METHIONINE AMINOPEPTIDASE-2 INHIBITORS AND METHODS OF USE THEREOF

Inventors: Gary L. Olson, Mountainside, NJ (US); Christopher Self, West Caldwell, NJ (US); Lily Lee, Yonkers, NY (US); Charles Michael Cook, Mendham, NJ (US); Jens Birktoft, New York, NY (US); Barry Morgan, Franklin, MA (US); Christopher C. Arico-Muendel, West Roxbury, MA (US)

Correspondence Address:
SMITHKLINE BEECHAM CORPORATION CORPORATE INTELLECTUAL PROPERTY- US, UW2220 P. O. BOX 1539 KING OF PRUSSIA, PA 19406-0939 (US)

Assignee: Praelic Pharmaceuticals Inc, Waltham, MA (US)

Appl. No.: 12/011,685
Filed: Jan. 29, 2008

Related U.S. Application Data
Continuation of application No. 11/416,622, filed on May 3, 2006, now Pat. No. 7,348,307, which is a continuation of application No. 10/429,174, filed on May 2, 2003, now Pat. No. 7,105,482, which is a continuation-in-part of application No. 10/138,935, filed on May 2, 2002, now Pat. No. 6,919,307, which is a continuation-in-part of application No. 10/001,945, filed on Nov. 1, 2001, now Pat. No. 7,084,108, which is a continuation-in-part of application No. 09/972,772, filed on Oct. 5, 2001, now Pat. No. 7,037,890, which is a continuation-in-part of application No. 09/704,251, filed on Nov. 1, 2000, now Pat. No. 6,548,477.

Publication Classification

Int. Cl. A61K 31/336 (2006.01) C07D 303/08 (2006.01) C07D 207/08 (2006.01) A61K 31/4427 (2006.01) A61P 37/00 (2006.01) A61P 19/02 (2006.01) A61P 35/00 (2006.01) A61P 33/00 (2006.01) A61K 31/4025 (2006.01) C07D 213/24 (2006.01)

U.S. Cl. 514/278; 549/332; 548/407; 546/15; 514/475; 514/409

ABSTRACT
The present invention provides methods of parasitic infections, thymoma, and lymphoid malignancies in a subject by administering to the subject a therapeutically effective amount of one or more of the compounds of the invention.
Three days exposure

% Growth Relative to Vehicle Control

vehicle 100 pM 1 nM 10 nM 100 nM 1 μM 10 μM 1 μM Doxorubicin

Compound 5 Concentration

Fig. 1A

Six days exposure

% Growth Relative to Vehicle Control

vehicle 100 pM 1 nM 10 nM 100 nM 1 μM 10 μM 1 μM Doxorubicin

Compound 5 Concentration

Fig. 1B
SR grown subcutaneously

- 20% propylene glycol in D5W QDx5 weekly
- 30 mg/kg Compound 5 QDx5 SC weekly
- 15 mg/kg Compound 5 QDx5 SC weekly
- 30 mg/kg Compound 5 QDx5 PO weekly
- 15 mg/kg Compound 5 QDx5 PO weekly

Fig. 2
METHIONINE AMINopeptidase-2 INHIBITORS AND METHODS OF USE THEREOF

RELATED APPLICATION

BACKGROUND OF THE INVENTION

[0002] Lymphoma is a leading cause of death in the United States. Lymphoma is a type of cancer that can occur when an error occurs in the way a lymphocyte is produced, resulting in an abnormal cell. These abnormal cells can accumulate by two mechanisms: (a) they can duplicate faster than normal cells, or (b) they can live longer than normal lymphocytes. Like normal lymphocytes, the cancerous lymphocytes can grow in many parts of the body, including the lymph nodes, spleen, bone marrow, blood, or other organs. There are two main types of cancer of the lymphatic system. One is called Hodgkin’s disease, while the other is called non-Hodgkin’s lymphoma.

[0003] Autoimmune disorders also present a serious health issue in the United States. A progressive and maintained response by the immune system against self-components is termed autoimmunity. Normally self-tolerance mechanisms prevent the immune response from acting on self-components. However, all mechanisms have a risk of breakdown and occasionally the immune system turns on its host environment in an aggressive manner as to cause disease. This breakdown leads to the copious production of autoreactive B cells producing autoantibodies and/or autoreactive T cells leading to destructive autoimmune disease. The cellular mechanisms of autoimmunity are the same as those involved in beneficial immune responses to foreign components which include antibody-dependent cell cytotoxicity, delayed-type hypersensitivity (DTH), and T-cell lympholysis.

[0004] Human autoimmune diseases can be divided into two categories: organ-specific and systemic. In organ-specific autoimmune disease, autoreactivity is directed to antigens unique to a single organ. In systemic autoimmune disease, autoreactivity is largely directed toward a broad range of antigens and involves a number of tissues.

[0005] Disease in either type results from the generation of one or both autoreactive cell types (B or T cells). Autoreactive B cells lead to the generation of autoantibodies or immune complexes. Autoreactive T cells lead to the cellular DTH responses from T\text{h} cells or cytotoxic responses from T\text{c} cells.

[0006] Diseases caused by parasites are among the leading causes of death and disease in tropical and subtropical regions of the world. Efforts to control the invertebrate vector (carrier, such as the mosquito) of these diseases is, in many cases, difficult as a result of pesticide resistance, concerns regarding environmental damage and lack of adequate infrastructure to apply existing vector control methods. Thus, control of these diseases relies heavily on the availability of drugs. Unfortunately, most existing therapeutics are either incompletely effective or toxic to the human host. In a number of cases, even safe and effective drugs are failing as a result of the selection and spread of drug resistant variants of the parasites. This is best dramatized by the global spread of drug resistant Plasmodium falciparum, the organism responsible for the most lethal form of malaria.

[0007] Angiogenesis is the fundamental process by which new blood vessels are formed and is essential to a variety of normal body activities (such as reproduction, development and wound repair). Although the process is not completely understood, it is believed to involve a complex interplay of molecules which both stimulate and inhibit the growth of endothelial cells, the primary cells of the capillary blood vessels. Under normal conditions, these molecules appear to maintain the microvasculature in a quiescent state (i.e., one of no capillary growth) for prolonged periods which may last for as long as weeks or in some cases, decades. When necessary, however, (such as during wound repair), these same cells can undergo rapid proliferation and turnover within a 5 day period (Folkman, J. and Shing, Y., Journal of Biological Chemistry, 267(16): 10931-10934, and Folkman, J. and Klagsbrun, M. (1987) Science, 235: 442-447).

[0008] Although angiogenesis is a highly regulated process under normal conditions, many diseases (characterized as “angiogenic diseases”) are driven by persistent unregulated angiogenesis. Otherwise stated, unregulated angiogenesis may either cause a particular disease directly or exacerbate an existing pathological condition. For example, ocular neovascularization has been implicated as the most common cause of blindness and dominates approximately 20 eye diseases. In certain existing conditions such as arthritis, newly formed capillary blood vessels invade the joints and destroy cartilage. In diabetes, new capillaries formed in the retina invade the vitreous, bleed, and cause blindness. Growth and metastasis of solid tumors are also angiogenesis-dependent (Folkman, J. (1986) Cancer Research 46: 467-473 and Folkman, J. (1989) Journal of the National Cancer Institute 82: 4-6). It has been shown, for example, that tumors which enlarge to greater than 2 mm, must obtain their own blood supply and do so by inducing the growth of new capillary blood vessels. Once these new blood vessels become embedded in the tumor, they provide a means for tumor cells to enter the circulation and metastasize to distant sites, such as the liver, lung or bone (Weidner, N., et al. (1991) The New England Journal of Medicine 324(1): 1-8).

[0009] Fumagillin is a known compound which has been used as an antimicrobial and antiprotozoal. Its physicochemical properties and method of production are well known (U.S. Pat. No. 2,803,586 and Proc. Nat. Acad. Sci. USA (1962) 48:733-735). Fumagillin and certain types of Fumagillin analogs have also been reported to exhibit anti-angiogenic activity. However, the use of such inhibitors (e.g., TNP-470) may be limited by their rapid metabolic degradation, erratic blood levels, and by dose-limiting central nervous system (CNS) side effects.
Accordingly, there is still a need for angiogenesis inhibitors which are more potent, less neurotoxic, more stable, and/or have longer serum half-lives.

SUMMARY OF THE INVENTION

The present invention provides angiogenesis inhibitor compounds which comprise a core, e.g., a Fumagillin core, that is believed to inhibit methionine aminopeptidase 2 (MetAP-2), coupled to a peptide. The present invention is based, at least in part, on the discovery that coupling the MetAP-2 inhibitory core to an amino acid residue or an amino acid derivative prevents the metabolic degradation of the angiogenesis inhibitor compound to ensure a superior pharmacokinetic profile and limits CNS side effects by altering the ability of the angiogenesis inhibitor compound to cross the blood brain barrier. The present invention is also based, at least in part, on the discovery that coupling the MetAP-2 inhibitory core to a peptide comprising a site-directed sequence allows for a cell specific delivery of the angiogenesis inhibitor compound and limits the toxicity of the angiogenesis inhibitor compound.

In one aspect the present invention provides a method for treating a subject (e.g., a mammal, such as a human) suffering from a lymphoid malignancy. The method includes administering to the subject an effective amount of a MetAP-2 inhibitor, thereby treating a subject suffering from a lymphoid malignancy. Lymphoid malignancies which can be treated with a MetAP-2 inhibitor include lymphoid leukemias, such as chronic lymphoid leukemia and acute lymphoid leukemia, and lymphomas, such as T cell lymphoma and B cell lymphoma.

In a preferred embodiment, the method further includes administering to the subject a second therapy suitable for treating a subject suffering from lymphoid malignancy. The second therapy may be administered to the subject subsequent to, simultaneously or prior to administration of the MetAP-2 inhibitor to the subject. The second therapy may include administration of a chemotherapeutic regimen or a vaccine to the subject.

Accordingly, the present invention provides compounds of Formula I:

\[
A \overset{W}{\longrightarrow} \overset{N-(X)}{\longrightarrow} C-Z-P R R R R
\]

In Formula I, A is a MetAP-2 inhibitory core, W is O or N(R), and R, and Rs are each, independently, hydrogen or alkyl; X is alkylene or substituted alkylene, preferably linear C1-C4-alkylene; n is 0 or 1; R, and Rs are each, independently, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl or aryalkyl or substituted or unsubstituted heteroaryl or heteroalkyl. Rs, and Rs can also, together with the carbon atom to which they are attached, form a carboycyclic or heterocyclic group; or Rs, and Rs together can form an alkylene group; Z is \(-C(O)\), \(-C(O)O\), or alkylene; and P is a peptide comprising from 1 to about 100 amino acid residues attached at its amino terminus to Z or a group OR, or N(R)R, wherein R, and R, are each, independently, hydrogen, alkyl, substituted alkyl, azacycloalkyl or substituted azacycloalkyl. R, and Rs can also form, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic ring structure.

In another embodiment of the compounds of Formula I, W, X, n, Rs, and Rs have the meanings given above for these variables; Z is \(-O\), \(-NR\), alkylene-O- or alkylene-NR, where Rs is hydrogen or alkyl; and P is hydrogen, alkyl, preferably normal or branched C1-C4-alkyl or a peptide consisting of from 1 to about 100 amino acid residues attached at its carboxy terminus to Z.

In compounds of Formula I, when any of R, R, and Rs is an alkyl group, preferred alkyl groups are substituted or unsubstituted normal, branched or cyclic C1-C4 alkyl groups. Particularly preferred alkyl groups are normal or branched C1-C4 alkyl groups. A substituted alkyl group includes at least one non-hydrogen substituent, such as an amino group, an alkylamino group or a dialkylamino group; a halogen, such as a fluoro, chloro, bromo or iodo substituent; or hydroxyl.

When at least one of Rs and Rs is a substituted or unsubstituted aryl or heteroaryl group, preferred groups include substituted and unsubstituted phenyl, naphthyl, indolyl, imidazolyl and pyridyl. When at least one of Rs and Rs is substituted or unsubstituted arylalkyl or heteroarylalkyl, preferred groups include substituted and unsubstituted benzyl, naphthylmethyl, indolylmethyl, imidazolylmethyl and pyridylmethyl groups. Preferred substituents on aryl, heteroaryl, arylalkyl and heteroarylalkyl groups are independently selected from the group consisting of amino, alkyl-substituted amino, amines, such as fluoro, chloro, bromo and iodo; hydroxyl groups and alkyl groups, preferably normal or branched C1-C4-alkyl groups, most preferably methyl groups. X is preferably linear C1-C4-alkylene, more preferably C1-C2-alkylene and most preferably methylene or ethylene. When Z is alkylene-C(O)- or alkylene-O- or alkylene-NR, the alkylene group is preferably linear C1-C4-alkylene, more preferably C1-C2-alkylene and most preferably methylene or ethylene.

In addition to alkyl, substituted alkyl or hydrogen, each can also independently be a substituted or unsubstituted azacycloalkyl group or a substituted or unsubstituted azacycloalkylalkyl group. Suitable substituted azacycloalkyl groups include azacycloalkyl groups which have an N-alkyl substituent, preferably an N-C1-C4-alkyl substituent and more preferably an N-methyl substituent. Rs and Rs can also, together with the nitrogen atom to which they are attached, form a heterocyclic ring system, such as a substituted or unsubstituted five or six-membered azas- or diazacycloalkyl group. Preferably, the diazacycloalkyl group includes an N-alkyl substituent, such as an N-C1-C4-alkyl substituent or, more preferably, an N-methyl substituent.

In particularly preferred embodiments, \(-N(R)R\) is NH2 or one of the groups shown below:

![Chemical Structure Diagram]
Preferably, the compounds of Formula I do not include compounds wherein \(Z = \text{O} \), \(P \) is hydrogen, \(R_1 \) and \(R_2 \) are both hydrogen, \(n = 1 \) and \(X \) is methylene. Preferably, the compounds of Formula I further do not include compounds wherein \(Z = \text{methylen}-\text{O} \), \(R_1 \) and \(R_4 \) are both hydrogen, and \(n = 0 \).

In another aspect, the present invention is directed to angiogenesis inhibitor compounds of Formula XV,

\[
\begin{align*}
(XV) & \quad A \quad W \quad N \quad O \quad Z \quad P \\
\end{align*}
\]

where \(A \) is a MetAP-2 inhibitory core and \(W \) is \(\text{O} \) or \(\text{NR} \). In one embodiment, \(Z = \text{C(O)} \), \(\text{or -alkylene-C(O)} \), and \(P = \text{NHR, OR or a peptide consisting of one to about one hundred amino acid residues connected at the N-terminus to Z. In this embodiment, Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is OR, Q is not hydrogen.} \)

In another embodiment, \(Z = \text{alkylene-O} \) or \(\text{-alkylene-N(R)} \), and \(P \) is hydrogen or a peptide consisting of from one to about one hundred amino acid residues connected to \(Z \) at the carboxyl terminus. In this embodiment, \(Q \) is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when \(P \) is hydrogen, \(Q \) is not hydrogen.

In the angiogenesis inhibitor compounds of Formula XV, each \(R \) is, independently, hydrogen or alkyl.

In another aspect, the invention features pharmaceutical compositions comprising the angiogenesis inhibitor compounds of Formula I or XV and a pharmaceutically acceptable carrier.

In yet another aspect, the invention features a method of treating an angiogenic disease, e.g., cancer (such as lung cancer, brain cancer, kidney cancer, colon cancer, liver cancer, pancreatic cancer, stomach cancer, prostate cancer, breast cancer, ovarian cancer, cervical cancer, melanoma, and metastatic versions of any of the preceding cancers), in a subject. The method includes administering to the subject a therapeutically effective amount of one or more angiogenesis inhibitor compounds of Formula I or XV.

In one embodiment, the present invention provides a method of treating a subject suffering from a parasitic infection, such as an infection by \textit{Plasmodium} species, such as \textit{Plasmodium falciparum}, or an infection by \textit{Leishmania} species, such as \textit{Leishmania donovani}. The method comprises the step of administering to the subject a therapeutically effective amount of a compound of the invention. The subject can be an individual who is suffering from, or susceptible to, infection by a parasitic organism. In a preferred embodiment, the subject suffers from malaria or leishmaniasis.

The invention further provides a method of treating a subject suffering from a lymphoid malignancy. The method comprises the step of administering to the subject a therapeutically effective amount of a compound of the invention. Suitable lymphoid malignancies which can be treated with a compound of the invention include lymphoid leukemias, such as chronic lymphoid leukemia and acute lymphoid leukemia, and lymphomas, such as Non-Hodgkin's lymphoma, including T cell lymphoma and B cell lymphoma.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a series of graphs depicting the inhibition of SR cell proliferation in culture following 3 or 6 days of exposure to Compound 5 (representative data).

FIG. 2 is a graph depicting tumor volumes of SR lymphoma tumor-bearing mice treated with Compound 5.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compounds useful as angiogenesis inhibitors and methods for using these compounds in the treatment of angiogenic diseases. Without intending to be limited by theory, it is believed that the angiogenesis inhibitor compounds of the invention inhibit angiogenesis by inhibiting methionine aminopeptidase 2 (MetAP-2), an enzyme which cleaves the N-terminal methionine residue of newly synthesized proteins to produce the active form of the protein. At the same time, the presence of a peptide in the angiogenesis inhibitor compounds of the invention prevents the metabolic degradation of the angiogenesis inhibitor compounds and ensures a superior pharmacokinetic profile. The presence of the peptide in the angiogenesis inhibitor compounds of the invention also alters the ability of the angiogenesis inhibitor compound to cross the blood brain barrier to, for example, limit CNS side effects (such as CNS toxicity). The presence of peptides comprising a site-directed sequence in the angiogenesis inhibitor compounds of the invention allows for a site-specific delivery of the angiogen-
The angiogenesis inhibitor compounds of the invention comprise a MetAP-2 inhibitory core and a peptide attached, directly or indirectly, thereto. In one embodiment, the invention provides angiogenesis inhibitor compounds of Formula I.

A

[0034] The angiogenesis inhibitor compounds of the invention comprise a MetAP-2 inhibitory core and a peptide attached, directly or indirectly, thereto. In one embodiment, the invention provides angiogenesis inhibitor compounds of Formula I.

[0035] In Formula I, A is a MetAP-2 inhibitory core, W is O or NR, and R and R are each, independently, hydrogen or alkyl. X is alkylamino or substituted alkylene, preferably linear C_1-C_3-alkylene; n is 0 or 1; R and R are each, independently, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl or arylalkyl or substituted or unsubstituted heteroaryl or heteroalkyl. R and R can also, together with the carbon atom to which they are attached, form a carbocyclic or heterocyclic group; or R and R together can form an alkylene group; Z is —C(O)—, alkylene-C(O)— or alkylene; and P is a peptide comprising from 1 to about 100 amino acid residues attached at its amino terminus to Z or a group OR or N(R), wherein R and R are each, independently, hydrogen, alkyl, substituted alkyl, azacycloalkyl or substituted azacycloalkyl. R and R can also form, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic ring structure.

[0036] In another embodiment of the compounds of Formula I, W, X, n, R, and R have the meanings given above for these variables; Z is —O—, alkylene-O— or alkylene-NR, where R is hydrogen or alkyl; and P is hydrogen, alkyl, preferably normal or branched C_1-C_4-alkyl or a peptide consisting of from 1 to about 100 amino acid residues attached at its carboxy terminus to Z.

[0037] In compounds of Formula I, when any of R, R is an alkyl group, preferred alkyl groups are substituted or unsubstituted normal, branched or cyclic C_1-C_3 alkyl groups. Particularly preferred alkyl groups are normal or branched C_1-C_4 alkyl groups. A substituted alkyl group includes at least one non-hydrogen substituent, such as an amino group, an alkylaminogroup or a dialkylaminogroup, a halogen, such as fluorine, chlorine, bromine or iodine or substituent; or hydroxyl.

[0038] When at least one of R and R is a substituted or unsubstituted aryl or heteroaryl group, preferred groups include substituted and unsubstituted phenyl, naphthyl, indolyl, imidazolyl and pyridyl. When at least one of R and R is substituted or unsubstituted arylalkyl or heteroaryalkyl, preferred groups include substituted and unsubstituted benzyl, naphthylmethyl, indolylmethyl, imidazolylmethyl and pyridylmethyl groups. Preferred substituents on aryl, heteroaryl, arylalkyl and heteroaryalkyl groups are independently selected from the group consisting of amino, alkyl- or substituted amino, halogens, such as fluorine, chlorine, bromine and iodine; hydroxyl groups and alkyl groups, preferably normal or branched C_1-C_3-alkyl groups, most preferably methyl groups. X is preferably linear C_1-C_3-alkylene, more preferably C_1-C_3-alkylene and most preferably methylene or ethylene. When Z is alkylene-C(O)—, alkylene-O— or alkylene-NR, the alkylene group is preferably linear C_1-C_6-alkylene, more preferably C_1-C_4-alkylene and most preferably methylene or ethylene.

[0039] R and R, in addition to alkyl, substituted alkyl or hydrogen, can each also independently be a substituted or unsubstituted azacycloalkyl group or a substituted or unsubstituted azacycloalkylalkyl group. Suitable substituted azacycloalkyl groups include azacycloalkyl groups which have an N-alkyl substituent, preferably an N—C_1-C_3-alkyl substituent and more preferably an N-methyl substituent. R and R can also, together with the nitrogen atom to which they are attached, form a heterocyclic ring system, such as a substituted or unsubstituted five or six-membered aza- or diazacycloalkyl group. Preferably, the diazacycloalkyl group includes an N-alkyl substituent, such as an N—C_1-C_3-alkyl substituent or, more preferably, an N-methyl substituent.

[0040] In particularly preferred embodiments, —N(R)—R is NH₃ or one of the groups shown below:
where A is a MetAP-2 inhibitory core and W is O or NR. In one embodiment, Z is —C(O)— or -alkylene-C(O)— and P is NR, OR or a peptide consisting of one to about one hundred amino acid residues connected to the N-terminus to Z. In this embodiment, Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is —OR, Q is not hydrogen. Z is preferably —C(O)— or C₁₋₄-alkylene-C(O)—, and, more preferably, —C(O)— or C₁₋₃-alkylene-C(O)—. Q is preferably linear, branched or cyclic C₁₋₄-alkyl, phenyl or naphthyl. More preferably, Q is isopropyl, phenyl or cyclohexyl.

In another embodiment, Z is -alkylene-O— or -alkylene-N(R)—, where alkylene is, preferably, C₁₋₃-alkylene, more preferably C₁₋₄-alkylene and, most preferably, C₁₋₃-alkylene. P is hydrogen or a peptide consisting of one to about one hundred amino acid residues connected to Z at the carboxyl terminus. In this embodiment, Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is hydrogen, Q is not hydrogen. Q is preferably linear, branched or cyclic C₁₋₄-alkyl, phenyl or naphthyl. More preferably, Q is isopropyl, phenyl or cyclohexyl.

In the compounds of Formula XV, each R is, independently, hydrogen or alkyl. In one embodiment, each R is, independently, hydrogen or linear, branched or cyclic C₁₋₄-alkyl. Preferably, each R is, independently, hydrogen or linear or branched C₁₋₃-alkyl. More preferably, each R is, independently, hydrogen or methyl. In the most preferred embodiments, each R is hydrogen.

In Formulas I and XV, A is a MetAP-2 inhibitory core. As used herein, a “MetAP-2 inhibitory core” includes a moiety able to inhibit the activity of methionine aminopeptidase 2 (MetAP-2), e.g., the ability of MetAP-2 to cleave the N-terminal methionine residue of newly synthesized proteins to produce the active form of the protein. Preferred MetAP-2 inhibitory cores are Fumagillin derived structures.

Suitable MetAP-2 inhibitory cores include the cores of Formula II,

where R¹ is hydrogen or alkoxy, preferably C₁₋₄-alkoxy and more preferably, methoxy. R² is hydrogen or hydroxy; and R³ is hydrogen or alkyl, preferably C₁₋₃-alkyl and more preferably hydrogen. D is linear or branched alkyl, preferably C₁₋₄-alkyl; arylalkyl, preferably aryl-C₁₋₄-alkyl and more preferably phenyl-C₁₋₄-alkyl; or D is of the structure
In each of Formulas IV-X, the indicated valence on the ring carbon is the point of attachment of the structural variable R, as set forth in Formulas I-XV. In Formula IX, R is an integer from 0 to 10, preferably 1-4. In Formulas IV, V and VI-IX, R is hydrogen or C₃₋C₆-alkoxy, preferably methoxy. In Formulas IV and V, the dashed line indicates that the bond can be a double bond or a single bond. In Formula V, X represents a leaving group, such as a thioalkoxy group, a thioaryloxy group, a halogen or a dialkylsulfonium group. In Formulas IV and V, R is H, OH, amino, C₃₋C₆-alkylamino or d(C₃₋C₆-alkyl)amino, preferably H. In formulas in which the stereochemistry of a particular stereocenter is indicated, that stereocenter can have either of the possible stereochemistries, consistent with the ability of the angiogenesis inhibitor compound to inhibit the activity of MetAP-2.

In particularly preferred embodiments, A is the MetAP-2 inhibitory core of Formula X below.

As used herein, the terms “P” and “peptide” include compounds comprising from 1 to about 100 amino acid residues (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more amino acid residues). In preferred embodiments, the peptide includes compounds comprising less than about 90, 80, 70, 60, 50, 40, 30, 20, or amino acid residues, preferably about 1-10, 1-20, 1-30, 1-40, 1-50, 1-60, 1-70, 1-80, or 1-90 amino acid residues. The peptides may be natural or synthetically made. The amino acid residues are preferably α-amino acid residues. For example, the amino acid residues can be independently selected from among the twenty naturally occurring amino acid residues, the D-enantiomers of the twenty natural amino acid residues, and may also be non-natural amino acid residues (e.g., nortreucine, norvaline, phenylglycine, β-alanine, or a peptide mimetic such as 3-amino-methylbenzoic acid). In one embodiment, the amino acid residues are independently selected from residues of Formula XI, Formula XII, and Formula XIII.

In Formula XI, X₁ is hydrogen, a side chain of one of the twenty naturally occurring amino acid residues, a linear, branched or cyclic C₃₋C₆-alkyl group, an aryl group, such as a phenyl or naphthyl group, an aryl-C₃₋C₆-alkyl group, a heteroaryl group, such as a pyridyl, thienyl, pyrrolyl, or furyl group, or a heteroaryl-C₃₋C₆-alkyl group; and X₂ is hydrogen a linear, branched or cyclic C₃₋C₆-alkyl group, an aryl group, such as a phenyl or naphthyl group, an aryl-C₃₋C₆-alkyl group or a heteroaryl group as described above for X₁. Preferably, X₂ is hydrogen. In Formula XII, Y is methylene, oxygen, sulfur or NH, and a and b are each, independently, 0-4, provided that the sum of a and b is between 1 and 4. Formulas XI and XII encompass α-amino acid residues having either a D or an L stereochemistry at the alpha carbon atom. One or more of the amino acid residues can also be an amino acid residue other than an α-amino acid residue, such as a β-, γ- or ε-amino acid residue. Suitable examples of such amino acid residues are of Formula XIII, wherein q is an integer of from 2 to about 6, and each X₁ and X₂ independently have the meanings given above for these variables in Formula XI.

In a preferred embodiment, the peptide used in the angiogenesis inhibitor compounds of the invention may include a site-directed sequence in order to increase the specificity of binding of the angiogenesis inhibitor compound to a cell surface of interest. As used herein, the term “site-directed sequence” is intended to include any amino acid sequence (e.g., comprised of natural or non-natural amino acid residues) which serves to limit exposure of the angiogenesis inhibitor compound to the periphery and/or which serves to direct the angiogenesis inhibitor compound to a site of interest, e.g., a site of angiogenesis or aberrant cellular proliferation.

The peptide contained within the angiogenesis inhibitor compounds of the invention may include a peptide cleavage site for an enzyme which is expressed at sites of angiogenesis or aberrant cell proliferation, allowing tissue-selective delivery of a cell-permeable active angiogenesis inhibitor compound or fragment thereof (e.g., a fragment containing the MetAP-2 inhibitory core of the angiogenesis inhibitor compound). The peptide may also include a
sequence which is a ligand for a cell surface receptor which is expressed at a site of angiogenesis or aberrant cell proliferation, thereby targeting angiogenesis inhibitor compounds to a cell surface of interest. For example, a peptide contained within the angiogenesis inhibitor compounds of the invention can include a cleavage site for a matrix metalloproteinase, or an integrin binding RGDS (Arg-Gly-Asp) sequence, or a combination of both an enzyme “cleavage” sequence and a cell surface “ligand” which serve to target the angiogenesis inhibitor compound to the membrane of an endothelial cell. However, the selection of a peptide sequence must be such that the active angiogenesis inhibitor compound is available to be delivered to the cells in which MetAP-2 inhibition is desired.

For example, a sequence that is cleaved by a matrix metalloproteinase produces a product that contains the MetAP-2 inhibitory core, a coupling group, and a peptide fragment. Sequences are selected so that the active angiogenesis inhibitor compound, e.g., the active angiogenesis inhibitor compound generated by the matrix metalloproteinase cleavage, is cell permeable. Preferably, the active angiogenesis inhibitor compound does not contain a free acid after the cleavage.

In one embodiment, the peptide includes a cleavage site for a matrix metalloproteinase, such as matrix metalloprotease-2 (MMP-2), MMP-1, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13 or MMP-26. Preferably, the peptide includes a cleavage site for MMP-2 or MMP-9. For example, the peptide can comprise the sequence -Pro-Leu-Gly-Yaa- (SEQ ID NO: 1), where Xaa is any naturally occurring amino acid residue consistent with matrix metalloproteinase (MMP) cleavage at the Gly-Yaa bond. Xaa is preferably a hydrophobic amino acid residue, such as tryptophan, phenylalanine, methionine, leucine, isoleucine, proline, and valine.

Other suitable sequences include sequences comprising one or more of Pro-Cha-Gly-Cys(Me)-His-Ala (SEQ ID NO:2); Pro-Gln-Gly-Ile-Ala-Gly-(G-Gl) (SEQ ID NO:3); Pro-Gln-Gly-Ile-Ala-Gly-Trp (SEQ ID NO:4); Pro-Leu-Gly-Cys(Me)-His-Ala-D(Arg) (SEQ ID NO:5); Pro-Leu-Gly-Met-Trp-Ser (SEQ ID NO:35); Pro-Leu-Gly-Met-Trp-Ala-D(Trp) (SEQ ID NO:6); Pro-Leu-Ala-Trp-Ala (SEQ ID NO:7); Pro-Met-Trp-Ala (SEQ ID NO:8); Pro-Leu-Ala-Tyr (SEQ ID NO:9); Pro-Leu-Ala-Tyr-Trp-Met (SEQ ID NO:10); Pro-Leu-Ala-Nva-His-Ala (SEQ ID NO: 11); Pro-Leu-Ala-Nva (SEQ ID NO:12); Pro-Leu-Gly-Leu (SEQ ID NO:13); Pro-Leu-Gly-Ala (SEQ ID NO:14); Arg-Pro-Leu-Ala-Leu (SEQ ID NO:15); Pro-Cha-Ala-Gly-Cys(Me)-His-Ala (SEQ ID NO:16); Pro-Cha-Ala-Gly-Cys(Me)-His-Ala (SEQ ID NO:17); Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu (SEQ ID NO:18); Pro-Lys-Pro-Leu-Ala-Leu (SEQ ID NO:19); Arg-Pro-Lys-Pro-Tyr (SEQ ID NO:20); Arg-Pro-Lys-Pro-Tyr (SEQ ID NO:21); Arg-Pro-Lys-Pro-Tyr (SEQ ID NO:22); and Arg-Pro-Lys-Pro-Leu (SEQ ID NO:23). These sequences identify the natural amino acid residues using the customary three-letter abbreviations; the following abbreviations represent the indicated non-natural amino acids: Abu-L-caffeobutyryl; Cha-L-2-cyclohexylalaine; Nva-L-norvaline.

In certain embodiments, P is an amino acid sequence selected from the group consisting of Ac-Pro-Leu-Gly-Met-Trp-Ala (SEQ ID NO:24); Gly-Pro-Leu-Gly-Met-His-Ala-Gly (SEQ ID NO:25); Gly-Pro-Leu-(Me)Gly (SEQ ID NO:26); Gly-Pro-Leu-Gly (SEQ ID NO:27); Gly-Met-Gly-Leu-Pro (SEQ ID NO:28); Ala-Met-Gly-Ile-Pro (SEQ ID NO:29); Gly-Arg-Gly-Asp-(OMe-Tyr)-Arg-Glu (SEQ ID NO:30); Gly-Arg-Gly-Asp-Ser-Pro (SEQ ID NO:31); Gly-Arg-Gly-Asp (SEQ ID NO:32); Asp-Gly-Arg; Ac-Pro-Leu-Gly-Met-Ala (SEQ ID NO:34); Ac-Arg-Gly-Asp-Pro-Leu-Gly-Met-Trp-Ala (SEQ ID NO:35); Ac-Pro-Leu-Gly-Met-Gly (SEQ ID NO:36); Met-Trp-Ala (SEQ ID NO:37); Met-Gly (SEQ ID NO:38); Gly-Pro-Leu-Gly-Met-Trp-Ala-Gly (SEQ ID NO:39); and Gly-Arg-Gly-(3-amino-3-pyridyl)propionic acid (SEQ ID NO:40). (Ac in the foregoing sequences represents an Acetyl group).

The peptide can be attached to the MetAP-2 inhibitory core at either its N-terminus or C-terminus. When the peptide is attached to the MetAP-2 inhibitory core at its C-terminus, the N-terminus of the peptide can be —NR$_2$, where R$_2$ is hydrogen, alkyl or arylalkyl and R$_1$ is hydrogen, alkyl, arylalkyl or acyl. When the peptide is attached to the MetAP-2 inhibitory core at its N-terminus, the C-terminus can be —H(O)R$_4$, where R$_4$ is —OH, —O-alkyl, —O-aryalkyl, or —NR$_2$. Where R$_3$ is hydrogen, alkyl or arylalkyl and R$_4$ is hydrogen, alkyl, arylalkyl or acyl. In this embodiment, the C-terminal residue can also be present in a reduced form, such as the corresponding primary alcohol.

The present invention also includes pharmacologically acceptable salts of the angiogenesis inhibitor compounds of the invention. A “pharmacologically acceptable salt” includes a salt that retains the desired biological activity of the parent angiogenesis inhibitor compound and does not impart any undesired toxicological effects. Examples of such salts are salts of acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like: acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, benzoic acid, pamoic acid, alginic acid, methanesulfonic acid, napththalenesulfonic acid, and the like. Also included are salts of cations such as sodium, potassium, lithium, zinc, copper, barium, bismuth, calcium, and the like; or organic cations such as triethylammonium. Combinations of the above salts are also useful.

Preferred Angiogenesis Inhibitor Compounds of Formula I

One set of particularly preferred angiogenesis inhibitor compounds of the invention includes compounds in which A is the MetAP-2 inhibitory core of Formula X, W is O or NR$_2$, and the structure

\[
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{R}_5 \\
\text{Z} \\
\text{P}
\end{array}
\]

is represented by the structures set forth below.
Preferred Angiogenesis Inhibitor Compounds of Formula XV

[0062] A preferred subset of the angiogenesis inhibitor compounds of Formula XV comprises Formula XIV shown below.

\[
\text{(XIV)}
\]

[0063] In one embodiment, \(W = O \) or \(NR \). \(Z = -C(O) \) or \(-\text{alkylene-}C(O)-\), preferably \(C_{1-6}\text{-alkylene-}C(O)- \). \(R \) is hydrogen or a \(C_{1-6}\text{-alkyl} \). \(Q \) is hydrogen; linear, branched or cyclic \(C_{1-6}\text{-alkyl} \); or aryl. \(R_i \) is hydroxy, \(C_{1-6}\text{-alkoxy} \) or halogen. \(P \) is \(NH_2 \), \(OR \) or a peptide attached to \(Z \) at its N-terminus and comprising from 1 to 100 amino acid residues independently selected from naturally occurring amino acid residues, D-enantiomers of the naturally occurring amino acid residues and non-natural amino acid residues. When \(Q \) is \(H \), \(P \) is not \(NH_2 \) or \(OR \). In preferred embodiments, \(W = O \) or \(NH \); \(Q \) is isopropyl; \(R_i \) is methoxy; \(P \) comprises from 1 to 15 amino acid residues; and the dashed line present in Formula XIV represents a double bond. In particularly preferred embodiments, \(W = O \), and \(P \) comprises 10 or fewer amino acid residues.

[0064] In another embodiment of the compounds of Formula XIV, \(W = O \) or \(NR \). \(Z \) is \(\text{alkylene-}O \) or \(\text{alkylene-NR} \), preferably \(C_1-C_6\text{-alkylene-}O \) or \(C_1-C_6\text{-alkylene-NR} \). \(R \) is hydrogen or a \(C_1-C_6\text{-alkyl} \). \(Q \) is hydrogen; linear, branched or cyclic \(C_1-C_6\text{-alkyl} \); or aryl. \(R_i \) is hydroxy, \(C_1-C_6\text{-alkoxy} \) or halogen. \(P \) is hydrogen or a peptide attached to \(Z \) at its C-terminus and comprising from 1 to 100 amino acid residues independently selected from naturally occurring amino acid residues, D-enantiomers of the naturally occurring amino acid residues and non-natural amino acid residues. When \(Q \) is \(H \), \(P \) is not \(H \). In preferred embodiments, \(W = O \) or \(NH \); \(Q \) is isopropyl; \(R_i \) is methoxy; \(P \) comprises from 1 to 15 amino acid residues; and the dashed line present in Formula XIV represents a double bond. In particularly preferred embodiments, \(W = O \), and \(P \) comprises 10 or fewer amino acid residues or \(P \) is hydrogen.

[0065] One set of particularly preferred angiogenesis inhibitor compounds of the invention is represented by the structures set forth below.
Methods of Using the Angiogenesis Inhibitor Compounds for the Treatment of Angiogenic Disease

[0066] In another embodiment, the present invention provides a method of treating an angiogenic disease in a subject. The method includes administering to the subject a therapeutically effective amount of an angiogenesis inhibitor compound of the present invention, thereby treating the angiogenic disease in the subject.

[0067] As used herein, the term “angiogenic disease” includes a disease, disorder, or condition characterized or caused by aberrant or unwanted, e.g., stimulated or suppressed, formation of blood vessels (angiogenesis). Aberrant or unwanted angiogenesis may either cause a particular disease directly or exacerbate an existing pathological condition. Examples of angiogenic diseases include ocular disorders, e.g., diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, retrolental fibroplasia, neovascular glaucoma, rubecosis, retinal neovascularization due to macular degeneration, hypoxia, angiogenesis in the eye associated with infection or surgical intervention, ocular tumors and trachoma, and other abnormal neovascularization conditions of the eye, where neovascularization may lead to blindness; disorders affecting the skin, e.g., psoriasis and pyogenic granuloma; cancer, e.g., carcinomas and sarcomas, where progressive growth is dependent upon the continuous induction of angiogenesis by these tumor cells, lung cancer, brain cancer, kidney cancer, colon cancer, liver cancer, pancreatic cancer, stomach cancer, prostate cancer, breast cancer, ovarian cancer, cervical cancer, melanoma, and metastatic versions of any of the preceding cancers; lymphoid malignancies, e.g., lymphoid leukemias, such as chronic lymphoid leukemia and acute lymphoid leukemia, and lymphomas, such as T cell lymphoma and B cell lymphoma; pediatric disorders, e.g., angiofibroma, and hemophilic joints; blood vessel diseases such as hemorrhages, and capillary proliferation within atherosclerotic plaques; disorders associated with surgery, e.g., hypertrophic
and lymphomas, such as Non-Hodgkins lymphoma. The term “Non-Hodgkins lymphoma” includes T cell lymphomas, such as Precursor (peripheral) T-cell lymphoblastic, Adult T-cell, extranodal Natural Killer/T-cell, nasal type, enteropathy type T-cell, hepatosplenic T-cell, subcutaneous panniculitis like T-cell, skin (cutaneous) lymphomas, anaplastic large cell, peripheral T-cell, and angioimmunoblastic T-cell lymphomas; and B cell lymphomas, such as precursor B lymphoblastic, small lymphocytic, B-cell prolymphocytic, lymphoplasmacytic, splenic marginal zone, extranodal marginal zone—MALT, nodal marginal zone, follicular, mantle cell, diffuse large B-cell, primary mediastinal large B-cell, primary effusion and Burkitt’s lymphomas. Non-Hodgkins lymphoma also includes AIDS-related lymphoma and central nervous system lymphoma.

[0075] As used herein, the term “subject” includes warm-blooded animals, preferably mammals, including humans. In a preferred embodiment, the subject is a primate. In an even more preferred embodiment, the primate is a human.

[0076] As used herein, the term “administering” to a subject includes dispensing, delivering or applying an angiogenesis inhibitor compound, e.g., an angiogenesis inhibitor compound in a pharmaceutical formulation (as described herein), to a subject by any suitable route for delivery of the compound to the desired location in the subject, including delivery by either the parenteral or oral route, intramuscular injection, subcutaneous/intradermal injection, intravenous injection, buccal administration, transdermal delivery and administration by the rectal, colonic, vaginal, intranasal or respiratory tract route.

[0077] As used herein, the term “effective amount” includes an amount effective, at dosages and for periods of time necessary, to achieve the desired result, e.g., sufficient to treat an angiogenic disease in a subject. An effective amount of an angiogenesis inhibitor compound, as defined herein may vary according to factors such as the disease state, age, and weight of the subject, and the ability of the angiogenesis inhibitor compound to elicit a desired response in the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. An effective amount is also one in which any toxic or detrimental effects (e.g., side effects) of the angiogenesis inhibitor compound are outweighed by the therapeutically beneficial effects.

[0078] A therapeutically effective amount of an angiogenesis inhibitor compound (i.e., an effective dosage) may range from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an angiogenesis inhibitor compound can include a single treatment or, preferably, can include a series of treatments. In one example, a subject is treated with an angiogenesis inhibitor compound in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of an angiogenesis inhibitors is dependent on the severity of the disease and the condition of the subject.

[0079] As used herein, the term “angiogenic disease” includes a disease characterized by excessive or abnormal blood vessel growth in tissues that are normally avascular. Tumors, wounds, and immune dysregulation may induce angiogenesis.

[0080] As used herein, the term “angiogenesis inhibitor” includes a molecule, a complex, an agent, a compound, a mixture, a pharmaceutical composition, a pharmaceutical formulation, a drug, a medicament, or a drug product that is used for the treatment of an angiogenic disease.

[0081] As used herein, the term “angiogenesis inhibitor compound” includes a compound that inhibits or reduces angiogenesis.

[0082] As used herein, the term “angiogenesis inhibitor agent” includes a molecule, a complex, an agent, a compound, a pharmaceutical composition, a pharmaceutical formulation, a drug, a medicament, or a drug product that is used for the treatment of an angiogenic disease.
inhibitor compound used for treatment may increase or decrease over the course of a particular treatment.

[0079] The methods of the invention further include administering to a subject a therapeutically effective amount of an angiogenesis inhibitor compound in combination with another pharmaceutically active compound known to treat an angiogenic disease, e.g., a chemotherapeutic agent such as Taxol, Paclitaxel, or Actinomycin D, or an antidiabetic agent such as Tolbutamide, or a compound that may potentiate the angiogenesis inhibitory activity of the angiogenesis inhibitor compound, such as heparin or a sulfated cyclodextrin. Other pharmaceutically active compounds that may be used can be found in Harrison’s Principles of Internal Medicine, Thirteenth Edition, Eds. T. R. Harrison et al. McGraw-Hill N.Y., NY; and the Physicians Desk Reference 50th Edition 1997, Oradell New Jersey, Medical Economics Co., the complete contents of which are expressly incorporated herein by reference. The angiogenesis inhibitor compound and the pharmaceutically active compound may be administered to the subject in the same pharmaceutical composition or in different pharmaceutical compositions (at the same time or at different times).

Pharmaceutical Compositions of the Angiogenesis Inhibitor Compounds

[0080] The present invention also provides pharmaceutically acceptable formulations comprising one or more angiogenesis inhibitor compounds. Such pharmaceutically acceptable formulations typically include one or more angiogenesis inhibitor compounds as well as a pharmaceutically acceptable carrier(s) and/or excipient(s). As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and anti fungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the angiogenesis inhibitor compounds, use thereof in the pharmaceutical compositions is contemplated.

[0081] Supplementary pharmaceutically active compounds known to treat an angiogenic disease, e.g., a chemotherapeutic agent such as Taxol, Paclitaxel, or Actinomycin D, or an antidiabetic agent such as Tolbutamide, or compounds that may potentiate the angiogenesis inhibitory activity of the angiogenesis inhibitor compound, such as heparin or a sulfated cyclodextrin, can also be incorporated into the compositions of the invention. Suitable pharmaceutically active compounds that may be used can be found in Harrison’s Principles of Internal Medicine (supra).

[0082] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetics, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0083] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the pharmaceutical composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0084] Sterile injectable solutions can be prepared by incorporating the angiogenesis inhibitor compound in the required amount in an appropriate solvent with one or a combination of the ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the angiogenesis inhibitor compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the angiogenesis inhibitor compound plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0085] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the angiogenesis inhibitor compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also include an enteric coating. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the angiogenesis inhibitor compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as
magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0086] For administration by inhalation, the angiogenesis inhibitor compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

[0087] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the angiogenesis inhibitor compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

[0088] The angiogenesis inhibitor compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[0089] In one embodiment, the angiogenesis inhibitor compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyvinyl alcohol, collagen, polyethylene, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811, U.S. Pat. No. 5,435,044 and U.S. Pat. No. 5,576,018, and U.S. Pat. No. 4,883,666, the contents of all of which are incorporated herein by reference.

[0090] The angiogenesis inhibitor compounds of the invention can also be incorporated into pharmaceutical compositions which allow for the sustained delivery of the angiogenesis inhibitor compounds to a subject for a period of at least several weeks to a month or more. Such formulations are described in U.S. Pat. No. 5,968,895, the contents of which are incorporated herein by reference.

[0091] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of angiogenesis inhibitor compounds calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the angiogenesis inhibitor compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such angiogenesis inhibitor compounds for the treatment of individuals.

[0092] Toxicity and therapeutic efficacy of such angiogenesis inhibitor compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose thermally effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Angiogenesis inhibitor compounds which exhibit large therapeutic indices are preferred. While angiogenesis inhibitor compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such angiogenesis inhibitor compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0093] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such angiogenesis inhibitor compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any angiogenesis inhibitor compounds used in the methods of the invention, the therapeutically effective dose can be determined initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the angiogenesis inhibitor compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

Assays for Detecting the Activity of the Angiogenesis Inhibitor Compounds

[0094] The angiogenesis inhibitor compounds of the invention may be tested for their ability to modulate (e.g., inhibit or stimulate) angiogenesis in a variety of well known assays, e.g., the rat aortic ring angiogenesis inhibition assay or a chorioallantoic membrane (CAM) assay.

[0095] The CAM assay may be performed essentially as described in Liesens S., et al. (1997) Oncology Research 9:173-181, the contents of which are incorporated herein by reference. Briefly, fresh fertilized eggs are incubated for 3 days at 37°C. On the third day, the shell is cracked and the egg is placed into a tissue culture plate and incubated at 38°C. For the assay, the angiogenesis inhibitor compound to be tested is attached on a matrix of collagen on a nylon mesh. The mesh is then used to cover the chorioallantoic membrane and the eggs are incubated at 37°C. If angiogenesis occurs, new capillaries form and grow through the mesh within 24 hours. The ability of the angiogenesis inhibitor compound (at various concentrations) to modulate, e.g., inhibit, angiogenesis, e.g., FGF-induced angiogenesis, may then be determined.

[0096] The angiogenesis inhibitor compounds of the invention may also be tested for their ability to modulate (e.g., inhibit or stimulate) human endothelial cell growth. Human umbilical vein endothelial cells (HUVE) may be isolated by perfusion of an umbilical vein with a trypsin-containing medium. HUVE may then be cultured in GIT medium (Diago
Eiyou Kagaku, Co., Japan) supplemented with 2.5% fetal bovine serum and 2.0 ng/ml of recombinant human basic fibroblast growth factor (rbFGF, Biotechnology Research Laboratories, Takeda, Osaka, Japan) at 37° C. under 5% CO2 and 7% O2. HUVE are then plated on 96-well microtiter plates (Nunc, 1-67008) at a cell density of 2x10^3/100 μl of medium. The following day, 100 μl of medium containing rbFGF (2 ng/ml at the final concentration) and each angiogenesis inhibitor compound at various concentrations may be added to each well. The angiogenesis inhibitor compounds are dissolved in dimethylsulfoxide (DMSO) and then diluted with culture medium so that the final DMSO concentration does not exceed 0.25%. After a 5-day culture, medium is removed, 100 μl of 1 mg/ml of MTI (3-(4,5-dimethyl-2-thiazoly1)-2,5-diphenyl-2H-tetrazolium bromide) solution is added to the wells, and microtitors are kept at 37° C. for 4 hours. Then, 100 μl of 10% sodium dodecyl sulfate (SDS) solution is added to wells, and the microtitors are kept at 37° C. for 5-6 hours. To determine the effects of the angiogenesis inhibitor compound on cell number, the optical density (590 μm) of each well is measured using an optical densitometer.

[0097] The ability of the angiogenesis inhibitor compounds of the invention to modulate capillary endothelial cell migration in vitro may also be tested using the Boyden chamber assay (as described in Falk et al. (1980) J. Immunol. Meth. 33:239-247, the contents of which are incorporated herein by reference). Briefly, bovine capillary endothelial cells are plated at 1.5x10^5 cells per well in serum-free DMEM (Dulbecco’s Modified Eagle’s Medium) on one side of the APC filter pre-coated with fibronectin (7.3 μg fibronectin/ml PBS). An angiogenesis inhibitor compound is dissolved in ethanol and diluted in DMEM so that the final concentration of ethanol does not exceed 0.01%. Cells are exposed to endothelial mitogen (Biomedical Technologies, Mass.) at 200 μg/ml and different concentrations of the angiogenesis inhibitor compound in serum-free DMEM for 4 hours at 37° C. At the end of this incubation, the number of cells that migrate through 8 pores in the filter is determined by counting cells with an ocular grid at 100x in quadruplicate.

[0098] The ability of the angiogenesis inhibitor compounds of the invention to induce modulation tumor growth may be tested in vivo. An animal model, e.g., a C57BL/6N mouse with a mouse reticulum cell sarcoma (M 5076) intraperitoneally transplanted therein, may be used. The tumor cells in ascites can be collected by centrifugation, and suspended in saline. The cell suspension (2x10^5 cells/100 μl/mouse) is inoculated into the right flanks of mice. Tumor-bearing mice are then subcutaneously treated with the angiogenesis inhibitor compound (at various concentrations suspended in 5% arabic gum solution containing 1% of ethanol) for 12 days beginning one day after the tumor inoculation. The tumor growth may be determined by measuring tumor size in two directions with calipers at intervals of a few days.

[0099] Finally, the ability of the angiogenesis inhibitor compounds of the invention to modulate the activity of MetAP2 may be tested as follows. Recombinant human MetAP2 may be expressed and purified from insect cells as described in Li and Chang, (1996) Biochem. Biophys. Res. Commun. 227:152-159. Various amounts of angiogenesis inhibitor compound is then added to buffer H (10 mM Hepes, pH 7.35; 100 mM KC1; 10% glycerol, and 0.1 M Co2+ containing 1 nM purified recombinant human MetAP2 and incubated at 37° C. for 30 minutes. To start the enzymatic reaction a peptide containing a methionine residue, e.g., Met-Gly-Met, is added to the reaction mixture (to a concentration of 1 mM). Released methionine is subsequently quantitated at different time points (e.g., at 0, 2, 3, and 5 minutes) using the method of Zou et al. (1995) Mol. Gen. Genetics 246:247-253.

[0100] This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and the Sequence Listing, are hereby incorporated by reference.

EXAMPLES

Synthetic Methods

[0101] Compounds of the invention can be prepared using one or more of the following general methods.

General Procedure A: To a mixture of carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxyiran]-1-oxy-spiro[2.2]oct-6-yl ester 4-nitro-phenoxy ester (1, 0.47 mmol) Han, C. K.; Ahn, S. K.; Choi, N. S.; Hong, R. K.; Moon, S. K.; Chun, H. S.; Lee, S. J.; Kim, J. W.; Hong, C. I.; Kim, D.; Yoon, J. H.; No, K. T. Biorg. Med. Chem. Lett. 2000. 10, 39-43) and amine (2.35 mmol) in EtOH (9 mL) was added dropwise, dissopropyl ethyl amine (2.35 mmol). After 3-18 hours, the ethanol was removed in vacuo and the crude material was dissolved into EtOAc (10 mL) and washed with H2O (2x5 mL), and then brine (5 mL). The organic phase was dried over Na2SO4 and the solvent removed in vacuo. Purification via flash chromatography (2-5% MeOH/CH2Cl2) afforded product.

General Procedure B, Part I: A solution of (3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxyiran]-1-oxy-spiro[2.2]oct-6-yl-(3-oxo-3H-thioxo[6]-1,3-thiazin|)-1-oxo-spiro[2.5]oct-6-yl-carbonylanilino)iacetic acid (2, 0.11 mmol; U.S. Pat. No, 6.017,954) in DMF (1 mL) was added to a 10 mL round bottom flask containing swelled PS-DCC (0.28 mmol). In a separate vessel, the peptide (0.04 mmol) was dissolved into DMF (0.5 mL) and neutralized with NMM (0.04 mmol). After 1 hour, the solution of peptide was added to the pre-activated acid, and the reaction was continued for 5-18 hours. The resin was removed by filtration, washed with DMF (0.5 mL) and the solvent removed in vacuo. Purification via HPLC (CH3CN/H2O/H2O) afforded the product.

General Procedure B, Part II: A solution of the product in Part I (0.009 mmol) was dissolved into MeOH (1 mL) and was treated with Pd/C (2 mg), then subjected to a H2 atmosphere (38 psi) for 24 hours. The mixture was then filtered through Celite, washed with MeOH (0.5 mL) and the solvent removed in vacuo. Purification via HPLC (CH3CN/H2O/H2O) afforded the product as a white solid.

General Procedure C: (1-Hydroxymethyl-methyl-propyl)-carbamic acid (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxyiran]-1-oxy-spiro[2.5]oct-6-yl-ester (Example 7, 189 mg, 0.46 mmol), acid (0.46 mmol) and DMAP (0.69 mmol) were dissolved into anhydrous CH2Cl2 (5 mL) and treated with diisopropylcarbodiimide (0.46 mmol). After 7-18 hours, the solvent was removed in vacuo and purification via flash chromatography (MeOH/CH2Cl2) afforded the product.
Example 1

2-\{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino\}-3-methyl-butyric Acid Methyl Ester

General procedure A was followed using 1 (31 mg, 0.07 mmol), L-valine methyl ester hydrochloride (58 mg, 0.35 mmol) and DIEA (60 µL, 0.35 mmol) in EtOH (2 mL). Purification via flash chromatography (1% MeOH/CH₂Cl₂) afforded the product as a clear oil (10 mg, 0.02 mmol, 33% yield; Rf=0.60 (20% EtOAc/CH₂Cl₂); LRMS (m/z) [M+1]+ 440.3 (calculated for C₂₃H₂₈NO₇, 440.3).

Example 2

2-\{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino\}-3-methyl-butyric Acid Methyl Ester

General procedure A was followed using 1 (41 mg, 0.09 mmol) and D-valine methyl ester hydrochloride (77 mg, 0.45 mmol) in EtOH (2 mL). Purification via flash chromatography (1% MeOH/CH₂Cl₂) afforded the product as a clear oil (18 mg, 0.04 mmol, 45% yield; Rf=0.60 (20% EtOAc/CH₂Cl₂); LRMS (m/z) [M+1]+ 440.3 (calculated for C₂₃H₂₈NO₇, 440.3).

Example 3

2-\{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino\}-4-methyl-pentanoic Acid Methyl Ester

General procedure A was followed using 1 (23 mg, 0.05 mmol), D-leucine methyl ester hydrochloride (47 mg, 0.25 mmol) and DIEA (45 µL, 0.25 mmol) in EtOH (2 mL). Purification via flash chromatography (1% MeOH/CH₂Cl₂) afforded the product as a clear oil (19 mg, 0.04 mmol, 83% yield; Rf=0.22 (15% EtOAc/CH₂Cl₂); LRMS (m/z) [M+1]+ 454.3 (calculated for C₂₄H₃₆NO₇, 454.3).

Example 4

2-\{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino\}-phenyl-acetic Acid Methyl Ester

General procedure A was followed using 1 (37 mg, 0.08 mmol), D-phenyl glycine methyl ester hydrochloride (83 mg, 0.40 mmol) and DIEA (72 µL, 0.40 mmol) in EtOH (2 mL). Purification via flash chromatography (1% MeOH/CH₂Cl₂) afforded the product as a clear oil (32 mg, 0.07 mmol, 82% yield; Rf=0.41 (2% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]+ 474.3 (calculated for C₂₆H₃₆NO₇, 474.3).
Example 5

(1-Carbamoyl-2-methyl-propyl)-carbamic acid-(3R, 4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

Example 7

(1-Hydroxymethyl-2-methyl-propyl)-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

Example 6

(1-Carbamoyl-2-methyl-propyl)-carbamic acid-(3R, 4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-butyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

Example 8

2-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxycarbonylamino]-3,3-dimethyl-butyric Acid Methyl Ester

[0110] General procedure A was followed using 1 (55 mg, 0.12 mmol), D-valine amide hydrochloride (93 mg, 0.62 mmol), and DIEA (110 µL, 0.62 mmol) in EtOH (2 mL). Purification via flash chromatography (2% MeOH/CH₂Cl₂) afforded the product as a clear oil (42 mg, 0.10 mmol, 80% yield); Rf=0.19 (2% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]+ 427.5 (calculated for C₂₀H₂₃NO₆, 425.5).

[0112] The compound in Example 4 (18 mg, 0.04 mmol) was dissolved into anhydrous MeOH (1.5 mL) and treated with Pd—C (2 mg) under a H₂ atmosphere. After 12 hours, the reaction was filtered through Celite and the solvent removed in vacuo to afford the product as a clear oil (18 mg, 0.04 mmol, 100% yield); Rf=0.21 (2% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]+ 427.5 (calculated for C₂₀H₂₃NO₆, 425.5).

[0115] General procedure A was followed using 1 (290 mg, 0.65 mmol), D-valinol (337 mg, 3.25 mmol), and DIEA (560 µL, 3.25 mmol) in EtOH (5 mL). Purification via flash chromatography (2% MeOH/CH₂Cl₂) afforded the product as a clear oil (200 mg, 0.49 mmol, 75% yield); Rf=0.26 (2% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]+ 412.5 (calculated for C₂₂H₂₃NO₆, 412.5).

[0117] General procedure A was followed using 1 (65 mg, 0.15 mmol), D-tBu glycine methyl ester hydrochloride (132 mg, 0.73 mmol), and DIEA (127 µL, 0.73 mmol) in EtOH (8 mL). Purification via flash chromatography (10% EtOAc/CH₂Cl₂) afforded the product as a clear oil (10 mg, 0.02 mmol, 15% yield); Rf=0.22 (10% EtOAc/CH₂Cl₂); LRMS (m/z) [M+1]+ 454.5 (calculated for C₂₃H₂₉NO₆, 454.5).
Example 9
Cyclohexyl-2-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl oxycarbonylamino]-acetic Acid Methyl Ester

[0118]

Example 11
1-(1-Carbamoyl-2-hydroxy-ethylcarbamoyl)-2-methyl-propyl-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

[0122]

Example 10
2-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl oxycarbonylamino]-3-methyl-pentanoic Acid Methyl Ester

[0120]

Example 12
2-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl]ureido)-3-methyl-butyramide

[0124]

Example 13
(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-ylamine (3; PCT Publication No. WO 99/59087) was prepared according to the published procedure. To a solution of crude 3 (29 mg, 0.11 mmol), DIEA (21 mL, 0.11 mmol) and DMAP (2 mg) in CH₂Cl₂ (15 mL) cooled to 0°C. was added p-NO₂ phenyl chloroformate (25 mg, 0.12 mmol). After 45 minutes, the reaction was warmed to room temperature and a solution of H₂O (2x15 mL) in EtOH (1 mL) and DIEA (35 mL, 0.2 mmol) was added.

[0126] The reaction was continued for 1 hour, then was concentrated in vacuo, taken up into EtOAc (15 mL), and washed with dilute HCl (2x15 mL), H₂O (2x15 mL) and brine (15 mL). Purification via flash chromatography (5% MeOH/CH₂Cl₂) afforded the product as a white solid (6 mg, 0.014 mmol, 13% yield) from 3); Rf=0.12 (5% MeOH/ CH₂Cl₂); LRMS (m/z) [M+1] 424.4 (calculated for C₂₂H₃₃N₃O₅, 424.4).
Example 13

N-Carbamoyl (ID#31) 3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-butyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

[0127]

General Procedure B, Part I was followed using 2 (41 mg, 0.11 mmol), PS-DCC (256 mg, 0.28 mmol) in DMF (1 mL) and H-RGD(Bn)S(OBn)P=NH$_2$-2TFA (37 mg, 0.04 mmol), NMM (4 μL, 0.04 mmol) in DMF (0.5 mL). Purification via HPLC (70% CH$_3$CN/H$_2$O/0.075% TFA) afforded the product as a white flocculent solid (9.3 mg, 0.009 mmol, 17% yield); LRMS (m/z) [M+1]$^+$ 1075.4 (calculated for C$_{52}$H$_{65}$N$_{10}$O$_{14}$, 1075.5).

[0128]

General Procedure, Part II was followed using the product in Part I (9.3 mg, 0.009 mmol) and Pd/C (2 mg) in MeOH (1 mL), under a H$_2$ atmosphere (38 psi) for 24 hours. Purification via HPLC (55% CH$_3$CN/H$_2$O/0.075% TFA) afforded the product as a white solid (5 mg, 0.006 mmol, 65% yield); LRMS (m/z) [M+1]$^+$ 897.3 (calculated for C$_{38}$H$_{55}$N$_{10}$O$_{14}$, 897.5).

Example 14

N-Carbamoyl (ID#32) 3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-butyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

[0130]

[0131] General Procedure, Part I was followed using 2 (38 mg, 0.10 mmol) and PS-DCC (238 mg, 0.25 mmol) in DMF (1 mL), H-RGD(Bn)Y(OOMe)RE(Bn)—NH$_2$-3TFA (35 mg, 0.03 mmol) and NMM (3 μL, 0.03 mmol) in DMF (0.5 mL). Purification via HPLC (70% CH$_3$CN/H$_2$O/0.075% TFA) afforded the product as a white flocculent solid (4.0 mg, 0.002 mmol, 8% yield); LRMS (m/z) [M+2/2]+ 677.6 (calculated for C$_{50}$H$_{62}$N$_{14}$O$_{17}$, 677.8).

[0132] General Procedure, Part II was followed using the product in Part I (3.0 mg, 0.002 mmol) and Pd/C (2 mg) in MeOH (1 mL), under a H$_2$ atmosphere (38 psi) for 24 hours. Purification via HPLC (55% CH$_3$CN/H$_2$O/0.075% TFA) afforded the product as a white solid (3.3 mg, 0.0027 mmol, 94% yield); LRMS (m/z) [M+2/2]$^+$ 588.5 (calculated for C$_{52}$H$_{64}$N$_{14}$O$_{17}$, 588.7).

Example 15

N-Carbamoyl (ID#33) 3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-butyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yl Ester

[0133]

[0134] General Procedure B, Part I was followed using 2 (38 mg, 0.10 mmol), PS-DCC (238 mg, 0.25 mmol), and HOBt (29 mg, 0.25 mmol) in DMF (1 mL), and H-RGD(Bn)NH$_2$-TFA (29 mg, 0.04 mmol) and NMM (4.8 μL, 0.04 mmol) in DMF (0.5 mL). Purification via HPLC (60% CH$_3$CN/H$_2$O/0.075% TFA) afforded the product as a white solid (35 mg, 0.04 mmol, 44% yield); LRMS (m/z) 801.2 (calculated for C$_{38}$H$_{55}$N$_{14}$O$_{11}$, 801.4).
General Procedure, Part II was followed using the product in Part I (35 mg, 0.04 mmol) and Pd/C (2 mg) in MeOH (1 mL), under a H₂ atmosphere (38 psi) for 24 hours. Purification via HPLC (50% CH₃CN/H₂O=0.075% TFA) afforded the product as a white solid (22 mg, 0.03 mmol, 71% yield); LRMS (m/z) 713.2 (calculated for C₁₃H₁₃N₄O₁₁, 713.4).

Example 16
N-Carbamoyl (ID#40) (3R,4S,5S,6R)5-methoxy-4-((2R,3R)2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl)-1-oxa-spiro[2.5]oct-6-yl Ester

General Procedure B, Part I was followed using 2 (65 mg, 0.17 mmol), PS-DCC (405 mg, 0.43 mmol), and HOBT (34 mg, 0.26 mmol) in DMF (1 mL), and H-RRG(pyridyl)D-OMe (43 mg, 0.06 mmol) and NMM (7 µL, 0.06 mmol) in DMF (0.5 mL). Purification via HPLC (50% CH₃CN/H₂O=0.075% TFA) afforded the product as a white solid (15 mg, 0.02 mmol, 34% yield); LRMS (m/z) 773.2 (calculated for C₁₃H₁₅N₅O₆, 773.4).

The product of Part I (11 mg, 0.01 mmol) was dissolved into THF:MeOH:H₂O (2:1:1, 500 µL) and treated with LiOH.H₂O (1.2 mg, 0.02 mmol) for 2 hours. The crude material was diluted with EtOAc (5 mL) and acidified with dilute HCl (10 mL). The aqueous phase was washed with additional EtOAc (2×5 mL), the combined organic extracts dried over Na₂SO₄ and the solvent removed in vacuo. Purification via HPLC (30% CH₃CN/H₂O=0.075% TFA) afforded the product as a white solid (2 mg, 0.005 mmol, 19% yield). LRMS (m/z) 745.3 (calculated for C₁₃H₁₃N₄O₁₀, 745.4).

Example 17
N-Carbamoyl (ID#39) (3R,4S,5S,6R)5-methoxy-4-((2R,3R)2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl)-1-oxa-spiro[2.5]oct-6-yl Ester
General procedure B, Part I was followed using 2 (25 mg, 0.07 mmol) and PS-DCC (155 mg, 0.16 mmol) in DMF (1 mL), and H-PLGMAG-NH₂ (20 mg, 0.03 mmol) and NMM (3 µL, 0.03 mmol) in DMF (0.5 mL). Purification via HPLC (70% CH₃CN/H₂O/0.075% TFA) afforded the product as a white solid (1.4 mg, 0.001 mmol, 5% yield); LRMS (m/z) [M+1]⁺ 1095.6 (calculated for C₃₅H₅₀N₁₀O₁₃S, 1095.6).

Example 18
N-Carbamoyl (ID#26) (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxycarbonyl)amino-3-methyl-butanol ester

General Procedure B, Part I was followed using 2 (69 mg, 0.18 mmol), PS-DCC (429 mg, 0.45 mmol) and HOBt (21 mg, 0.18 mmol) in DMF (1 mL), and H-PL(G-OMe)G-Ome (31 mg, 0.07 mmol) and NMM (8 µL, 0.07 mmol) in DMF (0.5 mL). Purification via HPLC (70% CH₃CN/H₂O/0.075% TFA) afforded the product as a white solid (27 mg, 0.04 mmol, 59% yield); LRMS (m/z) [M+1]⁺ 679.4 (calculated for C₃₅H₅₀N₁₀O₁₀, 679.4).

The product of Part I (27 mg, 0.04 mmol) was dissolved into THF:MeOH:H₂O (2:1:1, 1.5 mL) and treated with LiOH.H₂O (4 mg, 0.10 mmol) for 1 hour. The solution was acidified to pH 3 using 0.1 N HCl, and the MeOH and THF removed in vacuo. Purification via HPLC (60% CH₃CN/H₂O/0.075% TFA) afforded the product as a white solid (6 mg, 0.01 mmol, 23% yield). LRMS (m/z) 665.4 (calculated for C₃₅H₅₀N₁₀O₁₁, 665.4).

Example 19
N-Carbamoyl (ID#27) (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxester

The product of Part I (27 mg, 0.04 mmol) was dissolved into THF:MeOH:H₂O (2:1:1, 1.5 mL) and treated with LiOH.H₂O (1.2 mg, 0.03 mmol) for 2 hours. The solution was acidified to pH 3 using 0.1 N HCl, and the MeOH and THF removed in vacuo. Purification via HPLC (90% CH₃CN/H₂O/0.075% TFA) afforded the product as a white solid (13 mg, 0.02 mmol, 43% yield); LRMS (m/z) [M+1]⁺ 664.4 (calculated for C₃₅H₅₀N₁₀O₁₀, 664.4).

Example 20
(ID#24)-(2R-[(3R,4S,5S,6R)-5-methoxy-4-[2(2R,3R)2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxycarbonyl]amino-3-methyl-butanol ester

[0140] [0141] [0142] [0143] [0144] [0145] [0146] [0147]
General Procedure C was followed using the compound in Example 7 (189 mg, 0.46 mmol), Ac-PLGMWA-OH (329 mg, 0.46 mmol), DMAP (84 mg, 0.69 mmol) and DIC (72 μL, 0.46 mmol) in CH₂Cl₂ (5 mL). After 18 hours, the solvent was removed in vacuo and purification via flash chromatography (2% MeOH/CH₂Cl₂) afforded the product as a white solid (357 mg, 0.32 mmol, 70% yield); Rf=0.18 (5% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]⁺ 1110.3 (calculated for C₅₃H₅₃N₅O₃S, 1110.3).

Example 21

(ID#36)-(2R)-{(3R,4S,5S,7R)-6-methoxy-4-[(2R,3R)
2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-
spiro[2.5]oct-6-yloxycarbonyl]amino-3-methyl-bu-
tanol)ester

General Procedure C was followed using the compound in Example 7 (61 mg, 0.15 mmol), Ac-PLGMG-OH (92 mg, 0.18 mmol), DMAP (22 mg, 0.18 mmol) and DIC (28 μL, 0.18 mmol) in CH₂Cl₂ (2 mL). After 7 hours, the solvent was removed in vacuo and purification via flash chromatography (3% MeOH/CH₂Cl₂) afforded the product as a white solid (61 mg, 0.15 mmol, 45% yield); Rf=0.20 (5% MeOH/CH₂Cl₂); LRMS (m/z) [M+1]⁺ 909.7 (calculated for C₄₄H₃₅N₃O₃S, 909.5).

Example 22

(ID#37)-(2R)-{(3R,4S,5S,6R)-7-methoxy-4-[(2R,3R)
2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-
spiro[2.5]oct-6-yloxycarbonyl]amino-3-methyl-bu-
tanol)ester

General Procedure C was followed using the compound in Example 7 (79 mg, 0.19 mmol), Fmoc-MWA-OH (121 mg, 0.19 mmol) and DMAP (4 mg, 0.03 mmol) and DIC (30 μL, 0.19 mmol) in CH₂Cl₂ (2 mL). After 11 hours, the solvent was removed in vacuo and purification via flash chromatography (2% MeOH/CH₂Cl₂) afforded the product as a white solid (128 mg, 0.12 mmol, 65% yield); LRMS (m/z) [M+1]⁺ 1022.9 (calculated for C₄₄H₅₃N₅O₃S, 1022.5).

Example 23

The product from General Procedure C (above) (54 mg, 0.05 mmol) was dissolved into anhydrous CH₂Cl₂ (3 mL) cooled to 0°C, then treated with a gentle stream of NH₃g for 15 minutes. The reaction was sealed and continued at 0°C for 36 hours. The solvent was removed in vacuo, and the crude residue acidified with CH₃CN/H₂O (0.075% TFA) (5 mL). Purification via HPLC (70% CH₃CN/H₂O/0.075% TFA) afforded the product as a white solid (2 mg, 0.003 mmol, 5% yield); LRMS (m/z) [M+1]⁺ 800.6 (calculated for C₄₁H₅₂N₂O₅S, 800.5).

General Procedure C was followed using the compound in Example 7 (79 mg, 0.18 mmol), Fmoc-MG-OH (79 mg, 0.18 mmol) and DIC (29 μL, 0.18 mmol) in CH₂Cl₂ (2 mL). After 10 hours, the solvent was removed in vacuo and purification via flash chromatography (2% MeOH/CH₂Cl₂) afforded the product as a white solid (128 mg, 0.12 mmol, 65% yield); LRMS (m/z) [M+1]⁺ 822.5.}

Example 24

The product from General Procedure C (above) (42 mg, 0.05 mmol) was dissolved into anhydrous CH₂Cl₂ (3 mL)
cooled to 0°C, then treated with a gentle stream of NH3 for 15 minutes. The reaction was sealed and continued at 0°C for 36 hours. The solvent was removed in vacuo, and the crude residue acidified with CH3CN/H2O (0.075% TFA) (5 mL). Purification via HPLC (70% CH3CN/H2O/0.075% TFA) afforded the product as a white solid (2 mg, 0.003 mmol, 5% yield); LRMS (m/z) [M+H]+ 600.4 (calculated for C29H32N2O8S, 600.4).

Example 24
2-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino]-3-methyl-butyric Acid

[0157]

[0158] The compound in Example 2 (9 mg, 0.02 mmol) was dissolved into THF:MeOH:H2O (1 mL) and treated with LiOH·H2O (2 mg, 0.05 mmol). After 2 hours, the reaction was partitioned between EtOAc (5 mL) and dilute HCl (5 mL). The organic phase was dried over Na2SO4 and the solvent removed in vacuo. Purification via HPLC (85% CH3CN/H2O/0.075% TFA) afforded the product as a white solid (0.58 mg, 0.001 mmol, 6% yield); LRMS (m/z) [M+H]+ 426.4 (calculated for C22H34NO7, 426.5).

Example 25
(ID#34)-2-[(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2.5]oct-6-yloxy carbonylamino]-3-methyl-butyraldehyde

[0159] General Procedure C was followed using the compound in Example 7 (41 mg, 0.10 mmol), Ac-PLGMG-OH (63 mg, 0.12 mmol), DMAP (15 mg, 0.12 mmol) and DIC (19 μL, 0.12 mmol) in CH2Cl2 (2 mL). After 7 hours, the solvent was removed in vacuo and purification via flash chromatography (5% MeOH/CH2Cl2) afforded the product as a white solid (43 mg, 0.05 mmol, 47% yield); LRMS (m/z) [M+H]+ 923.7 (calculated for C41H37N6O12S, 923.5).

Example 26

[0160] The angiogenesis inhibitor compounds of the invention were tested for their ability to modulate human endothelial cell growth and for their ability to modulate the activity of MetAP2. The MetAP2 enzyme assay was performed essentially as described in Turk, B. et al. (1999) Chem. & Bio. 6: 823-833, the entire contents of which are incorporated herein by reference. The bovine aortic endothelial cell growth assay (Baec assay) was performed essentially as described in Turk, B. et al. (supra), the entire contents of which are incorporated herein by reference.

[0161] For the human endothelial cell growth assay, human umbilical vein endothelial cells (HUVEC) were maintained in Clonetics endothelial growth medium (EGM) in a 37°C humidified incubator. Cells were detached by trypsin and pelleted by centrifugation at 300g for 5 minutes at room temperature. HUVEC were added to 96-well plates at 5,000 cells/well. After incubating for 6 hours, the medium was replaced with 0.2 ml fresh EGM supplemented with 0.5 mM bFGF and the desired concentration of test angiogenesis inhibitor compound. Test angiogenesis inhibitor compounds were initially dissolved in ethanol at stock concentrations of either 10 mM or 0.1 mM, and subsequently diluted in EGM to obtain concentrations from 1 μM to 10 μM. After 48 hours at 37°C, the medium was replaced with fresh bFGF-supplemented EGM and test angiogenesis inhibitor compound. Following incubation for an additional 48 hours at 37°C, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) was added to 1 mg/ml. After 2-4 hours at 37°C, the medium was replaced with 0.1 ml/well isopropanol. The plates were placed on a shaker for 15 minutes at room temperature and analyzed in a Labsystems Multiskan plate spectrophotometer at an optical density of 570 nm.

[0163] The results of the assays, set forth below in Tables I-III, demonstrate that the angiogenesis inhibitor compounds of the invention have excellent MetAP2 inhibitory activity and are able to inhibit endothelial cell growth at the picomolar range.
The identity of the angiogenesis inhibitor compounds used in each of the experiments is shown in Tables IV and V below.

TABLE IV

<table>
<thead>
<tr>
<th>Example</th>
<th>ID #</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>31</td>
<td>X-GlyArgGlyAspSerPro-NH2</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>X-GlyArgGlyAspTyr(OMe)ArgGlu-NH2</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>X-GlyArgGlyAsp-NH2</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>X-GlyArgGly(3-amino-3-pyridylpropionic acid)</td>
</tr>
<tr>
<td>17</td>
<td>39</td>
<td>X-GlyProLeuGlyMetThrAspGly-NH2</td>
</tr>
</tbody>
</table>

The compound of example 5 was also evaluated against a panel of cancer cell lines (Alley, M. C. et al. (1998) *Cancer Research* 48: 589-601; Grever, M. R., et al. (1992) *Seminars in Oncology*, Vol. 19, No. 6, pp 622-638; Boyd, M. R., and Paulil, K. D. (1995) *Drug Development Research* 34: 91-109). The human tumor cell lines of the cancer screening panel were grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells were inoculated into 96 well microtiter plates in 100 μl at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates were incubated at 37°C, 5% CO₂, 95% air and 100% relative humidity for 24 hours prior to addition of experimental drugs.

After the 24 hour incubation period, two plates of each cell line were fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (T2). Experimental drugs were solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 μg/ml gentamicin. Additional four, 10-fold or 1/2 log serial dilutions...
were made to provide a total of five drug concentrations plus control. Aliquots of 100 μl of these different drug dilutions were added to the appropriate microwell plate wells already containing 100 μl of medium, resulting in the required final drug concentrations.

Following drug addition, the plates were incubated for an additional 48 hours at 37°C, 5% CO₂, 95% air, and 100% relative humidity. For adherent cells, the assay was terminated by the addition of cold TCA. Cells were fixed in situ by the gentle addition of 50 μl of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 minutes at 4°C. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 μl) at 0.4% (w/v) in 1% acetic acid were added to each well, and plates were incubated for 10 minutes at room temperature. After staining, unbound dye was removed by washing five times with 1% acetic acid and the plates were air dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance was read on an automated plate reader at a wavelength of 515 nm. For suspension of the cells, the methodology used was the same except that the assay was terminated by fixing settled cells at the bottom of the wells by gently adding 50 μl of 80% TCA (final concentration, 16% TCA). Using the seven absorbance measurements (time zero, (Tz), control growth, (C), and test growth in the presence of drug at the five concentration levels (Ti)), the percentage growth was calculated at each of the drug concentrations levels.

Percentage growth inhibition was calculated as:

$$\left(\frac{(C-T_i)}{(C-Tz)}\right)\times 100$$ for concentrations for which $T_i > Tz$.

$$\left(\frac{(C-Tz)}{(C-T_i)}\right)\times 100$$ for concentrations for which $T_i < Tz$.

Growth inhibition of 50% (GI₅₀) was calculated from $[(C-Tz)/(C-T_i)]\times 100 = 50$, which is the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation. The GI₅₀ was calculated for each of the cell lines if the level of activity is reached; however, if the effect was not reached or is exceeded, the value for that parameter is expressed as greater or less than the maximum (10⁻⁴ M) or minimum (10⁻⁸ M) concentration tested.

TABLE VI-continued

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Tumor type</th>
<th>GI₅₀ (mole liter⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF-539</td>
<td>CNS</td>
<td>2.06 × 10⁻⁵</td>
</tr>
<tr>
<td>SNB-19</td>
<td>CNS</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>SNB-75</td>
<td>CNS</td>
<td>9.09 × 10⁻⁵</td>
</tr>
<tr>
<td>MALME-3M</td>
<td>Melanoma</td>
<td>5.31 × 10⁻⁸</td>
</tr>
<tr>
<td>M14</td>
<td>Melanoma</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>SK-MEL-2</td>
<td>Melanoma</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>SK-MEL-28</td>
<td>Melanoma</td>
<td>5.96 × 10⁻⁶</td>
</tr>
<tr>
<td>SK-MEL-5</td>
<td>Melanoma</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>UACC-257</td>
<td>Melanoma</td>
<td>1.48 × 10⁻⁶</td>
</tr>
<tr>
<td>UACC-62</td>
<td>Melanoma</td>
<td><1 × 10⁻⁸</td>
</tr>
<tr>
<td>IGR-OV1</td>
<td>Ovarian</td>
<td><1 × 10⁻⁸</td>
</tr>
<tr>
<td>OVCA-3</td>
<td>Ovarian</td>
<td>4.18 × 10⁻⁵</td>
</tr>
<tr>
<td>OVCA-4</td>
<td>Ovarian</td>
<td>3.66 × 10⁻⁵</td>
</tr>
<tr>
<td>OVCA-5</td>
<td>Ovarian</td>
<td>1.35 × 10⁻⁵</td>
</tr>
<tr>
<td>OVCA-6</td>
<td>Ovarian</td>
<td>1.84 × 10⁻⁵</td>
</tr>
<tr>
<td>SK-OV-3</td>
<td>Ovarian</td>
<td>7.37 × 10⁻⁶</td>
</tr>
<tr>
<td>786-0</td>
<td>Renal</td>
<td>1.61 × 10⁻⁵</td>
</tr>
<tr>
<td>A498</td>
<td>Renal</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>AC16</td>
<td>Renal</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>CACK-1</td>
<td>Renal</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>KXFX-203</td>
<td>Renal</td>
<td>4.02 × 10⁻⁵</td>
</tr>
<tr>
<td>SN1C2</td>
<td>Renal</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>TK-10</td>
<td>Renal</td>
<td>5.43 × 10⁻⁴</td>
</tr>
<tr>
<td>PC-3</td>
<td>Prostate</td>
<td>1.80 × 10⁻⁸</td>
</tr>
<tr>
<td>DU-145</td>
<td>Prostate</td>
<td><1 × 10⁻⁸</td>
</tr>
<tr>
<td>MCF7</td>
<td>Breast</td>
<td>1.24 × 10⁻⁵</td>
</tr>
<tr>
<td>NCU-ADRES</td>
<td>Breast</td>
<td>3.42 × 10⁻⁴</td>
</tr>
<tr>
<td>MDA-MB-231/ATCC</td>
<td>Breast</td>
<td><1 × 10⁻⁴</td>
</tr>
<tr>
<td>HS 578T</td>
<td>Breast</td>
<td>1.15 × 10⁻⁶</td>
</tr>
<tr>
<td>MDA-N</td>
<td>Breast</td>
<td>1.58 × 10⁻⁶</td>
</tr>
</tbody>
</table>

Results

The results of the cell line screen, presented in Table VI, show that the compound of example 5 has a significant inhibitory effect on a wide variety of tumor cell lines. The results also show that certain cell lines are much more sensitive to the compound of example 5 than are others, indicating that this compound is selective for certain cell lines.

Examples

In Examples 28-30, the compound of Example 5 (hereinafter "Compound 5") was used:

(1-Carboxymethyl-2-methyl-3,6-dimethyl-6-oxo-1,3-dihydropyrrolo[3,4-c]pyridin-4-yl)oxiranyl-[3,4-c]pyridin-4-yl ester

Example 28

Inhibition of B-Cell Lymphoma Cell Line in Culture

Objective:

To determine the inhibition of germinal center derived B cell lymphoma lines by Compound 5.
Experimental Design:

[0174] Compound 5 was incubated at final concentrations ranging from 0.01-100 nM with 50,000 cells/mL of germinatal center derived B cell lymphoma lines. Incubations lasted for five or six days after which cell numbers were determined from triplicate flasks at each concentration.

Results:

[0175] Compound A inhibited the proliferation of all lymphoma lines tested except for the Ramos line, a Burkitt's lymphoma cell line. Table VII shows the maximum growth inhibition and estimated concentration producing a 50% decrease in cell proliferation (GI50%) in Compound A treated cultures relative to growth observed in vehicle control cultures.

TABLE VII

Inhibition of GC Derived B Cell Lymphoma Lines

<table>
<thead>
<tr>
<th>B Lymphoma</th>
<th>Growth Inhibition by Compound A Relative to Vehicle Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Line</td>
<td>Classification</td>
</tr>
<tr>
<td>SU-DHIL-16</td>
<td>DLBCL</td>
</tr>
<tr>
<td>Pfeiffer</td>
<td>DLBCL</td>
</tr>
<tr>
<td>D10</td>
<td>DLBCL</td>
</tr>
<tr>
<td>IL2</td>
<td>FL</td>
</tr>
<tr>
<td>Ramos</td>
<td>FL</td>
</tr>
<tr>
<td>ST486</td>
<td>BL</td>
</tr>
</tbody>
</table>

¹DLBCL—diffuse large B cell lymphoma, FL—follicular lymphoma, BL—Burkitt’s lymphoma.
²Cell number determined at day 5 due to rapid growth of vehicle treated cultures.

Conclusion:

[0176] Compound 5 inhibited the proliferation of all DLBCL and FL cell lines tested at low nanomolar concentrations.

Example 29

Inhibition of SR Cell Line in Culture

Objective:

[0177] To evaluate the dose response inhibition of the human SR lymphoblast cell line in culture

Experimental Design:

[0178] Compound 5 was incubated at final concentrations ranging from 0.1 nM to 10 μM with 25,000 cells/mL of human lymphoblast SR cells. Incubations were conducted for 3, 5 or 6 days after which cell proliferation relative to vehicle treatment was determined using a 3H-thymidine incorporation assay. Medium was replaced and fresh drug was added on day 3 for the 5 and 6 day assays.

Results:

[0179] FIG. 1 shows representative data from these cell proliferation assays. Compound 5 inhibited proliferation of the SR cell line by 59-75% at concentrations from 1-100 nM with a mean GI50 of 0.5 nM in the 5 and 6 day assays.

Conclusion:

[0180] These results demonstrate that Compound 5 can inhibit proliferation of the SR cell line in culture at nM concentrations. Maximal inhibition by Compound 5 was greater than 90% with a mean GI50 of 0.5 nM following five or six days of exposure to Compound 5.

Example 30

Evaluation of In Vivo Efficacy of Compound 5 in SR Lymphoma Cell Tumors Grown in Mice

Objective:

[0181] This study was performed to determine the in vivo efficacy for Compound A administered either subcutaneously or orally in SR tumor-bearing mice

Experimental Design:

[0182] SR lymphoma tumor cells were injected subcutaneously into SCID/NCr female mice. Tumors were measured using a caliper every 5-4 days beginning on day 12 post-implantation of tumor cells. Animals were weighed routinely on the same days as tumor measurements and monitored for clinical signs of any adverse, drug-related side effects. Treatment with Compound 5 or vehicle began on Day 12 for 5 weeks and ended on Day 44. The endpoints evaluated were optimal percent treated/control (% T/C) and tumor growth delay measured at multiple timepoints during the study.

Results:

[0183] In SR tumor xenografts both oral and subcutaneous routes of administration of Compound 5 significantly suppressed tumor growth in a dose-dependent manner and the oral route appeared to be slightly superior to the subcutaneous route in this model (FIG. 2). Compound 5 administered subcutaneously at 15 or 30 mg/kg produced optimal % T/C values of 70 or 50, respectively, whereas administration by the oral route achieved optimal % T/C values of 48 or 43 at the 15 or 30 mg/kg dose, respectively. Moreover, oral administration of Compound 5 was more efficacious than subcutaneous administration, as determined by tumor growth delay. Compound 5 produced tumor growth delays of 29 or 28% when administered orally (15 or 30 mg/kg, respectively) compared to 18 or 19% when administered by the subcutaneous route (15 or 30 mg/kg, respectively).

Conclusion:

[0184] Compound 5 produces a dose-dependent inhibition of growth of SR lymphoma tumors growing in mice with maximal efficacy observed in this study at 30 mg/kg administered by the oral route.

EQUIVALENTS

[0185] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
SEQ ID NO 1
LENGTH: 4
TYPE: PRT
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: VARIANT
LOCATION: 4
OTHER INFORMATION: Xaa at position 4 may be any amino acid

SEQ ID NO 2
LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: VARIANT
LOCATION: 2
OTHER INFORMATION: Xaa at position 2 represents L-cyclohexylalanine

SEQ ID NO 3
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: VARIANT
LOCATION: 2
OTHER INFORMATION: Xaa at position 2 represents methylated cysteine

SEQ ID NO 4
LENGTH: 7
TYPE: PRT
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: VARIANT
LOCATION: 8
OTHER INFORMATION: Xaa at position 6 represents D-Arginine

SEQ ID NO 5
LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: VARIANT
LOCATION: 5
OTHER INFORMATION: Description of Artificial Sequence: Motifs
<210> SEQ ID NO 6
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 6
<223> OTHER INFORMATION: Xaa at position 7 represents D-Arginine

Pro Leu Gly Leu His Ala Xaa
1 5

<210> SEQ ID NO 7
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa at position 7 represents D-Arginine

Pro Leu Gly Leu Ala Xaa
1 5

<210> SEQ ID NO 8
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 7
<223> OTHER INFORMATION: Xaa at position 7 represents D-Arginine

Pro Leu Ala Leu Trp Ala Arg
1 5

<210> SEQ ID NO 9
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 8
<223> OTHER INFORMATION: Xaa at position 7 represents D-Arginine

Pro Leu Ala Leu Trp Ala Arg
1 5

<210> SEQ ID NO 10
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 9
<223> OTHER INFORMATION: Xaa at position 7 represents D-Arginine

Pro Leu Ala Tyr Trp Ala Arg
1 5
Pro Tyr Ala Tyr Trp Met Arg
1 5

Pro Xaa Gly Xaa His Ala
1 5

Pro Leu Ala Xaa
1

Pro Leu Gly Leu
1

Pro Leu Gly Ala
-continued

<210> SEQ ID NO 15
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<400> SEQUENCE: 15
Arg Pro Leu Ala Leu Trp Arg Ser
1 5

<210> SEQ ID NO 16
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2
<223> OTHER INFORMATION: Xaa at position 2 represents L-cyclohexylalanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 4
<223> OTHER INFORMATION: Xaa at position 4 represents L-α-aminobutyryl
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 5
<223> OTHER INFORMATION: Xaa at position 5 represents methylated cysteine
<400> SEQUENCE: 16
Pro Xaa Ala Xaa Xaa His Ala
1 5

<210> SEQ ID NO 17
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2
<223> OTHER INFORMATION: Xaa at position 2 represents L-cyclohexylalanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 5
<223> OTHER INFORMATION: Xaa at position 5 represents methylated cysteine
<400> SEQUENCE: 17
Pro Xaa Ala Gly Xaa His Ala
1 5

<210> SEQ ID NO 18
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<400> SEQUENCE: 18
Pro Lys Pro Gln Gln Phe Phe Gly Leu
1 6

Arg Pro Lys Pro Tyr Ala Xaa Trp Met
1 5

Arg Pro Lys Pro Val Glu Xaa Trp Arg
1 5

Arg Pro Lys Pro Val Glu Xaa Trp Arg
1 5
LOCATION: 7
OTHER INFORMATION: Xaa at position 7 represents L-norvaline

SEQUENCE: 23
Arg Pro Lys Pro Leu Ala Xaa Trp
1 5

SEQ ID NO 24
LENGTH: 6
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Motifs
NAME/KEY: VARIANT
LOCATION: 1
OTHER INFORMATION: Xaa at position 1 represents a modified Proline residue having an acetyl group attached

SEQUENCE: 24
Xaa Leu Gly Met Trp Ala
1 5

SEQ ID NO 25
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Motifs

SEQUENCE: 25
Gly Pro Leu Gly Met His Ala Gly
1 5

SEQ ID NO 26
LENGTH: 4
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Motifs

SEQUENCE: 26
Gly Pro Leu Xaa
1

SEQ ID NO 27
LENGTH: 4
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Motifs

SEQUENCE: 27
Gly Pro Leu Gly
1

SEQ ID NO 28
LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Motifs
-continued

<400> SEQUENCE: 28
Gly Met Gly Leu Pro
1 5

<210> SEQ ID NO 29
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 29
Ala Met Gly Ile Pro
1 5

<210> SEQ ID NO 30
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 5
<223> OTHER INFORMATION: Xaa at position 5 represents a modified tyrosine residue having an O-Methyl group attached

<400> SEQUENCE: 30
Gly Arg Gly Asp Xaa Arg Glu
1 5

<210> SEQ ID NO 31
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 31
Gly Arg Gly Asp Ser Pro
1 5

<210> SEQ ID NO 32
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 32
Gly Arg Gly Asp
1

<210> SEQ ID NO 33
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa at position 1 represents a modified Arginine residue having an acetyl group attached
<400> SEQUENCE: 33
Xaa Gly Arg Ser Pro Leu Gly Met Trp Ala
 1 5 10

<210> SEQ ID NO 34
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa at position 1 represents a modified Proline residue having an acetyl group attached

<400> SEQUENCE: 34
Xaa Leu Gly Met Ala
 1 5

<210> SEQ ID NO 35
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 35
Pro Leu Gly Met Trp Ser Arg
 1 5

<210> SEQ ID NO 36
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 36
Pro Leu Gly Met Gly
 1 5

<210> SEQ ID NO 37
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 37
Met Trp Ala
 1

<210> SEQ ID NO 38
<211> LENGTH: 2
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Motifs

<400> SEQUENCE: 38
Met Gly
I. A compound of Formula I,

```
\[
A \quad W \quad N \quad (X)_{n} \quad C \quad Z \quad P
\]
```

wherein

A is a Met-AP2 inhibitory core;
W is O or NR_{2};
R_{1} and R_{2} are each, independently, hydrogen or alkyl;
X is alkyene or substituted alkyene;
\(n \) is 0 or 1;
R_{3} and R_{4} are each, independently, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl or substituted or unsubstituted heterocycle; or R_{3} and R_{4}, together with the carbon atom to which they are attached, form a carbocyclic or heterocyclic group; or R_{3} and R_{4} together form an alkylene group;
Z is —C(O)— or alkyene-C(O)—; and
P is a peptide comprising from 1 to about 100 amino acid residues attached at its amino terminus to Z or a group OR_{2} or N(R_{2})_{2}R_{2}, wherein
R_{5}, R_{6} and R_{7} are each, independently, hydrogen, alkyl, substituted alkyl, azacycloalkyl or substituted azacycloalkyl; or R_{5} and R_{6}, together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic ring structure;
or
Z is —O—, —NR_{6}—, alkyene-O— or alkylene-NR_{6}—, where R_{8} is hydrogen or alkyl; and

P is hydrogen, alkyl or a peptide consisting of from 1 to about 100 amino acid residues attached at its carboxy terminus to Z.

2. The compound of claim 1, wherein at least one of R_{1}, R_{3} and R_{4} is a substituted or unsubstituted alkyl group.

3. The compound of claim 2, wherein at least one of R_{1}, R_{3} and R_{4} is a substituted or unsubstituted normal, branched or cyclic C_{1}-C_{6} alkyl group.

4. The compound of claim 3, wherein at least one of R_{1}, R_{3} and R_{4} is a normal or branched C_{1}-C_{2} alkyl group.

5. The compound of claim 1, wherein one of R_{3} and R_{4} is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted heterocyclicalkyl group, or a substituted or unsubstituted aryl alkyl group.

6. The compound of claim 5, wherein one of R_{3} and R_{4} is selected from the group consisting of phenyl, naphthyl, indolyl, imidazolyl, pyridyl, benzyl, naphthylmethyl, indolylmethyl, imidazolylmethyl and pyridylmethyl.

7. The compound of claim 1, wherein n is 1 and X is C_{1}-C_{6} alkylene.

8. The compound of claim 7, wherein X is methylene or ethylene.

9. The compound of claim 1, wherein Z is C_{1}-C_{6} alkyene-C(O)—.

10. The compound of claim 9, wherein Z is methylene-C(O)— or ethylene-C(O)—.

11. The compound of claim 1, wherein at least one of R_{1} and R_{2} is alkyl, substituted alkyl, substituted or unsubstituted azacycloalkyl or substituted or unsubstituted azacycloalkylalkyl.
12. The compound of claim 11, wherein at least one of R_1 and R_2 is an azacycloalkyl group having an N-alkyl substituent.

13. The compound of claim 12, wherein the N-alkyl substituent is a C_1-C_6-alkyl group.

14. The compound of claim 13, wherein the N-alkyl substituent is a methyl group.

15. The compound of claim 1, wherein R_6 and R_7, together with the nitrogen atom to which they are attached, form a substituted or unsubstituted five or six-membered azaza- or diazacycloalkyl group.

16. The compound of claim 15, wherein R_6 and R_7, together with the nitrogen atom to which they are attached, form a substituted or unsubstituted five or six-membered diazacycloalkyl group which includes an N-alkyl substituent.

17. The compound of claim 16, wherein the N-alkyl substituent is a C_1-C_6-alkyl group.

18. The compound of claim 17, wherein the N-alkyl substituent is a methyl group.

19. The compound of claim 1, wherein P is NH$_2$ or one of the groups shown below:

![Chemical Structures]

20. A compound of Formula XV,

![Chemical Structure (XV)]

wherein

A is a MetAP-2 inhibitory core;
W is O or NR;

each R is, independently, hydrogen or alkyl;
Z is $-$C(O)$-$ or $-$alkylene-C(O)$-$;
P is NR, OR or a peptide consisting of one to about one hundred amino acid residues connected at the N-terminus to Z;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is $-$OR, Q is not hydrogen;
or
Z is $-$alkylene-O$-$ or $-$alkylene-N(R)$-$;
P is hydrogen or a peptide consisting of one to about one hundred amino acid residues connected to Z at the carboxyl terminus;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is hydrogen, Q is not hydrogen;
and pharmaceutically acceptable salts thereof.

21. The compound of claim 20, wherein Z is $-$C(O)$-$ or C_1-C_6-alkylene-C(O)$-$.

22. The compound of claim 21, wherein Z is $-$C(O)$-$ or C_1-C_6-alkylene-C(O)$-$.

23. The compound of claim 21, wherein Q is linear, branched or cyclic C_1-C_6-alkyl, phenyl or naphthyl.

24. The compound of claim 23, wherein Q is isopropyl, phenyl or cyclohexyl.

25. The compound of claim 1, wherein Z is C_1-C_6-alkylene-O$-$ or C_1-C_6-alkylene-NR$-$.

26. The compound of claim 25, wherein Z is C_1-C_6-alkylene-O$-$ or C_1-C_6-alkylene-NH$-$.

27. The compound of claim 26, wherein Z is C_1-C_6-alkylene-O$-$ or C_1-C_6-alkylene-NH$-$.

28. The compound of claim 25, wherein Q is linear, branched or cyclic C_1-C_6-alkyl, phenyl or naphthyl.

29. The compound of claim 28, wherein Q is isopropyl, phenyl or cyclohexyl.

30. The compound of claim 20, wherein each R is, independently, hydrogen or linear, branched or cyclic C_1-C_6-alkyl.

31. The compound of claim 30, wherein each R is, independently, hydrogen or linear or branched C_1-C_6-alkyl.

32. The compound of claim 31, wherein each R is, independently, hydrogen or methyl.

33. The compound of claim 32, wherein each R is hydrogen.

34. The compound of claim 20, wherein A is of Formula II,

![Chemical Structure (II)]

wherein

R_1 is hydrogen or alkoxy;
R_2 is hydrogen or hydroxy;
R_3 is hydrogen or alkyl; and
D is linear or branched alkyl or arylalkyl; or D is of the structure
35. The compound of claim 34, wherein R₁ is C₁-C₄-alkoxy.
36. The compound of claim 35, wherein R₁ is methoxy.
37. The compound of claim 34, wherein R₃ is hydrogen or C₁-C₄-alkyl.
38. The compound of claim 37, wherein R₃ is methyl.
39. The compound of claim 34, wherein D is linear, branched or cyclic C₁-C₄-alkyl or aryl-C₁-C₄-alkyl.
40. The compound of claim 20, wherein A is selected from the group consisting of

41. The compound of claim 40, wherein A is of the formula

42. The compound of claim 20, wherein P comprises from 1 to about 20 amino acid residues.
43. The compound of claim 42, wherein P comprises an amino acid sequence which is a substrate for a matrix metalloprotease.
44. The compound of claim 43, wherein the matrix metalloprotease is selected from the group consisting of MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13 and MMP-26.
45. The compound of claim 44, wherein the matrix metalloprotease is MMP-2 or MMP-9.
46. The compound of claim 45, wherein P comprises the sequence -Pro-Leu-Gly-Xaa-, wherein Xaa is a naturally occurring amino acid residue.
47. The compound of claim 46, wherein P comprises a sequence selected from the group consisting of Pro-Cha-Gly-Cys(Me)-His (SEQ ID NO:2); Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg (SEQ ID NO:3); Pro-Gln-Gly-Ile-Ala-Gly-Trp (SEQ ID NO:4); Pro-Leu-Gly-Cys(Me)-His-Ala-D-Arg (SEQ ID NO:5); Pro-Leu-Gly-Met-Trp-Ser-Arg (SEQ ID NO:35); Pro-Leu-Gly-Leu-Trp-Ala-D-Arg (SEQ ID NO:6); Pro-Leu-Ala-Leu-Trp-Ala-Arg (SEQ ID NO:7); Pro-Leu-Ala-Leu-Trp-Ala-Arg (SEQ ID NO:8); Pro-Leu-Ala-Tyr-Trp-Ala-Arg (SEQ ID NO:9); Pro-Leu-Ala-Tyr-Trp-Met-Arg (SEQ ID NO:10); Pro-Cha-Gly-Nva-His-Ala (SEQ ID NO:11); Pro-Leu-Ala-Nva (SEQ ID NO:12); Pro-Leu-Gly-Leu (SEQ ID NO:13); Pro-Leu-Gly-Ala (SEQ ID NO:14); Arg-Pro-Leu-Ala-Leu-Trp-Arg-Ser (SEQ ID NO:15); Pro-Cha-Ala-Abu-Cys(Me)-His-Ala (SEQ ID NO:16); Pro-Cha-Ala-Gly-Cys(Me)-His-Ala (SEQ ID NO:17); Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu (SEQ ID NO:18); Pro-Lys-Pro-Leu-Ala-Leu (SEQ ID NO:19); Arg-Pro-Lys-Pro-Tyr-Ala-Nva-Trp-Met (SEQ ID NO:20); Arg-Pro-Lys-Pro-Val-Glu-Nva-...
Trp-Arg (SEQ ID NO:21); Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg (SEQ ID NO:22); and Arg-Pro-Lys-Pro-Leu-Ala-Nva-Trp (SEQ ID NO:23).

48. A compound of the formula

\[
\text{R}_1 \text{R}_2 \text{Z} \text{P} \text{Q}
\]

wherein
W is O or NR;
each R is, independently hydrogen or a \(C_1-C_4 \)-alkyl;
Q is hydrogen; linear, branched or cyclic \(C_1-C_4 \)-alkyl; or aryl;
R, is hydroxy; \(C_1-C_4 \)-alkoxy or halogen;
Z is \(-C(=O)- \) or \(C_1-C_4 \)-alkylene;
P is NR, OR or a peptide comprising 1 to 100 amino acid residues attached to Z at the N-terminus; or
Z is alkyloxy or alkyloxy-OR; and
P is hydrogen or peptide comprising 1 to 100 amino acid residues attached to Z at the C-terminus; or
a pharmaceutically acceptable salt thereof; provided that
when P is hydrogen, NR or OR, Q is not hydrogen.

49. The compound of claim 48, wherein
W is O or NH;
Z is alkyloxy-OR or alkyloxy-NH;
Q is isopropyl;
R, is methoxy; and
P comprises 1 to 15 amino acid residues.

50. The compound of claim 49, wherein
W is O; and
P comprises 10 or fewer amino acid residues.

51. The compound of claim 48, wherein P comprises from 1 to 20 amino acid residues.

52. The compound of claim 51, wherein P comprises an amino acid sequence which is a substrate for a matrix metalloprotease.

53. The compound of claim 52, wherein the matrix metalloprotease is selected from the group consisting of MMP-2, MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13 and MMP-26.

54. The compound of claim 53, wherein the matrix metalloprotease is MMP-2 or MMP-9.

55. The compound of claim 54, wherein P comprises the sequence -Pro-Leu-Gly-Xaa-, wherein Xaa is a naturally occurring amino acid residue.

56. The compound of claim 55, wherein P comprises a sequence selected from the group consisting of Pro-Cha-Gly-Cys(Me)-His (SEQ ID NO:2); Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg (SEQ ID NO:3); Pro-Gln-Gly-Ile-Ala-Gly-Trp (SEQ ID NO:4); Pro-Leu-Gly-Cys(Me)-His-Ala-D-Arg (SEQ ID NO:5); Pro-Leu-Gly-Met-Trp-Ser-Arg (SEQ ID NO:35); Pro-Leu-Gly-Leu-Arg-Trp-Ala-D-Arg (SEQ ID NO:6); Pro-Leu-Ala-Arg-Trp-Ala-Arg (SEQ ID NO:7); Pro-Leu-Ala-Leu-Trp-Ala-Arg (SEQ ID NO:8); Pro-Leu-Ala-Tyr-Trp-Ala-Arg (SEQ ID NO:9); Pro-Tyr-Ala-Tyr-Trp-Met-Arg (SEQ ID NO:10); Pro-Cha-Gly-Nva-His-Ala (SEQ ID NO:11); Pro-Leu-Nva (SEQ ID NO:12); Pro-Leu-Gly-Leu (SEQ ID NO:13); Pro-Leu-Gly-Ala (SEQ ID NO:14); Arg-Pro-Leu-Leu-Leu-Trp-Arg-Ser (SEQ ID NO:15); Pro-Cha-Ala-Abu-Cys(Me)-His-Ala (SEQ ID NO:16); Pro-Cha-Ala-Gly-Cys(Me)-His-Ala (SEQ ID NO:17); Pro-Lys-Pro-Gln-Gln-Phe-Gly-Leu (SEQ ID NO:18); Pro-Lys-Pro-Leu-Ala-Leu (SEQ ID NO:19); Arg-Pro-Lys-Pro-Tyr-Ala-Nva-Trp-Met (SEQ ID NO:20); Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg (SEQ ID NO:21); Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg (SEQ ID NO:22); and Arg-Pro-Lys-Pro-Leu-Ala-Nva-Trp (SEQ ID NO:23).

57. An angiogenesis inhibitor compound selected from the group consisting of
{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-3-methyl-butyric acid methyl ester;
{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-3-methyl-butyric acid methyl ester;
{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-4-methyl-pentanoic acid methyl ester;
{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-phenyl-acetic acid methyl ester;
(1-Carbamoyl-2-methyl-propyl)-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
(1-Carbamoyl-2-methyl-propyl)-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
(1-Hydroxymethyl-2-methyl-propyl)-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-3,3-dimethyl-butyric acid methyl ester;
Cyclohexyl-2-{(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-acetic acid methyl ester;
(1-Carbamoyl-2-hydroxy-ethylcarbamoyl)-2-methyl-propyl)-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
(1-[(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl]-ureido)-3-methyl-butyramide;
(3R,4S,5S,6R)-5-Methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-ylcarbonylamino}-3-methyl-butyric acid;
N-Carbamoyl (ID:31) (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
N-Carbamoyl (ID:30) (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
N-Carbamoyl (ID:32) (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oxiranyl]–1-oxa-spiro[2,5]oct-6-yl ester;
N-Carbamoyl (ID/40) (3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
N-Carbamoyl (ID/39) (3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
N-Carbamoyl (ID/26) (3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
N-Carbamoyl (ID/27) (3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
(ID/24)\(^{(5)}\)-(2R)-[(3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 oxo(3-carbonyl)-aminooctan-3-yl ester;
(ID/36)\(^{(5)}\)-(2R)-[(3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 oxo(3-carbonyl)carbamoyl]-aminooctan-3-yl ester;
(ID/37)\(^{(5)}\)-(2R)-[(3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 oxo(3-carbonyl)carbamoyl]-aminooctan-3-yl ester;
(ID/38)\(^{(5)}\)-(2R)-[(3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 oxo(3-carbonyl)carbamoyl]-aminooctan-3-yl ester;
(ID/34)\(^{(5)}\)-(2R)-[(3R, 4S, 5S, 6R)\(^{(5)}\)-methoxy-4-[(2R, 3R)-2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 oxo(3-carbonyl)carbamoyl]-aminooctan-3-yl ester;
[2-Methyl-1]-[methyl-(1-methyl-piperidin-4-yl)-carbamoyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(2-Dimethylamino-ethyl)carbamoyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(2-Dimethylamino-ethyl)-methyl-carbamoyl]-2-methyl-propionitrile carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(3-Dimethylamino-propyl)carbamoyl]-2-methyl-propionic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(3-Dimethylamino-carbamoyl)-2-methyl-propionic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(3-Dimethylamino-2,2-dimethyl-propionyl)carbamoyl]-2-methyl-propionate carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[2-Methyl-1]-[methyl-(1-methyl-piperazine-1-carbonyl)-propyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[2-Methyl-1]-[2-(1-methyl-pyrrolidin-2-yl)-ethylcarbamoyl]-propyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[2-Methyl-1]-[(4-pyrrolidin-1-y1-piperidine-1-carbonyl)-propyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;
[1-(4-Benzyl-piperazine-1-carbonyl)-2-methyl-propionyl]-carboxylic acid 5-methoxy-4-[(2-methyl-3-(3-methyl-but-2-ethyl)-oximino]-1-oxa-spiro[2.5]oct-6-y1 ester;

wherein
A is a MetAP-2 inhibitory core;
W is O or NR;
each R is, independently, hydrogen or alkyl;
Z is —C(O)— or alkylene-C(O)—;
P is NHR, OR or a peptide consisting of one to about one hundred amino acid residues connected at the N-terminus to Z;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is —OR, Q is not hydrogen;
or
Z is —alkylene-O— or —alkylene-N(R)—;
P is hydrogen or a peptide consisting of one to about one hundred amino acid residues connected to Z at the carboxyl terminus;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is hydrogen, Q is not hydrogen; and a pharmaceutically acceptable salt thereof, thereby treating the angiogenic disease in the subject.

59. The method of claim 58, wherein said angiogenic disease is an autoimmune disease.
60. The method of claim 59, wherein said autoimmune disease is rheumatoid arthritis.
61. The method of claim 58, wherein said angiogenic disease is cancer.
62. The method of claim 59, wherein said autoimmune disease is selected from the group consisting of lupus erythematosus, psoriasis, multiple sclerosis, myasthenia gravis, vasculitis, and diabetes mellitus.
63. The method of claim 58, wherein said angiogenic disease is a lymphoid malignancy.
64. A method of treating an angiogenic disease in a subject, comprising administering to the subject a therapeutically effective amount of an angiogenesis inhibitor compound comprising the structure

wherein
A is a MetAP2 inhibitory core;
W is O or NR;
R1 and R2 are each, independently, hydrogen or alkyl;
X is alkylene or substituted alkylene;
n is 0 or 1;
R3 and R4 are each, independently, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; or R3 and R4, together with the carbon atom to which they are attached, form a carbocyclic or heterocyclic group; or R3 and R4 together form an alkylene group;
Z is \(-\text{C} (\text{O})-\) or alkylene-C(\text{O})-; and
P is a peptide comprising from 1 to about 100 amino acid residues attached at its amino terminus to Z or a group OR, or N(R), wherein
R, R, and R, are each, independently, hydrogen, alkyl, substituted alkyl, azacycloalkyl or substituted azacycloalkyl; or R and R, together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic ring structure;
or
Z is \(-\text{O}-\), \(-\text{NR}-\), alkylene-\(\text{O}-\) or alkylene-\(\text{NR}-\), where R is hydrogen or alkyl; and
P is hydrogen, alkyl or a peptide consisting of from 1 to about 100 amino acid residues attached at its carboxy terminus to Z.
65. The method of claim 64, wherein said angiogenic disease is an autoimmune disease.
66. The method of claim 65, wherein said autoimmune disease is rheumatoid arthritis.
67. The method of claim 64, wherein said angiogenic disease is cancer.
68. The method of claim 65, wherein said autoimmune disease is selected from the group consisting of lupus erythematosus, psoriasis, multiple sclerosis, myasthenia gravis, vasculitis, and diabetes mellitus.
69. The method of claim 64, wherein said angiogenic disease is a lymphoid malignancy.
70. A method of treating a parasitic infection in a subject, comprising administering to the subject a therapeutically effective amount of an angiogenesis inhibitor compound comprising the structure

\[
\begin{array}{c}
\text{A} \\
\text{W} \\
\text{N} \\
\text{Z} \\
\text{P}
\end{array}
\]

wherein
A is a MetAP-2 inhibitory core;
W is O or NR;
each R is, independently, hydrogen or alkyl;
Z is \(-\text{C} (\text{O})-\) or alkylene-C(\text{O})-;
P is NHR, OR or a peptide consisting of one to about one hundred amino acid residues connected at the N-terminus to Z;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is \(-\text{OR}, Q\) is not hydrogen;
or
Z is \(-\text{alkylene-O}-\) or \(-\text{alkylene-N} (\text{R})-\);
P is hydrogen or a peptide consisting of from one to about one hundred amino acid residues connected to Z at the carboxyl terminus;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is hydrogen, Q is not hydrogen; and a pharmaceutically acceptable salt thereof, thereby treating the parasitic infection in the subject.
71. The method of claim 70, wherein said parasitic infection is malaria.
72. The method of claim 70, wherein said parasitic infection is Leishmaniasis.
73. A method of treating a thymoma in a subject, comprising administering to the subject a therapeutically effective amount of an angiogenesis inhibitor compound comprising the structure

\[
\begin{array}{c}
\text{A} \\
\text{W} \\
\text{N} \\
\text{Z} \\
\text{P}
\end{array}
\]

wherein
A is a MetAP-2 inhibitory core;
W is O or NR;
each R is, independently, hydrogen or alkyl;
Z is \(-\text{C} (\text{O})-\) or alkylene-C(\text{O})-;
P is NHR, OR or a peptide consisting of one to about one hundred amino acid residues connected at the N-terminus to Z;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is \(-\text{OR}, Q\) is not hydrogen;
or
Z is \(-\text{alkylene-O}-\) or \(-\text{alkylene-N} (\text{R})-\);
P is hydrogen or a peptide consisting of from one to about one hundred amino acid residues connected to Z at the carboxyl terminus;
Q is hydrogen, linear, branched or cyclic alkyl or aryl, provided that when P is hydrogen, Q is not hydrogen; and a pharmaceutically acceptable salt thereof, thereby treating the thymoma in the subject.