PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :
C12N 15/82, C07K 14/415, C12N 5/10, 15/62, A01H 5/00

(11) International Publication Number: WO 00/12732
(43) International Publication Date: 9 March 2000 (09.03.00)

(21) International Application Number: PCT/US99/18955
(22) International Filing Date: 25 August 1999 (25.08.99)
(30) Priority Data:
60/098,225 28 August 1998 (28.08.98) US

(71) Applicant (for all designated States except US): PIONEER
HI-BRED INTERNATIONAL, INC. [US/US]; 800 Capital
Square, 400 Locust Street, Des Moines, IA 50319 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): BENSEN, Robert, J.
[US/US]; 200 Northwest Prairie Creek Drive, Grimes, IA
50111 (US).

(74) Agents: SPRUILL, W., Murray et al.; Alston & Bird LLP, P.O.
Drawer 34009, Charlotte, NC 28234-4009 (US).

(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU,
AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ
(Utility model), DE, DE (Utility model), DK, DK (Utility
model), DM, EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR,
TT, UA, UQ, US, UZ, VN, YU, ZA, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: ORGANELLE TARGETING SEQUENCES

(57) Abstract

Compositions and methods are provided for modulating the subcellular localization of proteins in a cell. Compositions include nucleotide and amino acid sequences of transit peptide sequences from maize. Such sequences find utility in the enhanced or modified localization of protein to a plastid or compartment thereof.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CO</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORGANELLE TARGETING SEQUENCES

FIELD OF THE INVENTION

The invention is drawn to the genetic modification of plants, particularly to the targeting of proteins to cellular organelles.

BACKGROUND OF THE INVENTION

Plastids are a class of plant organelles derived from proplastids and include chloroplasts, leucoplasts, amyloplasts, and chromoplasts. The plastids are major sites of biosynthesis in plants. In addition to photosynthesis in the chloroplast, plastids are also sites of lipid biosynthesis, nitrate reduction to ammonium, and starch storage. And while plastids contain their own circular genome, most of the proteins localized to the plastids are encoded by the nuclear genome and are imported into the organelle from the cytoplasm.

The mechanism of protein import into the plastids has been most extensively studied in the chloroplast. The chloroplast is a complex cellular organelle composed of three membranes: the inner envelope membrane, the outer envelope membrane, and the thylakoid membrane. The membranes together enclose three aqueous compartments termed the intermediate space, the stroma, and the thylakoid lumen.

Proteins imported from the cytosol generally contain, at their amino terminus, short sequences referred to as “transit peptides” that are responsible for post-translational targeting of the protein to the chloroplast. The import process is initiated by binding of precursor proteins to the chloroplast surface, followed by the subsequent translocation of the precursor protein across the chloroplast envelope membranes. The transit peptide is typically an expendable part of the protein, and upon translocation into the chloroplast the amino acid sequence is cleaved from the precursor protein. Further sub-organelar sorting of the modified precursor takes place as appropriate.

Genes reported to have naturally encoded transit peptide sequences at their N-terminus include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco), de Castro Silva Filho et al. (1996) Plant Mol. Biol. 30:769.
780; Schnell, D.J. et al. (1991) J. Biol. Chem. 266(5):3335-3342; 5-
(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS), Archer et al. (1990) J.
Bioenerg. and Biomembr. 22(6):789-810; tryptophan synthase, Zhao, J. et al. (1995)
Chem. 268(36):27477-27457, and the light harvesting chlorophyll a/b binding

Statistical analysis of transit peptides that direct protein localization to
chloroplasts has revealed a sequence profile for transit peptides with the following
characteristics. In the central region, the peptides typically contain an exceptionally
high content of basic and hydroxylated amino acids, such as serine and threonine.
In addition, there is a near absence of negatively charged amino acids such as
aspartic acid, glutamic acid, asparagine, and glutamine. The amino-terminal
region is devoid of charged amino acids and lacks turn promoting amino acids such
as glycine and proline. The carboxy terminal domain is high in arginine and has a
capacity for forming an amphipathic beta sheet secondary structure. The length of
the transit peptide is variable, commonly between 50 and 120 amino acids. In
addition, there is a well conserved cleavage site (V/I)X(C/A)+A. Often one or
more arginines are found some 5 to 10 residues upstream of this cleavage site.

Exceptions to the transit peptide signals described above are known. See von

Because proteins containing transit peptides are localized to the chloroplast
with a high degree of specificity (Boutry et al. (1987) Nature 328:340-342; de
sequences prove useful in recombinant DNA technology. For example, transit
peptide sequences may be inserted into an expression cassette and serve to guide
the expressed protein to the chloroplast. In plants, transit peptide signals have been
useful in the localization of proteins responsible for herbicide or antibacterial
resistance to the chloroplast.

Although transit peptides have been described, only a few have been
utilized successfully in attempts to target chimeric molecules to chloroplasts.
Thus, there is a need for additional DNA sequences that encode transit peptides for
use in future genetic engineering projects that require specific targeting of foreign proteins to chloroplast.

SUMMARY OF THE INVENTION

5 The present invention provides methods and compositions for the subcellular localization of proteins. Specifically, the invention provides a means to direct the localization of a protein to a plant cell organelle, more particularly to a plant plastid. Compositions of the present invention include the nucleotide and amino acid sequences of novel plastid targeting sequences, hence referred to as transit peptides. Such sequences find utility in the enhanced or modified localization of proteins to a plastid or compartment thereof.

Further compositions of the invention include, expression cassettes and transformation vectors comprising the isolated nucleotide sequences of the transit peptides. Also provided are transgenic plants, plant cells, and plant tissue that express proteins that have been localized to a plastid using the transit peptides of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 schematically illustrates a plasmid vector comprising a ubiquitin promoter operably linked to a transit peptide sequence of the invention operably linked to a gene of interest.

DETAILED DESCRIPTION OF THE INVENTION

Compositions and methods are provided for modulating the subcellular localization of proteins. Specifically, the compositions of the invention include maize transit peptide sequences that find use in modulating the cellular localization of a protein of interest. In particular, the transit peptides of the invention finds use in the localization of proteins to plant organelles, particularly to plastids and compartments thereof.

By "plastid" is intended a class of plant cell organelles comprising proplastids, leucoplasts, amyloplast, chromoplasts, and chloroplast. By "plastid or compartment thereof" is intended any plastid structure, membrane or compartment of a plastid. For example, when referring to a chloroplast, "a
compartment thereof encompasses the intermediate envelope space, the stroma, the lumen, the outer envelope, the inner envelope and the thylakoid membrane.

A signal or targeting sequence is a structural peptide domain required for targeting of a given polypeptide to a subcellular organelle, subcellular compartment or secretion from the cell. The transport of a protein of interest to a subcellular compartment is accomplished by operably linking the nucleotide sequence encoding a signal sequence to the 5' and/or 3' region of the gene encoding the protein of interest. During protein synthesis and processing, the targeting sequence influence where the protein of interest is ultimately compartmentalized.

By "transit peptide" is intended a polypeptide that directs the transport of a nuclear encoded protein to a plastid or a compartment thereof. Typically, the transit peptide sequence is located at the amino-terminus of a polypeptide. However, the transit peptide may also be located at either the c-terminus or internally in the polypeptide.

The maize sequences provided by the present invention includes a maize transit peptide having homology to the maize light harvesting chlorophyll a/b binding protein (SEQ ID NOS: 1 and 2). The present invention also provides a transit peptide having a homology to the maize ribulose bisphosphate carboxylase/oxygenase protein (SEQ ID NOS: 3 and 4).

Also provided are maize transit peptide sequences that share homology to transit peptide sequences of various non-maize gene products including, EPSP synthase (SEQ ID NOS: 5 and 6), tryptophan synthase component (SEQ ID NOS: 7 and 8), ribosomal protein L35 (SEQ ID NOS: 9 and 10), plastid ribosomal protein CL9 (SEQ ID NOS: 11 and 12), plastocyanin (SEQ ID NOS: 13 and 14), 3-dehydroquinate synthase (SEQ ID NOS: 15 and 16), plastid ribosomal protein CL15 (SEQ ID NOS: 17 and 18), chorismate synthase (SEQ ID NOS: 19 and 20), and chlorophyllogen oxidase (SEQ ID NOS: 21 and 22).

In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequences shown in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid
molecule described herein, for example those set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 and fragments and variants thereof.

The invention encompasses isolated or substantially purified nucleic acid or polypeptide compositions. An "isolated" or "purified" nucleic acid molecule or protein, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an "isolated" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A polypeptide that is substantially free of cellular material includes preparations of polypeptides having less than about 30%, 20%, 10%, 5%, (by dry weight) of contaminating polypeptides. When the polypeptide of the invention or biologically active portion thereof is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.

Fragments and variants of the disclosed nucleotide sequences and the polypeptides encoded thereby are also encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence or a portion of the amino acid sequence and hence polypeptide encoded thereby. Fragments of a nucleotide sequence may encode polypeptide fragments that retain the biological activity of the native polypeptide and hence facilitates the transport of a nuclear encoded protein to a plastid or a compartment thereof. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment polypeptides retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence encoding the proteins of the invention.

5
A fragment of a transit peptide nucleotide sequence that encodes a biologically active portion of a transit peptide of the invention will encode at least 15, 25, 30, 40, 50, 60, 70, 80, 90, 100 contiguous amino acids, or up to the total number of amino acids present in a full-length transit peptide of the invention (for example, 135, 117, 144, 152, 150, 152, 145, 132, 134, 166, and 107 amino acids for SEQ ID NOS; 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22, respectfully). Fragments of a transit peptide nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of a transit peptide.

Thus, a fragment of a transit peptide nucleotide sequence may encode a biologically active portion of a transit peptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of a transit peptide can be prepared by isolating a portion of one of the transit peptide nucleotide sequences of the invention, expressing the encoded portion of the transit peptide (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the transit peptide. Nucleic acid molecules that are fragments of a transit peptide nucleotide sequence comprise at least 16, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400 nucleotides, or up to the number of nucleotides present in a full-length transit peptide nucleotide sequence disclosed herein (for example, 407, 426, 455, 459, 560, 461, 437, 463, 448, 528, and 427 nucleotides for SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, respectfully).

By "variants" is intended substantially similar sequences. For nucleotide sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the transit peptide of the invention. Naturally occurring variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis but which still encode a transit peptide or protein of the invention. Generally, nucleotide sequence variants of the invention will have at least 40%,
50%, 60%, 70%, generally, 80%, preferably 85%, 90%, up to 95%, 98% sequence identity to its respective native nucleotide sequence.

By "variant" polypeptide is intended as a polypeptide derived from the native polypeptide by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native polypeptide; deletion or addition of one or more amino acids at one or more sites in the native polypeptide; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result from, for example, genetic polymorphism or from human manipulation.

The transit polypeptides of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the transit peptide can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferred.

Thus, the nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms. Likewise, the polypeptides of the invention encompass both naturally occurring polypeptides as well as variations and modified forms thereof. Such variants will continue to possess the desired ability to facility the transport of a nuclear encoded protein to a plastid or compartment thereof. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.
The deletions, insertions, and substitutions of the polypeptides sequences encompassed herein are not expected to produce radical changes in the characteristics of the polypeptide. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be evaluated by the ability of the isolated sequences to target and deliver a reporter protein to a plastid or compartment thereof. See, for example, de Castro Silva Filho et al. (1996) Plant Mol. Biol. 30: 796-780, herein incorporated by reference.

Variant nucleotide sequences and polypeptides also encompass sequences and polypeptides derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different transit peptide sequences can be manipulated to create a new transit peptide sequence possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the transit peptide sequences of the invention and other known signal sequences or transit peptide sequences to obtain a new nucleotide sequence coding for a transit peptide with an improved property of interest, such as an increased K_m or an increased efficiency and/or specificity of plastid targeting. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Cramer et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Cramer et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.

The nucleotide sequences of the invention can be used to isolate corresponding sequences from other organisms, particularly other plants, more particularly other monocots. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their
sequence identity to the entire transit peptide sequences set forth herein or to fragments thereof are encompassed by the present invention.

In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as 32P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the transit peptide sequences of the invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

For example, the entire nucleotide sequence encoding a transit peptide disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding transit peptide sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among transit peptide sequences and are preferably at least about 10 nucleotides in length, and most preferably at least
about 20 nucleotides in length. Such probes may be used to amplify corresponding transit peptide sequences from a chosen plant by PCR. This technique may be used to isolate additional coding sequences from a desired plant or as a diagnostic assay to determine the presence of coding sequences in a plant. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C.
Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: \(T_m = 81.5^\circ C + 16.6 \log (M) + 0.41 \, (\%GC) - 0.61 \, (\%form) - 500 / L \); where M is the molarity of monovalent cations, \(\%GC \) is the percentage of guanosine and cytosine nucleotides in the DNA, \(\%form \) is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1^\circ C for each 1% of mismatching; thus, T_m, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with \(\geq 90\% \) identity are sought, the T_m can be decreased 10^\circ C. Generally, stringent conditions are selected to be about 5^\circ C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4^\circ C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10^\circ C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20^\circ C lower than the thermal melting point (T_m).

Using the equation, hybridization and wash compositions, and desired T_m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45^\circ C (aqueous solution) or 32^\circ C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijsen (1993) Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
In general, sequences that encode a transit peptide and hybridize to the nucleic acid sequences encoding a transit peptide disclosed herein will be at least 40% to 50% homologous, about 60% to 70% homologous, and even about 80%, 85%, 90%, 95% to 98% homologous or more with the disclosed sequences. That is, the sequence similarity of sequences may range, sharing at least about 40% to 50%, about 60% to 70%, and even about 80%, 85%, 90%, 95% to 98% sequence similarity.

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", (d) "percentage of sequence identity", and (e) "substantial identity".

(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

(b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith et al. (1981) *Adv. Appl. Math.* 2:482; by the homology alignment algorithm of Needleman et al. (1970) *J. Mol. Biol.* 48:443; by the search for similarity method of Pearson et al. (1988) *Proc. Natl. Acad. Sci.* 85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, California; GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin

(c) As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).

(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the
reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.

(e)(i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.

Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1°C to about 20°C, depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.

(e)(ii) The term "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with at least 70% sequence identity to a
reference sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman et al. (1970) J. Mol. Biol. 48:443.

An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Peptides that are "substantially similar" share sequences as noted above except that residue positions that are not identical may differ by conservative amino acid changes.

As described in detail below, the nucleotide sequences of the present invention may be operably linked to the nucleotide sequences encoding a protein of interest and thereby modulate the cellular localization of the protein. By "modulate" is intended any increase in the concentration of said protein in a plastid or compartment thereof beyond that which occurs in the absence of the transit peptide. Additionally, "modulate" refers to an increased rate of importation of said protein into the plastid as compared to the rate of importation in the absence of the transit peptide sequence.

The nucleotide sequences of the invention are provided in expression cassettes for expression in the plant of interest. The cassette will comprise a transcriptional initiation and translational termination sequence functional in plants operably linked to a nucleic acid sequence encoding a transit peptide of the invention, operably linked to a nucleotide encoding a protein of interest. The cassette may contain at least one additional sequence to be cotransformed into the organism. Alternatively, the additional sequences can be provided on another expression cassette.

"Operably linked" refers to a functional linkage between a promoter and a second sequence, wherein the promoter initiates and mediates transcription of DNA sequences corresponding to the second sequence. "Operably linked" also refers to a functional linkage between 2 or more distinct nucleotide sequences such that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. Operably linking the transit peptide-coding sequences with the nucleotide
sequences encoding a protein of interest may require the manipulation of one or
more of the DNA sequences. For example, a convenient restriction site or a linker
sequences that acts as a non-specific spacer that may permit better recognition of
the amino-terminal transit sequence may be introduced.

Expression of the coding sequences of a protein of interest operably linked
to sequences of the transit peptide produces a hybrid polypeptide, or so-called
fusion protein. By "hybrid" polypeptide is intended the coding sequences for the
transit peptide is foreign to the coding sequences for the protein of interest, and
hence, the two coding sequences are not natively expressed as a polypeptide in the
plant cell.

It is recognized that in addition to the transit peptide of the present
invention, additional amino acids may be fused to the protein of interest to further
influence the fate the protein. Techniques for making fusion proteins
recombinantly are well known in the art.

The transcriptional initiation region, the promoter, may be native or
analogous or foreign or heterologous to the plant host. Additionally, the promoter
may be a natural sequence or alternatively a synthetic sequence. By foreign is
intended that the transcriptional initiation region is not found in the native plant
into which the transcriptional initiation region is introduced.

While it may be preferable to express the sequences using heterologous
promoters, the native promoter sequences of either the gene of interest or the
transit peptide sequence may be used. Such constructs would change expression
levels of the gene of interest in the plant or plant cell. Thus, the phenotype of the
plant or plant cell is altered.

It is recognized that a variety of promoters will be useful in the invention,
the choice of which will depend in part upon the desired level of expression of the
protein of interest. It is recognized that the levels of expression can be controlled
to modulate the levels of expression in the plant cell. Constitutive and tissue
specific promoters are of particular interest. Such constitutive promoters include,
for example, the core promoter of the Rsyn7 (copending U.S. Application Serial
No. 08/661,601); the core CaMV 35S promoter (Odell et al. (1985) Nature
313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin
(Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al.

16
(1992) *Plant Mol. Biol.* 18:675-689; pEMU (Last et al. (1991) *Theor. Appl. Genet.* 81:581-588); MAS (Velten et al. (1984) *EMBO J.* 3:2723-2730); ALS promoter (U.S. Application Serial No. 08/409,297), and the like. Other constitutive promoters include, for example, U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; and 5,608,142.

The expression cassette contains a plurality of restriction sites to insert both the gene of interest and the transit peptide sequence 3' of the designated promoter.
The transit peptide sequences of the invention may be operably linked to the gene of interest at the 3' terminus, 5' terminus or internally. Preferably, the sequences of the invention will be placed at the 5' end. The nucleic acids included in the expression cassette may be optimized for expression in a plastid or compartment thereof to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the nucleic acid sequences may be synthesized using chloroplast-preferred codons. See, for example, U.S. Patent No. 5,380,831, herein incorporated by reference.

Preferably the gene of interest encoding a protein to be localized the a plastid or compartment thereof is linked to the transit peptide nucleic acid sequence in such a way that upon translation and import into a plastid or compartment thereof the transit peptide is cleaved from the protein of interest. Methods for preparing transit peptide chimeras are known in the art and are described in the following publications and issued patents. See de Castro Silva Filho et al. (1996) *Plant Mol. Biol.* 30:769-780; Pilon et al. (1995) *J. Biol. Chem.* 270(8):3882-3893; U.S. Patent No. 5,633,444; U.S. Patent No. 5,498,544.

The gene of interest may be native or analogous or foreign or heterologous to the plant host. By foreign is intended that the gene of interest is not found in the native plant into which it is introduced. The gene of interest may also be nuclear encoded or plastid encoded. Generally, the proteins selected for targeting to the plastids are heterologous to the transformed cell and nuclear encoded.

Genes of interest include, for example, any protein whose localization in the plastid will modify agronomically important traits such as oil, starch, and protein content. Other modified traits include herbicide, disease, and insect resistance.

Of particular interest are genes encoding proteins involved in herbicide resistance. In a preferred embodiment, the herbicide resistance is imparted by 5-enolpyruvylshikimate-3-phosphate synthase. It is recognized that fragments and variants of the various proteins of interest may also be used with the transit peptide sequences of the invention. For example, the 5-enolpyruvylshikimate-3-phosphate synthase may be altered such that the protein product is less sensitive to herbicide inhibition. See for example, U.S. Patent No. 5,188,642.

Alternatively, the gene of interest may be a reporter gene. Reporter genes are generally known in the art. The reporter gene used should not be expressed endogenously. Ideally the reporter gene will exhibit low background activity and should not interfere with plant biochemical and physiological activities. The products expressed by the reporter gene should be stable and readily detectable. It is important that the reporter gene expression should be able to be assayed by a non-destructive, quantitative, sensitive, easy to perform and inexpensive method. Examples of suitable reporter genes known in the art can be found in, for example, Jefferson et al. (1991) in *Plant Molecular Biology Manual* (Gelvin et al. eds.) pp. 1-33, Kluwer Academic Publishers; DeWet et al. (1987) *Mol. Cell. Biol.* 7:725-737; Goff et al. (1990) *EMBO J.* 9:2517-2522; Kain et al. (1995) *BioTechniques* 19:650-655; Chiu et al. (1996) *Current Biology* 6:325-330.

The transit peptide sequences of the invention may be native or analogous or foreign or heterologous to either the host plant or to the gene of interest. By foreign is intended that the transit peptide sequence is not found in the native host plant or is not naturally encoded by the gene of interest. Furthermore, the DNA sequence encoding the transit peptide may be chemically synthesized either wholly or in part from the known sequence of the transit peptide.

Where appropriate, the gene(s) of interest and the transit peptide sequences of the invention may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowi (1990) *Plant Physiol.*

Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) *PNAS USA* 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986); MDMV leader (Maize Dwarf Mosaic Virus); *Virology* 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP), (Macejak et al. (1991) *Nature* 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) *Nature* 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in *Molecular Biology of RNA*, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) *Virology* 81:382-385). See also, Della-Cioppa et al. (1987) *Plant Physiol.* 84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.

In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis,
primer repair, restriction, annealing, resubstitutions, e.g., transitions and
transversions, may be involved.

Generally, the expression cassette will comprise a selectable marker gene for
the selection of transformed cells. Selectable marker genes are utilized for the
selection of transformed cells or tissues. Marker genes include genes encoding
antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO)
and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to
herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones,
and 2,4-dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr.

Biol. 10:143-162; Degenkolb et al. (1991) Antimicrob. Agents Chemother. 35:1591-

Hlavka et al. (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-
Verlag, Berlin); Gill et al. (1988) Nature 334:721-724. Such disclosures are herein
incorporated by reference.

The above list of selectable marker genes is not meant to be limiting. Any
selectable marker gene can be used in the present invention.

The present invention also relates to the introduction of the transformation
constructs into plant protoplasts, calli, tissues, or organ explants and the
regeneration of transformed plants expressing the recombinant constructs of the
invention.
The expression cassette sequences of the present invention may be used for transformation of any plant species, including, but not limited to, corn (Zea mays), canola (Brassica napus, Brassica rapa ssp.), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), sunflower (Helianthus annuus), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatas), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus carica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers.

Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrid), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum. Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliottii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). Preferably, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, canola, soybean, cotton, peanut, sorghum, wheat, tobacco, etc.), more preferably corn and soybean plants, yet more preferably corn plants.

The modified plant may be grown into plants in accordance with conventional ways. See, for example, McCormick *et al.* (1986) *Plant Cell. Reports* 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.

Assays to determine the efficiency by which the isolated transit peptide sequences of the invention target a protein of interest to a plastid are known. A reporter gene such as β-glucuronidase (GUS), chloramphenicol acetyl transferase (CAT), or green fluorescent protein (GFP) is operably linked to the transit peptide sequence. This fusion is placed behind the control of a suitable promoter, ligated into a transformation vector, and transformed into a plant or plant cell. Following an adequate period of time for expression and localization into the plastid, the plastid fraction is extracted and reporter activity assayed. The ability of the isolated sequences to target and deliver the reporter protein to the plastid will be compared to other known transit peptide sequences. See de Castro Silva Filho *et al.* (1996) *Plant Mol. Biol.* 30:769-780. Protein import can also be verified *in vitro* through the addition of proteases to the isolated plastid fraction. Proteins which were successfully imported into the plastid are resistant to the externally added proteases whereas proteins that remain in the cytosol are susceptible to digestion.

The following examples are offered by way of illustration and not by way of limitation.
EXPERIMENTAL

Example 1

Generating an expression cassette for the expression of GFP-transit peptide chimeric proteins

The Green Fluorescent Protein (GFP) gene described by Prasher et al. (1992) Gene 111:229-233, is modified for expression in maize. The modified sequence, GFPm, is derived from a back translation of the GFP protein sequence using maize preferred codons and is shown in SEQ ID NO:23. Sequence analysis is performed using the Wisconsin Sequence Analysis Package from Genetics Computer Group, Madison, WI. The nucleotide sequence is assembled from a series of synthetic oligonucleotides. Cloning sites within the GFPm include a 5' flanking BamHI restriction site, an AflIII site at the start codon, a 3' flanking HpaI site or a BglII site converting the stop codon to an isoleucine.

Amino terminal and carboxy terminal fusions of transit peptide sequences to the modified green fluorescent protein (GFPm) are created using synthetic oligonucleotides encoding the transit peptide sequence flanked by appropriate restriction sites that allow in-frame fusions with GFPm.

The ubiquitin promoter is inserted upstream of the GFPm fusion protein. Also engineered into the expression cassette is an intron and a PinII termination sequence.

Example 2

Transformation and Regeneration of Transgenic Plants with GFP Screening

Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing a transit peptide sequence cloned into a flanking restriction sites of GFPm to create an inframe fusion. These sequences are operably linked to a ubiquitin promoter (Figure 1). Also contained on this plasmid is the selectable marker gene, PAT, (Wohlleben et al. (1988) Gene 70:25-37) that confers resistance to the herbicide Bialaphos. Transformation is performed as follows. All media recipes are in the Appendix.
Preparation of Target Tissue

The ears are surface sterilized in 30% Chlorox bleach plus 0.5% Micro
detergent for 20 minutes, and rinsed two times with sterile water. The immature
embryos are excised and placed embryo axis side down (scutellum side up), 25
embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-
cm target zone in preparation for bombardment.

Preparation of DNA

A plasmid vector comprising a transit peptide sequence sequences cloned
into restriction sites resulting in an inframe fusion with GFPm, and operably
linked to a ubiquitin promoter, and containing a PAT selectable marker is
precipitated onto 1.1 µm (average diameter) tungsten pellets using a CaCl₂
precipitation procedure as follows:

10 µl prepared tungsten particles in water
10 µl (1 µg) DNA in TrisEDTA buffer (1 µg total)
100 µl 2.5 M CaCl₂
10 µl 0.1 M spermidine

Each reagent is added sequentially to the tungsten particle suspension,
while maintained on the multitube vortexer. The final mixture is sonicated briefly
and allowed to incubate under constant vortexing for 10 minutes. After the
precipitation period, the tubes are centrifuged briefly, liquid removed, washed with
500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is
removed, and 105 µl 100% ethanol is added to the final tungsten particle pellet.
For particle gun bombardment, the tungsten/DNA particles are briefly sonicated
and 10 µl spotted onto the center of each macrocarrier and allowed to dry about 2
minutes before bombardment.
Particle Gun Treatment

The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.

Subsequent Treatment

Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Screening for GFP expression is carried out at each transfer using a Xenon and/or Mercury light source with the appropriate filters for GFP visualization.

Once GFP expressing colonies are identified they are monitored regularly for new growth and expression using the Xenon light source. Plant cells containing GFP are regenerated by transferring the callus to 288 medium containing MS salts, 1 mg/L IAA, 0.5 mg/L zeatin and 4% sucrose. The callus is placed in the light. As plantlets develop they are transferred to tubes containing 272K, hormone-free MS medium and 3% sucrose. The percentage of green fluorescent colonies that regenerated into whole plants can be determined.

The ability of the transit peptide to target GFP to the plastid is determined in stable transgenic maize cells using epifluorescent microscopy and image enhancement software. Samples of calli from the transformed maize plants are fixed in FAA and are examined with UV filters to visualize GFP localization in the plastid.
APPENDIX

272 V

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-I H₂O</td>
<td>950.00</td>
<td>ml</td>
</tr>
<tr>
<td>MS Salts (GIBCO 11117-074)</td>
<td>4.300</td>
<td>g</td>
</tr>
<tr>
<td>Myo-Inositol</td>
<td>0.100</td>
<td>g</td>
</tr>
<tr>
<td>MS Vitamins Stock Solution ##</td>
<td>5.000</td>
<td>ml</td>
</tr>
<tr>
<td>Sucrose</td>
<td>40.000</td>
<td>g</td>
</tr>
<tr>
<td>Bacto-Agar @</td>
<td>6.000</td>
<td>g</td>
</tr>
</tbody>
</table>

Directions:

@ = Add after bringing up to volume

Dissolve ingredients in polished D-I H₂O in sequence

Adjust to pH 5.6

Bring up to volume with polished D-I H₂O after adjusting pH

Sterilize and cool to 60°C.

Notes:

= Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H₂O in sequence. Bring up to volume with polished D-I H₂O. Make in 400 ml portions.

Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.

Total Volume (L) = 1.00
288 J

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-I H₂O</td>
<td>950.000</td>
<td>ml</td>
</tr>
<tr>
<td>MS Salts</td>
<td>4.300</td>
<td>g</td>
</tr>
<tr>
<td>Myo-Inositol</td>
<td>0.100</td>
<td>g</td>
</tr>
<tr>
<td>MS Vitamins Stock Solution ##</td>
<td>5.000</td>
<td>ml</td>
</tr>
<tr>
<td>Zeatin .5mg/ml</td>
<td>1.000</td>
<td>ml</td>
</tr>
<tr>
<td>Sucrose</td>
<td>60.000</td>
<td>g</td>
</tr>
<tr>
<td>Gelrite @</td>
<td>3.000</td>
<td>g</td>
</tr>
<tr>
<td>Indoleacetic Acid 0.5 mg/ml #</td>
<td>2.000</td>
<td>ml</td>
</tr>
<tr>
<td>0.1mM Abscisic Acid</td>
<td>1.000</td>
<td>ml</td>
</tr>
<tr>
<td>Bialaphos 1mg/ml #</td>
<td>3.000</td>
<td>ml</td>
</tr>
</tbody>
</table>

Directions:

@ = Add after bringing up to volume

Dissolve ingredients in polished D-I H₂O in sequence

Adjust to pH 5.6

Bring up to volume with polished D-I H₂O after adjusting pH

Sterilize and cool to 60°C.

Add 3.5g/L of Gelrite for cell biology.

= Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H₂O in sequence. Bring up to volume with polished D-I H₂O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.

Total Volume (L) = 1.00

29
Table 560 R

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-I Water, Filtered</td>
<td>950.000</td>
<td>ml</td>
</tr>
<tr>
<td>CHU (N6) Basal Salts (SIGMA C-1416)</td>
<td>4.000</td>
<td>g</td>
</tr>
<tr>
<td>Eriksson's Vitamin Mix (1000X SIGMA-1511)</td>
<td>1.000</td>
<td>ml</td>
</tr>
<tr>
<td>Thiamine.HCL 0.4mg/ml</td>
<td>1.250</td>
<td>ml</td>
</tr>
<tr>
<td>Sucrose</td>
<td>30.000</td>
<td>g</td>
</tr>
<tr>
<td>2, 4-D 0.5mg/ml</td>
<td>4.000</td>
<td>ml</td>
</tr>
<tr>
<td>Gelrite @</td>
<td>3.000</td>
<td>g</td>
</tr>
<tr>
<td>Silver Nitrate 2mg/ml #</td>
<td>0.425</td>
<td>ml</td>
</tr>
<tr>
<td>Bialaphos 1mg/ml #</td>
<td>3.000</td>
<td>ml</td>
</tr>
</tbody>
</table>

Directions:

- @ = Add after bringing up to volume
- # = Add after sterilizing and cooling to temp.

Dissolve ingredients in D-I H2O in sequence

Adjust to pH 5.8 with KOH

Bring up to volume with D-I H2O

Sterilize and cool to room temp.

Total Volume (L) = 1.00
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-I Water, Filtered</td>
<td>950.000</td>
<td>ml</td>
</tr>
<tr>
<td>CHU (N6) Basal Salts (SIGMA C-1416)</td>
<td>4.000</td>
<td>g</td>
</tr>
<tr>
<td>Eriksson's Vitamin Mix (1000X SIGMA-1511)</td>
<td>1.000</td>
<td>ml</td>
</tr>
<tr>
<td>Thiamine.HCL 0.4mg/ml</td>
<td>1.250</td>
<td>ml</td>
</tr>
<tr>
<td>Sucrose</td>
<td>120.000</td>
<td>g</td>
</tr>
<tr>
<td>2,4-D 0.5mg/ml</td>
<td>2.000</td>
<td>ml</td>
</tr>
<tr>
<td>L-Proline</td>
<td>2.880</td>
<td>g</td>
</tr>
<tr>
<td>Gelrite @</td>
<td>2.000</td>
<td>g</td>
</tr>
<tr>
<td>Silver Nitrate 2mg/ml #</td>
<td>4.250</td>
<td>ml</td>
</tr>
</tbody>
</table>

Directions:
@ = Add after bringing up to volume
= Add after sterilizing and cooling to temp.
Dissolve ingredients in D-I H₂O in sequence
Adjust to pH 5.8 with KOH
Bring up to volume with D-I H₂O
Sterilize and cool to room temp.
** Autoclave less time because of increased sucrose**
Total Volume (L) = 1.00
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
THAT WHICH IS CLAIMED

1. A method of modulating the subcellular localization of a protein of interest in a plant or plant cell, said method comprising transforming said plant or
tplant cell with an expression cassette comprising a promoter operably linked to a
nucleotide sequence encoding a transit peptide operably linked to a nucleotide
sequence encoding a protein of interest, wherein said transit peptide directs the
protein of interest to a plant plastid and said transit peptide is selected from the
group consisting of:
 a) a nucleic acid molecule encoding a polypeptide comprising
 an amino acid sequence set forth in one of the SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14,
 16, 18, 20, or 22;
 b) a nucleic acid molecule comprising a sequence set forth in
 one of the SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
 c) a nucleic acid molecule hybridizing under stringent
 conditions to the sequences of a) or b).

2. The method of claim 1, wherein said plant plastid is selected from
 the group comprising a chloroplast, amyloplast, chromoplast, and leucoplast.

3. The method of claim 1, wherein said promoter is a constitutive
 promoter.

4. The method of claim 1, wherein said promoter is a tissue-specific
 promoter.

5. The method of claim 1, wherein said protein of interest imparts
 herbicide resistance.

6. The method of claim 5, wherein said protein of interest is 5-
enolpyruvylshikimate-3-phosphate synthase.
7. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
 a) a nucleotide sequence encoding a polypeptide comprising the amino acid sequence set forth in one of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22;
 b) a nucleotide sequence comprising the sequence set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
 c) a nucleotide sequence hybridizing under stringent conditions to a nucleotide sequence of a) or b).

8. An expression cassette comprising a promoter operably linked to a sequence encoding a transit peptide operably linked to a gene of interest, wherein said sequence encoding a transit peptide is selected from the group consisting of:
 a) a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence set forth in one of the SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22;
 b) a nucleic acid sequence comprising a sequence set forth in one of the SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
 c) a nucleic acid sequence hybridizing under stringent conditions to a sequence of a) or b).

9. A vector comprising the expression cassette of claim 8.

10. A transformed plant having stably incorporated in its genome an expression cassette comprising the following operably linked elements; a promoter, a coding sequence for a protein of interest, and a nucleotide sequence encoding a transit peptide, wherein said nucleotide sequence encoding a transit peptide is selected from the group consisting of:
 a) a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence set forth in one of the SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22;
 b) a nucleic acid molecule comprising a sequence set forth in one of the SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
c) a nucleic acid sequence hybridizing under stringent conditions to the sequences of a) or b).

11. The plant of claim 10, wherein said plant is a dicot.

12. The plant of claim 10, wherein said plant is a monocot.

13. The plant of claim 12, wherein said monocot is maize.

15. A transformed plant cell having stably incorporated in its genome an expression cassette comprising the following operably linked elements; a promoter, a coding sequence for a protein of interest, a nucleotide sequence encoding a transit peptide, wherein said sequence encoding the transit peptide is selected from the group consisting of:
 a) a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence set forth in one of the SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22;
 b) a nucleic acid molecule comprising a sequence set forth in one of the SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
 c) a nucleic acid molecule hybridizing under stringent conditions to the sequences of a) or b).

16. An isolated polypeptide selected from the group consisting of:
 a) a polypeptide comprising an amino acid sequence set forth in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22;
 b) a polypeptide encoded by a nucleotide sequence comprising the sequence set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21;
 c) a polypeptide encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence comprising the sequence set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21.
SEQUENCE LISTING

110 Benson, Robert J.
120 Organelle Targeting sequences

130 5718-30
160 24
170 FastSEQ for Windows Version 3.0

210 1
211 407
212 DNA
213 Zea mays

220
221 misc_feature
222 (1)...(407)
223 n = A,T,C or G

400 1
cgcgtcaaac gtttttcacg ttcacttcata gcaatggctg ccctcacatt gccgatctcc 60
tccacggcca tggccggcac cccccatcaag gtgggttctct tcggcggagg ccgcctacc 120
atgcggcaga ccggctgcaaa gccaaaggtg gcggctgccg gcagcccttg gtacggccc 180
gaccgggtca agtcctccgg ccccttcttc ggcggcggcg gggagccccct cagctacct caccggcgag 240
tcccccggcgc actacggctgt ggacaccggc gggctgtcgg cgaccocgga gacattcgcc 300
aggaacggcg agctgggggt gatccactcc cgctgggcca tgtcggggc gctcggtgc 360
gtttcgccc agtgccttctc cgcaacggcg tcaagtctgg cggagcg 407

210 2
211 135
212 PRT
213 Zea mays

220
221 VARIANT
222 (1)...(135)
223 Xaa = Any Amino Acid

400 2
Pro Val Gln Gly Xaa Ser Arg Ser Ala Ser Ala Ser Ala Met Ala Ala Ala Ser Thr 1 5 10 15
Met Ala Ile Ser Ser Thr Ala Met Ala Gly Thr Pro Ile Lys Val Gly 20 25 30
Ser Phe Gly Glu Gly Arg Ile Thr Met Arg Lys Thr Val Gly Lys Pro 35 40 45
Lys Val Ala Ala Ser Gly Ser Pro Trp Tyr Gly Pro Asp Arg Val Lys 50 55 60
Tyr Leu Gly Pro Phe Ser Gly Glu Pro Pro Ser Tyr Leu Thr Gly Glu 65 70 75 80
Phe Pro Gly Asp Tyr Gly Trp Asp Thr Ala Gly Leu Ser Ala Asp Pro 85 90 95
Glu Thr Phe Ala Lys Asn Arg Glu Leu Glu Val Ile His Ser Arg Trp
<210> 3
<211> 426
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1)...(426)
<223> n = A,T,C or G

<400> 3
tttctnncc cctcagcctc gccacttcag agagagagag agagagagaa gagagagaga 60
gagagagag taacgatggc gtccagagac gcggccagca gcctcaaatc agcgccgctgt 120
ggcctaggg ccggcggcgc caagaatggc gcggacctgc tcaagccacag gtctccgtcg 180
gctgccgctc ttggcgctgt gcaccagggc tctctctccac ttgctgctgct 240
gacaccccaag tccgacgactc cctgcaagaag cgccgggctct ccaactctct gcagttgcgcgc 300
agccgccggat tccagcaacca ggaagagagg gcgcgcgcag ctgtctcgct gcaagatccc 360
gcggtggttt ttggcgctcg acgcagaaaa gtggagcact gcggcagata gcaaatcggg 420
ttaaag 426

<210> 4
<211> 117
<212> PRT
<213> Zea mays

<400> 4
Arg Trp Arg Pro Glu Thr Arg Pro Ala Ala Ala Pro Ala Ala Pro Asn Gln Arg Arg Arg Val 1 5 10 15
Ala Met Gly Arg Arg Arg Pro Arg Met Ala Pro Thr Cys Ser Ala His 25 30
Gly Ser Gly Arg Leu Pro Arg Trp Pro Ala Gly Thr Arg Ser Pro Ser 35 40 45
Ser Leu Pro Arg Trp Ser Ser Thr Thr Pro Glu Ser Ala Thr Pro Val 50 55 60
Ala Arg Gly Pro Pro Pro Pro Ser Ala Ala Ala Ala Pro Asp Ser 65 70 75 80
Ser Thr Arg Lys Arg Pro Arg Arg Arg Leu Ser Pro Ala Lys Ile Pro 85 90 95
Pro Val Val Phe Ala Leu Asp Asp Glu Lys Ser Asp Thr Ala Ala Asp 100 105 110
Ser Lys Ser Glu Leu 115
\[n = A, T, C \text{ or G} \]

\[\text{gcaaccttata tagatcatac aggaaacggt agcctgcaagt acgcgtccqg aatcccgqgq 60} \]
\[\text{nannnnnnnn nnnnngtttg ataaccctgtt gaacaqgtqag gatgttccact acatgcctgg 120} \]
\[\text{ggtcttgagg accttgggtc ttgtgtgcga agcggacacaa gttgcacaa aagctgtgatgt 180} \]
\[\text{tggtgtctgt gtgtaaqagg tcccatgtga gattctaaag gagaagatgc agctttttctct 240} \]
\[\text{gggatacgct ggaactgcag tgcgaccttt ggacagcatct gtactgtctct cttggtgaaga 300} \]
\[\text{tgcaacatcct gtccttattc agttaccaag aatagggag agaaccattgt gcaacctgtt 360} \]
\[\text{tgtaacattt aaaaagacttg gtcgagatgt tgattttttc cttggaactgt aatgccccac 420} \]
\[\text{ctgctcgtgt caganggaatg gganggccna cctgg 455} \]

\[<210> 6 \]
\[<211> 144 \]
\[<212> PRT \]
\[<213> Zea mays \]

\[<220> \]
\[<221> \text{VARIANT} \]
\[<222> (1) ... (144) \]
\[<223> \text{Xaa = Any Amino Acid} \]

\[<400> 6 \]
\[\text{Glu Thr Val Ala Cys Ser Thr Gly Pro Glu Phe Pro Gly Xaa Xaa Xaa 1} \]
\[\text{5} \]
\[\text{10} \]
\[\text{15} \]
\[\text{Xaa Xaa Val Asp Asn Leu Leu Asn Ser Glu Asp Val His Tyr Met Leu 20} \]
\[\text{25} \]
\[\text{30} \]
\[\text{Gly Ala Leu Arg Thr Leu Gly Leu Ser Val Glu Ala Asp Lys Ala Ala 35} \]
\[\text{40} \]
\[\text{45} \]
\[\text{Lys Arg Ala Val Val Val Gly Cys Gly Gly Lys Phe Pro Val Glu Asp 50} \]
\[\text{55} \]
\[\text{60} \]
\[\text{Ser Lys Glu Val Glu Leu Phe Leu Gly Asn Ala Gly Thr Xaa Met 65} \]
\[\text{75} \]
\[\text{70} \]
\[\text{80} \]
\[\text{Arg Pro Leu Thr Ala Val Thr Ala Ala Gly Gly Asn Ala Ala Tyr 85} \]
\[\text{90} \]
\[\text{95} \]
\[\text{Val Leu Tyr Gly Val Pro Arg Met Arg Glu Arg Pro Ile Gly Asp Leu 100} \]
\[\text{105} \]
\[\text{110} \]
\[\text{Val Val Gly Xaa Lys Xaa Leu Gly Ala Asp Val Asp Cys Phe Leu Gly 115} \]
\[\text{125} \]
\[\text{130} \]
\[\text{135} \]
\[\text{140} \]

\[<210> 7 \]
\[<211> 459 \]
\[<212> DNA \]
\[<213> Zea mays \]

\[<220> \]
\[<221> \text{misc_feature} \]
\[<222> (1) ... (459) \]
\[<223> n = A, T, C \text{ or G} \]

\[<400> 7 \]
\[\text{cnnnnnnnn nnnngctgtct caagaggccg gacagagqca ggccagqaaag cactcacttc 60} \]
\[\text{ttccagaggcc cgagagtcggc agcaagaqag aatgqccgq gaggncgcqg cgccqccac 120} \]
\[\text{cctgtgtact gcttcctccc aagcaacagc gcaagqacag aqagcttcac tgcgtgtcagc 180} \]
\[\text{acctgcggqgc gcaagqgtga gcatacccaag gcaatgtgac aacctcactg ccgacctgcc 240} \]
ggtgaagcca ccgccaccgc tgcacccgca gacacaccag cctctgaatc ccagcqacct 300
tccctcttct ttcocccgacq agctgtacq ccgagqtgqtc acocqacqgq gqtteqtqqa 360
catacggqag gagtgctacq agctgtacq ccqctctgcq cccagngcccc tgtacqgqg 420
cangaagctt gagagcttnc tccgcacgcc ggccaagat 459

\(<210>\) 8
\(<211>\) 152
\(<212>\) PRT
\(<213>\) Zea mays

\(<220>\)
\(<221>\) VARIANT
\(<222>\) (1)...(152)
\(<223>\) Xaa = Any Amino Acid

\(<400>\) 8
Xaa Xaa Xaa Xaa Xaa Ala Ala Ala Pro Arg Arg Arg Thr Glu Ala Gly Arg Lys
1 5 10 15
Ala Leu Thr Ser Pro Gly Ala Arg Ser Arg Gln Gln Glu Arg Met Ala
20 25 30
Ala Glu Xaa Xaa Xaa Ala Ala Thr Leu Arg Thr Ala Leu Ser Gln Ala
35 40 45
Thr Gly Glu Glu Gln Arg Ala Ser Leu Ueu Cys Thr Pro Ala Gly Ala
50 55 60
Ser Val Ser Ile Pro Lys Gln Trp Tyr Asn Leu Ile Ala Asp Leu Pro
65 70 75 80
Val Lys Pro Pro Pro Pro Leu His Pro Gln Thr His Gln Pro Leu Asn
85 90
Pro Ser Asp Leu Ser Pro Leu Phe Pro Asp Glu Ile Arg Gln Glu
100 105 110
Val Thr Asp Glu Arg Phe Val Asp Ile Pro Glu Glu Val Ile Asp Val
115 120 125
Tyr Lys Leu Trp Arg Pro Xaa Pro Leu Ile Arg Ala Xaa Lys Leu Glu
130 135
Lys Leu Leu Gly Thr Pro Ala Lys
145 150

\(<210>\) 9
\(<211>\) 560
\(<212>\) DNA
\(<213>\) Zea mays

\(<220>\)
\(<221>\) misc_feature
\(<222>\) (1)...(560)
\(<223>\) n = A,T,C or G

\(<400>\) 9
cagtcgccag aqcagagtgg aacggcggca caqacagaga agccaatgqc gctgctcccct 60
tccctgcgqc gcgcggcgc cctcgccgttt cctgcggqc gcagaqcagag aagctacccq 120
cagcgcgcct cgcatcgcccg ggcgaaatct cttgcgagcg gcgcgctgccc gcacaagcggg 180
cctgcgggcg cgtcgcagct gcggcaccgc gcggcaccc gcggcaccct ccacgctgqc tggagttqgt 240
cggggcgggg aagaagggct aacaagtgaga gacggcaaan gctggcgccaa gcctgcgggt 300
gacgagggg gcagaatctcg cggcgcggct cgngaacagca gcattgctgc ccaagaagaa 360
caccaagcgc aagaagggct ccttgcaagtt ggtgcgaagtt caacaagaagt gactacgaca 420
atgttaggg tgcaagctgcc tactccaattataaataaggga aagccaaactgg agagctaagc 480
tgtgattccaa atatcatta attttgcttc ccaactattg aatattgtgt ancttccact 540
<210> 10
<211> 150
<212> PRT
<213> Zea mays

<220>
<221> VARIANT
<222> (1)...(150)
<223> Xaa = Any Amino Acid

<400> 10
Gln Ser Ala Asp Glu Ser Gly Ser Gly Ala Gln Thr Glu Lys Pro Met
1 5 10 15
Ala Leu Ser Leu Ser Leu Ala Arg Pro Gly Pro Ser Pro Phe Pro Pro
20 25 30
Ala Gln Glu Pro Gly Ser Tyr Pro Gin Pro Ala Ser His Ser Arg Arg
35 40 45
Asn Pro Ser Ser Ala Arg Arg Trp Pro Pro Pro Arg Pro Pro Pro Ser Arg
50 55 60
Arg Arg Ser Ser Ala Thr Gly His Ser His Leu Ala Arg Gly Arg
65 70 75 80
Arg Gly Gly Glu Gly Leu Gly Asp Glu Asp Ala Gln Xaa Ser Ala
85 90 95
Asn Val Pro Gly Asp Gly Arg Gly Lys Ile Cys Gly Gly Ala Xaa Glu
100 105 110
Ser Ser Ile Ala Arg Gin Glu Glu His Gin Ala Gin Glu Glu Ala Leu
115 120 125
Arg Arg Trp Cys Lys Ser Thr Arg Xaa Thr Thr Thr Thr Met Leu Arg Val
130 135 140
Gln Cys Pro Thr Ser Ser Asn
145 150

<210> 11
<211> 461
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1)...(461)
<223> n = A,T,C or G

<400> 11
gtagcgaacc ngagaggaat ggcgtgcttg tcgtgctgct ccacgctgcct ctggacccc
60
gcctctacct ccgcggccttc gcggggggcc tcgctgacgg cgcttggcctg ggctcgtcctg
120
dcgcatctcg tcgcccaggg gcaggtcaag aacctgccag aagncatatt gacagacgac
180
tagaggaagg tggggaagaag aagggataca tctgaaggtgc gatgctgatt ctcagcaac
240
tttctctcttc ccagggccaa ggcacacctt ctgacccctg tggctgccag ggaatgcag
300
tgtagagcctc aagagatag aagctganaag agcgggttaa agaagaacc gcagaaccact
360
tgctgagatt tcggtacacc attgcccgcttt ctacaaaattct ccctggccaag gatgaaaag
420
gaaaaaggg ggtttggtgag tcgtgccctg caggtgccagt tgagncgngn g
461
<213> Zea mays

<220>
<221> VARIANT
<222> (1)...(124)
<223> Xaa = Any Amino Acid

<400> 12
Val Ala Asn Xaa Arg Gly Met Ala Ser Leu Ser Cys Ala Ser Thr Leu
1 5 10 15
Pro Trp Thr Pro Ala Ser Tyr Pro Arg Pro Ser Ala Gly Arg Cys Leu
20 25 30
Thr Ala Ser Arg Arg Ala Pro Ser Leu Val Ile Val Ala Gin Gly Lys
35 40 45
Val Lys Xaa Tyr Arg Gin Xaa Ile Leu Thr Asp Asp Ile Glu Glu Val
50 55 60
Gly Lys Gly Asp Thr Leu Lys Val Arg Ala Gly Phe Tyr Arg Asn
65 70 75 80
Phe Leu Leu Pro Lys Gly Lys Ala Thr Leu Thr Pro Glu Val Leu
85 90 95
Lys Glu Met Gin Leu Glu Gin Glu Arg Ile Glu Ala Xaa Lys Lys Arg
100 105 110
Val Lys Glu Glu Arg Ala Thr Thr Cys Xaa Ser Phe
115 120

<210> 13
<211> 437
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1)...(437)
<223> n = A, T, C or G

<400> 13
nnnnnnnn nnnnngagca gctagcagta tacaagagct tgcctgtctg tctagtccta 60
cctactgacg agctggccat ggctctccct tcctctggcg cctgcaagcg cccctctctc 120
gccgcaacac gcgccagcgc gcggctgggc agaagggagt cctccacgct gcggctctct 180
cctccaggg gcggcacgcg cgggctgggt gcaatgctgg cccagctgct gcctgggccc 240
ggtgctgatg cccagaggtt gcctgctggt gcaggngagc gcggctgctg cctggacgcc 300
gcctagttca cgctcaagcc cgggcacacc atcacttca agaacaacgc cggcttcgcc 360
cacaacgctc gctctcagcaagaagagct gcgaagggcg gcctgaagcaca ccaagatctc 420
gcaggagag tacctta 437

<210> 14
<211> 145
<212> PRT
<213> Zea mays

<220>
<221> VARIANT
<222> (1)...(145)
<223> Xaa = Any Amino Acid

<400> 14
Xaa Xaa Xaa Xaa Xaa Glu Gin Leu Ala Val Tyr Lys Ser Leu Leu Ala
Val Leu Val Leu Pro Thr Asp Glu Leu Ala Met Ala Ser Leu Ser Ser Ser 20 25 30
Ala Ala Val Thr Ala Pro Ser Phe Ala Ala Pro Ala Pro Ala Pro Ala Arg Ala 35 40 45
Val Val Arg Arg Ser Phe Thr Val Arg Ala Ser Leu Arg Lys Ala 50 55 60
Thr Gly Thr Ala Ala Val Ala Val Ala Met Ala Ala Ser Ala Leu Leu Leu Gly 65 70 75 80
Gly Ala Met Ala Gin Glu Val Leu Leu Gly Ala Gly Asp Gly Gly Leu 85 90 95
Val Phe Glu Pro Ser Gin Phe Thr Val Lys Ala Gly Asp Thr Ile Thr 100 105 110
Phe Lys Asn Asn Ala Gly Phe Pro His Asn Val Val Phe Asp Glu Glu 115 120 125
Glu Val Pro Lys Arg Arg Arg Ser His Gin Asp Leu Ala Gly Gly Val 130 135 140
Pro 145

<210> 15
<211> 463
<212> DNA
<213> Zea mays

<400> 15
cggcgtcacc gcaccccgcc ctttcgggcc tctcatggcg gcgctccggt ctcctctctc 60
tgcccggccc gcacccctct cctggaggcc cactctccttc cggccgcttc cgtgagctcc 120
ggcgtgctgc tccgtctctg cggcgtcggc tcctgtctctc gtcggtccgg ctcggctcgc 180
ttcgagggcg catcgaggtc gttctgtagc caacgcgcct ccaccatgct agctcgcggc 240
ggctccagg ggtctcagcc tagcgtagtt cgacccgttgc gaccgtagct atcgtcctca 300
cactgcggca ggctctcttg acggcgccga cctgctgctg aggcgtgttc atgtgaagag 360
gtctcgcttg ggtgacccag gcaccgtcgg gcggcttttaa cttgaccaagg tgacactggc 420
actcaacccg aacaactgaa tgtactcctg gaaagctgta tcc 463

<210> 16
<211> 132
<212> PRT
<213> Zea mays

<400> 16
Gly Val Thr Val Thr Ala Ala Phe Arg Ala Leu Met Ala Ala Ser Ala 1 5 10 15
Ser Ser Leu Leu Ala Ala Pro Ala Ser Ser Ser Ser Cys Gly Ala Ile Ser 20 25 30
Pro Gln Leu Pro Arg Gly Ala Pro Ala Ala Ala Ser Val Ala Ser Pro 35 40 45
Ser Arg His Ser Cys Tyr Leu Leu Arg Ala Ser Pro Ser Arg Arg His 50 55 60
Arg Ser Arg Phe Val Ala Asn Ala Ala Pro Thr Met Gln Pro Pro Ala 65 70 75 80
Glu Ser Arg Val Ser Thr Val Val Asp Val Asp Leu Gly Asp Arg Ser 85 90 95
Tyr Pro Ile Tyr Ile Gly Ala Gly Leu Leu Asp Glu Pro Asp Leu Leu 100 105 110
Gln Arg His Val His Gly Lys Arg Val Leu Val Val Thr Asn Thr Thr 115 120 125
Val Ala Pro Leu
130

<210> 17
<211> 448
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1) ...(448)
<223> n = A,T,C or G

<400> 17
gacgagcagtc atgcccttca tcacccctct ctccctcgct cccacccgca tcttctccca 60
cattcccgct ttacccctct cttcgcgtcg tgtcccgagga atcttagccg gcgcgcgggc 120
cgcgcocgc gcctcggcgc tcgcgcgcgt cccgcccccg cgccgcaccc gcgggcgcag 180
cagcgcgcgc gcgagcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 240
cagcacaatttg gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 300
tggtcgagcgc gcgggcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 360
gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 420
gtacgagcag tncgggacgg atgcaaat 448

<210> 18
<211> 134
<212> PRT
<213> Zea mays

<400> 18
Thr Ala Val Met Ala Ser Ile Thr Leu Leu Ser Leu Ala Pro Thr Ala
1 5 10 15
Ile Phe Leu His Ile Pro Ala Phe Thr Ser Ser Ser Val Val Gly Pro
20 25 30
Gly Ile Leu Ala Gly Arg Trp Ala Ala Pro Arg Ala Leu Pro Leu Arg
35 40 45
Ala Leu Pro Pro Arg Arg Val Thr Val Val Cys Ser Ser Ala Ala Ala
50 55 60
Ala Ala Glu Ala Ser Asp Ala Ala Ala Pro Val Glu Lys Phe Arg Leu
65 70 75 80
Asp Asn Leu Gly Pro Gin Lys Gly Ser Arg Arg Arg Pro Lys Arg Lys
85 90 95
Gly Arg Gly Ile Ala Ala Gly Gin Gly Ala Ser Cys Gly Phe Gly Met
100 105 110
Arg Gly Gin Lys Ser Arg Ser Gin Pro Gly Val Arg Arg Gly Phe Xaa
115 120 125
Gly Arg Gin Met Pro Leu
130

<210> 19
<211> 528
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1) ...(528)
<223> n = A,T,C or G
<400> 19
gccaacatgcgcacnag nactataacc aacccagtnca acacaaactt ctccgatggc 60
cgcgcctgctcgactgcgcc cgggtctcgcc acacgggttc tcccacgccg 120
gatagggctgcctccgagq ttttctctccg gctccgctctg cccctgcgtc 180
cgcgcctgctcgactgcgcc agaagggctc tgggaactgt ttctccagtc 240
tgcaacgattc gccaatccct gttgaagggg gttatcctgtct gcgcgccacc 300
cagaacctctctcagcaggtcg aagaggtcgt gcatgaacgc gctccggtca 360
tagtagaatt cacatccttgaagagagc tatacctgc aaaaaaaaaaa cagagaca 420
tgatgggagctactctggtacta caccatccatgctcctcttgc ccccaaccacgt ccaaaangg 480
tggtgattactgtaaaggtgt ctaangctga cagagccatc cctgcag 528

<210> 20
<211> 166
<212> PRT
<213> Zea mays

<220>
<221> VARIANT
<222> (1)...(166)
<223> Xaa = Any Amino Acid

<400> 20
Pro Thr Arg Xaa Thr Lys Pro Ser Pro Met Ala Ala Pro Val Ser Gln
1 5 10 15
Pro Pro Val Ser Ala Arg Ala Ser Thr Arg Phe Leu Pro Arg Gly Ile
20 25 30
Gly Ala Leu Pro Glu Ser Ala Pro Thr Ser Leu Arg Leu Ser Val Gly
35 40 45
Arg Arg Arg Arg Ala Ser Ser Leu Glu Val Ala Ser Gly Asn Val
50 55 60
Phe Gly Asn Tyr Phe Gln Val Ala Thr Tyr Gly Glu Ser His Gly Gly
65 70 75 80
Gly Val Gly Cys Val Ile Ser Gly Cys Pro Pro Arg Ile Pro Leu Thr
95 100 105 110
Glu Ala Asp Met Glu Val Glu Leu Asp Arg Arg Arg Pro Pro Gly Gln Ser
115 120 125
Arg Ile Thr Thr Pro Arg Lys Glu Thr Asp Thr Cys Lys Ile Leu Ser
130 135 140
Xaa Thr His Asp Gly Met Thr Thr Gly Thr Pro Ile His Val Phe Val
145 150 155 160
Pro Asn Thr Asp Gln Xaa Gly Gly Asp Tyr Ser Glu Met Ser Xaa Ala
Tyr Arg Pro Ser His Ala
165

<210> 21
<211> 427
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (1)...(427)
<223> n = A,T,C or G

<400> 21
Tyr Gly Gly Cys Arg Gly Arg Ser Ala Pro Arg Ser Arg Arg Gln Met
Ala Val Gly Arg Ala Ser Ser Arg Thr Ser Gly Arg Ala Pro Ala Ala
Ala Ala Ala Ser Ala Gly Ser Cys Lys Thr Ala Ala Ser Ser Arg Arg
Pro Gly Ser Thr Ser Pro Ser Ser Thr Gly Ser Cys Gin Pro Thr Pro
Asn Ala Pro Pro Xaa Gly Lys Pro Ala Arg Thr Lys Pro Pro Arg Met
Val Ala Lys Ser Trp Pro Arg Cys His Ser Ser Pro Arg Val Leu Xaa Ser
Val Xaa Xaa Xaa Ser Ala Ser Ile Xaa Val Lys

<210> 22
<211> 107
<212> PRT
<213> Zea mays

<220>
<221> VARIANT
<222> (1)...(107)
<223> Xaa = Any Amino Acid

<400> 22
Tyr Gly Gly Cys Arg Gly Arg Ser Ala Pro Arg Ser Arg Arg Gln Met
1 5 10 15
Ala Val Gly Arg Ala Ser Ser Arg Thr Ser Gly Arg Ala Pro Ala Ala
20 25 30
Ala Ala Ala Ser Ala Gly Ser Cys Lys Thr Ala Ala Ser Ser Arg Arg
35 40 45
Pro Gly Ser Thr Ser Pro Ser Ser Thr Gly Ser Cys Gin Pro Thr Pro
50 55 60
Asn Ala Pro Pro Xaa Gly Lys Pro Ala Arg Thr Lys Pro Pro Arg Met
65 70 75 80
Val Ala Lys Ser Trp Pro Arg Cys His Ser Ser Pro Arg Val Leu Xaa Ser
85 90
Val Xaa Xaa Xaa Ser Ala Ser Ile Xaa Val Lys
100 105

<210> 23
<211> 717
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)...(712)

<223> Green fluorescent protein of jelly fish modified to have Zea mays preferred codons.

<400> 23
atg tcc aag ggc gag gag ctc ttc acc ggc gtg gtg ccc atc ctc gtg
Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val
1 5 10 15

gag ctc gac ggc gag gtg aac ggc cac aag ttc tcc gtg tcc ggc gag
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25

<210> 24
<211> 96
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)...(96)

<223> Green fluorescent protein of jelly fish modified to have Zea mays preferred codons.

<400> 24
ggc gag ggc gac gcc acc tac ggc aag ctc acc ctc aag ttc atc tgc
144
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45
acc acc ggc aag ctc ccc gtt ccc tgg ccc acc ctc gtg acc acc acc tcc
Thr Thr Gly Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
50 55 60
tcc tac ggc gtt cag tgc ttc tcc agg tac ccc gac cac atg aag cag
Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln
65 70 75 80
cac gac ttc ttc aag tca ggc atg ccc gag ggc tac gtg cag gag agg
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
85 90 95
acc atc ttc ttc aag gac gac ggc aac tac aag acc agg ggc gag gtt
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Thr Arg Ala Glu Val
100 105 110
aag ttc gaa ggc gac acc ctc gtt aac agg att gag ctc aag ggc atc
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
115 120 125
gac ttc aag gag gac ggc aac atc ctc ggc cac aag ctc gag tac aac
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
130 135 140
tac aac tcc cac aac gtt tac atc atg gcc gac aag cag aag aag ggc
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160
atc aag gtt aac ttc aag atc agg cac aac atc gag gac ggc tca gtt
Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
165 170 175
cag ctc gct gac cac tac cag cag aac acc ccc atc ggc gac ggc ccc
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190
gtg ctc ctc ccc gag aac cac tac ctc ccc acc cag tcc gcc ctc tcc
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
195 200 205
aag gac ccc aac gag aag agg gag cac atg gtt ctc ctc gag ttc gtt
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 220
acc gct gct ggc atc acc ccc gag atg gac gag ctc tac a agtga
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr
225 230 235

<210> 24
<211> 237
<212> PRT
<213> Zea mays
<400> 24
Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Val Pro Ile Leu Val
1 5 10 15
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25 30
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
50 55 60
Ser Tyr Gly Val Glu Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln
65 70 75 80
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
85 90 95
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
100 105 110
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
115 120 125
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
130 135 140
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Glu Lys Asn Gly
145 150 155 160
Ile Lys Val Asp Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
165 170 175
Glu Leu Ala Asp His Tyr Glu Glu Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
195 200 205
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 220
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr
225 230 235