wo 2013/071277 A1 | I 00N OO O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

(43) International Publication Date

(10) International Publication Number

WO 2013/071277 Al

16 May 2013 (16.05.2013) WIPOIPCT
(51) International Patent Classification: Mark; 6701 De Soto Ave. #301, Canoga Park, CA 91303
GO6F 15/16 (2006.01) (US).
(21) International Application Number: (74) Agent: HASAN, Art S.; Christie, Parker & Hale, LLP,
PCT/US2012/064735 P.O. Box 29001, Glendale, CA 91209-9001 (US).
(22) International Filing Date: (81) Designated States (uniess otherwise indicated, for every
12 November 2012 (12.11.2012) kind of national protection available): AE, AG, AL, AM,
e . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/559,017 11 November 2011 (11.11.2011) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI;
(71) Applicant: MOBOPHILES INC. DBA MOBOLIZE NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
[US/US]; 2800 28th Street, Suite 160, Santa Monica, CA RW, SC, 8D, SE, 8G, 8K, SL, SM, ST, SV, 8Y, TH, TJ,
90405 (US). ™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(72) Inventors: CHOW, William W.; 3409 Stoner Avenue,

Los Angeles, CA 90066 (US). SURESH, Sairam; 872 Lu-
cile Ave., Unit A, Los Angeles, CA 90026 (US). HYUN,
John; 9728 Val St., Temple City, CA 91780 (US). TSUIE,

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR MANAGING DEDICATED CACHES

100
Clent
101
N Client App
102
A APl Intercept
103
RS Cache 104
106 . — Fisti S
K¥ " Setvices Manager
T 1
108 7
150

170 - e ‘\/}\\ 107
I _,,,x .
Server Network >7

v

(57) Abstract: A client-based computer system configured to
communicate with a remote server through a network and to
provide access to content or services provided by the server is
provided. The system includes a processor, a storage device, a
client-side cache dedicated to a set of resources specified by a
configuration, and a caching manager to automatically manage
the cache as directed by the configuration. The client-side cache
is directed by the configuration to transparently intercept a re-
quest for one of the resources from a client application to the
server, and to automatically determine when to send the request
to and provide a response from the server over the network to
appear to the client application as though the client application
sent the request to and received the response from the server.

WO 2013/071277 A1 WK 00PN A0S A AU T

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

SYSTEM AND METHOD FOR MANAGING DEDICATED CACHES

BACKGROUND
1. Field
[0001] Aspects of embodiments of the present invention are directed toward cache

management, such as web caching.

2. Description of Related Art

[0002] Current client-server systems, such as web applications, can leverage caching at
various points to optimize performance, such as at the end user computer or somewhere in the
network. These web caching solutions generally provide for a shared cache in which content
from multiple users and/or sites share the same space on disk and/or in memory to store
content for faster retrieval on subsequent access. A shared cache results in competition for the
same limited cache space between content accessed across different sites and/or by different
users.

[0003] These web caching solutions also do not provide for a way to centrally customize
caching behavior based on the application. For example, a large company may have multiple
servers running a particular web application, such as separate ones for different departments
or business units. These approaches may target specific domains and/or URLs, so they are
unable to apply caching policies based on an application type.

SUMMARY

[0004] Aspects of embodiments of the present invention address these and other concerns
by providing for centrally managed cache control. In further detail, aspects of embodiments
of the present invention provide for fine-grain control (via, for example, uniform resource
locator (URL) pattern) of what is or is not cached or purged per user (or per user account).
Further aspects allow for enabling or disabling seamlessly without secure sockets layer
(SSL), domain name system (DNS), or networking changes. Still further aspects provide for
allocating space per domain or URL pattern. Additional aspects provide for application-
specific control, adjusting of caching of read or write operations, and automatically
configuring (for example, auto-mobolizing) via URL templates.

[0005] In addition, aspects of embodiments of the present invention provide for central
controlling of endpoint-specific web capabilities. In further detail, aspects provide for
adjusting synchronize (sync) activity, adding support for form-based authentication, enabling
or disabling of offline access, configuring of unique identifier (UI) elements, and measuring
or reporting on actual end user experience

[0006] Accordingly, embodiments of the present invention provide for the management

of dedicated caches, each of which can be assigned, for example, to the caching of content

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

associated with a particular URL pattern (e.g., for specific servers/sites, subpaths/folders, or

‘ files/objects). These dedicated caches may be remote from the management system (and in

that sense be referred to as remote dedicated caches, i.e., with respect to the management
system), such as when the caches reside at an end user computer or an intermediate caching
server between a client system communicating with one or more server systems.

[0007] The related patent application, (U.S. Patent Application No. 12/630,806
(hereinafter “U.S. 12/630,806”), describes how one or more URLs are associated with a
server account or application, for the purposes of caching server responses for client requests
that are within the scope of that URL. U.S. 12/630,806 describes various aspects of caching a
server account that significantly improves its manageability, such as specifying a custom
storage limit for that server account’s cache and/or customizing what is stored in that server
account’s cache. By supporting a custom storage limit for each server account, U.S.
12/630,806 provides for features such as dedicating a private cache space for the server
account, such that this cache space is specifically dedicated to the caching of the URL
patterns associated with the server account, where the pattern can be a site, subpath/folder, or
specific file/object.

[0008] A resulting benefit of a dedicated cache per server account is that the dedicated
caches do not share cache space with the content for other sites/folders/files, and thus are not
subject to the typical cache competition resulting from sharing a common cache space, such
as the shared caches provided by browsers or proxy servers. The cache competition for these
shared caches is normally higher than that of for a dedicated cache. Accordingly, by creating
one or more dedicated caches, with each one associated with one or more URL patterns, these
dedicated caches can help ensure longer cache lifetimes and higher cache hit rates than a
shared cache. This, in turn, may provide for benefits such as faster web performance, less
bandwidth used, fewer requests/roundtrips performed, and lower overall load on the server-
side infrastructure.

[0009] The present invention improves upon the dedicated caching of U.S. 12/630,806 by
providing fine-grain management and control of these caches. Providing fine-grain control of
what is cached and how it is cached may improve performance and reduce infrastructure
load, such as by matching multiple related requests/URLSs to the same cache content or
extending the cacheable lifetime of content beyond that specified by the server.

[0010] Centralized management of these dedicated caches can provide for a wide variety
of actions that can be taken by an administrator to remotely control a large number of these
dedicated caches. For example, these actions may include dynamically creating/deleting these
dedicated caches, adjusting the space they are each allocated, and setting/changing the
caching policies applied to each one.

[0011] In an exemplary embodiment of the present invention, a client-based computer

system configured to communicate with a remote server through a network and to provide

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

access to content or services provided by the server is provided. The system includes a
processor, a storage device, a client-side cache dedicated to a set of resources specified by a
configuration, and a caching manager to automatically manage the cache as directed by the
configuration. The client-side cache is directed by the configuration: to transparently
intercept a request for one of the resources from a client application to the server; and to
automatically determine when to send the request to and provide a response from the server
over the network to appear to the client application as though the client application sent the
request to and received the response from the server. The client-side cache does this: by
sending the request to the server to appear to the server as though the client application sent
the request, providing the response from the server, and storing the response on the storage
device; or by providing the response from the cache.

[0012] In another exemplary embodiment of the present invention, a method for
configuring a computer to communicate with a remote server through a network and to
provide access to content or services provided by the server is provided. The method
includes: creating one or more dedicated caches, each cache being associated with one or
more URLs; for each cache, managing the cache according to one or more rules;
transparently intercepting a request for one of the URLs from a client application to the
server; and automatically determining when to send the request to and provide a response
from the server over the network to appear to the client application as though the client
application sent the request to and received the response from the server. The providing a
response includes: sending the request to the server to appear to the server as though the
client application sent the request, providing the response from the server, and storing the

response on a storage device; or providing the response from one of the caches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings illustrate embodiments of the present invention, and
together with the description, serve to explain principles and aspects of the present invention.
[0014] FIG. 1 is a diagram showing a system architecture of centrally managed dedicated
caches, where the caches are resident on a client computer accessing application/data on a
remote server, according to an exemplary embodiment of the present invention.

[0015] FIG. 2 1s a diagram showing an example set of client processes according to an
exemplary embodiment of the present invention.

[0016] FIG. 3 is a Unified Modeling Language (UML) sequence diagram showing an
example registration process for registering a client computer with a management server
according to an embodiment.

[0017] FIG. 4 is a UML sequence diagram showing an exemplary management task loop
according to an embodiment.

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

[0018] FIG. 5 is a UML sequence diagram showing an exemplary processing of tasks by
the manager as received from the management server according to an embodiment.

[0019] FIG. 6 1s a UML sequence diagram showing an example UML frame Update
Application Configuration for processing of application configuration data according to an
embodiment.

[0020] FIG. 7 is a UML sequence diagram showing an example UML frame Update Site
Configuration for processing site configuration data according to an embodiment.

[0021] FIG. 8 is a UML sequence diagram showing an example UML frame Apply
Configuration Template for processing of configuration template settings according to an
embodiment.

[0022] FIG. 9 is a UML sequence diagram showing an example UML frame Purge
Caches for processing a purge caches task according to an embodiment.

[0023] FIG. 10 is a UML sequence diagram showing an example UML frame Flush
Cache Items for deleting specific items from the caches according to an embodiment.

[0024] FIG. 11 illustrates an exemplary method of dedicated cache management

according to an embodiment of the present invention.

DETAILED DESCRIPTION

[0025] The illustrative embodiments that follow are only exemplary applications of the
present invention and not intended to limit the scope of the invention. An appendix is
provided in the Priority Document that contains more implementation-specific details of

exemplary embodiments of the present application.

1 Managing Dedicated Caches
[0026] Embodiments of the present invention provide for dedicated caches, where each
cache is dedicated to storing the content for one or more uniform resource locator (URL)
patterns. These dedicated caches are each associated with a server account, where a server
account is associated with one or more URLs for the purposes of caching server responses, as
described by the related patent application U.S. 12/630,806. Embodiments of the present
invention provide for a significant improvement over the prior art by enabling the
customization of each dedicated cache, such as specifying what content is cached and how it
is cached.
[0027] Embodiments of the present invention provide for fine-grain cache control via
configuration settings that can be dynamically customized, such as by an end user, system
administrator, or web site developer. These configuration settings can be stored in a number
of different methods known to a person having ordinary skill in the art, such as in a file or
database. An exemplary embodiment of the present invention supports these configuration
settings in a text file according to the YAML specification (http://www.yaml.org/), which

A

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

allows for a simple extensible structure that can be directly edited by a user with any standard

text editor.

1.1 Application-based Configurations
[0028] Embodiments of the present invention can assign different caching
rules/policies/behaviors for each cache, such that each cache can be customized to support
different capabilities for each web site/application, since each web site/application can have
very different behaviors that affect how they may be cached. By supporting a flexible way to
define customized configurations for each web application, embodiments of the present
invention may be adapted to support any current and future web application.
[0029] Embodiments of the present invention may also automatically create caches based
upon a URL template. For example, it may be desirable to automatically create caches for
any server within an internet domain, such as for acme.com, without knowing all of the
possible server names in advance, such as serverl.acme.com or server99.acme.com. A URL
template allows the system to automatically create caches based upon a string-based pattern
that is used to match the URL for content accessed from a remote server. For example, a
URL template specified as “http://*.acme.com” would allow the client system to
automatically create separate caches for content from any server in the acme.com domain,
without needing to specify each of them explicitly.
[0030] Embodiments of the present invention may apply one or more configurations to a
cache in a number of different ways, such as by assigning each configuration a URL pattern
and applying the configuration to the caches of any server account with a matching URL. A
configuration can also be assigned some other identifying information that can be obtained
from the server, such as in the “Server” header of an HTTP response or perhaps even a
custom header returned from the server.
[0031] An exemplary embodiment of the present invention matches configurations to a
cache by supporting the following attributes, which can be assigned to each configuration:

Attribute Format/Syntax Description

mode “header” or “url” The type of server information to use for

matching this configuration

url Regular expression string If mode=url, this attribute is used to match

against the URLs associated with a cache.

name Regular expression string If mode=header, this attribute is used to
identify the server response header containing

the information to use for matching.

value Regular expression strings If mode=header, this attribute is matched

against the value of the header specified by

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

the “name” attribute.

[0032] The following is an example of the attributes to associate a configuration based on
URL:
id:
mode: domain
url: 'http[s]://maps\.google\.com/.*'
[0033] Likewise, the following is an example of the attributes to associate a configuration
based on a custom hypertext transfer protocol (HTTP) response header:
id:
mode; header
name: MicrosoftSharePointTeamServices
value: '12\.0\.0\.[0-9]+'

1.2 Matching Requests and Responses
[0034] According to one exemplary embodiment, an application configuration setting
includes two sets of possible attributes:
e Matching attributes: specifies which requests/response to which application
configuration setting applies.
e Action attributes: specifies the actions/behaviors for the application configuration
setting.
[0035] The matching attributes can match against one or more components of the
client/server request or response, such as the request’s URL or the response’s body. An

exemplary embodiment of the present invention provides for the following matching

attributes:

Attribute Format/Syntax Description

subPath Regular expression string Compare against the request URL

Headers Array of regular expression Compare against the request headers
strings

Body Regular expression string Compare against the request body

notSubPathPatterns Array of regular expression Negatively compare against the
strings request URL

notBodyPatterns Array of regular expression Negatively compare against the
strings request body

Responses Array of response structures ~ Compare against the body of the

response received for a matching

request.

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

[0036] Once a configuration setting is found to match a request or response, based on the
matching attributes, then the action attributes can be correspondingly applied to the

request/response.

1.3 Configuration Actions
[0037] According to an exemplary embodiment, there are a number of different action
attributes that can be associated with an application configuration setting, where any
combination of one or more actions can be specified to change the default behavior of the
cache. This provides the ability to customize the behavior and operation of the dedicated
cache for each server account, such as to support different types of web site/applications or to

override/optimize the cacheability of the web application beyond the default.

1.3.1 Remapping requests
[0038] There may be cases where different requests, each with a different URL, actually
correspond to the same response data. For example, it is common for web developers to
leverage the URL to carry transient data, such as the URL of the previous page or perhaps a
session identifier. In these cases where these seemingly different requests would actually
result in the same response from the server, it would be advantageous to treat them as being
the same request so that they can all be serviced from the same-cached version of the
response.
[0039] To support remapping different variations of the same request to the same
response, an exemplary embodiment of the present invention filters out the portions of the
request that are different between similar instances of the same underlying request, such as
removing transient data specified as a URL query string argument, so that these different
request variations ultimately look the same. The following table lists example action

attributes of a configuration setting for filtering out portions of an HTTP request:

Attribute Format/Syntax Description

filterUrlPatterns Array of regular expression Substrings within the URL of the
strings request to filter out.

filterHeaderPatterns Array of regular expression Substrings within the headers of the
strings request to filter out.

filterBodyPatterns Array of regular expression Substrings within the body of the
strings request to filter out.

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

[0040] Using these action attributes, the following is an example of a configuration
setting for filtering out the query string argument from the request URL specifying the
previous page:
cache:
gets:
- subPath: " *\?retURL=+"
filterUrlPatterns:
\?&JretURL=["&]+
[0041] In a similar fashion, the following is another, more complex, example of a
configuration setting for remapping variations of a request for the same web page (SharePoint
site) to the same cache, by filtering out the transient components of the request:
cache:
posts:
- subPath: "*/Allltems\.aspx.*'
notBodyPatterns:
- R&ctl *%24btnWikiSave=Apply&.*!
filterUrlPatterns:
- '(M)[\?&]source=["&]*'
- '(M)[\?&]contenttypeid=["&]*'
- '(M)[\?&]initialtabid=["&]*'
- (M)[\?&]visibilitycontext=["&]*'
- '(M)[\2&Jisdlg=["&]*!
- '(M)[\?2&]viewcount=["&]*'

1.3.2 Controlling cache lifetimes
[0042] There are cases where it may be desirable to control or change the lifetime of a
cached response, such as when the server is not properly configured to enable caching or
when the user may prefer to override the cache lifetime specified by the server. For example,
there is often static content on a server that is cacheable (e.g., images, javascript, cascading
style sheets, PDFs, etc) but some of it may not be properly configured to be optimally cached
at the client.
[0043] To control the lifetimes of items stored in a dedicated cache management system
according to an exemplary embodiment of the present invention, the system applies a validity
period to server responses that would take precedence over the validity period, if any,
provided by the server. The following table lists example action attributes of a configuration

setting that control how the server response is cached:

Attribute Format/Syntax Description

-8-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

maxAge Integer Set a validity period for the cached content, overriding any

validity period specified by the server. Possible values:
e 0: Treat as expired, check server for validity

o >0: Valid for the specified # of seconds beyond the

“Date” header specified in the response

[0044] Using these action attributes, the following is an example of a configuration
setting to specify a cache validity period of 1 year (31,536,000 seconds) for requests from the
“ layouts” folder:
cache:
gets:
- subPath: "*/ layouts/.*'
maxAge: 31536000

2 Centralized Management
[0045] Embodiments of the present invention provide for a centralized management
capability for remote dedicated caches by providing a management server that presents a
management console for administrators to centrally configure the operation and behavior of
these caches. In an exemplary embodiment, the management console operates out-of-band
from the normal client-server interaction of the applications/sites being cached.
[0046] FIG. 1 1s a diagram showing an exemplary embodiment of the centrally managed
dedicated caches (such as Cache 103), where the caches are resident on a client computer
(such as Client 100) accessing application/data on a remote server (such as Server 108).
[0047] Referring to FIG. 1, the Client 100 is a computer that supports communications
with the Server 108 through Network 107 (such as the Internet). The Client 100 supports the
operation of a Client Application (Client App) 101, which may be, for example, any Internet-
based client application that can communicate with a remote server, such as a web browser.
The Client 100 may contain a central processing unit (CPU) or processor for executing
software in the form of computer instructions, nonvolatile storage (such as a disk drive) for
storing the software and associated data accessed or generated by the CPU, and a network
interface (such as Internet Services 104) for accessing the Network 107.
[0048] In further detail, application programming interface (API) Intercept 102 has been
injected between the Client App 101 and Internet Services 104, allowing the API Intercept
102 to direct requests from the Client App 101 to the Server 108 (via Internet Services 104),
Cache 103, or any combination of the two. Requests directed to the Cache 103 may be
handled using responses stored locally on Storage 106 (for example, a nonvolatile storage
device, such as a disk drive). Access to the Storage 106 may be handled through Storage
Services 105, which is a common storage access layer, such as a file system, database, or a

combination thereof.

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

[0049] In addition, Manager 150 manages the functions and operation of the Cache 103,
and interacts with Management Server 170 (for example, a remote server to manage local
dedicated caches, such as the Cache 103) to dynamically receive and process configuration
changes and actions. In this case, “local dedicated caches” refers to the dedicated caches
being stored on a storage device that is local to the client computer system.

[0050] FIG. 2 is a software architecture diagram showing an embodiment of the client
processes in an example system. This figure shows the software components that are most
relevant to this embodiment, and it is understood by someone of ordinary skill that there are
other software components that are not shown. There are four logically distinct processes
shown, numbered as 110, 130, 140, and 150. For processes 110 and 130, software layers from
FIG. 1 (e.g., Client App 101, API Intercept 102, Cache 103, and Internet Services 104) are
shown, indicating how they map to the specific instances within this diagram.

[0051] Process 110 is running WinlInet Client 111, such as Microsoft Word or Microsoft
Internet Explorer, which is a type of Client App 101 that normally links to Microsoft’s
Winlnet dynamic-link library (DLL), which is a type of Internet Services 104. WinInet
Intercept 160 is an example API Intercept 102 that intercepts requests by Winlnet Client 111,
which allows Winlnet Intercept to redirect requests intended for Winlnet 161 to Cache 103
instead. WinlInet Client 111 loads Application Plugin 113, which can be implemented as a
COM Office addin for Microsoft Word or a browser helper object (BHO) for Microsoft
Internet Explorer. The application plugin can provide access to the Cache 103 from the client
user interface, such as getting or setting cache contents or status. The application plugin can
also serve to inject Winlnet Intercept 160 to enable interception of function calls between
Winlnet Client 111 and Winlnet 161. This allows the Cache 103 to receive and handle
Internet requests issued from Winlnet Client 111.

[0052] The embodiment applies to any Client App 101 that accesses an Internet Services
104, such as Mozilla Firefox, which uses Mozilla Netlib for its Internet services. Any
application that accesses the Internet via the API of an Internet Services 104 can be
intercepted by an API Intercept 102, which can then redirect its Internet requests to the Cache
103. A Client App 101 that accesses a different Internet Services 104 may use a different API
Intercept 102 to enable interception.

[0053] The Cache 103 may, for example, be common across applications, such as in
Processes 110 and 130. The Cache 103 may include Cache Engine 162, which in turn may
include one or more software components providing application-generic functionality. The
Cache 103 may also include zero or more App Extenders 163, which logically extends the
Cache Engine 162 with application-specific functionality. In some embodiments, the Cache
Engine 162 may be Java software running inside Java Virtual Machine 164 (JVM), which
enhances portability across different computing platforms. When the Cache Engine 162
receives an Internet request, the Cache Engine 162 may query the response data from storage,

-10-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

such as via Database 141, which may be accessed via a separate Process 140. The Cache
Engine 162 may also call App Extender 163 to assist with the request. If a valid response is
found, the Cache Engine 162 returns the response to the upper layer Client App 101, such as
Winlnet Client 111 in Process 110. Otherwise, the Cache Engine 162 may cause the request
to be issued to the server, which may take place through another context, such as via Crawler
Process 130.

[0054] While the Cache 103 runs on the client computer in the embodiment of FIG. 2, the
Cache 103 may also run on one or more separate computing systems, such as one with better
availability or more bandwidth to the client computer than that of the server. For example, the
Cache 103 may run on another platform (e.g., server, phone, etc.) on the same or nearby local
area network (e.g., Ethernet, WiFi, Bluetooth), thus allowing the Cache 103 to provide
improved availability and/or performance characteristics to the web application.

[0055] An aspect of the invention according to some embodiments is to support
application-specific customization, through the support of 3rd-party software. There are a
number of direct and indirect ways that external software can assist with request handling.
For example, direct calls to application-specific software can be supported through external
functions that were linked with the Cache Engine 162. As another example, indirect calls
with application-specific software can be supported through inter-process communications,
such as message queues or pipes that are opened by the Cache Engine 162. The calls to
external software may be conditional, such as qualified based on the request parameters. For
example, calls to external software can be set by configuration parameters on the Cache
Engine 162, such as configuration parameters that specify patterns to match against the
request headers before a particular call is performed.

[0056] Process 130 is running a crawler 131, which supports communications with the
servers, often in the background (i.e., not visible to the user). The crawler may be a Java
software component running inside JVM 132, which may be the same JVM instance as JVM
164. The crawler 131 requests server resources by programmatically controlling an Internet-
based Client App 101, such as a Winlnet Browser 134, which may be the same or similar to
Winlnet Client 111. Winlnet Browser 134 can be controlled programmatically through a
Browser Control layer 133, such as Web Application Testing in Java (Watij) or TeamDev
JExplorer. Also similar to Process 110, Process 130 injects WinINet Intercept 160 (e.g.,
Crawler 131 calls LoadLibrary via Java native interface (JNI)) to enable the interception of
Internet requests from Winlnet Browser 134.

[0057] Process 130 may differ from Process 110 in that Internet requests to the Cache
103 are transmitted to the server, such as when a cached version is missing or needs to be
refreshed; these requests are passed by Winlnet Intercept 160 through to Winlnet 161 so that
they may be handled by the server. The Cache 103 may support this behavior by providing a
different operational mode (than that of Process 110), which may be explicitly requested by

-11-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

Crawler 131, such as through a call made during initialization time. Any new response data
received from the server may be stored to the Database 141, so that it may be persisted and
made accessible, such as by Process 110.

[0058] Some embodiments may access storage through the Database 141, which may
consist of a file system, database, or combination thereof. The Database 141 may be accessed
within the same process as that of the Cache 103, or it may be provided by a separate context
or process, such as Process 140. In some embodiments, Process 140 is running the Database
141, which manages access to the locally cached server content. The Database 141 may be a
Java software component running inside JVM 142. Other processes may retrieve or store data
from the database by communicating with Process 140 using common inter-process
communications (IPC) mechanisms, such as Java remote method invocation (RMI) or Java
database connectivity (JDBC). The Database 141 may also run within a Client Process, such
as within Processes 110 or 130; for example, this may be the case if the Database 141
supports inter-process serialization of shared data.

[0059] Process 150 is running a Manager 151, which handles miscellaneous control and
management tasks, such as launching crawlers and watching for changes in server
connectivity. Manager 151 may be a Java software component running inside JVM 152.
Other processes may access the services provided by manager 151 by using common [PC

mechanisms, such as Java RML

3 Client/Server Interaction
3.1 Client Registration
[0060] In an exemplary embodiment of the present invention, such as the embodiment of

FIG. 1, each remote cache (i.e., with respect to a central manager) is logically associated with
a particular configuration maintained at the Management Server 170, so that the remote cache
can be preconfigured at installation time or subsequently reconfigured. In an exemplary
embodiment, the remote cache (such as the Cache 103) is resident on a client computer, such
as the Client 100, and the Client 100 would register with the Management Server 170 to
initially obtain its configuration data and then periodically check for configuration changes.
Every client is associated with a particular configuration group, and each configuration group
would have a unique identifier (Ul), called the Owner globally unique identifier (GUID), that
can be assigned to each Client 100.

[0061] The assignment of the Owner GUID to Client 100 can be performed in any
number of ways. In one exemplary embodiment, the software installation package for the
Client 100 can contain the Owner GUID as a property embedded within, such that it is later
available to the Client 100. In this case, there would be a different installation package for
each group, and cach of these installation packages can be uniquely identified via different

URLs. Alternatives for assigning the Owner GUID can include, for example, allowing user to

-12-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

pick the configuration group before or after installing the Client 100, or allowing the
Management Server 170 to assign an Owner GUID based on some information about the
client, such as its IP address, computer name, or username of the current user.

[0062] FIG. 3 shows a Unified Modeling Language (UML) sequence of an exemplary
embodiment for registering Client 100 with Management Server 170. When Installer 180 is
launched, the Installer 180 will perform Install Files 3001 and other common installation
tasks, as well as perform Store Owner GUID 3002. When Installer 180 is finished, its last
task is to start up Manager 150 (e.g., a caching manager) by performing Launch Manager
3003.

[0063] Manager 150 handles the client-side cache management functions, including
retrieving, applying, and updating configurations and settings for the Cache 103. The first
time Manager 150 is run, it performs step Register 3010 to perform its initial registration with
the Management Server 170. Whenever a new Client 100 registers with the Management
Server 170, the Management Server 170 performs step Allocate Client GUID 3020, which
assigns a unique identifier for that client for its subsequent interactions with the Management
Server 170. The Management Server 170 also performs step Create Tasks 3021 to create any
initial tasks associated with the new Client 100. Management Server 170 will return the new
Client GUID at step 3030 to the new Client 100, possibly along with any initial tasks for the
new client, such as a new configuration or license task.

[0064] In one exemplary embodiment, after the Manager 150 has registered once, it
subsequently checks with the Management Server 170 on a periodic basis for any new tasks
that can be generated as the result of any configuration changes made, for example, by an
administrator on Management Server 170, as described in UML frame Task Loop 3040,
which is described further with reference to FIG. 4 below.

3.2 MMC Tasks
[0065] FIG. 4 is an UML sequence diagram showing an exemplary UML frame Task
Loop 3040 according to an embodiment of the present invention.
[0066] Referring to FIG. 4, UML frame Task Loop 3040 illustrates the general
processing of tasks that the Manager 150 may receive from the Management Server 170. On
a periodic basis (such as every five seconds), the Manager 150 checks for any new tasks at
step Request Tasks 4001, which can be generated as the result of any configuration changes
made by an administrator on the Management Server 170. If any tasks are returned via step
Receive Tasks 4010, they can be applied at step Process Tasks 4020. The results of the tasks
performed are reported back to the Management Server 170 via step Report results 4030.
[0067] FIG. 4 also shows a generalized Task 401, sent by the Management Server 170 to
the Manager 150 during step Receive Tasks 4010. It is defined by a Type 402, and optional
Payload 403. The Type 402 and Payload 403 of a task 401 vary and may be represented in a

13-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

variety of encodings, including character strings, binary data, and the like. In Process Tasks
4020, one or more tasks may be processed, each of which may be of a different type. The
processing of each specific task is described below as individual variations of Process Tasks
4020. After all tasks have been processed, the Manager 150 performs Report Results 4030 to
send their results to the Management Server 170.

[0068] FIG. 5 details a UML sequence of an exemplary embodiment for the general
processing of tasks by the Manager 150 as received from the Management Server 170. One or
more tasks can be received in each iteration of Task Loop 3040, and these tasks are processed
by the Manager 150 in Loop 5000. Each of the tasks is processed in step 5010, based upon
the type of the task, as determined by the Task Type 402.

3.2.1 Update settings task
[0069] For example, with continuing reference to FIG. 5, if the Manager 150 receives a
task 401 with the Task Type 402 set to “Update Settings”, then Payload 403 can contain
multiple subtasks that need to be performed at Client 100, such as updating application
configuration data (step 5011), site configuration data (step 5012), or configuration template
settings (step 5013), which are described in further detail with reference to FIGs. 68,
respectively, below.
[0070] If the Update Settings task payload indicates that application configuration needs
to be updated, then it is updated at step 5011. Application configuration data can provide
fine-grain control or complex operational parameters for the Client 100, such as for
controlling the operation of the Cache 103 and/or Manager 150. For example, application
configuration data can specify application-specific behavior for the Cache 103, such as which
HTTP requests are cached or how specific URLs are cached.
[0071] FIG. 6 shows an exemplary processing of application configuration data, when the
Manager 150 finds that the Payload 403 of the Update Settings Task 401 contains application
configuration data, according to an embodiment of the present invention. First, the Manager
150 performs Read Task Payload 6001 to obtain the application configuration data, or it may
indicate where to obtain it, such as from the Management Server 170 at step Obtain
Application Configuration 6002. Then, the Manager 150 parses and checks the application
configuration data at Parse Application Configuration 6003 to ensure it is valid, before saving
the application configuration to Storage 106 at step Save Application Configuration 6004.
The Manager 150 may now apply the new configuration at Apply Application Configuration
6005, which can include updating its runtime data structures, and notifying other components
about the changes at Notify Components 6006, such as notifying the Cache 103.
[0072] Referring back to FIG. 5, if the Update Settings task payload indicates that site
configuration data needs to be updated, then it is updated at step 5012. Site configuration data

-14-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

can specify the dedicated caches to create, and which host names or URL patterns that each
cache will handle.

[0073] FIG. 7 shows an exemplary processing of site configuration data, when the
Manager 150 finds that the Payload 403 of the Update Settings Task 401 contains site
configuration data, according to an embodiment of the present invention. First, the Manager
150 performs Read Incoming Sites 7001 to obtain the sites from the new site configuration.
Manager 150 then performs Read Existing Sites 7002 to obtain the current sites stored in
Database 141 that need to be updated. Then, in Loop 7003, for each site in the incoming site
configuration, the Manager 150 may perform Apply Incoming Site 7004, which may, for
example, add a new site or update an existing site. The changes may then be saved to the
Database 141 at Save Site 7005. The Manager may then perform Notify Components 7006,
so that other components, such as the Cache 103, can apply respective changes. Next, in
Loop 7010, Manager 150 looks for any sites that are no longer part of the site configuration,
and removes them at Remove Deleted Sites 7011.

[0074] Referring back to FIG. 5, if the Update Settings task payload indicates that
settings from a configuration template are available, then its settings are applied at Apply
Configuration Template 5013. A configuration template contains settings that affect the
operation of exemplary system embodiments of the invention, which are similar to
application configuration data. These settings may differ from those in the application
configuration data in that they are more dynamic in nature, such as settings that can be
modified by the end user or administrator through a graphical user interface.

[0075] FIG. 8 shows an exemplary processing of the configuration template settings,
when the Manager 150 performs Read Incoming Settings 8001 to obtain the settings from the
Payload 403, according to an embodiment of the present invention. The Manager 150 may
perform Obtain Local Settings 8002 to obtain the current settings from the Database 141,
then perform Update Local Settings 8003 based on the incoming settings, and then perform
Save Local Settings 8004 to persist the local settings to the Database 141.

[0076] The results of the Update Settings subtasks are collected so that they can be sent
to the Management Server 170 in step 4030.

3.2.2 Purge cache task
[0077] If the Manager 150 receives a task with the Task Type 402 set to ‘“Purge Cache”,
then the Payload 403 specifies instructions for purging the caches at Client 100, as indicated
at step 5014 in FIG. 5.
[0078] FIG. 9 details an exemplary UML sequence for processing a Purge Cache 5014
task according to an embodiment of the present invention. Referring to FIG. 9, the Manager
150 performs Read Purge Settings 9001 from the Payload 403, which describes, for example,
the caches to be purged, and the Manager 150 may purge each of the caches specified in

-15-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

Loop 9010. Each cache purge request may identify, for example, a site to purge, such as by
hostname or URL pattern. The Manager 150 may perform Read Site Information 9011 to
determine where that site’s cache is stored in the Storage 106, so that the Manager 150 can
then perform Delete Site Cache 9012.

[0079] The results of the Purge Cache task are collected so that they can be sent to the
Management Server 170 in step 4030.

3.2.3 Flush cache items task
[0080] If the Manager 150 receives a task with the Task Type 402 set to “Flush Cache
Items”, then the Payload 403 specifies instructions for deleting specific items from the caches
at the Client 100, as indicated at step 5015 in FIG. 5.
[0081] FIG. 10 details an exemplary UML sequence for processing a Flush Cache Items
5015 task according to an embodiment of the present invention. Referring to FIG. 10, the
Manager 150 performs Read Flush Requests 10001 from the Payload 403, which describes,
for example, which cache items are to be deleted from the caches on Client 100. The
Manager 150 may then perform Read Sites Information 10002 from the Database 141, to
obtain information about each site’s cache, such as their current contents.
[0082] Next, in Loop 10010 (the outer loop), for each flush request retrieved from the
Payload 403, the flush request may describe the specific content or content types to flush
from the cache, such as using regular expressions or URL patterns. In Loop 10020 (the
middle loop), for each of these flush requests, the Manager 150 may perform Lookup Cache
Items 10023 to locate items matching the flush request in the corresponding site cache stored
on the Storage 106. In one exemplary embodiment, Cache items are stored in files that are
named by a “lookup key” for fast lookup, such as using the hash of the cache item’s URL, so
locating these cache items may entail reading the corresponding metadata for these cache
items to obtain and compare their actual URL.
[0083] Next, in Loop 10030 (the inner loop), for each of these cache items, the Manager
150 may also perform Lookup Associated Items 10034 to locate any content associated with
these items, such as a mapping file that references a user-friendly name for the cache item or
the corresponding HT TP response headers for this cache item. Then, in step 10035, the
Manager 150 deletes all of the items from the Storage 106 that it found for the cache item
matching the flush request.
[0084] The results of the Flush Cache Items task are collected so that they can be sent to
the Management Server 170 in step 4030.

33 Exemplary method

[0085] FIG. 11 illustrates an exemplary method 1100 of dedicated cache management
according to an embodiment of the present invention. The method 1100 is for configuring a

~-16-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

computer to communicate with a remote server through a network and to provide access to
content or services provided by the server.

[0086] Processing begins, and in step 1110, one or more dedicated caches are created,
each cache being associated with one or more URLs. Each of the caches is then managed in
step 1120 using one or more rules. A request to the URLSs is transparently intercepted in step
1130 from a client application to the server. The cache automatically determines in step 1140
when to send the request to and provide a response from the server over the network to
appear to the client application as though the client application sent the request to and
received the response from the server. The cache does this by either (1) sending the request to
the server in step 1150 to appear to the server as though the client application sent the
request, providing the response from the server, and storing the response on the storage
device, or (2) providing the response in step 1160 from one of the caches. Processing then

repeats with step 1120, managing the caches and intercepting and servicing requests.

4 Conclusion
[0087] It is noteworthy that although the foregoing examples have been shown with
respect to specific Internet applications and protocols, the present invention is not limited to
these Internet applications or protocols. Other current and future Internet applications or
protocols can use the foregoing adaptive aspects.
[0088] Although the present invention has been described with reference to specific
embodiments, these embodiments are illustrative only and not limiting. Many other
applications and embodiments of the present invention will be apparent in light of this

disclosure, the following claims, and equivalents thereof.

-17-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

WHAT IS CLAIMED IS:

1. A client-based computer system configured to communicate with a remote
server through a network and to provide access to content or services provided by the server,
the system comprising:

a processor;

a storage device;

a client-side cache dedicated to a set of resources specified by a configuration, the
client-side cache directed by the configuration:

to transparently intercept a request for one of the resources from a client
application to the server; and
to automatically determine when to send the request to and provide a response
from the server over the network to appear to the client application as though the client
application sent the request to and received the response from the server, by:
sending the request to the server to appear to the server as though the
client application sent the request, providing the response from the server, and storing the
response on the storage device; or
providing the response from the cache; and
a caching manager to automatically manage the cache as directed by the

configuration.

2. The system of claim 1, wherein the cache, the set of resources, or the caching
manager 1s configured to automatically apply any updates to the configuration.

3. The system of claim 1, wherein the system is configured to receive the

configuration from a management console.

4. The system of claim 3, further comprising the management console.

5. The system of claim 4, wherein the cache, the set of resources, and the caching
manager are configured to automatically apply any updates to the configuration whenever the

configuration is changed at the management console.

6. The system of claim 4, wherein the management console is configured to

assign the configuration based upon a unique configuration identifier.
7. The system of claim 6, wherein the management console is further configured

to assign a unique client identifier to the system when the system initially registers with the

management console.

18-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

8. The system of claim 1, wherein the configuration comprises a first section for

directing the caching manager and a second section for directing the cache.

9. The system of claim 1, wherein the request comprises an HTTP request.
10. The system of claim 9, wherein the request comprises a POST request.
11. The system of claim 1, wherein the configuration specifies when to store the

response on the storage device or when to provide the response from the cache based on a set
of rules.

12. The system of claim 11, wherein the rules comprise URL patterns to
determine when to store the response on the storage device or when to provide the response

from the cache.

13. The system of claim 11, wherein the rules specify how long a stored response
is to be retained in the cache.

14. The system of claim 11, wherein the rules specify how long a stored response

can be used to supply the response without revalidation from the server.

15. The system of claim 11, wherein the rules specify a mapping of the request to
the response from the cache.

16. The system of claim 15, wherein the mapping rules comprise filtering out a
portion of the request.

17. The system of claim 1, wherein the configuration associates different rules for

different application types.

18. The system of claim 17, wherein the dedicated cache is associated with a
specific one of the application types.

19. The system of claim 1, wherein the configuration associates a user account on
the remote server to which the cache is dedicated.

-19-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

20. The system of claim 1 wherein the cache or the caching manager is configured

to automatically refresh contents of the cache.

21. The system of claim 20, wherein the contents of the cache are configured to be

automatically refreshed according to a schedule.

22. The system of claim 1, wherein the cache comprises a plurality of dedicated

caches.

23. The system of claim 22, wherein the configuration specifies a corresponding

plurality of application types to which respective ones of the caches are dedicated.

24, The system of claim 22, wherein the configuration specifies a corresponding

plurality of user accounts o which respective ones of the caches are dedicated.

25. The system of claim 22, wherein the caching manager is further configured to
reconfigure the dedicated caches on the storage device as directed by the configuration.

26. The system of claim 25, wherein the caching manager is further configured to
reconfigure storage space of each of the dedicated caches on the storage device as directed by

the configuration.

27. The system of claim 3, wherein the caching manager is configured to respond

to a command provided by the management console.

28. The system of claim 27, wherein the command is to update the configuration.

29. The system of claim 27, wherein the command is to delete content in the
cache.

30. The system of claim 29, wherein the command is to delete content in the cache

that corresponds to a URL pattern.

31. The system of claim 27, wherein the command is to refresh content in the

cache.

-20-

10

15

20

25

30

35

WO 2013/071277 PCT/US2012/064735

32. A method for configuring a computer to communicate with a remote server
through a network and to provide access to content or services provided by the server, the
method comprising:

creating one or more dedicated caches, each cache being associated with one or more
URLs;

for each cache, managing the cache according to one or more rules;

transparently intercepting a request for one of the URLs from a client application to
the server; and

automatically determining when to send the request to and provide a response from
the server over the network to appear to the client application as though the client application
sent the request to and received the response from the server, comprising:

sending the request to the server to appear to the server as though the client
application sent the request, providing the response from the server, and storing the response
on a storage device; or

providing the response from one of the caches.

33. The method of claim 32, further comprising reconfiguring the one or more

caches.

34, The method of claim 32, further comprising reconfiguring the URLSs

associated with each cache.

35. The method of claim 32, further comprising using URL patterns to determine
when to store the response on the storage device or when to provide the response from the

cache.

36. The method of claim 32, further comprising using a rule to decide how long a
stored response is to be retained in the cache.

37. The method of claim 32, further comprising using a rule to decide how long a
stored response can be used to supply the response without revalidation from the server based

on a specified value.

38. The method of claim 32, further comprising responding to a command to

delete content in the cache.

39. The method of claim 32, further comprising responding to a command to
delete content in the cache that corresponds to a URL pattern.

21-

10

15

20

25

30

35

WO 2013/071277

PCT/US2012/064735

40. The method of claim 32, further comprising responding to a command to

refresh content in the cache.

2.

PCT/US2012/064735

WO 2013/071277

111

I Old

IBAIBS

I 801

BETNETS
wbwy |
01
\ j GolL
Sa0INIOS beio)s
JsBeuepy mmm_oum
S80IMBS
] 1sudayy 901
701 ayoen R
€0l
1dsolsyu] |dY —
¢0lL
ddy jusi|o —
L0l
jusiio

_
0oL

PCT/US2012/064735

WO 2013/071277

2/11

129)"
S9OINISS

Jaulau|

€0l
ayoe)n <

c0l
1daolsiu|

Idv

L0l
ddy <
sy

¢ Ol

0Ll

ocl

ovi

L

oSl

LGl

191 a4
F 1SU[UIA aseqele(
A 1
OINIVYNT WA
 aulbus ayoe) o
gl - il —00 40 08Qr————
¢9l - 1dV 8pusixg QO Jo Jp4gar -
slopua)xe \ e
ddy (Yojey/uu0d) Odj lsbeuew
€9l , e
T INAC WAF
poL INT |
1 (++D)1dsoisyu] JoUlUIp
091 g - c_mz_mg -
r uoneoyddy JoSMOIg |Um } younej
cll IBULUIA
(1210)dx3 10UlBI| MS wiopeld
‘800 SN Be) ;W M\ﬁoﬂom —— m/s Aped
SjuaiD eel pE/eoINoS ||
JBUjUIpg BIMELD uedo
’ 11‘7|1 M/S oqopy |
WAL o L
\L \ /(c Aiepunog
LLL LEL cel sseooid T

[4%]°

PCT/US2012/064735

WO 2013/071277

311

¢ Old

dooT yse |
TYsel 101 |
| (0v0€ |
' 080¢ 3 |
KA ~ aino 8O uIney :
syse} sjeary | m
0cog H m
ainNo sio 9180y 0L0¢ J |
R €00€
B 1o18169y A L
! T 1ebeuepy youne-
m | c0oe M
| | QINo Jaump 810}S
| | L00€E :
m m S9Ji} Jie1suj
| m e °
! ! | payouney Jojjeisul
SEINER
Juswabeuepy labeuey Iajjelsu|

o\._‘\

omrK

ow_\k

PCT/US2012/064735

WO 2013/071277

4/11

v "Old

I___________......_____

0€0F N

-
-~

s)nsai Loday

_
sHyse] Ss820id
_

o_‘ovJ

A 0coPy

SHSE] BA1909Y

40[0)7 J

!
f
'
'
'
'
'
'
!
'
'
f
'
f
'
'
f
f
f
f
'
'
'
i
'
'
'
'
'
'
'
!
f
'
'
'
'
'
'
'
!
f
f
'
1
f
i
'
f
i
f
f
f
!
f
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
!

S)se} }sanbay

door

Joneg

wswebeuey

o\._‘k

omr\

JI
!
'
'
'
!
!
f
f
i

iabeuepy

T 0t0¢ doo ysel

4014

peojAed

Asel

15017

ﬁ Loy

PCT/US2012/064735

WO 2013/071277

511

G Ol

N

[sway} ayoes ysnj4 == ysey]

SWRN OUOBD USNlY (" jar N

(2]
©
L
Q
©
O
)
o
s
=
o
.,.9_

GLog

710G
[syoen abind == ysey}--
Ll
sjejdwa] uoyeinbyuo) Alddy jo1 T~
_ & €109
co;mg:macoo a)g sjepdn ﬂ a1 S
_y L0s
co;mSmccoo uofjeo)jddy ajepdn al T~
[sBumeg sjepdn = ,x_wmz 1108
| (o
| 0405
[pani@oal sk yoes 104]-
, % ﬁ dooq J
T 0005
t
lebeuepy

j 0209 S)se] ssad0.d

PCT/US2012/064735

WO 2013/071277

6/11

| 9009

_ (

ayoen

mo_‘k

Ecmcanoo AoN

uoljeinbiuon
uoneojddy

|
|
|
|
|
__ \ Addy
|
|
|
|
|
|
|

; [

[mmm—

uoneinbyuon uoneo)ddy saeg

m

|

! uoneinByuon
_ uoneo)ddy
_ asied
|

|

|

|

|

|

|

T

-

€009

—p

S

|
!
|
|
|
|
|
!
|
|
|
i
|
|
|
|
|
|
|
!
|
!
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
)
f
|
|
|
|
!
!
|
i
!
!
|
|
i
!
1

BETNETS
wswabeuepy

ot\

uonteinByuon uoneosyddy ueyqo //

|
|
|
|
|
i
!
!
|
|
!
|

-

901

Z009 i,‘.....mmo;mn_ 3se \rﬁmmmm

9 9Old

1009

.. > peojhed |——

\,

1abeuepy

coy ASEL

- LOY

om_‘\

3 106 uogenbyuos uoieosyddy syepdn

PCT/US2012/064735

WO 2013/071277

711

L 9ld

1102

\

SO}IQ PaJala(] SAOWSY

-
-}

\ doo

9004

-

ayoen

morK

9}iS anes

0oL
e

3US

Buiioouy

Addy

002 - 4

~

\ dooT

2002
\

sa)g Bunsixg pesy

-
- \
-
-

1002

\

0L0Z

€004

s8)ig Buiwioou] peay

sjusuodwo) AjoN

e
i
i
I
!

aseqgele(iabeuep

_‘vr\ omr.\

-

cov

peojAed —
T | e0v
3se]
“ Loy

ﬂ Z10G uoneinbyuod aig sjepdn

PCT/US2012/064735

WO 2013/071277

8/11

8 Old

sBuies |eoo] sAeg

/

7008

_'||v

sbBugeg [eoo syepdn

oL

| 2008

€008
// 1008
sBumes |eooT uelqo //
! sbuiylag Buiwoouj pesy peojAed —
| H T | eov
aseqeleq labeuely Z01 ysel
" op

\v\k omw\

ﬂmrom ajejdwa] uoneinbyuo) Addy

PCT/US2012/064735

WO 2013/071277

9/11

6 Ol

ayoe) a)is aJ8jeQ

1106 ~

|l

[}
i
i
i
i
i
|
)
|
)
[
|

|

)

i

UOIIBULIOJU] 8)IS peoY

Mvm_tommw a]is yoea J04]

ﬂ doo 0106

901

1
|
T
)
|
)
|
)
|
l
)
l
i
t
{
)
|
)
)
)
)
|
]

aseqeje(

143 \

sbuyeg abind pesy
. peojled ——,
m / A €0y
| 1006 20y L MSEL
“ “ 10

labBeuepy

om_‘\

ﬂ 105 ayoed abind

PCT/US2012/064735

WO 2013/071277

10/11

'
|
|
|
|
|
|
|
!
T
|
|
T
|

sway s18feq]

a

A

w///.mmoor

1
Swia)| peieoossy dnyoo

// €001

K doo

swa}| syoe dnyooT

mo
M// €200l
:

[1senbal ysny ur uisped yoes 104] ﬁ

0l "Old

90l

e e s e St e S Y Wil et

obelolg

)

000l
\

<
<&

asegele

374 K

UOIJELLIOJU} SBYIS pESY

s)senbay ysni4 peay

L
|
|
|
|

A

10001

Jabeuepy

om_‘K

™
0coolL
N oLool
peojAed =
(5017
\l adAy
48] % ASEL
“ Loy

ﬂ G1L0G sway| 8yoey ysnj4

PCT/US2012/064735

WO 2013/071277

11/11

8Yoed woy jsenbai 8oinIes - 0oLl osuodsal alojs

‘JanIas 0] }Jsenbal puag | — 05611

ayoed wo.j }senbal 92IAI8S J0 JSAISS 0)

jsenbal puss 0} Uaym sUILLIBIEP Alleonewony [\ 4y,
SN 9yl 0} 1sanba meogmwc_ Apjusiedsues] ocLL
» S9|NJ Buisn seyoeo WE Jo yoes abeuely - — 02L1
STHN YIM paleloosse sayoeo pejesipep sjesl) | OLLL
"\

LL "9l

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/64735

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 15/16 (2012.01)
USPC - 709/203

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

IPC(8). GO6F 15/16 (2012.01)
USPC: 709/203

Minimum documentation searched (classification system followed by classification symbols)

USPC: 709/217,219,213 (keyword limited; terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase; Google Scholar; Google Patents; FreePatentsOnline. Search terms used: cache cache-manage dedicate-cache cache-rule
cache-manage-rule configure-cache-rule cache-configure update-cache-configure direct-cache direct-cache-manage control-cache
control-cache-manage, Internet web communicate network, processor microprocessor...

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
’ 1, 2,9, 10, 19-22, 24-26,
X US 2010/0138485 A1 (CHOW et al.) 03 June 2010 (03.06.2010) entire document, especially 32-36, 38-40
- Abstract; Fig.3; para [0007], [0018], [0023], [0105], [0107], [0117], [0118], [0124], [0139], [0142],
Y [0145], [0147], [0148], [0173], [0175], [0183], {0190], [0234], [0239], (0255], [0267], (0270, 3-8, 11-18, 23, 27-31, 37
[0277], (0346], [0355], [0373]
3-7,27-31
Y US 2005/0097166 A1 (PATRICK et al.) 05 May 2005 (05.05.2005) entire document, especially
Abstract; para [0041], [0068], [0140], [0144], [0145], [0151]
8, 11-16, 37
Y US 2001/0056500 A1 (FARBER et al.) 27 December 2001 (27.12.2001) entire document,
especially Abstract; para [0016), [0067], [0068], [0070], [0330), [0331], [0348], [0350]
17,18, 23
Y US 2005/0086292 A1 (YEE) 21 April 2005 (21.04.2005) entire document, especially Abstract;
para [0011], [0013], [0025]
1-40
A US 2008/0228899 A1 (PLAMONDON) 18 September 2008 (18.09.2008) entire document
1-40
A US 2004/0044731 A1 (CHEN et al.) 04 March 2004 (04.03.2004) entire document
1-40
A US 2002/0116517 A1 (HUDSON et al.) 22 August 2002 (22.08.2002) entire document

D Further documents are listed in the continuation of Box C.

]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" carlier application or patent but published on or afier the intemational
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“p” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to un erstand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

07 January 2013 (07.01.2013)

Date of mailing of the international search report

01FEB 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/JUS, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. s574-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report

