

(19)

(11)

EP 1 181 043 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
18.07.2007 Bulletin 2007/29

(51) Int Cl.:
A61K 38/22 (2006.01) C07K 14/00 (2006.01)
A61P 3/10 (2006.01)

(21) Application number: 00937710.2

(86) International application number:
PCT/US2000/014231

(22) Date of filing: 23.05.2000

(87) International publication number:
WO 2000/073331 (07.12.2000 Gazette 2000/49)

(54) USE OF EXENDINS AND AGONISTS THEREOF FOR THE TREATMENT OF GESTATIONAL DIABETES MELLITUS

VERWENDUNG VON EXENDINS UND DEREN AGONISTEN ZUR BEHANDLUNG VON SCHWANGERSCHAFTSDIABETES

UTILISATION D'EXENDINES ET DE LEURS AGONISTES POUR LE TRAITEMENT DU DIABÈTE SUCRE GESTATIONNEL

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

(74) Representative: Duckworth, Timothy John
J.A. Kemp & Co.,
14 South Square,
Gray's Inn
London WC1R 5JJ (GB)

(30) Priority: 01.06.1999 US 323867

(56) References cited:
WO-A-00/66629 WO-A-99/07404
WO-A-99/25728

(43) Date of publication of application:
27.02.2002 Bulletin 2002/09

- GREIG N H ET AL: "Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations." DIABETOLOGIA, vol. 42, no. 1, 1 January 1999 (1999-01-01), pages 45-50, XP000971927 ISSN: 0012-186X

(73) Proprietor: AMYLIN PHARMACEUTICALS, INC.
San Diego, California 92121 (US)

(72) Inventors:

- HILES, Richard
San Diego, CA 92128 (US)
- PRICKETT, Kathryn, S.
San Diego, CA 92126 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

EP 1 181 043 B1

Description**Field Of The Invention**

5 [0001] The present invention relates to a use in the manufacture of a medicament for treating gestational diabetes mellitus.

Background

10 [0002] The following description summarizes information relevant to the present invention. It is not an admission that any of the information provided herein is prior art to the presently claimed invention, nor that any of the publications specifically or implicitly referenced are prior art to that invention.

Gestational Diabetes Mellitus

15 [0003] Gestational diabetes mellitus ("GDM") is a disorder associated with elevated circulating plasma glucose. Although the diagnostic criteria for GDM have been the subject of controversy for decades, it was defined by the Third Workshop Conference on Gestational Diabetes Mellitus as carbohydrate intolerance of varying severity with onset or first recognition during pregnancy, irrespective of the glycemic status after delivery. Metzger (ed.) Proceedings of the 20 Third International Workshop Conference on Gestational Diabetes Mellitus, Diabetes 40(Suppl. 2), 1991. Despite advances in clinical management of GDM, there are problems associated with GDM which persist, including elevated rate of perinatal morbidity and elevated rate of malformations in newborns. Persson et al., Diabetes and Pregnancy, In International Textbook of Diabetes Mellitus, Second Edition, John Wiley & Sons 1997 (Alberti et al. Eds.). For example, it has been reported that, when the mean blood glucose level is greater than 105 mg/dl, there is a greater risk for the 25 development of large-for-gestational age ("LGA") infants when compared with a control population. *Id.* Additional reported consequences of untreated GDM include an increased incidence of macrosomia, respiratory distress syndrome, and other abnormalities of fetal metabolism. Langer, Am. J. Obstet Gynecol. 176:S186, 1997; American Diabetes Association: Self-Monitoring of Blood Glucose Consensus Statement, Diabetes Care 17:81-82, 1994("ABA Consensus Statement"); Coetze & Jackson, S. Afr. Med. J. 56:467-475, 1979. It has been clearly established by those in the field that tight glycemic control can serve as the primary prevention of fetal disease relating to GDM. Drexel et al., Diabetes Care 11: 30 761-768, 1988; Roversi et al., Diabetes Care 3:489-494, 1980; Langer & Mazze, Am. J. Obstet Gynecol. 159:1478-1483, 1988; Langer et al., Am. J. Obstet Gynecol. 161:646-653, 1989). GDM results in a greater incidence of intrauterine death or neonatal mortality. Position Statement American Diabetes Association: Gestational Diabetes Mellitus, Diabetes Care 21 (Suppl. 1):S60-61, 1998. GDM pregnancies are at an increased risk for fetal macrosomia and neonatal morbidities 35 including neural tube defects, hypoglycemia, hypocalcemia, hypomagnesemia, polycythemia and hyperbilirubinemia and subsequent childhood and adolescent obesity. Siccardi, Gestational Diabetes. Other complications to the woman include increased rates of cesarean delivery, hypertensive disorders including preeclampsia and urinary tract infections.

[0004] It has been reported that approximately 4% of all pregnancies (135,000 cases annually) are complicated by GDM, however, it has been estimated that the incidence may range from 1% to 14% of all pregnancies, depending on 40 the population and diagnostic tests employed. ADA Consensus Statement, *supra*.

[0005] Normally during pregnancy, fasting plasma levels of insulin gradually increase to reach concentrations that are approximately twice as high in the third trimester as they were outside of pregnancy. Women with gestational diabetes mellitus ("GDM") have fasting insulin levels comparable to or higher than those of normal pregnant women with the highest levels seen in women with GDM who are obese. Insulin secretion also increases gradually in pregnancy and 45 also reaches a maximum during the third trimester. However, the relative increase in secretion is significantly smaller in women with GDM than in normal glucose tolerant ("NGT") women. The first-phase insulin response in NGT women is significantly higher than in GDM women; second phase insulin response was similarly increased during pregnancy in both groups. This finding is consistent with the finding that GDM women have a later time of peak insulin concentration during an oral glucose tolerance test than do NGT women. Consistent with this observation, the insulin response per 50 unit of glycemic stimulus is significantly higher in NGT women than in GDM women (90% and 40%, respectively). The fact that glucose tolerance deteriorates in both normal and GDM pregnancies while at the same time, insulin secretion increases indicates a decrease in insulin sensitivity. Comparative results from an intravenous glucose tolerance test and a hyperinsulinemic, euglycemic clamp showed a sensitivity decrease during pregnancy in both groups of 50-60%, but GDM women had a slightly lower sensitivity. In another study using radioactive glucose, turnover of glucose and 55 amino acids in GDM women was comparable to NGT women only when insulin concentrations 3-5 fold higher in the GDM group were used. Thus, it appears that GDM is due to a combination of diminished insulin sensitivity and an impaired ability to increase insulin secretion and has, in fact, many features in common with type 2 diabetes. Normal or near normal glycemic control returns upon parturition.

Clinical Diagnosis:

[0006] It is common clinical practice to screen women for elevated glucose and glucose intolerance between weeks 24 and 28 of gestation, especially women with any one of the following four characteristics: age ≥ 25 ; race/ethnicity of Hispanic, Native American, Asian, African-American or Pacific Islander origin; obese or a family history of diabetes. In addition, women with previous pregnancies with complications due to a large weight fetus/neonate are usually tested. In some medical centers all pregnant women are tested. Indeed, certain investigators have found that historical risk factors account for only roughly half of the women known to have GDM. Carr, Diabetes Care 21(Suppl. 2):B14-B18, 1998. Additionally, there is some reported evidence that advancing maternal age is associated with increased incidence of GDM. Id.

[0007] The clinical diagnosis is generally based on a multistep process. The evaluation is most typically performed by measuring plasma glucose 1 hour after a 50-gram oral glucose challenge test in either the fasted or the unfasted state. If the value in the glucose challenge test is ≥ 140 mg/dl, a 3-hr 100 g oral glucose tolerance test is done. If two or more of the following criteria are met, the patient is considered in need of glycemic control: fasted venous plasma ≥ 105 mg/dl, venous plasma ≥ 190 mg/dl at 1 hr, venous plasma ≥ 165 mg/dl at 2 hr or venous plasma ≥ 145 mg/dl at 3 hr. Williams et al., Diabetes Care 22: 418 - 421, 1999. Variations of this test are also used by some. See, e.g., Coustan, Gestational Diabetes In Diabetes in America, 2d ed. National Institutes of Health Publication No. 95-1468, 1995.

Current Clinical Therapy:

[0008] The current therapeutic approach for GDM is to control plasma glucose for the remainder of the gestation (i.e., the third trimester through parturition). GDM has many features in common with type 2 diabetes. The endocrine (impaired insulin secretion) and metabolic (insulin resistance) abnormalities that characterize both forms of diabetes are similar. In general, pregnancy is characterized by increases in both insulin resistance and insulin secretion. Women with GDM fail to respond with increased insulin to the decrease in insulin sensitivity.

[0009] A significant correlation has been shown to exist between late-stage gestational maternal glucose levels and preeclampsia, macrosomia, Cesarean section delivery and phototherapy for hyperbilirubinemia. Sermer et al., Diabetic Care 21 (Suppl. 2):B33-B42, 1998. It has also been determined that the length of hospitalization of the new mother and the length of time the neonate spent in the nursery could be correlated to the degree of elevation of plasma glucose in the pregnant woman. Id. Tallarigo, et al. reported a striking rise in the risk of fetal macrosomia (9.9 vs. 27.5%) and preeclampsia/Cesarean sections (19.9 vs. 40.0%) in women with abnormal glucose tolerance when compared to NGT women. Tallarigo et al., N. Engl. J. Med. 315:989-992, 1986.

[0010] Thus, the goals for therapy of GDM are to achieve and maintain as near normal glycemia as feasible with a special emphasis to keep postprandial glucose concentrations within the normal range. Optimal therapeutic strategies are safe and efficacious in achieving a metabolic balancing without creating complications, which may include ketosis and/or hypoglycemia. Jovanovic, Diabetes Care 21(Suppl. 2):B131-B137, 1998. The initial therapeutic approach is through diet. Jovanovic-Peterson & Peterson, J. Am. Coll. Nutr. 9:320-325, 1990.

[0011] If diet or diet and exercise are not effective (i.e., failure is fasting glucose ≥ 105 mg/dl and/or a 2-hr postprandial plasma glucose of ≥ 120 mg/dl on 2 or more occasions within a 1- to 2-week period), then insulin therapy (preferably, human insulin) is considered appropriate. ADA Position Statement, *supra*.

[0012] Oral glucose-lowering agents are not recommended during pregnancy. Kuhl et al., Diabetic Care 21 (Suppl. 2): B19-B26, 1998. Although sulfonylureas are used in the treatment of type 2 diabetes due to their activity in increasing insulin sensitivity, these agents are contraindicated for use in GDM. Jovanovic, Diabetes Care 21 (Suppl. 2):B131-B137, 1998. See also Kahn & Shechter, Insulin, Oral Hypoglycemic Agents, and the Pharmacology of the Endocrine Pancreas, In Goodman & Gilman's The Pharmacological Basis of Therapeutics (8th ed. 1993 Goodman Gilman et al. eds.). Oral hypoglycemic drugs traverse the placenta, and may cause prolonged severe hypoglycemia in the newborn. Persson et al., *supra*.

[0013] The difficulties with, and the highly variable approaches to insulin therapy in GDM have been reviewed, for example, by Langer, et al. Langer, Diabetes Care 21(Suppl. 2):B91-B98, 1998. The problems commonly associated with insulin therapy in a non-pregnant population remain when used in the treatment of GDM. They are determination of the proper dose, maintenance of good glucose control through each 24-hr period, possible hypoglycemia and weight gain. Hypoglycemia can result when insulin is administered to control postprandial plasma glucose, but the fetus demands for energy in the presence of excess insulin later causes the glucose level to drop to a hypoglycemic level. This physiological state can be dangerous to both the mother and the fetus. Excess weight gain is undesirable in any pregnancy.

[0014] Another problem with insulin therapy is the day-to-day and week-to-week variability in glucose control vs. insulin dose.

[0014] Thus, it can be appreciated that an effective means to treat gestational diabetes remains a major challenge and a superior method of treatment would be of great utility. Such a method, and compounds and compositions which are useful therefor, have been invented and are described and claimed herein.

Exendins and Exendin Agonists

[0015] Exendins are peptides that were first isolated from the salivary secretions of the Gila-monster, a lizard found in Arizona, and the Mexican Beaded Lizard. Exendin-3 is present in the salivary secretions of Heloderma horridum, and exendin-4 is present in the salivary secretions of Heloderma suspectum (Eng, J., et al., *J. Biol. Chem.*, 265:20259-62, 1990; Eng., J., et al., *J. Biol. Chem.*, 267:7402-05, 1992). The exendins have some sequence similarity to several members of the glucagon-like peptide family, with the highest homology, 53%, being to GLP-1[7-36]NH₂ (Goke, et al., *J. Biol. Chem.*, 268:19650-55, 1993). GLP-1[7-36]NH₂, also known as proglucagon[78-107] and most commonly as "GLP-1," has an insulinotropic effect, stimulating insulin secretion from pancreatic β -cells; GLP-1 also inhibits glucagon secretion from pancreatic α -cells (Orskov, et al., *Diabetes*, 42:658-61, 1993; D'Alessio, et al., *J. Clin. Invest.*, 97:133-38, 1996). GLP-1 is reported to inhibit gastric emptying (Williams B, et al., *J Clin Endocrinol Metab* 81 (1): 327-32, 1996; Wettergren A, et al., *Dig Dis Sci* 38 (4): 665-73, 1993), and gastric acid secretion. (Schjoldager BT, et al., *Dig Dis Sci* 34 (5): 703-8, 1989; O'Halloran DJ, et al., *J Endocrinol* 126 (1): 169-73, 1990; Wettergren A, et al., *Dig Dis Sci* 38 (4): 665-73, 1993). GLP-1[7-37], which has an additional glycine residue at its carboxy terminus, also stimulates insulin secretion in humans (Orskov, et al., *Diabetes*, 42:658-61, 1993). A transmembrane G-protein adenylate-cyclase-coupled receptor believed to be responsible for the insulinotropic effect of GLP-1 is reported to have been cloned from a β -cell line (Thorens, *Proc. Natl. Acad. Sci. USA* 89:8641-45 (1992)).

[0016] Exendin-4 potently binds at GLP-1 receptors on insulin-secreting BTC1 cells, at dispersed acinar cells from guinea pig pancreas, and at parietal cells from stomach; the peptide is also said to stimulate somatostatin release and inhibit gastrin release in isolated stomachs (Goke, et al., *J. Biol. Chem.* 268:19650-55, 1993; Schepp, et al., *Eur. J. Pharmacol.*, 69:183-91, 1994; Eissele, et al., *Life Sci.*, 55:629-34, 1994). Exendin-3 and exendin-4 were reported to stimulate cAMP production in, and amylase release from, pancreatic acinar cells (Malhotra, R., et al., *Regulatory Peptides*, 41:149-56, 1992; Raufman, et al., *J. Biol. Chem.* 267:21432-37, 1992; Singh, et al., *Regul. Pept.* 53:47-59, 1994). The use of exendin-3 and exendin-4 as insulinotropic agents for the treatment of diabetes mellitus and the prevention of hyperglycemia has been proposed (Eng, U.S. Patent No. 5,424,286).

[0017] C-terminally truncated exendin peptides such as exendin-4[9-39], a carboxyamidated molecule, and fragments 3-39 through 9-39 have been reported to be potent and selective antagonists of GLP-1 (Goke, et al., *J. Biol. Chem.*, 268:19650-55, 1993; Raufman, J.P., et al., *J. Biol. Chem.* 266:2897-902, 1991; Schepp, W., et al., *Eur. J. Pharm.* 269: 183-91, 1994; Montrose-Rafizadeh, et al., *Diabetes*, 45(Suppl. 2) :152A, 1996). Exendin-4 [9-39] is said to block endogenous GLP-1 in vivo, resulting in reduced insulin secretion. Wang, et al., *J. Clin. Invest.*, 95:417-21, 1995; D'Alessio, et al., *J. Clin. Invest.*, 97:133-38, 1996). The receptor apparently responsible for the insulinotropic effect of GLP-1 has reportedly been cloned from rat pancreatic islet cell (Thorens, B., *Proc. Natl. Acad. Sci. USA* 89:8641-8645, 1992). Exendins and exendin-4 [9-39] are said to bind to the cloned GLP 1 receptor (rat pancreatic β -cell GLP-1 receptor (Fehmann HC, et al., *Peptides* 15 (3): 453-6, 1994) and human GLP-1 receptor (Thorens B, et al., *Diabetes* 42 (11): 1678-82, 1993). In cells transfected with the cloned GLP-1 receptor, exendin-4 is reportedly an agonist, i.e., it increases cAMP, while exendin [9-39] is identified as an antagonist, i.e., it blocks the stimulatory actions of exendin-4 and GLP-1. *Id.*

[0018] Exendin-4[9-39] is also reported to act as an antagonist of the full length exendins, inhibiting stimulation of pancreatic acinar cells by exendin-3 and exendin-4 (Raufman, et al., *J. Biol. Chem.* 266:2897-902, 1991; Raufman, et al., *J. Biol. Chem.*, 266:21432-37, 1992). It is also reported that exendin[9-39] inhibits the stimulation of plasma insulin levels by exendin-4, and inhibits the somatostatin release-stimulating and gastrin release-inhibiting activities of exendin-4 and GLP-1 (Kolligs, F., et al., *Diabetes*, 44:16-19, 1995; Eissele, et al., *Life Sciences*, 55:629-34, 1994).

[0019] Methods for regulating gastrointestinal motility using exendin agonists are described and claimed PCT/US97/14199 entitled, "Methods for Regulating Gastrointestinal Motility," which enjoys common ownership with the present invention.

[0020] Methods of reducing food intake using exendin agonists are described and claimed PCT/US 98/00449, entitled, "Use of Exendin and Agonists Thereof for the Reduction of Food Intake," claiming the benefit of Provisional Application Nos. 60/034,905, filed January 7, 1997, 60/055,404, filed August 7, 1997, 60/065,442 filed November 14, 1997, and 60/066,029 filed November 14, 1997. These applications also enjoy common ownership with the present invention.

[0021] Exendins have also been found to have inotropic and diuretic effects. International Application No. PCT/US99/02554, filed February 5, 1999, 1998, claiming the benefit of Provisional Application No. 60/075,122, filed February 13, 1998. These applications also enjoy common ownership with the present invention.

[0022] Additionally, exendins have been found to suppress glucagon secretion PCT/US00/009920 entitled "Methods for Glucagon Suppression," which enjoys common ownership with the present invention.

[0023] Exendin [9-39] has been used to investigate the physiological relevance of central GLP-1 in control of food intake (Turton, M.D. et al. *Nature* 379:69-72, 1996). GLP-1 administered by intracerebroventricular injection inhibits food intake in rats. This satiety-inducing effect of GLP-1 delivered ICV is reported to be inhibited by ICV injection of exendin [9-39] (Turton, *supra*). However, it has been reported that GLP-1 does not inhibit food intake in mice when administered by peripheral injection (Turton, M.D., *Nature* 379:69-72, 1996; Bhavsar, S.P., *Soc. Neurosci. Abstr.* 21:460 (188.8), 1995).

Summary Of The Invention

[0024] The present invention concerns the surprising discovery that exendins and exendin agonists do not cross the placenta, and yet have a profound and prolonged effect on blood glucose, rendering them ideal agents for the treatment 5 of gestational diabetes mellitus.

[0025] The present invention may be used for treating gestational diabetes mellitus by the administration of an exendin, for example, exendin-3 [SEQ ID NO. 1: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser Ser Gly Ala Pro Pro Pro Ser], or exendin-4 [SEQ ID NO. 2: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly 10 Gly Pro Ser Ser Gly Ala Pro Pro Ser], or other compounds which effectively bind to the receptor at which exendin exerts its actions which are beneficial in treatment of gestational diabetes mellitus.

[0026] In a first aspect, the invention provides use of an exendin or exendin agonist peptide for the manufacture of a medicament for treating gestational diabetes in a subject, said medicament comprising a therapeutically effective amount 15 of an exendin or an exendin agonist peptide wherein said exendin or exendin agonist peptide binds to a receptor that binds exendin-3 or exendin-4 wherein said exendin or exendin agonist peptide comprises the sequence of formula (I) [SEQ ID NO 3], formula (II) [SEQ ID NO. 4] or formula (III) [SEQ ID NO. 5], set forth herein.

[0027] By an "exendin agonist" is meant a compound that mimics the effects of exendin in the treatment of gestational diabetes mellitus by binding to the receptor or receptors where exendin causes one or more of these effects. Exendins and exendin agonists should be especially beneficially in the treatment of GDM because, due to their actions to inhibit 20 gastric emptying, administration of such compounds should not result in increased weight gain. Additionally, in animal and human studies to date, administration of exendins and exendin agonists have not resulted in an increased incidence of hypoglycemia.

[0028] Exendin agonist peptide compounds include exendin acids, for example exendin-3 acid and exendin-4 acid. Exendin agonist peptide compounds include those described in International Application No. PCT/US98/16387, entitled, 25 "Novel Exendin Agonist Compounds," filed August 6, 1998, claiming the benefit of United States Provisional Patent Application Serial No. 60/055,404, entitled, filed August 8, 1997; International Application No. PCT/US98/24220 entitled, "Novel Exendin Agonist Compounds," filed November 13, 1998, claiming priority on United States Provisional Patent Application Serial No. 60/065,442, filed November 14, 1997; and International Application No. PCT/US98/24273 entitled, "Novel Exendin Agonist Compounds," filed November 13, 1998, claiming priority on United States United States Provisional Patent Application Serial No. 60/066,029, filed November 14, 1997; all of which enjoy common ownership with the present application. Additional preferred exendin agonist compounds are those described and claimed in PCT/US00/11814, entitled, "Modified Exendins and Exendin Agonists," which enjoys common ownership with the present application.

[0029] By "gestational diabetes mellitus" or "GDM" is meant any degree of glucose intolerance with onset or first 35 recognition during pregnancy.

[0030] Preferably, the subject is a vertebrate, more preferably a mammal, and most preferably a human woman. In preferred aspects, the exendin or exendin agonist is administered parenterally, more preferably by injection. In a most preferred aspect, the injection is a peripheral injection. Preferably, about 1 µg-30 µg to about 1 mg of the exendin or exendin agonist is administered per day. More preferably, about 1-30 µg to about 500 µg, or about 1-30 µg to about 50 40 µg of the exendin or exendin agonist is administered per day. Most preferably, about 3 µg to about 50 µg of the exendin or exendin agonist is administered per day.

[0031] In one preferred aspect, the exendin or exendin agonist peptide used in the present invention is exendin-3. In another preferred aspect, said exendin is exendin-4. Other preferred exendin agonist peptides include exendin-4 (1-30) [SEQ ID NO 6: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly], exendin-4 (1-30) amide [SEQ ID NO 7: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly-NH₂], exendin-4 (1-28) amide [SEQ ID NO 40: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂], ¹⁴Leu, ²⁵Phe exendin-4 amide [SEQ ID NO 9: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu, Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂], and ¹⁴Leu, ²²Ala, ²⁵Phe exendin-4 (1-28) amide [SEQ ID NO 8: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂].

[0032] The exendins and exendin agonist peptides may be administered separately or together with one or more other 55 compounds and compositions that exhibit a long term or short-term blood glucose control action, including, but not limited to other compounds and compositions that comprise an insulin or an amylin agonist. Suitable amylin agonists include, for example, [^{25,28,29}Pro-]-human amylin (also known as "pramlintide," previously referred to as "AC-137," and, referred to in its acetate salt form by its trademark SYMLIN™ (pramlintide acetate), as described in "Amylin Agonist Peptides and Uses Therefor," U.S. Patent No. 5,686,511, issued November 11, 1997, and salmon calcitonin.

Brief Description Of The Drawings**[0033]**

5 Figure 1 depicts the amino acid sequences for certain exendin agonist compounds useful in the present invention [SEQ ID NOS 9-39].
 Figure 2 depicts concentrations of exendin-4 (AC2993) in plasma and amniotic fluid of rats after 21 μ g subcutaneous injection.
 10 Figure 3 depicts concentrations of exendin-4 (AC2993) in plasma and amniotic fluid of rats after 210 μ g subcutaneous injection.

Detailed Description Of The Invention

15 **[0034]** Exendins and exendin agonist peptides are useful as described herein in view of their pharmacological properties. Activity as exendin agonists can be indicated by activity in the assays described below. Effects of exendins or exendin agonists in treating gestational diabetes can be identified, evaluated, or screened for, using the methods described in the Examples below, or other methods known in the art for determining effects on blood glucose control.

Exendin Agonist compounds

20 **[0035]** Exendins or exendin agonist peptide compounds include those described in International Application No. PCT/US98/16387, filed August 6, 1998, entitled, "Novel Exendin Agonist Compounds," which claims the benefit of United States Provisional Application No. 60/055,404, filed August 8, 1997, including compounds of the formula (I) [SEQ ID NO. 3]:

25 Xaa₁ Xaa₂ Xaa₃ Gly Thr Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈
 Ser Lys Gln Xaa₉ Glu Glu Ala Val Arg Leu
 Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Leu Lys Asn Gly Gly Xaa₁₄
 30 Ser Ser Gly Ala Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈-Z

35 wherein Xaa₁ is His, Arg or Tyr; Xaa₂ is Ser, Gly, Ala or Thr; Xaa₃ is Asp or Glu; Xaa₄ is Phe, Tyr or naphthylalanine; Xaa₅ is Thr or Ser; Xaa₆ is Ser or Thr; Xaa₇ is Asp or Glu; Xaa₈ is Leu, Ile, Val, pentylglycine or Met; Xaa₉ is Leu, Ile, pentylglycine, Val or Met; Xaa₁₀ is Phe, Tyr or naphthylalanine; Xaa₁₁ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met; Xaa₁₂ is Glu or Asp; Xaa₁₃ is Trp, Phe, Tyr, or naphthylalanine; Xaa₁₄, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine or N-alkylalanine; Xaa₁₈ is Ser, Thr or Tyr; and Z is -OH or -NH₂.

40 **[0036]** Preferred N-alkyl groups for N-alkylglycine, N-alkylpentylglycine and N-alkylalanine include lower alkyl groups preferably of 1 to about 6 carbon atoms, more preferably of 1 to 4 carbon atoms. Suitable compounds include those listed in Figure 10 having amino acid sequences of SEQ. ID. NOS. 9 to 39.

45 **[0037]** Preferred exendin agonist compounds include those wherein Xaa₁ is His or Tyr. More preferably Xaa₁ is His.
[0038] Preferred are those compounds wherein Xaa₂ is Gly.

50 **[0039]** Preferred are those compounds wherein Xaa₉ is Leu, pentylglycine or Met.

[0040] Preferred compounds include those wherein Xaa₁₃ is Trp or Phe.

55 **[0041]** Also preferred are compounds where Xaa₄ is Phe or naphthylalanine; Xaa₁₁ is Ile or Val and Xaa₁₄, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are independently selected from Pro, homoproline, thioproline or N-alkylalanine. Preferably N-alkylalanine has a N-alkyl group of 1 to about 6 carbon atoms.

[0042] According to an especially preferred aspect, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are the same amino acid residue.

[0043] Preferred are compounds wherein Xaa₁₈ is Ser or Tyr, more preferably Ser.

[0044] Preferably Z is -NH₂.

60 **[0045]** According to one aspect, preferred are compounds of formula (I) wherein Xaa₁ is His or Tyr, more preferably His; Xaa₂ is Gly; Xaa₄ is Phe or naphthylalanine; Xaa₉ is Leu, pentylglycine or Met; Xaa₁₀ is Phe or naphthylalanine; Xaa₁₁ is Ile or Val; Xaa₁₄, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are independently selected from Pro, homoproline, thioproline or N-alkylalanine; and Xaa₁₈ is Ser or Tyr, more preferably Ser. More preferably Z is -NH₂.

65 **[0046]** According to an especially preferred aspect, especially preferred compounds include those of formula (I) wherein: Xaa₁ is His or Arg; Xaa₂ is Gly; Xaa₃ is Asp or Glu; Xaa₄ is Phe or naphthylalanine; Xaa₅ is Thr or Ser; Xaa₆ is Ser or Thr; Xaa₇ is Asp or Glu; Xaa₈ is Leu or pentylglycine; Xaa₉ is Leu or pentylglycine; Xaa₁₀ is Phe or naphthylalanine; Xaa₁₁ is Ile, Val or t-butylglycine; Xaa₁₂ is Glu or Asp; Xaa₁₃ is Trp or Phe; Xaa₁₄, Xaa₁₅, Xaa₁₆, and Xaa₁₇ are independently Pro, homoproline, thioproline, or N-methylalanine; Xaa₁₈ is Ser or Tyr; and Z is -OH or -NH₂; with the

proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2. More preferably Z is -NH₂. Especially preferred compounds include those having the amino acid sequence of SEQ. ID. NOS. 9, 10, 21, 22, 23, 26, 28, 34, 35 and 39.

[0047] According to an especially preferred aspect, provided are compounds where Xaa₉ is Leu, Ile, Val or pentylglycine, more preferably Leu or pentylglycine, and Xaa₁₃ is Phe, Tyr or naphthylalanine, more preferably Phe or naphthylalanine. These compounds will exhibit advantageous duration of action and be less subject to oxidative degradation, both *in vitro* and *in vivo*, as well as during synthesis of the compound.

[0048] Exendins or exendin agonist peptide compounds also include those described in International Application No. PCT/US98/24210, filed November 13, 1998, entitled, "Novel Exendin Agonist compounds," which claims the benefit of United States Provisional Application No. 60/065,442, filed November 14, 1997, including compounds of the formula (II) [SEQ ID NO. 4]:

Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀
 Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉, Xaa₂₀
 15 Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁; wherein
 Xaa₁ is His, Arg or Tyr;
 Xaa₂ is Ser, Gly, Ala or Thr;
 Xaa₃ is Asp or Glu;
 Xaa₅ is Ala or Thr;
 20 Xaa₆ is Ala, Phe, Tyr or naphthylalanine;
 Xaa₇ is Thr or Ser;
 Xaa₈ is Ala, Ser or Thr;
 Xaa₉ is Asp or Glu;
 Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
 25 Xaa₁₁ is Ala or Ser;
 Xaa₁₂ is Ala or Lys;
 Xaa₁₃ is Ala or Gln;
 Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met;
 Xaa₁₅ is Ala or Glu;
 30 Xaa₁₆ is Ala or Glu;
 Xaa₁₇ is Ala or Glu;
 Xaa₁₉ is Ala or Val;
 Xaa₂₀ is Ala or Arg;
 Xaa₂₁ is Ala or Leu;
 35 Xaa₂₂ is Ala, Phe, Tyr or naphthylalanine;
 Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;
 Xaa₂₄ is Ala, Glu or Asp;
 Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;
 40 Xaa₂₆ is Ala or Leu;
 Xaa₂₇ is Ala or Lys;
 Xaa₂₈ is Ala or Asn;
 Z₁ is-OH,
 -NH₂
 45 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 50 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂ or
 55 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂;
 Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₉ are independently Pro,
 homoproline; 3Hyp, 4Hyp, thioproline,
 N-alkylglycine, N-alkylpentylglycine or
 N-alkylalanine; and

Z₂ is -OH or -NH₂;

provided that no more than three of Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala. Preferred N-alkyl groups for N-alkylglycine, N-alkylpentylglycine and N-alkylalanine include lower alkyl groups preferably of 1 to about 6 carbon atoms, more preferably of 1 to 4 carbon atoms.

[0049] Preferred exendin agonist compounds include those wherein Xaa₁ is His or Tyr. More preferably Xaa₁ is His.

[0050] Preferred are those compounds wherein Xaa₂ is Gly.

[0051] Preferred are those compounds wherein Xaa₁₄ is Leu, pentylglycine or Met.

[0052] Preferred compounds are those wherein Xaa₂₅ is Trp or Phe.

[0053] Preferred compounds are those where Xaa₆ is Phe or naphthylalanine; Xaa₂₂ is Phe or naphthylalanine and [0054] Xaa₂₃ is Ile or Val.

[0055] Preferred are compounds wherein Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently selected from Pro, homoproline, thio proline and N-alkylalanine.

[0056] Preferably Z₁ is -NH₂.

[0057] Preferable Z₂ is -NH₂.

[0058] According to one aspect, preferred are compounds of formula (II) wherein Xaa₁ is His or Tyr, more preferably His; Xaa₂ is Gly; Xaa₆ is Phe or naphthylalanine; Xaa₁₄ is Leu, pentylglycine or Met; Xaa₂₂ is Phe or naphthylalanine; Xaa₂₃ is Ile or Val; Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently selected from Pro, homoproline, thio proline or N-alkylalanine. More preferably Z₁ is -NH₂.

[0059] According to an especially preferred aspect, especially preferred compounds include those of formula (II) wherein: Xaa₁ is His or Arg; Xaa₂ is Gly or Ala; Xaa₃ is Asp or Glu; Xaa₅ is Ala or Thr; Xaa₆ is Ala, Phe or naphthylalanine; Xaa₇ is Thr or Ser; Xaa₈ is Ala, Ser or Thr; Xaa₉ is Asp or Glu; Xaa₁₀ is Ala, Leu or pentylglycine; Xaa₁₁ is Ala or Ser; Xaa₁₂ is Ala or Lys; Xaa₁₃ is Ala or Gln; Xaa₁₄ is Ala, Leu or pentylglycine; Xaa₁₅ is Ala or Glu; Xaa₁₆ is Ala or Glu; Xaa₁₇ is Ala or Glu; Xaa₁₉ is Ala or Val; Xaa₂₀ is Ala or Arg; Xaa₂₁ is Ala or Leu; Xaa₂₂ is Phe or naphthylalanine; Xaa₂₃ is Ile, Val or tert-butylglycine; Xaa₂₄ is Ala, Glu or Asp; Xaa₂₅ is Ala; Trp or Phe; Xaa₂₆ is Ala or Leu; Xaa₂₇ is Ala or Lys; Xaa₂₈ is Ala or Asn; Z₁ is -OH, -NH₂, Gly-Z₂, Gly Gly-Z₂, Gly Gly Xaa₃₁-Z₂, Gly Gly Xaa₃₁ Ser-Z₂, Gly Gly Xaa₃₁ Ser Ser-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ being independently Pro homoproline, thio proline or N-methylalanine; and Z₂ being -OH or -NH₂; provided that no more than three of Xaa₃, Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala. Especially preferred compounds include those having the amino acid sequence of SEQ ID NOS. 40-61.

[0060] According to an especially preferred aspect, provided are compounds where Xaa₁₄ is Leu, Ile, Val or pentylglycine, more preferably Leu or pentylglycine, and Xaa₂₅ is Phe, Tyr or naphthylalanine, more preferably Phe or naphthylalanine. These compounds will be less susceptible to oxidative degradation, both *in vitro* and *in vivo*, as well as during

Synthesis of the Compound.

[0061] Exendins or exendin agonist peptide compounds also include those described in International Patent Application No. PCT/US98/24273, filed November 13, 1998, entitled, "Novel Exendin Agonist compounds," which claims the benefit of United States Provisional Application No. 60/066,029, filed November 14, 1997, including compounds of the formula (III)(SEQ ID NO. 5):

Xaa₁ Xaa₂ Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀
Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇, Ala Xaa₁₉ Xaa₂₀
Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁; wherein

Xaa₁ is His, Arg, Tyr, Ala, Norval, Val or Norleu;

Xaa₂ is Ser, Gly, Ala or Thr;

Xaa₃ is Ala, Asp or Glu;

Xaa₄ is Ala, Norval, Val, Norleu or Gly;

Xaa₅ is Ala or Thr;

Xaa₆ is Phe, Tyr or naphthylalanine;

Xaa₇ is Thr or Ser;

Xaa₈ is Ala, Ser or Thr;

Xaa₉ is Ala, Norval, Val, Norleu, Asp or Glu;

Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
 Xaa₁₁ is Ala or Ser;
 Xaa₁₂ is Ala or Lys;
 Xaa₁₃ is Ala or Gln ;
 5 Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met;
 Xaa₁₅ is Ala or Glu ;
 Xaa₁₆ is Ala or Glu ;
 Xaa₁₇ is Ala or Glu ;
 Xaa₁₈ is Ala or val ;
 10 Xaa₂₀ is Ala or Arg ;
 Xaa₂₁ is Ala or Leu ;
 Xaa₂₂ is Phe, Tyr or naphthylalanine;
 Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine
 or Met;
 15 Xaa₂₄ is Ala, Glu or Asp;
 Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;
 Xaa₂₆ is Ala or Leu;
 Xaa₂₇ is Ala or Lys;
 Xaa₂₈ is Ala or Asn;
 20 Z₁ is -OH,
 -NH₂,
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 25 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 30 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂;
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂;

wherein

35 Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline,
 N-alkylglycine, N-alkylpentylglycine or
 N-alkylalanine ; and
 Z₂ is -OH or -NH₂;
 40 provided that no more than three of Xaa₃, Xaa₄, Xaa₅, Xaa₈, Xaa₉, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆,
 Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala; and provided also that, if Xaa₁ is His, Arg
 or Tyr, then at least one of Xaa₃, Xaa₄ and Xaa₉ is Ala.

Definitions

45 [0062] In accordance with the present invention and as used herein, the, following terms are defined to have the
 following meanings, unless explicitly stated otherwise.
 [0063] The term "amino acid" refers to natural amino acids, unnatural amino acids, and amino acid analogs, all in their
 D and L stereoisomers if their structure allow such stereoisomeric forms. Natural amino acids include alanine (Ala),
 50 arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly),
 histidine (His), isoleucine (Ile), leucine (Leu), Lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine
 (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr) and valine (Val). Unnatural amino acids include, but are not limited
 to azetidinecarboxylic acid, 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine, aminopropionic acid, 2-aminobutyric
 acid, 4-aminobutyric acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2-aminoisobutyric acid, 3-aminoisobutyric acid,
 55 2-aminopimelic acid, tertiary-butylglycine, 2,4-diaminoisobutyric acid, desmosine, 2,2'-diaminopimelic acid, 2,3-diamino-
 propionic acid, N-ethylglycine, N-ethylasparagine, homoproline, hydroxylysine, allo-hydroxylysine, 3-hydroxyproline,
 4-hydroxyproline, isodesmosine, allo-isoleucine, N-methylalanine, N-methylglycine, N-methylsoleucine, N-methyl-
 pentylglycine, N-methylvaline, naphthalanine, norvaline, norleucine, ornithine, pentylglycine, pipecolic acid and thiopro-

line. Amino acid analogs include the natural and unnatural amino acids which are chemically blocked, reversibly or irreversibly, or modified on their N-terminal amino group or their side-chain groups, as for example, methionine sulfoxide, methionine sulfone, S-(carboxymethyl)-cysteine, S-(carboxymethyl)-cysteine sulfoxide and S-(carboxymethyl)-cysteine sulfone.

5 [0064] The term "amino acid analog" refers to an amino acid wherein either the C-terminal carboxy group, the N-terminal amino group or side-chain functional group has been chemically codified to another functional group. For example, aspartic acid-(beta-methyl ester) is an amino acid analog of aspartic acid; N-ethylglycine is an amino acid analog of glycine; or alanine carboxamide is an amino acid analog of alanine.

10 [0065] The term "amino acid residue" refers to radicals having the structure: (1) -C(O)-R-NH-, wherein R typically is -CH(R')-, wherein R' is an amino acid side chain, typically H or a carbon containing substituent; or (2)

wherein p is 1, 2 or 3 representing the azetidinecarboxylic acid, proline or pipecolic acid residues, respectively.

25 [0066] The term "lower" referred to herein in connection with organic radicals such as alkyl groups defines such groups with up to and including about 6, preferably up to and including 4 and advantageously one or two carbon atoms. Such groups may be straight chain or branched chain.

[0067] "Pharmaceutically acceptable salt" includes salts of the compounds described herein derived from the combination of such compounds and an organic or inorganic acid. In practice the use of the salt form amounts to use of the base form. The compounds are useful in both free base and salt form.

30 [0068] In addition, the following abbreviations stand for the following:

"ACN" or "CH₃CN" refers to acetonitrile.

"Boc", "tBoc" or "Tboc" refers to t-butoxy carbonyl.

"DCC" refers to N,N'-dicyclohexylcarbodiimide.

35 "Fmoc" refers to fluorenylmethoxycarbonyl.

"HBTU" refers to 2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate.

"HOBI" refers to 1-hydroxybenzotriazole monohydrate.

"homoP" or "hPro" refers to homoproline.

"MeAla" or "Nme" refers to N-methylalanine.

40 "naph" refers to naphthylalanine.

"pG" or "pGly" refers to pentylglycine.

"tBuG" refers to tertiary-butylglycine.

"ThioP" or "tPro" refers to thio proline.

"3Hyp" refers to 3-hydroxyproline

45 "4Hyp" refers to 4-hydroxyproline

"NAG" refers to N-alkylglycine

"NAPG" refers to N-alkylpentylglycine

"Norval" refers to norvaline

50 "Norleu" refers to norleucine

Preparation of Compounds

[0069] The exendins and exendin agonist peptides described herein may be prepared using standard solid-phase peptide synthesis techniques and preferably an automated or semiautomated peptide synthesizer. Typically, using such techniques, an α -N-carbamoyl protected amino acid and an amino acid attached to the growing peptide chain on a resin are coupled at room temperature in an inert solvent such as dimethylformamide, N-methylpyrrolidinone or methylene chloride in the presence of coupling agents such as dicyclohexylcarbodiimide and 1-hydroxybenzotriazole in the presence of a base such as diisopropylethylamine. The α -N-carbamoyl protecting group is removed from the resulting peptide-

resin using a reagent such as trifluoroacetic acid or piperidine, and the coupling reaction repeated with the next desired N-protected amino acid to be added to the peptide chain. Suitable N-protecting groups are well known in the art, with t-butyloxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc) being preferred herein.

[0070] The solvents, amino acid derivatives and 4-methylbenzhydryl-amine resin used in the peptide synthesizer may be purchased from Applied Biosystems Inc. (Foster City, CA). The following side-chain protected amino acids may be purchased from Applied Biosystems, Inc.: Boc-Arg(Mts), Fmoc-Arg(Pmc), Boc-Thr(Bzl), Fmoc-Thr(t-Bu), Boc-Ser(Bzl), Fmoc-Ser(t-Bu), Boc-Tyr(BrZ), Fmoc-Tyr(t-Bu), Boc-Lys(Cl-Z), Fmoc-Lys(Boc), Boc-Glu(Bzl), Fmoc-Glu(t-Bu), Fmoc-His(Trt), Fmoc-Asn(Trt), and Fmoc-Gln(Trt). Boc-His(BOM) may be purchased from Applied Biosystems, Inc. or Bachem Inc. (Torrance, CA). Anisole, dimethylsulfide, phenol, ethanedithiol, and thioanisole may be obtained from Aldrich Chemical Company (Milwaukee, WI). Air Products and Chemicals (Allentown, PA) supplies HF. Ethyl ether, acetic acid and methanol may be purchased from Fisher Scientific (Pittsburgh, PA).

[0071] Solid phase peptide synthesis may be carried out with an automatic peptide synthesizer (Model 430A, Applied Biosystems Inc., Foster City, CA) using the NMP/HOBt (Option 1) system and tBoc or Fmoc chemistry (see, Applied Biosystems User's Manual for the ABI 430A Peptide Synthesizer, Version 1.3B July 1, 1988, section 6, pp. 49-70, Applied Biosystems, Inc., Foster City, CA) with capping. Boc-peptide-resins may be cleaved with HF (-5° C to 0° C, 1 hour). The peptide may be extracted from the resin with alternating water and acetic acid, and the filtrates lyophilized. The Fmoc-peptide resins may be cleaved according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc., 1990, pp. 6-12). Peptides may be also be assembled using an Advanced Chem Tech Synthesizer (Model MPS 350, Louisville, Kentucky).

[0072] Peptides may be purified by RP-HPLC (preparative and analytical) using a Waters Delta Prep 3000 system. A C4, C8 or C18 preparative column (10 μ , 2.2 x 25 cm; Vydac, Hesperia, CA) may be used to isolate peptides, and purity may be determined using a C4, C8 or C18 analytical column (5 μ , 0.46 x 25 cm; Vydac). Solvents (A=0.1% TFA/water and B=0.1% TFA/CH₃CN) may be delivered to the analytical column at a flowrate of 1.0 ml/min and to the preparative column at 15 ml/min. Amino acid analyses may be performed on the Waters Pico Tag system and processed using the Maxima program. Peptides may be hydrolyzed by vapor-phase acid hydrolysis (115° C, 20-24 h). Hydrolysates may be derivatized and analyzed by standard methods (Cohen, et al., The Pico Tag Method: A Manual of Advanced Techniques for Amino Acid Analysis, pp. 11-52, Millipore Corporation, Milford, MA (1989)). Fast atom bombardment analysis may be carried out by M-Scan, Incorporated (West Chester, PA). Mass calibration may be performed using cesium iodide or cesium iodide/glycerol. Plasma desorption ionization analysis using time of flight detection may be carried out on an Applied Biosystems Bio-Ion 20 mass spectrometer. Electrospray mass spectroscopy may be carried out on a VG-Trio machine.

[0073] Peptide compounds useful in the invention may also be prepared using recombinant DNA techniques, using methods now known in the art. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor (1989). Non-peptide compounds useful in the present invention may be prepared by art-known methods. For example, phosphate-containing amino acids and peptides containing such amino acids, may be prepared using methods known in the art. See, e.g., Bartlett and Landen, *Biorg. Chem.* 14:356-377 (1986).

[0074] Compositions useful in the invention may conveniently be provided in the form of formulations suitable for parenteral (including intravenous, intramuscular and subcutaneous) or nasal or oral administration. In some cases, it will be convenient to provide an exendin or exendin agonist and another blood glucose-controlling, plasma glucose-lowering agent, such as an insulin, an amylin, an amylin agonist, in a single composition or solution for administration together. In other cases, it may be more advantageous to administer the additional agent separately from said exendin or exendin agonist. A suitable administration format may best be determined by a medical practitioner for each patient individually. Suitable pharmaceutically acceptable carriers and their formulation are described in standard formulation treatises, e.g., *Remington's Pharmaceutical Sciences* by E. W. Martin. See also Wang, Y. J. and Hanson, M. A. "Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers," *Journal of Parenteral Science and Technology*, Technical Report No. 10, Supp. 42:2S (1988).

[0075] Compounds useful in the invention can be provided as parenteral compositions for injection or infusion. Preferred formulations are those described and claimed in PCT/US 00/00902, entitled, "Novel Exendin Agonist Formulations and Methods of Administration Thereof," which enjoys common ownership with the present application. They can, for example, be suspended in an inert oil, suitably a vegetable oil such as sesame, peanut, olive oil, or other acceptable carrier. Preferably, they are suspended in an aqueous carrier, for example, in an isotonic buffer solution at a pH of about 3.0 to 8.0, preferably at a pH of about 3.5 to 5.0. These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH buffering agents. Useful buffers include for example, sodium acetate/acetic acid buffers. A form of repository or "depot" slow release preparation may be used so that therapeutically effective amounts of the preparation are delivered into the bloodstream over many hours or days following transdermal injection or delivery.

[0076] The desired isotonicity may be accomplished using sodium chloride or other pharmaceutically acceptable

agents such as dextrose, boric acid, sodium tartrate, propylene glycol, polyols (such as mannitol and sorbitol), or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.

[0077] The claimed compositions can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and/or complexes thereof. Pharmaceutically acceptable salts are non-toxic salts at the concentration at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical-chemical characteristics of the composition without preventing the composition from exerting its physiological effect. Examples of useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate the administration of higher concentrations of the drug.

[0078] Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, hydrochloride, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, and quinic acid. Such salts may be prepared by, for example, reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is then removed in vacuo or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

[0079] Carriers or excipients can also be used to facilitate administration of the compound. Examples of carriers and excipients include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. The compositions or pharmaceutical composition can be administered by different routes including intravenously, intraperitoneal, subcutaneous, and intramuscular, orally, topically, transmucosally, or by pulmonary inhalation.

[0080] If desired, solutions of the above compositions may be thickened with a thickening agent such as methyl cellulose. They may be prepared in emulsified form, either water in oil or oil in water. Any of a wide variety of pharmaceutically acceptable emulsifying agents may be employed including, for example, acacia powder, a non-ionic surfactant (such as a Tween), or an ionic surfactant (such as alkali polyether alcohol sulfates or sulfonates, e.g., a Triton).

[0081] Compositions useful in the invention are prepared by mixing the ingredients following generally accepted procedures. For example, the selected components may be simply mixed in a blender or other standard device to produce a concentrated mixture which may then be adjusted to the final concentration and viscosity by the addition of water or thickening agent and possibly a buffer to control pH or an additional solute to control tonicity.

[0082] For use by the physician, the compositions will be provided in dosage unit form containing an amount of an exendin or exendin agonist, for example, exendin-3, and/or exendin-4, with or without another glucose-lowering agent. Therapeutically effective amounts of an exendin or exendin agonist for use treating a subject with gestational diabetes mellitus are those that lower blood glucose to a desired level. As will be recognized by those in the field, an effective amount of therapeutic agent will vary with many factors including the age and weight of the patient, the patient's physical condition, the blood glucose level and other factors.

[0083] The effective daily blood glucose controlling dose of the compounds will typically be in the range of about 3 to 30 μ g to about 1 mg/day, preferably about 1 to 30 μ g to about 500 μ g/day and more preferably about 1 to 30 μ g to about 100 μ g/day, most preferably about 3 μ g to about 50 μ g/day, for a 70 kg patient, administered in a single or divided doses. Preferred dosages are described in PCT/US00/00902 entitled, "Novel Exendin Agonist Formulations and Methods of Administration Thereof." A preferred dose for twice daily administration is about 0.05 to about 0.3 μ g per kilogram. The exact dose to be administered is determined by the attending clinician and is dependent upon where the particular compound lies within the above quoted range, as well as upon the age, weight and condition of the individual, and the mode of administration. Administration should begin shortly after diagnosis of GDM and continue for the remainder of the gestation (i.e., the third trimester through parturition). Administration may be by injection, preferably subcutaneous or intramuscular. Administration may also be by non-injectable routes, for example, via the respiratory tract, the mouth and the gut. Orally active compounds may be taken orally, however dosages should be increased 5-10 fold. Preferred methods of administration are described in PCT/US 00/00902 entitled, "Novel Exendin Agonist Formulations and Methods of Administration Thereof," filed January 14, 1999. Solid dosage forms, such as those useful for oral, buccal, sublingual, intra-tracheal, nasal or pulmonary delivery may be used. Additionally, preserved or unpreserved liquid formulations or dry powder may be used.

[0084] The optimal formulation and mode of administration of compounds of the present application to a patient depend on factors known in the art such as the particular disease or disorder, the desired effect, and the type of patient. While the compounds will typically be used to treat human subjects they may also be used to treat similar or identical diseases in other vertebrates such as other primates, farm animals such as swine, cattle and poultry, and sports animals and pets such as horses, dogs and cats.

[0085] To assist in understanding the present invention, the following Examples are included. The experiments relating to this invention should not, of course, be construed as specifically limiting the invention and such variations of the

invention, now known or later developed, which would be within the purview of one skilled in the art are considered to fall within the scope of the invention as described herein and hereinafter claimed.

Example 1

5

Preparation of amidated peptide having SEQ. ID. NO. 9

[0086] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.). In general, single-coupling cycles were used throughout the synthesis and Fast Moc (HBTU activation) chemistry was employed. However, at some positions coupling was less efficient than expected and double couplings were required. In particular, residues Asp₉, Thr₇ and Phe₆ all required double coupling. Deprotection (Fmoc group removal) of the growing peptide chain using piperidine was not always efficient. Double deprotection was required at positions Arg₂₀, Val₁₉ and Leu₁₄. Final deprotection of the completed peptide resin was achieved using a mixture of triethylsilane (0.2 mL), ethanedithiol (0.2 mL), anisole (0.2 mL), water (0.2 mL) and trifluoroacetic acid (15 mL) according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc.) The peptide was precipitated in ether/water (50 mL) and centrifuged. The precipitate was reconstituted in glacial acetic acid and lyophilized. The lyophilized peptide was dissolved in water. Crude purity was about 55%.

[0087] Used in purification steps and analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN).

20

[0088] The solution containing peptide was applied to a preparative C-18 column and purified (10% to 40% Solvent B in Solvent A over 40 minutes). Purity of fractions was determined isocratically using a C-18 analytical column. Pure fractions were pooled furnishing the above-identified peptide. Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.5 minutes. Electrospray Mass Spectrometry (M): calculated 4131.7; found 4129.3.

25

Example 2

Preparation of Peptide having SEQ. ID. NO. 10

30

[0089] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 5. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 25% to 75% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 21.5 minutes. Electrospray Mass Spectrometry (M): calculated 4168.6; found 4171.2.

Example 3

40

Preparation of Peptide having SEQ. ID. NO. 11

45

[0090] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.9 minutes. Electrospray Mass Spectrometry (M): calculated 4147.6; found 4150.2.

Example 3

50

Preparation of Peptide having SEQ. ID. NO. 12

55

[0091] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 65% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 19.7 minutes. Electrospray Mass Spectrometry (M): calculated 4212.6; found 4213.2.

Example 4Preparation of Peptide having SEQ. ID. NO. 13

5 [0092] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A
(0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 50% Solvent B in Solvent
A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 16.3 minutes.
10 Electrospray Mass Spectrometry (M): calculated 4262.7; found 4262.4.

Example 5Preparation of Peptide having SEQ. ID. NO. 14

15 [0093] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A
(0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent
20 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
Electrospray Mass Spectrometry (M): calculated 4172.6

Example 6Preparation of Peptide having SEQ. ID. NO. 15

25 [0094] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A
(0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent
30 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
Electrospray Mass Spectrometry (M): calculated 4224.7.

Example 7Preparation of Peptide having SEQ. ID. NO. 16

35 [0095] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A
(0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent
40 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
Electrospray Mass Spectrometry (M): calculated 4172.6

Example 8Preparation of Peptide having SEQ. ID. NO. 17

45 [0096] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A
(0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent
50 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
Electrospray Mass Spectrometry (M): calculated 4186.6

Example 9Preparation of Peptide having SEQ. ID. NO. 18

5 [0097] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

10 Electrospray Mass Spectrometry (M): calculated 4200.7

EXAMPLE 10Preparation of Peptide having SEQ. ID. NO. 19

15 [0098] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

20 Electrospray Mass Spectrometry (M): calculated 4200.7

Example 11Preparation of Peptide having SEQ. ID. NO. 20

25 [0099] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

30 Electrospray Mass Spectrometry (M): calculated 4202.7.

Example 12Preparation of Peptide having SEQ. ID. NO. 21

35 [0100] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

40 Electrospray Mass Spectrometry (M): calculated 4145.6.

Example 13Preparation of Peptide having SEQ. ID. NO. 22

45 [0101] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

50 Electrospray Mass Spectrometry (M): calculated 4184.6.

Example 14Preparation of Peptide having SEQ. ID. NO. 23

5 [0102] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

10 Electrospray Mass Spectrometry (M): calculated 4145.6.

Example 15Preparation of Peptide having SEQ. ID. NO. 24

15 [0103] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

20 Electrospray Mass Spectrometry (M): calculated 4224.7.

Example 16Preparation of Peptide having SEQ. ID. NO. 25

25 [0104] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

30 Electrospray Mass Spectrometry (M): calculated 4172.6.

Example 17Preparation of Peptide having SEQ. ID. NO. 26

35 [0105] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

40 Electrospray Mass Spectrometry (M): calculated 4115.5.

Example 18Preparation of Peptide having SEQ. ID. NO. 27

45 [0106] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

50 Electrospray Mass Spectrometry (M): calculated 4188.6.

Example 19Preparation of Peptide having SEQ. ID. NO. 28

5 [0107] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

10 Electrospray Mass Spectrometry (M): calculated 4131.6.

Example 20Preparation of Peptide having SEQ. ID. NO. 29

15 [0108] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

20 Electrospray Mass Spectrometry (M): calculated 4172.6.

Example 21Preparation of Peptide having SEQ. ID. NO. 30

25 [0109] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

30 Electrospray Mass Spectrometry (M): calculated 4145.6.

Example 22Preparation of Peptide having SEQ. ID. NO. 31

35 [0110] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the thioproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4266.8.

Example 23Preparation of Peptide having SEQ. ID. NO. 32

50 [0111] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the thioproline positions 38, 37 and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4246.8.

Example 24Preparation of Peptide having SEQ. ID. NO. 33

5 [0112] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the homoproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the 10 lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4250.8.

Example 25Preparation of Peptide having SEQ. ID. NO. 34

15 [0113] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are 20 required at the homoproline positions 38, 37, and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4234.8.

Example 26Preparation of Peptide having SEQ. ID. NO. 35

25 [0114] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are 30 required at the thioproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4209.8.

Example 27Preparation of Peptide having SEQ. ID. NO. 36

40 [0115] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are 45 required at the homoproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4193.7.

Example 28Preparation of Peptide having SEQ. ID. NO. 37

50 [0116] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are 55 required at the N-methylalanine positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass

Spectrometry (M): calculated 3858.2.

Example 29

5 Preparation of Peptide having SEQ. ID. NO. 38

10 [0117] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the N-methylalanine positions 38, 37 and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3940.3.

15 Example 30

Preparation of Peptide having SEQ. ID. NO. 39

20 [0118] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the N-methylalanine positions 30, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3801.1.

Example 31

Preparation of C-terminal carboxylic acid Peptides corresponding to the above C-terminal amide sequences.

30 [0119] The above peptides of Examples 1-5 to 30 are assembled on the so called Wang resin (p-alkoxybenzylalcohol resin (Bachem, 0.54 mmole/g)) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

Example 32

40 Preparation of Peptide having SEQ. ID NO.7

[0120]

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly-
NH₂ [SEQ. ID. NO. 7]

50 [0121] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.). In general, single-coupling cycles were used throughout the synthesis and Fast Moc (HBTU activation) chemistry was employed. Deprotection (Fmoc group removal) of the growing peptide chain was achieved using piperidine. Final deprotection of the completed peptide resin was achieved using a mixture of triethylsilane (0.2 mL), ethanedithiol (0.2 mL), anisole (0.2 mL), water (0.2 mL) and trifluoroacetic acid (15 mL) according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc.) The peptide was precipitated in ether/water (50 mL) and centrifuged. The precipitate was reconstituted in glacial acetic acid and lyophilized. The lyophilized peptide was dissolved in water. Crude purity was about 75%.

[0122] Used in purification steps and analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN).
 [0123] The solution containing peptide was applied to a preparative C-18 column and purified (10% to 40% Solvent B in Solvent A over 40 minutes). Purity of fractions was determined isocratically using a C-18 analytical column. Pure fractions were pooled furnishing the above-identified peptide. Analytical RP-HPLC (gradient 30% to 50% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 18.9 minutes. Electrospray Mass Spectrometry (M): calculated 3408.0; found 3408.9.

Example 33

10 Preparation of Peptide having SEQ ID NO. 40

[0124]

15 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 40]

20 [0125] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy aceta-
 mide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems,
 Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A
 (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 40% Solvent B in Solvent
 A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.9 minutes.
 25 Electrospray Mass Spectrometry (M): calculated 3294.7; found 3294.8.

Example 34

30 Preparation of Peptide having SEQ ID NO. 41

[0126]

35 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 41]

40 [0127] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 29% to 36% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 20.7 minutes. Electrospray Mass Spectrometry (M): calculated 3237.6; found 3240.

45 Example 35

Preparation of Peptide having SEQ ID NO. 42

50 [0128]

55 His Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 42]

[0129] The above amidated peptide was assembled on 9-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acet-

amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 36% to 46% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 15.2 minutes.

5 Electrospray Mass Spectrometry (M): calculated 3251.6; found 3251.5.

Example 36

Preparation of Peptide having SEQ ID NO. 43

10

[0130]

15 His Gly Glu Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 43]

20 [0131] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 36% to 46% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 13.1 minutes. Electrospray Mass Spectrometry (M): calculated 3207.6; found 3208.3.

25

Example 37

Preparation of Peptide having SEQ ID NO. 44

30

[0132]

35 His Gly Glu Gly Thr Ala Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 44]

40 [0133] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 45% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 12.8 minutes. Electrospray Mass Spectrometry (M): calculated 3161.5; found 3163.

45

Example 38

Preparation of Peptide having SEQ ID NO. 45

50

[0134]

55

His Gly Glu Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Leu Glu
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 45]

56 [0135] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied

Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 36% to 46% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 15.2 minutes. Electrospray Mass Spectrometry (M): calculated 3221.6; found 3222.7.

5

Example 39

Preparation of Peptide having SEQ ID NO. 46

10 [0136]

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu
 15 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 46]

[0137] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 34% to 44% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.3 minutes. Electrospray Mass Spectrometry (M): calculated 3195.5; found 3199.4.

25

Example 40

Preparation of Peptide having SEQ ID NO. 47

30 [0138]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Leu Glu
 35 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 47]

40

[0139] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 38% to 48% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 15.7 minutes. Electrospray Mass Spectrometry (M): calculated 3221.6; found 3221.6.

45

Example 41

Preparation of Peptide having SEQ ID NO. 48

50 [0140]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Leu Glu
 55 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 48]

55

[0141] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis

were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 38% to 48% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 18.1 minutes. Electrospray Mass Spectrometry (M): calculated 3180.5; found 3180.9.

5 Example 42Preparation of Peptide having SEQ ID NO. 49

[0142]

10

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.

15

ID. NO. 49]

[0143] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis 20 were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 36% to 46% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.0 minutes. Electrospray Mass Spectrometry (M): calculated 3180.6; found 3182.8.

25

Example 43Preparation of Peptide having SEQ ID NO. 50

[0144]

30

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 50]

35

[0145] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis 40 were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 32% to 42% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.9 minutes. Electrospray Mass Spectrometry (M): calculated 3195.5; found 3195.9.

Example 44

45

Preparation of Peptide having SEQ ID NO. 51

[0146]

50

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Ala
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 51]

55

[0147] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 37% to 47%

Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.9 minutes. Electrospray Mass Spectrometry (M): calculated 3179.6; found 3179.0.

Example 45

5

Preparation of Peptide having SEQ ID NO. 52

[0148]

10

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Ala Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 52]

15

[0149] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 37% to 47% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.3 minutes. Electrospray Mass Spectrometry (M): calculated 3179.6; found 3180.0.

Example 46

25

Preparation of Peptide having SEQ ID NO. 53

[0150]

30

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Ala Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 53]

35

[0151] The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 37% to 47% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 13.7 minutes. Electrospray Mass Spectrometry (M): calculated 3179.6; found 3179.0.

Example 47

45

Preparation of Peptide having SEQ ID NO. 54

[0152]

50

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Ala Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 54]

55

[0153] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 45% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention

time of 14.0 minutes. Electrospray Mass Spectrometry (M): calculated 3209.6; found 3212.8.

Example 48

5 Preparation of Peptide having SEQ ID NO. 55

[0154]

10 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Ala Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 55]

15 [0155] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 38% to 48% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.3 minutes. Electrospray Mass Spectrometry (M): calculated 3152.5; found 3153.5.

Example 49

25 Preparation of Peptide having SEQ ID NO. 56

[0156]

30 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Ala Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 56]

35 [0157] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 45% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 12.1 minutes. Electrospray Mass Spectrometry (M): calculated 3195.5; found 3197.7.

40 Example 50

45 Preparation of Peptide having SEQ ID NO. 57

[0158]

50 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Ala Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 57]

55 [0159] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 38% to 48% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 10.9 minutes. Electrospray Mass Spectrometry (M): calculated 3179.6; found 3180.5.

Example 51Preparation of Peptide having SEQ ID NO. 58

5 [0160]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 58]

15 [0161] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 32% to 42% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.5 minutes. Electrospray Mass Spectrometry (M): calculated 3161.5; found 3163.0.

20 Example 52Preparation of Peptide having SEQ ID NO. 59

25 [0162]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Ala Lys Asn-NH₂ [SEQ.
 30 ID. NO. 59]

35 [0163] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 32% to 42% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 19.5 minutes. Electrospray Mass Spectrometry (M): calculated 3195.5; found 3199.

40 Example 53Preparation of Peptide having SEQ ID NO. 60

45 [0164]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Ala Asn-NH₂ [SEQ.
 50 ID. NO. 60]

55 [0165] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 38% to 48% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.5 minutes. Electrospray Mass Spectrometry (M): calculated 3180.5; found 3183.7.

Example 54Preparation of Peptide having SEQ ID NO. 61

5 [0166]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Ala-*NH₂* [SEQ.
 ID. NO. 61]

15 [0167] The above-identified amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 34% to 44% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 22.8 minutes. Electrospray Mass Spectrometry (M): calculated 3194.6; found 3197.6.

20 Example 55Preparation of Peptide having SEQ ID NO. 62

25 [0168]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly Ala Pro Pro Pro-*NH₂* [SEQ. ID. NO. 62]

35 [0169] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4099.6.

40 Example 56Preparation of Peptide having SEQ ID NO. 63

45 [0170]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala Pro Pro Pro-*NH₂* [SEQ. ID. NO. 63]

50

55 [0171] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4042.5.

Example 57Preparation of Peptide having SEQ ID NO. 64

5 [0172]

10 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 10 Pro Ser Ser Gly Ala Pro Pro-NH₂ [SEQ. ID. NO. 64]

15 [0173] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30-minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4002.4

20 Example 58Preparation of Peptide having SEQ ID NO. 65

25 [0174]

30 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly Ala Pro Pro-NH₂ [SEQ. ID. NO. 65]

35 [0175] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3945.4.

40 Example 59Preparation of Peptide having SEQ ID NO. 66

45 [0176]

50 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 50 Pro Ser Ser Gly Ala Pro Pro-NH₂ [SEQ. ID. NO. 66]

55 [0177] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g), using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3905.3.

Example 60

Preparation of Peptide having SEQ ID NO. 67

5 [0178]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
15 Pro Ser Ser Gly Ala Pro-NH₂ [SEQ. ID. NO. 67]

[0179] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3848.2.

20 Example 61

Preparation of Peptide having SEQ ID NO. 68

25 [0180]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
30 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 68]

[0181] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3808.2.

40 Example 62

Preparation of Peptide having SEQ ID NO. 69

45 [0182]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
50 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 69]

[0183] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3751.1.

Example 63Preparation of Peptide having SEQ ID NO. 70

5 [0184]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly-NH₂ [SEQ. ID. NO. 70]

15 [0185] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3737.1.

20 Example 64Preparation of Peptide having SEQ ID NO. 71

25 [0186]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly-NH₂ [SEQ. ID. NO. 71]

35 [0187] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3680.1.

40 Example 65Preparation of Peptide having SEQ ID NO. 72

45 [0188]

| His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 | Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 | Pro Ser Ser-NH₂ [SEQ. ID. NO. 72]

50

55 [0189] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3680.1

Example 66Preparation of Peptide having SEQ ID NO. 73

5 [0190]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu
 10 Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly
 Gly Pro Ser Ser-NH₂ [SEQ. ID. NO. 73]

15 [0191] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3623.0.

20 Example 67Preparation of Peptide having SEQ ID NO. 74

25 [0192]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser-NH₂ [SEQ. ID. NO. 74]

35 [0193] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3593.0

40 Example 68Preparation of Peptide having SEQ ID NO. 75

45 [0194]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 Pro Ser-NH₂ [SEQ. ID. NO. 75]

50

55 [0195] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3535.9

Example 69

Preparation of Peptide having SEQ ID NO. 76

5 [0196]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
10 Pro-NH₂ [SEQ. ID. NO. 76]

Example 70

Preparation of Peptide having SEQ ID NO. 77

15 [0197]

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
Pro-NH₂ [SEQ. ID. NO. 77]

25 [0198] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
30 Electrospray Mass Spectrometry (M): calculated 3448.8.

Example 71

Preparation of Peptide having SEQ ID NO. 78

35

[0199]

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly-
NH₂ [SEQ. ID. NO. 78]

45 [0200] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.
50 Electrospray Mass Spectrometry (M): calculated 3351.7.

Example 72

Preparation of Peptide having SEQ ID NO. 79

55 [0201]

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly-NH₂
5 [SEQ. ID. NO. 79]

[0202] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3351.8.

Example 73

15 Preparation of Peptide having SEQ ID NO. 80

[0203]

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly-NH₂
[SEQ. ID. NO. 80]

25 [0204] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent 30 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3294.7.

Example 74

35 Preparation of Peptide having SEQ ID NO. 81

[0205]

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
tPro Ser Ser Gly Ala tPro tPro tPro-NH₂ [SEQ. ID. NO. 81]

45 [0206] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Double couplings are required at residues 37,36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4197.1.

Example 75

55 Preparation of Peptide having SEQ ID NO. 82

[0207]

5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala tPro tPro tPro-NH₂ [SEQ. ID. NO. 82]

10 [0208] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Double couplings are required at residues 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4179.1.

15 Example 76

Preparation of Peptide having SEQ ID NO. 83

20 [0209]

25 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 NMeala Ser Ser Gly Ala Pro Pro-NH₂ [SEQ. ID. NO. 83]

30 [0210] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Double couplings are required at residues 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3948.3.

35 Example 77

Preparation of Peptide having SEQ ID NO. 84

40 [0211]

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 NMeala Ser Ser Gly Ala NMeala Nmeala-NH₂ [SEQ. ID. NO. 84]

50 [0212] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Double couplings are required at residues 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3840.1.

55 Example 78

Preparation of Peptide having SEQ ID NO. 85

60 [0213]

5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 hPro Ser Ser Gly Ala hPro hPro-NH₂ [SEQ. ID. NO. 85]

10 [0214] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Double couplings are required at residues 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4050.1.

Example 79

15 Preparation of Peptide having SEQ ID NO. 86

[0215]

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 hPro Ser Ser Gly Ala hPro-NH₂ [SEQ. ID. NO. 86]

25 [0216] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. A double coupling is required at residue 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3937.1

Example 80

35 Preparation of Peptide having SEQ ID NO. 87

[0217]

40 Arg Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 87]

45 [0218] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

50 Electrospray Mass Spectrometry (M): calculated 3827.2.

Example 81

55 Preparation of Peptide having SEQ ID NO. 88

[0219]

5 His Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly-
NH₂ [SEQ. ID. NO. 88]

10 [0220] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3394.8.

Example 82

15 Preparation of Peptide having SEQ ID NO. 89

[0221]

20 His Gly Glu Gly Thr Naphthylala Thr Ser Asp Leu Ser Lys Gln
Leu Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-
NH₂ [SEQ. ID. NO. 89]

25 [0222] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3289.5.

Example 83

35 Preparation of Peptide having SEQ ID NO. 90

[0223]

40 His Gly Glu Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
ID. NO. 90]

45 [0224] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3280.7.

Example 84

55 Preparation of Peptide having SEQ ID NO. 91

[0225]

His Gly Glu Gly Thr Phe Ser Thr Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 5 ID. NO. 91]

[0226] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent 10 A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3294.7.

Example 85

Preparation of Peptide having SEQ ID NO. 92

[0227]

20 His Gly Glu Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Met Ala
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 92]

25 [0228] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent 30 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3250.7.

Example 86

Preparation of Peptide having SEQ ID NO. 93

[0229]

40 His Gly Glu Gly Thr Phe Thr Ser Asp pentylgly Ser Lys Gln
 Leu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-
 NH₂ [SEQ. ID. NO. 93]

45 [0230] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent 50 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3253.5.

Example 87

Preparation of Peptide having SEQ ID NO. 94

55 [0231]

5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Naphthylala Ile Glu Phe Leu Lys Asn-
 NH₂ [SEQ. ID. NO. 94]

10 [0232] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3289.5.

15 Example 88

Preparation of Peptide having SEQ ID NO. 95

[0233]

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe tButylgly Glu Trp Leu Lys Asn-NH₂
 [SEQ. ID. NO. 95]

25 [0234] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3183.4.

Example 89

35 Preparation of Peptide having SEQ ID NO. 96

[0235]

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Asp Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 96]

45 [0236] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3237.6.

Example 90

Preparation of Peptide having SEQ ID NO. 97

55 [0237]

5 His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 Pro Ser Ser-NH₂ [SEQ. ID. NO. 97]

[0238] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent 10 A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3637.9.

Example 91

15 Preparation of Peptide having SEQ ID NO. 98

[0239]

20 His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly-NH₂
 [SEQ. ID. NO. 98]

25 [0240] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent 30 A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3309.7.

Example 92

35 Preparation of Peptide having SEQ ID NO. 99

[0241]

40 His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 hPro Ser Ser Gly Ala hPro hPro-NH₂ [SEQ. ID. NO. 99]

45 [0242] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 37. Double couplings are required at residues 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then 50 carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3711.1.

Example 93

55 Preparation of C-terminal carboxylic acid peptides corresponding to the above C-terminal amide sequences for SEQ ID NOS. 7, 40-61, 68-75, 78-80 and 87-96

[0243] Peptides having the sequences of SEQ ID NOS. 7, 40-61, 68-75, 78-80 and 87-96 are assembled on the so called Wang resin (p-alkoxybenzylalcohol resin (Bachem, 0.54 mmole/g)) using Fmoc-protected amino acids (Applied

Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

5

Example 94

Preparation of C-terminal carboxylic acid peptides corresponding to the above C-terminal amide sequences for SEQ ID NOS. 62-67, 76, 77 and 81-86

10

[0244] Peptides having the sequences of SEQ ID NOS. 62-67, 76, 77 and 81-86 are assembled on the 2-chlorotriptychylchloride resin (200-400 mesh), 2% DVB (Novabiochem, 0.4-1.0 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 32. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

15

Example 95

20 Preparation of Peptide having SEQ ID NO. 100

[0245]

25 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 100]

30 [0246] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.). In general, single-coupling cycles were used throughout the synthesis and Fast Moc (HBTU activation) chemistry was employed. Deprotection (Fmoc group removal) of the growing peptide chain was achieved using piperidine. Final deprotection of the completed peptide resin was achieved using a mixture of triethylsilane (0.2 mL), ethanedithiol (0.2 mL), anisole (0.2 mL), water (0.2 mL) and trifluoroacetic acid (15 mL) according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc.) The peptide was precipitated in ether/water (50 mL) and centrifuged. The precipitate was reconstituted in glacial acetic acid and lyophilized. The lyophilized peptide was dissolved in water. Crude purity was about 75%.

35 [0247] Used in purification steps and analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN).

40 [0248] The solution containing peptide was applied to a preparative C-18 column and purified (10% to 40% Solvent B in Solvent A over 40 minutes). Purity of fractions was determined isocratically using a C-18 analytical column. Pure fractions were pooled furnishing the above-identified peptide. Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 19.2 minutes. Electrospray Mass Spectrometry (M): calculated 3171.6; found 3172.

45

Example 96

Preparation of Peptide having SEQ ID NO. 101

50 [0249]

55 His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 101]

[0250] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acet-

amide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 36% to 46% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.9 minutes.

5 Electrospray Mass Spectrometry (M): calculated 3179.6; found 3180.

Example 97

Preparation of Peptide having SEQ ID NO. 102

10

[0251]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 15 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 102]

20 [0252] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 37% to 47% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 12.2 minutes. Electrospray Mass Spectrometry (M): calculated 3251.6; found 3253.3.

25

Example 98

Preparation of Peptide having SEQ ID NO. 103

30

[0253]

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu
 35 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 103]

40 [0254] The above amidated peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 45% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 16.3 minutes. Electrospray Mass Spectrometry (M): calculated 3193.6; found 3197.

45

Example 99

Preparation of Peptide having SEQ ID NO. 104

50

[0255]

55

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 104]

55 [0256] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosys-

tems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3228.6.

5

Example 100

Preparation of Peptide having SEQ ID NO. 105

10 [0257]

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 15 ID. NO. 105]

[0258] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3234.7.

25

Example 101

Preparation of Peptide having SEQ ID NO. 106

30 [0259]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂
 35 [SEQ. ID. NO. 106]

[0260] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3308.7.

45

Example 102

Preparation of Peptide having SEQ ID NO. 107

50 [0261]

55

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 107]

[0262] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent

A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3250.7.

5 Example 103

Preparation of Peptide having SEQ ID NO. 108

[0263]

10

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
15 ID. NO. 108]

[0264] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3252.6.

25

Example 104

Preparation of Peptide having SEQ ID NO. 109

[0265]

30

Ala Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
ID. NO. 109]

35

[0266] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3200.6.

40

Example 105

45

Preparation of Peptide having SEQ ID NO. 110

[0267]

50

Ala Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 110]

55

[0268] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent

A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3143.5.

Example 106

5

Preparation of Peptide having SEQ ID NO. 111

[0269]

10 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
ID. NO. 111]

15

[0270] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3214.6.

Example 107

25

Preparation of Peptide having SEQ ID NO. 112

[0271]

30 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 112]

35

[0272] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3157.5.

Example 108

45

Preparation of Peptide having SEQ ID NO. 113

[0273]

50 Ala Gly Asp Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
ID. NO. 113]

55

[0274] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

Electrospray Mass Spectrometry (M): calculated 3184.6.

Example 109

5 Preparation of Peptide having SEQ ID NO. 114

[0275]

10 Ala Gly Asp Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
ID. NO. 114]

15 [0276] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

20 Electrospray Mass Spectrometry (M): calculated 3127.5.

Example 110

Preparation of Peptide having SEQ ID NO. 115

25

[0277]

30 Ala Gly Asp Gly Thr NaphthylAla Thr Ser Asp Leu Ser Lys Gln
Met Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-
NH₂ [SEQ. ID. NO. 115]

35 [0278] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

40 Electrospray Mass Spectrometry (M): calculated 3266.4.

EXAMPLE 111

Preparation of Peptide having SEQ ID NO. 116

45 [0279]

50 Ala Gly Asp Gly Thr Naphthylala Thr Ser Asp Leu Ser Lys Gln
Leu Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-
NH₂ [SEQ. ID. NO. 116]

55 [0280] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide.

Electrospray Mass Spectrometry (M): calculated 3209.4.

Example 112

Preparation of Peptide having SEQ ID NO. 117

5 [0281]

Ala Gly Asp Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Met Glu
10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
10 ID. NO. 117]

[0282] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3200.6.

20 Example 113

Preparation of Peptide having SEQ ID NO. 118

25 [0283]

Ala Gly Asp Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Leu Glu
30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
30 ID. NO. 118]

[0284] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3143.5.

40 Example 114

Preparation of Peptide having SEQ ID NO. 119

45 [0285]

Ala Gly Asp Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Met Glu
50 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
50 ID. NO. 119]

[0286] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3198.6.

Example 115Preparation of Peptide having SEQ ID NO. 120

5 [0287]

Ala Gly Asp Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 120]

15 [0288] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3141.5.

20 Example 116Preparation of Peptide having SEQ ID NO. 121

25 [0289]

Ala Gly Asp Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 121]

35 [0290] The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3170.6.

40 Example 117Preparation of Peptide having SEQ ID NO. 122

45 [0291]

Ala Gly Asp Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 50 ID. NO. 122]

55 [0292] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3113.5.

Example 118Preparation of Peptide having SEQ ID NO. 123

5 [0293]

Ala Gly Asp Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 123]

[0294] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3228.6.

20 Example 119Preparation of Peptide having SEQ ID NO. 124

25 [0295]

Ala Gly Asp Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Leu Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 124]

[0296] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3171.6.

40 Example 120Preparation of Peptide having SEQ ID NO. 125

45 [0297]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 50 ID. NO. 125]

[0298] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3172.5.

Example 121Preparation of Peptide having SEQ ID NO. 126

5 [0299]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 126]

[0300] The above-identified amidated peptiden is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3115.4.

20 Example 122Preparation of Peptide having SEQ ID NO. 127

25 [0301]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Pentylgly Ser Lys Gln
 Met Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-
 30 NH₂ [SEQ. ID. NO. 127]

[0302] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3230.4.

40 Example 123Preparation of Peptide having SEQ ID NO. 128

45 [0303]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Pentylgly Ser Lys
 Gln Leu Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys
 Asn-NH₂ [SEQ. ID. NO. 128]

50

[0304] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3198.6.

Example 124Preparation of Peptide having SEQ ID NO. 129

5 [0305]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 129]

15 [0306] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3141.5.

20 Example 125Preparation of Peptide having SEQ ID NO. 130

25 [0307]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Leu Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 130]

35 [0308] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3157.5.

40 Example 126Preparation of Peptide having SEQ ID NO. 131

45 [0309]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Met Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 50 ID. NO. 131]

55 [0310] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3100.4.

Example 127Preparation of Peptide having SEQ ID NO. 132

5 [0311]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 132]

[0312] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3157.6.

20 Example 128Preparation of Peptide having SEQ ID NO. 133

25 [0313]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Met Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 133]

[0314] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3100.5.

40 Example 129Preparation of Peptide having SEQ ID NO. 134

45 [0315]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Leu Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 50 ID. NO. 134]

[0316] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3100.5.

Example 130

Preparation of Peptide having SEQ ID NO. 135

5 [0317]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu
10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
10 ID. NO. 135]

15 [0318] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3154.5.

20 Example 131

Preparation of Peptide having SEQ ID NO. 136

25 [0319]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu
30 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
30 ID. NO. 136]

35 [0320] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3115.5.

40 Example 132

Preparation of Peptide having SEQ ID NO. 137

45 [0321]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln
Pentylgly Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu
50 Lys Asn-NH₂ [SEQ. ID. NO. 137]

55

[0322] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3212.4.

Example 133Preparation of Peptide having SEQ ID NO. 138

5 [0323]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln
 10 Pentylgly Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu
 15 Lys Asn-NH₂ [SEQ. ID. NO. 138]

[0324] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3173.4.

20 Example 134Preparation of Peptide having SEQ ID NO. 139

25 [0325]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Ala
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 139]

[0326] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3156.6.

40 Example 135Preparation of Peptide having SEQ ID NO. 140

45 [0327]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Ala
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 50 ID. NO. 140]

[0328] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3099.5.

Example 136Preparation of Peptide having SEQ ID NO. 141

5 [0329]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Ala Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
10 ID. NO. 141]

15 [0330] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3156.6.

20 Example 137Preparation of Peptide having SEQ ID NO. 142

25 [0331]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Ala Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
30 ID. NO. 142]

35 [0332] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3099.5.

40 Example 138Preparation of Peptide having SEQ ID NO. 143

45 [0333]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Ala Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
50 ID. NO. 143]

55 [0334] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3156.6.

Example 139Preparation of Peptide having SEQ ID NO. 144

5 [0335]

10 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Ala Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
10 ID. NO. 144]

15 [0336] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3099.5.

20 Example 140Preparation of Peptide having SEQ ID NO. 145

25 [0337]

30 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Ala Arg Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
30 ID. NO. 145]

35 [0338] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3186.6.

40 Example 141Preparation of Peptide having SEQ ID NO. 146

45 [0339]

50 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Ala Arg Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
50 ID. NO. 146]

55 [0340] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3129.5.

Example 142Preparation of Peptide having SEQ ID NO. 147

5 [0341]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Ala Leu Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
10 ID. NO. 147]

15 [0342] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3129.5.

20 Example 143Preparation of Peptide having SEQ ID NO. 148

25 [0343]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
Glu Glu Ala Val Ala Leu Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
30 ID. NO. 148]

35 [0344] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3072.4.

40 Example 144Preparation of Peptide having SEQ ID NO. 149

45 [0345]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu Glu Ala Val Arg Ala Phe Ile Glu Trp Leu Lys Asn-NH₂ [SEQ.
50 ID. NO. 149]

55 [0346] The above-identified amidated peptide is assembled on 4-(2' 4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3172.5.

Example 145Preparation of Peptide having SEQ ID NO. 150

5 [0347]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Ala Phe Ile Glu Phe Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 150]

[0348] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3115.5.

20 Example 146Preparation of Peptide having SEQ ID NO. 151

25 [0349]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Naphthylala Ile Glu Trp Leu Lys Asn-
 30 NH₂ [SEQ. ID. NO. 151]

[0350] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3266.4.

40 Example 147Preparation of Peptide having SEQ ID NO. 152

45 [0351]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Naphthylala Ile Glu Phe Leu Lys Asn-
 NH₂ [SEQ. ID. NO. 152]

50

[0352] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3209.4.

Example 148Preparation of Peptide having SEQ ID NO. 153

5 [0353]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Val Glu Trp Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 153]

15 [0354] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3200.6.

20 Example 149Preparation of Peptide having SEQ ID NO. 154

25 [0355]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Val Glu Phe Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 154]

35 [0356] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3143.5.

40 Example 150Preparation of Peptide having SEQ ID NO. 155

45 [0357]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe tButylgly Glu Trp Leu Lys Asn-NH₂
 [SEQ. ID. NO. 155]

50

55 [0358] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3216.5.

Example 151Preparation of Peptide having SEQ ID NO. 156

5 [0359]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe tButylgly Glu Phe Leu Lys Asn-NH₂
 15 [SEQ. ID. NO. 156]

[0360] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3159.4.

20 Example 152Preparation of Peptide having SEQ ID NO. 157

25 [0361]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Asp Trp Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 157]

[0362] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3200.6.

40 Example 153Preparation of Peptide having SEQ ID NO. 158

45 [0363]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Asp Phe Leu Lys Asn-NH₂ [SEQ.
 ID. NO. 158]

[0364] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3143.5.

Example 154Preparation of Peptide having SEQ ID NO. 159

5 [0365]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn-NH₂ [SEQ.
 10 ID. NO. 159]

15 [0366] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3099.5.

20 Example 155Preparation of Peptide having SEQ ID NO. 160

25 [0367]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn-NH₂ [SEQ.
 30 ID. NO. 160]

35 [0368] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3081.4.

40 Example 156Preparation of Peptide having SEQ ID NO. 161

45 [0369]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Ala Lys Asn-NH₂ [SEQ.
 50 ID. NO. 161]

55 [0370] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3172.5.

Example 157Preparation of Peptide having SEQ ID NO. 162

5 [0371]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Ala Lys Asn-NH₂ [SEQ.
10 ID. NO. 162]

15 [0372] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3115.5.

20 Example 158Preparation of Peptide having SEQ ID NO. 163

25 [0373]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
30 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Ala Asn-NH₂ [SEQ.
30 ID. NO. 163]

35 [0374] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3157.5.

40 Example 159Preparation of Peptide having SEQ ID NO. 164

45 [0375]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
50 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Ala Asn-NH₂ [SEQ.
50 ID. NO. 164]

55 [0376] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3100.4.

Example 160Preparation of Peptide having SEQ ID NO. 165

5 [0377]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Ala-*NH₂* [SEQ.
 10 ID. NO. 165]

15 [0378] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3171.6.

20 Example 161Preparation of Peptide having SEQ ID NO. 166

25 [0379]

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Ala-*NH₂* [SEQ.
 30 ID. NO. 166]

35 [0380] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3114.5.

40 Example 162Preparation of Peptide having SEQ ID NO. 167

45 [0381]

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala Pro Pro Pro-*NH₂* [SEQ. ID. NO. 167]

50

55 [0382] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4033.5.

Example 163Preparation of Peptide having SEQ ID NO. 168

5 [0383]

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala Pro Pro Pro-NH₂ [SEQ. ID. NO. 168]

15 [0384] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3984.4.

20 Example 164Preparation of Peptide having SEQ ID NO. 169

25 [0385]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly Ala Pro Pro-NH₂ [SEQ. ID. NO. 169]

35 [0386] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4016.5.

40 Example 165Preparation of Peptide having SEQ ID NO. 170

45 [0387]

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala Pro-NH₂ [SEQ. ID. NO. 170]

50

55 [0388] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3861.3.

Example 166Preparation of Peptide having SEQ ID NO. 171

5 [0389]

10 Ala Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu
 10 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 10 Pro Ser Ser Gly Ala Pro-NH₂ [SEQ. ID. NO. 171]

15 [0390] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3746.1.

20 Example 167Preparation of Peptide having SEQ ID NO. 172

25 [0391]

30 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 30 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 172]

35 [0392] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3742.1.

40 Example 168Preparation of Peptide having SEQ ID NO. 173

45 [0393]

50 His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 50 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 50 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 173]

55 [0394] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3693.1.

Example 169Preparation of Peptide having SEQ ID NO. 174

5 [0395]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser Ser Gly-NH₂ [SEQ. ID. NO. 174]

15 [0396] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3751.2.

20 Example 170Preparation of Peptide having SEQ ID NO. 175

25 [0397]

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser Ser-NH₂ [SEQ. ID. NO. 175]

35 [0398] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3634.1.

40 Example 171Preparation of Peptide having SEQ ID NO. 176

45 [0399]

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 Pro Ser-NH₂ [SEQ. ID. NO. 176]

50

55 [0400] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3526.9.

Example 172Preparation of Peptide having SEQ ID NO. 177

5 [0401]

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 15 Pro Ser-NH₂ [SEQ. ID. NO. 177]

[0402] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3477.9.

20 Example 173Preparation of Peptide having SEQ ID NO. 178

25 [0403]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro-NH₂ [SEQ. ID. NO. 178]

[0404] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3519.9.

40 Example 174Preparation of Peptide having SEQ ID NO. 179

45 [0405]

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly-
 NH₂ [SEQ. ID. NO. 179]

50

[0406] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3307.7.

Example 175Preparation of Peptide having SEQ ID NO. 180

5 [0407]

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly-NH₂
 15 [SEQ. ID. NO. 180]

[0408] The above-identified amidated peptide is assembled on 4-(2'-9'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3186.5.

20 Example 176Preparation of Peptide having SEQ ID NO. 181

25 [0409]

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 tPro Ser Ser Gly Ala tPro tPro tPro-NH₂ [SEQ. ID. NO. 181]

[0410] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Double couplings are required at residues 37,36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4121.1.

40 Example 177Preparation of Peptide having SEQ ID NO. 182

45 [0411]

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 50 Pro Ser Ser Gly Ala tPro tPro tPro-NH₂ [SEQ. ID. NO. 182].

[0412] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Double couplings are required at residues 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4173.2.

Example 178Preparation of Peptide having SEQ ID NO. 183

5 [0413]

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 15 NMeala Ser Ser Gly Ala NMeala NMeala-NH₂ [SEQ. ID. NO. 183]

15 [0414] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Compound 1. Double couplings are required at residues 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3796.1.

20 Example 179Preparation of Peptide having SEQ ID NO. 184

25 [0415]

25 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 30 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 35 hPro Ser Ser Gly Ala hPro-NH₂ [SEQ. ID. NO. 184]

35 [0416] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. A double coupling is required at residue 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3871.1.

40 Example 180Preparation of Peptide having SEQ ID NO. 185

45 [0417]

45 His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 50 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 55 Pro Ser Ser Gly Ala-NH₂ [SEQ. ID. NO. 185]

50 [0418] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3750.2.

Example 181Preparation of Peptide having SEQ ID NO. 186

5 [0419]

His Gly Asp Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 10 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly-
 10 NH₂ [SEQ. ID. NO. 186]

15 [0420] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3408.8.

20 Example 182Preparation of Peptide having SEQ ID NO. 187

25 [0421]

25 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 30 Pro Ser Ser Gly Ala Pro Pro Pro Ser-NH₂ [SEQ. ID. NO. 187]

35 [0422] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4120.6.

40 Example 183Preparation of Peptide having SEQ ID NO. 188

45 [0423]

45 Ala Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu
 Glu Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 Pro Ser Ser Gly Ala Pro Pro Pro Ser-NH₂ [SEQ. ID. NO. 188]

50

50 [0424] The above-identified amidated peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4005.5.

Example 184

Preparation of C-terminal carboxylic acid peptides corresponding to the above C-terminal amide sequences for Peptides having SEQ ID NOS. 100-166, 172-177, 179-180 and 185-188.

5 [0425] C-terminal carboxylic acid peptides corresponding to amidated having SEQ ID NOS. 100-166, 172-177, 179-180 and 185-188 are assembled on the so called Wang resin (p-alkoxybenzylalcohol resin (Bachem, 0.54 mmole/g)) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to that described in Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in 10 ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

EXAMPLE 185

15 Preparation of C-terminal carboxylic acid peptides corresponding to the above C-terminal amide sequences for Peptides having SEQ ID NOS. 167-171, 178 and 181-184.

20 [0426] C-terminal carboxylic acid peptides corresponding to amidated SEQ ID NOS. 167-171, 178 and 181-184 are assembled on the 2-chlorotriylchloride resin (200-400 mesh), 2% DVB (Novabiochem, 0.4-1.0 mmole/g)) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to that described in Example 95. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

Example 186Evaluation of Ability to Cross PlacentaI. Introduction

30 [0427] The purpose of this experiment was to determine whether this exendin-4, when delivered to the maternal circulation, is transported across the placenta and is detectable in amniotic fluid or fetal blood.

II. Materials and MethodsAnimals:

40 [0428] Female Harlan Sprague Dawley rats (age 12 weeks, 17-21 days pregnant, approximately 300 grams) were housed at 22.8 +/- 0.8 °C in a 12:12 hour light : dark cycle. All experiments were performed during the light cycle. Animals were given free access to food and water until the start of the experiment.

Sample collection:

45 [0429] Rats were anesthetized with 5% halothane and then maintained with 2% halothane during the surgical procedures. Body temperature was measured and controlled using a thermistor probe/controller (Model 73A, YSI, Yellow Springs, OH) and a heated operating table. Blood was collected from the tail vein immediately prior to a subcutaneous injection of exendin-4 (AC2993 Amylin Pharmaceuticals, Inc.) or vehicle (100µl 0.15M NaCl) at t = 0. At t = 30 minutes, when plasma concentrations following a subcutaneous injection have been found to be maximal, another blood sample was taken. Immediately thereafter, a midline laparotomy was made to expose the uterine horns. Fluid was collected from the individual amniotic sacs by aspiration through a 16g needle into a syringe. The amniotic fluids from individual fetuses were pooled from a given rat, but fluids from each rat were kept separate. Fetal blood was collected by heart puncture with a 28g microfine needle and aspirated into a syringe. Amniotic fluid and fetal blood samples were collected within 10 minutes of when the laparotomy was made (t = 30-40 min.). All blood and fluid samples were centrifuged. The plasma or supernatant was stored at -70°C until assayed.

Treatment groups:

[0430] There were 2 treatment groups:

5 Group A: Rats receiving exendin-4 dissolved at 21 μ g/100 μ l in 0.15M NaCl n=4.
Group B: Rats receiving exendin-4 dissolved at 210 μ g/100 μ l in 0.15M NaCl n=5.

III. Results

10 [0431] Exendin-4 was not detected in any of the baseline samples, taken at t = 0, when measured by a specific IRMA (immuno-radio-metric-assay) which has a LLQ (low limit of quantitation) of 15pM. At t = 30 plasma levels of exendin-4 in the mother rats that received 21 μ g exendin-4 were 16.47nM \pm 2.45. Values obtained from amniotic fluid (6.1 \pm 5.3pM) and fetal blood (12.7 \pm 6.5pM) were 2700-fold and 1300-fold less than those in plasma and were generally below the lower limit of quantitation of the assay (Figure 2). Similar results were obtained with the rats receiving 210 μ g exendin-4 where plasma levels in the mother rats at t = 30 were 232.16nM \pm 63.45 (Figure 3). Values obtained from amniotic fluid (18.3 \pm 9.3pM) and fetal blood (16.9 \pm 13.8pM) were 12,680-fold and 13,750-fold less than those in plasma and were undetectable in over half of the samples.

15

IV. Discussion

20 [0432] The placenta is the organ responsible for nutrient and waste exchange between the fetus and the mother. Maternal and fetal circulations are separated by an epithelial layer that allows or denies diffusion or carrier mediated transport of substances across the interface. The risk of adverse effects on the fetus can be related to the extent to which the drug enters the fetal circulation. The data obtained here indicate that, even with high injected doses, which 25 may exceed the per-kilogram doses administered to humans by up to 3000-fold, little or no exendin-4 appeared in the fetal circulation or amniotic fluid. Six out of 15 measurements were above the lower limit of quantitation, and in 9 of 15, exendin-4 was undetectable. In those samples in which exendin-4 was measurable, its presence may have been due to contamination from maternal blood (which need be present only at 1:1,000-1:10,000 to be measurable). Such contamination is possible following laparotomy of the dam and puncture of the fetus.

30 [0433] Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the following claims.

SEQUENCE LISTING

35 [0434]

<110> Amylin Pharmaceuticals, Inc.
Hiles, Richard and Prickett, Kathryn, S.

40 <120> USE OF EXENDINS AND AGONISTS THEREOF FOR THE TREATMENT OF GESTATIONAL DIABETES MELLITUS

<130> 243/131 WO

45 <140> PCT/US00/14231
<141> 2000-05-23

<150> 09/323,867
<151> 1999-06-01

50 <160> 188

<170> Patent In Ver. 2.1 and Microsoft Word

55 <210> 1
<211> 39
<212> PRT
<213> Heloderma horridum

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

5
 <400> 1

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 Ser Gly Ala Pro Pro Pro Ser
 15 35

<210> 2
 <211> 39
 20 <212> PRT
 <213> Heloderma suspectum

<220>
 <221> MOD_RES
 25 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2
 <400> 2

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 30 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 35

Ser Gly Ala Pro Pro Pro Ser
 40 35

<210> 3
 <211> 40
 <212> PRT
 45 <213> synthetic construct

<220>
 <221> VARIANT
 <222> (1)
 50 <223> His, Arg or Thr

<220>
 <221> VARIANT
 <222> (2)
 55 <223> Ser, Gly, Ala or Thr

<220>
 <221> VARIANT

<222> (3)
<223> Asp or Glu

5 <220>
 <221> VARIANT
 <222> (6)
 <223> Phe, Tyr or naphthalanine

10 <220>
 <221> VARIANT
 <222> (7)
 <223> Thr or Ser

15 <220>
 <221> VARIANT
 <222> (8)
 <223> Ser or Thr

20 <220>
 <221> VARIANT
 <222> (9)
 <223> Asp or Glu

25 <220>
 <221> VARIANT
 <222> (10)
 <223> Leu, Ile, Val, pentylglycine or Met

30 <220>
 <221> VARIANT
 <222> (14)
 <223> Leu, Ile, pentylglycine, Val or Met

35 <220>
 <221> VARIANT
 <222> (22)
 <223> Phe, Tyr or naphthalanine

40 <220>
 <221> VARIANT
 <222> (23)
 <223> Ile, Val, Leu, pentylglycine, tert-butylglycine or Met

45 <220>
 <221> VARIANT
 <222> (24)
 <223> Glu or Asp

50 <220>
 <221> VARIANT
 <222> (25)
 <223> Trp, Phe, Tyr or naphthylalanine

55 <220>
 <221> VARIANT
 <222> (31)
 <223> independently Pro, homoproline, 3-hydroxyproline, 4-hydroxyproline, thioproline, N-alkylglycine, N-alkylpentylglycine or N-alkylalanine

<220>

<221> VARIANT

<222> (36)...(38)

5 <223> independently Pro, homoproline, 3-hydroxyproline, 4-hydroxyproline, thioproline, N-alkylglycine, N-alkylpentylglycine or N-alkylalanine

<220>

<221> VARIANT

<222> (39)

10 <223> Ser, Thr or Tyr

<220>

<221> VARIANT

<222> (40)

15 <223> -OH or NH₂, with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2.

<400> 3

20 Xaa Xaa Xaa Gly Thr Xaa Xaa Xaa Xaa Xaa Ser Lys Gln Xaa Glu Glu
1 5 10 15Glu Ala Val Arg Leu Xaa Xaa Xaa Xaa Leu Lys Asn Gly Gly Xaa Ser
20 25 3025 Ser Gly Ala Xaa Xaa Xaa Xaa Xaa
35 40

<210> 4

30 <211> 29

<212> PRT

<213> synthetic construct

<220>

35 <221> VARIANT

<222> (1)

<223> His, Arg, or Tyr

<220>

40 <221> VARIANT

<222> (2)

<223> Ser, Gly, Ala or Thr

<220>

45 <221> VARIANT

<222> (3)

<223> Asp or Glu

<220>

50 <221> VARIANT

<222> (5)

<223> Ala or Thr

<220>

55 <221> VARIANT

<222> (6)

<223> Ala, Phe, Tyr or naphylalanine

5 <220>
 <221> VARIANT
 <222> (7)
 <223> Thr or Ser

10 <220>
 <221> VARIANT
 <222> (8)
 <223> Ala, Ser or Thr

15 <220>
 <221> VARIANT
 <222> (9)
 <223> Asp or Glu

20 <220>
 <221> VARIANT
 <222> (10)
 <223> Ala, Leu, Ile, Val, pentylglycine or Met

25 <220>
 <221> VARIANT
 <222> (11)
 <223> Ala or Ser

30 <220>
 <221> VARIANT
 <222> (12)
 <223> Ala or Lys

35 <220>
 <221> VARIANT
 <222> (13)
 <223> Ala or Gln

40 <220>
 <221> VARIANT
 <222> (14)
 <223> Ala, Leu, Ile, pentylglycine, Val or Met

45 <220>
 <221> VARIANT
 <222> (15).(17)
 <223> Ala or Glu

50 <220>
 <221> VARIANT
 <222> (19)
 <223> Ala or Val

55 <220>
 <221> VARIANT
 <222> (20)
 <223> Ala or Arg

 <220>
 <221> VARIANT
 <222> (21)

<223> Ala or Leu

<220>

<221> VARIANT

5 <222> (22)

<223> Ala, Phe, Tyr or naphthylalanine

<220>

<221> VARIANT

10 <222> (23)

<223> Ile, Val, Leu, pentylglycine, tert-butylglycine or Met

<220>

<221> VARIANT

15 <222> (24)

<223> Ala, Glu or Asp

<220>

<221> VARIANT

20 <222> (25)

<223> Ala, Trp, Phe, Tyr or naphthylalanine

<220>

<221> VARIANT

25 <222> (26)

<223> Ala or Leu

<220>

<221> VARIANT

30 <222> (27)

<223> Ala or Lys

<220>

<221> VARIANT

35 <222> (28)

<223> Ala or Asn

<220>

<221> VARIANT

40 <222> (29)

<223> OH, NH₂, Gly-OH, Gly-NH₂, Gly-Gly-OH, Gly-Gly-NH₂ and further as indicated in specification

<400> 4

45

Xaa	Xaa	Xaa	Gly	Xaa									
1				5				10				15	

50

Xaa	Ala	Xaa										
				20				25				

55

<210> 5

<211> 29

<212> PRT

<213> synthetic construct

<220>

<221> VARIANT

<222> (1)
<223> His, Arg, Tyr, Ala, norvaline, Val, or norleucine

5 <220>
 <221> VARIANT
 <222> (2)
 <223> Ser, Gly, Ala, or Thr

10 <220>
 <221> VARIANT
 <222> (3)
 <223> Ala, Asp, or Glu

15 <220>
 <221> VARIANT
 <222> (4)
 <223> Ala, norvaline, Val, norleucine or Gly

20 <220>
 <221> VARIANT
 <222> (5)
 <223> Ala or Thr

25 <220>
 <221> VARIANT
 <222> (6)
 <223> Phe, Tyr or napthylalanine

30 <220>
 <221> VARIANT
 <222> (7)
 <223> Thr or Ser

35 <220>
 <221> VARIANT
 <222> (8)
 <223> Ala, Ser or Thr

40 <220>
 <221> VARIANT
 <222> (9)
 <223> Ala, Norvaline, Val, Norleucine, Asp or Glu

45 <220>
 <221> VARIANT
 <222> (10)
 <223> Ala, Leu, Ile, Val, pentylglycine or Met

50 <220>
 <221> VARIANT
 <222> (11)
 <223> Ala or Ser

55 <220>
 <221> VARIANT
 <222> (12)
 <223> Ala or Lys

5 <220>
 <221> VARIANT
 <222> (13)
 <223> Ala or Gln

10 <220>
 <221> VARIANT
 <222> (14)
 <223> Ala, Leu, Ile, pentylglycine, Val or Met

15 <220>
 <221> VARIANT
 <222> (15) ..(17)
 <223> Ala or Glu

20 <220>
 <221> VARIANT
 <222> (19)
 <223> Ala or Val

25 <220>
 <221> VARIANT
 <222> (20)
 <223> Ala or Arg

30 <220>
 <221> VARIANT
 <222> (21)
 <223> Ala or Leu

35 <220>
 <221> VARIANT
 <222> (22)
 <223> Phe, Tyr or naphthylalanine

40 <220>
 <221> VARIANT
 <222> (23)
 <223> Ile, Val, Leu, pentylglycine, tert-butylglycine or Met

45 <220>
 <221> VARIANT
 <222> (24)
 <223> Ala, Glu or Asp

50 <220>
 <221> VARIANT
 <222> (25)
 <223> Ala, Trp, Phe, Tyr or naphthylalanine

55 <220>
 <221> VARIANT
 <222> (26)
 <223> Ala or Leu

 <220>
 <221> VARIANT
 <222> (27)

<223> Ala or Lys

<220>

<221> VARIANT

5 <222> (28)
<223> Ala or Asn

<220>

<221> VARIANT

10 <222> (29)
<223> OH, NH2, Gly-OH, Gly-NH2, Gly-Gly-OH, Gly-Gly-NH2 and further as indicated in the specification

<400> 5

15 Xaa
1 5 10 15

20 Xaa Ala Xaa
20 25

<210> 6

<211> 30

<212> PRT

25 <213> synthetic construct

<400> 6

30 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
20 25 30

35 <210> 7
<211> 30
<212> PRT
<213> synthetic construct

40 <220>
<221> MOD_RES
<222> (30)
<223> AMIDATION, Position 30 is Gly-NH2

45 <400> 7

50 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
20 25 30

55 <210> 8
<211> 28
<212> PRT
<213> synthetic construct

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

5
 <400> 8

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 10 Glu Ala Val Arg Leu Ala Ile Glu Phe Leu Lys Asn
 20 25

15 <210> 9
 <211> 39
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

25 <400> 9

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 30 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 Ser Gly Ala Pro Pro Pro Ser
 35

<210> 10
 <211> 39
 40 <212> PRT
 <213> synthetic construct

<220>
 <221> MOD_RES
 45 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

<400> 10

50 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 55 Ser Gly Ala Pro Pro Pro Ser
 35

<210> 11
 <211> 39
 <212> PRT
 <213> synthetic construct

5

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

10

<400> 11

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

15

<210> 12
 <211> 39
 <212> PRT
 <213> synthetic construct

20

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

25

<400> 12

30

Tyr Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

35

<210> 13
 <211> 39
 <212> PRT
 <213> synthetic construct

40

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Tyr-NH2

45

<400> 13

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Tyr
 35

10 <210> 14
 <211> 39

<212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

20 <400> 14

25 His Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

30 Ser Gly Ala Pro Pro Pro Ser
 35

35 <210> 15
 <211> 39
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

45 <220>
 <221> VARIANT
 <222> (6)
 <223> Xaa is naphthalalanine

50 <400> 15

His Gly Glu Gly Thr Xaa Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

10 <210> 16
 <211> 39

<212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

20 <400> 16

His Gly Glu Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

30 Ser Gly Ala Pro Pro Pro Ser
 35

35 <210> 17
 <211> 39
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

<400> 17

45 His Gly Glu Gly Thr Phe Ser Thr Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

55 <210> 18
 <211> 39
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

5 <400> 18

10 His Gly Glu Gly Thr Phe Thr Thr Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 15 Ser Gly Ala Pro Pro Pro Ser
 35

20 <210> 19
 <211> 39
 <212> PRT
 <213> synthetic construct

25 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

30 <400> 19

35 His Gly Glu Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30
 Ser Gly Ala Pro Pro Pro Ser
 35

40 <210> 20
 <211> 39
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

50 <220>
 <221> VARIANT
 <222> (10)
 <223> Xaa is pentylglycine

55 <400> 20

His Gly Glu Gly Thr Phe Thr Ser Asp Xaa Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

10

<210> 21

<211> 39

<212> PRT

15 <213> synthetic construct

<220>

<221> MOD_RES

<222> (39)

20 <223> AMIDATION, Position 39 is Ser-NH2

<220>

<221> VARIANT

<222> (10)

25 <223> Xaa is pentylglycine

<400> 21

30 His Gly Glu Gly Thr Phe Thr Ser Asp Xaa Ser Lys Gln Leu Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

35 Ser Gly Ala Pro Pro Pro Ser
 35

40 <210> 22
 <211> 39
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

50 <220>
 <221> VARIANT
 <222> (14)
 <223> Xaa is pentylglycine

55 <400> 22

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

10

<210> 23
 <211> 39
 <212> PRT
 <213> synthetic construct

15

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

20

<220>
 <221> VARIANT
 <222> (14)
 <223> Xaa is pentylglycine

25

<400> 23

30

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

35

Ser Gly Ala Pro Pro Pro Ser
 35

40

<210> 24
 <211> 39
 <212> PRT
 <213> synthetic construct

45

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

50

<220>
 <221> VARIANT
 <222> (22)
 <223> Xaa is naphylalanine

<400> 24

55

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Xaa Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

10

<210> 25

<211> 39

<212> PRT

15 <213> synthetic construct

<220>

<221> MOD_RES

<222> (39)

20 <223> AMIDATION, Position 39 is Ser-NH2

<400> 25

25 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Val Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

30 Ser Gly Ala Pro Pro Pro Ser
 35

35 <210> 26
 <211> 39
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

45 <400> 26

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Val Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

55

<210> 27
 <211> 39
 <212> PRT

<213> synthetic construct

<220>

<221> VARIANT

5 <222> (23)

<223> Xaa at Position 23 is tertiary-butylglycine

<220>

<221> MOD_RES

10 <222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 27

15

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

20

Glu Ala Val Arg Leu Phe Xaa Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

Ser Gly Ala Pro Pro Pro Ser
35

25

<210> 28

<211> 39

<212> PRT

<213> synthetic construct

30

<220>

<221> VARIANT

<222> (23)

<223> Xaa at position 23 is tertiary-butylglycine

35

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

40

<400> 28

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

45

Glu Ala Val Arg Leu Phe Xaa Glu Phe Leu Lys Asn Gly Gly Pro Ser
20 25 30

Ser Gly Ala Pro Pro Pro Ser
35

50

<210> 29

<211> 39

<212> PRT

55 <213> synthetic construct

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 29

5

His	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1														10	15

10

Glu	Ala	Val	Arg	Leu	Phe	Ile	Asp	Trp	Leu	Lys	Asn	Gly	Gly	Pro	Ser
														25	30

Ser	Gly	Ala	Pro	Pro	Pro	Ser
						35

15

<210> 30

<211> 39

<212> PRT

<213> synthetic construct

20

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, position 39 is Ser-NH2

25

<400> 30

30

His	Ala	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Leu	Glu	Glu
1														10	15

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Phe	Leu	Lys	Asn	Gly	Gly	Pro	Ser
														25	30

35

Ser	Gly	Ala	Pro	Pro	Pro	Ser
						35

35

<210> 31

<211> 39

40

<212> PRT

<213> synthetic construct

45

<220>

<221> VARIANT

<222> (31)

<223> Xaa at position 31 is thioproline

50

<220>

<221> VARIANT

<222> (36)...(38)

<223> Xaa at positions 36, 36, and 38 is thioproline

55

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 31

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu

5

1

5

10

15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
20 25 30

10

Ser Gly Ala Xaa Xaa Xaa Ser
35

15

<210> 32
<211> 39
<212> PRT
<213> synthetic construct

20

<220>
<221> VARIANT
<222> (36).. (38)
<223> Xaa at positions 36, 37, and 38 is thioproline

25

<220>
<221> MOD_RES
<222> (39)
<223> AMIDATION, Position 39 is Ser-NH2

30

<400> 32

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

35

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

40

Ser Gly Ala Xaa Xaa Xaa Ser
35

45

<210> 33
<211> 39
<212> PRT
<213> synthetic construct

50

<220>
<221> VARIANT
<222> (31)
<223> Xaa at position 31 is homoproline

55

<220>
<221> VARIANT
<222> (36) .. (38)
<223> Xaa at positions 36, 37, and 38 is homoproline

<220>
<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 33

5

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu

10

1

5

10

15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
20 25 30

15

Ser Gly Ala Xaa Xaa Xaa Ser
35

20

<210> 34

<211> 39

<212> PRT

<213> synthetic construct

25

<220>

<221> VARIANT

<222> (36) .(38)

<223> Xaa at positions 36, 37, and 38 is homoproline

30

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

35

<400> 34

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

40

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

45

Ser Gly Ala Xaa Xaa Xaa Ser
35

50

<210> 35

<211> 39

<212> PRT

<213> synthetic construct

55

<220>

<221> VARIANT

<222> (31)

<223> Xaa at position 31 is thioproline

<220>

<221> VARIANT

<222> (36)..(38)

<223> Xaa at positions 36, 37, and 38 is thioproline

<220>

5 <221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 35

10

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu

15

1

5

10

15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Xaa Ser
20 25 30

20

Ser Gly Ala Xaa Xaa Xaa Ser
35

25

<210> 36

<211> 39

<212> PRT

<213> synthetic construct

30

<220>

<221> VARIANT

<222> (31)

<223> Xaa at position 31 is homoproline

35

<220>

<221> VARIANT

<222> (36)..(38)

<223> Xaa at positions 36,37, and 38 is homoproline

40

<220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 36

45

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

50

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Xaa Ser
20 25 30

55

Ser Gly Ala Xaa Xaa Xaa Ser
35

<210> 37

<211> 39

<212> PRT

<213> synthetic construct

<220>

<221> VARIANT

5 <222> (31)

<223> Xaa at position 31 is N-methylalanine

<220>

<221> VARIANT

10 <222> (36)..(38)

<223> Xaa at positions 36, 37, and 38 is N-methylalanine

<220>

<221> MOD_RES

15 <222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 37

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

25 Ser Gly Ala Xaa Xaa Xaa Ser
 35

30 <210> 38

<211> 39

<212> PRT

<213> synthetic construct

35 <220>

<221> VARIANT

<222> (36)..(38)

<223> Xaa at positions 36, 37, and 38 is N-methylalanine

40 <220>

<221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

45 <400> 38

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

50 Ser Gly Ala Xaa Xaa Xaa Ser
 35

55

<210> 39

<211> 39

<212> PRT
 <213> synthetic construct

5 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa at position 31 is N-methylalanine

10 <220>
 <221> VARIANT
 <222> (36). (38)
 <223> Xaa at positions 36, 37, and 38 is N-methylalanine

15 <220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

20 <400> 39

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

Ser Gly Ala Xaa Xaa Xaa Ser
 35

30 <210> 40
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

40 <400> 40

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

50 <210> 41
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 41

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

10 <210> 42

<211> 28

<212> PRT

<213> synthetic construct

15 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

20 <400> 42

His Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 43

<211> 28

<212> PRT

<213> synthetic construct

35 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

40 <400> 43

His Gly Glu Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 44

<211> 28

<212> PRT

<213> synthetic construct

55 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 44

His Gly Glu Gly Thr Ala Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 45

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 45

20 His Gly Glu Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 46

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 46

40 His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 47

<211> 28

50 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 47

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

10 <210> 48
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

20 <400> 48
 25

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 49
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

40 <400> 49

 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 50
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 50

5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

10 <210> 51

<211> 28

<212> PRT

<213> synthetic construct

15 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

20 <400> 51

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Ala Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 52

<211> 28

<212> PRT

<213> synthetic construct

35 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

40 <400> 52

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Ala
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 53

<211> 28

<212> PRT

<213> synthetic construct

55 <220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 53

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Ala Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 54

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 54

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Ala Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

25

<210> 55

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 55

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Ala Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

45

<210> 56

<211> 28

50 <212> PRT

<213> synthetic construct

50

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

55

<400> 56

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Ala Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 57

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 57

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Ala Phe Leu Lys Asn
 20 25

25

<210> 58

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 58

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn
 20 25

45

<210> 59

<211> 28

50 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 59

EP 1 181 043 B1

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Ala Lys Asn
20 25

<210> 60

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 60

20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Ala Asn
20 25

25

<210> 61

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Ala-NH2

<400> 61

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Ala
20 25

45

<210> 62

<211> 38

50 <212> PRT

<213> synthetic construct

50

<220>

<221> MOD_RES

55 <222> (38)

<223> AMIDATION, Position 38 is Pro-NH2

<400> 62

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro
 35

10 <210> 63
 <211> 38
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (38)
 <223> AMIDATION, Position 38 is Pro-NH2

20 <400> 63

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro
 35

30 <210> 64
 <211> 37
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (37)
 <223> AMIDATION, Position 37 is Pro-NH2

40 <400> 64

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

50 Ser Gly Ala Pro Pro
 35

55 <210> 65
 <211> 37
 <212> PRT
 <213> synthetic construct

<220>

<221> MOD_RES

<222> (37)

<223> AMIDATION, Position 37 is Pro-NH2

5

<400> 65

His	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Leu	Glu	Glu
1				5					10				15		

10

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Phe	Leu	Lys	Asn	Gly	Gly	Pro	Ser
				20					25				30		

15

Ser	Gly	Ala	Pro	Pro											
				35											

<210> 66

<211> 36

20

<212> PRT

<213> synthetic construct

25

<220>

<221> MOD_RES

<222> (36)

<223> AMIDATION, Position 36 is Pro-NH2

<400> 66

30

His	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1				5					10				15		

35

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Trp	Leu	Lys	Asn	Gly	Gly	Pro	Ser
				20				25				30			

Ser	Gly	Ala	Pro												
			35												

40

<210> 67

<211> 36

<212> PRT

<213> synthetic construct

45

<220>

<221> MOD_RES

<222> (36)

<223> AMIDATION, Position 36 is Pro-NH2

50

<400> 67

55

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro
 35

10
 <210> 68
 <211> 35
 <212> PRT
 <213> synthetic construct

15
 <220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

20
 <400> 68

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

30 Ser Gly Ala
 35

35
 <210> 69
 <211> 35
 <212> PRT
 <213> synthetic construct

40
 <220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

<400> 69

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

55 Ser Gly Ala
 35

<210> 70
 <211> 34

<212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (34)
 <223> AMIDATION, Position 34 is Gly-NH2

10 <400> 70

15 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

20 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

25 Ser Gly

30 <210> 71
 <211> 34
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (34)
 <223> AMIDATION, Position 34 is Gly-NH2

40 <400> 71

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

55 Ser Gly

60 <210> 72
 <211> 33
 <212> PRT
 <213> synthetic construct

65 <220>
 <221> MOD_RES
 <222> (33)
 <223> AMIDATION, Position 33 is Ser-NH2

70 <400> 72

75

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser

10 <210> 73
 <211> 33
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (33)
 <223> AMIDATION, Position 33 is Ser-NH2

20 <400> 73

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser

30 <210> 74
 <211> 32
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (32)
 <223> AMIDATION, Position 32 is Ser-NH2

40 <400> 74

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

50 <210> 75
 <211> 32
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (32)
 <223> AMIDATION, Position 32 is Ser-NH2

<400> 75

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

10

<210> 76

<211> 31

<212> PRT

<213> synthetic construct

15

<220>

<221> MOD_RES

<222> (31)

<223> AMIDATION, Position 31 is Pro-NH2

20

<400> 76

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro
 20 25 30

30

<210> 77

<211> 31

<212> PRT

<213> synthetic construct

35

<220>

<221> MOD_RES

<222> (31)

<223> AMIDATION, Position 31 is Pro-NH2

40

<400> 77

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro
 20 25 30

50

<210> 78

<211> 30

<212> PRT

<213> synthetic construct

55

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION, Position 30 is Gly-NH2

<400> 78

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 20 25 30

10 <210> 79
 <211> 29
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (29)
 <223> AMIDATION, Position 29 is Gly-NH2

20 <400> 79

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly
 20 25

30 <210> 80
 <211> 29
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (29)
 <223> AMIDATION, Position 29 is Gly-NH2

40 <400> 80

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly
 20 25

50 <210> 81
 <211> 38
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is thiodproline

<220>

<221> VARIANT
 <222> (36)..(38)
 <223> Xaa is thioproline

5 <220>
 <221> MOD_RES
 <222> (38)
 <223> AMIDATION, Position 38 is thioproline-NH2

10 <400> 81

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

20 Ser Gly Ala Xaa Xaa Xaa
 25 35

25 <210> 82
 <211> 38
 <212> PRT
 <213> synthetic construct

30 <220>
 <221> VARIANT
 <222> (36)..(38)
 <223> Xaa is thioproline

35 <220>
 <221> MOD_RES
 <222> (38)
 <223> AMIDATION, Position 38 is thioproline-NH2

<400> 82

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

50 Ser Gly Ala Xaa Xaa Xaa
 55 35

50 <210> 83
 <211> 37
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is N-methylalanine

<220>
 <221> MOD_RES
 <222> (37)
 <223> AMIDATION, Position 37 is Pro-NH2

5
 <400> 83

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30
 Ser Gly Ala Pro Pro
 15 35

<210> 84
 <211> 37
 20 <212> PRT
 <213> synthetic construct

<220>
 <221> VARIANT
 25 <222> (31)
 <223> Xaa is N-methylalanine

<220>
 <221> VARIANT
 30 <222> (36)..(37)
 <223> Xaa is N-methylalanine

<220>
 <221> MOD_RES
 35 <222> (37)
 <223> AMIDATION, Position 37 is N-methylalanine-NH2

<400> 84

40 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30
 45 Ser Gly Ala Xaa Xaa
 35

50 <210> 85
 <211> 37
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is homoproline

5
 <220>
 <221> VARIANT
 <222> (36) .. (37)
 <223> Xaa is homoproline

10
 <220>
 <221> MOD_RES
 <222> (37)
 <223> AMIDATION, Position 37 is homoproline-NH2

15 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

20 Ser Gly Ala Xaa Xaa
 35

25 <210> 86
 <211> 36
 <212> PRT
 <213> synthetic construct

30 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is homoproline

35 <220>
 <221> VARIANT
 <222> (36)
 <223> Xaa is homoproline

40 <220>
 <221> MOD_RES
 <222> (36)
 <223> AMIDATION, Position 36 is homoproline-NH2

<400> 86

45 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

Ser Gly Ala Xaa
 35

55 <210> 87
 <211> 35
 <212> PRT
 <213> synthetic construct

<220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

5

<400> 87

10

Arg	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1				5					10				15		
Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser															
20 25 30															
Ser Gly Ala															
35															

15

<210> 88
 <211> 30
 <212> PRT
 <213> synthetic construct

20

<220>
 <221> MOD_RES
 <222> (30)
 <223> AMIDATION, Position 30 is Gly-NH2

25

<400> 88

30

His	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1				5					10				15		
Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly															
20 25 30															

35

40

<210> 89
 <211> 28
 <212> PRT
 <213> synthetic construct

45

<220>
 <221> VARIANT
 <222> (6)
 <223> Xaa is naphthylalanine

50

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 89

55

.....
 His Gly Glu Gly Thr Xaa Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 90

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 90

20 His Gly Glu Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 91

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 91

40 His Gly Glu Gly Thr Phe Ser Thr Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 92

<211> 28

50 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 92

His Gly Glu Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Met Ala Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

10 <210> 93
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> VARIANT
 <222> (10)
 <223> Xaa is pentylglycine

20 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

25 <400> 93
 His Gly Glu Gly Thr Phe Thr Ser Asp Xaa Ser Lys Gln Leu Glu Glu
 1 5 10 15

30 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

35 <210> 94
 <211> 28
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> VARIANT
 <222> (22)
 <223> Xaa is naphylalanine

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

50 <400> 94
 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

55 Glu Ala Val Arg Leu Xaa Ile Glu Phe Leu Lys Asn
 20 25

<210> 95
 <211> 28

<212> PRT
 <213> synthetic construct

5 <220>
 <221> VARIANT
 <222> (23)
 <223> Xaa is tertiary-butylglycine

10 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

15 <400> 95

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Xaa Glu Trp Leu Lys Asn
 20 25

25 <210> 96
 <211> 28
 <212> PRT
 <213> synthetic construct

30 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 96

35 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Asp Phe Leu Lys Asn
 40 1 20 25

45 <210> 97
 <211> 33
 <212> PRT
 <213> synthetic construct

50 <220>
 <221> MOD_RES
 <222> (33)
 <223> AMIDATION, Position 33 is Ser-NH2
 /

<400> 97

55

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser

10 <210> 98
 <211> 29
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (29)
 <223> AMIDATION, Position 29 is Gly-NH2

20 <400> 98

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly
 20 25

30 <210> 99
 <211> 37
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is homoproline

40 <220>
 <221> VARIANT
 <222> (36)..(37)
 <223> Xaa is homoproline

45 <220>
 <221> MOD_RES
 <222> (37)
 <223> AMIDATION, Position 37 is homoproline-NH2

50 <400> 99

55

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

Ser Gly Ala Xaa Xaa
 35

10 <210> 100
 <211> 28

<212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

20 <400> 100

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 25 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 101
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

40 <400> 101

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 45 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 102
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 102

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

10 <210> 103
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

20 <400> 103

His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 104
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

40 <400> 104

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

50 <210> 105
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 105

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 106

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 106

20 His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 107

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 107

40 His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 108

<211> 28

50 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 108

His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

10 <210> 109
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 109

20 Ala Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

30 <210> 110
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 110

40 Ala Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 111
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 111

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

10 <210> 112
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 112

20 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

30 <210> 113
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 113

40 Ala Gly Asp Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

50 <210> 114
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 114

Ala Gly Asp Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 115

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> VARIANT

15 <222> (6)

<223> Xaa is naphthylalanine

<220>

<221> MOD_RES

20 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 115

25 Ala Gly Asp Gly Thr Xaa Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

30

<210> 116

<211> 28

35 <212> PRT

<213> synthetic construct

<220>

<221> VARIANT

<222> (6)

40 <223> Xaa is naphthylalanine

<220>

<221> MOD_RES

45 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 116

50 Ala Gly Asp Gly Thr Xaa Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

55

<210> 117

<211> 28

<212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

5 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 117

10 Ala Gly Asp Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
20 25

15

<210> 118

<211> 28

<212> PRT

20 <213> synthetic construct

<220>

<221> MOD_RES

<222> (28)

25 <223> AMIDATION, Position 28 is Asn-NH2

<400> 118

30 Ala Gly Asp Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Leu Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
20 25

35

<210> 119

<211> 28

<212> PRT

40 <213> synthetic construct

<220>

<221> MOD_RES

<222> (28)

45 <223> AMIDATION, Position 28 is Asn-NH2

<400> 119

50 Ala Gly Asp Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
20 25

55

<210> 120

<211> 28

<212> PRT

<213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

5 <400> 120

10 Ala Gly Asp Gly Thr Phe Thr Ala Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

15 <210> 121
 <211> 28
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

25 <400> 121

30 Ala Gly Asp Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

35 <210> 122
 <211> 28
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

45 <400> 122

50 Ala Gly Asp Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

55 <210> 123
 <211> 28
 <212> PRT
 <213> synthetic construct

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

5
 <400> 123

Ala Gly Asp Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

15 <210> 124
 <211> 28
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

25 <400> 124

Ala Gly Asp Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 30 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

35 <210> 125
 <211> 28
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

45 <400> 125

Ala Gly Asp Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Met Glu Glu
 1 5 10 15
 50 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

55 <210> 126
 <211> 28
 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

5 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 126

10

Ala	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Ala	Ser	Lys	Gln	Leu	Glu	Glu
1														10	15

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Phe	Leu	Lys	Asn				
												20	25		

15

<210> 127

<211> 28

<212> PRT

20 <213> synthetic construct

<220>

<221> VARIANT

<222> (10)

25 <223> Xaa is pentylglycine

<220>

<221> MOD_RES

<222> (28)

30 <223> AMIDATION, Position 28 is Asn-NH2

<400> 127

35

Ala	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Xaa	Ser	Lys	Gln	Met	Glu	Glu
1														10	15

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Trp	Leu	Lys	Asn				
												20	25		

40

<210> 128

<211> 28

<212> PRT

45 <213> synthetic construct

<220>

<221> VARIANT

<222> (10)

50 <223> Xaa is pentylglycine

55

<220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 128

Ala Gly Asp Gly Thr Phe Thr Ser Asp Xaa Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

10 <210> 129
 <211> 28
 <212> PRT
 <213> synthetic construct

15 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 129

20 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Met Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

30 <210> 130
 <211> 28
 <212> PRT
 <213> synthetic construct

35 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 130

40 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Leu Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 131
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 131

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 132

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 132

20 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 133

<211> 28

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 133

40 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Met Glu Glu
 1 5 10 15

45 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 134

<211> 28

50 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

55 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 134

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Leu Glu Glu

5

1

5

10

15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
20 25

10

<210> 135

<211> 28

<212> PRT

15 <213> synthetic construct

<220>

<221> MOD_RES

<222> (28)

20 <223> AMIDATION, Position 28 is Asn-NH2

<400> 135

25

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu
1 5 10 15 '

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
20 25

30

<210> 136

<211> 28

<212> PRT

35 <213> synthetic construct

<220>

<221> MOD_RES

<222> (28)

40 <223> AMIDATION, Position 28 is Asn-NH2

<400> 136

45

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
20 25

50

<210> 137

<211> 28

<212> PRT

<213> synthetic construct

55

<220>

<221> VARIANT

<222> (14)

<223> Xaa is pentylglycine

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

5
 <400> 137

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
 1 5 10 15
 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

15 <210> 138
 <211> 28
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> VARIANT
 <222> (14)
 <223> Xaa is pentylglycine

25 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30 <400> 138

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
 1 5 10 15
 35 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

40 <210> 139
 <211> 28
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

50 <400> 139

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Ala Glu
 1 5 10 15
 55 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 140

<211> 28
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10 <400> 140

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Ala Glu
 1 5 10 15

15 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

20 <210> 141
 <211> 28
 <212> PRT
 <213> synthetic construct

25 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30 <400> 141
 30

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Ala
 1 5 10 15

35 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

40 <210> 142
 <211> 28
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 142

50 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Ala
 1 5 10 15

55 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 143
 <211> 28

<212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10 <400> 143

15 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

20 Ala Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

25 <210> 144
 <211> 28
 <212> PRT
 <213> synthetic construct

30 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

35 <400> 144

40 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

45 Ala Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

50 <210> 145
 <211> 28
 <212> PRT
 <213> synthetic construct

55 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

<400> 145

55 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

55 Glu Ala Ala Arg Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

<210> 146

<211> 28
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10 <400> 146

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

15 Glu Ala Ala Arg Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

20 <210> 147
 <211> 28
 <212> PRT
 <213> synthetic construct

25 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30 <400> 147

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

35 Glu Ala Val Ala Leu Phe Ile Glu Trp Leu Lys Asn
 20 25

40 <210> 148
 <211> 28
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

50 <400> 148

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

55 Glu Ala Val Ala Leu Phe Ile Glu Phe Leu Lys Asn
 20 25

<210> 149
 <211> 28
 <212> PRT
 <213> synthetic construct

5

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10

<400> 149

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Ala Phe Ile Glu Trp Leu Lys Asn
 20 25

20

<210> 150
 <211> 28
 <212> PRT
 <213> synthetic construct

25

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30

<400> 150

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

Glu Ala Val Arg Ala Phe Ile Glu Phe Leu Lys Asn
 20 25

40

<210> 151
 <211> 28
 <212> PRT
 <213> synthetic construct

45

<220>
 <221> VARIANT
 <222> (22)
 <223> Xaa is naphylalanine

50

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

55

<400> 151

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Xaa Ile Glu Trp Leu Lys Asn
 20 25

<210> 152

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> VARIANT

15 <222> (22)

<223> Xaa is naphthylalanine

<220>

<221> MOD_RES

20 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 152

25 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

30 Glu Ala Val Arg Leu Xaa Ile Glu Phe Leu Lys Asn
 20 25

<210> 153

<211> 28

35 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

40 <222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 153

45 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

50 Glu Ala Val Arg Leu Phe Val Glu Trp Leu Lys Asn
 20 25

<210> 154

<211> 28

55 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

<222> (28)

<223> AMIDATION, Position 28 is Asn-NH2

<400> 154

5 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

10 Glu Ala Val Arg Leu Phe Val Glu Phe Leu Lys Asn
 20 25

<210> 155

<211> 28

<212> PRT

15 <213> synthetic construct

<220>

<221> VARIANT

<222> (23)

20 <223> Xaa is tertiary-butylglycine

<220>

<221> MOD_RES

<222> (28)

25 <223> AMIDATION, Position 28 is Asn-NH2

<400> 155

30 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

35 Glu Ala Val Arg Leu Phe Xaa Glu Trp Leu Lys Asn
 20 25

<210> 156

<211> 28

<212> PRT

40 <213> synthetic construct

<220>

<221> VARIANT

<222> (23)

45 <223> Xaa is tertiary-butylglycine

<220>

<221> MOD_RES

<222> (28)

50 <223> AMIDATION, Position 28 is Asn-NH2

<400> 156

55 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

55 Glu Ala Val Arg Leu Phe Xaa Glu Phe Leu Lys Asn
 20 25

<210> 157
 <211> 28
 <212> PRT
 <213> synthetic construct

5

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10

<400> 157

Ala	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1															15

Glu Ala Val Arg Leu Phe Ile Asp Trp Leu Lys Asn
 20 25

15

<210> 158
 <211> 28
 <212> PRT
 <213> synthetic construct

20

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

25

<400> 158

Ala	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Leu	Glu	Glu
1															15

Glu Ala Val Arg Leu Phe Ile Asp Phe Leu Lys Asn
 20 25

35

<210> 159
 <211> 28
 <212> PRT
 <213> synthetic construct

40

<220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

45

<400> 159

50

Ala	Gly	Asp	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1															15

Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn
 20 25

55

<210> 160

<211> 28
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10 <400> 160

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

15 Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn
 20 25

20 <210> 161
 <211> 28
 <212> PRT
 <213> synthetic construct

25 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30 <400> 161
 30

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

35 Glu Ala Val Arg Leu Phe Ile Glu Trp Ala Lys Asn
 20 25

40 <210> 162
 <211> 28
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

50 <400> 162
 50

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

55 Glu Ala Val Arg Leu Phe Ile Glu Phe Ala Lys Asn
 20 25

<210> 163

<211> 28
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

10 <400> 163

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Ala Asn
 20 25

20 <210> 164
 <211> 28
 <212> PRT
 <213> synthetic construct

25 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Asn-NH2

30 <400> 164

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu

35 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Ala Asn
 20 25

40 <210> 165
 <211> 28
 <212> PRT
 <213> synthetic construct

45 <220>
 <221> MOD_RES
 <222> (28)
 <223> AMIDATION, Position 28 is Ala-NH2

50 <400> 165

55

Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Ala
 20 25

<210> 166

<211> 28

10 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

15 <222> (28)

<223> AMIDATION, Position 28 is Ala-NH2

<400> 166

20 Ala Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Ala
 20 25

<210> 167

<211> 38

30 <212> PRT

<213> synthetic construct

<220>

<221> MOD_RES

35 <222> (38)

<223> AMIDATION, Position 38 is Pro-NH2

<400> 167

40 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser

45 20 25 30

Ser Gly Ala Pro Pro Pro
 35

50

<210> 168

<211> 38

<212> PRT

55 <213> synthetic construct

<220>

<221> MOD_RES

<222> (38)

<223> AMIDATION, Position 38 is Pro-NH2

<400> 168

5 His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

10 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro
 15 35

15 <210> 169
 <211> 37
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> MOD_RES
 <222> (37)
 <223> AMIDATION, Position 37 is Pro-NH2

25 <400> 169

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

30 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro
 35

35 <210> 170
 <211> 36
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> MOD_RES
 <222> (36)
 <223> AMIDATION, Position 36 is Pro-NH2

<400> 170

50 His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

55 Ser Gly Ala Pro
 35

<210> 171
 <211> 36
 <212> PRT
 <213> synthetic construct

5

<220>
 <221> MOD_RES
 <222> (36)
 <223> AMIDATION, Position 36 is Pro-NH2

10

<400> 171

15

Ala	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Ala	Ser	Lys	Gln	Leu	Glu	Glu
1				5					10				15		

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Phe	Leu	Lys	Asn	Gly	Gly	Pro	Ser
				20				25					30		

Ser	Gly	Ala	Pro												
			35												

20

<210> 172
 <211> 35
 <212> PRT
 <213> synthetic construct

25

<220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

30

<400> 172

35

Ala	Gly	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Met	Glu	Glu
1				5					10				15		

Glu	Ala	Val	Arg	Leu	Phe	Ile	Glu	Trp	Leu	Lys	Asn	Gly	Gly	Pro	Ser
				20				25				30			

Ser	Gly	Ala													
			35												

40

45

<210> 173
 <211> 35
 <212> PRT
 <213> synthetic construct

50

<220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

55

<400> 173

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

5 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala
 35

10 <210> 174
 <211> 34

<212> PRT

<213> synthetic construct

15 <220>
 <221> MOD_RES

<222> (34)

<223> AMIDATION, Position 34 is Gly-NH2

20 <400> 174

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 25 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

30 Ser Gly

35 <210> 175
 <211> 33

<212> PRT

<213> synthetic construct

40 <220>
 <221> MOD_RES

<222> (33)

<223> AMIDATION, Position 33 is Ser-NH2

<400> 175

45 His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 50 20 25 30

Ser

55 <210> 176
 <211> 32

<212> PRT

<213> synthetic construct

<220>
 <221> MOD_RES
 <222> (32)
 <223> AMIDATION, Position 32 is Ser-NH2

5
 <400> 176

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

15
 <210> 177
 <211> 32
 <212> PRT
 <213> synthetic construct

20
 <220>
 <221> MOD_RES
 <222> (32)
 <223> AMIDATION, Position 32 is Ser-NH2

25
 <400> 177

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

35
 <210> 178
 <211> 31
 <212> PRT
 <213> synthetic construct

40
 <220>
 <221> MOD_RES
 <222> (31)
 <223> AMIDATION, Position 31 is Pro-NH2

45
 <400> 178

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro
 20 25 30

55
 <210> 179
 <211> 30
 <212> PRT
 <213> synthetic construct

5 <220>
 <221> MOD_RES
 <222> (30)
 <223> AMIDATION, Position 30 is Gly-NH2

5 <400> 179

10 His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly
 20 25 30

15 <210> 180
 <211> 29
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> MOD_RES
 <222> (29)
 <223> AMIDATION, Position 29 is Gly-NH2

25 <400> 180

30 Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15
 Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly
 20 25

35 <210> 181
 <211> 38
 <212> PRT
 <213> synthetic construct

40 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is thioproline

45 <220>
 <221> VARIANT
 <222> (36)...(38)
 <223> Xaa is thioproline

50 <220>
 <221> MOD_RES
 <222> (38)
 <223> AMIDATION, Position 38 is thioproline-NH2

55 <400> 181

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

10 Ser Gly Ala Xaa Xaa Xaa
 35

15 <210> 182

<211> 38

<212> PRT

<213> synthetic construct

20 <220>

<221> VARIANT

<222> (36)..(38)

<223> Xaa is thioproline

25 <220>

<221> MOD_RES

<222> (38)

<223> AMIDATION, Position 38 is thioproline-NH2

30 <400> 182

His Gly Glu Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

35 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Pro Ser
 20 25 30

Ser Gly Ala tPro tPro tPro
 35

40 <210> 183

<211> 37

<212> PRT

<213> synthetic construct

45 <220>

<221> VARIANT

<222> (31)

<223> Xaa is N-methylalanine

50 <220>

<221> VARIANT

<222> (36)..(37)

<223> Xaa is N-methylalanine

55 <220>

<221> MOD_RES

<222> (37)

<223> AMIDATION, Position 37 is N-methylalanine-NH2

<400> 183

5 His Gly Glu Gly Thr Phe Thr Ser Ala Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30
 10 Ser Gly Ala Xaa Xaa
 35

15 <210> 184
 <211> 36
 <212> PRT
 <213> synthetic construct

20 <220>
 <221> VARIANT
 <222> (31)
 <223> Xaa is homoproline

25 <220>
 <221> VARIANT
 <222> (36)
 <223> Xaa is homoproline

30 <220>
 <221> MOD_RES
 <222> (36)
 <223> AMIDATION, Position 36 is homoproline-NH2

35 <400> 184

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15
 40 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa Ser
 20 25 30

 Ser Gly Ala Xaa
 35

45 <210> 185
 <211> 35
 <212> PRT
 <213> synthetic construct

50 <220>
 <221> MOD_RES
 <222> (35)
 <223> AMIDATION, Position 35 is Ala-NH2

<400> 185

His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

5

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

10

Ser Gly Ala
 35

<210> 186

<211> 30

<212> PRT

<213> synthetic construct

<220>

20 <221> MOD_RES

<222> (30)

<223> AMIDATION, Position 30 is Gly-NH2

25 <400> 186

His Gly Asp Ala Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

30

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
 20 25 30

35

<210> 187

<211> 39

<212> PRT

<213> synthetic construct

<220>

40 <221> MOD_RES

<222> (39)

<223> AMIDATION, Position 39 is Ser-NH2

<400> 187

45

Ala Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
 1 5 10 15

50

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
 20 25 30

Ser Gly Ala Pro Pro Pro Ser
 35

55

<210> 188

<211> 39

<212> PRT

<213> synthetic construct

<220>
 <221> MOD_RES
 <222> (39)
 <223> AMIDATION, Position 39 is Ser-NH2

5

<400> 188

10 Ala Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu
 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Phe Leu Lys Asn Gly Gly Pro Ser
 20 25 30

15 Ser Gly Ala Pro Pro Pro Ser
 35

20

Claims

1. Use of an exendin or an exendin agonist peptide for the manufacture of a medicament for treating gestational diabetes in a subject, said medicament comprising a therapeutically effective amount of an exendin or an exendin agonist peptide wherein said exendin or exendin agonist peptide binds to a receptor that binds exendin-3 or exendin-4, and
 25 wherein said exendin or exendin agonist peptide comprises the sequence Xaa₁ Xaa₂ Xaa₃ Gly Thr Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Ser Lys Gln Xaa₉ Glu Glu Ala Val Arg Leu Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Leu Lys Asn Gly Gly Xaa₁₄ Ser Ser Gly Ala Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈-Z; wherein
 30 Xaa₁ is His, Arg or Tyr;
 Xaa₂ is Ser, Gly, Ala or Thr;
 Xaa₃ is Asp or Glu;
 Xaa₄ is Phe, Tyr or naphthylalanine;
 35 Xaa₅ is Thr or Ser;
 Xaa₆ is Ser or Thr;
 Xaa₇ is Asp or Glu;
 Xaa₈ is Leu, Ile, Val, pentylglycine or Met;
 Xaa₉ is Leu, Ile, pentylglycine, Val or Met;
 40 Xaa₁₀ is Phe, Tyr or naphthylalanine;
 Xaa₁₁ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;
 Xaa₁₂ is Glu or Asp;
 Xaa₁₃ is Trp, Phe, Tyr, or naphthylalanine ;
 45 Xaa₁₄, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N- alkylglycine, N-alkylpentylglycine or N-alkylalanine ;
 Xaa₁₈ is Ser, Thr or Tyr; and
 Z is-OH or -NH2.
2. Use of an exendin or an exendin agonist peptide for the manufacture of a medicament for treating gestational diabetes in a subject, said medicament comprising a therapeutically effective amount of an exendin or an exendin agonist peptide wherein said exendin or exendin agonist peptide binds to a receptor that binds exendin-3 or exendin-4, and
 50 wherein said exendin or exendin agonist peptide comprises the sequence Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₈ Xaa₁₉ Xaa₂₀, Xaa₂₁, Xaa₂₂ Xaa₂₃ Xaa₂₄, Xaa₂₅,
 55 Xaa₂₆ Xaa₂₇, Xaa₂₈-Z₁; wherein

Xaa₁ is His, Arg or Tyr;
 Xaa₂ is Ser, Gly, Ala or Thr;

Xaa₃ is Asp or Glu;
 Xaa₅ is Ala or Thr;
 Xaa₆ is Ala, Phe, Tyr or naphthylalanine;
 Xaa₇ is Thr or Ser;
 5 Xaa₈ is Ala, Ser or Thr;
 Xaa₉ is Asp or Glu;
 Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
 Xaa₁₁ is Ala or Ser;
 Xaa₁₂ is Ala or Lys;
 10 Xaa₁₃ is Ala or Gln;
 Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met;
 Xaa₁₅ is Ala or Glu;
 Xaa₁₆ is Ala or Glu;
 15 Xaa₁₇ is Ala or Glu;
 Xaa₁₉ is Ala or Val;
 Xaa₂₀ is Ala or Arg;
 Xaa₂₁ is Ala or Leu;
 Xaa₂₂ is Ala, Phe, Tyr or naphthylalanine;
 Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;
 20 Xaa₂₄ is Ala, Glu or Asp;
 Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;
 Xaa₂₆ is Ala or Leu;
 Xaa₂₇ is Ala or Lys;
 Xaa₂₈ is Ala or Asn;
 25 Z₁ is -OH,
 -NH₂,
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂
 30 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 35 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂, or
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂;
 Xaa₃₁ Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine,
 N-alkylpentylglycine or N-alkylalanine; and
 Z₂ is -OH or -NH₂;
 40 provided that no more than three of Xaa₅, Xaa₆, Xaa₉, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇,
 Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇, and Xaa₂₈ are Ala.

3. Use of an exendin or an exendin agonist peptide for the manufacture of a medicament for treating gestational diabetes in a subject, said medicament comprising a therapeutically effective amount of an exendin or an exendin agonist peptide wherein said exendin or exendin agonist peptide binds to a receptor that binds exendin-3 or exendin-4, and
 45 wherein said exendin or exendin agonist peptide comprises the sequence Xaa₁ Xaa₂ Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇
 Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅
 Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁; wherein
 50 Xaa₁ is His, Arg, Tyr, Ala, Norval, Val or Norleu;
 Xaa₂ is Ser, Gly, Ala or Thr;
 Xaa₃ is Ala, Asp or Glu;
 Xaa₄ is Ala, Norval, Val, Norleu or Gly;
 Xaa₅ is Ala or Thr;
 55 Xaa₆ is Phe, Tyr or naphthylalanine;
 Xaa₇ is Thr or Ser;
 Xaa₈ is Ala, Ser or Thr;

Xaa₉ is Ala, Norval, Val, Norleu, Asp or Glu ;
 Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
 Xaa₁₁ is Ala or Ser ;
 Xaa₁₂ is Ala or Lys ;
 5 Xaa₁₃ is Ala or Gin;
 Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met ;
 Xaa₁₅ is Ala or Glu ;
 Xaa₁₆ is Ala or Glu ;
 Xaa₁₇ is Ala or Glu ;
 10 Xaa₁₉ is Ala or Val ;
 Xaa₂₀ is Ala or Arg ;
 Xaa₂₁ is Ala or Leu ;
 Xaa₂₂ is Phe, Tyr or naphthylalanine ;
 Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;
 15 Xaa₂₄ is Ala, Glu or Asp;
 Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;
 Xaa₂₆ is Ala or Leu;
 Xaa₂₇ is Ala or Lys ;
 Xaa₂₈ is Ala or Asn;
 20 Z1 is -OH,
 -NH₂
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 25 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 30 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂, or
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; wherein
 Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine,
 N-alkylpentylglycine or N-alkylalanine; and
 35 Z₂ is -OH or -NH₂;
 provided that no more than three of Xaa₃, Xaa₄, Xaa₅, Xaa₆, Xaa₉, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅,
 Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala; and provided also that, if
 Xaa₁ is His, Arg or Tyr, then at least one of Xaa₃, Xaa₄ and Xaa₉ is Ala.
 40 4. The use according to any one of claims 1 to 3, wherein said exendin or exendin agonist peptide is selected from the group consisting of SEQ ID NO. 1, 2 and 6-188.
 5. Use according to claim 1, when said exendin or exendin or exendin agonist peptide is selected from the group consisting of exendin-4-acid and ¹⁴Leu, ²⁵Phe exendin-4 amide.
 45 6. The use according to claim 2 or 3, wherein said exendin or exendin agonist peptide is selected from the group consisting of exendin-4 (1-30), exendin-4 (1-30) amide, exendin-4 (1-28) amide and ¹⁴Leu, ²⁵Phe exendin-4 (1-28) amide.
 7. The use according to claim 1, wherein said exendin or exendin agonist peptide is exendin-3.
 50 8. The use according to claim 1, wherein said exendin or exendin agonist peptide is exendin-4.
 9. The use according to any one of claims 1-8, where said therapeutically effective amount reduces blood glucose.
 55 10. The use according to any one of claims 1-9, wherein said medicament is in a form suitable for being administered continuously.
 11. The use according to any one of claims 1-9, wherein said medicament is in a form suitable for administration by

injection.

12. The use according to claim 11, wherein said medicament is in a form suitable for being administered by subcutaneous injection.

5 13. The use according to any one of claims 1-12, wherein said medicament is in a form to be administered in a single dose or divided doses to contain a daily dose of 1 µg to 1 mg of said exendin or exendin agonist peptide.

10 14. The use according to any one of claims 1-12, wherein said medicament is in a form to be administered in a single dose or divided doses to contain a daily dose of 1 µg to 30 µg of said exendin or exendin agonist peptide.

15 15. The use according to any one of claims 1-12, wherein said medicament is in a form to be administered in a single dose or divided doses to contain a daily dose of about 3 µg to about 50 µg of said exendin or exendin agonist peptide.

16. The use according to any one of claims 1-15, wherein said subject is a human.

17. The use according to any one of claims 1-16, wherein said medicament further comprises a therapeutically effective amount of one or more compounds selected from the group consisting of insulin and an amylin agonist.

20 **Patentansprüche**

1. Verwendung eines Exendin- oder eines Exendin-Agonist-Peptids für die Herstellung eines Medikaments für die Behandlung von Gestationsdiabetes bei einem Patienten, welches Medikament eine therapeutisch wirksame Menge eines Exendin- oder eines Exendin-Agonist-Peptids umfasst, wobei das Exendin- oder Exendin-Agonist-Peptid an einen Rezeptor bindet, der Exendin-3 oder Exendin-4 bindet, und wobei das Exendin- oder Exendin-Agonist-Peptid die Sequenz Xaa₁ Xaa₂ Xaa₃ Gly Thr Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Ser Lys Gin Xaa₉ Glu Glu Ala Val Arg Leu Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Leu Lys Asn Gly Gly Xaa₁₄ Ser Ser Gly Ala Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈-Z umfasst; worin

30 Xaa₁ His, Arg oder Tyr ist;

Xaa₂ Ser, Gly, Ala oder Thr ist;

Xaa₃ Asp oder Glu ist;

Xaa₄ Phe, Tyr oder Naphthylalanin ist;

Xaa₅ Thr oder Ser ist;

Xaa₆ Ser oder Thr ist;

Xaa₇ Asp oder Glu ist;

Xaa₈ Leu, Ile, Val, Pentylglycin oder Met ist;

Xaa₉ Leu, Ile, Pentylglycin, Val oder Met ist;

Xaa₁₀ Phe, Tyr oder Naphthylalanin ist;

Xaa₁₁ Ile, Val, Leu, Pentylglycin, tert-Butylglycin oder Met ist;

Xaa₁₂ Glu oder Asp ist;

Xaa₁₃ Trp, Phe, Tyr oder Naphthylalanin ist;

Xaa₁₄, Xaa₁₅, Xaa₁₆ und Xaa₁₇ unabhängig Pro, Homoprolin, 3Hyp, 4Hyp, Thioprolin, N-Alkylglycin, N-Alkylpentylglycin oder N-Alkylalanin sind;

Xaa₁₈ Ser, Thr oder Tyr ist; und

Z -OH oder -NH₂ ist.

2. Verwendung eines Exendin- oder eines Exendin-Agonist-Peptids für die Herstellung eines Medikaments für die Behandlung von Gestationsdiabetes bei einem Patienten, welches Medikament eine therapeutisch wirksame Menge eines Exendin- oder eines Exendin-Agonist-Peptids umfasst, wobei das Exendin- oder Exendin-Agonist-Peptid an einen Rezeptor bindet, der Exendin-3 oder Exendin-4 bindet, und wobei das Exendin- oder Exendin-Agonist-Peptid die Sequenz Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁ umfasst; worin

Xaa₁ His, Arg oder Tyr ist;

Xaa₂ Ser, Gly, Ala oder Thr ist;

Xaa₃ Asp oder Glu ist;
 Xaa₅ Ala oder Thr ist;
 Xaa₆ Ala, Phe, Tyr oder Naphthylalanin ist;
 Xaa₇ Thr oder Ser ist;
 5 Xaa₈ Ala, Ser oder Thr ist;
 Xaa₉ Asp oder Glu ist;
 Xaa₁₀ Ala, Leu, Ile, Val, Pentylglycin oder Met ist;
 Xaa₁₁ Ala oder Ser ist;
 Xaa₁₂ Ala oder Lys ist;
 10 Xaa₁₃ Ala oder Gln ist;
 Xaa₁₄ Ala, Leu, Ile, Pentylglycin, Val oder Met ist;
 Xaa₁₅ Ala oder Glu ist;
 Xaa₁₆ Ala oder Glu ist;
 Xaa₁₇ Ala oder Glu ist;
 15 Xaa₁₉ Ala oder Val ist;
 Xaa₂₀ Ala oder Arg ist;
 Xaa₂₁ Ala oder Leu ist;
 Xaa₂₂ Ala, Phe, Tyr oder Naphthylalanin ist;
 Xaa₂₃ Ile, Val, Leu, Pentylglycin, tert-Butylglycin oder Met ist;
 20 Xaa₂₄ Ala, Glu oder Asp ist;
 Xaa₂₅ Ala, Trp, Phe, Tyr oder Naphthylalanin ist;
 Xaa₂₆ Ala oder Leu ist;
 Xaa₂₇ Ala oder Lys ist;
 Xaa₂₈ Ala oder Asn ist;
 25 Z₁ ist -OH,
 -NH₂,
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 30 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 35 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂, oder
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; Xaa₃₁, Xaa₃₆, Xaa₃₇ und Xaa₃₈ unabhängig Pro, Homo-
 prolin, 3 Hyp, 4Hyp, Thioprolin, N-Alkylglycin, N-Alkylpentylglycin oder N-Alkylalanin sind; und Z₂ -OH oder-
 NH₂ ist;
 40 vorausgesetzt, dass nicht mehr als drei von Xaa₅, Xaa₆, Xaa₉; Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆,
 Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ und Xaa₂₈ Ala sind.
 45 3. Verwendung eines Exendin- oder eines Exendin-Agonist-Peptids für die Herstellung eines Medikaments für die
 Behandlung von Gestationsdiabetes bei einem Patienten, welches Medikament eine therapeutisch wirksame Menge
 eines Exendin- oder eines Exendin-Agonist-Peptids umfasst, wobei das Exendin- oder Exendin-Agonist-Peptid an
 einen Rezeptor bindet, der Exendin-3 oder Exendin-4 bindet, und
 wobei das Exendin- oder Exendin-Agonist-Peptid die Sequenz Xaa₁ Xaa₂ Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉
 Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇
 Xaa₂₈-Z₁ umfasst; worin
 50 Xaa₁ His, Arg, Tyr, Ala, Norval, Val oder Norleu ist;
 Xaa₂ Ser, Gly, Ala oder Thr ist;
 Xaa₃ Ala, Asp oder Glu ist;
 Xaa₄ Ala, Norval, Val, Norleu oder Gly ist;
 Xaa₅ Ala oder Thr ist;
 55 Xaa₆ Ala, Phe, Tyr oder Naphthylalanin ist;
 Xaa₇ Thr oder Ser ist;
 Xaa₈ Ala, Ser oder Thr ist;

Xaa₉ Ala, Noral, Val, Norleu, Asp oder Glu ist;
 Xaa₁₀ Ala, Leu, Ile, Val, Pentylglycin oder Met ist;
 Xaa₁₁ Ala oder Ser ist;
 Xaa₁₂ Ala oder Lys ist;
 5 Xaa₁₃ Ala oder Gln ist;
 Xaa₁₄ Ala, Leu, Ile, Pentylglycin, Val oder Met ist;
 Xaa₁₅ Ala oder Glu ist;
 Xaa₁₆ Ala oder Glu ist;
 Xaa₁₇ Ala oder Glu ist;
 10 Xaa₁₈ Ala oder Val ist;
 Xaa₂₀ Ala oder Arg ist;
 Xaa₂₁ Ala oder Leu ist;
 Xaa₂₂ Phe, Tyr oder Naphthylalanin ist;
 Xaa₂₃ Ile, Val, Leu, Pentylglycin, tert-Butylglycin oder Met ist;
 15 Xaa₂₄ Ala, Glu oder Asp ist;
 Xaa₂₅ Ala, Trp, Phe, Tyr oder Naphthylalanin ist;
 Xaa₂₆ Ala oder Leu ist;
 Xaa₂₇ Ala oder Lys ist;
 Xaa₂₈ Ala oder Asn ist;
 20 Z₁ ist -OH,
 -NH₂,
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 25 Gly Gly Xaa₃₁ Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 30 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂, oder
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; worin Xaa₃₁, Xaa₃₆, Xaa₃₇ und Xaa₃₈ unabhängig Pro,
 Homoprolin, 3 Hyp, 4Hyp, Thioprolin, N-Alkylpentylglycin, N-Alkylpentylglycin oder N-Alkylalanin sind; und Z₂ -OH
 oder -NH₂ ist,
 35 vorausgesetzt, dass nicht mehr als drei von Xaa₃, Xaa₄, Xaa₅, Xaa₈, Xaa₉, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄,
 Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ und Xaa₂₈ Ala sind;
 und außerdem vorausgesetzt, dass, wenn Xaa₁ His, Arg oder Tyr ist, dann wenigstens eines von Xaa₃, Xaa₄ und
 Xaa₉ Ala ist.

40 4. Verwendung nach einem der Ansprüche 1 bis 3, wobei das Exendin- oder Exendin-Agonist-Peptid ausgewählt ist aus der Gruppe, bestehend aus SEQ ID NR. 1, 2 und 6-188.

5. Verwendung nach Anspruch 1, wobei das Exendin- oder Exendin-Agonist-Peptid ausgewählt ist aus der Gruppe, bestehend aus Exendin-4-säure und ¹⁴Leu, ²⁵Phe-Exendin-4-amid.

45 6. Verwendung nach Anspruch 2 oder 3, wobei Exendin- oder Exendin-Agonist-Peptid ausgewählt ist aus der Gruppe, bestehend aus Exendin-4 (1-30), Exendin-4-(1-30)-amid, Exendin-4-(1-28)-amid und ¹⁴Leu, ²⁵Phe-Exendin-4-(1-28)-amid.

50 7. Verwendung nach Anspruch 1, wobei das Exendin- oder Exendin-Agonist-Peptid Exendin-3 ist.

8. Verwendung nach Anspruch 1, wobei das Exendin- oder Exendin-Agonist-Peptid Exendin-4 ist.

9. Verwendung nach einem der Ansprüche 1-8, wobei die therapeutisch wirksame Menge die Blutglucose reduziert.

55 10. Verwendung nach einem der Ansprüche 1-9, wobei das Medikament in einer Form vorliegt, die für die fortgesetzte Verabreichung geeignet ist.

11. Verwendung nach einem der Ansprüche 1-9, wobei das Medikament in einer Form vorliegt, die für die Verabreichung durch Injektion geeignet ist.

5 12. Verwendung nach Anspruch 11, wobei das Medikament in einer Form vorliegt, die für die Verabreichung durch subkutane Injektion geeignet ist.

10 13. Verwendung nach einem der Ansprüche 1-12, wobei das Medikament in einer Form vorliegt, die in einer einzelnen Dosis oder aufgeteilten Dosen verabreicht wird, wobei diese eine tägliche Dosis von 1 µg bis 1 mg des Exendin- oder Exendin-Agonist-Peptids enthält.

15 14. Verwendung nach einem der Ansprüche 1-12, wobei das Medikament in einer Form vorliegt, die in einer einzelnen Dosis oder aufgeteilten Dosen verabreicht wird, wobei diese eine tägliche Dosis von 1 µg bis 30 µg des Exendin- oder Exendin-Agonist-Peptids enthält.

20 15. Verwendung nach einem der Ansprüche 1-12, wobei das Medikament in einer Form vorliegt, die in einer einzelnen Dosis oder aufgeteilten Dosen verabreicht wird, wobei diese eine tägliche Dosis von 3 µg bis etwa 50 µg des Exendin- oder Exendin-Agonist-Peptids enthält.

16. Verwendung nach einem der Ansprüche 1-15, wobei der Patient ein Mensch ist.

25 17. Verwendung nach einem der Ansprüche 1-16, wobei das Medikament außerdem eine therapeutisch wirksame Menge einer oder mehrerer Verbindungen umfasst, ausgewählt aus der Gruppe, bestehend aus Insulin und einem Amylin-Agonisten.

Revendications

1. Utilisation d'une exendine ou d'un peptide agoniste d'exendine pour la préparation d'un médicament destiné au traitement du diabète gestationnel chez un sujet, ledit médicament comprenant une quantité thérapeutiquement efficace d'exendine ou d'un peptide agoniste d'exendine dans laquelle ladite exendine ou ledit peptide agoniste d'exendine se lie à un récepteur qui se lie à l'exendine-3 ou à l'exendine-4, et dans laquelle ladite exendine ou ledit peptide agoniste d'exendine comprend la séquence Xaa₁ Xaa₂ Xaa₃ Gly Thr Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Ser Lys Gln Xaa₉ Glu Glu Ala Val Arg Leu Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Leu Lys Asn Gly Gly Xaa₁₄ Ser Ser Gly Ala Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈-Z ; dans laquelle

35 Xaa₁ est His, Arg ou Tyr ;
 Xaa₂ est Ser, Gly, Ala ou Thr ;
 Xaa₃ est Asp ou Glu ;
 Xaa₄ est Phe, Tyr ou naphtylalanine ;
 40 Xaa₅ est Thr ou Ser ;
 Xaa₆ est Ser ou Thr ;
 Xaa₇ est Asp ou Glu ;
 Xaa₈ est Leu, Ile, Val, pentylglycine ou Met ;
 Xaa₉ est Leu, Ile, pentylglycine, Val ou Met ;
 45 Xaa₁₀ est Phe, Tyr ou naphtylalanine ;
 Xaa₁₁ est Ile, Val, Leu, pentylglycine, tert-butylglycine ou Met ;
 Xaa₁₂ est Glu ou Asp ;
 Xaa₁₃ est Trp, Phe, Tyr, ou naphtylalanine ;
 50 Xaa₁₄, Xaa₁₅, Xaa₁₆ et Xaa₁₇ sont indépendamment Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine ou N-alkylalanine ;
 Xaa₁₈ est Ser, Thr ou Tyr ; et
 Z est -OH ou -NH₂.

55 2. Utilisation d'une exendine ou d'un peptide agoniste d'exendine pour la préparation d'un médicament destiné au traitement du diabète gestationnel chez un sujet, ledit médicament comprenant une quantité thérapeutiquement efficace d'une exendine ou d'un peptide agoniste d'exendine dans laquelle ladite exendine ou ledit peptide agoniste d'exendine se lie à un récepteur qui se lie à l'exendine-3 ou à l'exendine-4, et

dans laquelle ladite exendine ou ledit peptide agoniste d'exendine comprend la séquence Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁ ; dans laquelle

5 Xaa₁ est His, Arg ou Tyr ;
 Xaa₂ est Ser, Gly, Ala ou Thr ;
 Xaa₃ est Asp ou Glu ;
 Xaa₅ est Ala ou Thr ;
 Xaa₆ est Ala, Phe, Tyr ou naphthylalanine ;
 10 Xaa₇ est Thr ou Ser ;
 Xaa₈ est Ala, Ser ou Thr ;
 Xaa₉ est Asp ou Glu ;
 Xaa₁₀ est Ala, Leu, Ile, Val, pentylglycine ou Met ;
 Xaa₁₁ est Ala ou Ser ;
 15 Xaa₁₂ est Ala ou Lys ;
 Xaa₁₃ est Ala ou Gln ;
 Xaa₁₄ est Ala, Leu, Ile, pentylglycine, Val ou Met ;
 Xaa₁₅ est Ala ou Glu ;
 Xaa₁₆ est Ala ou Glu ;
 20 Xaa₁₇ est Ala ou Glu ;
 Xaa₁₉ est Ala ou Val ;
 Xaa₂₀ est Ala ou Arg ;
 Xaa₂₁ est Ala ou Leu ;
 Xaa₂₂ est Ala, Phe, Tyr ou naphtylananine ;
 25 Xaa₂₃ est Ile, Val, Leu, pentylglycine, tert-butylglycine ou Met ;
 Xaa₂₄ est Ala, Glu ou Asp ;
 Xaa₂₅ est Ala, Trp, Phe, Tyr ou naphtylananine ;
 Xaa₂₆ est Ala ou Leu ;
 30 Xaa₂₇ est Ala ou Lys ;
 Xaa₂₈ est Ala ou Asn ;
 Z₁ est -OH,
 -NH₂,
 Gly-Z₂,
 35 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 Gly Gly Xaa₃₁ Ser -Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 40 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂, ou
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂ ;
 Xaa₃₁ Xaa₃₆ Xaa₃₇ et Xaa₃₈ sont indépendamment Pro, homopropoline
 45 3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine ou N-alkylalanine ; et Z₂ est -OH ou -NH₂ ;
 à condition que pas plus de trois des Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆,
 Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ et Xaa₂₈ ne soient Ala.

50 3. Utilisation d'une exendine ou d'un peptide agoniste d'exendine pour la préparation d'un médicament destiné au traitement du diabète gestationnel chez un sujet, ledit médicament comprenant une quantité thérapeutiquement efficace d'une exendine ou d'un peptide agoniste d'exendine dans laquelle ladite exendine ou ledit peptide agoniste d'exendine se lie à un récepteur se lie à l'exendine-3 ou à l'exendine-4, et
 55 dans laquelle ladite exendine ou ledit peptide agoniste d'exendine comprend la séquence Xaa₁ Xaa₂ Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁ ; dans laquelle

Xaa₁ est His, Arg, Tyr, Ala, Norval, Val ou Norleu ;
 Xaa₂ est Ser, Gly, Ala ou Thr ;
 Xaa₃ est Ala, Asp ou Glu ;
 Xaa₄ est Ala, Norval, Val, Norleu ou Gly ;
 5 Xaa₅ est Ala ou Thr ;
 Xaa₆ est Phe, Tyr ou naphtylalanine ;
 Xaa₇ est Thr ou Ser ;
 Xaa₈ est Ala, Ser ou Thr ;
 Xaa₉ est Ala, Norval, Val, Norleu, Asp ou Glu ;
 10 Xaa₁₀ est Ala, Leu, Ile, Val, pentylglycine ou Met ;
 Xaa₁₁ est Ala ou Ser ;
 Xaa₁₂ est Ala ou Lys ;
 Xaa₁₃ est Ala ou Gln ;
 Xaa₁₄ est Ala, Leu, Ile, pentylglycine, Val ou Met ;
 15 Xaa₁₅ est Ala ou Glu ;
 Xaa₁₆ est Ala ou Glu ;
 Xaa₁₇ est Ala ou Glu ;
 Xaa₁₈ est Ala ou Val ;
 Xaa₁₉ est Ala ou Arg ;
 20 Xaa₂₁ est Ala ou Leu ;
 Xaa₂₂ est Phe, Tyr ou naphtylalanine ;
 Xaa₂₃ est Ile, Val, Leu, pentylglycine, tert-butylglycine ou Met ;
 Xaa₂₄ est Ala, Glu ou Asp ;
 25 Xaa₂₅ est Ala, Trp, Phe, Tyr ou naphtylalanine ;
 Xaa₂₆ est Ala ou Leu ;
 Xaa₂₇ est Ala ou Lys ;
 Xaa₂₈ est Ala ou Asn ;
 Z est -OH.
 30 -NH₂,
 Gly-Z₂,
 Gly Gly-Z₂,
 Gly Gly Xaa₃₁-Z₂,
 Gly Gly Xaa₃₁ Ser -Z₂,
 Gly Gly Xaa₃₁ Ser Ser-Z₂,
 35 Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂, ou
 40 Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂ ; dans laquelle

Xaa₃₁ Xaa₃₆ Xaa₃₇ et Xaa₃₈ sont indépendamment Pro, homopropoline

3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine ou N-alkylalanine ; et Z₂ est -OH ou -NH₂ ;
 45 à condition que pas plus de trois des Xaa₃, Xaa₄, Xaa₅, Xaa₈, Xaa₉, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅,
 Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ et Xaa₂₈ ne soient Ala.

et à condition que, si Xaa₁ est His, Arg ou Tyr, alors au moins un parmi Xaa₃, Xaa₄ et Xaa₉ est Ala.

4. Utilisation selon l'une quelconque des revendications 1 à 3, dans laquelle ladite exendine ou ledit peptide agoniste d'exendine est choisi dans le groupe constitué de SEQ ID NO 1, 2 et 6-188.
5. Utilisation selon la revendication 1, dans laquelle ladite exendine ou ledit peptide agoniste d'exendine est choisi dans le groupe constitué d'un acide d'exendine-4 et d'un amide de ¹⁴Leu, ²⁵Phe exendine-4.
- 55 6. Utilisation selon la revendication 2 ou 3, dans laquelle ladite exendine ou ledit peptide agoniste d'exendine est choisi dans le groupe constitué de l'exendine-4 (1-30), d'un amide d'exendine-4 (1-30), d'un amide d'exendine-4 (1-28) et d'un amide de ¹⁴Leu, ²⁵Phe exendine (1-28).

7. Utilisation selon la revendication 1, dans laquelle ladite exendine ou ledit peptide agoniste d'exendine est l'exendine-3.
8. Utilisation selon la revendication 1, dans laquelle ladite exendine ou ledit peptide agoniste d'exendine est l'exendine-4.
9. Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle ladite quantité thérapeutiquement efficace réduit le glucose dans le sang.
10. Utilisation selon l'une quelconque des revendications 1 à 9, dans laquelle ledit médicament est sous une forme appropriée pour être administrée de manière continue.
11. Utilisation selon l'une quelconque des revendications 1 à 9, dans laquelle ledit médicament est sous une forme appropriée pour être administrée par injection.
12. Utilisation selon la revendication 11, dans laquelle ledit médicament est sous une forme appropriée pour être administrée par injection sous-cutanée.
13. Utilisation selon l'une quelconque des revendications 1 à 12, dans laquelle ledit médicament est sous une forme destinée à être administrée en une dose unique ou en doses fractionnées pour contenir une dose quotidienne de 1 µg à 1 mg de ladite exendine ou dudit peptide agoniste d'exendine.
14. Utilisation selon l'une quelconque des revendications 1 à 12, dans laquelle ledit médicament est sous une forme destinée à être administrée en une dose unique ou en doses fractionnées pour contenir une dose quotidienne de 1 µg à 30 µg de ladite exendine ou dudit peptide agoniste d'exendine.
15. Utilisation selon l'une quelconque des revendications 1 à 12, dans laquelle ledit médicament est sous une forme destinée à être administrée en une dose unique ou en doses fractionnées pour contenir une dose quotidienne d'environ 3 µg à environ 50 µg de ladite exendine ou dudit peptide agoniste d'exendine.
16. Utilisation selon l'une quelconque des revendications 1 à 15, dans laquelle ledit sujet est un humain.
17. Utilisation selon l'une quelconque des revendications 1 à 16, dans laquelle ledit médicament comprend en outre une quantité thérapeutiquement efficace d'un ou plusieurs composés choisis dans le groupe constitué de l'insuline et d'un agoniste d'amyline.

40

45

50

55

1 Xaa₁ Xaa₂ Xaa₃ Gly 5 Xaa₄ Xaa₅ Xaa₆ Xaa₇ Xaa₈ Ser Lys 10 Gin Xaa₉ Glu 15 Glu Glu Ala Val Arg 20 Leu
 25 Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Leu Lys Asn Gly 30 Xaa₁₄ Ser Ser Gly 35 Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈ -Z

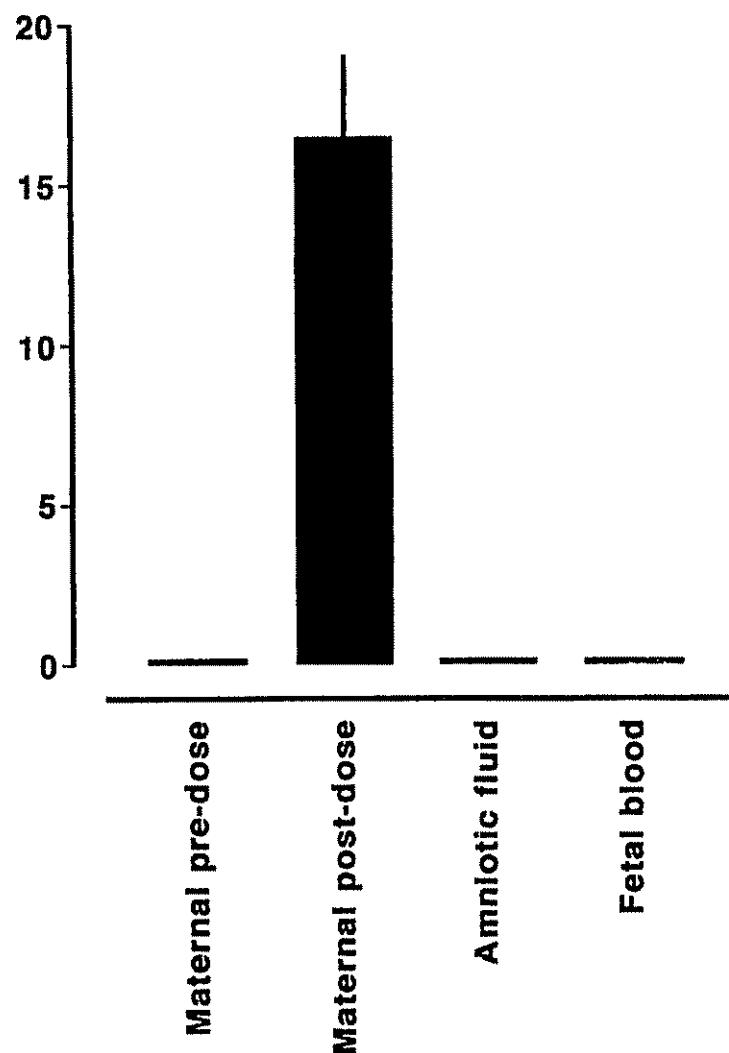

[SEQ.] ID. NO.]	Xaa ₁	Xaa ₂	Xaa ₃	Xaa ₄	Xaa ₅	Xaa ₆	Xaa ₇	Xaa ₈	Xaa ₉	Xaa ₁₀	Xaa ₁₁	Xaa ₁₂	Xaa ₁₃	Xaa ₁₄	Xaa ₁₅	Xaa ₁₆	Xaa ₁₇	Xaa ₁₈	Z	
9	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Ile	Glu	Phe	Pro	Pro	Pro	Pro	Ser	NH ₂
10	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
11	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Phe	Pro	Pro	Pro	Pro	Ser	NH ₂
12	Tyr	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
13	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Tyr	NH ₂
14	His	Gly	Asp	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Pro	Ser	NH ₂
15	His	Gly	Glu	Glu	naph	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
16	His	Gly	Glu	Glu	Phe	Ser	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
17	His	Gly	Glu	Glu	Phe	Ser	Thr	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
18	His	Gly	Glu	Glu	Phe	Thr	Thr	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
19	His	Gly	Glu	Glu	Phe	Thr	Ser	Glu	Leu	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
20	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	pGly	Met	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
21	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	pGly	Leu	Phe	Ile	Glu	Phe	Pro	Pro	Pro	Pro	Ser	NH ₂
22	His	Gly	Glu	Glu	Phe	Thr	Ser	Asp	Leu	pGly	Phe	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂

Fig. 1A

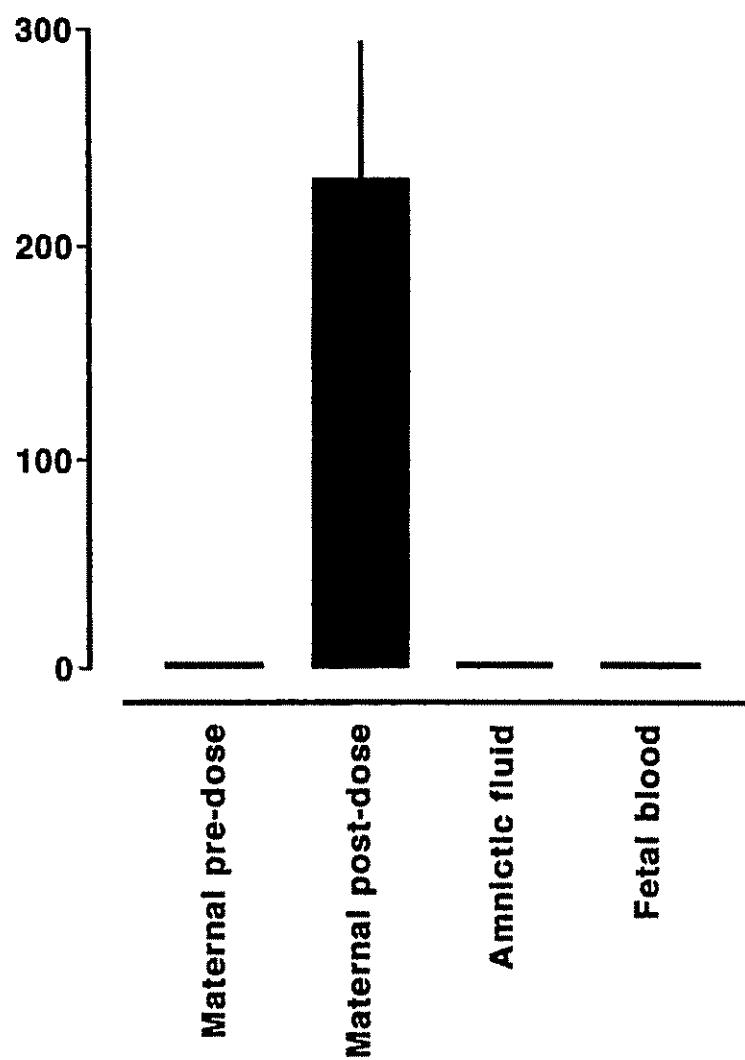

[SEQ.ID.NO.]	Xaa ₁	Xaa ₂	Xaa ₃	Xaa ₄	Xaa ₅	Xaa ₆	Xaa ₇	Xaa ₈	Xaa ₉	Xaa ₁₀	Xaa ₁₁	Xaa ₁₂	Xaa ₁₃	Xaa ₁₄	Xaa ₁₅	Xaa ₁₆	Xaa ₁₇	Xaa ₁₈	Z
23	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	pGly	Phe	Ile	Glu	Phe	Pro	Pro	Pro	Pro	Pro	NH ₂
24	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	naph	Ile	Glu	Trp	Pro	Pro	Pro	Pro	Pro	NH ₂
25	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Val	Glu	Trp	Pro	Pro	Pro	Pro	Pro	NH ₂
26	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Val	Glu	Phe	Pro	Pro	Pro	Pro	Pro	NH ₂
27	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	BuG	Glu	Trp	Pro	Pro	Pro	Pro	Pro	NH ₂
28	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	BuG	Glu	Phe	Pro	Pro	Pro	Pro	Pro	NH ₂
29	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Asp	Trp	Pro	Pro	Pro	Pro	Pro	NH ₂
30	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Phe	Pro	Pro	Pro	Pro	Pro	NH ₂
31	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	tPro	tPro	tPro	tPro	tPro	NH ₂
32	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	tPro	tPro	tPro	tPro	NH ₂
33	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	hPro	hPro	hPro	hPro	hPro	NH ₂
34	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	hPro	hPro	hPro	hPro	NH ₂
35	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Ile	Glu	Phe	tPro	tPro	tPro	tPro	tPro	NH ₂
36	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Ile	Glu	Phe	hPro	hPro	hPro	hPro	hPro	NH ₂
37	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	MeAa	MeAa	MeAa	MeAa	MeAa	NH ₂
38	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Met	Phe	Ile	Glu	Trp	Pro	MeAa	MeAa	MeAa	MeAa	NH ₂
39	His	Gly	Glu	Phe	Thr	Ser	Asp	Leu	Leu	Phe	Val	Glu	Phe	MeAa	MeAa	MeAa	MeAa	MeAa	NH ₂

Fig. 1 B

Fig. 2

Fig. 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5424286 A [0016]
- US 9714199 W [0019]
- US 9800449 W [0020]
- WO 60034905 A [0020]
- WO 60055404 A [0020]
- WO 60065442 A [0020]
- WO 60066029 A [0020]
- US 9902554 W [0021]
- WO 60075122 A [0021]
- US 00009920 W [0022]
- US 9816387 W [0028] [0035]
- US 055404 P [0028]
- US 9824220 W [0028]
- US 06544297 P [0028]
- US 9824273 W [0028] [0061]
- US 06602997 P [0028]
- US 0011814 W [0028]
- US 5686511 A [0032]
- US 60055404 B [0035]
- US 9824210 W [0048]
- US 60065442 B [0048]
- US 60066029 B [0061]
- US 0000902 W [0075] [0083] [0083]
- US 0014231 W [0434]

Non-patent literature cited in the description

- Proceedings of the Third International Workshop Conference on Gestational Diabetes Mellitus. *Diabetes*. 1991, vol. 40 [0003]
- Diabetes and Pregnancy. **PERSSON** et al. International Textbook of Diabetes Mellitus. John Wiley & Sons, 1997 [0003]
- **LANGER**. *Am. J. Obstet Gynecol.*, 1997, vol. 176, S186 [0003]
- American Diabetes Association: Self-Monitoring of Blood Glucose Consensus Statement. *Diabetes Care*, 1994, vol. 17, 81-82 [0003]
- **COETZEE** ; **JACKSON**. *S. Afr. Med. J.*, 1979, vol. 56, 467-475 [0003]
- **DREXEL** et al. *Diabetes Care*, 1988, vol. 11, 761-768 [0003]
- **ROVERS** et al. *Diabetes Care*, 1980, vol. 3, 489-494 [0003]
- **LANGER** ; **MAZZE**. *Am. J. Obstet Gynecol.*, 1988, vol. 159, 1478-1483 [0003]
- **LANGER** et al. *Am. J. Obstet Gynecol.*, 1989, vol. 161, 646-653 [0003]
- **GDM**. **CARR**. *Diabetes Care*, 1998, vol. 21 (2), B14-B18 [0006]
- **WILLIAMS** et al. *Diabetes Care*, 1999, vol. 22, 418-421 [0007]
- **COUSTAN**. Gestational Diabetes In Diabetes in America. National Institutes of Health Publication, 1995, vol. 95-1468 [0007]
- **SERMER** et al. *Diabetic Care*, 1998, vol. 21 (2), B33-B42 [0009]
- **TALLARIGO** et al. *N. Engl. J. Med.*, 1986, vol. 315, 989-992 [0009]
- **JOVANOVIC**. *Diabetes Care*, 1998, vol. 21 (2), B131-B137 [0010] [0012]
- **JOVANOVIC-PETERSON** ; **PETERSON**. *J. Am. Coll. Nutr.*, 1990, vol. 9, 320-325 [0010]
- **KUHL** et al. *Diabetic Care*, 1998, vol. 21 (2), B19-B26 [0012]
- Insulin, Oral Hypoglycemic Agents, and the Pharmacology of the Endocrine Pancreas. **KAHN** ; **SHECHTER** et al. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 1993 [0012]
- **LANGER** et al. *Langer*, *Diabetes Care*, 1998, vol. 21 (2), B91-B98 [0013]
- **ENG**, J. et al. *J. Biol. Chem.*, 1990, vol. 265, 20259-62 [0015]
- **ENG**, J. et al. *J. Biol. Chem.*, 1992, vol. 267, 7402-05 [0015]
- **GOKE** et al. *J. Biol. Chem.*, 1993, vol. 268, 19650-55 [0015] [0016] [0017]
- **ORSKOV** et al. *Diabetes*, 1993, vol. 42, 658-61 [0015] [0015]
- **D'ALESSIO** et al. *J. Clin. Invest.*, 1996, vol. 97, 133-38 [0015] [0017]
- **WILLIAMS B** et al. *J Clin Endocrinol Metab*, 1996, vol. 81 (1), 327-32 [0015]
- **WETTERGREN A** et al. *Dig Dis Sci*, 1993, vol. 38 (4), 665-73 [0015] [0015]
- **SCHJOLDAGER BT** et al. *Dig Dis Sci*, 1989, vol. 34 (5), 703-8 [0015]
- **O'HALLORAN DJ** et al. *J Endocrinol*, 1990, vol. 126 (1), 169-73 [0015]
- **THORENS**. *Proc. Natl. Acad. Sci. USA*, 1992, vol. 89, 8641-45 [0015]

- SCHEPP et al. *Eur. J. Pharmacol.*, 1994, vol. 69, 183-91 [0016]
- EISSELE et al. *Life Sci.*, 1994, vol. 55, 629-34 [0016]
- MALHOTRA, R. et al. *Regulatory Peptides*, 1992, vol. 41, 149-56 [0016]
- RAUFMAN et al. *J. Biol. Chem.*, 1992, vol. 267, 21432-37 [0016]
- SINGH et al. *Regul. Pept.*, 1994, vol. 53, 47-59 [0016]
- RAUFMAN, J.P. et al. *J. Biol. Chem.*, 1991, vol. 266, 2897-902 [0017]
- SCHEPP, W. et al. *Eur. J. Pharm.*, 1994, vol. 269, 183-91 [0017]
- MONTROSE-RAFIZADEH et al. *Diabetes*, 1996, vol. 45 (2), 152A [0017]
- WANG et al. *J. Clin. Invest.*, 1995, vol. 95, 417-21 [0017]
- THORENS, B. *Proc. Natl. Acad. Sci. USA*, 1992, vol. 89, 8641-8645 [0017]
- FEHMANN HC et al. *Peptides*, 1994, vol. 15 (3), 453-6 [0017]
- THORENS B et al. *Diabetes*, 1993, vol. 42 (11), 1678-82 [0017]
- RAUFMAN et al. *J. Biol. Chem.*, 1991, vol. 266, 2897-902 [0018]
- RAUFMAN et al. *J. Biol. Chem.*, 1992, vol. 266, 21432-37 [0018]
- KOLLIGS, F. et al. *Diabetes*, 1995, vol. 44, 16-19 [0018]
- EISSELE et al. *Life Sciences*, 1994, vol. 55, 629-34 [0018]
- TURTON, M.D. et al. *Nature*, 1996, vol. 379, 69-72 [0023]
- TURTON, M.D. *Nature*, 1996, vol. 379, 69-72 [0023]
- BHAVSAR, S.P. *Soc. Neurosci. Abstr.*, 1995, vol. 21 (188.8), 460 [0023]
- Applied Biosystems User's Manual for the ABI 430A Peptide Synthesizer, Version 1.3B. Applied Biosystems, Inc, 01 July 1988, vol. 6, 49-70 [0071]
- Introduction to Cleavage Techniques. Applied Biosystems, Inc, 1990, 6-12 [0071]
- COHEN et al. *The Pico Tag Method: A Manual of Advanced Techniques for Amino Acid Analysis*, 11-52 [0072]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 1989 [0073]
- BARTLETT ; LANDEN. *Bioorg. Chem.*, 1986, vol. 14, 356-377 [0073]
- WANG, Y.J. ; HANSON, M.A. Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers. *Journal of Parenteral Science and Technology, Technical Report*, 1988, (10 [0074]