A water collection and dispersion system includes one or a series of units including structures that can be assembled for holding a leak proof liner. The liner collects water, such as, rainwater from a downsput or grey water from a building. The units can be constructed to resemble outdoor furniture such as patio walls, seating, tables, and the like. The units can also be constructed to function as framework for structures such as garden sheds, garages, pergolas, and the like.
WATER COLLECTION AND DISPERSION SYSTEM AND FUNCTIONAL LANDSCAPE ARCHITECTURE

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/152,379 filed Feb. 13, 2009, which is incorporated by reference herein in its entirety.

REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable

SEQUENTIAL LISTING

[0003] Not applicable

BACKGROUND OF THE INVENTION

[0004] 1. Field of the Invention
[0005] The present invention is directed to water collection and dispersion systems and, more particularly, to such systems that comprise modular components that can be custom assembled to satisfy specific functional and aesthetic indoor/outdoor living needs.

[0006] 2. Background of the Invention
[0007] An important element in any water collection and dispersion system is the container used to store the collected water for later use. Presently available water storage containers leave much to be desired. Among the more commonly cited shortcomings of such units are that their large size wastes useful living space and that they disrupt the aesthetic harmony of their immediate surroundings.

[0008] The water storage container in many conventional water collection and dispersion systems is of considerable size. Examples of conventional water storage containers include modified 55-gallon barrels and large agricultural tanks. Because of their size, conventional water storage containers are usually installed outdoors and on the ground. Consequently, the units are not well suited for situations where useful outdoor space is limited. For example, a complaint amongst homeowners is that the size of conventional water storage containers reduces the amount of yard and patio space available for recreation.

[0009] More recently, water collection and dispersion systems have been introduced that incorporate several small water storage containers in place of a larger, conventional unit. Such smaller water storage containers can be mounted on walls or installed inside of walls in a less physically imposing manner than large conventional containers. However, because such units commonly protrude from surfaces on or in which they have been installed, they still tend to disrupt the aesthetic harmony of the environment.

SUMMARY OF THE INVENTION

[0010] In light of the aforementioned shortcomings and the current state of the art, the present invention provides an improved water collection and dispersion system that features a water storage container that can be configured to satisfy a number of specific functional and aesthetic outdoor needs.

[0011] In one example, the present invention is directed to a water collection and dispersion system that includes at least one water storage container having a housing and a flexible, leak proof liner. The housing further includes a cap, a base, and a body. The body includes a front wall, a back wall, a first side wall, and a second side wall that are connected to form such body. The flexible, leak proof liner forms to the inside of the housing to prevent water loss through the housing and includes two or more fittings that provide connections to a supply/outlet and an overflow, for example. In one embodiment, the fittings are hollow, cylindrical fittings with threaded surfaces that are rigidly attached to the liner. However, such fittings can also be easily detached in other embodiments. One of the fittings can be positioned near the top of the liner so that it extends from the interior of the liner to the exterior of the housing through an opening in the body. Another fitting can be positioned near the bottom of the liner so that it extends from the interior of the liner to the exterior of the housing through a second opening in the body. Attachments with surfaces that complement the threaded surface of the fittings can be connected to the fittings to control the flow of water in and out of the liner.

[0012] The present invention provides a new water collection and dispersion system that embodies many of the advantages of the prior water collection and dispersion systems mentioned hereinabove, avoids many of the disadvantages associated therewith, and further embodies various other novel features that result in a new water collection and dispersion system that is not anticipated, rendered obvious, suggested, or even implied by any of the prior art water collection and dispersion systems, either alone or in any combination thereof.

[0013] The present invention also provides a new water collection and dispersion system that can be easily and efficiently manufactured and marketed. Further, the water collection and dispersion system disclosed herein is adapted to be of a durable and reliable construction that is susceptible of a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such water collection and dispersion system economically available to the buying public.

[0014] In addition, the new water collection and dispersion systems disclosed herein may include one or more water storage containers that can function as outdoor furniture and/or modular landscape architecture. Further, the present invention discloses a water collection and dispersion system that can be placed in areas removed from the immediate vicinity of the source of water being collected, such as patios or gardens rather than directly adjacent to a downspout. In one example, a hollow conduit is extended from a water supply source to a remotely placed water storage container. More particularly, in one embodiment, the hollow conduit includes a first opening that functions as a supply end for the source of water being collected, wherein the first opening is placed at or above an elevation of a top fitting of the liner. A second opening of the conduit is fluidly attached to a lower fitting of the liner, thus filling the liner, and therefore the housing, from the bottom.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Other aspects and advantages of the present invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

[0016] FIG. 1 is a perspective view of a water collection and dispersion system according to one embodiment;
FIG. 2 is a generally top perspective view of the water collection and dispersion system of FIG. 1 with a cap removed;

FIG. 3 is an exploded perspective view of the water collection and dispersion system of FIG. 1 including a housing and a liner;

FIG. 4 is a perspective view of a sidewall of the housing of FIG. 3;

FIG. 5 is a perspective view of a base or cap of the housing of FIG. 3;

FIG. 6 is an enlarged perspective view of an opening in a sidewall of the housing of FIG. 3 with a fitting of the liner being placed therein;

FIG. 7 is an exploded perspective view of a housing of a water collection and dispersion system according to another embodiment;

FIG. 8 is a perspective view of a cap of the housing of FIG. 7;

FIG. 9 is an enlarged perspective view of an opening in a sidewall of the housing of FIG. 7;

FIG. 10 is an enlarged view a fitting of the liner of FIG. 7;

FIG. 11A is an enlarged perspective view of a corner trim piece for the housing of FIG. 7;

FIG. 11B is a general cross-sectional view of the trim piece of FIG. 11A along lines 11B-11B;

FIG. 12 is a perspective view of a water collection and dispersion system coupled to a water source or supply;

FIG. 13 is a perspective view of an outdoor area featuring a plurality of water collection and dispersion systems configured as furniture and other structural elements;

FIG. 14 is a perspective view illustrating an embodiment of interconnections between a plurality of water collection and dispersion systems;

FIG. 15 is an enlarged perspective view of the interconnections of FIG. 14;

FIG. 16 is an exploded perspective view of a water collection and dispersion system according to a further embodiment that includes a housing and a liner and are modified in size and shape to function as component of structural framework;

FIG. 17 is a perspective view of garden shed framing featuring the water collection and dispersion system of FIG. 16 as part of the framework;

FIG. 18 is an enlarged perspective view of a removable face of the housing of FIG. 16;

FIG. 19 is another enlarged perspective view of the removable face of FIG. 17 decoupled to the housing;

FIG. 20 is a perspective view of a water collection and dispersion system kit according to one embodiment; and

FIG. 21 is a generally diagrammatic view of a liner and printed instructions of the water collection and dispersion system kit of FIG. 20.

DETAILED DESCRIPTION

Various embodiments and examples of water collection and dispersion systems are disclosed herein that incorporate aspects of different housing designs, liners, fittings, and configurations as furniture and/or structural framework. The features of each embodiment are generally interchangeable and can be used in the alternative or in combination with features discussed in relation to other embodiments. Elements that are common to the various embodiments are identified by like reference numerals.

With reference now to FIGS. 1-6, one embodiment of a water collection and dispersion system 20 includes a housing 22 and a liner 24 disposed within the housing. In the present embodiment, the housing 22 further comprises a cap 26, a base 28, and a body 30. The body 30 further comprises plurality of side walls, e.g., a front wall 32, a back wall 34, a first side wall 36, and a second side wall 38. To form the body 30, the front wall 32, the back wall 34, the first side wall 36, and the second side wall 38 are slid together and locked into place by pairs of interlocking slots 40 (see, e.g., FIGS. 3 and 4). However, in other embodiments, the side walls of the body 30 can be joined together using other known methods, for example, adhesive, screws, nails, clamps, nuts and bolts, etc. The assembled body 30 has top and bottom ends 42, 44, respectively. In the present embodiment, the cap 26 and the base 28 include a plurality of notches 46 (see, e.g., FIGS. 3 and 5) that are arranged to complement the top and bottom ends 42, 44 of the body. To assemble the housing 22, the top end 42 and the bottom end 44 of the assembled body 30 are placed into the complementary notches 46 on the cap 26 and the base 28. The notches 46 help prevent the body 30 from sliding with respect to the cap 26 and the base 28. The elements that comprise the housing 22 can be made of a substantially rigid material, such that the completed housing can bear loads imposed by seated persons of average size and outward pressure when filled with water.

In the present embodiment, the liner 24 is made from water-impermeable, flexible materials and forms to the shape of the housing 22 when disposed therein (see, e.g., FIG. 1). The liner 24 can be collapsed and expanded as needed. For example, during shipping, the liner 24 can be collapsed into a small package and later expanded during construction of the water collection and dispersion system 20 to form the shape of the housing 22. The liner 24 includes a first fitting 48 and a second fitting 50. In one example, the first and second fittings 48, 50 are hollow, cylindrical fittings with threaded surfaces that are attached to the liner 24. The threaded surfaces of the fittings 48, 50 can facilitate the attachment of garden houses or other conduits thereto to control the flow of water in and out of the liner 24. Referring to FIGS. 3 and 4, the front wall 32 of the body 30 includes a first opening 52 disposed adjacent an upper portion thereof and a second opening 54 disposed adjacent a lower portion thereof. The first fitting 48 of the liner 24 extends from an interior of the housing 22 to an exterior thereof through the first opening 52 and functions as an overflow fitting. Similarly, the second fitting 50 of the liner 24 extends through the second opening 54 of the housing 22 and functions as a supply inlet/discharge fitting. In the present embodiment, the second fitting 50 can function as both an supply inlet and a discharge outlet. Further, due to the sealed nature of the liner 24 and fittings 48, 50, the second fitting 50 in the present embodiment is for pressure release and overflow. In other embodiments, the first and second openings 52, 54 may be both positioned on a different side wall of the body 30 or on the cap 26 or the base 28. Alternatively, the first and second openings may be positioned on different side walls, including the cap 26 and the base 28.

The fittings 48, 50 and the openings 52, 54 can be configured with complementary shapes, e.g., a rectangular shape as in FIG. 6, to prevent the fittings from rotating with respect to the openings. Referring still to FIG. 6, one or more of the fittings 48, 50 may include a flange 56 disposed proximate a distal end thereof. The flange 56 is arranged to be
seated on an exterior of the body 30 to prevent the fittings 48, 50 from retracting into the interior of the housing 22. To facilitate this configuration with the flange 56 disposed on the exterior of the body 30, the openings 52, 54 can be adjacent to the top and bottom ends 42, 44, respectively, of the body 30 so that the fittings 48, 50 can be slid into the openings, as seen in FIG. 6. Alternatively or in conjunction, the fittings 48, 50 can be selectively attached to and detached from the liner 24 using any known connection, e.g., a threaded connection, a bayonet style connection, adhesive, etc.

Referring again to FIGS. 1-4, one or more of the side walls of the body 30 may also include small slits 58 that extend through the slits. The slits 58 are spaced from the top and bottom ends 42, 44 of the body 30 so that the slits 58 remain exposed when the top and bottom ends 42, 44 are disposed in the notches 46 of the cap 26 and the base 28. FIG. 1 illustrates a fastener 60 that can be disposed through one or more of the slits 58 and attached to the cap and/or base 26, 28 to further secure the body 30 together. In one embodiment, the fasteners 60 are small plates made of rigid material, such as steel, that are inserted partially through the slits 58 and attached to the cap and/or base 26, 28 with screws, bolts, or the like. Various modifications can be made to the slits 58 and fasteners 60 without departing from the spirit of the present invention.

FIGS. 7-11 illustrate another embodiment of the water collection and dispersion system 20 that is similar to that of the embodiment of FIGS. 1-6 but includes some modifications to the housing 22 and the liner 24. For example, the cap 26 and the base 28 include a plurality of protrusions 102 on inner surfaces thereof and the cap further includes an opening 104 therethrough. The protrusions 102 are arranged to conform to the top and bottom ends 42, 44 of the housing 30. Further, the opening 104 facilitates the addition of a filter basket, screen, net, and/or other adapter for a water source that can be supplied directly into the top of the water collection and dispersion system 20. The first and second openings 52, 54 can also be placed on different side walls, for example, on the front wall 32 and the first side wall 36, respectively. The fittings 48, 50 of the liner 24 (not shown) would further be modified to correspond to the position of the first and second openings 52, 54, as would be apparent to one of ordinary skill in the art. Further, the fittings 48, 50 may include protrusions, such as keys 106 (FIG. 10), which fit into complementary notches 108 (FIG. 9) in the openings 52, 54 to prevent movement of the fittings with respect to the housing 22.

The water collection and dispersion system 20 of FIGS. 7, 11A, and 11B also includes a plurality of corner trim pieces 130 that include grooves 132 configured to slide over outer edges of the side walls of the body 30 to further secure and stabilize the housing 22. The trim pieces 130 can be constructed in a variety of ways, for example, a corner piece 134 can be cut out of a hollow stack 136 and secured by adhesive or nails, for example, to a diagonally opposite inside corner of the stack 136. In another example, two perpendicular cuts are made in a solid stock to obtain the general cross-sectional shape shown in FIG. 11B. In one example, the trim pieces are about 2.0 inches (about 5.1 cm) by about 2.0 inches (about 5.1 cm), the corner pieces 134 is about 1.0 inches (about 2.5 cm) by about 1.0 inches (about 2.5 cm), and the grooves 132 are about 0.5 inches (about 1.3 cm) in width. However, the various dimensions of the trim pieces 130, like the dimensions of the other components of the water collection and dispersion system 20, can be modified as would be apparent to one of ordinary skill in the art.

FIG. 12 illustrates how the water collection and dispersion system 20 disclosed herein can be coupled to a water supply and disposed remotely from such water supply. In particular, the water supply in FIG. 12 comes from a downspout 200 of a rain gutter system 202. In other embodiments, the water supply comes from multiple downspouts from one or more structures to increase catchment area. A downspout diverter 204 functions as the water supply and is coupled to the downspout 200 in any known manner. A first end of a conduit 206 is coupled to the downspout diverter 204 and a second end of the conduit is coupled to the second fitting 50 of the liner 24. Any known connection can be used to couple the conduit 206 to the diverter 204 and the fitting 50. In one embodiment, the conduit 206 is coupled to the second fitting 50 by a T-connection 208, which facilitates the coupling of multiple water collection and dispersion systems together and the coupling of shut-off valves, pumps, hoses, irrigation systems, and the like so that water can be stored and dispersed, as needed. In general, the water supply should be at an elevation that is equal to or higher than the first fitting 48, which functions as an overflow fitting, so that the liner 24 can be filled substantially to capacity before water is diverted through the first fitting 48. In FIG. 12, for example, the downspout diverter 204 is positioned on the downspout at an elevation higher than the first fitting 48. However, in other embodiments, the water supply is merely at an elevation equal to or higher than the second fitting 50, which will still cause water to flow into the second fitting and fill the liner 24.

In one embodiment, the conduit 206 also functions as a water level indicator for one or more liners 24 by being transparent or translucent at least at a portion 210 of the conduit proximate the first end coupled to the water source. A remaining portion 212 of the conduit 206 need not be transparent or translucent for the conduit to function as a water level indicator and in one embodiment the remaining portion is opaque. In another embodiment of a water level indicator, a hollow conduit 214 that is transparent or translucent is fluidly coupled to the supply conduit 206 at a position between the first and second ends thereof. An end of the hollow conduit 214 that is not coupled to the supply conduit 206 can be fluidly coupled with an overflow conduit, a filter screen, or can remain unconnected and is generally disposed at an elevation equal to or greater than the first fitting 48 of the liner 24.

Other modifications can be made to the configuration of FIG. 12, for example, by coupling different water supplies to the liners 24. In one example, plumbing and other connections are provided to direct grey water from residential or commercial use (washing machines, dishwashers, show- ers, etc.) to the liners 24. In such an embodiment, additional filters or water treatment mechanisms may be utilized before the water is delivered to the liners 24 or before the water is dispersed therefrom, as would be apparent to one of skill in the art.

Referring now to FIGS. 13-15, several housings 22 of the water collection and dispersion systems 20 disclosed herein can be arranged and configured to function as patio furniture used for seating and/or as structural members to support objects such as grills, plants, and television sets. FIGS. 14 and 15 illustrate an example of conduits 206 and T-connections 208 that can couple each of the lower second fittings 50 of the various liners 24 while still being substantially hidden from view. In this embodiment, water flows or is pumped from a water supply or source and fills multiple liners

Aug. 26, 2010
24 in the system simultaneously. In another embodiment, conduits 206 are used to connect an upper first fitting 48 of a first liner 24 to a lower second fitting 50 of a second liner so that water overflows or is pumped from the first liner into the second liner. In this embodiment, each liner holds water independent from the others.

[0049] Referring back to FIG. 13, finishing or trim panels 220 made from various materials can also be fastened to the housings 22 to improve the aesthetics thereof. Such panels 220 can be fastened using any known method, e.g., screws and adhesive. In one embodiment, screws or other similar fasteners are secured through the panels to the housing 22 at edges thereof to reduce the risk of puncturing the liner 24. In another embodiment, screws or other similar fasteners are secured through the panels 220 to the corner trim pieces 130 described above or to other similar support structures to reduce the risk of puncturing the liner 24.

[0050] FIG. 16 illustrates another configuration of a water collection and dispersion system 20 without any slots 40 or grooves 46, as described above, but is merely wood framed and secured by nails or any other known method. The liners 24 disclosed herein may be modified to form to housings 22 of any shape. In FIG. 16, the liner 24 is elongate and fits within a housing 22 that is likewise elongate and can function as a structural wall to support a pergola or roof, for example. In FIG. 17, a plurality of elongate liners 24 are disposed in housings 22 that function as a framework to support a structure such as a garden shed or garage.

[0051] Another aspect of the water collection and dispersion system 20 of FIG. 16 is a removable face 250 disposed adjacent at least one of the first and second openings 52, 54 of the housing 22 to facilitate removal of the liner 24 therethrough. In FIGS. 18 and 19, the removable face 250 includes a front wall and a back wall 252, 254, respectively, and a locking mechanism 256. The front wall 252 of the removable face 250 is disposed through a relatively large opening 258 that extends through the housing 22 with the back wall 254 of the removable face 250 abutting against an inner surface of the housing. The locking mechanism 256, which in FIGS. 18 and 19 includes a removable pin 260 and latches 262 secured to the removable face 250, secures the face 250 within the opening 258. In the present embodiment, the face 250 can be removed by withdrawing the pin 260 and maneuvering the face 250 through the opening 258. The larger opening 258 allows the flexible liner 24 to be collapsed and removed from the water collection and dispersion system 20 without disassembling the entire housing 22.

[0052] The water collection and dispersion systems 20 disclosed herein include various elements or components that are easily separately assembled for use and disassembled and stored if not in use. As a result, the water collection and dispersion system 20 can be packaged as a relatively small kit 300 that is packaged with assembly instructions (see, e.g., FIGS. 20 and 21). In one embodiment, the water collection and dispersion system kit 300 may include a liner 24 and printed assembly instructions 302 in a box 304 and the various pieces of the housing 22 packaged therewith. In another embodiment, the kit 300 may only include the liner 24 and the printed instructions 302 for forming the elements of the housing 22 from any suitable material, e.g., sheets of plastic or metal, plywood, etc., and assembling the entire structure, as described herein. In one embodiment, the printed instructions include a website to access in order to view the assembly instructions.

[0053] In yet another embodiment of the present invention, a pump is used to force water from the system for practical use. The pump may also be attached to a timer, sensor, or other switch. Using a particular combination of attachments, water can be automatically forced from the system when specific criteria are satisfied. For example, water can be forced from the system to a bird bath when if is low and to an automatic lawn sprinkler system when the soil reaches a specific low moisture level.

[0054] It is to be understood that the present invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the foregoing description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.

[0055] As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for designing other structures, methods, and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be read as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.

[0056] Other embodiments of the disclosure including all the possible different and various combinations of the individual features of each of the foregoing described embodiments are specifically included herein.

INDUSTRIAL APPLICABILITY

[0057] A water collection and dispersion system is described that includes one or more units having structures that can be assembled for holding a leak proof liner, which collects water from a water supply, e.g., rainwater from a rain gutter downspout. The collected water can then be used, as desired, e.g., to water plants, fill fountains, wash cars, and the like. Further, the units can be constructed to function as outdoor furniture and/or structural elements. In addition, the elements of the water collection and dispersion system can be easily assembled and disassembled by a user, which facilitates packaging and delivery of the system and replacement of worn or damaged parts.

[0058] Numerous modifications to the present disclosure will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented to enable those skilled in the art to make and use the disclosure and to teach the best mode of carrying out the same. The exclusive right to all modifications within the scope of this disclosure is reserved.

1 claim:

1. A water collection and dispersion system, comprising:
 a housing including first and second openings extending therethrough, wherein the first opening is disposed proximate an upper portion of the housing and the second opening is disposed proximate a lower portion of the housing; and
 a flexible, leak proof liner disposed in the housing, wherein the liner includes a first overflow fitting disposed in the first opening of the housing and a second supply/discharge fitting disposed in the second opening of the housing.
2. The water collection and dispersion system of claim 1, wherein the housing further includes:
 - an upper cap;
 - a lower base; and
 - a body that includes one or more side walls, wherein the cap, the base, and the body are selectively coupled together to form a substantially rigid housing that is capable of supporting the weight of one or more seated persons and withstanding outward pressure of the liner filled with water.

3. The water collection and dispersion system of claim 2, wherein the first and second openings of the housing are disposed adjacent top and bottom ends of the body, respectively, and the first and second fittings and the first and second openings are configured to prevent the fittings from moving with respect to the openings, and further wherein one or more of the first and second fittings includes a flange that is disposed on an exterior of the housing to prevent the one or more fittings from retracting into an interior of the housing.

4. The water collection and dispersion system of claim 2, wherein the body includes a front side wall, a back side wall, a left side wall, and a right side wall that are coupled together in a generally rectangular configuration.

5. The water collection and dispersion system of claim 4, further comprising one or more corner pieces disposed at one or more intersections between the side walls of the body, wherein the corner pieces further secure and stabilize the body and provide a surface for the attachment of trim panels to the body.

6. The water collection and dispensing device of claim 4, wherein at least one of the upper cap and the lower base includes grooves or protrusions that accommodate a corresponding top or bottom end of the body, and wherein the side walls of the body slide and lock together via a plurality of interlocking slots.

7. The water collection and dispersion system of claim 1, wherein the first and second fittings and the first and second openings are configured to prevent the fittings from moving with respect to the openings.

8. The water collection and dispersion system of claim 7, wherein at least one of the first and second fittings includes a key that fits securely into a corresponding notch in at least one of the first and second openings to prevent the fittings from moving with respect to the openings, and further wherein one or more of the first and second fittings includes a flange that is disposed on an exterior of the housing to prevent the one or more fittings from retracting into an interior of the housing.

9. The water collection and dispersion system of claim 1, further comprising a supply conduit having first and second ends, wherein the first end is fluidly coupled to a water supply and is located at an elevation equal to or greater than the second fitting of the liner, and wherein the second end of the supply conduit is fluidly coupled to the second fitting of the liner.

10. The water collection and dispersion system of claim 9, further comprising an overflow conduit having first and second ends, wherein the first end of the overflow conduit is fluidly coupled to the first fitting of the liner.

11. The water collection and dispersion system of claim 9, wherein at least a portion of the supply conduit is transparent or translucent to function as a water level indicator for the water collection and dispersion system.

12. The water collection and dispersion system of claim 9, further including a hollow conduit that is transparent or translucent and includes first and second ends, wherein the first end of the hollow conduit is fluidly attached to the supply conduit at a position between the first and second ends of the supply conduit, and wherein the second end of the hollow conduit is fluidly coupled with an overflow conduit, a filter screen, or remains unconnected and is disposed at an elevation equal to or greater than the first fitting of the liner so that the hollow conduit functions as a water level indicator for the water collection and dispersion system.

13. The water collection and dispensing device of claim 9, further including a drainage conduit fluidly coupled to the second fitting of the liner.

14. The water collection and dispensing device of claim 1, further comprising at least one removable face disposed adjacent at least one of the first and second openings of the housing to allow removal of the liner therethrough.

15. A water collection and dispersion system kit, comprising:
 - a flexible, leak proof liner that includes a first overflow fitting and a second supply/discharge fitting;
 - printed instructions with directions for assembling a housing that includes first and second openings extending therethrough, wherein the first opening is disposed proximate an upper portion of the housing and the second opening is disposed proximate a lower portion of the housing, and directions for inserting the liner into the housing so that the first fitting is disposed in the first opening of the housing and the second fitting is disposed in the second opening of the housing.

16. The kit of claim 15, wherein the housing includes a cap, a base, and a body that includes one or more side walls, and wherein the instructions include directions for cutting the cap, base, and body from a sheet of material and directions for assembling the cap, base, and body to form the housing.

17. The kit of claim 15, wherein the instructions further include directions for fluidly coupling a first end of a supply conduit to a water supply and a second end of the supply conduit to the second fitting of the liner.

18. A water collection and dispersion system, comprising:
 - a functional piece of landscape architecture that includes a housing having first and second openings extending therethrough, wherein the first opening is disposed proximate an upper portion of the housing and the second opening is disposed proximate a lower portion of the housing; and
 - a flexible, leak proof liner disposed in the housing, wherein the liner includes a first overflow fitting disposed in the first opening of the housing and a second supply/discharge fitting disposed in the second opening of the housing.

19. The water collection and dispersion system of claim 18, further comprising a plurality of housings, each housing having first and second openings extending therethrough, wherein the first opening is disposed proximate an upper portion of the housing and the second opening is disposed proximate a lower portion of the housing;
 - a plurality of flexible, leak proof liners disposed in each housing, wherein each liner includes a first overflow fitting disposed in the first opening of the housing and a second supply/discharge fitting disposed in the second opening of the housing; and
at least one conduit fluidly coupling the second openings of at least two of the plurality of liners.

20. The water collection and dispersion system of claim 18, wherein the functional piece of landscape architecture is a support structure for a human being, an appliance, a roof, or a wall.