97033893 A1 I DO 00 V00O A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [Po:

) IO O O 0P

International Bureau

(43) International Publication Date
19 March 2009 (19.03.2009)

(10) International Publication Number

WO 2009/033893 Al

(51) International Patent Classification:
HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/EP2008/060293

(22) International Filing Date: 5 August 2008 (05.08.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
07116398.4 14 September 2007 (14.09.2007) EP
(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York

10504 (US).

(71) Applicant (for MG only): COMPAGNIE IBM FRANCE
[FR/FR]; Tour Descartes, La Defense 5, 2 Avenue Gam-
betta, F-92400 Courbevoie (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUARDA, Roberto
[TTAT]; Via Bruno Buozzi 11, I-00040 Pomezia (IT).
CASTELLUCCI, Antonio [IT/IT]; Via Dei Monti Di San
Paolo 11, I-00126 Rome (IT).

(74) Agent: BELL, Mark; Le Plan du Bois, F-06610 La Gaude
(FR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW,BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN,IS,JP,KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(34)

(54) Title: METHOD, SYSTEM AND COMPUTER PROGRAM FOR BALANCING THE ACCESS TO SHARED RESOURCES

WITH CREDIT-BASED TOKENS

Lt

a1 -0]
H2 1[0 Ue ot |
e— Lh —»]
H3 UG —{ud]
l— Lh —p
H Udt [ue |
w— Lh —bi
X

112t “ 1516 17 4

FIG.3

to 1 12 13 t4

(57) Abstract: A solution is proposed for accessing a shared resource in a data processing system (such as a service) by a plurality
of exploiter entities (such as clients). A corresponding method (500) starts with the step of associating (518-524) a privilege limit
for a privileged use of the shared resource with each one of a set of active entities (such as in the form of a credit). A use indicator
is measured (575) for each active entity; the use indicator is indicative of an actual use of the shared resource by the active entity
& (such as defined by the number of times it receives a desired response). The method continues by receiving (533) an access request
& for an access to the shared resource by a new one of the active entities. The method detects (533,551) a critical condition of the
shared resource (such as when no handle for exploiting the service is available). The access granted to at least one of a set of enabled
entities - currently accessing the shared resource - is released (554-563); this happens in response to the access request in the critical
condition with the use indicator of the new active entity that does not reach the privilege limit. The access is then granted (566-567)

to the new active entity.

5

10

15

WO 2009/033893 PCT/EP2008/060293

METHOD, SYSTEM AND COMPUTER PROGRAM FOR BALANCING THE ACCESS
TO SHARED RESOURCES WITH CREDIT-BASED TOKENS

Technical Field

The present invention relates to the data processing
field. More specifically, the present invention relates to the

access to shared resources in a data processing system.

Background

Shared resources are commonplace in modern data processing
systems. Generally speaking, a shared resource consists of any
(logical and/or physical) component, which can be accessed by
multiple exploiters in turn. An example of shared resource is
a server computer (or simply server), which offers a
corresponding service to a large number of users accessing the
server by means of their client computers (or simply clients).
A typical application of the above-described client/server
structure is in the SOA (Service Oriented Architecture)
environment - for example, for the implementation of services

of the DAM (Digital Asset Management) type.

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

Some available services are free of charge; however, the
exploitation of most of the services is subject to some sort
of payment by the users.

Particularly, as described in US-A-2003/0028653, a prepaid
credit may be associated with each user; in this way, the user
is authorized to exploit specific services until his/her
credit exhausts. This document proposes a security improvement
based on the wuse of an encrypted token, which stores
authentication information (about the user and the client),
authorization information (about a granted level of access),
and accounting information (about the credit and a sum already
spent); for example, the token may be stored on a smart card
that is provided to the user. The token is transmitted to the
server whenever the user desires to access an application
provided by it. The server decrypts the token, and uses the
extracted information to verify his/her identity,
authorization, and residual credit; if the result of the
above-mentioned verification is positive, the user is allowed
to access the desired application. The server then monitors
the access to the application by the user; when the residual
credit exhausts, the server warns the user accordingly - so
that s/he can save the work 1n progress and exit the
application, or obtain further credit to continue accessing
the application.

The concept of credits is also exploited in
US-A-2006/0271692 to control the execution of commands that
are gsubmitted to the server. For this purpose, the credits are
represented by a set of numbers; each submitted command
includes one of those numbers, so that it is processed only if
the number is within a wvalid window and it has not been
already used. In this way, the serve can manage the credits
dynamically (by enlarging or shrinking the wvalid window);
moreover, the impossibility of reusing the same number allows
preventing flooding attacks to the server.

Similar tokens may also be used for further purposes.

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

For example, US-B-6715082 proposes storing credentials of
different users on the server; a token is then associated with
each credential, so as to avoid its re-rending by the user.

Moreover, in US-B-7028090 a token is issued to each user
after his/her validation; the token stores specific
permissions that have been granted to the user for a limited
time.

At the end, US-B-6065117 discloses the use of tokens for
retrieving state information on the server about corresponding
clients.

In any case, a problem of the servers (and more generally
of any shared resources) 1is that they are intrinsically
limited. For example, the users that are allowed to exploit
each service concurrently cannot exceed a predefined maximum
number. This limitation may be due to either objective or
subjective constraints. Indeed, the processing capability of
the server defines the number of working sessions that can be
established (between the server and the c¢lients) for
exploiting the service. In addition or in alternative, the
number of concurrent users may be reduced to ensure an
adequate level of quality of the service, or according to
specific license agreements (for example, relating the cost of
the service to the number of concurrent users). In this
respect, a time-out mechanism (wherein each session is
automatically closed when an inactivity time of the
corresponding user reaches a predefined threshold) is
typically implemented to avoid keeping the server busy with
useless sessions. In any case, however, after reaching the
maximum number of concurrent users any request for exploiting
the service by a new user is refused.

This strongly limits the availability of the server; the
problem is particular acute in sgervices (such as of the DAM
type), which should guarantee their exploitation to the
largest possible number of different users in any situation
(for example, even in the case of a peak of requests). It

should be noted that the above-mentioned need is often to be

10

15

20

25

30

WO 2009/033893 PCT/EP2008/060293

balanced with the opposed requirement of avoiding an excessive
overload of the server. For example, this happens when each
session maintains context information of the corresponding
user; typically, the context information is collected by means
of a complex handshaking procedure (for wvalidating and
authorizing the user). Therefore, the context information
(being lost when the session is closed) should be recollected
whenever the same wuser submits a further request that is

processed by another session.

Summary

In its general terms, the present disclosure is based on
the idea of defining a limited privileged use of a shared
resource (for example, in the form of a credit reducing over
time) for forcing the release of its accesses.

Particularly, different aspects of the present invention
provide a solution as set out in the independent claims.
Advantageous embodiments of the invention are described in the
dependent claims.

More sgpecifically, an aspect of the invention proposes a
method for accessing a shared resource in a data processing
system (such as a service) by a plurality of exploiter
entities (such as clients). The method starts with the step of
associating a privilege 1limit for a privileged use of the
shared resource with each one of a set of active entities
(such as in the form of a credit). A use indicator is measured
for each active entity; the use indicator is indicative of an
actual use of the shared resource by the active entity (such
as defined by the number of times it has received a desired
response). The method continues by receiving an access reguest
for an access to the shared resource by a new one of the
active entities. The method detects a critical condition of
the shared resource (such as when no handle for exploiting the

service i1s available). The access granted to at least one of a

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

5
set of enabled entities - currently accessing the shared
resource - 1is released; this happens in response to the access

request in the critical condition with the use indicator of
the new active entity that does not reach the privilege limit.
The access is then granted to the new active entity.

Typically, the method finds application after reaching a
maximum number of accesses that is allowed concurrently to the
shared resource.

Preferably, the access to be released is selected as the
one having the corresponding use indicator closest to the
privilege limit (for example, with the lowest credit).

As a further dimprovement, the forced release of the
accesses is conditioned (for example, according to an activity
of the corresponding entities).

The proposed solution may be implemented in a system with
client/server architecture (wherein a handle of a working
session is allocated for each access).

Typically, context information 1is associated with each
handle (such as in a stateful application).

As a further improvement, each handle is released when an
inactivity indicator of the corresponding client reaches a
threshold (i.e., a time-out).

In this case, the forced release of the accesses may be
restricted to the clients whose inactivity indicators exceed
another threshold (preceding the above-mentioned one).

An implementation of the invention is based on the use of
a token (for authorizing the access to the corresponding
client); the token is associated with a profile for saving the
context information of the client among different sessions.

A way to further improve the solution is of allocating a
handle (if possible) at the creation of each token.

Preferably, each token is released after the reaching of
a use limit (such as another time-out).

A further aspect of the invention proposes a

corresponding service.

10

15

20

25

30

WO 2009/033893 PCT/EP2008/060293

Another aspect of the invention proposes a computer
program for performing the above-described method.
A different aspect of the invention proposes a

corresponding system.

Brief description of the drawings

The invention itself, as well as further features and the
advantages thereof, will be best understood with reference to
the following detailed description, given purely by way of a
non-restrictive indication, to be read in conjunction with the
accompanying drawings, in which:

FIG.1 is a schematic block diagram of a data processing
system in which the solution according to an embodiment of the
invention may be applied,

FIGs.2-3 are explanatory time diagrams of an exemplary
scenario relating to the application of the solution according
to an embodiment of the invention,

FIG.4 shows the main software components that can be used
to implement the solution according to an embodiment of the
invention, and

FIGs.5A-5B show a diagram describing the flow of
activities relating to an implementation of the solution

according to an embodiment of the invention.

Detailed Description

With reference in particular to FIG.1l, a distributed data
processing system 100 1is illustrated. The system 100 has
client/server architecture, typically based on the Internet.
The Internet consists of millions of servers 105 (only one
shown in the figure), which are interconnected through a
global communication network 110. Each server 105 offers one

or more services. Users of clients 115 access the server 105

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

(through computers - not shown in the figure - operating as
access providers for the Internet), in order to exploit the
offered services.

For example, the services conform to the SOA
specification. In this case, each service consists of a
stand-alone basic task, which may be invoked through a
well-defined interface independent of its underlying
implementation; the SOA environment is intrinsically
stateless, meaning that every invocation of the service is
self-contained (without any knowledge of the previous
processing). The services may be of the DAM type - supporting
the acquisition, storage and retrieval of digital assets (such
as photographs, videos, music, and the 1like). For example,
each service may be implemented with a legacy application that
is wrapped to work in the SOA environment. The legacy
application may instead be stateful, meaning that context
information of each user is maintained for different
processing. Typically, the context information includes
personal data (relating to the user and/or the corresponding
client) and status data (relating to a current progress of the
processing). Generally, the personal data is collected by
means of a handshaking procedure, which allows verifying the
identity of the user and his/her authorization to exploit the
desired service.

Particularly, the server 105 consists of a computer that
is formed by several units that are connected in parallel to a
system bus 120. In detail, one or more microprocessors (uP)
125 control operation of the server 105; a RAM 130 is directly
used as a working memory by the microprocessors 125, and a ROM
135 stores basic code for a bootstrap of the server 105.
Several peripheral units are clustered around a local bus 140
(by means of respective interfaces). Particularly, a mass
memory consists of one or more hard-disks 145 and drives 150
for reading CD-ROMs 155. Moreover, the server 105 includes
input units 160 (for example, a keyboard and a mouse), and

output units 165 (for example, a monitor and a printer). An

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

adapter 170 is used to connect the server 105 to the network
110. A bridge unit 175 interfaces the system bus 120 with the
local bus 140. Each microprocessor 125 and the bridge unit 175
can operate as master agents requesting an access to the
system bus 120 for transmitting information. An arbiter 180
manages the granting of the access with mutual exclusion to
the system bus 120.

An exemplary scenario relating to an activity over time
(t) of generic users accessing the above-mentioned server 1is
illustrated in FIG.2. For each (enabled) wuser currently
exploiting a service offered by the server, a corresponding
working session 1is established with the allocation of a
connection handle, which 1is wused to access the context
information of the user. The user interacts with the server by
submitting a series of service requests (for example, to
upload, search or download specific digital assets). The server
processes each service request (by exploiting the context
information of the user, which is then updated accordingly);
for example, this involves storing uploaded digital assets,
searching available digital assets, or retrieving required
digital assets (charging the user for every performed
operation). The server then returns a corresponding response
to the user; typically, the response consists of a return code
of the uploading, a list of the digital assets satisfying the
desired search, or the selected digital assets. The handle 1is
released - with the corresponding context information that is
discarded - when the user or the server closes the session
(for example, after the user has obtained all the desired
information or an expense limit has been reached). In any
case, the handle is released automatically when the user
remains inactive without interacting with the server (i.e.,
with no service request that is submitted after the handle has
been allocated or after the response to a previous service
request has Dbeen received) for a period longer than a

predefined time-out Lh (such as 15-30 min.). For example, the

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293

figure shows four handles H1-H4 that last from a start time
S1-54 to an end time El1-E4, respectively.

The server can manage a maximum number of handles
concurrently (for example, of the order of some hundreds):;
once this maximum number of handles has been reached, no
further handles can be allocated for new users that wish to
exploit the service. Assuming - in the very simplified example
shown in the figure - that the maximum number of handles is
four, this 1limit is reached at the time S4. Therefore, any
service requests by new users after the time S3 would be
refused, with the server that would remain unavailable (for
the new users) until one of the handles H1-H4 is released; in
the example at issue, this unavailability time Ti would last
until the time E2 (when the handle H2 is released).

In order to mitigate this problem, in the solution
according to an embodiment of the present invention (as
described in detail in the following) a privileged use of the
server 1s granted to each (active) user; Thowever, the
privileged use is limited according to the actual use of the
server that has been made by the user. For example, this limit
is defined by a credit that is reduced every time the user
receives a response to a service request submitted to the
server. The credits are used to balance the exploitation of
the service when no handle is available (because their maximum
number has been reached). In this case, i1f a service request
is submitted by a new user with the corresponding credit that
is not exhausted, the server forces the release of a handle
currently allocated to another user, which released handle is
then allocated to the new user (with the service request that
is instead refused as usual otherwise).

The above-mentioned privileged use (for forcing the
release of the handles) strongly increases the availability of
the server; the advantage is particularly evident in services
(such as of the DAM type), which should guarantee their

exploitation to the largest possible number of different users

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
10

in any situation (for example, even in the case of a peak of
requests) .

However, the limit being set for this privileged use (by
the credit reducing over time) avoids any excessive overload
of the server, which would be caused by continual releases of
the handles.

In other words, the proposed solution provides an
excellent tradeoff between the opposed requirements of high
availability of the server and low overhead thereof.

For example, as shown in FIG.3, let wus congsider a
situation wherein the handle H1 is allocated to a user Ua and
the handle H2 is allocated to a user Ub. At the time tl, a new
user Uc submits a connection request for starting exploiting
the service. In response thereto, the server performs a
handshaking procedure to verify the identity of the user Uc
and his/her authorization; assuming that the handshaking
procedure succeeds, the user Uc is granted the required access
to the server.

For this purpose, the server creates a new access token
Kc for the user Uc. The token Kc is used to access a profile,
which stores the personal data of the user Uc that is
collected during the handshaking procedure. The profile also
includes the current value of the credit Cc that is assigned
to the wuser Uc; the credit Cc is initialized to a starting
value Cco (such as of the order of some tens).

The server immediately allocates a handle for the token
Kc if it is possible (with this information that is saved in
the corresponding profile). In the situation at issue, the
handle H3 1is available so that it can be allocated to the
token Kc; for this purpose, the context information of the
handle is initialized with the personal data of the user Uc
that 1s 1loaded from the profile of the token Kc. This
additional feature tries to make a handle ready for a first
service request, which is wvery 1likely to be submitted in a
short time by a user that has just been granted the access to

the server.

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
11

Whenever the wuser Uc submits service requests to the
server, the service regquests are processed by means of the
handle H3 (associated with his/her token Kc), which returns
corresponding responses to the user Uc (at the time t2 and t3
in the example at issue); the return of every response to the
user Uc also causes the reduction by one of the corresponding
credit Cc. The handle H3 is then released at the time t4,
since the time-out Lh has been reached without the submission
of any further service request by the user Uc; however, the
context information of the handle H3 is saved into the profile
of the token Kc before being discarded. The same handle H3 is
then allocated to a further user Ud.

The time-out mechanism for the handles reduces the
probability of contention on the server, since the handles are
released when they should not be necessary any longer (for
example, because the corresponding users have already obtained
all the desired responses from the server but have forgotten
to close the sessions). In this way, the need of implementing
the above-mentioned procedure for forcing the release of the
handles is reduced.

Later on (at the time t5), the user Uc submits another
service request to the server. In this case, no handle is
allocated for his/her token Kc. Therefore, the server tries to
allocate a handle for the token Kc; in the situation at issue,
the handle H4 is available so that it can be allocated to the
token Kc. For this purpose, the context information of the
user Uc is reloaded from the profile of the token Kc. In this
way, the required information is immediately available
(without any overload of the server for its collection). As
above, the user Uc submits service requests that are processed
by means of the handle H4; corresponding responses are
returned to the user Uc (at the time t6, t7 and t8 in the
example at issue), with the credit Cc that is reduced
accordingly. The handle H4 is then released at the time t9

when the time-out Lh 1is reached, with the context information

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
12

of the handle H4 that is saved into the profile of the token
Kc. The same handle H4 is then allocated to a further user Ue.

In this way, the token Kc is completely de-coupled from
the handles H1-H4 (since different handles H1-H4 can be used
for the same token Kc over time). In any case, the context
information saved in the profile of the token Kc (which is
loaded for the corresponding handle at its creation) provides
continuity between different service requests that are
submitted to the server (thereby avoiding the startup costs
that would instead being required to recollect the context
information by means of the handshaking procedure).

Later on (at the time t10), the user Uc submits another
service request to the server. In this case as well, no handle
is allocated for his/her token Kc; however, no further handle
is now available (since the maximum number of four has already
been reached). Nevertheless, since the c¢credit Cc 1s not
exhausted, one of the handles H1-H4 is released and allocated
to the token Kc; in the example at issue, the handle H2
(currently allocated to the user Ub) is released and allocated
to the token Kc.

Preferably, the handle to be released 1is selected
according to the credits of the corresponding users;
particularly, the server releases the handle whose user has
the lowest credit. This additional feature avoids penalizing
the wusers that have Jjust been granted the access to the
server.

As above, the user Uc submits service requests that are
processed by means of the handle H2; corresponding responses
are returned to the user Uc (at the time tl1l and tl2 in the
example at issue), with the credit Cc that is reduced
accordingly - down to become zero at the time tl2. The handle
H2 is then released at the time tl1l3 when the time-out Lh 1is
reached, with the context information of the handle H2 that is
saved into the profile of the token Kc. The same handle H2 is

then allocated to a further user Uf.

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
13

Later on (at the time tl14), the user Uc submits another
service request to the server. In this case as well, no handle
is allocated for his/her token Kc and no further handle is
available. However, the credit Cc is now exhausted; therefore,
the processing of the service request by the server is refused
as usual - as denoted by a cross in the figure.

It is then evident that the proposed credits are not used
to enable/disable the access to the server by the
corresponding users (as in the prepaid credits known in the
art, wherein each user is allowed to access the server only
until his/her c¢redit i1s not exhausted). Conversely, the
credits are completely opaque to the server when one or more
handles are still available (with the access to the server
that can be either free or controlled by means of any payment
technique). The <c¢redits are instead taken into account to
balance the access to the server only when no handle 1is
available.

Preferably, as shown in the figure, the token Kc expires
after a predefined time-out Lt - typically far longer than the
time-out Lh for the handles (for example, of the order of some
days). In this case, the token Kc is released; this involves
discarding the corresponding profile and releasing the handle
associated thereto (if any). For this purpose, it is possible
to store a timestamp indicative of the creation time of the
token Kc into its profile. Any further service request that is
submitted after the expiration of the token Kc is then
refused, with the user Uc that can request to re-access the
server by repeating the handshaking procedure described above
- for verifying his/her identity and authorization again, and
then creating a new token for the same wuser Uc. This
additional feature increases the security of the proposed
solution, since it limits the access that has been granted to
the server temporally (for the same verification of each
user) .

Moving to FIG.4, the main software components that can be

used to implement the above-described solution are denoted as a

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
14

whole with the reference 400. The information (programs and
data) 1is typically stored on the hard-disk and loaded (at least
partially) into the working memory of the server when the
programs are running, together with an operating system and
other application programs (not shown in the figure). The
programs are initially installed onto the hard disk, for
example, from CD-ROM.

In detail, a web server 405 is used to interact with the
server by the different users - through browsers running on
the corresponding clients (not shown in the figure).
Particularly, the web server 405 receives (connection/service)
requests for the services offered by one or more web
applications 410 (of the DAM type 1in the example at issue),
and it returns the corresponding responses.

The web server 405 interfaces with a dispatcher 415,
which manages all the sessions on the server. For this
purpose, the dispatcher 415 controls a repository 420, which
stores each allocated handle with the corresponding context
information. A user database 425, which includes the personal
data of all the users that are authorized to access the
server, 1s exploited by the dispatcher 415 to verify each user
during the handshaking procedure. The dispatcher 415 also
controls a further repository 430, which stores each token in
use with the corresponding profile.

Considering now FIG.5A-5B, the logic flow of an exemplary
process that can be implemented in the above-described system
(to control the accesses to the server) is represented with a
method 500. The method begins at the black start circle 503 and
then passes to block 506 whenever the time-out Lh for any
handle expires. For example, this result is achieved by means
of a counter for each handle; the counter continuously runs in
the background, but it is reset whenever a service request for
the handle is submitted by the corresponding user. When the
time-out expires, the context information of the handle is

saved into the profile of the corresponding token at block

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
15

509. The handle is then released at block 510 (with its
context information that is discarded).

With reference to block 512, the method passes to block
515 whenever the sgerver receives a request from a user for
closing the corresponding access (by passing the token as a
parameter). In response thereto, the handle associated with
the token in the corresponding profile (if any) is released,
by discarding its context information. The method proceeds to
block 516, wherein the token can now be released, with the
corresponding profile that is discarded.

Moving to block 518, the server receives a connection
request from a new user. The flow of activity then passes to
block 521, wherein a handshaking procedure is performed to
verify the identity of the user and his/her authorization.
Assuming that the handshaking procedure succeeds, the server
at block 522 creates a new token for the user; at the same
time, the corresponding credit is initialized to the starting
value and the timestamp of the token is set to the current
time. Continuing to block 524, the corresponding profile 1is
populated with the personal data of the user (collected during
the handshaking procedure).

A test i1s now performed at block 527 to determine whether
any handle 1is available (since their maximum number has not
been reached vet). If so, a handle is allocated for the token
at block 530 (with an indication of the allocated handle that
is added to the corresponding profile). Continuing to block
531, the context information of the handle is initialized with
the personal data of the user that is loaded from the profile
of the token. The method then descends into block 533; the
same point 1is also reached directly from block 527 when no
handle is available.

Every time the server at block 533 receives a service
request from a generic wuser (together with the assigned
token), the flow of activity passes to block 536; in this
phase, the server retrieves the profile of the received token.

The time elapsed from the creation of the token (as indicated

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
16

by the time-stamp in its profile) is then compared with the
time-out Lt at block 537. The status of the token is now
verified at block 539. If the token has expired (since the
time elapsed from its creation exceeds the time-out Lt), the
server at block 540 releases the token (together with the
possible handle associated therewith). The service request is
then refused at block 542 (with a corresponding error message
that 1s returned to the wuser). The method ends at the
concentric white/black stop circles 545.

Conversely, when the token is still wvalid the server
verifies at block 548 whether a handle is associated with the
token (as indicated in its profile). If no handle is found, a
test 1s performed at Dblock 551 to determine whether the
maximum number of handles has been reached. If so, the server
at block 554 retrieves the credit of the user from the profile
of the token. The method then continues to block 557, wherein
the server verifies the credit remaining to the user. If the
credit is exhausted (i.e., lower than or equal to zero), the
service request is again refused at block 542 (with the method
that ends at the stop circles 545).

On the contrary (i.e., when the credit is higher than
zero), the handle allocated to the user with the lowest credit
is selected at Dblock 560. Preferably, the selection 1is
restricted to the handles associated with users having the
inactivity time higher than a grant period (lower than the
time-out Lh). This grant period represents the typical maximum
inactivity time of the users that are still alive - since they
have not obtained yet all the desired responses from the
server (so that further service requests are likely to be
submitted later on); for example, the inactivity time below
the grant period may correspond to the choice of the service
requests to be submitted, to the playback of the received
digital assets, and the like. More details about this feature
may be found in the co-pending patent application
No.EP07111069.7 filed on 26 June 2007 (the entire disclose of

which is herein incorporated by reference). A test 1is then

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
17

made at block 561 to determine whether a handle has been
found. If not, the service request is again refused at block
542 (with the method that ends at the stop circles 545).
Conversely, the context information of the selected handle is
saved into the profile of the corresponding token at block
562. The selected handle is then released at block 563 (with
its context information that is discarded).

The flow of activity now descends into block 566; the same
point is also reached directly from block 551 when one or more
handles are still available (since their maximum number has
not been reached vyet). In this phase, a new handle 1is
allocated for the token (with an indication of the allocated
handle that is added to the corresponding profile). Continuing
to Dblock 567, the context information of the handle 1is
directly loaded from the profile of the token. The method then
descends into block 569. Referring back to block 548, when a
handle is already associated with the token, the corresponding
context information is retrieved at block 568. In this case as
well, the method then descends into block 569.

At this point, the service request that was submitted by
the user is processed; for this purpose, the server exploits
the context information of the corresponding handle, which is
then updated accordingly (if necessary).

The flow of activity then branches at block 572 according
to the outcome of the service request. If the processing of
the service request was successfully (with the corresponding
result that was returned to the user), the credit of the user
is reduced at block 575 in the profile of the token. The
method then ends at the stop circles 545; the same point is
also reached directly from block 572 otherwise.

Naturally, in order to satisfy local and specific
requirements, a person skilled in the art may apply to the
solution described above many logical and/or physical
modifications and alterations. More specifically, although the
present invention has been described with a certain degree of

particularity with reference to preferred embodiment (s)

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
18

thereof, it should be understood that wvarious omissions,
substitutions and changes in the form and details as well as
other embodiments are possible. Particularly, the proposed
solution may even be practiced without the specific details
(such as the numerical examples) set forth in the preceding
description to provide a more thorough understanding thereof;
conversely, well-known features may have been omitted or
simplified in order not to obscure the description with
unnecessary particulars. Moreover, it 1s expressly intended
that specific elements and/or method steps described in
connection with any disclosed embodiment of the invention may
be incorporated in any other embodiment as a matter of general
design choice.

Particularly, the proposed solution lends itself to be
implemented with an equivalent method (by using similar steps,
removing some steps being non-essential, or adding further
optional steps); moreover, the steps may be performed in a
different order, concurrently or in an interleaved way (at
least in part).

Even though in the preceding description reference has
been made to a credit (consisting of an integer value that is
decreased every time a response is returned to the user), this
is not to be intended in a limitative manner. For example,
similar considerations apply 1f a counter is used for the
number of times that a response is returned to the user (with
the credit that exhausts when the counter reaches a predefined
value); more generally, any other limit for a privileged use of
the server may be taken into account - for example, based on
the number of gservice requests that have been processed
(independently of their outcome), on a connection time, on a
consumption of the service, and the 1like. Moreover, the
proposed credit may be granted either to all the wusers
indiscriminately or only to a subset thereof.

Similar considerations apply if the maximum number of
handles 1s defined in another way (for example, changing

dynamically during the day). However, the proposed solution

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
19

lends itself to be applied in response to the detection of
different critical conditions (such as when the time regquired
to find the server available exceeds an acceptable value, or
when the quality of the service falls below a 1limit to be
guaranteed) .

In different embodiments of the invention (when other
critical conditions are detected), there is not excluded the
possibility of forcing the release of two or more handles
(when a further service request is received from a user whose
credit 1is not exhausted). In any case, the handle to be
released may be selected according to different criteria -
even independently of the corresponding credit; for example,
it is possible to release the handle associated with the user
having the longest inactivity time.

In an alternative implementation of the invention, the
forced release of the handles may be unconditioned, so that
every service request that is submitted by a new user with the
credit that is not exhausted (after reaching the maximum
number of handles) is always served.

Although the proposed solution has been described with
reference to the SOA services (and especially of the DAM
type), this is not to be interpreted in a limitative manner.
Indeed, similar considerations apply to other SOA services
(for example, for online instant messaging applications), or
to services based on any other architecture (for example,
conforming to the CORBA specification). More generally, the
proposed solution lends itself to be applied to manage the
access to any other logical and/or physical shared resource
(such as files, databases, disks, printers, scanners, and the
like) by whatever logical and/or physical exploiter entities
(such as operating systems, software applications, routers,
switches, and the like).

Likewise, any other context information may be used to
provide the required service in any other kind of working

sessions (with equivalent handles for their management). In any

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
20

case, nothing prevents applying the same solution to services
of the stateless type.

Moreover, it 1is possible to monitor the (in)activity of
each user in a different way; for example, the inactivity time
may be measured in another way (such as by filtering sporadic
service requests), or 1t may be replaced by any similar
indicator (such as equal to the incremental inactivity time of
the wuser during the whole access to the server). However,
nothing prevents maintaining each handle allocated,
independently of the activity of the corresponding user, until
it is not required by other users after reaching the maximum
number of handles.

Alternatively, the forced release of the handles may be
conditioned in any other way (for example, by restricting it to
the users having credits lower than the one of the new user).

Likewise, it is possible to collect the context
information with any other procedure (such as requiring the
user to enter his/her personal data); the context information
may be stored in any equivalent structure (even of the
distributed type). Moreover, it should be noted that the tokens
may be replaced with any equivalent element for authorizing the
exploitation of the service (for example, by simply flagging an
identifier of each authorized user accordingly on the server).
Likewise, the profiles may be replaced with any equivalent
structures, or they may be maintained synchronized with the
context information of the corresponding handles in real-time
(and not only when the handles are released). In any case,
different implementations only working at the level of the
handles are not excluded.

The feature relating to the attempt of allocating a handle
immediately for each fresh token is not strictly necessary.

In an alternative embodiment of the invention, the tokens
may be released according to any other policy (for example,
when the consumption of the service reaches a predefined

limit); in any case, the use of tokens without any expiration

10

15

20

25

30

35

WO 2009/033893 PCT/EP2008/060293
21

is not excluded in specific applications (for example, without
strict security requirements).

Similar considerations apply if the program (which may be
used to implement each embodiment of the invention) 1is
structured in a different way, or if additional modules or
functions are provided; likewise, the memory structures may be
of other types, or may be replaced with equivalent entities
(not necessarily consisting of physical storage media). In any
case, the program may take any form suitable to be used by or
in connection with any data ©processing system, such as
external or resident software, firmware, or microcode (either
in object code or in source code - for example, to be compiled
or interpreted). Moreover, it 1s possible to provide the
program on any computer-usable medium; the medium can be any
element suitable to participate in containing, storing,
communicating, propagating, or transferring the program. For
example, the medium may be of the electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor type;
examples of such medium are fixed disks (where the program can
be pre-loaded), removable disks, tapes, cards, wires, fibers,
wireless connections, networks, broadcast waves, and the like.
In any case, the solution according to an embodiment of the
present invention lends itself to Dbe implemented with a
hardware structure (for example, integrated in a chip of
semiconductor material), or with a combination of software and
hardware.

Moreover, the proposed service may be implemented by any
equivalent service provider, such as consisting of a cluster of
servers. In any case, the solution according to the present
invention also 1lends itself to be applied 1in a <classic
environment that is not service-based.

The proposed method may be carried out on a system having
a different architecture or including egquivalent units (for
example, based on a local network). Moreover, each computer
may include similar elements (such as cache memories

temporarily storing the programs or parts thereof to reduce

WO 2009/033893 PCT/EP2008/060293
22

the accesses to the mass memory during execution); in any
case, it 1s possible to replace the computer with any code
execution entity (such as a PDA, a mobile phone, and the
like), or with a combination thereof (such as a multi-tier
server architecture, a grid computing infrastructure, and the

like).

10

15

20

25

30

WO 2009/033893 PCT/EP2008/060293
23

Claims

1. A method (500) for accessing a shared resource in a
data processing system by a plurality of exploiter entities,
the method including the steps of:

associating (518-524) a privilege 1limit for a privileged
use of the shared resource with each one of a set of active
entities,

measuring (575) a use indicator for each active entity,
the use indicator being indicative of an actual use of the
shared resource by the active entity,

receiving (533) an access request for an access to the
shared resource by a new one of the active entities,

detecting (533,551) a critical condition of the shared
resource,

releasing (554-563) the access granted to at least one of
a set of enabled entities currently accessing the shared
resource 1in response to the access request in the critical
condition with the use indicator of the new active entity not
reaching the privilege limit, and

granting (566-567) the access to the new active entity.

2. The method (500) according to c¢laim 1, wherein a
maximum number of accesses 1s allowed concurrently to the
shared resource, the step of detecting the critical condition
(533,551) including:

receiving (533) the access request after reaching the

maximum number of accesses.

3. The method (500) according to claim 1 or 2, wherein
the step of releasing the access granted to the at least one
enabled entity (554-563) includes:

selecting (560) one of the enabled entities having the
corresponding use indicator closest to the privilege 1limit,

and

10

15

20

25

30

WO 2009/033893 PCT/EP2008/060293
24

releasing (563) the access granted to the selected

enabled entity.

4, The method (500) according to any claim from 1 to 3,
further including the step of:

conditioning (560-5061) the releasing of +the access
granted to the at least one enabled entity (554-563) to a

releasing condition.

5. The method (500) according to any claim from 1 to 4,
wherein the shared resource includes a server adapted to offer
a service, each exploiter entity includes a client adapted to
exploit the service, each access request includes a service
request for exploiting the service, and each enabled entity
includes an enabled client currently exploiting the service, a
handle of a working session being allocated for each enabled
client, and wherein:

the step of granting the access to the new active client
(566-567) includes allocating (566) a corresponding new
handle, and

the step of releasing the access granted to the at least
one enabled client (554-563) includes releasing (563) each
corresponding handle,
the method further including, in response to the receiving of
the service request from the new active client, the step of:

using (568) a handle previously allocated to the new

active client 1f available.

6. The method (500) according to claim 5, wherein each
session involves the maintenance of context information of the
corresponding enabled client for exploiting the service,

the step of granting the access to the new active client
(566-567) further including 1loading (567) the corresponding

context information, and

10

15

20

25

30

WO 2009/033893 PCT/EP2008/060293
25

the step of releasing the access granted to the at least
one enabled <client (554-563) further including discarding

(563) each corresponding context information.

7. The method (500) according to claim 5 or 6, further
including the steps of:

monitoring (506) an activity of each enabled client, and

releasing (509-510) each handle when an inactivity
indicator of the corresponding enabled client reaches a first

threshold.

8. The method (500) according to claim 7 when dependent
on claim 4, wherein the step of conditioning (560-561) the
releasing of the access granted to the at least one enabled
client (554-563) includes:

restricting (560) the releasing to the enabled clients
having the inactivity indicator exceeding a second threshold

preceding the first threshold.

9. The method (500) according to any claim from 6 to 8,
wherein the step of associating the privilege limit with each
active client (518-524) includes:

receiving (518) a connection reqguest for starting
exploiting the service by the active client,

collecting (521) the context information of the active
client,

creating (522) a token for authorizing the active client
to exploit the service, the token being associated with the
privilege limit of the active client initialized to a starting
value, and

storing (524) the context information of the active
client into a profile associated with the token,
wherein the step of granting the access to the new active
client (566-567) includes:

associating (566) the new handle with the corresponding

token, and

10

15

20

WO 2009/033893 PCT/EP2008/060293
26

retrieving (567) the corresponding context information
from the profile of the corresponding token,
and wherein the step of releasing the access granted to the at
least one enabled client (554-563) includes:

saving (562) each corresponding context information into

the profile of the corresponding token.

10. The method (500) according to <c¢laim 9, further
including, 1in response to the association of the privilege
limit with each active client (518-524) non in the critical
condition, the step of:

granting (530-531) the access to the active entity.

11. The method (500) according to claim 9 or 10, further
including the step of:

releasing (540) the token after reaching a use limit.

12. A service (400) deployed in a data processing system
(100) for implementing the method (500) according to any claim
from 1 to 11.

13. A computer program (400) for performing the method
(500) of any claim from 1 to 11 when the computer program is

executed on a data processing system (105).

14. A system (105) including means (400) for performing
the steps of the method (500) according to any claim from 1 to
11.

PCT/EP2008/060293

WO 2009/033893

1/6

< 39!

otl/ mEI/ oSI/ o2|/€
mdino mduy WNOY-ad

t

..‘ 1depy

| -
\ snq 1edo
___ N ob

, a8pu
\ mSI\ v.m,

\ 0z
r/ Av |/

PNQIY

\ $nQ WdSAS # 0 , #

WO VI ar

031 -/

Sl
'/

510)

SII |/

JUSTD)

¢DIA

td 1q vd Td vS ¢S TS IS

PCT/EP2008/060293

2/6

WO 2009/033893

A
=
A /

o

- o o o e o e

——————— e ———

PCT/EP2008/060293

WO 2009/033893

3/6

¢ DI

3t ¢! I oIn 0N 6! § L9 S b} & o .ﬁ_a
| .
1< | |
P
x — Y] —» . i m
N on - - vH
«— g1 —» | |
PN Y] E— - ¢H
le— y7 —»
n omn anf----- - 7H
en}--+- 1H
v
< A 4
]l 1 % v ..||.||||||0| 0199
_|~|« 000
L 4

¥l

PCT/EP2008/060293

WO 2009/033893

4/6

Y44

(1197

v DId

aseqejep
s19s)

1ayoredsiq ‘H'

J/
Siy

ocy

m _
J

JQAIDS
QM

/ Sov

suonedrddy

01Y I\

1(00v

WO 2009/033893 PCT/EP2008/060293

5/6
506 ' 503 509 .{—500
' 510
Release a
]
512 515
request handle

Release token

518 | i
Connection .
request T -’> Handshakmg>

2
522
Token /_
+ 524
Profile (_ '
527
[Max] [No]
N\ v
530
Allocate /_
v
. 531
. ' Load - a
. :]
]
533 536
request :
- Age
N 537

[No]

WO 2009/033893 PCT/EP2008/060293

6/6

540 568
—\ _\
Release Retrieve
_/ Select
560 561
. [No]
<
542
JANK [Found]
Refuse
Save
562 _/
L 4
_/ Release
563 o
v
} Allocate
566 /"
4 v
Load
567 —/ I
v
—/ Process
569 572
[Result] [No]
o Reduce
575 —/ T
»

@ s4s
. FIG.5B

INTERNATIONAL SEARCH REPORT. -

| International application No

- PCT/EP2008/060293

A. CLASSIFICATION O] SUBJECT MATTER

INV. HO4L29/06

According to Iﬁtemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimurh documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

7 June 2007 (2007-06-07)
paragraphs [0007] - [0009]
paragraphs [0047] - [0056]
paragraphs [0060]1 - [0063]
figures 3-5

paragraphs [0028],
claim 1

[0029]

Y EP 1 612 674 A (TNO [NL])

paragraphs [0004] - [0011]
paragraph [0017]

paragraphs [0021], [0022]
paragraphs [0027] - [0034]

Y EP 1 176 766 A (LUCENT TECHNOLOGIES INC
[US]) 30 January 2002 (2002-01-30)

4 January 2006 (2006-01-04)

X US 2007/129079 Al (SCHWARZ UWE [FI] ET AL) 1-14

-/

m Further documents are lisled in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not
considered o be of particular relevance

°E* earlier document but published on or after the inlernational
filing date

°'L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring 1o an oral disclosure, use, exhibition or
other means

‘P document published prior to the international filing date but
later than the priority date claimed

T later document published after the inlernational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underying the
invention

X document of particular relevance; the claimed invention
cannol be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannol be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious 10 a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of ihe international search

10 February 2009

Date of mailing of the inlernational search report

18/02/2009

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Olaechea, Javier

Fomn PCT/ISA/210 (second sheet) (April 2008)

page 1 of 2

~. INTERNATIONAL SEARCH REPORT

“* | International application No

PCT/EP2008/060293

C(Continuation). .

DOCUMENTS CONSIDERED TO BE RELEVANT

| Category” Cnalmn of document, with indication, where appropnale of the relevant passages .

Relevant to claim No.

Y

US 6 477 373 Bl (RAPPAPORT STEPHEN S [Us]

ET AL) 5 November 2002 (2002-11-05)
column 2;- lines 22- -58
co]umn 7 “1ine 28 - column 8, line 32

us 2003/156218 Al (LAKSONO INDRA [CA])
21 -August 2003 -(2003- 08—21)

"paragraphs [0409] - [0418]

1-14

- Fom PCT/ISA/210 (continuation.of second sheet) {April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patént iémlly members

International application No

PCT/EP2008/060293

Patent document

. aeain search report e "member(s) e
US 2007129079 A1 07-06-2007 WO 2007082983 AL _ 26-07-2007
EP 1176766 A 30-01-2002 US 2002036982 Al . 28-03-2002
EP 1612674 A 04-01-2006 NONE
US 6477373 Bl 05-11-2002 NONE
US 2003156218 Al 21-08-2003 TW - 580834 B 21-03-2004

Fom PCT/ISA/210 (patent family annex) (April 2005}

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report
	Page 36 - wo-search-report

