
(19) United States
US 2008O155702A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0155702 A1
Bala et al. (43) Pub. Date: Jun. 26, 2008

METHOD FOR PROTECTING DIGITAL
CONTENT FROM UNAUTHORIZED USE BY
AUTOMATICALLY AND DYNAMICALLY
INTEGRATING A CONTENT-PROTECTION
AGENT

(54)

(75) Inventors: Vasanth Bala, Tarrytown, NY
(US); Michael D. Smith,
Lexington, MA (US)

Correspondence Address:
HAMILTON, BROOK, SMITH & REYNOLDS,
P.C.
530 VIRGINLA ROAD, P.O. BOX9133
CONCORD, MA 01742-9133

Assignee: Liquid Machines, Inc., Waltham,
MA (US)

(73)

(21) Appl. No.: 11/986,984

(22) Filed: Nov. 26, 2007

Disk image Memory image
50 54A

Original Original
Content
Processor
Application Processor

Application

ntegrator Gen
Integrator Integration

Agent
(standalone) Copy

60
Integrator
Generator

Integrator
62

Integrator
Generator
Template

Load & --------
Initialize Integrator 62

Amalgamator Amalgamator 72

Modules

Copy
Integrator

70

Protection 76

Related U.S. Application Data

(63) Continuation of application No. 10/194.655, filed on
Jul. 11, 2002, now Pat. No. 7,313,824.
Provisional application No. 60/305,589, filed on Jul.
13, 2001.

(60)

Publication Classification

Int. C.
H04L 9/32 (2006.01)
U.S. Cl. .. T26/27

(51)

(52)
(57) ABSTRACT

A content processor application is loaded into memory from
a master image to form a runtime content processor applica
tion image. An integration agent dynamically integrates a
protection agent into the loaded runtime content processor
application image to form a customized content processor
application with extended functionality. Only the runtime
content processor application image is extended with the
protection agent—the application master image remains
unaltered.

SaWe

Temporary
Storage

restore

FIG. 3B

US 2008/O155702 A1 Jun. 26, 2008 Sheet 1 of 7 Patent Application Publication

| || ||

60|| eeue Japeau pe?dKuoue
/0].

US 2008/O155702 A1 Jun. 26, 2008 Sheet 2 of 7 Patent Application Publication

N
w

N

„W^IOWEW-NI

EST)

Patent Application Publication Jun. 26, 2008 Sheet 3 of 7 US 2008/O155702 A1

2OO
201

User indicates desire to launch content
processor application either explicitly or

implicitly (through an action that indicates a
desire to access protected or unprotected

Content associated with the content processor
application).

2O2
Integration agent intercedes and launches
Content processor application in suspended

State.

2O3
Integration agent begins dynamic integration of

the amalgamator module and appropriate
Content protection modules with content

processor application.

204
Integration agent terminates after receiving

Confirmation from the amalgamator module that
dynamic injection succeeded.

205
Customized content processor application

processes the protected content as directed by
end user.

any authorization failure

exit Condition
207

Pop-up message or other security
Specific appropriate action, including
termination of Customized content

processor.

FIG. 2

Patent Application Publication Jun. 26, 2008 Sheet 4 of 7 US 2008/O155702 A1

301
Integration agent creates integrator generator by Customizing integrator generator

template for current security Conditions and particular Content processor application.

302
Integration agent creates shared byte store and copies a portion of the content
processor application into the byte store starting from the content processor

application's start address.

303
Integration agent writes the integrator generator into the address space of the content

processor application starting at the start address,

304
Integration agent sends control to the start address, starting up the integrator generator.

305
Integration generator saves portion of the Content processor application's state.

306
Integration generator identifies part of the application's address space free of Code or

data and Creates a Code cache in this space. The integrator generator Writes a
sequence of Code and data, called the integrator, into this Code cache,

307
Jump to first instruction in the integrator.

308
Integrator loads the amalgamator module.

309
Integrator loads the amalgamator's initialization routine.

310
Integrator deallocates space for Code cache and simultaneously jumps to start address
so that the now-customized content processor application can proceed as normal.

Patent Application Publication Jun. 26, 2008 Sheet 5 of 7 US 2008/O155702 A1

Disk image Memory image
50

SaVe
Original
Content
Processor E.
Application OCeSSO

Application

Integrator Gen Temporary
Integration Integrator Storage
Agent

(standalone) Copy

60
integrator

X)-Generator
Integrator
Generator
Template

Integrator
62

Copy
Integrator

Load &
Initialize C.

Amalgamator
Integrator 62

Amalgamator 72

restore

Amalgamator 72
Content

Protection 76
Modules FIG. 3B

Patent Application Publication Jun. 26, 2008 Sheet 6 of 7 US 2008/O155702 A1

401
Initialization code in the amalgamator loads one or more

content protection modules into the same address space as
the amalgamator and content processor application.

402
Steps 403 and 404 are repeated for every loaded EXE or
DLL module that is part of the original content processor

application.

403
Amalgamator examines the memory image of the loaded
module's import table for any I/O-related calls or calls to

explicit loader functions.

404
Amalgamator Copies any Such entries to another area of
memory and then overwrites with the corresponding

function entry points in the content protection module code.

405
Initialization Code in the Amalgamator replaces the code
and data for the integrator generator with the content

processor's original application code stored in the shared
byte store.

406
Amalgamator notifies the integration agent that integration
is complete and that it is done with the shared byte store.

FIG. 4

Patent Application Publication Jun. 26, 2008 Sheet 7 of 7 US 2008/O155702 A1

501
Integration agent checks the header area of the input

protected document to determine the original file type of
the document.

502
Integration agent looks in a registry for the content

processor application that is currently registered to handle
documents of the original file type.

503
Integration agent launches the registered content

processor application in suspended mode.

FIG. 5

US 2008/O 155702 A1

METHOD FOR PROTECTING DIGITAL
CONTENT FROM UNAUTHORIZED USE BY
AUTOMATICALLY AND DYNAMICALLY
INTEGRATING A CONTENT-PROTECTION

AGENT

RELATED APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/194,655, filed Jul. 11, 2002, which claims the
benefit of U.S. Provisional Application No. 60/305,589, filed
on Jul. 13, 2001.
0002 The entire teachings of the above applications are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

0003. As more and more digital content is transacted elec
tronically, there is an increasing demand for technologies that
can secure the content from unauthorized use and distribu
tion. Unlike physical goods, digital content is easily copied
and distributed. The only way to prevent this is for the content
provider to establish a trusted environment on the end user's
machine that can act as a proxy for securing the content from
illegal copying and distribution after it is shipped to an autho
rized end user.
0004 Cryptographic solutions such as Pretty Good Pri
vacy (PGP) (available from Network Associates) and RSA
(available from RSA Security, Inc.), secure digital content
during its transmission through an untrusted channel, but are
inadequate for securing it once it gets to the end user's
machine. In fact, the Science of cryptography matured during
World War II as a means for protecting an untrusted commu
nication channel between two parties that trust each other.
0005. In the present case however, the content provider
would generally prefer to not have to trust the end user receiv
ing the content, and so the security of the content must con
tinue to persist even after the digital content has been received
by the end user. Furthermore, end users who receive digital
content would generally prefer to not be burdened with the
security concerns of the content provider simply because they
received the digital content. This “last mile' problem cannot
be addressed by cryptographic techniques alone, because
they require the encrypted document to be converted to clear
text on disk before it can be viewed or manipulated by an
application on the end user's machine.
0006. One way to establish a trusted end point on the end
user's machine is to force the end user to use a trusted piece of
Software, namely the content player application, to "play' or
process the content. The trusted content player application
should be capable of directly processing the digital content in
the encrypted format in which it is shipped, so that a
decrypted or “clear text form of the original content is never
created on disk.
0007 Another solution is to create a security plugin mod
ule that can extend the content player application with the
desired security features.

SUMMARY OF THE INVENTION

0008 What makes the “last mile difficult to solve in the
real world is the fact that most content publishers do not
control the Source code for the content player applications
that process their content. For example, music publishers
create audio content informats such as MP3, RealAudio and

Jun. 26, 2008

Windows Media, but the applications that play audio files in
these formats are manufactured by software publishers, and
not the music publishers.
0009 Companies that offer digital content security or
digital rights management Solutions have to seek the coop
eration of the software publishers before they can sell their
solutions to the content publishers. They have to partner with
the software publisher to do source-level integration of their
security Solution into the Software application that will play
the content, in order to create a trusted endpoint on the end
user's machine for the content publisher. This makes market
penetration for Such approaches very difficult.
00.10 Even if the cooperation of software publishers can
be successfully obtained, it is still up to the end user to
upgrade any existing version of the Software application to
the custom version that has the content protector embedded in
it. This creates an additional barrier to deployment, especially
if the end user has to pay for the upgrade.
0011. An example of such a situation recently appeared in
connection with the encryption of PDF files using a digital
rights management (DRM) solution. Adobe Systems Incor
porated is a software company that manufactures a line of
software applications, called Acrobat, based on the PDF file
format. It distributes both a limited-functionality Acrobat
Reader, which is free, and a full-featured Acrobat product,
which costs several hundred dollars to purchase.
0012 Adobe recently announced a partnership with the
developer of the DRM solution to integrate that solution into
Adobe's line of Acrobat applications. However, Adobe chose
to integrate the DRM solution only with its full-featured
product and not with the free reader.
0013 From the perspective of a content publisher inter
ested in secure distribution of PDF files, it would prefer to see
the DRM solution integrated into both the free reader as well
as the full-featured Acrobat application. This is because the
high cost of the full-featured product creates a significant
market barrier for the content publisher: an end-user receiv
ing a secure PDF file would have to have the expensive
full-feature Acrobat product and not just the free reader.
0014. The impact of this price differential can be clearly
seen by comparing the installed base of the full-featured
version against that of the free reader; the installed base of the
full-featured version is tiny compared to that of the free
reader. This highlights the fact that for a digital content Secu
rity solution to be easily deployable in the market, it should be
able to work with existing and legacy software applications
that can process the original content format.
0015. Some software manufacturers, such as Microsoft
Corporation, have taken the initiative of integrating their own
security solutions into the content players that they manufac
ture. They can then provide security services to the content
publishers, instead of third-parties such as RSA that are not
themselves player Software manufacturers.
0016 Even this strategy has problems that concern con
tent publishers. Consider the digital music market for
example. The major music publishers are wary of using a
proprietary security solution from one manufacturer of a soft
ware music player, because it gives that software manufac
turer an unfair advantage in the market and locks the music
publishers into that one software manufacturer. Furthermore,
the problem of upgrading existing and legacy Software play
ers still remains.
0017. In an enterprise setting, the problem of legacy soft
ware is especially acute. Enterprises typically upgrade soft

US 2008/O 155702 A1

ware packages long after the upgrades are released, because
of the potential disruption Such upgrades can cause to the
business. For example, many enterprises were still using
Microsoft Office 97 in the year 2001, while in this same year,
Microsoft prepared to launch its third major release of the
Office Suite since releasing Office 97. Though the newest
Office Suite may have built-in features for creating and han
dling encrypted Office files directly, the older versions of the
Office Suite still installed in some parts of the enterprise will
not be able to interpret these encrypted files. In situations
where a secure document needs to be exchanged across enter
prise boundaries, this can be particularly Vexing.
0018 With respect to plugin strategies, one problem is that
they rely on the application to provide a plugin interface that
is appropriate for Such a solution. Many important applica
tions do not provide Such interfaces. For example, there is
often a need for securing CAD files that contain proprietary
product details, but existing CAD packages that are widely
deployed do not provide a plugin interface that allows the
implementation of a security Solution.
0019. A further problem with the plugin solution is that it

is application-specific. Thus, in the case of MP3 audio format,
where there are numerous players installed in the field, a
separate plugin module would have to be developed for each
player. When the end user upgrades a player, he is responsible
for upgrading the plugin as well, assuming an upgraded plu
gin is readily available at that time.
0020 U.S. Pat. No. 6,317,868, “Process for transparently
enforcing protection domains and access control as well as
auditing operations in Software components' by Grimm, et
al., describes another technique for enforcing content protec
tion transparently without requiring the cooperation of the
content processing application vendor. Grimm is aimed at
enforcing controls on the applications themselves, rather than
the content files they process. Although it might be possible to
extend Grimm to protect content files as well, Grimm does
not address the difficulties of actual deployment on a com
mercial scale.
0021 For example, Grimm appears to require that the disk
image of the content processing application be modified prior
to its execution. Thus, Grimm employs a "static integration
scheme, where protection functionality is integrated with an
application prior to execution time.
0022. In contrast, the present invention is a dynamic inte
gration scheme, with the integration being repeated every
time execution begins. The static integration scheme Suffers
from some several limitations.
0023 For example, it is generally impossible to determine

all of an application's dependencies (i.e., the required DLLs.
other data structures it uses at runtime, etc.) from a static
analysis of the application binary. For instance, many Win32
applications use "LoadLibrary’ to dynamically load certain
libraries at execution time, making it very difficult to stati
cally enforce any protection policy on Such code.
0024. In addition, many commercial applications invoke
operating system DLLs that are not part of the application
itself, but nonetheless provide access to many system objects
Such as the file system. Modifying the disk image of system
DLLs can be catastrophic to the robustness of the entire
operating system.
0025. Furthermore, the DLLs of some commercial appli
cations have a built-in "checksum mechanism to detect tam
pering of their disk image. The tool chain that creates the DLL
binary at the application vendor's site embeds a checksum

Jun. 26, 2008

value in the DLL header. This checksum is computed using an
algorithm implemented by the operating system. For
example, Win32 operating systems provide a "CheckSum
MappedFile' system call that can produce the checksum
number for a given DLL or EXE file, which may be embedded
into the header area of the DLL or EXE file. Thereafter, when
the Win32 loader loads that DLL into memory on the end
user's system, it will compute the checksum itself and com
pare the result with the checksum embedded in the header. If
these two numbers do not match, the loader returns a failure
and the application aborts. Because the checksum depends on
the bytes that make up the disk image of the original DLL as
shipped by the content processing application vendor, any
modification of this disk image could cause a checksum com
parison failure during loading.
0026. By dynamically performing the integration, the
present invention only modifies the already loaded memory
image of the DLL, and never its disk image, thus avoiding the
above problems.
0027. In addition, static modification of applications can
create serious adoption barriers for content publishers inter
ested in distributing protected content files to machines that
are outside their jurisdiction. For example, a department
within enterprise A wishing to send a protected PDF file to a
department within enterprise B cannot require enterprise B to
modify all installed copies of their Acrobat PDF reader appli
cation in order to view the protected PDF file.
0028 U.S. Pat. No. 5,953.534, entitled “Environment
manipulation for executing modified executable and dynami
cally-loaded library files.” to Romer, et al., describes a tech
nique used to statically transforman application DLL or EXE
file, such that the transformed version behaves the same as the
original, but allows features like instrumentation, security,
auditing, etc., to be implemented transparently. This scheme
Suffers from the same problems as Grimm regarding static
integration. Manipulation of import tables is performed Stati
cally. This implies that the import table entries have not yet
been initialized by the operating system linker, so that the
import table can be replaced in its entirety if so desired.
0029. The present invention, on the other hand, only
patches the loaded memory image of the import table after the
linker has initialized the import table's entries with target
addresses. Furthermore, only the relevant entries that pertain
to file I/O related calls need to be patched.
0030. A final problem with static integration of a security
policy with the content processor application is that it binds a
single policy with the application. Thus, if two different con
tent publishers A and B want to associate two different con
tent protection modules with their respective documents, two
different versions of the content processor application will
have to be created on the end user's machine. By using
dynamic integration, the present invention allows the same
content processor application to be used for both.
0031. In summary, the present invention allows any digital
content protection solution to be deployed easily, without
disrupting an existing installed base of legacy applications, or
preventing upgrades or replacement of these applications. It
effectively disassociates the content protection enforcement
from the content processor application, thereby empowering
content publishers to use any content protection method of
their choice, without tying it to a specific content processor
application. It is also content processor application "agnos
tic, allowing a single solution to work across a variety of
applications that may all be capable of processing the same

US 2008/O 155702 A1

content format type. The invention also does not rely on the
existence of a plugin interface in the application, allowing it
to work even with future upgrades of the current application.
0032. Accordingly, the invention method for extending a
content processor application includes loading the content
processor application into memory from a master image to
form a runtime content processor application image, and
dynamically integrating a protection agent into the loaded
runtime content processor application image to form a cus
tomized content processor application with extended func
tionality. Only the runtime content processor application
image is extended with the protection agent—the application
master image remains unaltered.
0033. The protection agent may comprise an amalgamator
and one or more content protection modules. The protection
agent is integrated into the runtime content processor appli
cation image by first injecting the amalgamator into the runt
ime content processor application image. The amalgamator
then loads the content protection modules, and integrates the
modules with the runtime content processor application
image to provide the extended functionality. Such extended
functionality may include, for example, accessing protected
COntent.

0034. The protection agent preferably executes within the
same address space as the customized content processor
application, and is thus easily able to Support editing of pro
tected content without the loss of protection, for example by
intercepting I/O function calls, memory storage calls, cut/
paste calls, etc.
0035) Some content protection modules may be used to
access protected content.
0036 Content protection modules may be produced by a

third-party. Plural content protection modules may be simul
taneously registered with the protection agent, and may cor
respond to different content formats. They may be used in
parallel by the customized content processor application to
process different documents, or to process different portions
of a single document. Content protection modules may be
used to prevent the export, in an unprotected form, of at least
a portion of the protected content, for example, by causing all
I/O operations that target unprotected files/memory buffers to
write out data in a protected format. Furthermore, content
protection modules may be used to maintain an audit trail.
0037. The customized content processor may process both
protected and unprotected content. The extended functional
ity may include, for example, content protection, rights man
agement, and encryption/decryption.
0038 Preferably, the protection agent is independent of
the content processor application. That is, they may be inde
pendently developed, each with no prior knowledge of the
other. Similarly, the protection agent may be independent of
any plugin interface provided by the content processor appli
cation.
0039. The content processor application may be an exist
ing/legacy application.
0040. The dynamic integration of the protection agent
with the content processor application may be performed
either in hardware, Software, or a combination.
0041. In one embodiment, the operating system boot pro
cess is modified so that upon attempting to launch an appli
cation that serves as an interactive shell, such as Microsoft's
Windows Explorer, which can be used to launch other appli
cations, instead an integration agent application is launched.
The integration agent then launches the intended application

Jun. 26, 2008

(e.g., Microsoft's Windows Explorer) and dynamically inte
grates it with the protection agent.
0042. In another embodiment, an end user may explicitly
enable the automatic and dynamic integration of the protec
tion agent into all Subsequently launched content processor
applications.
0043. The dynamic integration of the protection agent into
the loaded application runtime memory image may be per
formed by an integration agent, which may be a standalone
Software application. In one embodiment, the integration
agent may be associated with a file type corresponding to at
least one protected content document.
0044) Integration of the protection agent into the runtime
content processor application image may include identifying
file I/O related operating system calls that can be made by the
application, and then overwriting the identified file I/O
related operating system calls to point to corresponding func
tions which extend the functionality of the content processor
application. For example, file I/O related operating system
calls may be identified by examining an import table associ
ated with the runtime content processor application image.
These system calls may then be intercepted by overwriting
corresponding identified entries in the import table. Alterna
tively, calls to functions that load additional executable code,
such as a dynamically linked library (DLL) module, into
memory may be identified and overwritten to point to corre
sponding functions contained within the protection agent.
0045. In one embodiment, the steps of loading the appli
cation and integrating the protection agent into the runtime
content processor application image are performed automati
cally and transparently (that is, without the knowledge or
active participation of the end user) when the application is
selected for execution.
0046. The integration agent may be registered in place of
the content processor application, so that the integration agent
is executed when the application is selected. The integration
agent then proceeds to integrate the protection agent with
(i.e., inject the protection agent into) the runtime content
processor application image.
0047 A system for extending a content processor appli
cation according to an embodiment of the present invention,
includes a loader, an integration agent and a protection agent.
The loader loads the content processor application into
memory from a master image to form a runtime content
processor application image. The integration agent dynami
cally integrates a protection agent into the loaded runtime
content processor application image to form a customized
content processor application with extended functionality,
only the runtime content processor application image being
extended with the protection agent, leaving the application
master image unaltered. The protection agent provides access
to protected content.

BRIEF DESCRIPTION OF THE DRAWINGS

0048. The foregoing will be apparent from the following
more particular description of example embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not neces
sarily to Scale, emphasis instead being placed upon illustrat
ing embodiments of the present invention.
0049 FIG. 1A is a high-level block diagram that illustrates
the creation of a protected document containing protected
COntent.

US 2008/O 155702 A1

0050 FIG. 1B is a high-level block diagram illustrating
the use or access of the protected content with an embodiment
of the present invention.
0051 FIG. 2 is a flowchart of the dynamic integration
process as implemented by the integration agent of the
present invention.
0052 FIG.3A is a flowchart illustrating details of step 203
of FIG. 2.
0053 FIG. 3B is a schematic diagram illustrating the pro
cess of FIG. 3A.
0054 FIG. 4 is a flowchart illustrating the amalgamator
initialization routine of step 309 of FIG. 3A.
0055 FIG.5 is a flowchart illustrating the steps performed
by the integration agent when it begins execution under one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0056. A description of example embodiments of the
invention follows.
0057. As used herein, a “content protection module” (or
protection module, for short) is a software module which
provides clear-text access to cipher-text content for only
authorized users. Further, a “content processor application”
(or content processor) is any software application that Sup
ports the viewing and/or editing of clear-text content files.
Also, a “protected content is an encrypted cipher-text file
(possibly containing additional information required for
authentication), which the content protection module knows
how to decrypt and interpret.
0058. The content protection module may also be imple
mented using a combination of software and hardware. In any
case, the Software component, possibly backed by hardware
support, must include the “main” or “driver” portion because
it is integrated into the software of the content processor
application and gets control before the content processor
application.
0059 FIG. 1A is a high-level block diagram that illustrates
the creation of a protected document. The original (clear-text)
document 101 is encrypted at 105 by the content protection
module 103, to form a protected document (cipher-text) 107.
In one embodiment, the protected document 107 comprises
an encrypted header area 109 and the protected content 111.
0060 FIG. 1B is a high-level block diagram illustrating
the use or access of the protected document 107 and hence
protected content 111 with an embodiment of the present
invention. To view or edit the protected document 111, the
content processor application 121 must be integrated with an
appropriate content protection module 103 to translate or
decrypt the document contents into a clear-text version 123 of
the original document 101. The existence of the content pro
tection module 103 is transparent to the content processor
application 121.
0061 The present invention does not depend upon the
specific content protection algorithm used by the content
protection module 103 (e.g., for encryption or authentica
tion); any desired method may be integrated with a new or
legacy content processor application 121 without requiring
any access to Source code of the content processor applica
tion, or any cooperation from the vendor of that application.
The focus is instead on the integration of a protection scheme
with the content processor application 121, and not on the
particular technology used for content protection (encryp
tion, authentication, etc.).

Jun. 26, 2008

0062 An embodiment of the present invention consists of
an “integration agent', which may be a stand-alone applica
tion, and an 'amalgamator” module that automatically inte
grates one or more content protection modules 103 with any
existing or legacy content processor application 121 that is
capable of processing the original clear-text form of the con
tent/document.
0063 Integration is performed dynamically when the con
tent processor application 121 (FIG. 1B) is launched, and is
performed only on the image of the content processor appli
cation loaded into memory. The content processor application
121 itself is never modified on disk, and no source-level
integration or plugin interface is required. Applicants thus
refer to the memory image of the content processor applica
tion modified by Such a process as a “dynamically customized
content processor, or more simply, a “customized content
processor' 121A. Thus, a content protection module 103 may
be automatically and dynamically integrated with any exist
ing content processor application 121 that is used to process
a content file.
0064. For example, if the content processor application
121 is Microsoft Word and the original content file 101 is a
Word document, then the present invention enables a Word
document to be transferred and stored as a protected cipher
text document 107 (which need not be in a format that is
compatible with the Microsoft Word application), while an
existing Microsoft Word application 121 can process it as if it
were a regular clear-text Word file.
0065. When the Microsoft Word application 121 is
launched, the dynamic integration process of the present
invention automatically integrates an appropriate content
protection module 103 with the Microsoft Word application
121 in memory. Thereafter, whenever the executing Word
application 121 accesses the encrypted Word document 107.
the content protection module 103 is invoked automatically
and transparently, dynamically authenticating the access
rights and decrypting the portion of the protected document
that is being accessed.
0066. This dynamic integration occurs only on the
memory image of the content processor application 121, not
in its disk image. Thus, an installed content processor appli
cation 121 is never modified on disk, and the user's experi
ence of working with the document is unchanged, unless
Some authentication or authorization check fails.
0067. In one embodiment, the integration agent applica
tion and the amalgamator module are Small enough that they
can be shipped with the protected document 107, so that the
end user can install them if they are not already installed on
the user's computer.
0068 FIG. 2 is a flowchart illustrating the dynamic inte
gration process as implemented by the integration agent 200,
once installed, of an embodiment of the present invention.
0069. The process begins, at step 201, when the user indi
cates, by double-clicking or through other means, a desire to
launch a content processor application 121 either explicitly,
for example, by clicking on the application itself, or implic
itly, for example, by clicking on the content to which access is
desired.
0070. At step 202, the integration agent 200 intercedes and
launches the content processor application 121 in a Sus
pended State. Launching the content processor application
121 in this manner ensures that no part of the application's
execution occurs outside the control of the integration agent
200 or the content protection module 103.

US 2008/O 155702 A1

0071. At step 203, the integration agent 200 begins the
dynamic integration of the amalgamator module and content
protection modules 103 with the content processor applica
tion 121. As part of this step, the required content protection
modules 103 are loaded and the memory image of the content
processor application 121 is modified so that the content
protection modules 103 are tightly integrated into the appli
cation, producing the customized content processor 121A.
FIG. 3A, discussed below, provides further details of step
2O3.
0072 After receiving confirmation from the amalgamator
that the dynamic integration (or injection) has succeeded, the
integration agent 200 terminates (step 204).
0073. At step 205, execution of the customized content
processor application 121A, with its modified capabilities, is
resumed. The customized content processor application
121A processes the protected content as direct by the user.
Step 205 continues to process until some exit condition is
indicated, as at step 206.
0074. On the other hand, if at any time, any authorization
failure is detected, then at step 207, some security-specific
appropriate action may be triggered. For example, a pop-up
message may appear, and/or the execution of the customized
content processor application 121A may terminate.
0075. The system is flexible in that any number of content
protection modules 103 can be registered for the same type of
document. Thus, for example, different content publishers
can, if they prefer, register different content protection mod
ules at different times or even at the same time, for a single
document type. Even a single content publisher could simi
larly register different content protection modules 103 for a
single document type.
0076. In addition, multiple content protection modules
103 may be integrated into a single content processor appli
cation 121, so that the resulting customized content processor
application 121A can handle many different protection
schemes. Depending on the protected content file being
accessed, the appropriate content protection module 103 may
automatically be invoked.
0077. The same content publisher may associate different
content protection modules 103 with different protected con
tent files, even if all of the files will be processed by the same
customized content processor application 121A.
0078. Furthermore, different protected content files
requiring different content protection modules 103 may be
processed simultaneously by a customized content processor
application 121A that is capable of processing several content
files simultaneously. For example, a user may use a content
processor application, such as Microsoft Word, to open mul
tiple windows simultaneously, each window containing a
protected document 107. In an embodiment of the present
invention, the customized content processor application
121A may invoke the appropriate content protection module
103 for each protected Word document 107.
007.9 Furthermore, the customized content processor
121A can simultaneously process protected content as well as
clear-text (i.e., unprotected) content.
0080. Because content protection modules 103 execute
within the address space of the customized content processor
application 121A, editing of protected content may be Sup
ported. For example, the content protection module 103 may
include Support for decrypting the protected content 111 to
permit the customized content processor 121A to edit it, as
well as encryption Support for protecting the content upon a

Jun. 26, 2008

save to disk or any other mechanism by which protected data
is extracted from the address space of the customized content
processor 121A.
I0081 For example, an appropriately authorized user can
open a protected document 107 (e.g., using Microsoft Word),
edit that document, and then cut text out of that document or
save that document to another file system under a new file
name. The exported data remains protected with the security
attributes of the original file (i.e., the security status of the
exported portions of the protected content 111 do not
change). Furthermore, this entire protection process can
occur without the knowledge of the appropriately authorized
USC.

I0082. Thus, the invention enables a content publisher to
use a custom content encryption or digital rights management
format for shipping documents, and have its corresponding
custom security solution or authenticator be automatically
integrated with whatever content processing application 121
exists on the end user's machine to produce a customized
content processor 121A. Furthermore, because the integra
tion is done dynamically without altering the disk image of
the content processing application 121, any upgrading or
replacement of the content processor application 121 does not
affect the ability of the authorized end user to process the
protected document. Finally, because the processing of pro
tected content 111 is integrated into applications only when
needed at run time, any upgrade or change to algorithms used
in the content protection modules 103 can be deployed with
out the need to redeploy the content processor applications
121.

0083) Next described is an embodiment of the invention in
the context of the Windows operating system (specifically a
Win32 system such as Windows 2000 and Windows XP) and
a Win32 executable application (e.g., Microsoft Word).
Although this description focuses on specific applications,
executable formats and operating systems, those of ordinary
skill in the art will understand that the scope of the invention
is not intended to be limited in any way by this particular
example.
I0084. A Win32 application typically consists of an execut
able (EXE) file and several, separately compiled, dynami
cally linked library (DLL) files. These files contain the binary
code for the functions that compose the application. Some of
the DLLs may be part of the Win32 operating system library,
and not part of the application itself.
0085 Launching and running an application involves
Some existing process on the computing system requesting
that a new process be created and loaded with the memory
image of the EXE file. Under Windows, “Explorer.exe" (or
Explorer, for short) is this existing process; it provides the
desktop user interface (UI) familiar to users of Windows. In
addition, the “CreateProcess' function in Win32 is the inter
face point that invokes the Win32 loader for launching a
Win32 application.
0.086 Functions defined external to but referenced within
an EXE or a given DLL file are listed in a special area of the
file called the “import table'. The import table contains a
unique entry for each external function, and is initialized by
an operating system utility called the “loader to contain the
actual target address in memory for that function. At runtime,
the Win32 loader first loads the EXE file into memory, then
examines the EXE file's import table for DLL files that it
could reference during the course of execution. Finally, the
loader loads each of the DLL files in turn.

US 2008/O 155702 A1

0087. Each time a new DLL is loaded, the loader repeats
this sequence to load other DLL files that this one may require
during the course of execution. The process completes when
all DLL dependencies have been resolved, that is, all refer
enced DLLs have been loaded into memory and initialized.
The loader then causes control to jump to the entry point of
the application in the EXE memory image, upon which the
application begins executing.
0088. In other executable formats, a similar table-like
structure may provide the information necessary to allow the
system loader to initialize the executables (EXEs in Win32)
and shared libraries (DLLs in Win32) so that control can flow
between these separately-compiled modules.
0089. It is also possible for an application to specify that a
DLL should be loaded and initialized by the Win32 loader.
The “LoadLibrary function in Win32 provides such a capa
bility. Some systems also provide for the delayed loading of
DLLs, where the actual loading of a DLL does not occur until
the code attempts to transfer control to a function contained
within that DLL.
0090. In an embodiment of the present invention, the pro
cess described above is modified with respect to launching
and running of an EXE, in a manner that involves no addi
tional efforts by the user wishing to run the EXE or by the
vendors that provided the EXE and associated DLL files.
Next is explained how the dynamic integration process of an
embodiment of the present invention modifies the process of
launching and running an EXE to achieve the desired goal of
such automatic and user-transparent content protection using
given content processor applications.
0091. The first step is to achieve the launching of the
content processor application 121 for processing the pro
tected content file 107 under control of the integration agent
200. There are a number of different ways to accomplish this,
two of which are now discussed.
0092. As a first example, the integration agent 200 may be
registered as the application associated with the file type
corresponding to protected content documents 107. For
example, assume that a protected document will always have
the file extension".CTL”. Then by registering the integration
agent 200 (at integration agent installation time) as the appli
cation associated with the “CTL file type, an attempt to open
a “.CTL file will automatically cause the integration agent
200 to be invoked by the operating system. The “.CTL file
selected by the user will then be passed to the integration
agent application as an input parameter by the operating
system.
0093 FIG. 5 is a flowchart illustrating, for this example,
the steps performed by the integration agent 200 of an
embodiment of the present invention when it begins execu
tion. Steps 501-503 expand on step 202 of FIG. 2.
0094. First (step 501), the integration agent 200 checks the
header area 109 (FIG. 1A) of the input protected document
107 to determine the original file type of the document (e.g.,
“.DOC for a Word document). The “header area' is defined
as part of the protected content file format, and contains,
among other things, information about the original content
file (such as its size, file type, etc), and authentication infor
mation that will be read by the content protection module 103.
The actual format of the header area is dependent on the
implementation of the content protection module 103, which
is outside the scope of this invention.
0095 Next, at step 502, the integration agent 200 looks in
the Windows registry for the content processor application

Jun. 26, 2008

121 that is currently registered to handle documents of the
original file type. For example, this may be some version of
Microsoft Word.

0096. Next, at step 503, the integration agent 200 launches
the registered content processor application 121 in Suspended
mode. This is possible in Win32 via the “CreateProcess”
system call, which invokes the Win32 loader to load the .EXE
executable file and all of its dependent DLLs into memory. By
launching the application 121 in Suspended mode, the inte
gration agent 200 regains control after the application 121 is
loaded into memory, but before it starts execution.
0097. As another example of launching, the dynamic inte
gration method may modify the behavior of, say, the Win
dows Explorer process. The purpose of the modification is to
customize Windows Explorer using the dynamic integration
method so that it acts as the integration agent when launching
content processor applications 121. Here, the integration pro
cess modifies the Explorer so that this process's control flow
is directed into a content protection module 103 before execu
tion of the “CreateProcess call that is used to launch any
application in response to a user's interaction with the Win
dows desktop UI. The code in the protection module 103 may
launch the content processor application 121 (Microsoft
Word) in suspended mode via its own invocation of the “Cre
ateProcess’ system call. As above, the integration agent 200
(this time as a module within Windows Explorer and not as a
standalone application) gains control after loading but before
the content processor application 121 starts its execution.
(0098. An astute reader will realize that the problem of
gaining control of the content processor application 121 has
simply been changed into a problem of gaining control of the
launching of the Windows Explorer process. Again, several
options present themselves, two of which are now presented.
0099. One solution is to modify the operating system boot
process so that the launching of Windows Explorer is
replaced with the launching of the integration agent applica
tion whose sole task is to launch and dynamically inject
Windows Explorer.
0100 Alternatively, a system may be implemented in
which the end user explicitly enables the automatic and
dynamic integration of content protection modules 103 into
all Subsequently launched content processor applications
121. Such a single explicit action may be acceptable and
desirable in Some end-user situations, and it still provides for
the automatic integration of the protection modules 103 with
the actual processor applications 121. To achieve Such an
approach, the Windows Hooks facility supported by the “Set
WindowsHookEx’ functionality in Win32 may be used to
cause Windows to inject the integration agent 200 as a DLL
into the address space of the running process that is the
Windows Explorer. The procedure specified by the second
parameter to the “SetWindowsHookEx’ function identifies a
procedure within the integration agent DLL, and this proce
dure implements the work done by the integration agent 200
after it has gained control of the content processor application
121, as described below.
0101. Once the integration agent 200 has control of the
content processor application 121, the next step is to inject the
amalgamator module 72 (FIG. 3B) into the address space of
the content processor and direct the content processor appli
cation's control flow into this module. Once the amalgamator
module has control, the required content protection modules
103 can be loaded, and the memory image of the content

US 2008/O 155702 A1

processor application 121 can be modified so that the content
protection modules 103 are tightly integrated into the appli
cation.

0102) A sequence of steps is followed that yields a solution
that is broadly applicable across the entire range of program
mable computing systems. Broad applicability is achieved by
relying on only a small set of capabilities that can be found on
almost any programmable computing system. In particular,
the approach followed by an embodiment of the present
invention requires the capability and permission for one pro
cess to read and write its own or another process's address
Space.

(0103 FIG.3A is a flowchart illustrating details of step 203
of FIG. 2. These details include the steps by which the inte
gration agent 200 carefully works the amalgamator module
72 into the code space of the content processor, even though
the content processor 121 was never designed to load the
amalgamator 72 or content protection modules 103.
0104 FIG. 3A describes the interaction between the run
ning process (i.e., the integration agent 200) and the Sus
pended process (i.e., the content processor application 121).
The integration agent 200 knows the memory address at
which execution of the content processor application has been
Suspended and where to find the amalgamator 72 and content
protection modules 103.
0105 FIG. 3B is a schematic diagram of the process of
FIG. 3A and is discussed in parallel below.
0106 With reference to the top of FIG. 3B, when a user
attempts to launch an application (i.e., a content processor
application 121), for example by attempting to open the appli
cation itself or a document (content) associated with the
application, the integration agent 52 is instead launched. The
integration agent 52 then causes the original content proces
sor application 121 to be loaded from a master image Such as
a disk image 50 to a memory image 54. (This corresponds to
steps 201 and 202 of FIG. 2.)
0107. In step 301 (FIG. 3A), the integration agent 52 spe
cializes a small code template 58, (the “integrator generator
template”). The particular actions taken during this special
ization involve setting of instruction immediates and address
offsets that depend upon certain memory image 54 values
Such as the instruction address in the content processor's
address space where the processor application is to resume
execution (called the start address), the address of the
"LoadLibrary' function, and the location of the amalgamator
module 72. The result of this specialization is a sequence of
code and data bytes called the “integrator generator 60,
which includes an “integrator 62.
0108 Next, in step 302 of FIG. 3A, the integration agent
creates a “shared byte” store 56 that acts both as a communi
cation structure between the integration agent 52 and the
amalgamator module 72, and as a temporary store for infor
mation. The integration agent 52 copies a portion 54A of the
content processor application 54 code into the store 56, start
ing at the content processor application's start address and
continuing until a number of bytes equal to the size of the
integrator generator 60/62 have been copied. This copy
operation can be accomplished, for example, using the Win32
“ReadProcessMemory” function. The store 56 may also be
written with some meta-data that specifies the size of the
copied code and its original starting address, among other
things. The shared byte store 56 may be created, for example,
as a named, memory-mapped file.

Jun. 26, 2008

0109) Next, in step 303, the integration agent 52 writes the
integrator generator 60/62 into the address space of the con
tent processor application starting at the start address, for
example using the Win32 “WriteProcessMemory” function,
so that the memory image is now as appears at 64. On some
systems (including non-Win32 systems), this and possibly
other steps may require temporary manipulation of the virtual
memory page protection bits to enable reading and writing of
the pages containing the referenced code.
0110. In step 304, the integration agent 52 “resumes’
execution of the content processor application 64 at the start
address, for example using the Win32 “ResumeThread' func
tion. Since first instructions of the integrator generator 60 now
reside at that start address, control in the content processor
flows to the integrator generator 60. Note that the integrator
generator 60 transfers control to the integrator 62 in such a
manner that the control flow never has to return to the inte
grator generator. This is done so that the amalgamator module
72 can restore the application's code originally stored at the
start address, thus removing the code for the integrator gen
eratOr.

0111. Next, in step 305, the integrator generator 60 first
saves a portion of the content processor application's state so
that resources such as registers can be temporarily used with
out losing the state of the application. Since the state of the
program stack is known, space on the Stack can be allocated to
save the application's State. Alternatively, other temporary
storage (e.g., the shared byte store) could be used.
0112 Next, in step 306, the integrator generator 60 iden

tifies a part of the application's address space free of code or
data and creates a code cache 68 in this space. The integrator
generator 60 writes a sequence of code and data, called the
“integrator 62, into this code cache. From this cache, calls
can safely be made to load and initialize the amalgamator
module 72. The image of working memory is now as appears
at 66 in FIG. 3B.

0113 Note that the cache 68 is deallocated when the appli
cation resumes execution. Such a code cache may be built, for
example, by using the next set of free space on the program
stack.

0114) Next, in step 307 (FIG. 3A), once the integrator
generator 60 has created the integrator 62, it unconditionally
jumps to the first instruction in the integrator 62.
0115 The application's code may now be restored as
originally found at the start address. In step 308, the integrator
62 loads the amalgamator module 72, so that the memory
image is now as appears at 70 in FIG. 3B. Under Win32, this
can be done with a call to "LoadLibrary', with the module
name recorded during specialization of the integrator genera
tor template 58.
0116. In step 309 (FIG. 3A), once the amalgamator mod
ule 72 has been loaded, control returns to the integrator 62,
which then makes a call to an initialization routine in the
amalgamator module 72. The details of this initialization
routine 309 are explained below, with respect to FIG. 4.
Under Win32, a loaded module is given the opportunity to
initialize itself by placing some code in the stylized “Dll
Main function required in all Win32 DLLs. Applicants have
found that it is better to have the integrator 62 make a call to
a separate initialization routine run after the completion of the
"LoadLibrary” call, since only a small set of the application's
and operating system's functionality is available within “Dll
Main’.

US 2008/O 155702 A1

0117 Finally, in step 310, once the amalgamator's 72 ini
tialization routine has completed, control again returns to the
integrator 62. Part of the amalgamator's initialization process
309 involves restoring of the content processor application's
code originally found at the start address, from the store 56.
The integrator 62 can now deallocate the space for the code
cache 68 and unconditionally jump to the start address, thus
returning control to the now customized content processor.
0118 Again, there are many methods that can accomplish

this. Some architectures like the Intel x86 provide a return
instruction that simultaneously deallocates a block of space
on the program stack. If no architectural mechanism exists for
atomically deallocating space and non-trivially changing the
program counter, an alternative would be to leave a small
amount of code cache space in the content processor appli
cation, enough to deallocate the larger code cache and return
control to the start address.
0119) The initialization routine 309 (FIG. 4) in the amal
gamator module 72 is primarily responsible for loading the
content protection modules 76 and tightly integrating them
into the memory image of the content processor application to
produce the customized content processor, so that the
memory image finally appears as at 74 in FIG. 3B. The
amalgamator 72 and content protection modules 76 are col
lectively called the “protection agent'.
0120. This integration process, however, does not stop
once the content processor application begins running. Other
events, such as the delay loading of a DLL or the explicit
loading of a DLL by code in the content processor, may
require that some portion of the integration process run again
to ensure that the content protection modules are properly
integrated with the current state of the content processor.
Similarly, the launching of another content processor appli
cation by this content processor requires the amalgamator 72
to act as an integration agent and propagate itself as described
above to this new content processor.
0121. In general, the integration process as performed by
the amalgamator module 72 begins in its initialization routine
309 and proceeds as shown in the flowchart in FIG. 4. Recall
that this integration process begins as part of step 309 of FIG.
3A, once the content processor application 121 (that is, its
EXE and dependent DLL files) and amalgamator module 72
(but not the content protection modules) have been loaded.
0122 Referring to FIG.4, at step 401, the amalgamator 72
determines the type and location of the content protection
modules to load and loads them. The first part of this step may
be accomplished, for example, by having the amalgamator 72
read part of the header area of a protected content file 107 to
determine the associated content protection module 103 for
the file. Alternatively, the integration agent 52 may have
specified the location of the content protection modules to
load by encoding that information in the shared byte store 56.
0123. A content protection module can be shipped sepa
rately by the content publisher, or some or all of it can option
ally be embedded into the protected content file itself. In all
cases, the entire contents of each protection module are cop
ied into the address space of the content processor applica
tion.
0.124. At step 402, the amalgamator 72 identifies each
module (EXE or DLL) that is part of the content processor
application's loaded memory image. Using this list, the amal
gamator performs steps 403 and 404.
0.125. At step 403, the amalgamator 72 examines the mod
ule to identify any file I/O-related operating system calls that

Jun. 26, 2008

can be made by the content processor application while
executing this module. I/O functions, or system calls, are
those involved in input and output to the file system, including
operations such as read and write, as well as cut and paste
operations. Such an analysis may be performed, for example,
by the amalgamator 72 examining the import table of the
module looking for addresses of known file I/O-related func
tions.
I0126. At step 404, the identified calls are rewritten by the
amalgamator 72 so that control flows not to the I/O related
function on Such calls but to a corresponding function defined
in a content protection module. Again, there are many ways to
accomplish this redirecting of control flow.
I0127. One such method that is appropriate for the example
given above involves the replacement of the I/O-related func
tion call entries in the module's import table with the
addresses of corresponding functions defined in the content
protection module. The original address inserted by the
Win32 loader into that import table entry is also noted in a
separate table that is accessible by the content protection
module code. This “patching” of the import table ensures that
when the application makes the I/O call, the content protec
tion module gets control first, allowing it to perform any
authentication or decryption actions before redirecting the
call to the original function address.
I0128. Other methods exist for achieving this redirection of
control that could be used in alternative embodiments of the
present invention. An early article by Peter Kessler (Peter B.
Kessler, “Fast breakpoints: Design and implementation.”
Proceedings of the ACM SIGPLAN 90 Conference on Pro
gramming Language Design and Implementation (PLDI),
pages 78-84, White Plains, N.Y., 20-22 Jun. 1990. SIGPLAN
Notices 25(6), June 1990) describes the basic mechanisms
and issues involved in patching code for the purpose of con
trol flow redirection. A more recent article by Galen Hunt and
Doug Brubacher (Galen Hunt and Doug Brubacher,
“Detours: Binary Interception of Win32 Functions'. Pro
ceedings of the 1999 Usenix Windows NT Symposium,
USENIX Association, 1999) describes such a system explic
itly for the binary interception of Win32 functions.
I0129. Any function calls used to explicitly load another
DLL or executable into memory (such as the “LoadLibrary’
call in the Windows operating system) are also handled by
steps 402 and 403 as described above. For example, a call to
"LoadLibrary' by customized content processor application
during its execution will cause the amalgamator 72 to execute
steps 403 and 404 for each newly loaded DLL. This ensures
that any DLL or executable that is explicitly loaded by the
content processor application at execution time will also have
its import table entries patched appropriately.
0.130. It is important to note that a facility is provided by
the amalgamator 72 for the routines in the amalgamator and
content protection modules to access the functions protected
in steps 403 and 404 above. For example, the “patching
mentioned above occurs only on import tables of modules
belonging to the original application and not to modules
associated with the amalgamator or the content protection
modules.
I0131 Finally, in step 405, the initialization routine 309 of
the amalgamator accesses the shared byte store 56, replaces
the code and data for integrator generator with the content
processor's original application code, and then in step 406
signals to the integration agent 63 that it is done with the
shared byte store 56. As described in step 309 of FIG.3A, the

US 2008/O 155702 A1

initialization routine 309 of the amalgamator returns so that
the Suspended application can resume execution. When the
integration agent 52 receives notification from the amalgam
ator 72 that injection is complete, it terminates (or returns
control to the Windows Explorer for the example scenario).
0132) What is left is a single content processor application
process 74 (FIG. 3B), which to the end user appears no
different from the original content processor application had
it been launched normally. In actual fact, the executing con
tent processor application has one or more tightly integrated
content protection modules embedded in it.
0133) To the end user, this entire process is transparent. It
appears as though double-clicking on (or otherwise selecting)
a protected content “.DOC file directly invoked the content
processor application. Assuming no authentication check
fails in the protection module, the protected content looks no
different to the content processor application than the equiva
lent clear-text “.DOC Word file—all viewing and editing
operations work normally.
0134. A content protection module 103 can prevent the
export of any part of the protected document by simply ensur
ing that any I/O operations that target an unprotected file or
memory buffer only write out encrypted data. That is, “cut/
paste' operations can be prevented from being used to copy
the contents of the protected document to an unprotected
document. Thus, the protection associated with the document
(content) continues to persist, independent of the content
processor application used to process it.
0135 The invention provides a very practical way to
deploy digital content protection Solutions in the market.
Consider a secure enterprise email solution as an example to
illustrate this point. Many current secure email solutions
allow an email sender to encrypt an outgoing email, and
require the recipient to connect to a trusted server to down
load an authorization key that will allow the recipient user to
decrypt the message. The message itself is never decrypted to
disk, so the clear text form of the original message never
persists on the recipient's machine.
0136. However, the problem with existing solutions arises
in the case of attachments that are sent with the encrypted
message. Attachments can also be encrypted using the same
key, but unless the application used to read the attachment on
the recipient's machine understands the content encryption
format, the attachment cannot be read directly.
0137 Thus, if the attachment is a Word document that was
encrypted on send, the attachment has to be first decrypted
back to the original Word document on the recipient’s
machine before the Microsoft Word application on the recipi
ent's machine can read it. Unfortunately this creates a security
hole, since the original Word document now persists in clear
text form on the recipient's machine, allowing the recipient to
copy it illegally, or distribute it to unauthorized persons in an
unprotected (unencrypted) form.
0.138. With an embodiment of the present invention, when
the recipient opens the encrypted attachment, the integration
agentis invoked transparently (to the recipient), launching the
Microsoft Word application and dynamically integrating the
appropriate content protection module with the application in
memory. Finally, the modified application may read the pro
tected Word attachment directly.
0.139. Because the content protection module intercepts all
I/O traffic between the Microsoft Word application and the
content file, the fact that the attachment is an encrypted Word

Jun. 26, 2008

document is also transparent to the Word application. The end
user never experiences the integration agent or the integration
process, and is unaware that the attachment is actually an
encrypted document, unless he or she attempts to make an
unauthorized access.
0140. When the content protection module discovers an
unauthorized access, it can display a message indicating
authorization failure, and terminate the Microsoft Word
application. The content protection module could also be
used to automatically maintain an audit trail.
0141 Those of ordinary skill in the art should recognize
that methods involved in protecting digital content from
unauthorized use by automatically and dynamically integrat
ing a content-protection agent may be embodied in a com
puter program product that includes a computer usable
medium. For example, Such a computer usable medium can
include a readable memory device, such as a solid state
memory device, a hard drive device, a CD-ROM, a DVD
ROM, or a computer diskette, having stored computer-read
able program code segments. The computer readable medium
can also include a communications or transmission medium,
Such as a bus or a communications link, either optical, wired,
or wireless, carrying program code segments as digital or
analog data signals.
0142. While the system has been particularly shown and
described with references to particular embodiments, it will
be understood by those of ordinary skill in the art that various
changes in form and details may be made without departing
from the scope of the invention encompassed by the appended
claims. For example, the methods of the invention can be
applied to various environments, and are not limited to the
described environment.
0143. While this invention has been particularly shown
and described with references to example embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom
passed by the appended claims.
What is claimed is:
1. A method for extending a content processor application,

comprising:
loading a content processor application into memory from

a master image to form a runtime content processor
application image:

Suspending execution of the runtime content processor
application image:

dynamically integrating a protection agent into the runtime
content processor application image to form a custom
ized content processor application with extended func
tionality by (i) identifying file input/output related oper
ating system calls of the runtime content processor
application image that can be made by the application,
and (ii) overwriting the identified file input/output
related operating system calls of the runtime content
processor application image to point to corresponding
functions which extend functionality, only the runtime
content processor application image being altered and
extended with the protection agent, the master image
being unaltered; and

resuming execution of the customized runtime content pro
cessor application image.

c c c c c

