wo 2012/044488 A 1[I 10KV 000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

.. TN
(19) World Intellectual Property Organization- /25 |]| HIIHINO 00001010 000 0
A 5 (10) International Publication Number
(43) International Publication Date Vs
5 April 2012 (05.04.2012) WO 2012/044488 Al
(51) International Patent Classification: (74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
GO6F 11/10 (2006.01) GOETZEL, P.C.; RANKIN, Rory D., P.O. Box 398,

(21) International Application Number: Austin, Texas 78767-0398 (US).
PCT/US2011/052222 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ

19 September 2011 (19.09.2011) CA. CHL CL. CN, CO. CR. CU. CZ. DE, DK, DM, DO,

(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

L. . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

12/892,894 28 September 2010 (28.09.2010) Us NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,

RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(71) Applicant (for all designated States except US): PURE TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
STORAGE, INC. [US/US]; 650 Castro Street, Suite 220, ZM, ZW.

Mountain View, California 94041 (US).
(84) Designated States (unless otherwise indicated, for every

(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US only): COLGROVE, John GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
[US/US]; 722 Vista Grande Ave., Los Altos, California ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
94024 (US). HAYES, John [CA/US]; 800 High School TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Way, #330, Mountain View, California 94041 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
HONG, Bo [CN/US]; 1555 W. Middlefield Rd., Apt. 95, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Mountain View, California 94043 (US). MILLER, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Ethan [US/US]; 203 Kalkar Drive, Santa Cruz, California GW, ML, MR, NE, SN, TD, TG).
95060 (US). :
Published:

— with international search report (Art. 21(3))

(54) Title: ADAPTIVE RAID FOR AN SSD ENVIRONMENT

Storage Storage Storage Storage Storage
Device 178a Device_176b Device 176¢ Device 176 Device 178k
Stripe
250a
é L
Stripe
250b
Strips
250¢
7 Z
Data 210 Data 220 | Data 230 Data 240
Intra-Device Inter-Device
Error Error
User Data Recovery Deallocated Recovery
FIG. 8

(57) Abstract: A system and method for adaptive RAID geometries. A computer system comprises client computers and data stor-
age arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data
storage. A storage controller within a data storage array is configured to determine a first RAID layout for use in storing data, and
write a tirst RAID stripe to the device group according to the first RAID layout. In response to detecting a first condition, the con-
troller is configured to determine a second RAID layout which is different from the first RAID layout, and write a second RAID
stripe to the device group according to the second layout, whereby the device group concurrently stores data according to both the
first RAID layout and the second RAID layout.

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
TITLE: ADAPTIVE RAID FOR AN SSD ENVIRONMENT

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to computer networks and, more particularly, to efficiently

distributing data among a plurality of solid-state storage devices.

Description of the Related Art

[0002] As computer memory storage and data bandwidth increase, so does the amount and
complexity of data that businesses daily manage. Large-scale distributed storage systems, such
as data centers, typically run many business operations. A distributed storage system may be
coupled to client computers interconnected by one or more networks. If any portion of the
distributed storage system has poor performance or becomes unavailable, company operations
may be impaired or stopped completely. A distributed storage system therefore is expected to
maintain high standards for data availability and high-performance functionality. As used herein,
storage disks may be referred to as storage devices as some types of storage technologies do not
include disks.

[0003] To protect against data loss, storage devices often include error detection and
correction mechanisms. Often these mechanisms take the form of error correcting codes which
are generated by the devices and stored within the devices themselves. In addition, distributed
storage systems may also utilize decentralized algorithms to distribute data among a collection of
storage devices. These algorithms generally map data objects to storage devices without relying
on a central directory. Examples of such algorithms include Replication Under Scalable Hashing
(RUSH), and Controlled Replication Under Scalable Hashing (CRUSH). With no central
directory, multiple clients in a distributed storage system may simultancously access data objects
on multiple servers. In addition, the amount of stored metadata may be reduced. However, the
difficult task remains of distributing data among multiple storage disks with varying capacities,
input/output (I/0) characteristics and reliability issues. Similar to the storage devices themselves,
these algorithms may also include error detection and correction algorithms such as RAID type
algorithms (e.g., RAIDS5 and RAID6) or Reed-Solomon codes.

[0004] The technology and mechanisms associated with chosen storage devices determine the

methods used to distribute data among multiple storage devices, which may be dynamically

1

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
added and removed. For example, the algorithms described above were developed for systems

utilizing hard disk drives (HDDs). The HDDs comprise one or more rotating disks, each coated
with a magnetic medium. These disks rotate at a rate of several thousand rotations per minute for
several hours daily. In addition, a magnetic actuator is responsible for positioning magnetic
read/write devices over the rotating disks. These actuators are subject to friction, wear,
vibrations and mechanical misalignments, which result in reliability issues. The above-described
data distribution algorithms are based upon the characteristics and behaviors of HDDs.

[0005] One example of another type of storage disk is a Solid-State Disk (SSD). A Solid-
State Disk may also be referred to as a Solid-State Drive. An SSD may emulate a HDD
interface, but an SSD utilizes solid-state memory to store persistent data rather than
electromechanical devices as found in a HDD. For example, an SSD may comprise banks of
Flash memory. Without moving parts or mechanical delays, an SSD may have a lower access
time and latency than a HDD. However, SSD typically have significant write latencies. In
addition to different input/output (I/O) characteristics, an SSD experiences different failure
modes than a HDD. Accordingly, high performance and high reliability may not be achieved in
systems comprising SSDs for storage while utilizing distributed data placement algorithms
developed for HDDs.

[0006] In view of the above, systems and methods for efficiently distributing data and

detecting and correcting errors among a plurality of solid-state storage devices are desired.

SUMMARY OF THE INVENTION

[0007] Various embodiments of a computer system and methods for efficiently distributing
and managing data among a plurality of solid-state storage devices are disclosed.

[0008] In one embodiment, a computer system comprises a plurality of client computers
configured to convey read and write requests over a network to one or more data storage arrays
coupled to receive the read and write requests via the network. Contemplated is a data storage
array(s) comprising a plurality of storage locations on a plurality of storage devices. In various
embodiments, the storage devices are configured in a redundant array of independent drives
(RAID) arrangement for data storage and protection. The data storage devices may include
solid-state memory technology for data storage, such as Flash memory cells. The data storage
subsystem further comprises a storage controller configured to determine a first RAID layout for
use in storing data, and write a first RAID stripe to the device group according to the first RAID

layout. In response to detecting a first condition, the controller is configured to determine a

2

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
second RAID layout which is different from the first RAID layout, and write a second RAID

stripe to the device group according to the second layout, whereby the device group
concurrently stores data according to both the first RAID layout and the second RAID layout. In
various embodiments the first condition comprises detecting space is to be allocated for storing
data in the device group. In addition, embodiments are contemplated wherein the controller
determines a type of RAID layout to use based at least in part on characteristics of one or more of
the plurality of storage devices.

[0009] These and other embodiments will become apparent upon consideration of the

following description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is a generalized block diagram illustrating one embodiment of network
architecture.
[0011] FIG. 2 is a generalized block diagram of one embodiment of a dynamic intra-device
redundancy scheme.
[0012] FIG. 3 is a generalized flow diagram illustrating one embodiment of a method for
adjusting intra-device protection in a data storage subsystem.
[0013] FIG. 4 is a generalized block diagram of one embodiment of a storage subsystem.
[0014] FIG. 5 is a generalized block diagram of one embodiment of a device unit.
[0015] FIG. 6 is a generalized block diagram illustrating one embodiment of a state table.
[0016] FIG. 7 is a generalized block diagram illustrating one embodiment of a flexible RAID
data layout architecture.
[0017] FIG. 8 is a generalized block diagram illustrating another embodiment of a flexible
RAID data layout architecture.
[0018] FIG. 9 is a generalized flow diagram illustrating one embodiment of a method for
dynamically determining a layout in a data storage subsystem.
[0019] FIG. 10 is a generalized block diagram illustrating yet another embodiment of a
flexible RAID data layout architecture.
[0020] FIG. 11A illustrates one embodiment of a device layout.
[0021] FIG. 11B illustrates one embodiment of a segment.
[0022] FIG. 11C is a generalized block diagram illustrating one embodiment of data storage

arrangements within different page types.

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[0023] FIG. 12 is a generalized block diagram illustrating one embodiment of a hybrid RAID

data layout.

[0024] FIG. 13 is a generalized flow diagram illustrating one embodiment of a method for
selecting alternate RAID geometries in a data storage subsystem.

[0025] While the invention is susceptible to various modifications and alternative forms,
specific embodiments are shown by way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and detailed description thereto are not
intended to limit the invention to the particular form disclosed, but on the contrary, the invention
is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the

present invention as defined by the appended claims.

DETAILED DESCRIPTION
[0026] In the following description, numerous specific details are set forth to provide a
thorough understanding of the present invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced without these specific details. In some
instances, well-known circuits, structures, signals, computer program instruction, and techniques
have not been shown in detail to avoid obscuring the present invention.
[0027] Referring to FIG. 1, a generalized block diagram of one embodiment of network
architecture 100 is shown. As described further below, one embodiment of network architecture
100 includes client computer systems 110a-110b interconnected to one another through a
network 180 and to data storage arrays 120a-120b. Network 180 may be coupled to a second
network 190 through a switch 140. Client computer system 110c¢ is coupled to client computer
systems 110a-110b and data storage arrays 120a-120b via network 190. In addition, network 190
may be coupled to the Internet 160 or other outside network through switch 150.
[0028] It is noted that in alternative embodiments, the number and type of client computers and
servers, switches, networks, data storage arrays, and data storage devices is not limited to those
shown in FIG. 1. At various times one or more clients may operate offline. In addition, during
operation, individual client computer connection types may change as users connect, disconnect,
and reconnect to network architecture 100. A further description of each of the components
shown in FIG. 1 is provided shortly. First, an overview of some of the features provided by the
data storage arrays 120a-120b is described.
[0029] In the network architecture 100, cach of the data storage arrays 120a-120b may be used

for the sharing of data among different servers and computers, such as client computer systems

4

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
110a-110c. In addition, the data storage arrays 120a-120b may be used for disk mirroring,

backup and restore, archival and retrieval of archived data, and data migration from one storage
device to another. In an alternate embodiment, one or more client computer systems 110a-110c
may be linked to one another through fast local area networks (LANS) in order to form a cluster.
One or more nodes linked to one another form a cluster, which may share a storage resource,
such as a cluster shared volume residing within one of data storage arrays 120a-120b.

[0030] Each of the data storage arrays 120a-120b includes a storage subsystem 170 for data
storage. Storage subsystem 170 may comprise a plurality of storage devices 176a-176m. These
storage devices 176a-176m may provide data storage services to client computer systems 110a-
110c. Each of the storage devices 176a-176m may be configured to receive read and write
requests and comprise a plurality of data storage locations, each data storage location being
addressable as rows and columns in an array. In one embodiment, the data storage locations
within the storage devices 176a-176m may be arranged into logical, redundant storage containers
or RAID arrays (redundant arrays of inexpensive/independent disks). However, the storage
devices 176a-176m may not comprise a disk. In one embodiment, each of the storage devices
176a-176m may utilize technology for data storage that is different from a conventional hard disk
drive (HDD). For example, one or more of the storage devices 176a-176m may include or be
further coupled to storage consisting of solid-state memory to store persistent data. In other
embodiments, one or more of the storage devices 176a-176m may include or be further coupled
to storage utilizing spin torque transfer technique, magnetoresistive random access memory
(MRAM) technique, or other storage techniques. These different storage techniques may lead to
differing reliability characteristics between storage devices.

[0031] The type of technology and mechanism used within each of the storage devices 176a-
176m may determine the algorithms used for data object mapping and error detection and
correction. The logic used in these algorithms may be included within one or more of a base
operating system (OS) 116, a file system 140, one or more global RAID engines 178 within a
storage subsystem controller 174, and control logic within each of the storage devices 176a-
176m.

[0032] In one embodiment, the included solid-state memory comprises solid-state drive (SSD)
technology. Typically, SSD technology utilizes Flash memory cells. As is well known in the art,
a Flash memory cell holds a binary value based on a range of electrons trapped and stored in a
floating gate. A fully erased Flash memory cell stores no or a minimal number of electrons in the

floating gate. A particular binary value, such as binary 1 for single-level cell (SLC) Flash, is

5

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
associated with an erased Flash memory cell. A multi-level cell (MLC) Flash has a binary value

11 associated with an erased Flash memory cell. After applying a voltage higher than a given
threshold voltage to a controlling gate within a Flash memory cell, the Flash memory cell traps a
given range of electrons in the floating gate. Accordingly, another particular binary value, such
as binary 0 for SLC Flash, is associated with the programmed (written) Flash memory cell. A
MLC Flash cell may have one of multiple binary values associated with the programmed
memory cell depending on the applied voltage to the control gate.

[0033] Generally speaking, SSD technologies provide lower read access latency times than
HDD technologies. However, the write performance of SSDs is significantly impacted by the
availability of free, programmable blocks within the SSD. As the write performance of SSDs is
significantly slower compared to the read performance of SSDs, problems may occur with certain
functions or operations expecting similar latencies. In addition, the differences in technology
and mechanisms between HDD technology and SDD technology lead to differences in reliability
characteristics of the data storage devices 176a-176m.

[0034] In various embodiments, a Flash cell within an SSD must generally be erased before it is
written with new data. Additionally, an erase operation in various flash technologies must also
be performed on a block-wise basis. Consequently, all of the Flash memory cells within a block
(an erase segment or ecrase block) are erased together. A Flash erase block may comprise
multiple pages. For example, a page may be 4 kilobytes (KB) in size and a block may include 64
pages, or 256KB. Compared to read operations in a Flash device, an erase operation may have a
relatively high latency - which may in turn increase the latency of a corresponding write
operation. Programming or reading of Flash technologies may be performed at a lower level of
granularity than the erase block size. For example, Flash cells may be programmed or read at a
byte, word, or other size.

[0035] A Flash cell experiences wear after repetitive erase-and-program operations. The wear in
this case is due to electric charges that are injected and trapped in the dielectric oxide layer
between the substrate and the floating gate of the MLC Flash cell. In one example, a MLC Flash
cell may have a limit of a number of times it experiences an erase-and-program operation, such
as a range from 10,000 to 100,000 cycles. In addition, SSDs may experience program disturb
errors that cause a neighboring or nearby Flash cell to experience an accidental state change
while another Flash cell is being erased or programmed. Further, SSDs include read disturb
errors, wherein the accidental state change of a nearby Flash cell occurs when another Flash cell

is being read.

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[0036] Knowing the characteristics of each of the one or more storage devices 176a-176m may

lead to more efficient data object mapping and error detection and correction. In one
embodiment, the global RAID engine 178 within the storage controller 174 may detect for the
storage devices 176a-176m at least one or more of the following: inconsistent response times for
I/0 requests, incorrect data for corresponding accesses, error rates and access rates. In response
to at least these characteristics, the global RAID engine 178 may determine which RAID data
layout architecture to utilize for a corresponding group of storage devices within storage devices
176a-176m. In addition, the global RAID engine 178 may dynamically change both an intra-
device redundancy scheme and an inter-device RAID data layout based on the characteristics of
the storage devices 176a-176m.

[0037] FIG. 1 illustrates an example of a system capable of the described features according to
one embodiment. Further details are provided below. Referring to FIG. 1, a further description

of the components of network architecture 100 is provided below.

[0038] Components of a Network Architecture

[0039] Again, as shown, network architecture 100 includes client computer systems 110a-110¢
interconnected through networks 180 and 190 to one another and to data storage arrays 120a-
120b. Networks 180 and 190 may include a variety of techniques including wireless connection,
direct local area network (LAN) connections, storage area networks (SANs), wide area network
(WAN) connections such as the Internet, a router, and others. Networks 180 and 190 may
comprise one or more LANSs that may also be wireless. Networks 180 and 190 may further
include remote direct memory access (RDMA) hardware and/or software, transmission control
protocol/internet protocol (TCP/IP) hardware and/or software, router, repeaters, switches, grids,
and/or others. Protocols such as Ethernet, Fibre Channel, Fibre Channel over Ethernet (FCoE),
1SCSI, and so forth may be used in networks 180 and 190. Switch 140 may utilize a protocol
associated with both networks 180 and 190. The network 190 may interface with a set of
communications protocols used for the Internet 160 such as the Transmission Control Protocol
(TCP) and the Internet Protocol (IP), or TCP/IP. Switch 150 may be a TCP/IP switch.

[0040] Client computer systems 110a-110c are representative of any number of stationary or
mobile computers such as desktop personal computers (PCs), workstations, laptops, handheld
computers, servers, server farms, personal digital assistants (PDAs), smart phones, and so forth.
Generally speaking, client computer systems 110a-110c include one or more processors

comprising one or more processor cores. Each processor core includes circuitry for executing

7

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
instructions according to a predefined general-purpose instruction set. For example, the x86

instruction set architecture may be selected. Alternatively, the Alpha®, PowerPC®, SPARC®,
or any other general-purpose instruction set architecture may be selected. The processor cores
may access cache memory subsystems for data and computer program instructions. The cache
subsystems may be coupled to a memory hierarchy comprising random access memory (RAM)
and a storage device.

[0041] Each processor core and memory hierarchy within a client computer system may be in
turn connected to a network interface. In addition to hardware components, cach of the client
computer systems 110a-110c may include a base operating system (OS) stored within the
memory hierarchy. The base OS may be representative of any of a variety of specific operating
systems, such as, for example, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®,
Solaris® or another known operating system. As such, the base OS may be operable to provide
various services to the end-user and provide a software framework operable to support the
execution of various programs. Additionally, each of the client computer systems 110a-110c
may include a hypervisor used to support higher-level virtual machines (VMs). As is well
known to those skilled in the art, virtualization may be used in desktops and servers to fully or
partially decouple software, such as an OS, from a system’s hardware. Virtualization may
provide an end-user with an illusion of multiple OSes running on a same machine each having its
own resources, such logical storage entities (e.g., logical unit numbers, LUNSs) corresponding to
the storage devices 176a-176m within each of the data storage arrays 120a-120b.

[0042] Each of the data storage arrays 120a-120b may be used for the sharing of data among
different servers, such as the client computer systems 110a-110c. Each of the data storage arrays
120a-120b includes a storage subsystem 170 for data storage. Storage subsystem 170 may
comprise a plurality of storage devices 176a-176m. Each of these storage devices 176a-176m
may be a SSD. A controller 174 may comprise logic for handling received read/write requests.
For example, the algorithms briefly described above may be executed in at least controller 174.
A random-access memory (RAM) 172 may be used to batch operations, such as received write
requests.

[0043] The base OS 132, the file system 134, any OS drivers (not shown) and other software
stored in memory medium 130 may provide functionality enabling access to files and LUNSs, and
the management of these functionalities. The base OS 134 and the OS drivers may comprise

program instructions stored on the memory medium 130 and executable by processor 122 to

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
perform one or more memory access operations in storage subsystem 170 that correspond to

received requests.

[0044] Each of the data storage arrays 120a-120b may use a network interface 124 to connect to
network 180. Similar to client computer systems 110a-110c, in one embodiment, the
functionality of network interface 124 may be included on a network adapter card. The
functionality of network interface 124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only memory (ROM) may be included on a
network card implementation of network interface 124. One or more application specific
integrated circuits (ASICs) may be used to provide the functionality of network interface 124.
[0045] In one embodiment, a data storage model may be developed which seeks to optimize data
layouts for both user data and corresponding error correction code (ECC) information. In one
embodiment, the model is based at least in part on characteristics of the storage devices within a
storage system. For example, in a storage system, which utilizes solid-state storage technologies,
characteristics of the particular devices may be used to develop a model for the storage system
and may also serve to inform corresponding data storage arrangement algorithms. For example, if
particular storage devices being used exhibit a change in reliability over time, such a
characteristic may be accounted for in dynamically changing a data storage arrangement.

[0046] Generally speaking, any model which is developed for a computing system is incomplete.
Often, there are simply too many variables to account for in a real world system to completely
model a given system. In some cases, it may be possible to develop models which are not
complete but which are nevertheless valuable. As discussed more fully below, embodiments are
described wherein a storage system is modeled based upon characteristics of the underlying
devices. In various embodiments, selecting a data storage arrangement is performed based on
certain predictions as to how the system may behave. Based upon an understanding of the
characteristics of the devices, certain device behaviors are more predictable than others.
However, device behaviors may change over time, and in response, a selected data layout may
also be changed. As used herein, characteristics of a device may refer to characteristics of the
device as a whole, characteristics of a sub-portion of a device such as a chip or other component,

characteristics of an erase block, or any other characteristics related to the device.

[0047] Intra-Device Redundancy

[0048] Turning now to FIG. 2, a generalized block diagram illustrating one embodiment of a

dynamic intra-device redundancy scheme is shown. As is well known to those skilled in the art,

9

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
one of several intra-device redundancy schemes may be chosen to reduce the effects of latent

sector errors in a storage device. The term “sector” typically refers to a basic unit of storage on
a HDD, such as a segment within a given track on the disk. Here, the term “sector” may also
refer to a basic unit of allocation on a SSD.

[0049] An allocation unit within an SSD may include one or more erase blocks within an SSD.
Referring to FIG. 2, the user data 210 may refer to both stored data to be modified and accessed
by end-users and inter-device error-correction code (ECC) data. The inter-device ECC data may
be parity information generated from one or more pages on other storage devices holding user
data. For example, the inter-device ECC data may be parity information used in a RAID data
layout architecture. The user data 210 may be stored within one or more pages included within
one or more of the storage devices 176a-176k. In one embodiment, each of the storage devices
176a-176k is an SSD.

[0050] An erase block within an SSD may comprise several pages. As described earlier, in one
embodiment, a page may include 4KB of data storage space. An erase block may include 64
pages, or 256KB. In other embodiments, an erase block may be as large as 1 megabyte (MB),
and include 256 pages. An allocation unit size may be chosen in a manner to provide both
sufficiently large sized units and a relatively low number of units to reduce overhead tracking of
the allocation units. In one embodiment, one or more state tables may maintain a state of an
allocation unit (allocated, free, erased, error), a wear level, and a count of a number of errors
(correctable and/or uncorrectable) that have occurred within the allocation unit. In various
embodiments, the size of an allocation unit may be selected to balance the number of allocation
units available for a give device against the overhead of maintaining the allocation units. For
example, in one embodiment the size of an allocation unit may be selected to be approximately
1/100th of one percent of the total storage capacity of an SSD. Other amounts of data storage
space for pages, erase blocks and other unit arrangements are possible and contemplated.

[0051] Latent sector errors (LSEs) occur when a given sector or other storage unit within a
storage device is inaccessible. A read or write operation may not be able to complete for the
given sector. In addition, there may be an uncorrectable error-correction code (ECC) error. An
LSE is an error that is undetected until the given sector is accessed. Therefore, any data
previously stored in the given sector may be lost. A single LSE may lead to data loss when
encountered during RAID reconstruction after a storage device failure. For an SSD, an increase
in the probability of an occurrence of another LSE may result from at least one of the following

statistics: device age, device size, access rates, storage compactness and the occurrence of

10

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
previous correctable and uncorrectable errors. To protect against LSEs and data loss within a

given storage device, one of a multiple of intra-device redundancy schemes may be used within
the given storage device.

[0052] An intra-device redundancy scheme utilizes ECC information, such as parity information,
within the given storage device. This intra-device redundancy scheme and its ECC information
corresponds to a given device and may be maintained within a given device, but is distinct from
ECC that may be internally generated and maintained by the device itself. Generally speaking,
the internally generated and maintained ECC of the device is invisible to the system within
which the device is included. The intra-device ECC information included within the given
storage device may be used to increase data storage reliability within the given storage device.
This intra-device ECC information is in addition to other ECC information that may be included
within another storage device such as parity information utilized in a RAID data layout
architecture.

[0053] A highly effective intra-device redundancy scheme may sufficiently enhance a reliability
of a given RAID data layout to cause a reduction in a number of devices used to hold parity
information. For example, a double parity RAID layout may be replaced with a single parity
RAID layout if there is additional intra-device redundancy to protect the data on each device. For
a fixed degree of storage efficiency, increasing the redundancy in an intra-device redundancy
scheme increases the reliability of the given storage device. However, increasing the redundancy
in such a manner may also increase a penalty on the input/output (I/0) performance of the given
storage device.

[0054] In one embodiment, an intra-device redundancy scheme divides a device into groups of
locations for storage of user data. For example, a division may be a group of locations within a
device that correspond to a stripe within a RAID layout as shown by stripes 250a-250c. User
data or inter-device RAID redundancy information may be stored in one or more pages within
cach of the storage devices 176a-176k as shown by data 210. Within each storage device, intra-
device error recovery data 220 may be stored in one or more pages. As used herein, the intra-
device error recovery data 220 may be referred to as intra-device redundancy data 220. As is
well known by those skilled in the art, the intra-device redundancy data 220 may be obtained by
performing a function on chosen bits of information within the data 210. An XOR-based
operation may be used to derive parity information to store in the intra-device redundancy data
220. Other examples of intra-device redundancy schemes include single parity check (SPC),

maximum distance separable (MDS) erasure codes, interleaved parity check codes (IPC), hybrid

11

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
SPC and MDS code (MDS+SPC), and column diagonal parity (CDP). The schemes vary in

terms of delivered reliability and overhead depending on the manner the data 220 is computed.
In addition to the above described redundancy information, the system may be configured to
calculate a checksum value for a region on the device. For example, a checksum may be
calculated when information is written to the device. This checksum is stored by the system.
When the information is read back from the device, the system may calculate the checksum again
and compare it to the value that was stored originally. If the two checksums differ, the
information was not read properly, and the system may use other schemes to recover the data.
Examples of checksum functions include cyclical redundancy check (CRC), MDS5, and SHA-1.
[0055] As shown in stripes 250a-250c¢, the width, or number of pages, used to store the data 210
within a given stripe may be the same in each of the storage devices 176a-176k. However, as
shown in stripes 250b-250c, the width, or number of pages, used to store the intra-device
redundancy data 220 within a given stripe may not be the same in each of the storage devices
176a-176k. In one embodiment, changing characteristics or behaviors of a given storage device
may determine, at least in part, the width used to store corresponding intra-device redundancy
data 220. For example, as described above, Flash cells experience program disturb errors and
read disturb errors, wherein programming or reading a page may disturb nearby pages and cause
errors within these nearby pages. When a storage device is aging and producing more errors, the
amount of corresponding intra-device redundancy data 220 may increase. For example, prior to
a write operation for stripe 250b, characteristics of each of the storage devices 176a-176k may be
monitored and used to predict an increasing error rate. A predicted increase in errors for storage
devices 176¢ and 176] may be detected. In response, the amount of intra-device redundancy data
220 may be increased for storage devices 176¢ and 176j. In the example of stripes 250a and
250b of FIG. 2, an increase in the amount of protection data stored can be seen for storage
devices 176¢ and 176j for stripes 250a and 250b. For example, now, rather than protecting
storage devices 176¢ and 176j with single parity, these devices may be protected with double
parity or triple parity. It is noted that increasing the amount of intra-device protection for devices
176¢ and 176j does not necessitate a corresponding increase in other devices of the same stripe.
Rather, data for the stripe may have differing levels of protection in each device as desired.
[0056] In various embodiments, increases or decreases in a given level of data protection may
occur on a selective basis. For example, in one embodiment, an increase in protection may occur
only for storage devices that are detected to generate more errors, such as storage devices 176¢

and 176j in the above example. In another embodiment, an increase in protection may occur for

12

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
cach of the storage devices 176a-176k when storage devices 176¢ and 176j are detected to

generate more errors. In one embodiment, increasing the amount of intra-device protection on a
parity device such as device 176k may require a reduction in the amount of data protected within
the stripe. For example, increasing the amount of intra-device data stored on a parity device for a
given stripe will necessarily reduce an amount of parity data stored by that device for data within
the stripe. If this amount of parity data is reduced to an amount that is less than that needed to
protect all of the data in the stripe, then data within the stripe must be reduced if continued parity
protection is desired. As an alternative to reducing an amount of data stored within the stripe, a
different device could be selected for storing the parity data. Various options are possible and are
contemplated. It is also noted that while FIG. 2 and other figures described herein may depict a
distinct parity device (e.g., 176k), in various embodiments the parity may be distributed across
multiple devices rather than stored in a single device. Accordingly, the depiction of a separate
parity device in the figures may generally be considered a logical depiction for ecase of
discussion.

[0057] Referring now to FIG. 3, one embodiment of a method 300 for adjusting intra-device
protection in a data storage subsystem is shown. The components embodied in network
architecture 100 and data storage arrays 120a-120b described above may generally operate in
accordance with method 300. The steps in this embodiment are shown in sequential order.
However, some steps may occur in a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps, and some steps may be absent in
another embodiment.

[0058] In block 302, a first amount of space for storing user data in a storage device is
determined. This user data may be data used in end-user applications or inter-device parity
information used in a RAID architecture as described earlier regarding data 210. This first
amount of space may comprise one or more pages within a storage device as described earlier.
In one embodiment, a global RAID engine 178 within the storage controller 174 receives
behavioral statistics from each one of the storage devices 176a-176m. For a given device group
comprising two or more of the storage devices 176a-176m, the global RAID engine 178 may
determine both a RAID data layout and an initial amount of intra-device redundancy to maintain
within each of the two or more storage devices. In block 304, the RAID engine 178 may
determine a second amount of space for storing corresponding intra-device protection data in a

storage device. This second amount of space may comprise one or more pages within a storage

13

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
device. The intra-device protection data may correspond to the to intra-device redundancy data

220 described earlier.

[0059] In block 306, data is written in the first amount of space within each storage device
included within a given device group. In one embodiment, both user data and inter-device parity
information is written as a single RAID stripe across multiple storage devices included within the
given device group. Referring again to FIG. 2, the width for the corresponding data being
written is the same within each storage device. In block 308, the intra-device protection data is
generated by an ECC algorithm, an XOR-based algorithm, or any other suitable algorithm. In
addition, the system may generate a checksum to help identify data that has not been retrieved
properly. In block 310, the generated intra-device protection data is written in the second amount
of space in the storage devices.

[0060] In block 312, the RAID engine 178 may monitor behavior of the one or more storage
devices. In one embodiment, the RAID engine 178 may include a model of a corresponding
storage device and receive behavioral statistics from the storage device to input to the model.
The model may predict behavior of the storage device by utilizing known characteristics of the
storage device. For example, the model may predict an upcoming increasing error rate for a
given storage device. If the RAID engine 178 detects characteristics of a given storage device
which affect reliability (conditional block 314), then in block 316, the RAID engine may adjust
the first amount and the second amount of space for storing data and corresponding intra-device
redundancy data. For example, the RAID engine may be monitoring the statistics described
carlier such as at least device age, access rate and error rate. Referring again to FIG. 2, the RAID
engine 178 may detect storage devices 176¢ and 176j have an increase in a number of errors.
Alternatively, the RAID engine may predict an increase in a number of errors for storage devices
176¢ and 176j. Accordingly, prior to writing the second stripe 250b, the RAID engine 178 may
adjust a number of pages used to store data 210 and data 220 in each of the storage devices 176a-
176k. Similarly, the RAID engine 178 may detect storage device 176b has decreased reliability.
Therefore, prior to writing the third stripe 250c¢, the RAID engine 178 may again adjust a number
of pages used to store data 210 and data 220 in each of the storage devices 176a-176k.

[0061] Monitoring Storage Device Characteristics

[0062] Turning now to FIG. 4, a generalized block diagram of one embodiment of a storage
subsystem is shown. Each of the one or more storage devices 176a-176m may be partitioned in

one of one or more device groups 173a-173m. Other device groups with other devices may be

14

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
present as well. One or more corresponding operation queues and status tables for each storage

device may be included in one of the device units 400a-400w. These device units may be stored
in RAM 172. A corresponding RAID engine 178a-178m may be included for each one of the
device groups 173a-173m. Each RAID engine 178 may include a monitor 410 that tracks
statistics for each of the storage devices included within a corresponding device group. Data
layout logic 420 may determine an amount of space to allocate within a corresponding storage
device for user data, inter-device redundancy data and intra-device redundancy data. The storage
controller 174 may comprise other control logic 430 to perform at least one of the following
tasks: wear leveling, garbage collection, 1/0O scheduling, deduplication and protocol conversion
for incoming and outgoing packets.

[0063] Turning now to FIG. 5, a generalized block diagram of one embodiment of a device unit
is shown. A device unit may comprise a device queue 510 and tables 520. Device queue 510
may include a read queue 512, a write queue 514 and one or more other queues such as other
operation queue 516. Each queue may comprise a plurality of entries for storing one or more
corresponding requests 530a-530d. For example, a device unit for a corresponding SSD may
include queues to store at least read requests, write requests, trim requests, erase requests and so
forth. Tables 520 may comprise one or more state tables 522a-522b, each comprising a plurality
of entries for storing state data, or statistics, 530. It is also noted that while the queues and tables
are shown to include a particular number of entries in this and other figures, the entries
themselves do not necessarily correspond to one another. Additionally, the number of queues,
tables, and entries may vary from that shown in the figure and may differ from one another.
[0064] Referring now to FIG. 6, a generalized block diagram illustrating one embodiment of a
state table corresponding to a given device is shown. In one embodiment, such a table may
include data corresponding to state, error and wear level information for a given storage device,
such as an SSD. A corresponding RAID engine may have access to this information, which may
allow the RAID engine to dynamically change space allocated for data storage and schemes used
for both inter-device protection and intra-device protection. In one embodiment, the information
may include at least one or more of a device age 602, an error rate 604, a total number of errors
detected on the device 606, a number of recoverable errors 608, a number of unrecoverable errors
610, an access rate of the device 612, an age of the data stored 614 and one or more allocation
states for allocation spaces 616a-616n. The allocation states may include filled, empty, error

and so forth.

15

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[0065] Flexible RAID Layout

[0066] Turning now to FIG. 7, a generalized block diagram illustrating one embodiment of a
flexible RAID data layout architecture is shown. A RAID engine may determine a level of
protection to use for storage devices 176a-176k. For example, a RAID engine may determine to
utilize RAID double parity for the storage devices 176a-176k. The inter-device redundancy data
240 may represent the RAID double parity values generated from corresponding user data. In
one embodiment, storage devices 176j and 176k may store the double parity information. It is
understood other levels of RAID parity protection are possible and contemplated. In addition, in
other embodiments, the storage of the double parity information may rotate between the storage
devices rather than be stored within storage devices 176j and 176k for each RAID stripe. The
storage of the double parity information is shown to be stored in storage devices 176 and 176k
for case of illustration and description.

[0067] Referring now to FIG. 8, a generalized block diagram illustrating another embodiment of
a flexible RAID data layout architecture is shown. Similar to the example shown in FIG. 7,
double parity may be used for the storage devices 176a-176k. Although a RAID double parity is
described in this example, any amount of redundancy in a RAID data layout architecture may be
chosen.

[0068] During operation, the RAID engine 178 may monitor characteristics of the storage
devices 176a-176k and determine the devices are exhibiting a reliability level higher than an
initial or other given reliability level. In response, the RAID engine 178 may change the RAID
protection from a RAID double parity to a RAID single parity. In other RAID data layout
architectures, another reduction in the amount of supported redundancy may be used. In other
embodiments, the monitoring of storage devices 176a-176k and changing a protection level may
be performed by other logic within storage controller 174.

[0069] Continuing with the above example, only single parity information may be generated and
stored for subsequent write operations executing on a given RAID stripe. For example, storage
device 176k may not be used in subsequent RAID stripes for write operations after the change in
the amount of supported redundancy. In addition, data stored in storage device 176k may be
invalidated, thereby freeing the storage. Pages corresponding to freed data in storage device
176k may then be reallocated for other uses. The process of reducing an amount of parity
protection and freeing space formerly used for storing parity protection data may be referred to as

“parity shredding”. In addition, in an embodiment wherein storage device 176k is an SSD, one or

16

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
more erase operations may occur within storage device 176k prior to rewriting the pages within

stripe 250a.

[0070] Continuing with the above example of parity shredding, the data stored in the reallocated
pages of storage device 176k within stripe 250a after parity shredding may hold user data or
corresponding RAID single parity information for other RAID stripes that do not correspond to
stripe 250a. For example, the data stored in storage devices 176a-176j within stripe 250a may
correspond to one or more write operations executed prior to parity shredding. The data stored in
storage device 176k within stripe 250a may correspond to one or more write operations executed
after parity shredding. Similarly, the data stored in storage devices 176a-176j within stripe 250b
may correspond to one or more write operations executed prior to parity shredding. The pages in
storage device 176k within stripe 250b may be freed, later erased, and later rewritten with data
corresponding to one or more write operations executed after the change in the amount of
supported redundancy. It is noted that this scheme may be even more effective when redundancy
information is rotated across storage devices. In such an embodiment, space that is freed by
shredding will likewise be distributed across the storage devices.

[0071] Referring again to FIG. 8, the deallocated pages shown in storage device 176k within
stripe 250c represent storage locations that may have previously stored RAID double parity
information prior to parity shredding. However, now these pages are invalid and have not yet
been reallocated. Particular characteristics of an SSD determine the manner and the timing of
both freeing and reallocating pages within storage device 176k in the above example. Examples
of these characteristics include at least erasing an entire erase block prior to reprogramming
(rewriting) one or more pages. As can be seen from FIG. 8, when parity is shredded, it is not
necessary to shred an entire device. Rather, parity may be shredded for individual stripes as
desired. Similarly, parity protection for a stripe may be increased may adding protection data
stored on an additional device to a stripe.

[0072] Referring now to FIG. 9, one embodiment of a method for dynamically determining a
RAID layout is shown. The components embodied in network architecture 100 and data storage
arrays 120a-120b described above may generally operate in accordance with method 900. In FIG.
9, two processes 910 and 920 are shown. Each of the processes may operate concurrently, or in a
given order. Further, the steps in this embodiment are shown in sequential order. However, some
steps may occur in a different order than shown, some steps may be performed concurrently,
some steps may be combined with other steps, and some steps may be absent in another

embodiment. Block 910 illustrates a process whereby a storage control system monitors the

17

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
characteristics and behaviors of storage devices in the system (block 912). For example,

characteristics such as those described in FIG. 6 may be observed and/or recorded. If a particular
condition is detected, such as a change in reliability (decision block 914), then a change in the
amount of protection used for stored data may be made (block 916). For example, when given
devices are relatively young in age, the reliability of the devices may not be known (e.g., the
devices may suffer “infant mortality” and fail at a relatively young age). Therefore, one or more
extra storage devices per RAID stripe may be used to store parity information. At a later time,
this extra protection may be removed when the devices prove over time that they are reliable. In
various embodiments, characteristics regarding error rates may be maintained for devices. For
example, characteristics concerning correctable and/or uncorrectable errors may be maintained
and used to make decisions regarding the reliability of a given device. Based upon this
information, the storage controller may dynamically alter various levels of protection for a device
or stripe.

[0073] Block 920 of FIG. 9 generally illustrates a process whereby at the time a stripe or other
portion of storage is to be allocated (decision block 922), a determination regarding the layout
and protection level to use for the data may be made (block 924). It is noted that the process of
block 910 could be performed at this time. Alternatively, levels of protection may have been
determined by process 910 and stored. The determination of block 924 could then be based upon
that stored data. In one embodiment, once a given layout has been determined, the particular
devices to be used for the layout may be selected from a group of devices (block 925). For
example, in one embodiment a group of 20 devices may be available for use. If a layout of 5+2 is
determined, then any seven devices may be selected for use from the group of 20. Additionally, it
is noted that a subsequent write with a selected 5+2 layout need not use the same 7 devices.
Subsequent to determining the layout, protection level, and devices for the stripe, the stripe may
be written (block 926).

[0074] In various embodiments, the RUSH algorithm may be utilized to determine which
devices on which the data and redundancy information for a given stripe will reside . For
example, the RUSH algorithm may be used to select the particular devices to utilize for an 8§+2
RAID layout for a given stripe in storage devices 176a-176k. Generally speaking, as used
herein, an M+N layout may generally describe a layout which includes M data devices and N
parity devices for a given data stripe. Additionally, as discussed above, parity may be distributed
across the devices rather than fully located within particular devices. Accordingly, an 8+2 layout

may include data and parity striped across 10 devices — with 8 of the devices storing data and two

18

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
of the devices storing parity. On a subsequent occasion, a layout of 12+2 may be selected. In

this manner, the desired layout and protection characteristics may be determined dynamically at
the time a write (e.g., a stripe) is to be written. In one embodiment, storage devices 176a-176k
may include more than 10 storage devices, such as 30, 50 or more storage devices. However, for
a stripe with an 8+2 layout, only 10 of the storage devices are utilized . It is noted that any 10 of
the devices may be selected and any suitable algorithm may be used for selecting the 10 devices
for use in storing the stripe. For example, the CRUSH algorithm could be used to select which 10
of the storage devices 176a-176k to utilize for a given 8+2 RAID layout.

[0075] In one example of a chosen 8§+2 RAID layout for storage devices 176a-176k, 2 of the
storage devices may be used to store error correcting code (ECC) information, such as parity
information. This information may be used to perform reconstruct read requests. Referring
again to FIG. 8, the storage devices 176j and 176k may be selected to store RAID double parity
information in this example. Again, the parity information may be stored in a rotated fashion
between each of the storage devices 176a-176k included within the RAID array, rather than
consistently stored in the same storage devices. For ease of illustration and description, the
storage devices 176j and 176k are described as storing RAID double parity.

[0076] In block 926, during execution of a write operation, metadata, user data, intra-device
parity information and inter-device parity information may be written as a RAID stripe across
multiple storage devices included within the RAID array. In block 912, the RAID engine 178
may monitor behavior of the one or more storage devices within the RAID array. In one
embodiment, the RAID engine 178 may include a monitor 410 and data layout logic 420 as
shown in FIG. 4. The RAID engine 178 may monitor at least an age of a given storage device, a
number and a type of errors, detected configuration changes since a last allocation of data, an age
of given data, a current usage of storage space in the RAID array, and so forth.

[0077] The data, which is monitored by the RAID engine 178, may be stored in RAM 172, such
as in one of the device units 400a-400w shown in FIG. 4. Tables may be used to store this data,
such as the examples shown in FIG. 5 and FIG. 6. The logic included within a corresponding
RAID engine may both detect and predict behavior of storage devices by monitoring updated
statistics of the storage devices. For example, the model may predict an upcoming increasing
error rate for a given storage device.

[0078] If increased reliability of the storage device(s) is detected (conditional block 908), then in
block 910, the RAID engine may decrease the level of data protection within the system. For

example, in one embodiment the amount of parity information stored in the storage subsystem

19

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
may be reduced. Regarding the above example, the RAID engine may decrease the RAID

double parity to RAID single parity for the corresponding 8+2 RAID array, converting it to an
8+1 RAID array. In other examples a given RAID array may be utilizing an N-level amount of
redundancy, or parity, in a RAID architecture prior to block 916. In block 916, the RAID engine
may determine to utilize an (N-m)-level amount of redundancy, wherein N > 1 and 1 <m < N.
Therefore, during subsequent write operations for a given RAID stripe, there will be m fewer
storage devices written to within the given RAID stripe.

[0079] In order to reduce the level of data protection within the system, the RAID engine (or
another component) may perform parity shredding as described carlier. Subsequently, the
storage controller 174 may reallocate those pages which were freed as a result of the shredding
operation to be used in subsequent write operations.

[0080] As cach of the storage devices 176a-176k both age and fill up with data, extra parity
information may be removed from the RAID array as described above. The metadata, the user
data, corresponding intra-device redundancy information and some of the inter-device
redundancy information remains. Regarding the above example with an 8+2 RAID array, the
information stored in storage devices 176a-176) remains. However, extra inter-device
redundancy information, or extra parity information, may be removed from the RAID array. For
example, extra parity information stored in storage device 176k may be removed from the RAID
stripes.

[0081] The information that remains, such as the information stored in storage devices 176a-176;
in the above example, may remain in place. The storage space storing the extra parity
information, such as the corresponding pages in storage device 176k in the above example, may
be reused and reallocated for subsequent write operations. In one embodiment, each new
allocation receives a new virtual address. Each new allocation may have any given size, any
given alignment or geometry, and may fit in any given storage space (cither virtual or physical).
In one embodiment, each one of the storage devices 176a-176k and each allocated page within a
storage device have a header comprising identification information. This identification
information may allow the reuse of storage space for freed extra parity information without
changing a given configuration.

[0082] In an embodiment wherein one or more of the storage devices 176a-176k is an SSD, an
erase block is erased prior to reprogramming one or more pages within the erase block.
Therefore, in an embodiment wherein storage device 176k is an SSD, corresponding erase blocks

are erased prior to reprogramming freed pages in storage device 176k. Regarding the above

20

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
example with an original 8+2 RAID array, one or more erase blocks are erased in storage device

176k within stripes 250a-250b prior to reprogramming pages with data 210. The original 8+2
RAID array is now an 8+1 RAID array with storage device 176j providing the single parity
information for RAID stripes written prior to the parity shredding.

[0083] As is well known to those skilled in the art, during a read or write failure for a given
storage device, data may be reconstructed from the supported inter-device parity information
within a corresponding RAID stripe. The reconstructed data may be written to the storage
device. However, if the reconstructed data fails to be written to the storage device, then all the
data stored on the storage device may be rebuilt from corresponding parity information. The
rebuilt data may be relocated to another location. With Flash memory, a Flash Translation Layer
(FTL) remaps the storage locations of the data. In addition, with Flash memory, relocation of
data includes erasing an entire erase block prior to reprogramming corresponding pages within
the erase block. Maintaining mapping tables at a granularity of erase blocks versus pages allows
the remapping tables to be more compact. Further, during relocation, extra pages that were freed

during parity shredding may be used.

[0084] Offset Parity

[0085] Turning now to FIG. 10, a generalized block diagram illustrating yet another embodiment
of a flexible RAID data layout architecture is shown. Similar to the generalized block diagram
shown in FIG. §, a flexible RAID data layout architecture may be used. The storage devices
176a-176k comprise multiple RAID stripes laid out across multiple storage devices. Although
cach of the storage devices 176a-176k comprises multiple pages, only page 1010 and page 1020
are labeled for ease of illustration. In the example shown, a double parity RAID data layout is
chosen, wherein storage devices 176j and 176k store double parity information.

[0086] Each of the pages in the storage devices 176a-176k stores a particular type of data. Some
pages store user data 210 and corresponding generated inter-device parity information 240.
Other pages store corresponding generated intra-device parity information 220. Yet other pages
store metadata 242. The metadata 242 may include page header information, RAID stripe
identification information, log data for one or more RAID stripes, and so forth. In addition to
inter-device parity protection and intra-device parity protection, each of the pages in storage
devices 176a-176k may comprise additional protection such as a checksum stored within each
given page. In various embodiments, the single metadata page at the beginning of each stripe

may be rebuilt from the other stripe headers. Alternatively, this page could be at a different offset

21

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
in the parity shard so the data can be protected by the inter-device parity. A “shard” represents a

portion of a device. Accordingly, a parity shard refers to a portion of a device storing parity

data.

Physical Layer

[0087] In various embodiments, the systems described herein may include a physical layer
through which other elements of the system communicate with the storage devices. For example,
scheduling logic, RAID logic, and other logic may communicate with the storage devices via a
physical layer comprising any suitable combination of software and/or hardware. In general, the
physical layer performs a variety of functions including providing access to persistent storage,
and performing functions related to integrity of data storage.

[0088] FIG. 11A illustrates one embodiment of a hypothetical device layout for a 500GB device.
In various embodiments, the storage devices described herein may be formatted with a partition
table 1101 at the beginning of the device, and a copy of the partition table at the end of the
device. Additionally, a device header 1103 may be stored in the first and last blocks. For
example, in a flash based storage device, a device header may be stored in the first and last erase
blocks. As previously discussed, an erase block is a flash construct that is typically in the range
of 256KB-1MB. Additional unused space in the first erase block may be reserved (padding
1105). The second erase block in each device may be reserved for writing logging and diagnostic
information 1107. The rest of the erase blocks in between are divided into Allocation Units
(AUs) 1109 of a multiple erase blocks. The AU size may be chosen so there are a reasonable
number of AUs per device for good allocation granularity. In one embodiment, there may be
something in the range of 10,000 AUs on a device to permit allocation in large enough units to
avoid overhead, but not too many units for easy tracking. Tracking of the state of an AU
(allocated/free/erased/bad) may be maintained an AU State Table. The wear level of an AU may
be maintained in a Wear Level Table, and a count of errors may be maintained in an AU Error
Table.

[0089] In various embodiments, the physical layer allocates space in segments which include one
segment shard in each device across a set of devices (which could be on different nodes). FIG.
11B depicts one embodiment of a segment and various identifiable portions of that segment in
one possible segment layout. Also included is a legend depicting the types of data stored within
the segment. In the embodiment shown, a single segment is shown stored in multiple devices.

Illustrated are data devices Data 0 — Data N, and parity devices Parity P and Parity Q. In one

22

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
embodiment, each segment shard includes one or more allocation units on a device such that the

size of the shard is equal on each device. Segment shard 1123 is called out to illustrate a
segment shard. Also illustrated if FIG. 11B, is an 1/O read size 1127 which in one embodiment
corresponds to a page. Also shown is an 1/O parity chunk 1129 which may include one or more
pages of page parity for the 1/O shard.

[0090] In one embodiment, each segment will have its own geometry which may include one or
more of the following parameters:

(1)RAID level - The RAID level used for cross device protection in the segment. This
may determine mirroring, parity, or ECC RAID and how many segment shards
contain parity.

(2) Device Layout I/O shard size - This represents the size used to stripe across each
device during a write. This will typically be in the range of 256KB to 1MB and
probably be a multiple of the erase block size on each device. FIG. 11B calls out I/O
shard size 1125 for purposes of illustration.

(3)I/0 read size - This is a logical read size. Each I/0 shard may be formatted as a series
of logical pages. Each page may in turn include a header and a checksum for the data
in the page. When a read is issued it will be for one or more logical pages and the data
in each page may be validated with the checksum.

(HI/O shard RAID level - The I/O shard has intra-shard parity to handle latent errors
found during a rebuild. This parameter determines what type of parity is used for
intra-shard protection and thus how many copies of the intra-shard parity will be
maintained.

(5)I/O parity chunk — In various embodiments, the storage devices may do ECC on a page
basis. Consequently, if an error is seen it is likely to indicate failure of an entire
physical page. The I/O parity chunk is the least common multiple of the physical page
size on each device in the segment and the intra-shard parity is calculated by striping
down the I/O shard in the larger of the I/O parity chunks or the I/O read size. Included
may be one or more pages of page parity. In various embodiments, this parity may be
used to rebuild data in the event of a failed checksum validation.

[0091] In various embodiments, as each new segment is written a RAID geometry for the
segment will be selected. Selection of the RAID geometry may be based on factors such as the
current set of active nodes and devices, and the type of data in the segment. For example if 10

nodes or devices are available then an (8+2) RAID 6 geometry may be chosen and the segment

23

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
striped across the nodes to withstand two device or node failures. If a node then fails, the next

segment may switch to a (7+2) RAID 6 geometry. Within the segment some of the segment
shards will contain data and some will contain ECC (e.g., parity).

[0092] In one embodiment, there are five types of segments. Three of these segments correspond
to the AU State Table, the AU Error Table, and the Wear Level Table. In some embodiments,
these three segments may be mirrored for additional protection. In addition to these three
segments, there are metadata segments which may also be additionally protected through
mirroring. Finally there are Data segments which hold client blocks and log information. The log
information contains update information associated with the client blocks in the segment. The
data segments will likely be protected by RAID 6 as illustrated in FIG. 11B with Parity P and
Parity Q shards. In addition to the above, a segment table is maintained as an in memory data
structure that is populated at startup with information from the headers of all the segment shards.
In some embodiments, the table may be cached completely on all nodes so any node can translate
a storage access to a physical address. However, in other embodiments an object storage model
may be used where each node may have a segment table that can take a logical reference and
identify the segment layout node where the data is stored. Then the request would be passed to
the node to identify the exact storage location on the node. FIG. 11B also depicts segment tail
data which identifies any (volume, snapshot) combinations that take up a significant amount of
space in the segment. When snapshots are removed, a data scrubber may help identify segments
for garbage collection based on this data.

[0093] In one embodiment, the basic unit of writing is the segio which is one I/O shard on each
of the devices in the segment. Each logical page in the segio is formatted with a page header that
contains a checksum (which may be referred to as a “media” checksum) of the page so the actual
page size for data is slightly smaller than one page. For pages in the parity shards of a segment
the page header is smaller so that the page checksums in the data page are protected by the parity
page. The last page of each 1/0 shard is a parity page that again has a smaller header and protects
all the checksums and page data in the erase block against a page failure. The page size referred
to here is the I/O read size which may be one or more physical flash pages. For some segments, a
read size smaller than a physical page may be used. This may occur for metadata where reads to
lookup information may be index driven and smaller portion of data may be read while still
obtaining the desired data. In such a case, reading half a physical page would mean tying up the

I/O bus (and network) with less data and validating (e.g., checksumming) less data. To support a

24

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
read size smaller than a physical page, an embodiment may include multiple parity pages at the

end of the erase block such that the total size of all the parity pages is equal to the flash page
size.

[0094] As the wear level of an crase block increases, the likelihood of an error increases. In
addition to tracking wear levels, data may be maintained regarding observed how often errors are
seen on an erase block and blocks with a higher probability of error identified. For some erase
blocks, it may be decided to keep double or triple error correcting parity at the end of the erase
block instead of the single RAID 5 parity. In this case, the data payload of the segio may be
reduced accordingly. It may only be necessary to reduce the poor erase block within the segio,
rather than all the erase blocks. The page headers in the erase block may be used to identify
which pages are parity and which are data.

[0095] Whenever a page is read from storage, the contents may be validated using the page
checksum. If the validation fails, a rebuild of the data using the intra-device parity may be
attempted. If that fails, then cross device ECC for the segment may be used to reconstruct the
data.

[0096] In data segments the payload areca may be divided into two areas. There will be pages
formatted as log data which may include updates related to stored client blocks. The remainder
of the payload areca may contain pages formatted as client blocks. The client block data may be
stored in a compressed form. Numerous compression algorithms are possible and are
contemplated. Additionally, in various embodiments Intel® Advanced Encryption Standard
instructions may be used for generating checksums. Additionally, there may be a header for the
client block that resides in the same page as the data and contains information needed to read the
client block, including an identification of the algorithm used to compress the data. Garbage
collection may utilize both the client block header and the log entries in the segio. In addition,
the client block may have a data hash which may be a checksum of the uncompressed data used
for deduplication and to check the correctness of the decompressed data.

[0097] In some embodiments, segments and segios may have a monotonically increasing 1D
number used to order them. As part of writing a segio, a logical layer can record dependencies
on prior flushes. At startup, the physical layer may build an ordered list of segments and segios
and if a segio is dependent on another uncompleted segio it may be rolled back and not

considered to have been written.

Wear Level Table

25

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[0098] The Wear Level Table (WLT) for each device may be stored in a segment local to each

device. The information may also be stored in the header of each segment shard. In one
embodiment, the wear information is an integer that represents the number of times the allocation
unit has been erased and reused. As the wear information may not be accurate, a flush of the
table to the device may be performed when there has been a certain amount of activity or when
the system has been idle for a reasonable period. The WLT may also be responsible for cleaning
up old WLT segments as it allocates new ones. To add an extra layer of protection, old copies
may be maintained before freeing them. For example, a table manager may ensure that it keeps
the previous erase block and the current erase block of WLT entries at all times. when it allocates
a new segment it won't free the old segment until it has written into the second erase block of the

new segment.

AU State Table

[0099] The AU State Table (AST) tracks the state of each AU. The states include Free,
Allocated, Erased and Bad. The AST may be stored in a segment on the device. Changing a state
to Allocated or Free may be a synchronous update, while changing a state to Bad or Erased may
be an asynchronous update. This table may generally be small enough and have enough updates
that updates may be logged in NVRAM. The AST may be responsible for cleaning up old AST
segments as it allocates new ones. Since the AST can be completely recovered by scanning the

first block of each AU on the drive, there is no need to keep old copies of the AST.

AU Error Table

[00100] The AU Error Table (AET) may be used to track the number of recoverable errors and
unrecoverable errors within each AU. The AET is stored in a segment on the device and each
field may be a two byte integer. With four bytes per AU the entire table may be relatively small.
[00101] Referring now to FIG. 11C, a generalized block diagram illustrating one embodiment
of data storage arrangements within different page types is shown. In the embodiment shown,
three page types are shown although other types are possible and contemplated. The shown page
types include page 1110 comprising metadata 1150, page 1120 comprising user data 1160, and
page 1130 comprising parity information 1170 (inter-device or intra-device). Each of the pages
1110-1130 comprises metadata 1140, which may include header and identification information.
In addition, each of the pages 1110-1130 may comprise intra-page error recovery data 1142, such

as a corresponding checksum or other error detecting and/or correcting code. This checksum

26

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
value may provide added protection for data stored in storage devices 176a-176k in a given

device group.

[00102] Further, page 1130 may comprise inter-page error recovery data 1144. The data 1144
may be ECC information derived from the intra-page data 1142 stored in other storage devices.
For example, referring again to FIG. 10, each page within storage device 176j, which stores
inter-device parity information 240, may also store inter-page error recovery data 1144. The data
1144 may be a parity, a checksum, or other value generated from intra-page error recovery data
1142 stored in one or more of the storage devices 176a-1761. In one embodiment, the data 1144
is a checksum value generated from one or more other checksum values 1142 stored in other
storage devices. In order to align data 1144 in a given page in storage device 176j with data
1142 in a corresponding page in one or more of the storage devices 176a-176i, padding 1146
may be added to the corresponding pages.

[00103] In one embodiment, end-user applications perform I/O operations on a sector-
boundary, wherein a sector is 512 bytes for HDDs. In order to add extra protection, an 8-byte
checksum may be added to form a 520-byte sector. In various embodiments, compression and
remapping may be used in a flash memory based system to allow user data to be arranged on a
byte boundary rather than a sector boundary. In addition, a checksum (8 byte, 4 byte, or
otherwise) may be placed inside a page after a header and before the user data, which may be
compressed. This placement is shown in each of pages 1110-1130.

[00104] When an end-user application reads a 512-byte sector, a corresponding page, which
may be 2KB-8KB in size in one embodiment, has extra protection with an 8-byte checksum at
the beginning of the page. In various embodiments, the page may not be formatted for a non-
power of 2 sector size. As shown in pages 1110-1120, the checksum may be offset a few bytes
into the page. This offset allows a parity page, such as page 1130, to store both a checksum that
covers the parity page and ECC to protect checksums of the other pages.

[00105] For yet another level of protection, data location information may be included when
calculating a checksum value. The data 1142 in each of pages 1110-1130 may include this
information. This information may include both a logical address and a physical address. Sector
numbers, data chunk and offset numbers, track numbers, plane numbers, and so forth may be

included in this information as well.

[00106] Alternate Geometries

27

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[00107] Turning now to FIG. 12, a generalized block diagram illustrating one embodiment of

a hybrid RAID data layout 1200 is shown. Three partitions are shown although any number of
partitions may be chosen. Each partition may correspond to a separate device group, such as
device groups 713a-173b shown in FIG. 1. Each partition comprises multiple storage devices.
In one embodiment, an algorithm such as the CRUSH algorithm may be utilized to select which
devices to use in a RAID data layout architecture to use for data storage.

[00108] In the example shown, an L+1 RAID array, M+1 RAID array, and N+1 RAID array
are shown. In various embodiments, L, M, and N may all be different, the same, or a combination
thereof. For example, RAID array 1210 is shown in partition 1. The other storage devices 1212
are candidates for other RAID arrays within partition 1. Similarly, RAID array 1220 illustrates a
given RAID array in partition 2. The other storage devices 1222 are candidates for other RAID
arrays within partition 2. RAID array 1230 illustrates a given RAID array in partition 3. The
other storage devices 1232 are candidates for other RAID arrays within partition 3.

[00109] Within each of the RAID arrays 1210, 1220 and 1230, a storage device P1 provides
RAID single parity protection within a respective RAID array. Storage devices D1-DN store
user data within a respective RAID array. Again, the storage of both the user data and the RAID
single parity information may rotate between the storage devices D1-DN and P1. However, the
storage of user data is described as being stored in devices D1-DN. Similarly, the storage of
RAID single parity information is described as being stored in device P1 for ease of illustration
and description.

[00110] One or more storage devices among cach of the three partitions may be chosen to
provide an additional amount of supported redundancy for one or more given RAID arrays. For
example, storage device Q1 in partition 3 may be combined with each of the RAID arrays 1210,
1220 and 1230. The storage device Q1 may provide RAID double parity information for each of
the RAID arrays 1210, 1220 and 1230. This additional parity information is generated and stored
when a stripe is written to one of the arrays 1210, 1220, or 1230. Further this additional parity
information may cover stripes in each of the arrays 1210, 1220, and 1230. Therefore, the ratio of
a number of storage devices storing RAID parity information to a total number of storage devices
is lower. For example, if each of the partitions used N+2 RAID arrays, then the ratio of a
number of storage devices storing RAID parity information to a total number of storage devices
is 3(2)/ (3(N+2)), or 2/(N+2). In contrast, the ratio for the hybrid RAID layout 1200 is
(3+1)/(3(N+1)), or 4/(3(N+1)).

28

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
[00111] It is possible to reduce the above ratio by increasing a number of storage devices used

to store user data. For example, rather than utilize storage device Q1, each of the partitions may
utilize a 3N+2 RAID array. In such a case, the ratio of a number of storage devices storing
RAID parity information to a total number of storage devices is 2/(3N+2). However, during a
reconstruct read operation, (3N + 1) storage devices receive a reconstruct read request for a
single device failure. In contrast, for the hybrid RAID layout 1200, only N storage devices
receive a reconstruct read request for a single device failure.

[00112] It is noted each of the three partitions may utilize a different RAID data layout
architecture. A selection of a given RAID data layout architecture may be based on a given ratio
number of storage devices storing RAID parity information to a total number of storage devices.
In addition, the selection may be based on a given number of storage devices, which may receive
a reconstruct read request during reconstruction. For example, the RAID arrays 1210, 1220 and
1230 may include geometries such as L+a, M+b and N+c, respectively.

[00113] In addition, one or more storage devices, such as storage device Q1, may be chosen
based on the above conditions to provide an additional amount of supported redundancy for one
or more of the RAID arrays within the partitions. In an example with three partitions comprising
the above RAID arrays and a number Q of storage devices providing extra protection for each of
the RAID arrays, a ratio of a number of storage devices storing RAID parity information to a
total number of storage devices is (a+b+c+Q)/(L+a+M+b+N+c+Q). For a single device failure, a
number of storage devices to receive a reconstruct read request is L, M and N, respectively, for
partitions 1 to 3 in the above example. It is noted that the above discussion generally describes 3
distinct partitions in FIG. 12. In such an embodiment, this type of “hard” partitioning where a
given layout is limited to a particular group of devices may guarantee that reconstruct reads in
one partition will not collide with those in another partition. However, in other embodiments the
partitions may not be hard as described above. Rather, given a pool of devices, layouts may be
selected from any of the devices. For example, treating the devices as on big pool it is possible to
configure layouts such as (L+1, M+1, N+1) + 1. Consequently, there is a chance that geometries
overlap and reconstruct reads could collide. If L, M, and N are small relative to the size of the
pool then the percentage of reconstruct reads relative to normal reads may be kept low.

[00114] Referring now to FIG. 13, one embodiment of a method 1300 for selecting alternate
RAID geometries in a data storage subsystem is shown. The components embodied in network
architecture 100 and data storage arrays 120a-120b described above may generally operate in

accordance with method 1300. The steps in this embodiment are shown in sequential order.

29

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
However, some steps may occur in a different order than shown, some steps may be performed

concurrently, some steps may be combined with other steps, and some steps may be absent in
another embodiment.

[00115] In block 1302, a RAID engine 178 or other logic within a storage controller 174
determines to use a given number of devices to store user data in a RAID array within each
partition of a storage subsystem. A RUSH or other algorithm may then be used to select which
devices are to be used. In one embodiment, each partition utilizes a same number of storage
devices. In other embodiments, ecach partition may utilize a different, unique number of storage
devices to store user data. In block 1304, the storage controller 174 may determine to support a
number of storage devices to store corresponding Inter-Device Error Recovery (parity) data
within each partition of the subsystem. Again, each partition may utilize a same number or a
different, unique number of storage devices for storing RAID parity information.

[00116] In block 1306, the storage controller may determine to support a number Q of storage
devices to store extra Inter-Device Error Recovery (parity) data across the partitions of the
subsystem. In block 1308, both user data and corresponding RAID parity data may be written in
selected storage devices. Referring again to FIG. 12, when a given RAID array is written, such
as RAID array 1210 in partition 1, one or more bits of parity information may be generated and
stored in storage device Q1 in partition 3.

[00117] If the storage controller 174 detects a condition for performing read reconstruction in a
given partition (conditional block 1310), and if the given partition has a sufficient number of
storage devices holding RAID parity information to handle a number of unavailable storage
devices (conditional block 1312), then in block 1314, the reconstruct read operation(s) is
performed with one or more corresponding storage devices within the given partition. The
condition may include a storage device within a given RAID array is unavailable due to a device
failure or the device operates below a given performance level. The given RAID array is able to
handle a maximum number of unavailable storage devices with the number of storage devices
storing RAID parity information within the given partition. For example, if RAID array 1210 in
partition 1 in the above example is an L+a RAID array, then RAID array 1210 is able to perform
read reconstruction utilizing only storage devices within partition 1 when k storage devices are
unavailable, where 1 <=k <= a.

[00118] If the given partition does not have a sufficient number of storage devices holding
RAID parity information to handle a number of unavailable storage devices (conditional block

1312), and if there is a sufficient number of Q storage devices to handle the number of

30

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
unavailable storage devices (conditional block 1316), then in block 1318, the reconstruct read

operation(s) is performed with one or more corresponding Q storage devices. One or more
storage devices in other partitions, which are storing user data, may be accessed during the read
reconstruction. A selection of these storage devices may be based on a manner of a derivation of
the parity information stored in the one or more Q storage devices. For example, referring again
to FIG. 12, storage device D2 in partition 2 may be accessed during the read reconstruction, since
this storage device may have been used to generate corresponding RAID parity information
stored in storage device Q1. If there are not a sufficient number of Q storage devices to handle
the number of unavailable storage devices (conditional block 1316), then in block 1320, the
corresponding user data may be read from another source or be considered lost.

[00119] It is noted that the above-described embodiments may comprise software. In such an
embodiment, the program instructions that implement the methods and/or mechanisms may be
conveyed or stored on a computer readable medium. Numerous types of media which are
configured to store program instructions are available and include hard disks, floppy disks, CD-
ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.

[00120] In various embodiments, one or more portions of the methods and mechanisms
described herein may form part of a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services according to one or more various models.
Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a
case, the computing equipment is generally owned and operated by the service provider. In the
PaaS model, software tools and underlying equipment used by developers to develop software
solutions may be provided as a service and hosted by the service provider. SaaS typically
includes a service provider licensing software as a service on demand. The service provider may
host the software, or may deploy the software to a customer for a given period of time. Numerous
combinations of the above models are possible and are contemplated.

[00121] Although the embodiments above have been described in considerable detail,
numerous variations and modifications will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.

31

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
WHAT IS CLAIMED IS

1. A computer system comprising:
a client computer configured to send read and write requests over a network;
a data storage subsystem coupled to the network configured to receive the read and write
requests, wherein the subsystem comprises a plurality of data storage locations on
a device group including a plurality of storage devices;
wherein the data storage subsystem further comprises a storage controller configured to:
determine a first RAID layout for use in storing data;
write a first RAID stripe to the device group according to the first RAID layout;
and
in response to detecting a first condition:
determine a second RAID layout which is different from the first RAID
layout, said second RAID layout being determined without regard
to an amount of data to be written; and
write a second RAID stripe to the device group according to the second
layout;
whereby the device group concurrently stores data according to both the first RAID
layout and the second RAID layout.

2. The computer system as recited in claim 1, wherein said condition comprises detecting space

is to be allocated for storing data in the device group.

3. The computer system as recited in claim 1, wherein the storage controller is configured to

determine the first RAID layout and the second RAID layout based upon characteristics of

one or more of the plurality of storage devices.

4. The computer system as recited in claim 3, wherein the characteristics include one or more of

a number or rate of accesses to one or more of the plurality of devices, an age of data stored
in one or more of the plurality of devices, an amount of free space in one or more of the
plurality of storage devices, an expected life of data to be written in the space allocated, an

expected life of data currently stored in one or more of the plurality of storage devices, a

32

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
device age, an error rate, a number of errors, a number of recoverable errors, a number of

unrecoverable errors, and an allocation state.

5. The computer system as recited in claim 1, wherein the storage controller is further
configured to shred protection data in the plurality of storage devices, whereby the storage
controller is configured to at least:

determine a level of protection for given data is to be changed;
identify particular storage locations storing protection data corresponding to the given
data; and

de-allocate the particular storage locations.

6. The computer system as recited in claim 5, wherein the storage controller is further
configured to reallocate one or more of the particular storage locations for storing non-

protection data during a subsequent write.

7. The computer system as recited in claim 6, wherein a reallocated particular storage location
need not use a same size or alignment for the non-protection data as was used for the

protection data.

8. The computer system as recited in claim 1, wherein a storage device of the plurality of
storage devices is configured to erase data in erase block size units, and wherein in response
to detecting an access to a portion of data smaller in size than an erase block has failed, the
storage controller is configured to:

identify a particular erase block sized portion of data that includes the portion of data that
failed;

rebuild the portion of data that failed to form a rebuilt portion of data; and

cause the storage device to write the particular erase block sized portion of data including

the rebuilt portion of data.
9. The computer system as recited in claim 1, wherein in response to detecting an access to a

portion of data has failed, the storage controller is configured to:

rebuild the portion of data that failed to form a rebuilt portion of data;

33

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
shred protection data in a particular storage device of the plurality of storage devices;

and

store the rebuilt portion of data in the particular storage location.

10. The computer system as recited in claim 1, wherein the storage controller is further
configured to issue a command to a storage device of the plurality of storage devices which

causes the storage device to remap and rewrite a portion of data stored in the storage device.

11. A method for use in a computer system, the method comprising:
receiving read and write requests at a data storage subsystem, wherein the subsystem
comprises a plurality of data storage locations on a device group including a
plurality of storage devices;
determining a first RAID layout for use in storing data;
writing a first RAID stripe to the device group according to the first RAID layout; and
in response to detecting a first condition:
determining a second RAID layout which is different from the first RAID layout,
said second RAID layout being determined without regard to an amount of
data to be written; and
writing a second RAID stripe to the device group according to the second layout;
whereby the device group concurrently stores data according to both the first RAID
layout and the second RAID layout.

12. The method as recited in claim 11, wherein said condition comprises detecting space is to be

allocated for storing data in the device group.

13. The method as recited in claim 11, further comprising determining the first RAID layout and
the second RAID layout based upon characteristics of one or more of the plurality of storage

devices.

14. The method as recited in claim 13, wherein the characteristics include one or more of a
number or rate of accesses to one or more of the plurality of devices, an age of data stored in
one or more of the plurality of devices, an amount of free space in one or more of the

plurality of storage devices, an expected life of data to be written in the space allocated, an

34

10

15

20

25

30

WO 2012/044488 PCT/US2011/052222
expected life of data currently stored in one or more of the plurality of storage devices, a

device age, an error rate, a number of errors, a number of recoverable errors, a number of

unrecoverable errors, and an allocation state.

15. The method as recited in claim 11, further comprising shredding protection data in the
plurality of storage devices, whereby the method comprises:

determining a level of protection for given data is to be changed;

identifying particular storage locations storing protection data corresponding to the given

data; and

de-allocating the particular storage locations.

16. The method as recited in claim 15, reallocating one or more of the particular storage locations

for storing non-protection data during a subsequent write.

17. The method as recited in claim 16, wherein a reallocated particular storage location need not

use a same size or alignment for the non-protection data as was used for the protection data.

18. The method as recited in claim 11, wherein a storage device of the plurality of storage
devices is configured to erase data in erase block size units, and wherein in response to
detecting an access to a portion of data smaller in size than an erase block has failed, the
method further comprises:

identifying a particular erase block sized portion of data that includes the portion of data
that failed;

rebuilding the portion of data that failed to form a rebuilt portion of data; and

causing the storage device to write the particular erase block sized portion of data

including the rebuilt portion of data.

19. A computer readable storage medium storing program instructions, wherein the program
instructions are executable to:
receive read and write requests at a data storage subsystem, wherein the subsystem
comprises a plurality of data storage locations on a device group including a
plurality of storage devices;

determine a first RAID layout for use in storing data;

35

WO 2012/044488 PCT/US2011/052222
write a first RAID stripe to the device group according to the first RAID layout; and

in response to detecting a first condition:
determine a second RAID layout which is different from the first RAID layout,
said second RAID layout being determined without regard to an amount of
5 data to be written; and
write a second RAID stripe to the device group according to the second layout;
whereby the device group concurrently stores data according to both the first RAID
layout and the second RAID layout.

10 20. The computer readable storage medium as recited in claim 19, wherein said condition

comprises detecting space is to be allocated for storing data in the device group.

36

PCT/US2011/052222

WO 2012/044488

BC/] dnols) ao1n8(

{743
a0BLIa|
SHOMIBN

[443
108880014

} Ol

qesl wo/T a9/l B9/l
dnoug 901A8(] 901N (] 82Ine(]
aolne(obeliolg abelo)g obelols
8/1 57T
(s)ouibuz arv L
NVd
71 Je|jjohuo) ebelo)g

01 walsAsgng abelo)g

7ET WalsAs a|i4

&l SO 8seg

DET wnipap Alows

q0cl
Aely

obrioig
eleq

e0Cl
Aelry
abelo)g

eleq

Gl uoums

Q|

091 1eulau|

0¥l youms \

3011 WeisAg
Jendwod jus(n

GL/L

081
S}oMmiaN

qolT welshAs
Jaindwion uein

EOL | WwalshAs
Jaindwon wsln

»
N 00} eImoeNYINY HHoMEN

PCT/US2011/052222

WO 2012/044488

¢ 9ld

Aianooey Kienoosy 77777777
joug loug \\x«“& Bleq Josn

STINTq R I aoINeQ-BI| Wi
0vC Bled 0¢¢ eled 01¢ eled
N/ 77 7 77/ 22
7777 7 %\\N\m M\w\m\\\ 7
V\w\. \\ ” \\ Sy
m%_mm \\\w\\\&\\\m / s\\\\\\N
s .
A 7T TIT T, A7, g
77 v G
dosce
aduis
; T TN T e g R e x\. 7 (77777 :,HHH,
NN 77 777 7707 777 777
adlng
H9LL 9dlAe(1971 @21A8Q \ 99/1 9diAed 49/l 8dineQ m‘m.wM.ﬁmmSmQ
abelo)g abelois abelolg abelioig abelois

glre

WO 2012/044488

PCT/US2011/052222

3/15
—— Method 300
Determine a first amount of space for
storing user data in a storage device.
302
l f |
Determine a second amount of space : _
for storing corresponding intra-device Monitor behavior of the storage
protection data in the storage device. device.
304 312
\
Write user data in the first amount of H tDeft?_ct th
space in the storage device. <——J\———A<—No gtoar;agce%rvlasv;gg \ONhi Cﬁ
306 affect reliability?
314
Yes
Y Y
Generate intra-device protection data Adjust the first and/or second
corresponding to the user data. amounts of space.
308 316
Write the intra-device protection data in
the second amount of space in the
———

storage device.
310

FIG. 3

PCT/US2011/052222

WO 2012/044488

v Old

BC/ 1 dnols) aoinaQ

we/] w9/l q9.l B9/1
dnous ao1ne(q hIlY=Tg 20Ina(30In8(]
abeloig abeiolg abelolg
3 I I
A A A M __ !
| | | { _ i
" “ " m “ ”
Y Y Y y y v
MO0V bO0Y aoov wooy q00¥ e00¥
Hn . | Hun N HIN Hun nun
801N (] 201A8(J 20I1A8(q aoine(Q 90IA8(201A8(]
— A
727 v _ I ' .
n n " " " i
| | | | | |
Y Y Y v Y v
och 0zy [o]%% (%%
01607 21607 1noAeT Bl JONUO\ 21607 JnoAe BlEe(] JOJUON
[0UOD JBUYIO
Wg/T sulbug aivy Bg/1 euibuz divy

71 l9jjoiuon) abelolg

%4

PCT/US2011/052222

WO 2012/044488

G old

POES eled siels POES eled oiels POES 1senbay POEG 1sonbay POCG Isenbay

90€¢G eled 8lels J0¢G eled ojels 30€G isenbay 50€G 1sanbay 50¢G isenbay

BOEG BleQ 9lelS B0EG Ble(9lels BOES 1senbay BOEG 1senbay BOEG Isenbay
4cca BCcS 91G @nanp 25 4%
a|ge] o1els a|qe | e1els uonesadQ anany oA ananp peoy

18410
026 se|gel 016 enany av1As(
Hun v1neg

GL/q

WO 2012/044488 PCT/US2011/052222

6/15

/—— State Table 522

Device Age 602

Error Rate 604

Total Errors 606

Number of Recoverable Errors 608

Number of Unrecoverable Errors 61

Access Rate 612

Data Age 614

Allocation State of a First Allocation Space 616a

Allocation State of an nth Allocation Space 616n

FIG. 6

PCT/US2011/052222

WO 2012/044488

Kienooey Kionooey przzz77771 eleq Josn
Jjoiig 10413 §\m
aoIAe(g-181u] 8oIA8(-BIU| v
0¥¢ Bleq / 0¢¢ ered [(r4:iiel
A 7 TIIET , 7 7 s -
777 7 7 V\ 7 %
_— L \N 2
90G¢ (o \\W\w\\ 7 7 \\.\.\ 7
ading L L
e S 77, AT s
% 2 7 G
q0S¢
edung
N A A AT 7 77 77 \m..,m
o G) 0 v 0
ading
NOLL Awo_>mo \ 1921 @21AeQ 99/1 8dlAed 4o/l 8dlAed B9/ 8dIA8(Q
obelolg abeloig obeloig abelo)g abeloig

Z Old4

GL/Z

. PCT/US2011/052222

WO 2012/044488

8 Old

A1enooey psjesojieeq Aionooey f7 e1eq Josn
=R Joug [,
90|A8 (-8 @01A0Q-BNU|
/ 0¥¢ eled / 0¢€¢ =1ed / 01¢ eled
5062 7/
adug N % \\\\%\\\
T 0 7 777 VR
90G¢ e
aduig / \\\\\\\\\\ﬁ
H”\l 7,) B S \.\.\. A7 [Tt j o y x:““\
o | 7/ 777 777, 707
ading
SOZT eo1meq / 1971 oo1neq 3971 eolneq GoZ1 eoneq 971 eolreQ

abeloig obeio)g , abelog abelo)g ~ obelois
gL/8

PCT/US2011/052222

WO 2012/044488

026
'se0inep abelols pelos|es
ul eyep uonoajold Buipuodsallod
pue ejep Jasn sllAA

A

GZ6
saojAe(obel0)g 109(8G

A

¥26
‘odLiys 10} |9A8| uopo8l0.d
pue 1noAe| vy aulwisag

/

[443)
iadus
Buneoolly

026

6 9Ol4

916
‘wesAsgns abeloys

8y ul eyep uonosjold Jo Junowy
aUj) @seal09(] IO asealoU]

A
SOA

Y16
7 saoinep abelo]

sy} Jo Ajljiqerial
ul abueyn
J108)8(

ON

2l6
> "so01n8p 9bel0]s Jo JoIABYS(q

pue soljsLIeoBIeyD JONUO

GL/6

0l6

WO 2012/044488 PCT/US2011/052222

10/15
Storage
Device SD176b ,SD 176¢c ,SD 176d ,SD176i ,SD 176 ,SD.176k
/(SD)176a/ 76/ c / ' / —1/
N 7‘\"‘ N \\;\:\}s\\; \:\\ N \‘}%\\\ ‘\:\ NN f\\{ ™. o SRR]
RN
//i//‘// v/'-'.uﬂ/* /{//, :"': / ":'./ //’.'. ///’f"/.", '] / x/// s
ey S iy RN ooy o SEEESS
TR
—_—
NN
' AN]
{/j.,@f//,’ I ﬁ',»f/v/ g o ,:/_'_. f.’,f//.j// ///// b 77
S A Y SR R &8
NN
.
T VA Vi) e [i o W e
R N I NN I SN AN SN OO
SANRNAN
Page
1010
(s A s VA s e U7 sy]
Page
1020
/ Data 210 Data 220
,7//’ Intra-Device
User Data /j/% Error Recovery
/ Data 240 / Data 242
Inter-Device
O N
Error \\k Metadata
Recovery

FIG. 10

WO 2012/044488

64KB

72KB

512KB

1MB

51MB

101MB

499801MB

499901MB

EOD - 72KB
EOD — 64KB

EOD (500000MB)

11/15

Sample Device Layout

System Partition Table

Device Header

Padding

Log Area

Allocation Unit 0

1109

Allocation Unit 1

1109

\

Allocation Unit N

Padding

1109

1105

1103

Device Header Copy

N\

1101

System Partition Copy

FIG. 11A

PCT/US2011/052222

PCT/US2011/052222

WO 2012/044488

6cll
AJUnyd
Rued O/l

Ll
9ZIS pesy O/l

LZLL
Olbeg

e

e

gll Old

QZL1 AR
o715 peys
i uswbs
pleys O/l y\ S
/ ,\vwx.\“..,..m\/,/_ v e RS) PR SR 2
m w //ﬂ» R
| — — : [T
SO TR o o R RS
. : . _ — [TI1]
RS S5 % . . u PSS 5545 S sy
. RN
_ [TIT]
A A e (A I A NS
O Aed d fied N B1ed ¢ Bleq z eeq | B18Q 0 Bleq

peojAed

el
Juswibag

60"
BlEPEISIN

Ailed
abed

POy
B

JopeaH
Olbes

[TH]

iapesH

pleys
uswboag

SNEISER

WO 2012/044488 PCT/US2011/052222

13/15

/Page1110 Page 1120 /Page1130

AN

Error
Metadata User Data Recovery
1150 1160 Data
1170
Data 1140 / Data 1142
] Page 7 Intra-Page
NN Z
f\\\ Metadata % 7} Error Detection
/ Data 1144 / Data 1146
Inter-Page
Error Padding
Recovery

FIG. 11C

PCT/US2011/052222

WO 2012/044488

¢cEcl sadlneQ

¢ccl sedlne(

¢l Old

¢l sadiaeQ

| |
| _
! |
_ _
| _ -
0cct I 0ccl I Oicl
Jo 19 10
Ho Reiy _ Ho Reiry | Ho Aealy
avyd L+N | avd L+n | aivy L+71
| |
Al AL | AL A | A A
r Y 14 | Id N Y
| |
ﬂMNJ — | — I | —
N m _
o |
N
N\ | “
N __ “
NNE I !
N [|
N | “
- _ _
% | | I .
| |
LO ld Nd cd 1d _ ld NG 2d 1d ﬂ ld Nd cd Ld
| |
¢ uoiued _ ¢ uoniled “ | UOIHIMEA
| |

oozk

noAe Aivy pUgAH

Sl

WO 2012/044488

Determine to support a number of
devices to store User Data in a
RAID array within each partition of
a storage subsystem.

1302

Write user data and corresponding
parity data in selected storage
devices.

1308

Detect
a condition
to perform read
reconstruction in a
given partition?
1310

Yes

Detect
a sufficient number
of parity devices in the
given partition?
1312

Yes

'

Perform the reconstruct read
operation with one or more

15/15

PCT/US2011/052222

Determine to support a number of
devices to store corresponding Inter-
Device protection data within each
partition of the subsystem.
1304

'

Determine to support Q devices to
store extra Inter-Device protection

«—— data across the partitions of the
subsystem.
1306
No

a sufficient
number of
corresponding Q
parity devices?
1316

Yes

J

«— corresponding devices within the Y
given partition.
1314
A/

A

Perform the reconstruct read
operation with one to Q
corresponding devices across
the partitions.

1318

Rebuild or retrieve the
corresponding user data from

another source.
1320

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/052222

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2608/155191 Al (ANDERSON ROBERT J [US] 1-20
ET AL) 26 June 2008 (2008-06-26)
paragraphs [0032] [0049]
figure 1
paragraphs [0056]
figures 6,7
paragraphs [0066]
figure 12
paragraphs [0069]
figure 13

[0058]

[0068]

[0071]

X US 2008/275928 Al (SHUSTER GARY STEPHEN 1-20
[US]) 6 November 2008 (2008-11-06)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i i .

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of ancther "v* document of particular relevance; the claimed invention

citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

20 December 2011 28/12/2011

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3018 De Ceulaer, Bart

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/052222
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008155191 Al 26-06-2008 NONE
US 2008275928 Al 06-11-2008 US 2008275928 Al 06-11-2008
US 2011238912 Al 29-09-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

