in the intermediate
representation is a data flow graph. Each of the call graph, control flow graph, and data flow graph

1s a data structure known in the art. The use of such graphs in an intermediate representation of code

In an optimizing compiler is understood in the art.

The system of the preferred embodiment also includes basic block level live sets in the intermediate
representation of the code being compiled. These are sets of data which represent intraprocedural
live variables. Such block level live sets are known in the art and are typically represent variables
which are live on entry to a specific block of code in a given procedure. In other words, the variables
that are used in the block of code. In the preferred embodiment, local live sets are extended to
represent the variables directly used in the block of code, the LOE set for the procedure containing
the block of code, as well as the interprocedural use sets for each procedure call point in the block
of code. The interprocedural use set for a procedure call is found by using the mod/use set for the

procedure (stored in association with the node for the procedure in the call graph). These local live

CA9-2000-0027

10

15

20

25

CA 02321016 2000-09-27

sets as extended are used in the preferred embodiment to determine the set of global variables that

are ltve on exit to a call point.

A final data structure is a table of bit vectors used in the system of the preferred embodiment to
represent the LOE set for a call point. Each bit vector represents the set of global variables that are
live on exit for a given call point in the code being compiled. The table is indexed or hashed using
a call graph edge index. As is set out below, entries in the table are removed after they have been

used. In this way the size of the table is limited.

In operation, the system of the preferred embodiment traverses each node in the call graph in the
intermediate representation of the code being compiled in reverse depth- first order (top-down). If
the call graph contains nodes representing procedures without an intermediate representation (for
example, assembler code being linked to the compiled code) then those nodes cannot be optimized.
In such a case, conservative interprocedural mod/use sets are used in the preferred embodiment to
represent the effect of procedures or functions without intermediate representations. In the
terminology of the preferred embodiment, if the intermediate representation for a procedure or

function is available, then it is identified as a defined function.

According to the preferred embodiment, for each defined function reached in the traversal of the call
graph, a successor mod set is computed. The successor mod set is used to define the universe of
variables potentially contained in the LOE sets for call points within the procedure. The successor
mod set 1s defined to be the set of all global variables which may be modified by all calls in the

function. It also includes the set of global variables defined in the function.

The system of the preferred embodiment computes the LOE set for each defined procedure in the
call graph asitis traversed. The LOE set for a given procedure definition is computed by the system
of the preferred embodiment where the LOE sets are known for all call points for that function.
Because of the order in which the call graph is traversed, all LOE sets for all call points of a

procedure may be known at the time that the procedure definition node is reached in the call graph.

However, for recursive procedures, for example, the definition of the procedure will be reached

CA9-2000-0027

10

15

20

25

CA 02321016 2000-09-27

betore all call points are reached in the call graph. Asaresult, not all LOE sets for all call points are

determined. In such a case, the calculation of the LOE set for the recursive procedure will not be

possible

Ifa given call point for a procedure has no definable LOE set then every relevant variable is assumed
to be live on exit at the call point and all variables are included in the LOE set for the call point. If
the LOE sets are available for all call points then the system of the preferred embodiment is able to
compute the LOE set for the function as being the union of the LOE set for each call point for that

procedure.

T'o calculate potential interprocedural dead store elimination in a procedure definition currently
reached in the traversal of the call graph, the system of the preferred embodiment builds basic block
level live sets, also referred to as local live sets, for the procedure. These local live sets represent the
set of global variables that are live on entry to a basic block of code (as defined in the control flow
graph). In the system of the preferred embodiment, interprocedural mod/use sets and the current
procedure’s LOE set are used in building the local live sets. The local live sets are extended in the
preterred embodiment to also contain interprocedural variables. The system of the preferred
embodiment is able to use the extended local live sets to carry out dead store elimination, where
applicable. The local live sets indicate which variables are live and therefore which variables cannot
be subject to a dead store elimination optimization. Where, on the other hand, a store of a global
variable is found that is not in the local live set, then that variable is not subsequently used either
locally or interprocedurally and the store is therefore a candidate for a dead store elimination

optimization.

As indicated above, according to the preferred embodiment, LOE sets are generated for procedure
call points. In the preferred embodiment, these LOE sets for call points are stored in an LOE table
as bit vectors. The bit vectors for call points for a given procedure are maintained in the LOE table

until the calculation of that procedure’s LOE set is carried out. To determine the LOE ofa call point
within a procedure currently reached in the traversal of the call graph, the system of the preferred

embodiment determines the LOE set for the block containing the call point. This is computed by

CA9-2000-0027
10

10

15

20

25

CA 02321016 2000-09-27

carrying out the union of local live sets of each successor block (in the control flow graph) for the

procedure. The LOE set for the call point is then determined by adjusting the union set for uses of

variables that occur between the call point and the end of the block.

Turning to the example of Figure 1, the LOE set for the call point of n_call, 1s determined by taking
the union of the LOE sets for blocks 12, 14, 16. This resulting LOE set for the call point of n_call,

s then adjusted for uses of variables that occur in code 22 within block 10.

The system of the preferred embodiment calculates the LOE set for a call point of a procedure by
considering each variable in the interprocedural mod set of the function being called. An entry in
the LOE table is then made for the call point. All variables which are live on exit to the call point,
as calculated above, are represented in the bit vector defining the LOE set for that call point that is

stored in the LOE table (and indexed or hashed by the procedure).

The system of the preferred embodiment, after carrying out the calculations set out above for the
procedure reached in the call graph, removes all entries in the LOE table that correspond to calls to

the procedure currently reached in the traversal of the call graph. This prevents the LOE table from

becoming prohibitively large.

In the preterred embodiment there are interprocedural mod/use sets provided that are pre- defined
for library functions and procedures. This permits the calculation of LOE sets to be more precise
than 1s the case where the most conservative estimate of mod/use sets must otherwise be used for
such library routines. In effect, library routines with pre-defined mod/use sets may be treated as

defined functions.

In the preferred embodiment, the presence of an external variable in the LOE set for a procedure is
indicated by the inclusion of a pseudo use of the variable in the data flow graph generated in the
intermediate representation of the code being compiled. This technique permits external variables
which are live on exit to be treated by the compiler as local variables which are used in the function.
The result is that the data flow graph is defined such that the external variable is represented in the

graph. Dead store elimination optimization is therefore prevented for the variable, due to its

CA9-2000-0027
11

10

15

20

CA 02321016 2000-09-27

presence in the graph. The inclusion of a pseudo use of such variables permits LOE global variables
to be handled without requiring a special case to be defined in the dead store elimination

optimization.

In the preterred embodiment it is also possible to use the LOE sets to determine where cloning of
functions is possible in the optimization of the compilation for the code. Those variables live on exit
will be used to determine if cloning of the procedure or function is possible, and if so in what

manner.

As may be seen from the above description, the system of the preferred embodiment is well-suited
for inclusion in an interprocedural optimizer in a compiler (typically found in the linker component

of such a compiler). The preferred embodiment makes use of a top down traversal of the call graph
to build LOE sets for call points before determining LOE sets for function definitions. The

calculation of the call point LOE sets permits the LOE set for a given function to be efficiently
calculated when the function is reached in the traversal of the call graph. Once the LOE for the
function is determined, it is possible to eliminate the LOE sets for the call points of the function from
the LOE table data structure. This incremental approach to the calculation of the LOE sets for

functions in the compiled code provides for memory efficiencies in the compilation optimization

process.

Although a preferred embodiment of the present invention has been described here in detail, it will

be appreciated by those skilled in the art, that variations may be made thereto, without departing

tfrom the spirit of the invention or the scope of the appended claims. '

CA9-2000-0027
12

10

15

20

CA 02321016 2000-09-27

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

. A method for determining the correctness of a potential interprocedural dead store
optimization for an optimizing compiler, the optimizing compiler generating an intermediate
representation of code to be compiled comprising a call graph, the method comprising a top-
down traversal of the call graph, and comprising, for each procedure definition reached in

the call graph traversal, the following steps
a. defining a live on exit set of variables for the reached procedure definition, and

b. defining a live on exit set of variables for each procedure call point within the

reached procedure definition,

c. storing the live on exit set of variables for each procedure call point in an entry in a

live on exit data structure, and

d. using the live on exit set of variables for the reached procedure definition to
determine the variables that are ineligible for interprocedural dead store elimination

in the reached procedure detinition.

2. The method of claim 1 in which the live on exit set of variables for the reached procedure
definition 1s defined by taking the union of all stored entries in the live on exit data structure

corresponding to call points for the reached procedure.

3. The method of claim 2 in which the step of defining the live on exit set for each procedure

call point in the reached procedure definition further comprises the steps of

a. defining a basic block live set for each block of computer code in a control flow
graph tfor the reached procedure definition, the basic block live set comprising the
variables used in the block of computer code and the variables used in any procedure

called within the block of computer code, and

CA9-2000-0027
13

10

15

20

CA 02321016 2000-09-27

b. determining the live on exit set for each procedure call by taking the union of the
basic block live sets for all successor blocks to the block in the control flow graph
containing the procedure call point and by adjusting the union to include uses of
variables in the code between the call point for the procedure and the end of the block

containing the call point.

4. The method of claim 1 in which the step of defining the live on exit set for each procedure

call point in the reached procedure definition further comprises the steps of

a. defining a basic block live set for each block of computer code in a control tlow
graph for the reached procedure definition, the basic block live set comprising the
variables used in the block of computer code and the variables used in any procedure

called within the block of computer code, and

b. determining the live on exit set for each procedure call by taking the union of the
basic block live sets for all successor blocks to the block in the control flow graph
containing the procedure call point and by adjusting the union to include uses of
variables in the code between the call point for the procedure and the end of the block

containing the call point.

5. The method of claim 2, further comprising the step, after defining the live on exit set of
variables for the reached procedure definition, of removing all entries in the live on exit data

structure corresponding to call points for the reached procedure.

6. The method of claim 3, in which the variables used in a procedure called within a block of
computer code are determined by accessing the mod/use set for the procedure associated with

the procedure definition node 1n the call graph.

CA9-2000-0027
14

10

iS5

20

25

7.

10.

CA 02321016 2000-09-27

The method of claim 1 in which the step of using the live on exit set of variables for the
reached procedure definition to determine the variables that are ineligible for interprocedural
dead store elimination in the reached procedure definition comprises the step of generating
pseudo uses of the members of the live on exit set of variables for the reached procedure

definition in the data flow graph for the reached procedure definition.

The method of claim 1 in which the live on exit set data structure comprises bit vector entries

and is indexed by call graph edges.

The method of claim 2 further comprising the step of using the live on exit set of variables

for the procedure definition to determine whether the procedure definition may be cloned by

the optimizing compiler.

A method for determining the correctness of a potential interprocedural dead store
optimization for an optimizing compiler, the optimizing compiler generating an intermediate
representation of code to be compiled comprising a call graph, the method comprising a top-
down traversal of the call graph, and comprising, for each procedure definition reached in

the call graph traversal, the following steps

a. defining a live on exit set of variables for each procedure call point within the

reached procedure definition by

i.defining a basic block live set for each block of computer code in a control
flow graph for the reached procedure definition, the basic block live set
comprising the variables used in the block of computer code and the variables

used in any procedure called within the block of computer code, and

1i.determining the live on exit set for each procedure call by taking the union
of the basic block live sets for all successor blocks to the block in the control

flow graph containing the procedure call point and by adjusting the union to

include uses of variables in the code between the call point for the procedure

CA9-2000-0027

15

10

15

20

CA 02321016 2000-09-27

and the end of the block containing the call point.

b. storing the said live on exit set of variables for each procedure call point in an entry

in a live on exit data structure comprising a bit vector indexed by a call graph edge,

c. defining a live on exit set of variables for the reached procedure definition by taking

the union of all stored entries in the live on exit data structure corresponding to call

points for the reached procedure,

d. removing all entries in the live on exit data structure corresponding to call points for

the reached procedure, and

e. using the live on exit set of variables for the reached procedure definition to
determine the variables that are ineligible for interprocedural dead store elimination

in the reached procedure definition.

11. A computer program product for the compilation of computer code, the computer program
product comprising a computer usable medium having computer readable code means

embodied in said medium, comprising computer readable program code means to carry out

the method steps of claims 1, 2, 3,4, 5,6, 7, 8,9 or 10.
12. An optimizing compiler comprising

means for generating an intermediate representation of computer code, the intermediate

representation comprising a call graph,
means for traversing the call graph in top down order,

means for storing a live on exit data structure,

means for generating a record in the live on exit data structure for each procedure call

encountered in the traversal of the call graph, the record comprising data representing

variables that are live at the point of the procedure call,

CA9-2000-0027
16

10

15

20

25

CA 02321016 2000-09-27

means for calculating the live on exit set for a procedure definition reached 1n traversing
the call graph, the means for calculating the live on exit set comprising means for
retrieving records from the live on exit data structure corresponding to the reached
procedure definition and means for performing a union of the records to determine the
live on exit set for the reached procedure definition, and means for signalling the
availability of a dead store elimination optimization for a store operation contained in the

reached procedure definition based on the live on exit set calculated for the procedure

definition.

13. The optimizing compiler of claim 12, further comprising means for removing records
associated with the reached procedure definition from the live on exit data structure

following calculation of the live on exit set for the reached procedure definition.

14. A component for determining the correctness of a potential interprocedural dead store
optimization for an optimizing compiler, the optimizing compiler generating an intermediate
representation of code to be compiled comprising a call graph, the component comprising

means to traverse the call graph in top-down order, and further comprising

means for defining a live on exit set of variables for each procedure call point within the

reached procedure definition by

1.defining a basic block live set for each block of computer code 1n a control

flow graph for the reached procedure definition, the basic block live set
comprising the variables used in the block of computer code and the variables

used 1in any procedure called within the block of computer code, and

11.determining the live on exit set for each procedure call by taking the union
of the basic block live sets for all successor blocks to the block in the control
flow graph containing the procedure call point and by adjusting the union to

include uses of variables in the code between the call point for the procedure

and the end of the block containing the call point.

CA9-2000-0027
17

10

CA 02321016 2000-09-27

means for storing the said live on exit set of variables for each procedure call point in an

entry in a live on exit data structure comprising a bit vector indexed by a call graph edge,

means for defining a live on exit set of variables for the reached procedure detinition by
taking the union of all stored entries in the live on exit data structure corresponding to call

points for the reached procedure,

means for removing all entries in the live on exit data structure corresponding to call points
for the reached procedure following definition of the live on exit set of variables for the

reached procedure definition, and

means for determining the variables that are ineligible for interprocedural dead store
elimination in the reached procedure definition, using the live on exit set of variables for the

reached procedure definition.

CA9-2000-0027
18

CA 02321016 2000-09-27

Figure 1

P
‘ 20 \ 1 Procedure n \

‘ ! \ x call ‘

22
N _mi
12

n call,

Ca
| 1_4|
16

n call;

Procedure n

X _call

n_call,

16

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - abstract drawing

