
(12) STANDARD PATENT (11) Application No. AU 2010326248 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Systems and methods for securing data in motion

(51) International Patent Classification(s)
H04L 12/22 (2006.01) H04L 29/06 (2006.01)

(21) Application No: 2010326248 (22) Date of Filing: 2010.11.24

(87) WIPONo: WO11/068738

(30) Priority Data

(31) Number (32) Date (33) Country
61/264,464 2009.11.25 US

(43) Publication Date: 2011.06.09
(44) Accepted Journal Date: 2015.08.27

(71) Applicant(s)
Security First Corp.

(72) Inventor(s)
O'Hare, Mark S;Orsini, Rick L.;Bono, Stephen C.;Landau, Gabriel D.;Nielson, Seth
James

(74) Agent / Attorney
Cullens Patent and Trade Mark Attorneys, GPO Box 1074, Brisbane, QLD, 4001

(56) Related Art
WO 2002/062032

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

IIII

PCT

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 June 2011 (09.06.2011)

(10) International Publication Number

WO 2011/068738 A3

(51) International Patent Classification:
H04L 29/06 (2006.01) H04L 12/22 (2006.01)

(21) International Application Number:
PCT/US2010/058087

(22) International Filing Date:
24 November 2010 (24.11.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/264,464 25 November 2009 (25.11.2009) US

(72) Inventors; and
(71) Applicants : ORS1NI, Rick, L. [US/USJ; 2100 Kings

Forest Lane, Flower Mound, Texas 75028 (US).
O'HARE, Mark, S. [US/US]; 8 Kennedy Court, Coto De
Caza, California 92679 (US). BONO, Stephen, C.
[US/US]; 1020 Park Avenue, Apt # 207, Baltimore,
Maryland 21201 (US).

(74) Agents: INGERMAN, Jeffrey, H. et al.; Ropes & Gray
LLP, 1211 Avenue of the Americas, New York, New
York 10036-8704 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, C.U, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ML, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
10 November 2011

(54) Title: SYSTEMS AND METHODS FOR SECURING DATA IN MOTION

4870^

OO
l>00
o

o
CJ

o
£

FIG. 48C

(57) Abstract: Two approaches are provided for distributing trust among a set of certificate authorities. Both approaches are
equally secure. In each approach, a secure data parser is integrated with any suitable encryption technology. Each approach may
be used to secure data in motion. One approach provides methods and systems in which the secure data parser is used to distribute
trust in a set of certificate authorities during initial negotiation (e g., the key establishment phase) of a connection between two de­
vices. Another approach of the present invention provides methods and systems in which the secure data parser is used to disperse
packets of data into shares. A set of tunnels is established within a communication channel using a set of certificate authorities,
keys developed during the establishment of the tunnels are used to encrypt shares of data for each of the tunnels, and the shares of
data are transmitted through each of the tunnels. Accordingly, trust is distributed among a set of certificate authorities in the struc­
ture of the communication channel itself.

WO 201 ί/068738 PCT/US2010/058087

- 1 -

Systems and Methods for Securing Data in Motion

Cross-reference to Related Applications

[0001] This application claims the benefit of U.S. provisional application

No. 61/264,464, filed on November 25, 2009, which is hereby incorporated by

reference herein in its entirety.

Field of the Invention

[0002] The present invention relates in general to systems and methods for securing

communications by distributing trust among certificate authorities. The systems and

methods described herein may be used in conjunction with other systems and methods

described in commonly-owned U.S. Patent No. 7,391,865 and commonly-owned U.S.

Patent Application Nos. 11/258,839, filed October 25, 2005, 11/602,667, filed

November 20, 2006, 11/983,355, filed November 7, 2007, 11/999,575, filed December

5, 2007, 12/148,365, filed April 18, 2008, 12/209,703, filed September 12, 2008,

12/349,897, filed January 7, 2009, 12/391,025, filed February 23, 2009, all of which

are hereby incorporated by reference herein in their entireties.

Background of the Invention

[0003] In today's society, individuals and businesses conduct an ever-increasing

amount of activities on and over computer systems. These computer systems,

WO 2011/068738 PCT/US2010/058087

-2-

including proprietary and non-proprietary computer networks, are often storing,

archiving, and transmitting all types of sensitive information. Thus, an ever-

increasing need exists for ensuring data stored and transmitted over these systems

cannot be read or otherwise compromised.

[0004] One solution is to secure the data using keys of a certificate authority.

Certificate authorities may be run by trusted third-party organizations or companies

that issue digital certificates, such as, for example, VeriSign, Baltimore, Entrust, or the

like. The digital certificate certifies the ownership of a public key by the named

subject of the certificate. This allows others to rely upon signatures or assertions made

by the private key that corresponds to the public key that is certified. Requests for a

digital certificate may be made through digital certificate protocols, such as, for

example, PKCS10. In response to a request, the certificate authority will issue a

certificate in a number of differing protocols, such as, for example, PKCS7.

Messages may be exchanged between devices based on the issued certificates.

[0005] If the certificate authority is compromised, then the security of the system

may be lost for each user for whom the certificate authority is certifying a link

between a public key and an identity. For example, an attacker may compromise a

certificate authority by inducing that certificate authority to issue a certificate that

falsely claims to represent an entity. The attacker would have the private key

associated with the certificate authority’s certificate. The attacker could then use this

certificate to send digitally signed messages to a user, and trick that user into believing

that the message was from the trusted entity. The user may respond to the digitally

signed messages, which the attacker may decrypt using the private key. Accordingly,

the trust that the user placed in the certificate authority may be compromised.

-3-
20

10
32

62
48

20

 Ju
l 2

01
5

Summary of the Invention

[0006] Based on the foregoing, a need exists to provide a secure proxy service that

includes a system that secures communications by distributing trust among a set of

certificate authorities.

[0007] One approach of the present invention is to provide methods and systems in

which a secure data parser is used to pre-process packets of data. The pre-processed

data may then be dispersed into shares. A set of tunnels may be established within a

communication channel using certificates issued by unique certificate authorities, keys

developed during this establishment may be used to encrypt data for each of the tunnels,

and the individual shares of data may be transmitted on each of the tunnels. Thus, in this

approach, trust may be distributed among a set of certificate authorities in the structure

of the communication channel itself.

[0008] The invention provides methods and systems for securing data in motion,

which may include original data packets. A secure communication channel may be

established. Any number of secure communication tunnels may be established within

the secure communication channel based on a distributed trust among unique certificate

authorities. In some embodiments, the secure communication tunnels may be

established using certificates issued by the certificate authorities. Each of the original

data packets may be prepared for transmission over the secure communication tunnels

based on the distributed trust among the set of certificate authorities and multi-factored

secret sharing. In some embodiments, each of the original data packets may be

dispersed into a plurality of shares based on multi-factored secret sharing. Optionally,

this dispersing may be based on an M of N cryptosplit. The shares may be encrypted

based on a key associated with the establishment of a different one of the secure

communication tunnels. In some embodiments, the encrypted shares may be transmitted

over one or more of the secure communication tunnels.

[0009] In some embodiments, each secure communication tunnels may be established

based on the certificate associated with a different one of the unique certificate

authorities. In some embodiments, each secure communication tunnel may be

-4-
20

10
32

62
48

20

 Ju
l2

01
5

associated with a certificate issued by one of the unique certificate authorities under

which the secure communication tunnels were established. For example, there may be a

one-to-one correspondence between a certificate of one of the unique certificate

authorities and the secure communication tunnels. In some embodiments, these

associations may be dynamic. In some embodiments, the shares may be restored by

recombining at least a quorum of the shares.

[0010] In some embodiments, each of the encrypted shares may be received on a

respective one of the secure communication tunnels. Each of the shares may be

decrypted based on the keys associated with the establishment of the secure

communication tunnels. The original data packets may be restored based on, for

example the multi-factored secret sharing.

[0011] In some embodiments, a certificate authority hierarchy may be generated. The

certificate authority hierarchy may include a set of root certificate authorities, a set of

minor certificate authorities, or both. The set of certificate authorities may include the

set of root certificate authorities, the set of minor certificate authorities, or both from the

generated certificate authority hierarchy.

[0012] In some embodiments, each of the N secure communication tunnels may be

established over different physical transport mediums. In some embodiments, at least

one of the physical transport mediums may fail, but the original data packets may be

restored without a loss of data integrity. In some embodiments, a portion of the shares is

designated for transmission over at least one of the failed physical transport mediums,

but some of the physical transport mediums may be operational. In such embodiments,

additional secure communication tunnels may be established within at least one of the

operational physical transport mediums. The portion of the shares designated for

transmission over the at least one failed physical transport mediums may be transmitted

over the additional secure communication tunnels.

[0013] There is also disclosed herein a second approach to distributing trust among a

set of certificate authorities. Both approaches are equally secure. In each approach, the

secure data parser may be integrated with any suitable encryption technology. It will be

-5-
20

10
32

62
48

20

 Ju
l 2

01
5

understood that in some embodiments the secure proxy service may be implemented by

integrating a secure data parser with the full Transport Layer Security ("TLS") protocol,

with the Secure Sockets Layer (SSL) protocol, with SSL and full TLS, or implementing

the secure data parser without the use of SSL and/or full TLS. In addition, it will be

understood that in some embodiments the secure proxy service may be implemented in

conjunction with any suitable protocol that makes use of certificate authorities to ensure

the confidentiality, integrity, and authenticity of exchanged messages.

[0014] In the second approach, the secure data parser is used to distribute trust in a set

of certificate authorities during initial negotiation (e.g., the key establishment phase) of

a connection between devices. The certificate authorities may be unique in that the

certificates issued by each have different public and private key pairs. This offers the

assurance that if some (but fewer than a quorum) of the certificate authorities have been

compromised, the connection can still be established, and messages may be exchanged

without disrupting the confidentiality or integrity of the communication.

[0015] In this second approach, methods and systems are provided for computing

shared encryption keys. This computation of shared encryption keys may be part of a

key establishment phase of secure communications between devices. Secret information

may be generated, and public keys may be obtained from unique certificate authorities.

The secret information may be dispersed into any number of shares of secret

information. Each share of secret information may be encrypted based on a public key

of a certificate associated with a different one of the unique certificate authorities.

Optionally, each of the shares of secret information may be encrypted based on a

keywrap. The keywrap may be based on a workgroup key. In some embodiments, the

shares may be recombined, and data may be transmitted based on the recombined

shares.

[0016] In some embodiments, a set of random numbers may be generated. A first

shared encryption key may be computed based on the set of random numbers and the

original secret information. A second shared encryption key may be computed based on

the set of random numbers and the recombined shares. Data may be transmitted based

on the first and second shared encryption keys. In some embodiments, the first and

-6-
20

10
32

62
48

20

 Ju
l2

01
5

second shared encryption keys may be compared. A determination may be made

whether to transmit data based on this comparison, and data may be transmitted based

on this determination.

[0017] The two approaches may be combined in any suitable way. For example, any

number of the secure communication tunnels in the first approach may be established

using the key establishment techniques of the second approach.

Brief Description of the Drawings

[0018] The present invention is described in more detail below in connection with the

attached drawings, which are meant to illustrate and not to limit the invention, and in

which:

[0019] FIGURE 1 illustrates a block diagram of a cryptographic system, according to

aspects of an embodiment of the invention;

[0020] FIGURE 2 illustrates a block diagram of the trust engine of FIGURE 1 ,

according to aspects of an embodiment of the invention;

[0021] FIGURE 3 illustrates a block diagram of the transaction engine of FIGURE 2,

according to aspects of an embodiment of the invention;

[0022] FIGURE 4 illustrates a block diagram of the depository of FIGURE 2,

according to aspects of an embodiment of the invention;

[0023] FIGURE 5 illustrates a block diagram of the authentication engine of FIGURE

2, according to aspects of an embodiment of the invention;

[0024] FIGURE 6 illustrates a block diagram of the cryptographic engine of FIGURE

2, according to aspects of an embodiment of the invention;

[0025] FIGURE 7 illustrates a block diagram of a depository system, according to

aspects of another embodiment of the invention;

[0026] FIGURE 8 illustrates a flow chart of a data splitting process according to

aspects of an embodiment of the invention;

WO 2011/068738 PCT/US2010/058087

-7-

[0027] FTGURE 9, Panel A illustrates a data flow of an enrollment process

according to aspects of an embodiment of the invention;

[0028] FIGURE 9, Panel B illustrates a flow chart of an interoperability process

according to aspects of an embodiment of the invention;

[0029] FIGURE 10 illustrates a data flow of an authentication process according to

aspects of an embodiment of the invention;

[0030] FIGURE 11 illustrates a data flow of a signing process according to aspects

of an embodiment of the invention;

[0031] FIGURE 12 illustrates a data flow and an encryption/decryption process

according to aspects and yet another embodiment of the invention;

[0032] FIGURE 13 illustrates a simplified block diagram of a trust engine system

according to aspects of another embodiment of the invention;

[0033] FIGURE 14 illustrates a simplified block diagram of a trust engine system

according to aspects of another embodiment of the invention;

[0034] FIGURE 15 illustrates a block diagram of the redundancy module of

FIGURE 14, according to aspects of an embodiment of the invention;

[0035] FIGURE 16 illustrates a process for evaluating authentications according to

one aspect of the invention;

[0036] FIGURE 17 illustrates a process for assigning a value to an authentication

according to one aspect as shown in FIGURE 16 of the invention;

[0037] FIGURE 18 illustrates a process for performing trust arbitrage in an aspect of

the invention as shown in FIGURE 17; and

[0038] FIGURE 19 illustrates a sample transaction between a user and a vendor

according to aspects of an embodiment of the invention where an initial web based

contact leads to a sales contract signed by both parties.

[0039] FIGURE 20 illustrates a sample user system with a cryptographic service

provider module which provides security functions to a user system.

[0040] FIGURE 21 illustrates a process for parsing, splitting and/or separating data

with encryption and storage of the encryption master key with the data.

WO 2011/068738 PCT/US2010/058087

-8-

[0041] FTGURE 22 illustrates a process for parsing, splitting and/or separating data

with encryption and storing the encryption master key separately from the data.

[0042] FIGURE 23 illustrates the intermediary key process for parsing, splitting

and/or separating data with encryption and storage of the encryption master key with

the data.

[0043] FIGURE 24 illustrates the intermediary key process for parsing, splitting

and/or separating data with encryption and storing the encryption master key

separately from the data.

[0044] FIGURE 25 illustrates utilization of the cryptographic methods and systems

of the present invention with a small working group.

[0045] FTGURE 26 is a block diagram of an illustrative physical token security

system employing the secure data parser in accordance with one embodiment of the

present invention.

[0046] FIGURE 27 is a block diagram of an illustrative arrangement in which the

secure data parser is integrated into a system in accordance with one embodiment of

the present invention.

[0047] FIGURE 28 is a block diagram of an illustrative data in motion system in

accordance with one embodiment of the present invention.

[0048] FIGURE 29 is a block diagram of another illustrative data in motion system

in accordance with one embodiment of the present invention.

[0049] FIGURE 30-32 are block diagrams of an illustrative system having the secure

data parser integrated in accordance with one embodiment of the present invention.

[0050] FIGURE 33 is a process flow diagram of an illustrative process for parsing

and splitting data in accordance with one embodiment of the present invention.

[0051] FIGURE 34 is a process flow diagram of an illustrative process for restoring

portions of data into original data in accordance with one embodiment of the present

invention.

[0052] FIGURE 35 is a process flow diagram of an illustrative process for splitting

data at the bit level in accordance with one embodiment of the present invention.

WO 2011/068738 PCT/US2010/058087

-9-

[0053] FTGURE 36 is a process flow diagram of illustrative steps and featuresin

accordance with one embodiment of the present invention.

[0054] FIGURE 37 is a process flow diagram of illustrative steps and features in

accordance with one embodiment of the present invention.

[0055] FIGURE 38 is a simplified block diagram of the storage of key and data

components within shares in accordance with one embodiment of the present

invention.

[0056] FIGURE 39 is a simplified block diagram of the storage of key and data

components within shares using a workgroup key in accordance with one embodiment

of the present invention.

[0057] FIGURES 40A and 40B are simplified and illustrative process flow diagrams

for header generation and data splitting for data in motion in accordance with one

embodiment of the present invention.

[0058] FIGURE 41 is a simplified block diagram of an illustrative share format in

accordance with one embodiment of the present invention.

[0059] FIGURE 42 is a simplified and a illustrative hierarchy of certificate

authorities in accordance with one embodiment of the present invention.

[0060] FIGURES 43-47, 48A, and 48B are process flow diagrams of illustrative

steps and features for a secure proxy service in accordance with one embodiment of

the present invention.

[0061] FIGURE 48C is a simplified block diagram of a secure proxy service that

distributes trust among a set of certificate authorities in the structure of

communication channels in accordance with one embodiment of the present invention.

[0062] FIGURES 49 and 50 are process flow diagrams of illustrated steps and

features for a secure proxy service that distributes trust among a set of certificate

authorities in the structure of communication channels in accordance with one

embodiment of the present invention.

Detailed Description of the Invention

WO 2011/068738 PCT/US2010/058087

- 10-

[0063] One aspect of the present invention is to provide a cryptographic system

where one or more secure servers, or a trust engine, stores cryptographic keys and user

authentication data. Users access the functionality of conventional cryptographic

systems through network access to the trust engine, however, the trust engine does not

release actual keys and other authentication data and therefore, the keys and data

remain secure. This server-centric storage of keys and authentication data provides for

user-independent security, portability, availability, and straightforwardness.

[0064] Because users can be confident in, or trust, the cryptographic system to

perform user and document authentication and other cryptographic functions, a wide

variety of functionality may be incorporated into the system. For example, the trust

engine provider can ensure against agreement repudiation by, for example,

authenticating the agreement participants, digitally signing the agreement on behalf of

or for the participants, and storing a record of the agreement digitally signed by each

participant. In addition, the cryptographic system may monitor agreements and

determine to apply varying degrees of authentication, based on, for example, price,

user, vendor, geographic location, place of use, or the like.

[0065] To facilitate a complete understanding of the invention, the remainder of the

detailed description describes the invention with reference to the figures, wherein like

elements are referenced with like numerals throughout.

[0066] FIGURE 1 illustrates a block diagram of a cryptographic system 100,

according to aspects of an embodiment of the invention. As shown in FIGURE 1, the

cryptographic system 100 includes a user system 105, a trust engine 110, a certificate

authority 115, and a vendor system 120, communicating through a communication

link 125.

[0067] According to one embodiment of the invention, the user system 105

comprises a conventional general-purpose computer having one or more

microprocessors, such as, for example, an Intel-based processor. Moreover, the user

system 105 includes an appropriate operating system, such as, for example, an

operating system capable of including graphics or windows, such as Windows, Unix,

Finux, or the like. As shown in FIGURE 1, the user system 105 may include a

WO 2011/068738 PCT/US2010/058087

- 11 -

biometric device 107. The biometric device 107 may advantageously capture a user's

biometric and transfer the captured biometric to the trust engine 110. According to

one embodiment of the invention, the biometric device may advantageously comprise

a device having attributes and features similar to those disclosed in U.S. Patent

Application No. 08/926,277, filed on September 5, 1997, entitled "RELIEF OBJECT

IMAGE GENERATOR," U.S. Patent Application No. 09/558,634, filed on April 26,

2000, entitled "IMAGING DEVICE FOR A RELIEF OBJECT AND SYSTEM AND

METHOD OF USING THE IMAGE DEVICE,"U.S. Patent Application

No. 09/435,011, filed on November 5, 1999, entitled "RELIEF OBJECT SENSOR

ADAPTOR," and U.S. Patent Application No. 09/477,943, filed on January 5, 2000,

entitled "PLANAR OPTICAL IMAGE SENSOR AND SYSTEM FOR GENERATING

AN ELECTRONIC IMAGE OF A RELIEF OBJECT FOR FINGERPRINT READING,"

all of which are owned by the instant assignee, and all of which are hereby

incorporated by reference herein.

[0068] In addition, the user system 105 may connect to the communication link 125

through a conventional service provider, such as, for example, a dial up, digital

subscriber line (DSL), cable modem, fiber connection, or the like. According to

another embodiment, the user system 105 connects the communication link 125

through network connectivity such as, for example, a local or wide area network.

According to one embodiment, the operating system includes a TCP/IP stack that

handles all incoming and outgoing message traffic passed over the communication

link 125.

[0069] Although the user system 105 is disclosed with reference to the foregoing

embodiments, the invention is not intended to be limited thereby. Rather, a skilled

artisan will recognize from the disclosure herein, a wide number of alternatives

embodiments of the user system 105, including almost any computing device capable

of sending or receiving information from another computer system. For example, the

user system 105 may include, but is not limited to, a computer workstation, an

interactive television, an interactive kiosk, a personal mobile computing device, such

as a digital assistant, mobile phone, laptop, or the like, personal networking

WO 2011/068738 PCT/US2010/058087

- 12-

equipment, such as a home router, a network storage device ("NAS"), personal

hotspot, or the like, or a wireless communications device, a smartcard, an embedded

computing device, or the like, which can interact with the communication link 125. In

such alternative systems, the operating systems will likely differ and be adapted for

the particular device. However, according to one embodiment, the operating systems

advantageously continue to provide the appropriate communications protocols needed

to establish communication with the communication link 125.

[0070] FIGURE 1 illustrates the trust engine 110. According to one embodiment,

the trust engine 110 comprises one or more secure servers for accessing and storing

sensitive information, which may be any type or form of data, such as, but not limited

to text, audio, video, user authentication data and public and private cryptographic

keys. According to one embodiment, the authentication data includes data designed to

uniquely identify a user of the cryptographic system 100. For example, the

authentication data may include a user identification number, one or more biometrics,

and a series of questions and answers generated by the trust engine 110 or the user, but

answered initially by the user at enrollment. The foregoing questions may include

demographic data, such as place of birth, address, anniversary, or the like, personal

data, such as mother's maiden name, favorite ice cream, or the like, or other data

designed to uniquely identify the user. The trust engine 110 compares a user's

authentication data associated with a current transaction, to the authentication data

provided at an earlier time, such as, for example, during enrollment. The trust engine

110 may advantageously require the user to produce the authentication data at the time

of each transaction, or, the trust engine 110 may advantageously allow the user to

periodically produce authentication data, such as at the beginning of a string of

transactions or the logging onto a particular vendor website.

[0071] According to the embodiment where the user produces biometric data, the

user provides a physical characteristic, such as, but not limited to, facial scan, hand

scan, ear scan, iris scan, retinal scan, vascular pattern, DNA, a fingerprint, writing or

speech, to the biometric device 107. The biometric device advantageously produces

an electronic pattern, or biometric, of the physical characteristic. The electronic

WO 2011/068738 PCT/US2010/058087

- 13-

pattern is transferred through the user system 105 to the trust engine 110 for either

enrollment or authentication purposes.

[0072] Once the user produces the appropriate authentication data and the trust

engine 110 determines a positive match between that authentication data (current

authentication data) and the authentication data provided at the time of enrollment

(enrollment authentication data), the trust engine 110 provides the user with complete

cryptographic functionality. For example, the properly authenticated user may

advantageously employ the trust engine 110 to perform hashing, digitally signing,

encrypting and decrypting (often together referred to only as encrypting), creating or

distributing digital certificates, and the like. However, the private cryptographic keys

used in the cryptographic functions will not be available outside the trust engine 110,

thereby ensuring the integrity of the ciypto graphic keys.

[0073] According to one embodiment, the trust engine 110 generates and stores

cryptographic keys. According to another embodiment, at least one cryptographic key

is associated with each user. Moreover, when the cryptographic keys include

public-key technology, each private key associated with a user is generated within,

and not released from, the trust engine 110. Thus, so long as the user has access to the

trust engine 110, the user may perform cryptographic functions using his or her private

or public key. Such remote access advantageously allows users to remain completely

mobile and access cryptographic functionality through practically any Internet

connection, such as cellular and satellite phones, kiosks, laptops, hotel rooms and the

like.

[0074] According to another embodiment, the trust engine 110 performs the

cryptographic functionality using a key pair generated for the trust engine 110.

According to this embodiment, the trust engine 110 first authenticates the user, and

after the user has properly produced authentication data matching the enrollment

authentication data, the trust engine 110 uses its own cryptographic key pair to

perform cryptographic functions on behalf of the authenticated user.

[0075] A skilled artisan will recognize from the disclosure herein that the

cryptographic keys may advantageously include some or all of symmetric keys, public

WO 2011/068738 PCT/US2010/058087

- 14-

keys, and private keys. In addition, a skilled artisan will recognize from the disclosure

herein that the foregoing keys may be implemented with a wide number of algorithms

available from commercial technologies, such as, for example, RSA, ELGAMAL, or

the like.

[0076] FIGURE 1 also illustrates the certificate authority 115. According to one

embodiment, the certificate authority 115 may advantageously comprise a trusted

third-party organization or company that issues digital certificates, such as, for

example, VeriSign, Baltimore, Entrust, or the like. The trust engine 110 may

advantageously transmit requests for digital certificates, through one or more

conventional digital certificate protocols, such as, for example, PKCS10, to the

certificate authority 115. In response, the certificate authority 115 will issue a digital

certificate in one or more of a number of differing protocols, such as, for example,

PKCS7. According to one embodiment of the invention, the trust engine 110 requests

digital certificates from several or all of the prominent certificate authorities 115 such

that the trust engine 110 has access to a digital certificate corresponding to the

certificate standard of any requesting party.

[0077] According to another embodiment, the trust engine 110 internally performs

certificate issuances. In this embodiment, the trust engine 110 may access a certificate

system for generating certificates and/or may internally generate certificates when

they are requested, such as, for example, at the time of key generation or in the

certificate standard requested at the time of the request. The trust engine 110 will be

disclosed in greater detail below.

[0078] FIGURE 1 also illustrates the vendor system 120. According to one

embodiment, the vendor system 120 advantageously comprises a Web server. Typical

Web servers generally serve content over the Internet using one of several internet

markup languages or document format standards, such as the Hyper-Text Markup

Eanguage (HTMF) or the Extensible Markup Language (XML). The Web server

accepts requests from browsers like Netscape and Internet Explorer and then returns

the appropriate electronic documents. A number of server or client-side technologies

can be used to increase the power of the Web server beyond its ability to deliver

WO 2011/068738 PCT/US2010/058087

- 15-

standard electronic documents. For example, these technologies include Common

Gateway Interface (CGI) scripts, SSF security, and Active Server Pages (ASPs). The

vendor system 120 may advantageously provide electronic content relating to

commercial, personal, educational, or other transactions.

[0079] Although the vendor system 120 is disclosed with reference to the foregoing

embodiments, the invention is not intended to be limited thereby. Rather, a skilled

artisan will recognize from the disclosure herein that the vendor system 120 may

advantageously comprise any of the devices described with reference to the user

system 105 or combination thereof.

[0080] FIGURE 1 also illustrates the communication link 125 connecting the user

system 105, the trust engine 110, the certificate authority 115, and the vendor system

120. According to one embodiment, the communication link 125 preferably

comprises the Internet. The Internet, as used throughout this disclosure is a global

network of computers. The structure of the Internet, which is well known to those of

ordinary skill in the art, includes a network backbone with networks branching from

the backbone. These branches, in turn, have networks branching from them, and so

on. Routers move information packets between network levels, and then from

network to network, until the packet reaches the neighborhood of its destination.

From the destination, the destination network's host directs the information packet to

the appropriate terminal, or node. In one advantageous embodiment, the Internet

routing hubs comprise domain name system (DNS) servers using Transmission

Control Protocol/Internet Protocol (TCP/IP) as is well known in the art. The routing

hubs connect to one or more other routing hubs via high-speed communication links.

[0081] One popular part of the Internet is the World Wide Web. The World Wide

Web contains different computers, which store documents capable of displaying

graphical and textual information. The computers that provide information on the

World Wide Web are typically called "websites." A website is defined by an Internet

address that has an associated electronic page. The electronic page can be identified

by a Uniform Resource Locator (URL). Generally, an electronic page is a document

that organizes the presentation of text, graphical images, audio, video, and so forth.

WO 2011/068738 PCT/US2010/058087

- 16-

[0082] Although the communication link 125 is disclosed in terms of its preferred

embodiment, one of ordinary skill in the art will recognize from the disclosure herein

that the communication link 125 may include a wide range of interactive

communications links. For example, the communication link 125 may include

interactive television networks, telephone networks, wireless data transmission

systems, two-way cable systems, customized private or public computer networks,

interactive kiosk networks, automatic teller machine networks, direct links, satellite or

cellular networks, and the like.

[0083] FIGURE 2 illustrates a block diagram of the trust engine 110 of FIGURE 1

according to aspects of an embodiment of the invention. As shown in FIGURE 2, the

trust engine 110 includes a transaction engine 205, a depository 210, an authentication

engine 215, and a cryptographic engine 220. According to one embodiment of the

invention, the trust engine 110 also includes mass storage 225. As further shown in

FIGURE 2, the transaction engine 205 communicates with the depository 210, the

authentication engine 215, and the cryptographic engine 220, along with the mass

storage 225. In addition, the depository 210 communicates with the authentication

engine 215, the cryptographic engine 220, and the mass storage 225. Moreover, the

authentication engine 215 communicates with the ciyptographic engine 220.

According to one embodiment of the invention, some or all of the foregoing

communications may advantageously comprise the transmission of XML documents

to TP addresses that correspond to the receiving device. As mentioned in the

foregoing, XML documents advantageously allow designers to create their own

customized document tags, enabling the definition, transmission, validation, and

interpretation of data between applications and between organizations. Moreover,

some or all of the foregoing communications may include conventional SSL

technologies.

[0084] According to one embodiment, the transaction engine 205 comprises a data

routing device, such as a conventional Web server available from Netscape, Microsoft,

Apache, or the like. For example, the Web server may advantageously receive

incoming data from the communication link 125. According to one embodiment of

WO 2011/068738 PCT/US2010/058087

- 17-

the invention, the incoming data is addressed to a front-end security system for the

trust engine 110. For example, the front-end security system may advantageously

include a firewall, an intrusion detection system searching for known attack profiles,

and/or a virus scanner. After clearing the front-end security system, the data is

received by the transaction engine 205 and routed to one of the depository 210, the

authentication engine 215, the cryptographic engine 220, and the mass storage 225. In

addition, the transaction engine 205 monitors incoming data from the authentication

engine 215 and cryptographic engine 220, and routes the data to particular systems

through the communication link 125. For example, the transaction engine 205 may

advantageously route data to the user system 105, the certificate authority 115, or the

vendor system 120.

[0085] According to one embodiment, the data is routed using conventional HTTP

routing techniques, such as, for example, employing URLs or Uniform Resource

Indicators (URIs). URIs are similar to URLs, however, URIs typically indicate the

source of files or actions, such as, for example, executables, scripts, and the like.

Therefore, according to the one embodiment, the user system 105, the certificate

authority 115, the vendor system 120, and the components of the trust engine 210,

advantageously include sufficient data within communication URLs or URIs for the

transaction engine 205 to properly route data throughout the cryptographic system.

[0086] Although the data routing is disclosed with reference to its preferred

embodiment, a skilled artisan will recognize a wide number of possible data routing

solutions or strategies. For example, XML or other data packets may advantageously

be unpacked and recognized by their format, content, or the like, such that the

transaction engine 205 may properly route data throughout the trust engine 110.

Moreover, a skilled artisan will recognize that the data routing may advantageously be

adapted to the data transfer protocols conforming to particular network systems, such

as, for example, when the communication link 125 comprises a local network.

[0087] According to yet another embodiment of the invention, the transaction engine

205 includes conventional SSL encryption technologies, such that the foregoing

systems may authenticate themselves, and vise-versa, with transaction engine 205,

WO 2011/068738 PCT/US2010/058087

- 18-

during particular communications. As will be used throughout this disclosure, the

term "A SSL" refers to communications where a server but not necessarily the client,

is SSL authenticated, and the term "FULL SSL" refers to communications where the

client and the server are SSL authenticated. When the instant disclosure uses the term

"SSL", the communication may comprise Ά or FULL SSL.

[0088] As the transaction engine 205 routes data to the various components of the

cryptographic system 100, the transaction engine 205 may advantageously create an

audit trail. According to one embodiment, the audit trail includes a record of at least

the type and format of data routed by the transaction engine 205 throughout the

cryptographic system 100. Such audit data may advantageously be stored in the mass

storage 225.

[0089] FIGURE 2 also illustrates the depository 210. According to one

embodiment, the depository 210 comprises one or more data storage facilities, such as,

for example, a directory server, a database server, or the like. As shown in FIGURE 2,

the depository 210 stores cryptographic keys and enrollment authentication data. The

cryptographic keys may advantageously correspond to the trust engine 110 or to users

of the cryptographic system 100, such as the user or vendor. The enrollment

authentication data may advantageously include data designed to uniquely identify a

user, such as, user ID, passwords, answers to questions, biometric data, or the like.

This enrollment authentication data may advantageously be acquired at enrollment of

a user or another alternative later time. For example, the trust engine 110 may include

periodic or other renewal or reissue of enrollment authentication data.

[0090] According to one embodiment, the communication from the transaction

engine 205 to and from the authentication engine 215 and the cryptographic engine

220 comprises secure communication, such as, for example conventional SSL

technology. In addition, as mentioned in the foregoing, the data of the

communications to and from the depository 210 may be transferred using URLs,

URIs, HTTP or XML documents, with any of the foregoing advantageously having

data requests and formats embedded therein.

WO 2011/068738 PCT/US2010/058087

- 19-

[0091] As mentioned above, the depository 210 may advantageously comprises a

plurality of secure data storage facilities. In such an embodiment, the secure data

storage facilities may be configured such that a compromise of the security in one

individual data storage facility will not compromise the cryptographic keys or the

authentication data stored therein. For example, according to this embodiment, the

cryptographic keys and the authentication data are mathematically operated on so as to

statistically and substantially randomize the data stored in each data storage facility.

According to one embodiment, the randomization of the data of an individual data

storage facility renders that data undecipherable. Thus, compromise of an individual

data storage facility produces only a randomized undecipherable number and does not

compromise the security of any cryptographic keys or the authentication data as a

whole.

[0092] FIGURE 2 also illustrates the trust engine 110 including the authentication

engine 215. According to one embodiment, the authentication engine 215 comprises a

data comparator configured to compare data from the transaction engine 205 with data

from the depository 210. For example, during authentication, a user supplies current

authentication data to the trust engine 110 such that the transaction engine 205

receives the current authentication data. As mentioned in the foregoing, the

transaction engine 205 recognizes the data requests, preferably in the URF or URI,

and routes the authentication data to the authentication engine 215. Moreover, upon

request, the depository 210 forwards enrollment authentication data corresponding to

the user to the authentication engine 215. Thus, the authentication engine 215 has

both the current authentication data and the enrollment authentication data for

comparison.

[0093] According to one embodiment, the communications to the authentication

engine comprise secure communications, such as, for example, SSF technology.

Additionally, security can be provided within the trust engine 110 components, such

as, for example, super-encryption using public key technologies. For example,

according to one embodiment, the user encrypts the current authentication data with

the public key of the authentication engine 215. In addition, the depository 210 also

WO 2011/068738 PCT/US2010/058087

-20-

encrypts the enrollment authentication data with the public key of the authentication

engine 215. In this way, only the authentication engine's private key can be used to

decrypt the transmissions.

[0094] As shown in FIGURE 2, the trust engine 110 also includes the cryptographic

engine 220. According to one embodiment, the cryptographic engine comprises a

cryptographic handling module, configured to advantageously provide conventional

cryptographic functions, such as, for example, public-key infrastructure (PKI)

functionality. For example, the cryptographic engine 220 may advantageously issue

public and private keys for users of the cryptographic system 100. In this manner, the

cryptographic keys are generated at the cryptographic engine 220 and forwarded to the

depository 210 such that at least the private cryptographic keys are not available

outside of the trust engine 110. According to another embodiment, the cryptographic

engine 220 randomizes and splits at least the private cryptographic key data, thereby

storing only the randomized split data. Similar to the splitting of the enrollment

authentication data, the splitting process ensures the stored keys are not available

outside the cryptographic engine 220. According to another embodiment, the

functions of the cryptographic engine can be combined with and performed by the

authentication engine 215.

[0095] According to one embodiment, communications to and from the

cryptographic engine include secure communications, such as SSL technology. In

addition, XML documents may advantageously be employed to transfer data and/or

make cryptographic function requests.

[0096] FIGURE 2 also illustrates the trust engine 110 having the mass storage 225.

As mentioned in the foregoing, the transaction engine 205 keeps data corresponding to

an audit trail and stores such data in the mass storage 225. Similarly, according to one

embodiment of the invention, the depository 210 keeps data corresponding to an audit

trail and stores such data in the mass storage device 225. The depository audit trail

data is similar to that of the transaction engine 205 in that the audit trail data

comprises a record of the requests received by the depository 210 and the response

WO 2011/068738 PCT/US2010/058087

-21 -

thereof. In addition, the mass storage 225 may be used to store digital certificates

having the public key of a user contained therein.

[0097] Although the trust engine 110 is disclosed with reference to its preferred and

alternative embodiments, the invention is not intended to be limited thereby. Rather, a

skilled artisan will recognize in the disclosure herein, a wide number of alternatives

for the trust engine 110. For example, the trust engine 110, may advantageously

perform only authentication, or alternatively, only some or all of the cryptographic

functions, such as data encryption and decryption. According to such embodiments,

one of the authentication engine 215 and the cryptographic engine 220 may

advantageously be removed, thereby creating a more straightforward design for the

trust engine 110. In addition, the cryptographic engine 220 may also communicate

with a certificate authority such that the certificate authority is embodied within the

trust engine 110. According to yet another embodiment, the trust engine 110 may

advantageously perform authentication and one or more cryptographic functions, such

as, for example, digital signing.

[0098] FIGURE 3 illustrates a block diagram of the transaction engine 205 of

FIGURE 2, according to aspects of an embodiment of the invention. According to this

embodiment, the transaction engine 205 comprises an operating system 305 having a

handling thread and a listening thread. The operating system 305 may advantageously

be similar to those found in conventional high volume servers, such as, for example,

Web servers available from Apache. The listening thread monitors the incoming

communication from one of the communication link 125, the authentication engine

215, and the cryptographic engine 220 for incoming data flow. The handling thread

recognizes particular data structures of the incoming data flow, such as, for example,

the foregoing data structures, thereby routing the incoming data to one of the

communication link 125, the depository 210, the authentication engine 215, the

cryptographic engine 220, or the mass storage 225. As shown in FIGURE 3, the

incoming and outgoing data may advantageously be secured through, for example,

SSL technology.

WO 2011/068738 PCT/US2010/058087

-22-

[0099] FTGURE 4 illustrates a block diagram of the depository 210 of FIGURE 2

according to aspects of an embodiment of the invention. According to this

embodiment, the depository 210 comprises one or more lightweight directory access

protocol (LDAP) servers. LDAP directory servers are available from a wide variety of

manufacturers such as Netscape, ISO, and others. FIGURE 4 also shows that the

directory server preferably stores data 405 corresponding to the cryptographic keys

and data 410 corresponding to the enrollment authentication data. According to one

embodiment, the depository 210 comprises a single logical memory structure indexing

authentication data and cryptographic key data to a unique user ID. The single logical

memory structure preferably includes mechanisms to ensure a high degree of trust, or

security, in the data stored therein. For example, the physical location of the

depository 210 may advantageously include a wide number of conventional security

measures, such as limited employee access, modern surveillance systems, and the like.

In addition to, or in lieu of, the physical securities, the computer system or server may

advantageously include software solutions to protect the stored data. For example, the

depository 210 may advantageously create and store data 415 corresponding to an

audit trail of actions taken. In addition, the incoming and outgoing communications

may advantageously be encrypted with public key encryption coupled with

conventional SSL technologies.

[0100] According to another embodiment, the depository 210 may comprise distinct

and physically separated data storage facilities, as disclosed further with reference to

FIGURE 7.

[0101] FIGURE 5 illustrates a block diagram of the authentication engine 215 of

FIGURE 2 according to aspects of an embodiment of the invention. Similar to the

transaction engine 205 of FIGURE 3, the authentication engine 215 comprises an

operating system 505 having at least a listening and a handling thread of a modified

version of a conventional Web server, such as, for example, Web servers available

from Apache. As shown in FIGURE 5, the authentication engine 215 includes access

to at least one private key 510. The private key 510 may advantageously be used for

WO 2011/068738 PCT/US2010/058087

-23-

example, to decrypt data from the transaction engine 205 or the depository 210, which

was encrypted with a corresponding public key of the authentication engine 215.

[0102] FIGURE 5 also illustrates the authentication engine 215 comprising a

comparator 515, a data splitting module 520, and a data assembling module 525.

According to the preferred embodiment of the invention, the comparator 515 includes

technology capable of comparing potentially complex patterns related to the foregoing

biometric authentication data. The technology may include hardware, software, or

combined solutions for pattern comparisons, such as, for example, those representing

finger print patterns or voice patterns. In addition, according to one embodiment, the

comparator 515 of the authentication engine 215 may advantageously compare

conventional hashes of documents in order to render a comparison result. According

to one embodiment of the invention, the comparator 515 includes the application of

heuristics 530 to the comparison. The heuristics 530 may advantageously address

circumstances surrounding an authentication attempt, such as, for example, the time of

day, IP address or subnet mask, purchasing profile, email address, processor serial

number or ID, or the like.

[0103] Moreover, the nature of biometric data comparisons may result in varying

degrees of confidence being produced from the matching of current biometric

authentication data to enrollment data. For example, unlike a traditional password

which may only return a positive or negative match, a fingerprint may be determined

to be a partial match, e.g. a 90% match, a 75% match, or a 10% match, rather than

simply being correct or incorrect. Other biometric identifiers such as voice print

analysis or face recognition may share this property of probabilistic authentication,

rather than absolute authentication.

[0104] When working with such probabilistic authentication or in other cases where

an authentication is considered less than absolutely reliable, it is desirable to apply the

heuristics 530 to determine whether the level of confidence in the authentication

provided is sufficiently high to authenticate the transaction which is being made.

[0105] It will sometimes be the case that the transaction at issue is a relatively low

value transaction where it is acceptable to be authenticated to a lower level of

WO 2011/068738 PCT/US2010/058087

-24-

confidence. This could include a transaction which has a low dollar value associated

with it (e.g., a $10 purchase) or a transaction with low risk (e.g., admission to a

members-only web site).

[0106] Conversely, for authenticating other transactions, it may be desirable to

require a high degree of confidence in the authentication before allowing the

transaction to proceed. Such transactions may include transactions of large dollar

value (e.g., signing a multi-million dollar supply contract) or transaction with a high

risk if an improper authentication occurs (e.g., remotely logging onto a government

computer).

[0107] The use of the heuristics 530 in combination with confidence levels and

transactions values may be used as will be described below to allow the comparator to

provide a dynamic context-sensitive authentication system.

[0108] According to another embodiment of the invention, the comparator 515 may

advantageously track authentication attempts for a particular transaction. For

example, when a transaction fails, the trust engine 110 may request the user to re-enter

his or her current authentication data. The comparator 515 of the authentication

engine 215 may advantageously employ an attempt limiter 535 to limit the number of

authentication attempts, thereby prohibiting brute-force attempts to impersonate a

user's authentication data. According to one embodiment, the attempt limiter 535

comprises a software module monitoring transactions for repeating authentication

attempts and, for example, limiting the authentication attempts for a given transaction

to three. Thus, the attempt limiter 535 will limit an automated attempt to impersonate

an individual's authentication data to, for example, simply three "guesses." Upon three

failures, the attempt limiter 535 may advantageously deny additional authentication

attempts. Such denial may advantageously be implemented through, for example, the

comparator 515 returning a negative result regardless of the current authentication data

being transmitted. On the other hand, the transaction engine 205 may advantageously

block any additional authentication attempts pertaining to a transaction in which three

attempts have previously failed.

WO 2011/068738 PCT/US2010/058087

-25-

[0109] The authentication engine 215 also includes the data splitting module 520

and the data assembling module 525. The data splitting module 520 advantageously

comprises a software, hardware, or combination module having the ability to

mathematically operate on various data so as to substantially randomize and split the

data into portions. According to one embodiment, original data is not recreatable from

an individual portion. The data assembling module 525 advantageously comprises a

software, hardware, or combination module configured to mathematically operate on

the foregoing substantially randomized portions, such that the combination thereof

provides the original deciphered data. According to one embodiment, the

authentication engine 215 employs the data splitting module 520 to randomize and

split enrollment authentication data into portions, and employs the data assembling

module 525 to reassemble the portions into usable enrollment authentication data.

[0110] FIGURE 6 illustrates a block diagram of the cryptographic engine 220 of the

trust engine 200 of FIGURE 2 according to aspects of one embodiment of the

invention. Similar to the transaction engine 205 of FIGURE 3, the cryptographic

engine 220 comprises an operating system 605 having at least a listening and a

handling thread of a modified version of a conventional Web server, such as, for

example, Web servers available from Apache. As shown in FIGURE 6, the

cryptographic engine 220 comprises a data splitting module 610 and a data assembling

module 620 that function similar to those of FIGURE 5. However, according to one

embodiment, the data splitting module 610 and the data assembling module 620

process cryptographic key data, as opposed to the foregoing enrollment authentication

data. Although, a skilled artisan will recognize from the disclosure herein that the data

splitting module 910 and the data splitting module 620 may be combined with those of

the authentication engine 215.

[0111] The cryptographic engine 220 also comprises a cryptographic handling

module 625 configured to perform one, some or all of a wide number of cryptographic

functions. According to one embodiment, the cryptographic handling module 625

may comprise software modules or programs, hardware, or both. According to

another embodiment, the cryptographic handling module 625 may perform data

WO 2011/068738 PCT/US2010/058087

-26-

comparisons, data parsing, data splitting, data separating, data hashing, data

encryption or decryption, digital signature verification or creation, digital certificate

generation, storage, or requests, cryptographic key generation, or the like. Moreover,

a skilled artisan will recognize from the disclosure herein that the cryptographic

handling module 825 may advantageously comprises a public-key infrastructure, such

as Pretty Good Privacy (PGP), an RSA-based public-key system, or a wide number of

alternative key management systems. In addition, the cryptographic handling module

625 may perform public-key encryption, symmetric-key encryption, or both. In

addition to the foregoing, the cryptographic handling module 625 may include one or

more computer programs or modules, hardware, or both, for implementing seamless,

transparent, interoperability functions.

[0112] A skilled artisan will also recognize from the disclosure herein that the

cryptographic functionality may include a wide number or variety of functions

generally relating to cryptographic key management systems.

[0113] FIGURE 7 illustrates a simplified block diagram of a depository system 700

according to aspects of an embodiment of the invention. As shown in FIGURE 7, the

depository system 700 advantageously comprises multiple data storage facilities, for

example, data storage facilities DI, D2, D3, and D4. However, it is readily

understood by those of ordinary skill in the art that the depositoiy system may have

only one data storage facility. According to one embodiment of the invention, each of

the data storage facilities DI through D4 may advantageously comprise some or all of

the elements disclosed with reference to the depository 210 of FIGURE 4. Similar to

the depository 210, the data storage facilities D1 through D4 communicate with the

transaction engine 205, the authentication engine 215, and the cryptographic engine

220, preferably through conventional SSL. Communication links transferring, for

example, XML documents. Communications from the transaction engine 205 may

advantageously include requests for data, wherein the request is advantageously

broadcast to the IP address of each data storage facility D1 through D4. On the other

hand, the transaction engine 205 may broadcast requests to particular data storage

WO 2011/068738 PCT/US2010/058087

-27-

facilities based on a wide number of criteria, such as, for example, response time,

server loads, maintenance schedules, or the like.

[0114] In response to requests for data from the transaction engine 205, the

depository system 700 advantageously forwards stored data to the authentication

engine 215 and the cryptographic engine 220. The respective data assembling

modules receive the forwarded data and assemble the data into useable formats. On

the other hand, communications from the authentication engine 215 and the

cryptographic engine 220 to the data storage facilities DI through D4 may include the

transmission of sensitive data to be stored. For example, according to one

embodiment, the authentication engine 215 and the cryptographic engine 220 may

advantageously employ their respective data splitting modules to divide sensitive data

into undecipherable portions, and then transmit one or more undecipherable portions

of the sensitive data to a particular data storage facility.

[0115] According to one embodiment, each data storage facility, DI through D4,

comprises a separate and independent storage system, such as, for example, a directory

server. According to another embodiment of the invention, the depository system 700

comprises multiple geographically separated independent data storage systems. By

distributing the sensitive data into distinct and independent storage facilities DI

through D4, some or all of which may be advantageously geographically separated,

the depository system 700 provides redundancy along with additional security

measures. For example, according to one embodiment, only data from two of the

multiple data storage facilities, DI through D4, are needed to decipher and reassemble

the sensitive data. Thus, as many as two of the four data storage facilities DI through

D4 may be inoperative due to maintenance, system failure, power failure, or the like,

without affecting the functionality of the trust engine 110. In addition, because,

according to one embodiment, the data stored in each data storage facility is

randomized and undecipherable, compromise of any individual data storage facility

does not necessarily compromise the sensitive data. Moreover, in the embodiment

having geographical separation of the data storage facilities, a compromise of multiple

geographically remote facilities becomes increasingly difficult. In fact, even a rogue

WO 2011/068738 PCT/US2010/058087

-28-

employee will be greatly challenged to subvert the needed multiple independent

geographically remote data storage facilities.

[0116] Although the depository system 700 is disclosed with reference to its

preferred and alternative embodiments, the invention is not intended to be limited

thereby. Rather, a skilled artisan will recognize from the disclosure herein, a wide

number of alternatives for the depository system 700. For example, the depository

system 700 may comprise one, two or more data storage facilities. In addition,

sensitive data may be mathematically operated such that portions from two or more

data storage facilities are needed to reassemble and decipher the sensitive data.

[0117] As mentioned in the foregoing, the authentication engine 215 and the

cryptographic engine 220 each include a data splitting module 520 and 610,

respectively, for splitting any type or form of sensitive data, such as, for example, text,

audio, video, the authentication data and the cryptographic key data. FIGURE 8

illustrates a flowchart of a data splitting process 800 performed by the data splitting

module according to aspects of an embodiment of the invention. As shown in

FIGURE 8, the data splitting process 800 begins at step 805 when sensitive data "S" is

received by the data splitting module of the authentication engine 215 or the

cryptographic engine 220. Preferably, in step 810, the data splitting module then

generates a substantially random number, value, or string or set of bits, "A." For

example, the random number A may be generated in a wide number of varying

conventional techniques available to one of ordinary skill in the art, for producing high

quality random numbers suitable for use in cryptographic applications. In addition,

according to one embodiment, the random number A comprises a bit length which

may be any suitable length, such as shorter, longer or equal to the bit length of the

sensitive data, S.

[0118] In addition, in step 820 the data splitting process 800 generates another

statistically random number "C." According to the preferred embodiment, the

generation of the statistically random numbers A and C may advantageously be done

in parallel. The data splitting module then combines the numbers A and C with the

sensitive data S such that new numbers "B" and "D" are generated. For example,

WO 2011/068738 PCT/US2010/058087

-29-

number B may comprise the binary combination of A XOR S and number D may

comprise the binary combination of C XOR S. The XOR function, or the "exclusive-

or" function, is well known to those of ordinary skill in the art. The foregoing

combinations preferably occur in steps 825 and 830, respectively, and, according to

one embodiment, the foregoing combinations also occur in parallel. The data splitting

process 800 then proceeds to step 835 where the random numbers A and C and the

numbers B and D are paired such that none of the pairings contain sufficient data, by

themselves, to reorganize and decipher the original sensitive data S. For example, the

numbers may be paired as follows: AC, AD, BC, and BD. According to one

embodiment, each of the foregoing pairings is distributed to one of the depositories Dl

through D4 of FIGURE 7. According to another embodiment, each of the foregoing

pairings is randomly distributed to one of the depositories Dl through D4. For

example, during a first data splitting process 800, the pairing AC may be sent to

depository D2, through, for example, a random selection of D2's IP address. Then,

during a second data splitting process 800, the pairing AC may be sent to depository

D4, through, for example, a random selection of D4's IP address. In addition, the

pairings may all be stored on one depository, and may be stored in separate locations

on said depository.

[0119] Based on the foregoing, the data splitting process 800 advantageously places

portions of the sensitive data in each of the four data storage facilities Dl through D4,

such that no single data storage facility Dl through D4 includes sufficient encrypted

data to recreate the original sensitive data S. As mentioned in the foregoing, such

randomization of the data into individually unusable encrypted portions increases

security and provides for maintained trust in the data even if one of the data storage

facilities, Dl through D4, is compromised.

[0120] Although the data splitting process 800 is disclosed with reference to its

preferred embodiment, the invention is not intended to be limited thereby. Rather a

skilled artisan will recognize from the disclosure herein, a wide number of alternatives

for the data splitting process 800. For example, the data splitting process may

advantageously split the data into two numbers, for example, random number A and

WO 2011/068738 PCT/US2010/058087

-30-

number B and, randomly distribute A and B through two data storage facilities.

Moreover, the data splitting process 800 may advantageously split the data among a

wide number of data storage facilities through generation of additional random

numbers. The data may be split into any desired, selected, predetermined, or

randomly assigned size unit, including but not limited to, a bit, bits, bytes, kilobytes,

megabytes or larger, or any combination or sequence of sizes. In addition, varying the

sizes of the data units resulting from the splitting process may render the data more

difficult to restore to a useable form, thereby increasing security of sensitive data. It is

readily apparent to those of ordinary skill in the art that the split data unit sizes may be

a wide variety of data unit sizes or patterns of sizes or combinations of sizes. For

example, the data unit sizes may be selected or predetermined to be all of the same

size, a fixed set of different sizes, a combination of sizes, or randomly generates sizes.

Similarly, the data units may be distributed into one or more shares according to a

fixed or predetermined data unit size, a pattern or combination of data unit sizes, or a

randomly generated data unit size or sizes per share.

[0121] As mentioned in the foregoing, in order to recreate the sensitive data S, the

data portions need to be derandomized and reorganized. This process may

advantageously occur in the data assembling modules, 525 and 620, of the

authentication engine 215 and the cryptographic engine 220, respectively. The data

assembling module, for example, data assembly module 525, receives data portions

from the data storage facilities DI through D4, and reassembles the data into useable

form. For example, according to one embodiment where the data splitting module 520

employed the data splitting process 800 of FIGURE 8, the data assembling module

525 uses data portions from at least two of the data storage facilities DI through D4 to

recreate the sensitive data S. For example, the pairings of AC, AD, BC, and BD, were

distributed such that any two provide one of A and B, or, C and D. Noting that S = A

XOR B or S = C XOR D indicates that when the data assembling module receives one

of A and B, or, C and D, the data assembling module 525 can advantageously

reassemble the sensitive data S. Thus, the data assembling module 525 may assemble

the sensitive data S, when, for example, it receives data portions from at least the first

WO 2011/068738 PCT/US2010/058087

-31 -

two of the data storage facilities DI through D4 to respond to an assemble request by

the trust engine 110.

[0122] Based on the above data splitting and assembling processes, the sensitive

data S exists in usable format only in a limited area of the trust engine 110. For

example, when the sensitive data S includes enrollment authentication data, usable,

nonrandomized enrollment authentication data is available only in the authentication

engine 215. Fikewise, when the sensitive data S includes private cryptographic key

data, usable, nonrandomized private cryptographic key data is available only in the

cryptographic engine 220.

[0123] Although the data splitting and assembling processes are disclosed with

reference to their preferred embodiments, the invention is not intended to be limited

thereby. Rather, a skilled artisan will recognize from the disclosure herein, a wide

number of alternatives for splitting and reassembling the sensitive data S. For

example, public-key encryption may be used to further secure the data at the data

storage facilities DI through D4. In addition, it is readily apparent to those of ordinary

skill in the art that the data splitting module described herein is also a separate and

distinct embodiment of the present invention that may be incorporated into, combined

with or otherwise made part of any pre-existing computer systems, software suites,

database, or combinations thereof, or other embodiments of the present invention,

such as the trust engine, authentication engine, and transaction engine disclosed and

described herein.

[0124] FIGURE 9A illustrates a data flow of an enrollment process 900 according to

aspects of an embodiment of the invention. As shown in FIGURE 9A, the enrollment

process 900 begins at step 905 when a user desires to enroll with the trust engine 110

of the cryptographic system 100. According to this embodiment, the user system 105

advantageously includes a client-side applet, such as a Java-based, that queries the

user to enter enrollment data, such as demographic data and enrollment authentication

data. According to one embodiment, the enrollment authentication data includes user

ID, password(s), biometric(s), or the like. According to one embodiment, during the

querying process, the client-side applet preferably communicates with the trust engine

WO 2011/068738 PCT/US2010/058087

-32­

110 to ensure that a chosen user ID is unique. When the user ID is nonunique, the

trust engine 110 may advantageously suggest a unique user ID. The client-side applet

gathers the enrollment data and transmits the enrollment data, for example, through

and XML document, to the trust engine 110, and in particular, to the transaction

engine 205. According to one embodiment, the transmission is encoded with the

public key of the authentication engine 215.

[0125] According to one embodiment, the user performs a single enrollment during

step 905 of the enrollment process 900. For example, the user enrolls himself or

herself as a particular person, such as Joe User. When Joe User desires to enroll as Joe

User, CEO of Mega Corp., then according to this embodiment, Joe User enrolls a

second time, receives a second unique user ID and the trust engine 110 does not

associate the two identities. According to another embodiment of the invention, the

enrollment process 900 provides for multiple user identities for a single user ID.

Thus, in the above example, the trust engine 110 will advantageously associate the two

identities of Joe User. As will be understood by a skilled artisan from the disclosure

herein, a user may have many identities, for example, Joe User the head of household,

Joe User the member of the Charitable Foundations, and the like. Even though the

user may have multiple identities, according to this embodiment, the trust engine 110

preferably stores only one set of enrollment data. Moreover, users may

advantageously add, edit/update, or delete identities as they are needed.

[0126] Although the enrollment process 900 is disclosed with reference to its

preferred embodiment, the invention is not intended to be limited thereby. Rather, a

skilled artisan will recognize from the disclosure herein, a wide number of alternatives

for gathering of enrollment data, and in particular, enrollment authentication data. For

example, the applet may be common object model (COM) based applet or the like.

[0127] On the other hand, the enrollment process may include graded enrollment.

For example, at a lowest level of enrollment, the user may enroll over the

communication link 125 without producing documentation as to his or her identity.

According to an increased level of enrollment, the user enrolls using a trusted third

party, such as a digital notary. For example, and the user may appear in person to the

WO 2011/068738 PCT/US2010/058087

-33-

trusted third party, produce credentials such as a birth certificate, driver's license,

military ID, or the like, and the trusted third party may advantageously include, for

example, their digital signature in enrollment submission. The trusted third party may

include an actual notary, a government agency, such as the Post Office or Department

of Motor Vehicles, a human resources person in a large company enrolling an

employee, or the like. A skilled artisan will understand from the disclosure herein that

a wide number of varying levels of enrollment may occur during the enrollment

process 900.

[0128] After receiving the enrollment authentication data, at step 915, the

transaction engine 205, using conventional FULL SSL technology forwards the

enrollment authentication data to the authentication engine 215. In step 920, the

authentication engine 215 decrypts the enrollment authentication data using the private

key of the authentication engine 215. In addition, the authentication engine 215

employs the data splitting module to mathematically operate on the enrollment

authentication data so as to split the data into at least two independently

undecipherable, randomized, numbers. As mentioned in the foregoing, at least two

numbers may comprise a statistically random number and a binary XORed number. In

step 925, the authentication engine 215 forwards each portion of the randomized

numbers to one of the data storage facilities DI through D4. As mentioned in the

foregoing, the authentication engine 215 may also advantageously randomize which

portions are transferred to which depositories.

[0129] Often during the enrollment process 900, the user will also desire to have a

digital certificate issued such that he or she may receive encrypted documents from

others outside the cryptographic system 100. As mentioned in the foregoing, the

certificate authority 115 generally issues digital certificates according to one or more

of several conventional standards. Generally, the digital certificate includes a public

key of the user or system, which is known to everyone.

[0130] Whether the user requests a digital certificate at enrollment, or at another

time, the request is transferred through the trust engine 110 to the authentication

engine 215. According to one embodiment, the request includes an XML document

WO 2011/068738 PCT/US2010/058087

-34-

having, for example, the proper name of the user. According to step 935, the

authentication engine 215 transfers the request to the cryptographic engine 220

instructing the cryptographic engine 220 to generate a cryptographic key or key pair.

[0131] Upon request, at step 935, the cryptographic engine 220 generates at least

one cryptographic key. According to one embodiment, the cryptographic handling

module 625 generates a key pair, where one key is used as a private key, and one is

used as a public key. The cryptographic engine 220 stores the private key and,

according to one embodiment, a copy of the public key. In step 945, the cryptographic

engine 220 transmits a request for a digital certificate to the transaction engine 205.

According to one embodiment, the request advantageously includes a standardized

request, such as PKCS10, embedded in, for example, an XML document. The request

for a digital certificate may advantageously correspond to one or more certificate

authorities and the one or more standard formats the certificate authorities require.

[0132] In step 950 the transaction engine 205 forwards this request to the certificate

authority 115, who, in step 955, returns a digital certificate. The return digital

certificate may advantageously be in a standardized format, such as PKCS7, or in a

proprietary format of one or more of the certificate authorities 115. In step 960, the

digital certificate is received by the transaction engine 205, and a copy is foiwarded to

the user and a copy is stored with the trust engine 110. The trust engine 110 stores a

copy of the certificate such that the trust engine 110 will not need to rely on the

availability of the certificate authority 115. For example, when the user desires to

send a digital certificate, or a third party requests the user's digital certificate, the

request for the digital certificate is typically sent to the certificate authority 115.

However, if the certificate authority 115 is conducting maintenance or has been victim

of a failure or security compromise, the digital certificate may not be available.

[0133] At any time after issuing the cryptographic keys, the cryptographic engine

220 may advantageously employ the data splitting process 800 described above such

that the cryptographic keys are split into independently undecipherable randomized

numbers. Similar to the authentication data, at step 965 the cryptographic engine 220

transfers the randomized numbers to the data storage facilities DI through D4.

WO 2011/068738 PCT/US2010/058087

-35-

[0134] A skilled artisan will recognize from the disclosure herein that the user may

request a digital certificate anytime after enrollment. Moreover, the communications

between systems may advantageously include FULL SSL or public-key encryption

technologies. Moreover, the enrollment process may issue multiple digital certificates

from multiple certificate authorities, including one or more proprietary certificate

authorities internal or external to the trust engine 110.

[0135] As disclosed in steps 935 through 960, one embodiment of the invention

includes the request for a certificate that is eventually stored on the trust engine 110.

Because, according to one embodiment, the cryptographic handling module 625 issues

the keys used by the trust engine 110, each certificate corresponds to a private key.

Therefore, the trust engine 110 may advantageously provide for interoperability

through monitoring the certificates owned by, or associated with, a user. For example,

when the cryptographic engine 220 receives a request for a cryptographic function, the

cryptographic handling module 625 may investigate the certificates owned by the

requesting user to determine whether the user owns a private key matching the

attributes of the request. When such a certificate exists, the cryptographic handling

module 625 may use the certificate or the public or private keys associated therewith,

to perform the requested function. When such a certificate does not exist, the

cryptographic handling module 625 may advantageously and transparently perform a

number of actions to attempt to remedy the lack of an appropriate key. For example,

FIGURE 9B illustrates a flowchart of an interoperability process 970, which according

to aspects of an embodiment of the invention, discloses the foregoing steps to ensure

the cryptographic handling module 625 performs cryptographic functions using

appropriate keys.

[0136] As shown in FIGURE 9B, the interoperability process 970 begins with step

972 where the cryptographic handling module 925 determines the type of certificate

desired. According to one embodiment of the invention, the type of certificate may

advantageously be specified in the request for cryptographic functions, or other data

provided by the requestor. According to another embodiment, the certificate type may

be ascertained by the data format of the request. For example, the cryptographic

WO 2011/068738 PCT/US2010/058087

-36-

handling module 925 may advantageously recognize the request corresponds to a

particular type.

[0137] According to one embodiment, the certificate type may include one or more

algorithm standards, for example, RSA, ELGAMAL, or the like. In addition, the

certificate type may include one or more key types, such as symmetric keys, public

keys, strong encryption keys such as 256 bit keys, less secure keys, or the like.

Moreover, the certificate type may include upgrades or replacements of one or more of

the foregoing algorithm standards or keys, one or more message or data formats, one

or more data encapsulation or encoding schemes, such as Base 32 or Base 64. The

certificate type may also include compatibility with one or more third-party

cryptographic applications or interfaces, one or more communication protocols, or one

or more certificate standards or protocols. A skilled artisan will recognize from the

disclosure herein that other differences may exist in certificate types, and translations

to and from those differences may be implemented as disclosed herein.

[0138] Once the cryptographic handling module 625 determines the certificate type,

the interoperability process 970 proceeds to step 974, and determines whether the user

owns a certificate matching the type determined in step 974. When the user owns a

matching certificate, for example, the trust engine 110 has access to the matching

certificate through, for example, prior storage thereof, the cryptographic handling

module 825 knows that a matching private key is also stored within the trust engine

110. For example, the matching private key may be stored within the depository 210

or depository system 700. The cryptographic handling module 625 may

advantageously request the matching private key be assembled from, for example, the

depository 210, and then in step 976, use the matching private key to perform

cryptographic actions or functions. For example, as mentioned in the foregoing, the

cryptographic handling module 625 may advantageously perform hashing, hash

comparisons, data encryption or decryption, digital signature verification or creation,

or the like.

[0139] When the user does not own a matching certificate, the interoperability

process 970 proceeds to step 978 where the cryptographic handling module 625

WO 2011/068738 PCT/US2010/058087

-37-

determines whether the users owns a cross-certified certificate. According to one

embodiment, cross-certification between certificate authorities occurs when a first

certificate authority determines to trust certificates from a second certificate authority.

In other words, the first certificate authority determines that certificates from the

second certificate authority meets certain quality standards, and therefore, may be

"certified" as equivalent to the first certificate authority's own certificates.

Cross-certification becomes more complex when the certificate authorities issue, for

example, certificates having levels of trust. For example, the first certificate authority

may provide three levels of trust for a particular certificate, usually based on the

degree of reliability in the enrollment process, while the second certificate authority

may provide seven levels of trust. Cross-certification may advantageously track

which levels and which certificates from the second certificate authority may be

substituted for which levels and which certificates from the first. When the foregoing

cross-certification is done officially and publicly between two certification authorities,

the mapping of certificates and levels to one another is often called "chaining."

[0140] According to another embodiment of the invention, the cryptographic

handling module 625 may advantageously develop cross-certifications outside those

agreed upon by the certificate authorities. For example, the cryptographic handling

module 625 may access a first certificate authority's certificate practice statement

(CPS), or other published policy statement, and using, for example, the authentication

tokens required by particular trust levels, match the first certificate authority's

certificates to those of another certificate authority.

[0141] When, in step 978, the cryptographic handling module 625 determines that

the users owns a cross-certified certificate, the interoperability process 970 proceeds to

step 976, and performs the cryptographic action or function using the cross-certified

public key, private key, or both. Alternatively, when the cryptographic handling

module 625 determines that the users does not own a cross-certified certificate, the

interoperability process 970 proceeds to step 980, where the ciyptographic handling

module 625 selects a certificate authority that issues the requested certificate type, or a

certificate cross-certified thereto. In step 982, the cryptographic handling module 625

WO 2011/068738 PCT/US2010/058087

-38-

determines whether the user enrollment authentication data, discussed in the

foregoing, meets the authentication requirements of the chosen certificate authority.

For example, if the user enrolled over a network by, for example, answering

demographic and other questions, the authentication data provided may establish a

lower level of trust than a user providing biometric data and appearing before a

third-party, such as, for example, a notary. According to one embodiment, the

foregoing authentication requirements may advantageously be provided in the chosen

authentication authority's CPS.

[0142] When the user has provided the trust engine 110 with enrollment

authentication data meeting the requirements of chosen certificate authority, the

interoperability process 970 proceeds to step 984, where the cryptographic handling

module 825 acquires the certificate from the chosen certificate authority. According

to one embodiment, the cryptographic handling module 625 acquires the certificate by

following steps 945 through 960 of the enrollment process 900. For example, the

cryptographic handling module 625 may advantageously employ one or more public

keys from one or more of the key pairs already available to the cryptographic engine

220, to request the certificate from the certificate authority. According to another

embodiment, the cryptographic handling module 625 may advantageously generate

one or more new key pairs, and use the public keys corresponding thereto, to request

the certificate from the certificate authority.

[0143] According to another embodiment, the trust engine 110 may advantageously

include one or more certificate issuing modules capable of issuing one or more

certificate types. According to this embodiment, the certificate issuing module may

provide the foregoing certificate. When the cryptographic handling module 625

acquires the certificate, the interoperability process 970 proceeds to step 976, and

performs the cryptographic action or function using the public key, private key, or

both corresponding to the acquired certificate.

[0144] When the user, in step 982, has not provided the trust engine 110 with

enrollment authentication data meeting the requirements of chosen certificate

authority, the cryptographic handling module 625 determines, in step 986 whether

WO 2011/068738 PCT/US2010/058087

-39-

there are other certificate authorities that have different authentication requirements.

For example, the cryptographic handling module 625 may look for certificate

authorities having lower authentication requirements, but still issue the chosen

certificates, or cross-certifications thereof.

[0145] When the foregoing certificate authority having lower requirements exists,

the interoperability process 970 proceeds to step 980 and chooses that certificate

authority. Alternatively, when no such certificate authority exists, in step 988, the

trust engine 110 may request additional authentication tokens from the user. For

example, the trust engine 110 may request new enrollment authentication data

comprising, for example, biometric data. Also, the trust engine 110 may request the

user appear before a trusted third party and provide appropriate authenticating

credentials, such as, for example, appearing before a notary with a drivers license,

social security card, bank card, birth certificate, military ID, or the like. When the

trust engine 110 receives updated authentication data, the interoperability process 970

proceeds to step 984 and acquires the foregoing chosen certificate.

[0146] Through the foregoing interoperability process 970, the cryptographic

handling module 625 advantageously provides seamless, transparent, translations and

conversions between differing cryptographic systems. A skilled artisan will recognize

from the disclosure herein, a wide number of advantages and implementations of the

foregoing interoperable system. For example, the foregoing step 986 of the

interoperability process 970 may advantageously include aspects of trust arbitrage,

discussed in further detail below, where the certificate authority may under special

circumstances accept lower levels of cross-certification. In addition, the

interoperability process 970 may include ensuring interoperability between and

employment of standard certificate revocations, such as employing certificate

revocation lists (CRF), online certificate status protocols (OCSP), or the like.

[0147] FIGURE 10 illustrates a data flow of an authentication process 1000

according to aspects of an embodiment of the invention. According to one

embodiment, the authentication process 1000 includes gathering current authentication

data from a user and comparing that to the enrollment authentication data of the user.

WO 2011/068738 PCT/US2010/058087

-40-

For example, the authentication process 1000 begins at step 1005 where a user desires

to perform a transaction with, for example, a vendor. Such transactions may include,

for example, selecting a purchase option, requesting access to a restricted area or

device of the vendor system 120, or the like. At step 1010, a vendor provides the user

with a transaction ID and an authentication request. The transaction ID may

advantageously include a 192 bit quantity having a 32 bit timestamp concatenated

with a 128 bit random quantity, or a "nonce," concatenated with a 32 bit vendor

specific constant. Such a transaction ID uniquely identifies the transaction such that

copycat transactions can be refused by the trust engine 110.

[0148] The authentication request may advantageously include what level of

authentication is needed for a particular transaction. For example, the vendor may

specify a particular level of confidence that is required for the transaction at issue. If

authentication cannot be made to this level of confidence, as will be discussed below,

the transaction will not occur without either further authentication by the user to raise

the fevel of confidence, or a change in the terms of the authentication between the

vendor and the server. These issues are discussed more completely below.

[0149] According to one embodiment, the transaction ID and the authentication

request may be advantageously generated by a vendor-side applet or other software

program. In addition, the transmission of the transaction ID and authentication data

may include one or more XML documents encrypted using conventional SSL

technology, such as, for example, A SSL, or, in other words vendor-side authenticated

SSL.

[0150] After the user system 105 receives the transaction ID and authentication

request, the user system 105 gathers the current authentication data, potentially

including current biometric information, from the user. The user system 105, at step

1015, encrypts at least the current authentication data "B" and the transaction ID, with

the public key of the authentication engine 215, and transfers that data to the trust

engine 110. The transmission preferably comprises XML documents encrypted with

at least conventional A SSL technology. In step 1020, the transaction engine 205

WO 2011/068738 PCT/US2010/058087

-41 -

receives the transmission, preferably recognizes the data format or request in the URL

or URI, and forwards the transmission to the authentication engine 215.

[0151] During steps 1015 and 1020, the vendor system 120, at step 1025, forwards

the transaction ID and the authentication request to the trust engine 110, using the

preferred FULL SSL technology. This communication may also include a vendor ID,

although vendor identification may also be communicated through a non-random

portion of the transaction ID. At steps 1030 and 1035, the transaction engine 205

receives the communication, creates a record in the audit trail, and generates a request

for the user's enrollment authentication data to be assembled from the data storage

facilities DI through D4. At step 1040, the depository system 700 transfers the

portions of the enrollment authentication data corresponding to the user to the

authentication engine 215. At step 1045, the authentication engine 215 decrypts the

transmission using its private key and compares the enrollment authentication data to

the current authentication data provided by the user.

[0152] The comparison of step 1045 may advantageously apply heuristical context

sensitive authentication, as referred to in the forgoing, and discussed in further detail

below. For example, if the biometric information received does not match perfectly, a

lower confidence match results. In particular embodiments, the level of confidence of

the authentication is balanced against the nature of the transaction and the desires of

both the user and the vendor. Again, this is discussed in greater detail below.

[0153] At step 1050, the authentication engine 215 fills in the authentication request

with the result of the comparison of step 1045. According to one embodiment of the

invention, the authentication request is filled with a YES/NO or TRUE/FALSE result

of the authentication process 1000. In step 1055 the filled-in authentication request is

returned to the vendor for the vendor to act upon, for example, allowing the user to

complete the transaction that initiated the authentication request. According to one

embodiment, a confirmation message is passed to the user.

[0154] Based on the foregoing, the authentication process 1000 advantageously

keeps sensitive data secure and produces results configured to maintain the integrity of

the sensitive data. For example, the sensitive data is assembled only inside the

WO 2011/068738 PCT/US2010/058087

-42-

authentication engine 215. For example, the enrollment authentication data is

undecipherable until it is assembled in the authentication engine 215 by the data

assembling module, and the current authentication data is undecipherable until it is

unwrapped by the conventional SSL technology and the private key of the

authentication engine 215. Moreover, the authentication result transmitted to the

vendor does not include the sensitive data, and the user may not even know whether

he or she produced valid authentication data.

[0155] Although the authentication process 1000 is disclosed with reference to its

preferred and alternative embodiments, the invention is not intended to be limited

thereby. Rather, a skilled artisan will recognize from the disclosure herein, a wide

number of alternatives for the authentication process 1000. For example, the vendor

may advantageously be replaced by almost any requesting application, even those

residing with the user system 105. For example, a client application, such as

Microsoft Word, may use an application program interface (API) or a cryptographic

API (CAPI) to request authentication before unlocking a document. Alternatively, a

mail server, a network, a cellular phone, a personal or mobile computing device, a

workstation, or the like, may all make authentication requests that can be filled by the

authentication process 1000. In fact, after providing the foregoing trusted

authentication process 1000, the requesting application or device may provide access

to or use of a wide number of electronic or computer devices or systems.

[0156] Moreover, the authentication process 1000 may employ a wide number of

alternative procedures in the event of authentication failure. For example,

authentication failure may maintain the same transaction ID and request that the user

reenter his or her current authentication data. As mentioned in the foregoing, use of

the same transaction ID allows the comparator of the authentication engine 215 to

monitor and limit the number of authentication attempts for a particular transaction,

thereby creating a more secure cryptographic system 100.

[0157] In addition, the authentication process 1000 may be advantageously be

employed to develop elegant single sign-on solutions, such as, unlocking a sensitive

data vault. For example, successful or positive authentication may provide the

WO 2011/068738 PCT/US2010/058087

-43-

authenticated user the ability to automatically access any number of passwords for an

almost limitless number of systems and applications. For example, authentication of a

user may provide the user access to password, login, financial credentials, or the like,

associated with multiple online vendors, a local area network, various personal

computing devices, Internet sendee providers, auction providers, investment

brokerages, or the like. By employing a sensitive data vault, users may choose truly

large and random passwords because they no longer need to remember them through

association. Rather, the authentication process 1000 provides access thereto. For

example, a user may choose a random alphanumeric string that is twenty plus digits in

length rather than something associated with a memorable data, name, etc.

[0158] According to one embodiment, a sensitive data vault associated with a given

user may advantageously be stored in the data storage facilities of the depository 210,

or split and stored in the depository system 700. According to this embodiment, after

positive user authentication, the trust engine 110 serves the requested sensitive data,

such as, for example, to the appropriate password to the requesting application.

According to another embodiment, the trust engine 110 may include a separate system

for storing the sensitive data vault. For example, the trust engine 110 may include a

stand-alone software engine implementing the data vault functionality and figuratively

residing "behind" the foregoing front-end security system of the trust engine 110.

According to this embodiment, the software engine serves the requested sensitive data

after the software engine receives a signal indicating positive user authentication from

the trust engine 110.

[0159] In yet another embodiment, the data vault may be implemented by a

third-party system. Similar to the software engine embodiment, the third-party system

may advantageously serve the requested sensitive data after the third-party system

receives a signal indicating positive user authentication from the trust engine 110.

According to yet another embodiment, the data vault may be implemented on the user

system 105. A user-side software engine may advantageously serve the foregoing data

after receiving a signal indicating positive user authentication from the trust engine

110.

WO 2011/068738 PCT/US2010/058087

-44-

[0160] Although the foregoing data vaults are disclosed with reference to alternative

embodiments, a skilled artisan will recognize from the disclosure herein, a wide

number of additional implementations thereof. For example, a particular data vault

may include aspects from some or all of the foregoing embodiments. In addition, any

of the foregoing data vaults may employ one or more authentication requests at

varying times. For example, any of the data vaults may require authentication every

one or more transactions, periodically, every one or more sessions, every access to one

or more Webpages or Websites, at one or more other specified intervals, or the like.

[0161] FIGURE 11 illustrates a data flow of a signing process 1100 according to

aspects of an embodiment of the invention. As shown in FIGURE 11, the signing

process 1100 includes steps similar to those of the authentication process 1000

described in the foregoing with reference to FIGURE 10. According to one

embodiment of the invention, the signing process 1100 first authenticates the user and

then performs one or more of several digital signing functions as will be discussed in

further detail below. According to another embodiment, the signing process 1100 may

advantageously store data related thereto, such as hashes of messages or documents, or

the like. This data may advantageously be used in an audit or any other event, such as

for example, when a participating party attempts to repudiate a transaction.

[0162] As shown in FIGURE 11, during the authentication steps, the user and

vendor may advantageously agree on a message, such as, for example, a contract.

During signing, the signing process 1100 advantageously ensures that the contract

signed by the user is identical to the contract supplied by the vendor. Therefore,

according to one embodiment, during authentication, the vendor and the user include a

hash of their respective copies of the message or contract, in the data transmitted to the

authentication engine 215. By employing only a hash of a message or contract, the

trust engine 110 may advantageously store a significantly reduced amount of data,

providing for a more efficient and cost effective cryptographic system. In addition,

the stored hash may be advantageously compared to a hash of a document in question

to determine whether the document in question matches one signed by any of the

parties. The ability to determine whether the document is identical to one relating to a

WO 2011/068738 PCT/US2010/058087

-45-

transaction provides for additional evidence that can be used against a claim for

repudiation by a party to a transaction.

[0163] In step 1103, the authentication engine 215 assembles the enrollment

authentication data and compares it to the current authentication data provided by the

user. When the comparator of the authentication engine 215 indicates that the

enrollment authentication data matches the current authentication data, the comparator

of the authentication engine 215 also compares the hash of the message supplied by

the vendor to the hash of the message supplied by the user. Thus, the authentication

engine 215 advantageously ensures that the message agreed to by the user is identical

to that agreed to by the vendor.

[0164] In step 1105, the authentication engine 215 transmits a digital signature

request to the cryptographic engine 220. According to one embodiment of the

invention, the request includes a hash of the message or contract. However, a skilled

artisan will recognize from the disclosure herein that the cryptographic engine 220

may encrypt virtually any type of data, including, but not limited to, video, audio,

biometrics, images or text to form the desired digital signature. Returning to step

1105, the digital signature request preferably comprises an XML document

communicated through conventional SSL technologies.

[0165] In step 1110, the authentication engine 215 transmits a request to each of the

data storage facilities Dl through D4, such that each of the data storage facilities Dl

through D4 transmit their respective portion of the cryptographic key or keys

corresponding to a signing party. According to another embodiment, the

cryptographic engine 220 employs some or all of the steps of the interoperability

process 970 discussed in the foregoing, such that the cryptographic engine 220 first

determines the appropriate key or keys to request from the depository 210 or the

depository system 700 for the signing party, and takes actions to provide appropriate

matching keys. According to still another embodiment, the authentication engine 215

or the cryptographic engine 220 may advantageously request one or more of the keys

associated with the signing party and stored in the depository 210 or depository system

700.

WO 2011/068738 PCT/US2010/058087

-46-

[0166] According to one embodiment, the signing party includes one or both the

user and the vendor. In such case, the authentication engine 215 advantageously

requests the cryptographic keys corresponding to the user and/or the vendor.

According to another embodiment, the signing party includes the trust engine 110. In

this embodiment, the trust engine 110 is certifying that the authentication process 1000

properly authenticated the user, vendor, or both. Therefore, the authentication engine

215 requests the cryptographic key of the trust engine 110, such as, for example, the

key belonging to the cryptographic engine 220, to perform the digital signature.

According to another embodiment, the trust engine 110 performs a digital notary-like

function. In this embodiment, the signing party includes the user, vendor, or both,

along with the trust engine 110. Thus, the trust engine 110 provides the digital

signature of the user and/or vendor, and then indicates with its own digital signature

that the user and/or vendor were properly authenticated. In this embodiment, the

authentication engine 215 may advantageously request assembly of the cryptographic

keys corresponding to the user, the vendor, or both. According to another

embodiment, the authentication engine 215 may advantageously request assembly of

the cryptographic keys corresponding to the trust engine 110.

[0167] According to another embodiment, the trust engine 110 performs power of

attomey-like functions. For example, the trust engine 110 may digitally sign the

message on behalf of a third party. In such case, the authentication engine 215

requests the cryptographic keys associated with the third party. According to this

embodiment, the signing process 1100 may advantageously include authentication of

the third party, before allowing power of attorney-like functions. In addition, the

authentication process 1000 may include a check for third party constraints, such as,

for example, business logic or the like dictating when and in what circumstances a

particular third-party's signature may be used.

[0168] Based on the foregoing, in step 1110, the authentication engine requested the

cryptographic keys from the data storage facilities DI through D4 corresponding to

the signing party. In step 1115, the data storage facilities DI through D4 transmit their

respective portions of the cryptographic key corresponding to the signing party to the

WO 2011/068738 PCT/US2010/058087

-47-

cryptographic engine 220. According to one embodiment, the foregoing transmissions

include SSL technologies. According to another embodiment, the foregoing

transmissions may advantageously be super-encrypted with the public key of the

cryptographic engine 220.

[0169] In step 1120, the cryptographic engine 220 assembles the foregoing

cryptographic keys of the signing party and encrypts the message therewith, thereby

forming the digital signature(s). In step 1125 of the signing process 1100, the

cryptographic engine 220 transmits the digital signature(s) to the authentication engine

215. In step 1130, the authentication engine 215 transmits the filled-in authentication

request along with a copy of the hashed message and the digital signature(s) to the

transaction engine 205. In step 1135, the transaction engine 205 transmits a receipt

comprising the transaction ID, an indication of whether the authentication was

successlul, and the digital signature(s), to the vendor. According to one embodiment,

the foregoing transmission may advantageously include the digital signature of the

trust engine 110. For example, the trust engine 110 may encrypt the hash of the

receipt with its private key, thereby forming a digital signature to be attached to the

transmission to the vendor.

[0170] According to one embodiment, the transaction engine 205 also transmits a

confirmation message to the user. Although the signing process 1100 is disclosed

with reference to its preferred and alternative embodiments, the invention is not

intended to be limited thereby. Rather, a skilled artisan will recognize from the

disclosure herein, a wide number of alternatives for the signing process 1100. For

example, the vendor may be replaced with a user application, such as an email

application. For example, the user may wish to digitally sign a particular email with

his or her digital signature. In such an embodiment, the transmission throughout the

signing process 1100 may advantageously include only one copy of a hash of the

message. Moreover, a skilled artisan will recognize from the disclosure herein that a

wide number of client applications may request digital signatures. For example, the

client applications may comprise word processors, spreadsheets, emails, voicemail,

access to restricted system areas, or the like.

WO 2011/068738 PCT/US2010/058087

-48-

[0171] In addition, a skilled artisan will recognize from the disclosure herein that

steps 1105 through 1120 of the signing process 1100 may advantageously employ

some or all of the steps of the interoperability process 970 of FIGURE 9B, thereby

providing interoperability between differing cryptographic systems that may, for

example, need to process the digital signature under differing signature types.

[0172] FIGURE 12 illustrates a data flow of an encryption/decryption process 1200

according to aspects of an embodiment of the invention. As shown in FIGURE 12, the

decryption process 1200 begins by authenticating the user using the authentication

process 1000. According to one embodiment, the authentication process 1000

includes in the authentication request, a synchronous session key. For example, in

conventional PKI technologies, it is understood by skilled artisans that encrypting or

decrypting data using public and private keys is mathematically intensive and may

require significant system resources. However, in symmetric key cryptographic

systems, or systems where the sender and receiver of a message share a single

common key that is used to encrypt and decrypt a message, the mathematical

operations are significantly simpler and faster. Thus, in the conventional PKI

technologies, the sender of a message will generate synchronous session key, and

encrypt the message using the simpler, faster symmetric key system. Then, the sender

will encrypt the session key with the public key of the receiver. The encrypted session

key will be attached to the synchronously encrypted message and both data are sent to

the receiver. The receiver uses his or her private key to decrypt the session key, and

then uses the session key to decrypt the message. Based on the foregoing, the simpler

and faster symmetric key system is used for the majority of the encryption/decryption

processing. Thus, in the decryption process 1200, the decryption advantageously

assumes that a synchronous key has been encrypted with the public key of the user.

Thus, as mentioned in the foregoing, the encrypted session key is included in the

authentication request.

[0173] Returning to the decryption process 1200, after the user has been

authenticated in step 1205, the authentication engine 215 forwards the encrypted

session key to the cryptographic engine 220. In step 1210, the authentication engine

WO 2011/068738 PCT/US2010/058087

-49­

215 forwards a request to each of the data storage facilities, DI through D4, requesting

the cryptographic key data of the user. In step 1215, each data storage facility, DI

through D4, transmits their respective portion of the cryptographic key to the

cryptographic engine 220. According to one embodiment, the foregoing transmission

is encrypted with the public key of the cryptographic engine 220.

[0174] In step 1220 of the decryption process 1200, the cryptographic engine 220

assembles the cryptographic key and decrypts the session key therewith. In step 1225,

the cryptographic engine forwards the session key to the authentication engine 215. In

step 1227, the authentication engine 215 fills in the authentication request including

the decrypted session key, and transmits the filled-in authentication request to the

transaction engine 205. In step 1230, the transaction engine 205 forwards the

authentication request along with the session key to the requesting application or

vendor. Then, according to one embodiment, the requesting application or vendor

uses the session key to decrypt the enciypted message.

[0175] Although the decryption process 1200 is disclosed with reference to its

preferred and alternative embodiments, a skilled artisan will recognize from the

disclosure herein, a wide number of alternatives for the decryption process 1200. For

example, the decryption process 1200 may forego synchronous key encryption and

rely on full public-key technology. In such an embodiment, the requesting application

may transmit the entire message to the cryptographic engine 220, or, may employ

some type of compression or reversible hash in order to transmit the message to the

cryptographic engine 220. A skilled artisan will also recognize from the disclosure

herein that the foregoing communications may advantageously include XML

documents wrapped in SSL technology.

[0176] The encryption/decryption process 1200 also provides for encryption of

documents or other data. Thus, in step 1235, a requesting application or vendor may

advantageously transmit to the transaction engine 205 of the trust engine 110, a

request for the public key of the user. The requesting application or vendor makes this

request because the requesting application or vendor uses the public key of the user,

for example, to encrypt the session key that will be used to encrypt the document or

WO 2011/068738 PCT/US2010/058087

-50-

message. As mentioned in the enrollment process 900, the transaction engine 205

stores a copy of the digital certificate of the user, for example, in the mass storage 225.

Thus, in step 1240 of the encryption process 1200, the transaction engine 205 requests

the digital certificate of the user from the mass storage 225. In step 1245, the mass

storage 225 transmits the digital certificate corresponding to the user, to the

transaction engine 205. In step 1250, the transaction engine 205 transmits the digital

certificate to the requesting application or vendor. According to one embodiment, the

encryption portion of the encryption process 1200 does not include the authentication

of a user. This is because the requesting vendor needs only the public key of the user,

and is not requesting any sensitive data.

[0177] A skilled artisan will recognize from the disclosure herein that if a particular

user does not have a digital certificate, the trust engine 110 may employ some or all of

the enrollment process 900 in order to generate a digital certificate for that particular

user. Then, the trust engine 110 may initiate the encryption/decryption process 1200

and thereby provide the appropriate digital certificate. In addition, a skilled artisan

will recognize from the disclosure herein that steps 1220 and 1235 through 1250 of the

encryption/decryption process 1200 may advantageously employ some or all of the

steps of the interoperability process of FIGURE 9B, thereby providing interoperability

between differing cryptographic systems that may, for example, need to process the

encryption.

[0178] FIGURE 13 illustrates a simplified block diagram of a trust engine system

1300 according to aspects of yet another embodiment of the invention. As shown in

FIGURE 13, the trust engine system 1300 comprises a plurality of distinct trust

engines 1305, 1310, 1315, and 1320, respectively. To facilitate a more complete

understanding of the invention, FIGURE 13 illustrates each trust engine, 1305, 1310,

1315, and 1320 as having a transaction engine, a depository, and an authentication

engine. However, a skilled artisan will recognize that each transaction engine may

advantageously comprise some, a combination, or all of the elements and

communication channels disclosed with reference to FIGURES 1-8. For example, one

WO 2011/068738 PCT/US2010/058087

-51 -

embodiment may advantageously include trust engines having one or more transaction

engines, depositories, and cryptographic servers or any combinations thereof.

[0179] According to one embodiment of the invention, each of the trust engines

1305, 1310, 1315 and 1320 are geographically separated, such that, for example, the

trust engine 1305 may reside in a first location, the trust engine 1310 may reside in a

second location, the trust engine 1315 may reside in a third location, and the trust

engine 1320 may reside in a fourth location. The foregoing geographic separation

advantageously decreases system response time while increasing the security of the

overall trust engine system 1300.

[0180] For example, when a user logs onto the cryptographic system 100, the user

may be nearest the first location and may desire to be authenticated. As described

with reference to FIGURE 10, to be authenticated, the user provides current

authentication data, such as a biometric or the like, and the current authentication data

is compared to that user's enrollment authentication data. Therefore, according to one

example, the user advantageously provides current authentication data to the

geographically nearest trust engine 1305. The transaction engine 1321 of the trust

engine 1305 then forwards the current authentication data to the authentication engine

1322 also residing at the first location. According to another embodiment, the

transaction engine 1321 forwards the current authentication data to one or more of the

authentication engines of the trust engines 1310, 1315, or 1320.

[0181] The transaction engine 1321 also requests the assembly of the enrollment

authentication data from the depositories of, for example, each of the trust engines,

1305 through 1320. According to this embodiment, each depository provides its

portion of the enrollment authentication data to the authentication engine 1322 of the

trust engine 1305. The authentication engine 1322 then employs the encrypted data

portions from, for example, the first two depositories to respond, and assembles the

enrollment authentication data into deciphered form. The authentication engine 1322

compares the enrollment authentication data with the current authentication data and

returns an authentication result to the transaction engine 1321 of the trust engine 1305.

WO 2011/068738 PCT/US2010/058087

-52-

[0182] Based on the above, the trust engine system 1300 employs the nearest one of

a plurality of geographically separated trust engines, 1305 through 1320, to perform

the authentication process. According to one embodiment of the invention, the routing

of information to the nearest transaction engine may advantageously be performed at

client-side applets executing on one or more of the user system 105, vendor system

120, or certificate authority 115. According to an alternative embodiment, a more

sophisticated decision process may be employed to select from the trust engines 1305

through 1320. For example, the decision may be based on the availability, operability,

speed of connections, load, performance, geographic proximity, or a combination

thereof, of a given trust engine.

[0183] In this way, the trust engine system 1300 lowers its response time while

maintaining the security advantages associated with geographically remote data

storage facilities, such as those discussed with reference to FIGURE 7 where each data

storage facility stores randomized portions of sensitive data. For example, a security

compromise at, for example, the depository 1325 of the trust engine 1315 does not

necessarily compromise the sensitive data of the trust engine system 1300. This is

because the depository 1325 contains only non-decipherable randomized data that,

without more, is entirely useless.

[0184] According to another embodiment, the trust engine system 1300 may

advantageously include multiple cryptographic engines arranged similar to the

authentication engines. The cryptographic engines may advantageously perform

cryptographic functions such as those disclosed with reference to FIGURES 1-8.

According to yet another embodiment, the trust engine system 1300 may

advantageously replace the multiple authentication engines with multiple

cryptographic engines, thereby performing cryptographic functions such as those

disclosed with reference to FIGURES 1-8. According to yet another embodiment of

the invention, the trust engine system 1300 may replace each multiple authentication

engine with an engine having some or all of the functionality of the authentication

engines, cryptographic engines, or both, as disclosed in the foregoing,

WO 2011/068738 PCT/US2010/058087

-53-

[0185] Although the trust engine system 1300 is disclosed with reference to its

preferred and alternative embodiments, a skilled artisan will recognize that the trust

engine system 1300 may comprise portions of trust engines 1305 through 1320. For

example, the trust engine system 1300 may include one or more transaction engines,

one or more depositories, one or more authentication engines, or one or more

cryptographic engines or combinations thereof.

[0186] FIGURE 14 illustrates a simplified block diagram of a trust engine System

1400 according to aspects of yet another embodiment of the invention. As shown in

FIGURE 14, the trust engine system 1400 includes multiple trust engines 1405, 1410,

1415 and 1420. According to one embodiment, each of the trust engines 1405, 1410,

1415 and 1420, comprise some or all of the elements of trust engine 110 disclosed

with reference to FIGURES 1-8. According to this embodiment, when the client side

applets of the user system 105, the vendor system 120, or the certificate authority 115,

communicate with the trust engine system 1400, those communications are sent to the

IP address of each of the trust engines 1405 through 1420. Further, each transaction

engine of each of the trust engines, 1405, 1410, 1415, and 1420, behaves similar to the

transaction engine 1321 of the trust engine 1305 disclosed with reference to FIGURE

13. For example, during an authentication process, each transaction engine of each of

the trust engines 1405, 1410, 1415, and 1420 transmits the current authentication data

to their respective authentication engines and transmits a request to assemble the

randomized data stored in each of the depositories of each of the trust engines 1405

through 1420. FIGURE 14 does not illustrate all of these communications; as such

illustration would become overly complex. Continuing with the authentication

process, each of the depositories then communicates its portion of the randomized data

to each of the authentication engines of the each of the trust engines 1405 through

1420. Each of the authentication engines of the each of the trust engines employs its

comparator to determine whether the current authentication data matches the

enrollment authentication data provided by the depositories of each of the trust

engines 1405 through 1420. According to this embodiment, the result of the

comparison by each of the authentication engines is then transmitted to a redundancy

WO 2011/068738 PCT/US2010/058087

-54-

module of the other three trust engines. For example, the result of the authentication

engine from the trust engine 1405 is transmitted to the redundancy modules of the

trust engines 1410, 1415, and 1420. Thus, the redundancy module of the trust engine

1405 likewise receives the result of the authentication engines from the trust engines

1410, 1415, and 1420.

[0187] FIGURE 15 illustrates a block diagram of the redundancy module of

FIGURE 14. The redundancy module comprises a comparator configured to receive

the authentication result from three authentication engines and transmit that result to

the transaction engine of the fourth trust engine. The comparator compares the

authentication result form the three authentication engines, and if two of the results

agree, the comparator concludes that the authentication result should match that of the

two agreeing authentication engines. This result is then transmitted back to the

transaction engine corresponding to the trust engine not associated with the three

authentication engines.

[0188] Based on the foregoing, the redundancy module determines an authentication

result from data received from authentication engines that are preferably

geographically remote from the trust engine of that the redundancy module. By

providing such redundancy functionality, the trust engine system 1400 ensures that a

compromise of the authentication engine of one of the trust engines 1405 through

1420, is insufficient to compromise the authentication result of the redundancy module

of that particular trust engine. A skilled artisan will recognize that redundancy module

functionality of the trust engine system 1400 may also be applied to the cryptographic

engine of each of the trust engines 1405 through 1420. However, such cryptographic

engine communication was not shown in FIGURE 14 to avoid complexity. Moreover,

a skilled artisan will recognize a wide number of alternative authentication result

conflict resolution algorithms for the comparator of FIGURE 15 are suitable for use in

the present invention.

[0189] According to yet another embodiment of the invention, the trust engine

system 1400 may advantageously employ the redundancy module during

cryptographic comparison steps. For example, some or all of the foregoing

WO 2011/068738 PCT/US2010/058087

- 55 -

redundancy module disclosure with reference to FIGURES 14 and 15 may

advantageously be implemented during a hash comparison of documents provided by

one or more parties during a particular transaction.

[0190] Although the foregoing invention has been described in terms of certain

preferred and alternative embodiments, other embodiments will be apparent to those

of ordinary skill in the art from the disclosure herein. For example, the trust engine

110 may issue short-term certificates, where the private cryptographic key is released

to the user for a predetermined period of time. For example, current certificate

standards include a validity field that can be set to expire after a predetermined

amount of time. Thus, the trust engine 110 may release a private key to a user where

the private key would be valid for, for example, 24 hours. According to such an

embodiment, the trust engine 110 may advantageously issue a new cryptographic key

pair to be associated with a particular user and then release the private key of the new

cryptographic key pair. Then, once the private cryptographic key is released, the trust

engine 110 immediately expires any internal valid use of such private key, as it is no

longer securable by the trust engine 110.

[0191] In addition, a skilled artisan will recognize that the cryptographic system 100

or the trust engine 110 may include the ability to recognize any type of devices, such

as, but not limited to, a laptop, a cell phone, a network, a biometric device or the like.

According to one embodiment, such recognition may come from data supplied in the

request for a particular sendee, such as, a request for authentication leading to access

or use, a request for cryptographic functionality, or the like. According to one

embodiment, the foregoing request may include a unique device identifier, such as, foi

example, a processor ID. Alternatively, the request may include data in a particular

recognizable data format. For example, mobile and satellite phones often do not

include the processing power for full X509.v3 heavy encryption certificates, and

therefore do not request them. According to this embodiment, the trust engine 110

may recognize the type of data format presented, and respond only in kind.

[0192] In an additional aspect of the system described above, context sensitive

authentication can be provided using various techniques as will be described below.

WO 2011/068738 PCT/US2010/058087

-56-

Context sensitive authentication, for example as shown in FIGURE 16, provides the

possibility of evaluating not only the actual data which is sent by the user when

attempting to authenticate himself, but also the circumstances surrounding the

generation and delivery of that data. Such techniques may also support transaction

specific trust arbitrage between the user and trust engine 110 or between the vendor

and trust engine 110, as will be described below.

[0193] As discussed above, authentication is the process of proving that a user is

who he says he is. Generally, authentication requires demonstrating some fact to an

authentication authority. The trust engine 110 of the present invention represents the

authority to which a user must authenticate himself. The user must demonstrate to the

trust engine 110 that he is who he says he is by either: knowing something that only

the user should know (knowledge-based authentication), having something that only

the user should have (token-based authentication), or by being something that only the

user should be (biometric-based authentication).

[0194] Examples of knowledge-based authentication include without limitation a

password, PIN number, or lock combination. Examples of token-based authentication

include without limitation a house key, a physical credit card, a driver's license, or a

particular phone number. Examples of biometric-based authentication include without

limitation a fingerprint, handwriting analysis, facial scan, hand scan, ear scan, iris

scan, vascular pattern, DNA, a voice analysis, or a retinal scan.

[0195] Each type of authentication has particular advantages and disadvantages, and

each provides a different level of security. For example, it is generally harder to create

a false fingerprint that matches someone else's than it is to overhear someone's

password and repeat it. Each type of authentication also requires a different type of

data to be known to the authenticating authority in order to verify someone using that

form of authentication.

[0196] As used herein, "authentication" will refer broadly to the overall process of

verifying someone's identity to be who he says he is. An "authentication technique"

will refer to a particular type of authentication based upon a particular piece of

knowledge, physical token, or biometric reading. "Authentication data" refers to

WO 2011/068738 PCT/US2010/058087

-57-

information which is sent to or otherwise demonstrated to an authentication authority

in order to establish identity. "Enrollment data" will refer to the data which is initially

submitted to an authentication authority in order to establish a baseline for comparison

with authentication data. An "authentication instance" will refer to the data associated

with an attempt to authenticate by an authentication technique.

[0197] The internal protocols and communications involved in the process of

authenticating a user is described with reference to FIGURE 10 above. The part of

this process within which the context sensitive authentication takes place occurs

within the comparison step shown as step 1045 of FIGURE 10. This step takes place

within the authentication engine 215 and involves assembling the enrollment data 410

retrieved from the depository 210 and comparing the authentication data provided by

the user to it. One particular embodiment of this process is shown in FIGURE 16 and

described below.

[0198] The current authentication data provided by the user and the enrollment data

retrieved from the depository 210 are received by the authentication engine 215 in step

1600 of FIGURE 16. Both of these sets of data may contain data which is related to

separate techniques of authentication. The authentication engine 215 separates the

authentication data associated with each individual authentication instance in step

1605. This is necessary so that the authentication data is compared with the

appropriate subset of the enrollment data for the user (e.g. fingerprint authentication

data should be compared with fingerprint enrollment data, rather than password

enrollment data).

[0199] Generally, authenticating a user involves one or more individual

authentication instances, depending on which authentication techniques are available

to the user. These methods are limited by the enrollment data which were provided by

the user during his enrollment process (if the user did not provide a retinal scan when

enrolling, he will not be able to authenticate himself using a retinal scan), as well as

the means which may be currently available to the user (e.g. if the user does not have a

fingerprint reader at his current location, fingerprint authentication will not be

practical). In some cases, a single authentication instance may be sufficient to

WO 2011/068738 PCT/US2010/058087

-58-

authenticate a user; however, in certain circumstances a combination of multiple

authentication instances may be used in order to more confidently authenticate a user

for a particular transaction.

[0200] Each authentication instance consists of data related to a particular

authentication technique (e.g. fingerprint, password, smart card, etc.) and the

circumstances which surround the capture and delivery of the data for that particular

technique. For example, a particular instance of attempting to authenticate via

password will generate not only the data related to the password itself, but also

circumstantial data, known as "metadata", related to that password attempt. This

circumstantial data includes information such as: the time at which the particular

authentication instance took place, the network address from which the authentication

information was delivered, as well as any other information as is known to those of

skill in the art which may be determined about the origin of the authentication data

(the type of connection, the processor serial number, etc.).

[0201] In many cases, only a small amount of circumstantial metadata will be

available. For example, if the user is located on a network which uses proxies or

network address translation or another technique which masks the address of the

originating computer, only the address of the proxy or router may be determined.

Similarly, in many cases information such as the processor serial number will not be

available because of either limitations of the hardware or operating system being used,

disabling of such features by the operator of the system, or other limitations of the

connection between the user's system and the trust engine 110.

[0202] As shown in FIGURE 16, once the individual authentication instances

represented within the authentication data are extracted and separated in step 1605, the

authentication engine 215 evaluates each instance for its reliability in indicating that

the user is who he claims to be. The reliability for a single authentication instance will

generally be determined based on several factors. These may be grouped as factors

relating to the reliability associated with the authentication technique, which are

evaluated in step 1610, and factors relating to the reliability of the particular

authentication data provided, which are evaluated in step 1815. The first group

WO 2011/068738 PCT/US2010/058087

-59-

includes without limitation the inherent reliability of the authentication technique

being used, and the reliability of the enrollment data being used with that method. The

second group includes without limitation the degree of match between the enrollment

data and the data provided with the authentication instance, and the metadata

associated with that authentication instance. Each of these factors may vary

independently of the others.

[0203] The inherent reliability of an authentication technique is based on how hard it

is for an imposter to provide someone else's correct data, as well as the overall error

rates for the authentication technique. For passwords and knowledge based

authentication methods, this reliability is often fairly low because there is nothing that

prevents someone from revealing their password to another person and for that second

person to use that password. Even a more complex knowledge based system may

have only moderate reliability since knowledge may be transferred from person to

person fairly easily. Token based authentication, such as having a proper smart card

or using a particular terminal to perform the authentication, is similarly of low

reliability used by itself, since there is no guarantee that the right person is in

possession of the proper token.

[0204] However, biometric techniques are more inherently reliable because it is

generally difficult to provide someone else with the ability to use your fingerprints in a

convenient manner, even intentionally. Because subverting biometric authentication

techniques is more difficult, the inherent reliability of biometric methods is generally

higher than that of purely knowledge or token based authentication techniques.

However, even biometric techniques may have some occasions in which a false

acceptance or false rejection is generated. These occurrences may be reflected by

differing reliabilities for different implementations of the same biometric technique.

For example, a fingerprint matching system provided by one company may provide a

higher reliability than one provided by a different company because one uses higher

quality optics or a better scanning resolution or some other improvement which

reduces the occurrence of false acceptances or false rejections.

WO 2011/068738 PCT/US2010/058087

-60-

[0205] Note that this reliability may be expressed in different manners. The

reliability is desirably expressed in some metric which can be used by the heuristics

530 and algorithms of the authentication engine 215 to calculate the confidence level

of each authentication. One preferred mode of expressing these reliabilities is as a

percentage or fraction. For instance, fingerprints might be assigned an inherent

reliability of 97%, while passwords might only be assigned an inherent reliability of

50%. Those of skill in the art will recognize that these particular values are merely

exemplary and may vary between specific implementations.

[0206] The second factor for which reliability must be assessed is the reliability of

the enrollment. This is part of the "graded enrollment" process referred to above.

This reliability factor reflects the reliability of the identification provided during the

initial enrollment process. For instance, if the individual initially enrolls in a manner

where they physically produce evidence of their identity to a notary or other public

official, and enrollment data is recorded at that time and notarized, the data will be

more reliable than data which is provided over a network during enrollment and only

vouched for by a digital signature or other information which is not truly tied to the

individual.

[0207] Other enrollment techniques with varying levels of reliability include without

limitation: enrollment at a physical office of the trust engine 110 operator; enrollment

at a user's place of employment; enrollment at a post office or passport office;

enrollment through an affiliated or trusted party to the trust engine 110 operator;

anonymous or pseudonymous enrollment in which the enrolled identity is not yet

identified with a particular real individual, as well as such other means as are known

in the art.

[0208] These factors reflect the trust between the trust engine 110 and the source of

identification provided during the enrollment process. For instance, if enrollment is

performed in association with an employer during the initial process of providing

evidence of identity, this information may be considered extremely reliable for

purposes within the company, but may be trusted to a lesser degree by a government

WO 2011/068738 PCT/US2010/058087

-61 -

agency, or by a competitor. Therefore, trust engines operated by each of these other

organizations may assign different levels of reliability to this enrollment.

[0209] Similarly, additional data which is submitted across a network, but which is

authenticated by other trusted data provided during a previous enrollment with the

same trust engine 110 may be considered as reliable as the original enrollment data

was, even though the latter data were submitted across an open network. In such

circumstances, a subsequent notarization will effectively increase the level of

reliability associated with the original enrollment data. In this way for example, an

anonymous or pseudonymous enrollment may then be raised to a full enrollment by

demonstrating to some enrollment official the identity of the individual matching the

enrolled data.

[0210] The reliability factors discussed above are generally values which may be

determined in advance of any particular authentication instance. This is because they

are based upon the enrollment and the technique, rather than the actual authentication.

In one embodiment, the step of generating reliability based upon these factors involves

looking up previously determined values for this particular authentication technique

and the enrollment data of the user. In a further aspect of an advantageous

embodiment of the present invention, such reliabilities may be included with the

enrollment data itself. In this way, these factors are automatically delivered to the

authentication engine 215 along with the enrollment data sent from the depository 210.

[0211] While these factors may generally be determined in advance of any

individual authentication instance, they still have an effect on each authentication

instance which uses that particular technique of authentication for that user.

Furthermore, although the values may change over time (e.g. if the user re-enrolls in a

more reliable fashion), they are not dependent on the authentication data itself. By

contrast, the reliability factors associated with a single specific instance's data may

vary on each occasion. These factors, as discussed below, must be evaluated for each

new authentication in order to generate reliability scores in step 1815.

[0212] The reliability of the authentication data reflects the match between the data

provided by the user in a particular authentication instance and the data provided

WO 2011/068738 PCT/US2010/058087

-62-

during the authentication enrollment. This is the fundamental question of whether the

authentication data matches the enrollment data for the individual the user is claiming

to be. Normally, when the data do not match, the user is considered to not be

successfully authenticated, and the authentication fails. The manner in which this is

evaluated may change depending on the authentication technique used. The

comparison of such data is performed by the comparator 515 function of the

authentication engine 215 as shown in FIGURE 5.

[0213] For instance, matches of passwords are generally evaluated in a binary

fashion. In other words, a password is either a perfect match, or a failed match. It is

usually not desirable to accept as even a partial match a password which is close to the

correct password if it is not exactly correct. Therefore, when evaluating a password

authentication, the reliability of the authentication returned by the comparator 515 is

typically either 100% (correct) or 0% (wrong), with no possibility of intermediate

values.

[0214] Similar rules to those for passwords are generally applied to token based

authentication methods, such as smart cards. This is because having a smart card

which has a similar identifier or which is similar to the correct one, is still just as

wrong as having any other incorrect token. Therefore tokens tend also to be binary

authenticators: a user either has the right token, or he doesn't.

[0215] However, certain types of authentication data, such as questionnaires and

biometrics, are generally not binary authenticators. For example, a fingerprint may

match a reference fingerprint to varying degrees. To some extent, this may be due to

variations in the quality of the data captured either during the initial enrollment or in

subsequent authentications. (A fingerprint may be smudged or a person may have a

still healing scar or burn on a particular finger.) In other instances the data may match

less than perfectly because the information itself is somewhat variable and based upon

pattern matching. (A voice analysis may seem close but not quite right because of

background noise, or the acoustics of the environment in which the voice is recorded,

or because the person has a cold.) Finally, in situations where large amounts of data

are being compared, it may simply be the case that much of the data matches well, but

WO 2011/068738 PCT/US2010/058087

-63-

some doesn't. (A ten-question questionnaire may have resulted in eight correct

answers to personal questions, but two incorrect answers.) For any of these reasons,

the match between the enrollment data and the data for a particular authentication

instance may be desirably assigned a partial match value by the comparator 515. In

this way, the fingerprint might be said to be a 85% match, the voice print a 65%

match, and the questionnaire an 80% match, for example.

[0216] This measure (degree of match) produced by the comparator 515 is the factor

representing the basic issue of whether an authentication is correct or not. However,

as discussed above, this is only one of the factors which may be used in determining

the reliability of a given authentication instance. Note also that even though a match

to some partial degree may be determined, that ultimately, it may be desirable to

provide a binary result based upon a partial match. In an alternate mode of operation,

it is also possible to treat partial matches as binary, i.e. either perfect (100%) or failed

(0%) matches, based upon whether or not the degree of match passes a particular

threshold level of match. Such a process may be used to provide a simple pass/fail

level of matching for systems which would otherwise produce partial matches.

[0217] Another factor to be considered in evaluating the reliability of a given

authentication instance concerns the circumstances under which the authentication

data for this particular instance are provided. As discussed above, the circumstances

refer to the metadata associated with a particular authentication instance. This may

include without limitation such information as: the network address of the

authenticator, to the extent that it can be determined; the time of the authentication; the

mode of transmission of the authentication data (phone line, cellular, network, etc.);

and the serial number of the system of the authenticator.

[0218] These factors can be used to produce a profile of the type of authentication

that is normally requested by the user. Then, this information can be used to assess

reliability in at least two manners. One manner is to consider whether the user is

requesting authentication in a manner which is consistent with the normal profile of

authentication by this user. If the user normally makes authentication requests from

one network address during business days (when she is at work) and from a different

WO 2011/068738 PCT/US2010/058087

-64-

network address during evenings or weekends (when she is at home), an

authentication which occurs from the home address during the business day is less

reliable because it is outside the normal authentication profile. Similarly, if the user

normally authenticates using a fingerprint biometric and in the evenings, an

authentication which originates during the day using only a password is less reliable.

[0219] An additional way in which the circumstantial metadata can be used to

evaluate the reliability of an instance of authentication is to determine how much

corroboration the circumstance provides that the authenticator is the individual he

claims to be. For instance, if the authentication comes from a system with a serial

number known to be associated with the user, this is a good circumstantial indicator

that the user is who they claim to be. Conversely, if the authentication is coming from

a network address which is known to be in Los Angeles when the user is known to

reside in London, this is an indication that this authentication is less reliable based on

its circumstances.

[0220] It is also possible that a cookie or other electronic data may be placed upon

the system being used by a user when they interact with a vendor system or with the

trust engine 110. This data is written to the storage of the system of the user and may

contain an identification which may be read by a Web browser or other software on

the user system. If this data is allowed to reside on the user system between sessions

(a "persistent cookie"), it may be sent with the authentication data as further evidence

of the past use of this system during authentication of a particular user. In effect, the

metadata of a given instance, particularly a persistent cookie, may form a sort of token

based authenticator itself.

[0221] Once the appropriate reliability factors based on the technique and data of the

authentication instance are generated as described above in steps 1610 and 1615

respectively, they are used to produce an overall reliability for the authentication

instance provided in step 1620. One means of doing this is simply to express each

reliability as a percentage and then to multiply them together.

[0222] For example, suppose the authentication data is being sent in from a network

address known to be the user's home computer completely in accordance with the

WO 2011/068738 PCT/US2010/058087

-65-

user's past authentication profile (100%), and the technique being used is fingerprint

identification (97%), and the initial finger print data was roistered through the user's

employer with the trust engine 110 (90%), and the match between the authentication

data and the original fingerprint template in the enrollment data is very good (99%).

The overall reliability of this authentication instance could then be calculated as the

product of these reliabilities: 100% * 97% * 90% * 99% - 86.4% reliability.

[0223] This calculated reliability represents the reliability of one single instance of

authentication. The overall reliability of a single authentication instance may also be

calculated using techniques which treat the different reliability factors differently, for

example by using formulas where different weights are assigned to each reliability

factor. Furthermore, those of skill in the art will recognize that the actual values used

may represent values other than percentages and may use non-arithmetic systems.

One embodiment may include a module used by an authentication requestor to set the

weights for each factor and the algorithms used in establishing the overall reliability of

the authentication instance.

[0224] The authentication engine 215 may use the above techniques and variations

thereof to determine the reliability of a single authentication instance, indicated as step

1620. However, it may be useful in many authentication situations for multiple

authentication instances to be provided at the same time. For example, while

attempting to authenticate himself using the system of the present invention, a user

may provide a user identification, fingerprint authentication data, a smart card, and a

password. In such a case, three independent authentication instances are being

provided to the trust engine 110 for evaluation. Proceeding to step 1625, if the

authentication engine 215 determines that the data provided by the user includes more

than one authentication instance, then each instance in turn will be selected as shown

in step 1630 and evaluated as described above in steps 1610, 1615 and 1620.

[0225] Note that many of the reliability factors discussed may vary from one of

these instances to another. For instance, the inherent reliability of these techniques is

likely to be different, as well as the degree of match provided between the

authentication data and the enrollment data. Furthermore, the user may have provided

WO 2011/068738 PCT/US2010/058087

-66-

enrollment data at different times and under different circumstances for each of these

techniques, providing different enrollment reliabilities for each of these instances as

well. Finally, even though the circumstances under which the data for each of these

instances is being submitted is the same, the use of such techniques may each fit the

profile of the user differently, and so may be assigned different circumstantial

reliabilities. (For example, the user may normally use their password and fingerprint,

but not their smart card.)

[0226] As a result, the final reliability for each of these authentication instances may

be different from One another. However, by using multiple instances together, the

overall confidence level for the authentication will tend to increase.

[0227] Once the authentication engine has performed steps 1610 through 1620 for

all of the authentication instances provided in the authentication data, the reliability of

each instance is used in step 1635 to evaluate the overall authentication confidence

level. This process of combining the individual authentication instance reliabilities

into the authentication confidence level may be modeled by various methods relating

the individual reliabilities produced, and may also address the particular interaction

between some of these authentication techniques. (For example, multiple

knowledge-based systems such as passwords may produce less confidence than a

single password and even a fairly weak biometric, such as a basic voice analysis.)

[0228] One means in which the authentication engine 215 may combine the

reliabilities of multiple concurrent authentication instances to generate a final

confidence level is to multiply the unreliability of each instance to arrive at a total

unreliability. The unreliability is generally the complementary percentage of the

reliability. For example, a technique which is 84% reliable is 16% unreliable. The

three authentication instances described above (fingerprint, smart card,

password)which produce reliabilities of 86%, 75%, and 72% would have

corresponding unreliabilities of (100- 86)%, (100- 75)% and (100- 72)%, or 14%,

25%, and 28%, respectively. By multiplying these unreliabilities, we get a cumulative

unreliability of 14% * 25% * 28% - .98% unreliability, which corresponds to a

reliability of 99.02%.

WO 2011/068738 PCT/US2010/058087

-67-

[0229] ΐη an additional mode of operation, additional factors and heuristics 530 may

be applied within the authentication engine 215 to account for the interdependence of

various authentication techniques. For example, if someone has unauthorized access

to a particular home computer, they probably have access to the phone line at that

address as well. Therefore, authenticating based on an originating phone number as

well as upon the serial number of the authenticating system does not add much to the

overall confidence in the authentication. However, knowledge based authentication is

largely independent of token based authentication (i.e. if someone steals your cellular

phone or keys, they are no more likely to know your PIN or password than if they

hadn't).

[0230] Furthermore, different vendors or other authentication requestors may wish

to weigh different aspects of the authentication differently. This may include the use

of separate weighing factors or algorithms used in calculating the reliability of

individual instances as well as the use of different means to evaluate authentication

events with multiple instances.

[0231] For instance, vendors for certain types of transactions, for instance corporate

email systems, may desire to authenticate primarily based upon heuristics and other

circumstantial data by default. Therefore, they may apply high weights to factors

related to the metadata and other profile related information associated with the

circumstances surrounding authentication events. This arrangement could be used to

ease the burden on users during normal operating hours, by not requiring more from

the user than that he be logged on to the correct machine during business hours.

However, another vendor may weigh authentications coming from a particular

technique most heavily, for instance fingerprint matching, because of a policy decision

that such a technique is most suited to authentication for the particular vendor's

purposes.

[0232] Such varying weights may be defined by the authentication requestor in

generating the authentication request and sent to the trust engine 110 with the

authentication request in one mode of operation. Such options could also be set as

WO 2011/068738 PCT/US2010/058087

-68-

preferences during an initial enrollment process for the authentication requestor and

stored within the authentication engine in another mode of operation.

[0233] Once the authentication engine 215 produces an authentication confidence

level for the authentication data provided, this confidence level is used to complete the

authentication request in step 1640, and this information is forwarded from the

authentication engine 215 to the transaction engine 205 for inclusion in a message to

the authentication requestor.

[0234] The process described above is merely exemplary, and those of skill in the art

will recognize that the steps need not be performed in the order shown or that only

certain of the steps are desired to be performed, or that a variety of combinations of

steps may be desired. Furthermore, certain steps, such as the evaluation of the

reliability of each authentication instance provided, may be carried out in parallel with

one another if circumstances permit.

[0235] In a further aspect of this invention, a method is provided to accommodate

conditions when the authentication confidence level produced by the process

described above fails to meet the required trust level of the vendor or other party

requiring the authentication. In circumstances such as these where a gap exists

between the level of confidence provided and the level of trust desired, the operator of

the trust engine 110 is in a position to provide opportunities for one or both parties to

provide alternate data or requirements in order to close this trust gap. This process

will be referred to as "trust arbitrage" herein.

[0236] Trust arbitrage may take place within a framework of ciypto graphic

authentication as described above with reference to FIGURES 10 and 11. As shown

therein, a vendor or other party will request authentication of a particular user in

association with a particular transaction. In one circumstance, the vendor simply

requests an authentication, either positive or negative, and after receiving appropriate

data from the user, the trust engine 110 will provide such a binary authentication. In

circumstances such as these, the degree of confidence required in order to secure a

positive authentication is determined based upon preferences set within the trust

engine 110.

WO 2011/068738 PCT/US2010/058087

-69-

[0237] However, it is also possible that the vendor may request a particular level of

trust in order to complete a particular transaction. This required level may be included

with the authentication request (e.g. authenticate this user to 98% confidence) or may

be determined by the trust engine 110 based on other factors associated with the

transaction (i.e. authenticate this user as appropriate for this transaction). One such

factor might be the economic value of the transaction. For transactions which have

greater economic value, a higher degree of trust may be required. Similarly, for

transactions with high degrees of risk a high degree of trust may be required.

Conversely, for transactions which are either of low risk or of low value, lower trust

levels may be required by the vendor or other authentication requestor.

[0238] The process of trust arbitrage occurs between the steps of the trust engine 110

receiving the authentication data in step 1050 of FIGURE 10 and the return of an

authentication result to the vendor in step 1055 of FIGURE 10. Between these steps,

the process which leads to the evaluation of trust levels and the potential trust

arbitrage occurs as shown in FIGURE 17. In circumstances where simple binary

authentication is performed, the process shown in FIGURE 17 reduces to having the

transaction engine 205 directly compare the authentication data provided with the

enrollment data for the identified user as discussed above with reference to FIGURE

10, flagging any difference as a negative authentication.

[0239] As shown in FIGURE 17, the first step after receiving the data in step 1050 is

for the transaction engine 205 to determine the trust level which is required for a

positive authentication for this particular transaction in step 1710. This step may be

performed by one of several different methods. The required trust level may be

specified to the trust engine 110 by the authentication requestor at the time when the

authentication request is made. The authentication requestor may also set a preference

in advance which is stored within the depository 210 or other storage which is

accessible by the transaction engine 205. This preference may then be read and used

each time an authentication request is made by this authentication requestor. The

preference may also be associated with a particular user as a security measure such

that a particular level of trust is always required in order to authenticate that user, the

WO 2011/068738 PCT/US2010/058087

-70-

user preference being stored in the depository 210 or other storage media accessible by

the transaction engine 205. The required level may also be derived by the transaction

engine 205 or authentication engine 215 based upon information provided in the

authentication request, such as the value and risk level of the transaction to be

authenticated.

[0240] In one mode of operation, a policy management module or other software

which is used when generating the authentication request is used to specify the

required degree of trust for the authentication of the transaction. This may be used to

provide a series of rules to follow when assigning the required level of trust based

upon the policies which are specified within the policy management module. One

advantageous mode of operation is for such a module to be incorporated with the web

server of a vendor in order to appropriately determine required level of trust for

transactions initiated with the vendor's web server. In this way, transaction requests

from users may be assigned a required trust level in accordance with the policies of the

vendor and such information may be forwarded to the trust engine 110 along with the

authentication request.

[0241] This required trust level correlates with the degree of certainty that the

vendor wants to have that the individual authenticating is in fact who he identifies

himself as. For example, if the transaction is one where the vendor wants a fair degree

of certainty because goods are changing hands, the vendor may require a trust level of

85%. For situation where the vendor is merely authenticating the user to allow him to

view members only content or exercise privileges on a chat room, the downside risk

may be small enough that the vendor requires only a 60% trust level. However, to

enter into a production contract with a value of tens of thousands of dollars, the vendor

may require a trust level of 99% or more.

[0242] This required trust level represents a metric to which the user must

authenticate himself in order to complete the transaction. If the required trust level is

85% for example, the user must provide authentication to the trust engine 110

sufficient for the trust engine 110 to say with 85% confidence that the user is who they

say they are. It is the balance between this required trust level and the authentication

WO 2011/068738 PCT/US2010/058087

-71 -

confidence level which produces either a positive authentication (to the satisfaction of

the vendor) or a possibility of trust arbitrage.

[0243] As shown in FIGURE 17, after the transaction engine 205 receives the

required trust level, it compares in step 1720 the required trust level to the

authentication confidence level which the authentication engine 215 calculated for the

current authentication (as discussed with reference to FIGURE 16). If the

authentication confidence level is higher than the required trust level for the

transaction in step 1730, then the process moves to step 1740 where a positive

authentication for this transaction is produced by the transaction engine 205. A

message to this effect will then be inserted into the authentication results and returned

to the vendor by the transaction engine 205 as shown in step 1055 (see FIGURE 10).

[0244] However, if the authentication confidence level does not fulfill the required

trust level in step 1730, then a confidence gap exists for the current authentication, and

trust arbitrage is conducted in step 1750. Trust arbitrage is described more completely

with reference to FIGURE 18 below. This process as described below takes place

within the transaction engine 205 of the trust engine 110. Because no authentication

or other cryptographic operations are needed to execute trust arbitrage (other than

those required for the SSF communication between the transaction engine 205 and

other components), the process may be performed outside the authentication engine

215. However, as will be discussed below, any reevaluation of authentication data or

other cryptographic or authentication events will require the transaction engine 205 to

resubmit the appropriate data to the authentication engine 215. Those of skill in the

art will recognize that the trust arbitrage process could alternately be structured to take

place partially or entirely within the authentication engine 215 itself.

[0245] As mentioned above, trust arbitrage is a process where the trust engine 110

mediates a negotiation between the vendor and user in an attempt to secure a positive

authentication where appropriate. As shown in step 1805, the transaction engine 205

first determines whether or not the current situation is appropriate for trust arbitrage.

This may be determined based upon the circumstances of the authentication, e.g.

whether this authentication has already been through multiple cycles of arbitrage, as

WO 2011/068738 PCT/US2010/058087

-72-

well as upon the preferences of either the vendor or user, as will be discussed further

below.

[0246] In such circumstances where arbitrage is not possible, the process proceeds to

step 1810 where the transaction engine 205 generates a negative authentication and

then inserts it into the authentication results which are sent to the vendor in step 1055

(see FIGURE 10). One limit which may be advantageously used to prevent

authentications from pending indefinitely is to set a time-out period from the initial

authentication request. In this way, any transaction which is not positively

authenticated within the time limit is denied further arbitrage and negatively

authenticated. Those of skill in the art will recognize that such a time limit may vary

depending upon the circumstances of the transaction and the desires of the user and

vendor. Limitations may also be placed upon the number of attempts that may be

made at providing a successful authentication. Such limitations may be handled by an

attempt limiter 535 as shown in FIGURE 5.

[0247] If arbitrage is not prohibited in step 1805, the transaction engine 205 will

then engage in negotiation with one or both of the transacting parties. The transaction

engine 205 may send a message to the user requesting some form of additional

authentication in order to boost the authentication confidence level produced as shown

in step 1820. In the simplest form, this may simply indicates that authentication was

insufficient. A request to produce one or more additional authentication instances to

improve the overall confidence level of the authentication may also be sent.

[0248] If the user provides some additional authentication instances in step 1825,

then the transaction engine 205 adds these authentication instances to the

authentication data for the transaction and forwards it to the authentication engine 215

as shown in step 1015 (see FIGURE 10), and the authentication is reevaluated based

upon both the pre-existing authentication instances for this transaction and the newly

provided authentication instances.

[0249] An additional type of authentication may be a request from the trust engine

110 to make some form of person-to-person contact between the trust engine 110

operator (or a trusted associate) and the user, for example, by phone call. This phone

WO 2011/068738 PCT/US2010/058087

-73-

call or other non-computer authentication can be used to provide personal contact with

the individual and also to conduct some form of questionnaire based authentication.

This also may give the opportunity to verify an originating telephone number and

potentially a voice analysis of the user when he calls in. Even if no additional

authentication data can be provided, the additional context associated with the user's

phone number may improve the reliability of the authentication context. Any revised

data or circumstances based upon this phone call are fed into the trust engine 110 for

use in consideration of the authentication request.

[0250] Additionally, in step 1820 the trust engine 110 may provide an opportunity

for the user to purchase insurance, effectively buying a more confident authentication.

The operator of the trust engine 110 may, at times, only want to make such an option

available if the confidence level of the authentication is above a certain threshold to

begin with. In effect, this user side insurance is a way for the trust engine 110 to

vouch for the user when the authentication meets the normal required trust level of the

trust engine 110 for authentication, but does not meet the required trust level of the

vendor for this transaction. In this way, the user may still successfully authenticate to

a veiy high level as may be required by the vendor, even though he only has

authentication instances which produce confidence sufficient for the trust engine 110.

[0251] This function of the trust engine 110 allows the trust engine 110 to vouch for

someone who is authenticated to the satisfaction of the trust engine 110, but not of the

vendor. This is analogous to the function performed by a notary in adding his

signature to a document in order to indicate to someone reading the document at a

later time that the person whose signature appears on the document is in fact the

person who signed it. The signature of the notary testifies to the act of signing by the

user. In the same way, the trust engine is providing an indication that the person

transacting is who they say they are.

[0252] However, because the trust engine 110 is artificially boosting the level of

confidence provided by the user, there is a greater risk to the trust engine 110 operator,

since the user is not actually meeting the required trust level of the vendor. The cost

of the insurance is designed to offset the risk of a false positive authentication to the

WO 2011/068738 PCT/US2010/058087

-74-

trust engine 110 (who may be effectively notarizing the authentications of the user).

The user pays the trust engine 110 operator to take the risk of authenticating to a

higher level of confidence than has actually been provided.

[0253] Because such an insurance system allows someone to effectively buy a

higher confidence rating from the trust engine 110, both vendors and users may wish

to prevent the use of user side insurance in certain transactions. Vendors may wish to

limit positive authentications to circumstances where they know that actual

authentication data supports the degree of confidence which they require and so may

indicate to the trust engine 110 that user side insurance is not to be allowed. Similarly,

to protect his online identity, a user may wish to prevent the use of user side insurance

on his account, or may wish to limit its use to situations where the authentication

confidence level without the insurance is higher than a certain limit. This may be used

as a security measure to prevent someone from overhearing a password or stealing a

smart card and using them to falsely authenticate to a low level of confidence, and

then purchasing insurance to produce a very high level of (false) confidence. These

factors may be evaluated in determining whether user side insurance is allowed.

[0254] If user purchases insurance in step 1840, then the authentication confidence

level is adjusted based upon the insurance purchased in step 1845, and the

authentication confidence level and required trust level are again compared in step

1730 (see FIGURE 17). The process continues from there, and may lead to either a

positive authentication in step 1740 (see FIGURE 17), or back into the trust arbitrage

process in step 1750 for either further arbitrage (if allowed) or a negative

authentication in step 1810 if further arbitrage is prohibited.

[0255] In addition to sending a message to the user in step 1820, the transaction

engine 205 may also send a message to the vendor in step 1830 which indicates that a

pending authentication is currently below the required trust level. The message may

also offer various options on how to proceed to the vendor. One of these Options is to

simply inform the vendor of what the current authentication confidence level is and

ask if the vendor wishes to maintain their current unfulfilled required trust level. This

may be beneficial because in some cases, the vendor may have independent means for

WO 2011/068738 PCT/US2010/058087

- 75 -

authenticating the transaction or may have been using a default set of requirements

which generally result in a higher required level being initially specified than is

actually needed for the particular transaction at hand.

[0256] For instance, it may be standard practice that all incoming purchase order

transactions with the vendor are expected to meet a 98% trust level. However, if an

order was recently discussed by phone between the vendor and a long-standing

customer, and immediately thereafter the transaction is authenticated, but only to a

93% confidence level, the vendor may wish to simply lower the acceptance threshold

for this transaction, because the phone call effectively provides additional

authentication to the vendor. In certain circumstances, the vendor may be willing to

lower their required trust level, but not all the way to the level of the current

authentication confidence. For instance, the vendor in the above example might

consider that the phone call prior to the order might merit a 4% reduction in the degree

of trust needed; however, this is still greater than the 93% confidence produced by the

user.

[0257] If the vendor does adjust their required trust level in step 1835, then the

authentication confidence level produced by the authentication and the required trust

level are compared in step 1730 (see FIGURE 17). If the confidence level now

exceeds the required trust level, a positive authentication may be generated in the

transaction engine 205 in step 1740 (see FIGURE 17). If not, further arbitrage may be

attempted as discussed above if it is permitted.

[0258] In addition to requesting an adjustment to the required trust level, the

transaction engine 205 may also offer vendor side insurance to the vendor requesting

the authentication. This insurance serves a similar purpose to that described above for

the user side insurance. Here, however, rather than the cost corresponding to the risk

being taken by the trust engine 110 in authenticating above the actual authentication

confidence level produced, the cost of the insurance corresponds to the risk being

taken by the vendor in accepting a lower trust level in the authentication.

[0259] Instead of just lowering their actual required trust level, the vendor has the

option of purchasing insurance to protect itself from the additional risk associated with

WO 2011/068738 PCT/US2010/058087

-76-

a lower level of trust in the authentication of the user. As described above, it may be

advantageous for the vendor to only consider purchasing such insurance to cover the

trust gap in conditions where the existing authentication is already above a certain

threshold.

[0260] The availability of such vendor side insurance allows the vendor the option to

either: lower his trust requirement directly at no additional cost to himself, bearing the

risk of a false authentication himself (based on the lower trust level required); or,

buying insurance for the trust gap between the authentication confidence level and his

requirement, with the trust engine 110 operator bearing the risk of the lower

confidence level which has been provided. By purchasing the insurance, the vendor

effectively keeps his high trust level requirement; because the risk of a false

authentication is shifted to the trust engine 110 operator.

[0261] If the vendor purchases insurance in step 1840, the authentication confidence

level and required trust levels are compared in step 1730 (see FIGURE 17), and the

process continues as described above.

[0262] Note that it is also possible that both the user and the vendor respond to

messages from the trust engine 110. Those of skill in the art will recognize that there

are multiple ways in which such situations can be handled. One advantageous mode

of handling the possibility of multiple responses is simply to treat the responses in a

first-come, first-served manner. For example, if the vendor responds with a lowered

required trust level and immediately thereafter the user also purchases insurance to

raise his authentication level, the authentication is first reevaluated based upon the

lowered trust requirement from the vendor. If the authentication is now positive, the

user's insurance purchase is ignored. In another advantageous mode of operation, the

user might only be charged for the level of insurance required to meet the new,

lowered trust requirement of the vendor (if a trust gap remained even with the lowered

vendor trust requirement).

[0263] If no response from either party is received during the trust arbitrage process

at step 1850 within the time limit set for the authentication, the arbitrage is reevaluated

in step 1805. This effectively begins the arbitrage process again. If the time limit was

WO 2011/068738 PCT/US2010/058087

-77-

final or other circumstances prevent further arbitrage in step 1805, a negative

authentication is generated by the transaction engine 205 in step 1810 and returned to

the vendor in step 1055 (see FIGURE 10). If not, new messages may be sent to the

user and vendor, and the process may be repeated as desired.

[0264] Note that for certain types of transactions, for instance, digitally signing

documents which are not part of a transaction, there may not necessarily be a vendor

or other third party; therefore the transaction is primarily between the user and the

trust engine 110. In circumstances such as these, the trust engine 110 will have its

own required trust level which must be satisfied in order to generate a positive

authentication. However, in such circumstances, it will often not be desirable for the

trust engine 110 to offer insurance to the user in order for him to raise the confidence

of his own signature.

[0265] The process described above and shown in FIGURES 16-18 may be carried

out using various communications modes as described above with reference to the

trust engine 110. For instance, the messages may be web-based and sent using SSL

connections between the trust engine 110 and applets downloaded in real time to

browsers running on the user or vendor systems. In an alternate mode of operation,

certain dedicated applications may be in use by the user and vendor which facilitate

such arbitrage and insurance transactions. In another alternate mode of operation,

secure email operations may be used to mediate the arbitrage described above, thereby

allowing deferred evaluations and batch processing of authentications. Those of skill

in the art will recognize that different communications modes may be used as are

appropriate for the circumstances and authentication requirements of the vendor.

[0266] The following description with reference to FIGURE 19 describes a sample

transaction which integrates the various aspects of the present invention as described

above. This example illustrates the overall process between a user and a vendor as

mediates by the trust engine 110. Although the various steps and components as

described in detail above may be used to carry out the following transaction, the

process illustrated focuses on the interaction between the trust engine 110, user and

vendor.

WO 2011/068738 PCT/US2010/058087

-78-

[0267] The transaction begins when the user, while viewing web pages online, fills

out an order form on the web site of the vendor in step 1900. The user wishes to

submit this order form to the vendor, signed with his digital signature. In order to do

this, the user submits the order form with his request for a signature to the trust engine

110 in step 1905. The user will also provide authentication data which will be used as

described above to authenticate his identity.

[0268] In step 1910 the authentication data is compared to the enrollment data by the

trust engine 110 as discussed above, and if a positive authentication is produced, the

hash of the order form, signed with the private key of the user, is forwarded to the

vendor along with the order form itself.

[0269] The vendor receives the signed form in step 1915, and then the vendor will

generate an invoice or other contract related to the purchase to be made in step 1920.

This contract is sent back to the user with a request for a signature in step 1925. The

vendor also sends an authentication request for this contract transaction to the trust

engine 110 in step 1930 including a hash of the contract which will be signed by both

parties. To allow the contract to be digitally signed by both parties, the vendor also

includes authentication data for itself so that the vendor's signature upon the contract

can later be verified if necessary.

[0270] As discussed above, the trust engine 110 then verifies the authentication data

provided by the vendor to confirm the vendor's identity, and if the data produces a

positive authentication in step 1935, continues with step 1955 when the data is

received from the user. If the vendor's authentication data does not match the

enrollment data of the vendor to the desired degree, a message is returned to the

vendor requesting further authentication. Trust arbitrage may be performed here if

necessary, as described above, in order for the vendor to successfully authenticate

itself to the trust engine 110.

[0271] When the user receives the contract in step 1940, he reviews it, generates

authentication data to sign it if it is acceptable in step 1945, and then sends a hash of

the contract and his authentication data to the trust engine 110 in step 1950. The trust

engine 110 verifies the authentication data in step 1955 and if the authentication is

WO 2011/068738 PCT/US2010/058087

-79-

good, proceeds to process the contract as described below. As discussed above with

reference to FIGURES 17 and 18, trust arbitrage may be performed as appropriate to

close any trust gap which exists between the authentication confidence level and the

required authentication level for the transaction.

[0272] The trust engine 110 signs the hash of the contract with the user's private key,

and sends this signed hash to the vendor in step 1960, signing the complete message

on its own behalf, i.e., including a hash of the complete message (including the user's

signature) encrypted with the private key 510 of the trust engine 110. This message is

received by the vendor in step 1965. The message represents a signed contract (hash

of contract encrypted using user's private key) and a receipt from the trust engine 110

(the hash of the message including the signed contract, encrypted using the trust

engine 110's private key).

[0273] The trust engine 110 similarly prepares a hash of the contract with the

vendor's private key in step 1970, and forwards this to the user, signed by the trust

engine 110. In this way, the user also receives a copy of the contract, signed by the

vendor, as well as a receipt, signed by the trust engine 110, for delivery of the signed

contract in step 1975.

[0274] In addition to the foregoing, an additional aspect of the invention provides a

cryptographic Service Provider Module (SPM) which may be available to a client side

application as a means to access functions provided by the trust engine 110 described

above. One advantageous way to provide such a service is for the cryptographic SPM

is to mediate communications between a third party Application Programming

Interface (API) and a trust engine 110 which is accessible via a network or other

remote connection. A sample cryptographic SPM is described below with reference to

FIGURE 20.

[0275] For example, on a typical system, a number of API's are available to

programmers. Each API provides a set of function calls which may be made by an

application 2000 running upon the system. Examples of API's which provide

programming interfaces suitable for cryptographic functions, authentication functions,

and other security function include the Cryptographic API (CAPI) 2010 provided by

WO 2011/068738 PCT/US2010/058087

- 80-

Microsoft with its Windows operating systems, and the Common Data Security

Architecture (CDSA), sponsored by IBM, Intel and other members of the Open Group.

CAPI will be used as an exemplary security API in the discussion that follows.

However, the cryptographic SPM described could be used with CDSA or other

security API's as are known in the art.

[0276] This API is used by a user system 105 or vendor system 120 when a call is

made for a cryptographic function. Included among these functions may be requests

associated with performing various cryptographic operations, such as encrypting a

document with a particular key, signing a document, requesting a digital certificate,

verifying a signature upon a signed document, and such other cryptographic functions

as are described herein or known to those of skill in the art.

[0277] Such cryptographic functions are normally performed locally to the system

upon which CAPI 2010 is located. This is because generally the functions called

require the use of either resources of the local user system 105, such as a fingerprint

reader, or software functions which are programmed using libraries which are

executed on the local machine. Access to these local resources is normally provided

by one or more Service Provider Modules (SPM's) 2015, 2020 as referred to above

which provide resources with which the cryptographic functions are carried out. Such

SPM's may include software libraries 2015 to perform encrypting or decrypting

operations, or drivers and applications 2020 which are capable of accessing

specialized hardware 2025, such as biometric scanning devices. In much the way that

CAPI 2010 provides functions which may be used by an application 2000 of the

system 105, the SPM's 2015, 2020 provide CAPI with access to the lower level

functions and resources associated with the available services upon the system.

[0278] In accordance with the invention, it is possible to provide a cryptographic

SPM 2030 which is capable of accessing the cryptographic functions provided by the

trust engine 110 and making these functions available to an application 2000 through

CAPI 2010. Unlike embodiments where CAPI 2010 is only able to access resources

which are locally available through SPM's 2015, 2020, a cryptographic SPM 2030 as

described herein would be able to submit requests for cryptographic operations to a

WO 2011/068738 PCT/US2010/058087

- 81 -

remotely-located, network-accessible trust engine 110 in order to perform the

operations desired.

[0279] For instance, if an application 2000 has a need for a ciypto graphic operation,

such as signing a document, the application 2000 makes a function call to the

appropriate CAPI 2010 function. CAPI 2010 in turn will execute this function,

making use of the resources which are made available to it by the SPM's 2015, 2020

and the cryptographic SPM 2030. In the case of a digital signature function, the

cryptographic SPM 2030 will generate an appropriate request which will be sent to the

trust engine 110 across the communication link 125.

[0280] The operations which occur between the cryptographic SPM 2030 and the

trust engine 110 are the same operations that would be possible between any other

system and the trust engine 110. However, these functions are effectively made

available to a user system 105 through CAPI 2010 such that they appear to be locally

available upon the user system 105 itself. However, unlike ordinary SPM's 2015,

2020, the functions are being carried out on the remote trust engine 110 and the results

relayed to the cryptographic SPM 2030 in response to appropriate requests across the

communication link 125.

[0281] This cryptographic SPM 2030 makes a number of operations available to the

user system 105 or a vendor system 120 which might not otherwise be available.

These functions include without limitation: encryption and decryption of documents;

issuance of digital certificates; digital signing of documents; verification of digital

signatures; and such other operations as will be apparent to those of skill in the art.

[0282] In a separate embodiment, the present invention comprises a complete system

for performing the data securing methods of the present invention on any data set.

The computer system of this embodiment comprises a data splitting module that

comprises the functionality shown in FIGURE 8 and described herein. In one

embodiment of the present invention, the data splitting module, sometimes referred to

herein as a secure data parser, comprises a parser program or software suite which

comprises data splitting, encryption and decryption, reconstitution or reassembly

functionality. This embodiment may further comprise a data storage facility or

WO 2011/068738 PCT/US2010/058087

- 82-

multiple data storage facilities, as well. The data splitting module, or secure data

parser, comprises a cross-platform software module suite which integrates within an

electronic infrastructure, or as an add-on to any application which requires the ultimate

security of its data elements. This parsing process operates on any type of data set,

and on any and all file types, or in a database on any row, column or cell of data in

that database.

[0283] The parsing process of the present invention may, in one embodiment, be

designed in a modular tiered fashion, and any encryption process is suitable for use in

the process of the present invention. The modular tiers of the parsing and splitting

process of the present invention may include, but are not limited to, 1) cryptographic

split, dispersed and securely stored in multiple locations; 2) encrypt, cryptographically

split, dispersed and securely stored in multiple locations; 3) encrypt, cryptographically

split, encrypt each share, then dispersed and securely stored in multiple locations; and

4) encrypt, cryptographically split, encrypt each share with a different type of

encryption than was used in the first step, then dispersed and securely stored in

multiple locations.

[0284] The process comprises, in one embodiment, splitting of the data according to

the contents of a generated random number, or key and performing the same

cryptographic splitting of the key used in the encryption of splitting of the data to be

secured into two or more portions, or shares, of parsed and split data, and in one

embodiment, preferably into four or more portions of parsed and split data, encrypting

all of the portions, then scattering and storing these portions back into the database, or

relocating them to any named device, fixed or removable, depending on the requestor's

need for privacy and security. Alternatively, in another embodiment, encryption may

occur prior to the splitting of the data set by the splitting module or secure data parser.

The original data processed as described in this embodiment is encrypted and

obfuscated and is secured. The dispersion of the encrypted elements, if desired, can be

virtually anywhere, including, but not limited to, a single server or data storage device,

or among separate data storage facilities or devices. Encryption key management in

WO 2011/068738 PCT/US2010/058087

-83-

one embodiment may be included within the software suite, or in another embodiment

may be integrated into an existing infrastructure or any other desired location.

[0285] A cryptographic split (cryptosplit) partitions the data into N number of

shares. The partitioning can be on any size unit of data, including an individual bit,

bits, bytes, kilobytes, megabytes, or larger units, as well as any pattern or combination

of data unit sizes whether predetermined or randomly generated. The units can also be

of different sized, based on either a random or predetermined set of values. This

means the data can be viewed as a sequence of these units. In this manner the size of

the data units themselves may render the data more secure, for example by using one

or more predetermined or randomly generated pattern, sequence or combination of

data unit sizes. The units are then distributed (either randomly or by a predetermined

set of values) into the N shares. This distribution could also involve a shuffling of the

order of the units in the shares. It is readily apparent to those of ordinary skill in the

art that the distribution of the data units into the shares may be performed according to

a wide variety of possible selections, including but not limited to size-fixed,

predetermined sizes, or one or more combination, pattern or sequence of data unit

sizes that are predetermined or randomly generated.

[0286] In some embodiments of this cryptosplit split process, the data may be any

suitable number of bytes in size, such as one, two, three, five, twenty, fifty, one

hundred, more than one hundred, or N bytes in size. One particular example of this

cryptographic split process, or cryptosplit, would be to consider the data to be 23 bytes

in size, with the data unit size chosen to be one byte, and with the number of shares

selected to be 4. Each byte would be distributed into one of the 4 shares. Assuming a

random distribution, a key would be obtained to create a sequence of 23 random

numbers (rl, r2, r3 through r23), each with a value between 1 and 4 corresponding to

the four shares. Each of the units of data (in this example 23 individual bytes of data)

is associated with one of the 23 random numbers corresponding to one of the four

shares. The distribution of the bytes of data into the four shares would occur by

placing the first byte of the data into share number rl, byte two into share r2, byte

three into share r3, through the 23rd byte of data into share r23. It is readily apparent

WO 2011/068738 PCT/US2010/058087

- 84-

to those of ordinary skill in the art that a wide variety of other possible steps or

combination or sequence of steps, including the size of the data units, may be used in

the cryptosplit process of the present invention, and the above example is a non­

limiting description of one process for cryptosplitting data. To recreate the original

data, the reverse operation would be performed.

[0287] In another embodiment of the cryptosplit process of the present invention, an

option for the cryptosplitting process is to provide sufficient redundancy in the shares

such that only a subset of the shares are needed to reassemble or restore the data to its

original or useable form. As a non-limiting example, the cryptosplit may be done as a

"3 of 4" cryptosplit such that only three of the four shares are necessary to reassemble

or restore the data to its original or useable form. This is also referred to as a "M of N

cryptosplit" wherein N is the total number of shares, and M is at least one less than N.

It is readily apparent to those of ordinary skill in the art that there are many

possibilities for creating this redundancy in the cryptosplitting process of the present

invention.

[0288] In one embodiment of the cryptosplitting process of the present invention,

each unit of data is stored in two shares, the primary share and the backup share.

Using the "3 of 4" cryptosplitting process described above, any one share can be

missing, and this is sufficient to reassemble or restore the original data with no

missing data units since only three of the total four shares are required. As described

herein, a random number is generated that corresponds to one of the shares. The

random number is associated with a data unit, and stored in the corresponding share,

based on a key. One key is used, in this embodiment, to generate the primary and

backup share random number. As described herein for the cryptosplitting process of

the present invention, a set of random numbers (also referred to as primary share

numbers) from 0 to 3 are generated equal to the number of data units. Then another

set of random numbers is generated (also referred to as backup share numbers) from 1

to 3 equal to the number of data units. Each unit of data is then associated with a

primary share number and a backup share number. Alternatively, a set of random

numbers may be generated that is fewer than the number of data units, and repeating

WO 2011/068738 PCT/US2010/058087

-85-

the random number set, but this may reduce the security of the sensitive data. The

primary share number is used to determine into which share the data unit is stored.

The backup share number is combined with the primary share number to create a third

share number between 0 and 3, and this number is used to determine into which share

the data unit is stored. In this example, the equation to determine the third share

number is:

(primaiy share number + backup share number) MOD 4 = third share number.

[0289] In the embodiment described above where the primaiy share number is

between 0 and 3, and the backup share number is between 1 and 3 ensures that the

third share number is different from the primary share number. This results in the data

unit being stored in two different shares. It is readily apparent to those of ordinary

skill in the art that there are many ways of performing redundant cryptosplitting and

non-redundant cryptosplitting in addition to the embodiments disclosed herein. For

example, the data units in each share could be shuffled utilizing a different algorithm.

This data unit shuffling may be performed as the original data is split into the data

units, or after the data units are placed into the shares, or after the share is full, for

example.

[0290] The various cryptosplitting processes and data shuffling processes described

herein, and all other embodiments of the cryptosplitting and data shuffling methods of

the present invention may be performed on data units of any size, including but not

limited to, as small as an individual bit, bits, bytes, kilobytes, megabytes or larger.

[0291] An example of one embodiment of source code that would perform the

cryptosplitting process described herein is:

DATA [1:24] - array of bytes with the data to be split

SHARES[0:3; 1:24] - 2-dimensionalarray with each row representing one of the

shares

RANDOM[1:24] - array random numbers in the range of 0..3

51 = 1;

52 = 1;

53 = 1:

WO 2011/068738 PCT/US2010/058087

- 86-

S4 = l;

For J = 1 to 24 do

Begin

IF RANDOM[J[==0 then

Begin

SHARES[1,S1] = DATA [J];

SI = SI + 1;

End

EFSE IF RANDOM[J[==1 then

Begin

SHARES[2,S2] = DATA [J];

52 = S2 + 1;

END

EFSE IF RANDOM [J[==2 then

Begin

Shares[3,S3] = data [J];

53 = S3 + 1;

End

Else begin

Shares[4,S4] = data [J];

54 = S4+ 1;

End;

END;

[0292] An example of one embodiment of source code that would perform the

cryptosplitting RAID process described herein is:

[0293] Generate two sets of numbers, Primary Share is 0 to 3, BackupShare is 1 to 3

Then put each data unit into share[primaryshare[l]] and

share[(primaryshare[l]+backupshare[l]) mod 4, with the same process as in

WO 2011/068738 PCT/US2010/058087

- 87-

cryptosplitting described above. This method will be scalable to any size N, where

only N-l shares are necessary to restore the data.

[0294] The retrieval, recombining, reassembly or reconstituting of the encrypted

data elements may utilize any number of authentication techniques, including, but not

limited to, biometrics, such as fingerprint recognition, facial scan, hand scan, iris scan,

retinal scan, ear scan, vascular pattern recognition or DNA analysis. The data splitting

and/or parser modules of the present invention may be integrated into a wide variety

of infrastructure products or applications as desired.

[0295] Traditional encryption technologies known in the art rely on one or more key

used to encrypt the data and render it unusable without the key. The data, however,

remains whole and intact and subject to attack. The secure data parser of the present

invention, in one embodiment, addresses this problem by performing a cryptographic

parsing and splitting of the encrypted fde into two or more portions or shares, and in

another embodiment, preferably four or more shares, adding another layer of

encryption to each share of the data, then storing the shares in different physical and/or

logical locations. When one or more data shares are physically removed from the

system, either by using a removable device, such as a data storage device, or by

placing the share under another party's control, any possibility of compromise of

secured data is effectively removed.

[0296] An example of one embodiment of the secure data parser of the present

invention and an example of how it may be utilized is shown in FIGURE 21 and

described below. However, it is readily apparent to those of ordinary skill in the art

that the secure data parser of the present invention may be utilized in a wide variety of

ways in addition to the non-limiting example below. As a deployment option, and in

one embodiment, the secure data parser may be implemented with external session key

management or secure internal storage of session keys. Upon implementation, a

Parser Master Key will be generated which will be used for securing the application

and for encryption purposes. It should be also noted that the incorporation of the

Parser Master key in the resulting secured data allows for a flexibility of sharing of

secured data by individuals within a workgroup, enterprise or extended audience.

WO 2011/068738 PCT/US2010/058087

-88-

[0297] As shown in Figure 21, this embodiment of the present invention shows the

steps of the process performed by the secure data parser on data to store the session

master key with the parsed data:

[0298] 1. Generating a session master key and encrypt the data using RS 1

stream cipher.

[0299] 2. Separating the resulting encrypted data into four shares or portions of

parsed data according to the pattern of the session master key.

[0300] 3 .In this embodiment of the method, the session master key will be stored

along with the secured data shares in a data depository. Separating the session master

key according to the pattern of the Parser Master Key and append the key data to the

encrypted parsed data.

[0301] 4. The resulting four shares of data will contain encrypted portions of

the original data and portions of the session master key. Generate a stream cipher key

for each of the four data shares.

[0302] 5. Encrypting each share, then store the encryption keys in different

locations from the encrypted data portions or shares: Share 1 gets Key 4, Share 2 gets

Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

[0303] To restore the original data format, the steps are reversed.

[0304] It is readily apparent to those of ordinary skill in the art that certain steps of

the methods described herein may be performed in different order, or repeated

multiple times, as desired. It is also readily apparent to those skilled in the art that the

portions of the data may be handled differently from one another. For example,

multiple parsing steps may be performed on only one portion of the parsed data. Each

portion of parsed data may be uniquely secured in any desirable way provided only

that the data may be reassembled, reconstituted, reformed, decrypted or restored to its

original or other usable form.

[0305] As shown in FIGURE 22 and described herein, another embodiment of the

present invention comprises the steps of the process performed by the secure data

parser on data to store the session master key data in one or more separate key

management table:

WO 2011/068738 PCT/US2010/058087

- 89-

[0306] 1. Generating a session master key and encrypt the data using RSI stream

cipher.

[0307] 2. Separating the resulting encrypted data into four shares or portions of

parsed data according to the pattern of the session master key.

[0308] 3. In this embodiment of the method of the present invention, the session

master key will be stored in a separate key management table in a data depository.

Generating a unique transaction ID for this transaction. Storing the transaction ID and

session master key in a separate key management table. Separating the transaction ID

according to the pattern of the Parser Master Key and append the data to the encrypted

parsed or separated data.

[0309] 4. The resulting four shares of data will contain encrypted portions of the

original data and portions of the transaction ID.

[0310] 5. Generating a stream cipher key for each of the four data shares.

[0311] 6. Encrypting each share, then store the encryption keys in different

locations from the encrypted data portions or shares: Share 1 gets Key 4, Share 2 gets

Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

[0312] To restore the original data format, the steps are reversed.

[0313] It is readily apparent to those of ordinary skill in the art that certain steps of

the method described herein may be performed in different order, or repeated multiple

times, as desired. It is also readily apparent to those skilled in the art that the portions

of the data may be handled differently from one another. For example, multiple

separating or parsing steps may be performed on only one portion of the parsed data.

Each portion of parsed data may be uniquely secured in any desirable way provided

only that the data may be reassembled, reconstituted, reformed, decrypted or restored

to its original or other usable form.

[0314] As shown in Figure 23, this embodiment of the present invention shows the

steps of the process performed by the secure data parser on data to store the session

master key with the parsed data:

[0315] 1. Accessing the parser master key associated with the authenticated user

[0316] 2. Generating a unique Session Master key

WO 2011/068738 PCT/US2010/058087

-90-

[0317] 3. Derive an Intermediary Key from an exclusive OR function of the

Parser Master Key and Session Master key

[0318] 4. Optional encryption of the data using an existing or new encryption

algorithm keyed with the Intermediary Key.

[0319] 5. Separating the resulting optionally encrypted data into four shares or

portions of parsed data according to the pattern of the Intermediary key.

[0320] 6. In this embodiment of the method, the session master key will be stored

along with the secured data shares in a data depository. Separating the session master

key according to the pattern of the Parser Master Key and append the key data to the

optionally encrypted parsed data shares.

[0321] 7. The resulting multiple shares of data will contain optionally encrypted

portions of the original data and portions of the session master key.

[0322] 8. Optionally generate an encryption key for each of the four data shares.

[0323] 9. Optionally encrypting each share with an existing or new encryption

algorithm, then store the encryption keys in different locations from the encrypted data

portions or shares: for example, Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets

Key 2, Share 4 gets Key 3.

[0324] To restore the original data format, the steps are reversed.

[0325] It is readily apparent to those of ordinary skill in the art that certain steps of

the methods described herein may be performed in different order, or repeated

multiple times, as desired. It is also readily apparent to those skilled in the art that the

portions of the data may be handled differently from one another. For example,

multiple parsing steps may be performed on only one portion of the parsed data. Each

portion of parsed data may be uniquely secured in any desirable way provided only

that the data may be reassembled, reconstituted, reformed, decrypted or restored to its

original or other usable form.

[0326] As shown in FIGURE 24 and described herein, another embodiment of the

present invention comprises the steps of the process performed by the secure data

parser on data to store the session master key data in one or more separate key

management table:

WO 2011/068738 PCT/US2010/058087

-91 -

[0327] 1. Accessing the Parser Master Key associated with the authenticated user

[0328] 2. Generating a unique Session Master Key

[0329] 3. Derive an Intermediary Key from an exclusive OR function of the

Parser Master Key and Session Master key

[0330] 4. Optionally encrypt the data using an existing or new encryption

algorithm keyed with the Intermediary Key.

[0331] 5. Separating the resulting optionally encrypted data into four shares or

portions of parsed data according to the pattern of the Intermediary Key.

[0332] 6. In this embodiment of the method of the present invention, the session

master key will be stored in a separate key management table in a data depository.

Generating a unique transaction ID for this transaction. Storing the transaction ID and

session master key in a separate key management table or passing the Session Master

Key and transaction ID back to the calling program for external management.

Separating the transaction ID according to the pattern of the Parser Master Key and

append the data to the optionally enciypted parsed or separated data.

[0333] 7. The resulting four shares of data will contain optionally encrypted

portions of the original data and portions of the transaction ID.

[0334] 8. Optionally generate an encryption key for each of the four data shares.

[0335] 9. Optionally encrypting each share, then store the encryption keys in

different locations from the encrypted data portions or shares. For example: Share 1

gets Key 4, Share 2 gets Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

[0336] To restore the original data format, the steps are reversed.

[0337] It is readily apparent to those of ordinaiy skill in the art that certain steps of

the method described herein may be performed in different order, or repeated multiple

times, as desired. It is also readily apparent to those skilled in the art that the portions

of the data may be handled differently from one another. For example, multiple

separating or parsing steps may be performed on only one portion of the parsed data.

Each portion of parsed data may be uniquely secured in any desirable way provided

only that the data may be reassembled, reconstituted, reformed, decrypted or restored

to its original or other usable form.

WO 2011/068738 PCT/US2010/058087

-92-

[0338] A wide variety of encryption methodologies are suitable for use in the

methods of the present invention, as is readily apparent to those skilled in the art. The

One Time Pad algorithm, is often considered one of the most secure encryption

methods, and is suitable for use in the method of the present invention. Using the One

Time Pad algorithm requires that a key be generated which is as long as the data to be

secured. The use of this method may be less desirable in certain circumstances such

as those resulting in the generation and management of very long keys because of the

size of the data set to be secured. In the One-Time Pad (OTP) algorithm, the simple

exclusive-or function, XOR, is used. For two binary streams x and y of the same

length, x XOR y means the bitwise exclusive-or of x and y.

[0339] At the bit level is generated:

0 XOR 0 = 0

0 XOR1 = 1

1XOR 0 = 1

1XOR1= 0

[0340] An example of this process is described herein for an n-byte secret, s, (or data

set) to be split. The process will generate an n-byte random value, a, and then set:

b = a XOR s.

[0341] Note that one can derive "s" via the equation:

s = a XOR b.

[0342] The values a and b are referred to as shares or portions and are placed in

separate depositories. Once the secret s is split into two or more shares, it is discarded

in a secure manner.

[0343] The secure data parser of the present invention may utilize this function,

performing multiple XOR functions incorporating multiple distinct secret key values:

Kl, K2, K3, Kn, K5. At the beginning of the operation, the data to be secured is

passed through the first encryption operation, secure data = data XOR secret key 5:

S = D XOR K5

[0344] In order to securely store the resulting encrypted data in, for example, four

shares, SI, S2, S3, Sn, the data is parsed and split into "n" segments, or shares,

WO 2011/068738 PCT/US2010/058087

-93-

according to the value of K5. This operation results in "n" pseudorandom shares of

the original encrypted data. Subsequent XOR functions may then be performed on

each share with the remaining secret key values, for example: Secure data segment 1 =

encrypted data share 1 XOR secret key 1:

SD1 = S1 XORK1

SD2 = S2 XOR K2

SD3 = S3 XOR K3

SDn = Sn XOR Kn.

[0345] In one embodiment, it may not be desired to have any one depository contain

enough information to decrypt the information held there, so the key required to

decrypt the share is stored in a different data depository:

Depository 1: SD 1, Kn

Depository 2: SD2, K1

Depository 3: SD3, K2

Depository n: SDn, K3.

[0346] Additionally, appended to each share may be the information required to

retrieve the original session encryption key, K5. Therefore, in the key management

example described herein, the original session master key is referenced by a

transaction ID split into "n" shares according to the contents of the installation

dependant Parser Master Key (TID1, TID2, TID3, TIDn):

Depository 1: SD 1, Kn, TID1

Depository 2: SD2, Kl, TID2

Depository 3: SD3, K2, TID3

Depository n: SDn, K3, TIDn.

[0347] In the incorporated session key example described herein, the session master

key is split into "n" shares according to the contents of the installation dependant

Parser Master Key (SKI, SK2, SK3, SKn):

Depository 1: SD1, Kn, SKI

Depository 2: SD2, Kl, SK2

Depository 3: SD3, K2, SK3

WO 2011/068738 PCT/US2010/058087

-94-

Depository n: SDn, K3, SKn.

[0348] Unless all four shares are retrieved, the data cannot be reassembled according

to this example. Even if all four shares are captured, there is no possibility of

reassembling or restoring the original information without access to the session master

key and the Parser Master Key.

10349] This example has described an embodiment of the method of the present

invention, and also describes, in another embodiment, the algorithm used to place

shares into depositories so that shares from all depositories can be combined to form

the secret authentication material. The computations needed are very simple and fast.

However, with the One Time Pad (OTP) algorithm there may be circumstances that

cause it to be less desirable, such as a large data set to be secured, because the key size

is the same size as the data to be stored. Therefore, there would be a need to store and

transmit about twice the amount of the original data which may be less desirable under

certain circumstances.

Stream Cipher RS 1

[0350] The stream cipher RS 1 splitting technique is veiy similar to the OTP splitting

technique described herein. Instead of an n-byte random value, an n' = min(n, 16)-

byte random value is generated and used to key the RS 1 Stream Cipher algorithm.

The advantage of the RS 1 Stream Cipher algorithm is that a pseudorandom key is

generated from a much smaller seed number. The speed of execution of the RSI

Stream Cipher encryption is also rated at approximately 10 times the speed of the well

known in the art Triple DES enciyption without compromising security. The RS 1

Stream Cipher algorithm is well known in the art, and may be used to generate the

keys used in the XOR function. The RS 1 Stream Cipher algorithm is interoperable

with other commercially available stream cipher algorithms, such as the RC4™ stream

cipher algorithm of RSA Security, Inc and is suitable for use in the methods of the

present invention.

[0351] Using the key notation above, KI thru K5 are now an n' byte random values

and we set:

WO 2011/068738 PCT/US2010/058087

-95-

SD1 =S1 XORE(Kl)

SD2 = S2 XORE(K2)

SD3 = S3 XOR E(K3)

SDn = Sn XOR E(Kn)

where E(K1) thru E(Kn) are the first n' bytes of output from the RSI Stream Cipher

algorithm keyed by K1 thru Kn. The shares are now placed into data depositories as

described herein.

[0352] In this stream cipher RSI algorithm, the required computations needed are

nearly as simple and fast as the OTP algorithm. The benefit in this example using the

RS 1 Stream Cipher is that the system needs to store and transmit on average only

about 16 bytes more than the size of the original data to be secured per share. When

the size of the original data is more than 16 bytes, this RSI algorithm is more efficient

than the OTP algorithm because it is simply shorter. It is readily apparent to those of

ordinary skill in the art that a wide variety of encryption methods or algorithms are

suitable for use in the present invention, including, but not limited to RS 1, OTP,

RC4™, Triple DES and AES.

[0353] There are major advantages provided by the data security methods and

computer systems of the present invention over traditional encryption methods. One

advantage is the security gained from moving shares of the data to different locations

on one or more data depositories or storage devices, that may be in different logical,

physical or geographical locations. When the shares of data are split physically and

under the control of different personnel, for example, the possibility of compromising

the data is greatly reduced.

[0354] Another advantage provided by the methods and system of the present

invention is the combination of the steps of the method of the present invention for

securing data to provide a comprehensive process of maintaining security of sensitive

data. The data is encrypted with a secure key and split into one or more shares, and in

one embodiment, four shares, according to the secure key. The secure key is stored

safely with a reference pointer which is secured into four shares according to a secure

key. The data shares are then encrypted individually and the keys are stored safely

WO 2011/068738 PCT/US2010/058087

-96-

with different encrypted shares. When combined, the entire process for securing data

according to the methods disclosed herein becomes a comprehensive package for data

security.

[0355] The data secured according to the methods of the present invention is readily

retrievable and restored, reconstituted, reassembled, decrypted, or otherwise returned

into its original or other suitable form for use. In order to restore the original data, the

following items may be utilized:

[0356] 1. All shares or portions of the data set.

[0357] 2. Knowledge of and ability to reproduce the process flow of the method

used to secure the data.

[0358] 3. Access to the session master key.

[0359] 4. Access to the Parser Master Key.

[0360] Therefore, it may be desirable to plan a secure installation wherein at least

one of the above elements may be physically separated from the remaining

components of the system (under the control of a different system administrator for

example).

[0361] Protection against a rogue application invoking the data securing methods

application may be enforced by use of the Parser Master Key. A mutual

authentication handshake between the secure data parser and the application may be

required in this embodiment of the present invention prior to any action taken.

[0362] The security of the system dictates that there be no "backdoor" method for

recreation of the original data. For installations where data recovery issues may arise,

the secure data parser can be enhanced to provide a mirror of the four shares and

session master key depository. Hardware options such as RAID (redundant array of

inexpensive disks, used to spread information over several disks) and software options

such as replication can assist as well in the data recovery planning.

Key Management

[0363] In one embodiment of the present invention, the data securing method uses

three sets of keys for an encryption operation. Each set of keys may have individual

WO 2011/068738 PCT/US2010/058087

-97-

key storage, retrieval, security and recovery options, based on the installation. The

keys that may be used, include, but are not limited to:

The Parser Master Key

[0364] This key is an individual key associated with the installation of the secure

data parser. It is installed on the server on which the secure data parser has been

deployed. There are a variety of options suitable for securing this key including, but

not limited to, a smart card, separate hardware key store, standard key stores, custom

key stores or within a secured database table, for example.

The Session Master Key

[0365] A Session Master Key may be generated each time data is secured. The

Session Master Key is used to encrypt the data prior to the parsing and splitting

operations. It may also be incorporated (if the Session Master Key is not integrated

into the parsed data) as a means of parsing the encrypted data. The Session Master

Key may be secured in a variety of manners, including, but not limited to, a standard

key store, custom key store, separate database table, or secured within the encrypted

shares, for example.

The Share Encryption Keys

[0366] For each share or portions of a data set that is created, an individual Share

Encryption Key may be generated to further encrypt the shares. The Share Encryption

Keys may be stored in different shares than the share that was encrypted.

WO 2011/068738 PCT/US2010/058087

-98-

[0367] It is readily apparent to those of ordinary skill in the art that the data securing

methods and computer system of the present invention are widely applicable to any

type of data in any setting or environment. In addition to commercial applications

conducted over the Internet or between customers and vendors, the data securing

methods and computer systems of the present invention are highly applicable to non­

commercial or private settings or environments. Any data set that is desired to be kept

secure from any unauthorized user may be secured using the methods and systems

described herein. For example, access to a particular database within a company or

organization may be advantageously restricted to only selected users by employing the

methods and systems of the present invention for securing data. Another example is

the generation, modification or access to documents wherein it is desired to restrict

access or prevent unauthorized or accidental access or disclosure outside a group of

selected individuals, computers or workstations. These and other examples of the

ways in which the methods and systems of data securing of the present invention are

applicable to any non-commercial or commercial environment or setting for any

setting, including, but not limited to any organization, government agency or

corporation.

[0368] In another embodiment of the present invention, the data securing method

uses three sets of keys for an encryption operation. Each set of keys may have

individual key storage, retrieval, security and recovery options, based on the

installation. The keys that may be used, include, but are not limited to:

1. The Parser Master Key

[0369] This key is an individual key associated with the installation of the secure

data parser. It is installed on the server on which the secure data parser has been

deployed. There are a variety of options suitable for securing this key including, but

not limited to, a smart card, separate hardware key store, standard key stores, custom

key stores or within a secured database table, for example.

2. The Session Master Key

[0370] A Session Master Key may be generated each time data is secured. The

Session Master Key is used in conjunction with the Parser Master key to derive the

WO 2011/068738 PCT/US2010/058087

-99-

Tntermediary Key. The Session Master Key may be secured in a variety of manners,

including, but not limited to, a standard key store, custom key store, separate database

table, or secured within the encrypted shares, for example.

3. The Intermediary Key

[0371] An Intermediary Key may be generated each time data is secured. The

Intermediary Key is used to encrypt the data prior to the parsing and splitting

operation. It may also be incorporated as a means of parsing the encrypted data.

4. The Share Encryption Keys

[0372] For each share or portions of a data set that is created, an individual Share

Encryption Key may be generated to further encrypt the shares. The Share Encryption

Keys may be stored in different shares than the share that was encrypted.

WO 2011/068738 PCT/US2010/058087

- 100-

[0373] It is readily apparent to those of ordinary skill in the art that the data securing

methods and computer system of the present invention are widely applicable to any

type of data in any setting or environment. In addition to commercial applications

conducted over the Internet or between customers and vendors, the data securing

methods and computer systems of the present invention are highly applicable to non­

commercial or private settings or environments. Any data set that is desired to be kept

secure from any unauthorized user may be secured using the methods and systems

described herein. For example, access to a particular database within a company or

organization may be advantageously restricted to only selected users by employing the

methods and systems of the present invention for securing data. Another example is

the generation, modification or access to documents wherein it is desired to restrict

access or prevent unauthorized or accidental access or disclosure outside a group of

selected individuals, computers or workstations. These and other examples of the

ways in which the methods and systems of data securing of the present invention are

applicable to any non-commercial or commercial environment or setting for any

setting, including, but not limited to any organization, government agency or

corporation.

Workgroup, Project, Individual PC/Laptop or Cross Platform Data Security

[0374] The data securing methods and computer systems of the present invention are

also useful in securing data by workgroup, project, individual PC/'Laptop and any

other platform that is in use in, for example, businesses, offices, government agencies,

or any setting in which sensitive data is created, handled or stored. The present

invention provides methods and computer systems to secure data that is known to be

sought after by organizations, such as the U.S. Government, for implementation across

the entire government organization or between governments at a state or federal level.

[0375] The data securing methods and computer systems of the present invention

provide the ability to not only parse and split flat files but also data fields, sets and or

table of any type. Additionally, all forms of data are capable of being secured under

this process, including, but not limited to, text, video, images, biometrics and voice

WO 2011/068738 PCT/US2010/058087

- 101 -

data. Scalability, speed and data throughput of the methods of securing data of the

present invention are only limited to the hardware the user has at their disposal.

[0376] In one embodiment of the present invention, the data securing methods are

utilized as described below in a workgroup environment. In one embodiment, as

shown in FIGURE 23 and described below, the Workgroup Scale data securing

method of the present invention uses the private key management functionality of the

TrustEngine to store the user/group relationships and the associated private keys

(Parser Group Master Keys) necessary for a group of users to share secure data. The

method of the present invention has the capability to secure data for an enterprise,

workgroup, or individual user, depending on how the Parser Master Key was

deployed.

[0377] In one embodiment, additional key management and user/group management

programs may be provided, enabling wide scale workgroup implementation with a

single point of administration and key management. Key generation, management and

revocation are handled by the single maintenance program, which all become

especially important as the number of users increase. In another embodiment, key

management may also be set up across one or several different system administrators,

which may not allow any one person or group to control data as needed. This allows

for the management of secured data to be obtained by roles, responsibilities,

membership, rights, etc., as defined by an organization, and the access to secured data

can be limited to just those who are permitted or required to have access only to the

portion they are working on, while others, such as managers or executives, may have

access to all of the secured data. This embodiment allows for the sharing of secured

data among different groups within a company or organization while at the same time

only allowing certain selected individuals, such as those with the authorized and

predetermined roles and responsibilities, to observe the data as a whole. In addition,

this embodiment of the methods and systems of the present invention also allows for

the sharing of data among, for example, separate companies, or separate departments

or divisions of companies, or any separate organization departments, groups, agencies,

or offices, or the like, of any government or organization or any kind, where some

WO 2011/068738 PCT/US2010/058087

- 102 -

sharing is required, but not any one party may be permitted to have access to all the

data. Particularly apparent examples of the need and utility for such a method and

system of the present invention are to allow sharing, but maintain security, in between

government areas, agencies and offices, and between different divisions, departments

or offices of a large company, or any other organization, for example.

[0378] An example of the applicability of the methods of the present invention on a

smaller scale is as follows. A Parser Master key is used as a serialization or branding

of the secure data parser to an organization. As the scale of use of the Parser Master

key is reduced from the whole enterprise to a smaller workgroup, the data securing

methods described herein are used to share files within groups of users.

[0379] In the example shown in FIGURE 25 and described below, there are six users

defined along with their title or role within the organization. The side bar represents

five possible groups that the users can belong to according to their role. The arrow

represents membership by the user in one or more of the groups.

[0380] When configuring the secure data parser for use in this example, the system

administrator accesses the user and group information from the operating system by a

maintenance program. This maintenance program generates and assigns Parser Group

Master Keys to users based on their membership in groups.

[0381] In this example, there are three members in the Senior Staff group. For this

group, the actions would be:

[0382] 1. Access Parser Group Master Key for the Senior Staff group (generate

a key if not available);

[0383] 2. Generate a digital certificate associating CEO with the Senior Staff

group;

[0384] 3. Generate a digital certificate associating CFO with the Senior Staff

group;

[0385] 4. Generate a digital certificate associating Vice President, Marketing

with the Senior Staff group.

[0386] The same set of actions would be done for each group, and each member

within each group. When the maintenance program is complete, the Parser Group

WO 2011/068738 PCT/US2010/058087

- 103 -

Master Key becomes a shared credential for each member of the group. Revocation of

the assigned digital certificate may be done automatically when a user is removed

from a group through the maintenance program without affecting the remaining

members of the group.

[0387] Once the shared credentials have been defined, the parsing and splitting

process remains the same. When a file, document or data element is to be secured, the

user is prompted for the target group to be used when securing the data. The resulting

secured data is only accessible by other members of the target group. This

functionality of the methods and systems of the present invention may be used with

any other computer system or software platform, any may be, for example, integrated

into existing application programs or used standalone for file security.

[0388] It is readily apparent to those of ordinary skill in the art that any one or

combination of encryption algorithms are suitable for use in the methods and systems

of the present invention. For example, the encryption steps may, in one embodiment,

be repeated to produce a multi-layered encryption scheme. In addition, a different

encryption algorithm, or combination of encryption algorithms, may be used in repeat

encryption steps such that different encryption algorithms are applied to the different

layers of the multi-layered encryption scheme. As such, the encryption scheme itself

may become a component of the methods of the present invention for securing

sensitive data from unauthorized use or access.

[0389] The secure data parser may include as an internal component, as an external

component, or as both an error-checking component. For example, in one suitable

approach, as portions of data are created using the secure data parser in accordance

with the present invention, to assure the integrity of the data within a portion, a hash

value is taken at preset intervals within the portion and is appended to the end of the

interval. The hash value is a predictable and reproducible numeric representation of

the data. If any bit within the data changes, the hash value would be different. A

scanning module (either as a stand-alone component external to the secure data parser

or as an internal component) may then scan the portions of data generated by the

secure data parser. Each portion of data (or alternatively, less than all portions of data

WO 2011/068738 PCT/US2010/058087

- 104 -

according to some interval or by a random or pseudo-random sampling) is compared

to the appended hash value or values and an action may be taken. This action may

include a report of values that match and do not match, an alert for values that do not

match, or invoking of some external or internal program to trigger a recovery of the

data. For example, recovery of the data could be performed by invoking a recovery

module based on the concept that fewer than all portions may be needed to generate

original data in accordance with the present invention.

[0390] Any other suitable integrity checking may be implemented using any suitable

integrity information appended anywhere in all or a subset of data portions. Integrity

information may include any suitable information that can be used to determine the

integrity of data portions. Examples of integrity information may include hash values

computed based on any suitable parameter (e.g., based on respective data portions),

digital signature information, message authentication code (MAC) information, any

other suitable information, or any combination thereof.

[0391] The secure data parser of the present invention may be used in any suitable

application. Namely, the secure data parser described herein has a variety of

applications in different areas of computing and technology. Several such areas are

discussed below. It will be understood that these are merely illustrative in nature and

that any other suitable applications may make use of the secure data parser. It will

further be understood that the examples described are merely illustrative embodiments

that may be modified in any suitable way in order to satisfy any suitable desires. For

example, parsing and splitting may be based on any suitable units, such as by bits, by

bytes, by kilobytes, by megabytes, by any combination thereof, or by any other

suitable unit.

[0392] The secure data parser of the present invention may be used to implement

secure physical tokens, whereby data stored in a physical token may be required in

order to access additional data stored in another storage area. In one suitable

approach, a physical token, such as a compact USB flash drive, a floppy disk, an

optical disk, a smart card, or any other suitable physical token, may be used to store

one of at least two portions of parsed data in accordance with the present invention. In

WO 2011/068738 PCT/US2010/058087

- 105 -

order to access the original data, the USB flash drive would need to be accessed.

Thus, a personal computer holding one portion of parsed data would need to have the

USB flash drive, having the other portion of parsed data, attached before the original

data can be accessed. FIGURE 26 illustrates this application. Storage area 2500

includes a portion of parsed data 2502. Physical token 2504, having a portion of

parsed data 2506 would need to be coupled to storage area 2500 using any suitable

communications interface 2508 (e.g., USB, serial, parallel, Bluetooth, IR, IEEE 1394,

Ethernet, or any other suitable communications interface) in order to access the

original data. This is useful in a situation where, for example, sensitive data on a

computer is left alone and subject to unauthorized access attempts. By removing the

physical token (e.g., the USB flash drive), the sensitive data is inaccessible. It will be

understood that any other suitable approach for using physical tokens may be used.

[0393] The secure data parser of the present invention may be used to implement a

secure authentication system whereby user enrollment data (e.g., passwords, private

encryption keys, fingerprint templates, biometric data or any other suitable user

enrollment data) is parsed and split using the secure data parser. The user enrollment

data may be parsed and split whereby one or more portions are stored on a smart card,

a government Common Access Card, any suitable physical storage device (e.g.,

magnetic or optical disk, USB key drive, etc.), or any other suitable device. One or

more other portions of the parsed user enrollment data may be stored in the system

performing the authentication. This provides an added level of security to the

authentication process (e.g., in addition to the biometric authentication information

obtained from the biometric source, the user enrollment data must also be obtained via

the appropriate parsed and split data portion).

[0394] The secure data parser of the present invention may be integrated into any

suitable existing system in order to provide the use of its functionality in each system's

respective environment. FIGURE 27 shows a block diagram of an illustrative system

2600, which may include software, hardware, or both for implementing any suitable

application. System 2600 may be an existing system in which secure data parser 2602

may be retrofitted as an integrated component. Alternatively, secure data parser 2602

WO 2011/068738 PCT/US2010/058087

- 106 -

may be integrated into any suitable system 2600 from, for example, its earliest design

stage. Secure data parser 2600 may be integrated at any suitable level of system 2600.

For example, secure data parser 2602 may be integrated into system 2600 at a

sufficiently back-end level such that the presence of secure data parser 2602 may be

substantially transparent to an end user of system 2600. Secure data parser 2602 may

be used for parsing and splitting data among one or more storage devices 2604 in

accordance with the present invention. Some illustrative examples of systems having

the secure data parser integrated therein are discussed below.

[0395] The secure data parser of the present invention may be integrated into an

operating system kernel (e.g., Finux, Unix, or any other suitable commercial or

proprietary operating system). This integration may be used to protect data at the

device level whereby, for example, data that would ordinarily be stored in one or more

devices is separated into a certain number of portions by the secure data parser

integrated into the operating system and stored among the one or more devices. When

original data is attempted to be accessed, the appropriate software, also integrated into

the operating system, may recombine the parsed data portions into the original data in

a way that may be transparent to the end user.

[0396] The secure data parser of the present invention may be integrated into a

volume manager or any other suitable component of a storage system to protect local

and networked data storage across any or all supported platforms. For example, with

the secure data parser integrated, a storage system may make use of the redundancy

offered by the secure data parser (i.e., which is used to implement the feature of

needing fewer than all separated portions of data in order to reconstruct the original

data) to protect against data loss. The secure data parser also allows all data written to

storage devices, whether using redundancy or not, to be in the form of multiple

portions that are generated according to the parsing of the present invention. When

original data is attempted to be accessed, the appropriate software, also integrated into

the volume manager or other suitable component of the storage system, may

recombine the parsed data portions into the original data in a way that may be

transparent to the end user.

WO 2011/068738 PCT/US2010/058087

- 107 -

[0397] In one suitable approach, the secure data parser of the present invention may

be integrated into a RAID controller (as either hardware or software). This allows for

the secure storage of data to multiple drives while maintaining fault tolerance in case

of drive failure.

[0398] The secure data parser of the present invention may be integrated into a

database in order to, for example, protect sensitive table information. For example, in

one suitable approach, data associated with particular cells of a database table (e.g.,

individual cells, one or more particular columns, one or more particular rows, any

combination thereof, or an entire database table) may be parsed and separated

according to the present invention (e.g., where the different portions are stored on one

or more storage devices at one or more locations or on a single storage device).

Access to recombine the portions in order to view the original data may be granted by

traditional authentication methods (e.g., username and password query).

[0399] The secure data parser of the present invention may be integrated in any

suitable system that involves data in motion (i.e., transfer of data from one location to

another). Such systems include, for example, email, streaming data broadcasts, and

wireless (e.g., WiFi) communications. With respect to email, in one suitable

approach, the secure data parser may be used to parse outgoing messages (i.e.,

containing text, binary data, or both (e.g., fdes attached to an email message)) and

sending the different portions of the parsed data along different paths thus creating

multiple streams of data. Tf any one of these streams of data is compromised, the

original message remains secure because the system may require that more than one of

the portions be combined, in accordance with the present invention, in order to

generate the original data. In another suitable approach, the different portions of data

may be communicated along one path sequentially so that if one portion is obtained, it

may not be sufficient to generate the original data. The different portions arrive at the

intended recipient's location and may be combined to generate the original data in

accordance with the present invention.

[0400] FIGURES 28 and 29 are illustrative block diagrams of such email systems.

FIGURE 28 shows a sender system 2700, which may include any suitable hardware,

WO 2011/068738 PCT/US2010/058087

- 108 -

such as a computer terminal, personal computer, handheld device (e.g., PDA,

Blackberry), cellular telephone, computer network, any other suitable hardware, or

any combination thereof. Sender system 2700 is used to generate and/or store a

message 2704, which may be, for example, an email message, a binary data file (e.g.,

graphics, voice, video, etc.), or both. Message 2704 is parsed and split by secure data

parser 2702 in accordance with the present invention. The resultant data portions may

be communicated across one or more separate communications paths 2706 over

network 2708 (e.g., the Internet, an intranet, a LAN, WiFi, Bluetooth, any other

suitable hard-wired or wireless communications means, or any combination thereof) to

recipient system 2710. The data portions may be communicated parallel in time or

alternatively, according to any suitable time delay between the communication of the

different data portions. Recipient system 2710 may be any suitable hardware as

described above with respect to sender system 2700. The separate data portions

carried along communications paths 2706 are recombined at recipient system 2710 to

generate the original message or data in accordance with the present invention.

[0401] FIGURE 29 shows a sender system 2800, which may include any suitable

hardware, such as a computer terminal, personal computer, handheld device (e.g.,

PDA), cellular telephone, computer network, any other suitable hardware, or any

combination thereof. Sender system 2800 is used to generate and/or store a message

2804, which may be, for example, an email message, a binary data file (e.g., graphics,

voice, video, etc.), or both. Message 2804 is parsed and split by secure data parser

2802 in accordance with the present invention. The resultant data portions may be

communicated across a single communications paths 2806 over network 2808 (e.g.,

the Internet, an intranet, a LAN, WiFi, Bluetooth, any other suitable communications

means, or any combination thereof) to recipient system 2810. The data portions may

be communicated serially across communications path 2806 with respect to one

another. Recipient system 2810 may be any suitable hardware as described above

with respect to sender system 2800. The separate data portions carried along

communications path 2806 are recombined at recipient system 2810 to generate the

original message or data in accordance with the present invention.

WO 2011/068738 PCT/US2010/058087

- 109 -

[0402] It will be understood that the arrangement of FIGURES 28 and 29 are merely

illustrative. Any other suitable arrangement may be used. For example, in another

suitable approach, the features of the systems of FIGURES 28 and 29 may be

combined whereby the multi-path approach of FIGURE 28 is used and in which one

or more of communications paths 2706 are used to carry more than one portion of data

as communications path 2806 does in the context of FIGURE 29.

[0403] The secure data parser may be integrated at any suitable level of a data-in

motion system. For example, in the context of an email system, the secure data parser

may be integrated at the user-interface level (e.g., into Microsoft® Outlook), in which

case the user may have control over the use of the secure data parser features when

using email. Alternatively, the secure data parser may be implemented in a back-end

component such as at the exchange server, in which case messages may be

automatically parsed, split, and communicated along different paths in accordance

with the present invention without any user intervention.

[0404] Similarly, in the case of streaming broadcasts of data (e.g., audio, video), the

outgoing data may be parsed and separated into multiple streams each containing a

portion of the parsed data. The multiple streams may be transmitted along one or

more paths and recombined at the recipient's location in accordance with the present

invention. One of the benefits of this approach is that it avoids the relatively large

overhead associated with traditional encryption of data followed by transmission of

the encrypted data over a single communications channel. The secure data parser of

the present invention allows data in motion to be sent in multiple parallel streams,

increasing speed and efficiency.

[0405] It will be understand that the secure data parser may be integrated for

protection of and fault tolerance of any type of data in motion through any transport

medium, including, for example, wired, wireless, or physical. For example, voice over

Internet protocol (VoIP) applications may make use of the secure data parser of the

present invention. Wireless or wired data transport from or to any suitable personal

digital assistant (PDA) devices such as Blackberries and SmartPhones may be secured

using the secure data parser of the present invention. Communications using wireless

WO 2011/068738 PCT/US2010/058087

- 110­

802.11 protocols for peer to peer and hub based wireless networks, satellite

communications, point to point wireless communications, Internet client/server

communications, or any other suitable communications may involve the data in

motion capabilities of the secure data parser in accordance with the present invention.

Data communication between computer peripheral device (e.g., printer, scanner,

monitor, keyboard, network router, biometric authentication device (e.g., fingerprint

scanner), or any other suitable peripheral device) between a computer and a computer

peripheral device, between a computer peripheral device and any other suitable device,

or any combination thereof may make use of the data in motion features of the present

invention.

[0406] The data in motion features of the present invention may also apply to

physical transportation of secure shares using for example, separate routes, vehicles,

methods, any other suitable physical transportation, or any combination thereof. For

example, physical transportation of data may take place on digitaFmagnetic tapes,

floppy disks, optical disks, physical tokens, USB drives, removable hard drives,

consumer electronic devices with flash memory (e.g., Apple IPODs or other MP3

players), flash memory, any other suitable medium used for transporting data, or any

combination thereof.

[0407] The secure data parser of the present invention may provide security with the

ability for disaster recovery. According to the present invention, fewer than all

portions of the separated data generated by the secure data parser may be necessary in

order to retrieve the original data. That is, out of m portions stored, n may be the

minimum number of these m portions necessary to retrieve the original data, where n

<= m. For example, if each of four portions is stored in a different physical location

relative to the other three portions, then, if n=2 in this example, two of the locations

may be compromised whereby data is destroyed or inaccessible, and the original data

may still be retrieved from the portions in the other two locations. Any suitable value

for n or m may be used.

[0408] In addition, the n of m feature of the present invention may be used to create

a "two man rule" whereby in order to avoid entrusting a single individual or any other

WO 2011/068738 PCT/US2010/058087

- Ill -

entity with full access to what may be sensitive data, two or more distinct entities,

each with a portion of the separated data parsed by the secure data parser of the

present invention may need to agree to put their portions together in order to retrieve

the original data.

[0409] The secure data parser of the present invention may be used to provide a

group of entities with a group-wide key that allows the group members to access

particular information authorized to be accessed by that particular group. The group

key may be one of the data portions generated by the secure data parser in accordance

with the present invention that may be required to be combined with another portion

centrally stored, for example in order to retrieve the information sought. This feature

allows for, for example, secure collaboration among a group. Tt may be applied in for

example, dedicated networks, virtual private networks, intranets, or any other suitable

network.

[0410] Specific applications of this use of the secure data parser include, for

example, coalition information sharing in which, for example, multi-national friendly

government forces are given the capability to communicate operational and otherwise

sensitive data on a security level authorized to each respective country over a single

network or a dual network (i.e., as compared to the many networks involving

relatively substantial manual processes currently used). This capability is also

applicable for companies or other organizations in which information needed to be

known by one or more specific individuals (within the organization or without) may

be communicated over a single network without the need to worry about unauthorized

individuals viewing the information.

[0411] Another specific application includes a multi-level security hierarchy for

government systems. That is, the secure data parser of the present invention may

provide for the ability to operate a government system at different levels of classified

information (e.g., unclassified, classified, secret, top secret) using a single network. If

desired, more networks may be used (e.g., a separate network for top secret), but the

present invention allows for substantially fewer than current arrangement in which a

separate network is used for each level of classification.

WO 2011/068738 PCT/US2010/058087

- 112 -

[0412] It will be understood that any combination of the above described

applications of the secure data parser of the present invention may be used. For

example, the group key application can be used together with the data in motion

security application (i.e., whereby data that is communicated over a network can only

be accessed by a member of the respective group and where, while the data is in

motion, it is split among multiple paths (or sent in sequential portions) in accordance

with the present invention).

[0413] The secure data parser of the present invention may be integrated into any

middleware application to enable applications to securely store data to different

database products or to different devices without modification to either the

applications or the database. Middleware is a general term for any product that allows

two separate and already existing programs to communicate. For example, in one

suitable approach, middleware having the secure data parser integrated, may be used

to allow programs written for a particular database to communicate with other

databases without custom coding.

[0414] The secure data parser of the present invention may be implemented having

any combination of any suitable capabilities, such as those discussed herein. In some

embodiments of the present invention, for example, the secure data parser may be

implemented having only certain capabilities whereas other capabilities may be

obtained through the use of external software, hardware, or both interfaced either

directly or indirectly with the secure data parser.

[0415] FIGURE 30, for example, shows an illustrative implementation of the secure

data parser as secure data parser 3000. Secure data parser 3000 may be implemented

with very few built-in capabilities. As illustrated, secure data parser 3000 may include

built-in capabilities for parsing and splitting data into portions (also referred to herein

as shares) of data using module 3002 in accordance with the present invention. Secure

data parser 3000 may also include built in capabilities for performing redundancy in

order to be able to implement, for example, the m of n feature described above (i.e.,

recreating the original data using fewer than all shares of parsed and split data) using

module 3004. Secure data parser 3000 may also include share distribution capabilities

WO 2011/068738 PCT/US2010/058087

- 113 -

using module 3006 for placing the shares of data into buffers from which they are sent

for communication to a remote location, for storage, etc. in accordance with the

present invention. It will be understood that any other suitable capabilities may be

built into secure data parser 3000.

[0416] Assembled data buffer 3008 may be any suitable memory used to store the

original data (although not necessarily in its original form) that will be parsed and split

by secure data parser 3000. In a splitting operation, assembled data buffer 3008

provides input to secure data parser 3008. In a restore operation, assembled data

buffer 3008 may be used to store the output of secure data parser 3000.

[0417] Split shares buffers 3010 may be one or more memory modules that may be

used to store the multiple shares of data that resulted from the parsing and splitting of

original data. In a splitting operation, split shares buffers 3010 hold the output of the

secure data parser. In a restore operation, split shares buffers hold the input to secure

data parser 3000.

[0418] It will be understood that any other suitable arrangement of capabilities may

be built-in for secure data parser 3000. Any additional features may be built-in and

any of the features illustrated may be removed, made more robust, made less robust, or

may otherwise be modified in any suitable way. Buffers 3008 and 3010 are likewise

merely illustrative and may be modified, removed, or added to in any suitable way.

[0419] Any suitable modules implemented in software, hardware or both may be

called by or may call to secure data parser 3000. If desired, even capabilities that are

built into secure data parser 3000 may be replaced by one or more external modules.

As illustrated, some external modules include random number generator 3012, cipher

feedback key generator 3014, hash algorithm 3016, any one or more types of

encryption 3018, and key management 3020. It will be understood that these are

merely illustrative external modules. Any other suitable modules may be used in

addition to or in place of those illustrated.

[0420] Cipher feedback key generator 3014 may, externally to secure data parser

3000, generate for each secure data parser operation, a unique key, or random number

(using, for example, random number generator 3012), to be used as a seed value for an

WO 2011/068738 PCT/US2010/058087

- 114-

operation that extends an original session key size (e.g., a value of 128, 256, 512, or

1024 bits) into a value equal to the length of the data to be parsed and split. Any

suitable algorithm may be used for the cipher feedback key generation, including, for

example, the AES cipher feedback key generation algorithm.

[0421] In order to facilitate integration of secure data parser 3000 and its external

modules (i.e., secure data parser layer 3026) into an application layer 3024 (e.g., email

application, database application, etc.), a wrapping layer that may make use of, for

example, API function calls may be used. Any other suitable arrangement for

facilitating integration of secure data parser layer 3026 into application layer 3024

may be used.

[0422] FIGURE 31 illustratively shows how the arrangement of FIGURE 30 may be

used when a write (e.g., to a storage device), insert (e.g., in a database field), or

transmit (e.g., across a network) command is issued in application layer 3024. At step

3100 data to be secured is identified and a call is made to the secure data parser. The

call is passed through wrapper layer 3022 where at step 3102, wrapper layer 3022

streams the input data identified at step 3100 into assembled data buffer 3008. Also at

step 3102, any suitable share information, filenames, any other suitable information, or

any combination thereof may be stored (e.g., as information 3106 at wrapper layer

3022). Secure data processor 3000 then parses and splits the data it takes as input

from assembled data buffer 3008 in accordance with the present invention. It outputs

the data shares into split shares buffers 3010. At step 3104, wrapper layer 3022

obtains from stored information 3106 any suitable share information (i.e., stored by

wrapper 3022 at step 3102) and share location(s) (e.g., from one or more configuration

files). Wrapper layer 3022 then writes the output shares (obtained from split shares

buffers 3010) appropriately (e.g., written to one or more storage devices,

communicated onto a network, etc.).

[04231 FIGURE 32 illustratively shows how the arrangement of FIGURE 30 may be

used when a read (e.g., from a storage device), select (e.g., from a database field), or

receive (e.g., from a netwrork) occurs. At step 3200, data to be restored is identified

and a call to secure data parser 3000 is made from application layer 3024. At step

WO 2011/068738 PCT/US2010/058087

- 115 -

3202, from wrapper layer 3022, any suitable share information is obtained and share

location is determined. Wrapper layer 3022 loads the portions of data identified at

step 3200 into split shares buffers 3010. Secure data parser 3000 then processes these

shares in accordance with the present invention (e.g., if only three of four shares are

available, then the redundancy capabilities of secure data parser 3000 may be used to

restore the original data using only the three shares). The restored data is then stored

in assembled data buffer 3008. At step 3204, application layer 3022 converts the data

stored in assembled data buffer 3008 into its original data format (if necessary) and

provides the original data in its original format to application layer 3024.

[0424] It will be understood that the parsing and splitting of original data illustrated

in FIGURE 31 and the restoring of portions of data into original data illustrated in

FIGURE 32 is merely illustrative. Any other suitable processes, components, or both

may be used in addition to or in place of those illustrated.

[0425] FIGURE 33 is a block diagram of an illustrative process flow for parsing and

splitting original data into two or more portions of data in accordance with one

embodiment of the present invention. As illustrated, the original data desired to be

parsed and split is plain text 3306 (i.e., the word "SUMMIT" is used as an example).

It will be understood that any other type of data may be parsed and split in accordance

with the present invention. A session key 3300 is generated. If the length of session

key 3300 is not compatible with the length of original data 3306, then cipher feedback

session key 3304 may be generated.

[0426] In one suitable approach, original data 3306 may be encrypted prior to

parsing, splitting, or both. For example, as FIGURE 33 illustrates, original data 3306

may be XORed with any suitable value (e.g., with cipher feedback session key 3304,

or with any other suitable value). It will be understood that any other suitable

encryption technique may be used in place of or in addition to the XOR technique

illustrate. It will further be understood that although FIGURE 33 is illustrated in terms

of byte by byte operations, the operation may take place at the bit level or at any other

suitable level. It will further be understood that, if desired, there need not be any

encryption whatsoever of original data 3306.

WO 2011/068738 PCT/US2010/058087

- 116 -

[0427] The resultant encrypted data (or original data if no encryption took place) is

then hashed to determine how to split the encrypted (or original) data among the

output buckets (e.g., of which there are four in the illustrated example). In the

illustrated example, the hashing takes place by bytes and is a function of cipher

feedback session key 3304. It will be understood that this is merely illustrative. The

hashing may be performed at the bit level, if desired. The hashing may be a function

of any other suitable value besides cipher feedback session key 3304. In another

suitable approach, hashing need not be used. Rather, any other suitable technique for

splitting data may be employed.

[0428] FIGURE 34 is a block diagram of an illustrative process flow for restoring

original data 3306 from two or more parsed and split portions of original data 3306 in

accordance with one embodiment of the present invention. The process involves

hashing the portions in reverse (i.e., to the process of FIGURE 33) as a function of

cipher feedback session key 3304 to restore the encrypted original data (or original

data if there was no encryption prior to the parsing and splitting). The encryption key

may then be used to restore the original data (i.e., in the illustrated example, cipher

feedback session key 3304 is used to decrypt the XOR encryption by XORing it with

the encrypted data). This the restores original data 3306.

[0429] FIGURE 35 shows how bit-splitting may be implemented in the example of

FIGURES 33 and 34. A hash may be used (e.g., as a function of the cipher feedback

session key, as a function of any other suitable value) to determine a bit value at which

to split each byte of data. It will be understood that this is merely one illustrative way

in which to implement splitting at the bit level. Any other suitable technique may be

used.

[0430] It will be understood that any reference to hash functionality made herein

may be made with respect to any suitable hash algorithm. These include for example,

MD5 and SHA-1. Different hash algorithms may be used at different times and by

different components of the present invention.

[0431] After a split point has been determined in accordance with the above

illustrative procedure or through any other procedure or algorithm, a determination

WO 2011/068738 PCT/US2010/058087

- 117 -

may be made with regard to which data portions to append each of the left and right

segments. Any suitable algorithm may be used for making this determination. For

example, in one suitable approach, a tabic of all possible distributions (e.g., in the

form of pairings of destinations for the left segment and for the right segment) may be

created, whereby a destination share value for each of the left and right segment may

be determined by using any suitable hash function on corresponding data in the

session key, cipher feedback session key, or any other suitable random or pseudo­

random value, which may be generated and extended to the size of the original data.

For example, a hash function of a corresponding byte in the random or pseudo-random

value may be made. The output of the hash function is used to determine which

pairing of destinations (i.e., one for the left segment and one for the right segment) to

select from the table of all the destination combinations. Based on this result, each

segment of the split data unit is appended to the respective two shares indicated by the

table value selected as a result of the hash function.

[0432] Redundancy information may be appended to the data portions in accordance

with the present invention to allow for the restoration of the original data using fewer

than all the data portions. For example, if two out of four portions are desired to be

sufficient for restoration of data, then additional data from the shares may be

accordingly appended to each share in, for example, a round-robin manner (e.g., where

the size of the original data is 4MB, then share 1 gets its own shares as well as those of

shares 2 and 3; share 2 gets its own share as well as those of shares 3 and 4; share 3

gets its own share as well as those of shares 4 and 1; and share 4 gets its own shares as

well as those of shares 1 and 2). Any such suitable redundancy may be used in

accordance with the present invention.

[0433] It will be understood that any other suitable parsing and splitting approach

may be used to generate portions of data from an original data set in accordance with

the present invention. For example, parsing and splitting may be randomly or pseudo­

randomly processed on a bit by bit basis. A random or pseudo-random value may be

used (e.g., session key, cipher feedback session key, etc.) whereby for each bit in the

original data, the result of a hash function on corresponding data in the random or

WO 2011/068738 PCT/US2010/058087

- 118 -

pseudo-random value may indicate to which share to append the respective bit. In one

suitable approach the random or pseudo-random value may be generated as, or

extended to, 8 times the size of the original data so that the hash function may be

performed on a corresponding byte of the random or pseudo-random value with

respect to each bit of the original data. Any other suitable algorithm for parsing and

splitting data on a bit by bit level may be used in accordance with the present

invention. It will further be appreciated that redundancy data may be appended to the

data shares such as, for example, in the manner described immediately above in

accordance with the present invention.

[0434] In one suitable approach, parsing and splitting need not be random or pseudo­

random. Rather, any suitable deterministic algorithm for parsing and splitting data

may be used. For example, breaking up the original data into sequential shares may be

employed as a parsing and splitting algorithm. Another example is to parse and split

the original data bit by bit, appending each respective bit to the data shares

sequentially in a round-robin manner. It will further be appreciated that redundancy

data may be appended to the data shares such as, for example, in the manner described

above in accordance with the present invention.

[0435] In one embodiment of the present invention, after the secure data parser

generates a number of portions of original data, in order to restore the original data,

certain one or more of the generated portions may be mandatory. For example, if one

of the portions is used as an authentication share (e.g., saved on a physical token

device), and if the fault tolerance feature of the secure data parser is being used (i.e.,

where fewer than all portions are necessary to restore the original data), then even

though the secure data parser may have access to a sufficient number of portions of the

original data in order to restore the original data, it may require the authentication

share stored on the physical token device before it restores the original data. It will be

understood that any number and types of particular shares may be required based on,

for example, application, type of data, user, any other suitable factors, or any

combination thereof.

WO 2011/068738 PCT/US2010/058087

- 119 -

[0436] In one suitable approach, the secure data parser or some external component

to the secure data parser may encrypt one or more portions of the original data. The

encrypted portions may be required to be provided and decrypted in order to restore

the original data. The different encrypted portions may be encrypted with different

encryption keys. For example, this feature may be used to implement a more secure

"two man rule" whereby a first user would need to have a particular share encrypted

using a first encryption and a second user would need to have a particular share

encrypted using a second encryption key. In order to access the original data, both

users would need to have their respective encryption keys and provide their respective

portions of the original data. In one suitable approach, a public key may be used to

encrypt one or more data portions that may be a mandatory share required to restore

the original data. A private key may then be used to decrypt the share in order to be

used to restore to the original data.

[0437] Any such suitable paradigm may be used that makes use of mandatory shares

where fewer than all shares are needed to restore original data.

[0438] In one suitable embodiment of the present invention, distribution of data into

a finite number of shares of data may be processed randomly or pseudo-randomly such

that from a statistical perspective, the probability that any particular share of data

receives a particular unit of data is equal to the probability that any one of the

remaining shares will receive the unit of data. As a result, each share of data will have

an approximately equal amount of data bits.

[0439] According to another embodiment of the present invention, each of the finite

number of shares of data need not have an equal probability of receiving units of data

from the parsing and splitting of the original data. Rather certain one or more shares

may have a higher or lower probability than the remaining shares. As a result, certain

shares may be larger or smaller in terms of bit size relative to other shares. For

example, in a two-share scenario, one share may have a 1% probability of receiving a

unit of data whereas the second share has a 99% probability. It should follow,

therefore that once the data units have been distributed by the secure data parser

among the two share, the first share should have approximately 1% of the data and the

WO 2011/068738 PCT/US2010/058087

- 120-

second share 99%. Any suitable probabilities may be used in accordance with the

present invention.

[0440] It will be understood that the secure data parser may be programmed to

distribute data to shares according to an exact (or near exact) percentage as well. For

example, the secure data parser may be programmed to distribute 80% of data to a first

share and the remaining 20% of data to a second share.

[0441] According to another embodiment of the present invention, the secure data

parser may generate data shares, one or more of which have predefined sizes. For

example, the secure data parser may split original data into data portions where one of

the portions is exactly 256 bits. In one suitable approach, if it is not possible to

generate a data portion having the requisite size, then the secure data parser may pad

the portion to make it the correct size. Any suitable size may be used.

[0442] In one suitable approach, the size of a data portion may be the size of an

encryption key, a splitting key, any other suitable key, or any other suitable data

element.

[0443] As previously discussed, the secure data parser may use keys in the parsing

and splitting of data. For purposes of clarity and brevity, these keys shall be referred

to herein as "splitting keys." For example, the Session Master Key, previously

introduced, is one type of splitting key. Also, as previously discussed, splitting keys

may be secured within shares of data generated by the secure data parser. Any

suitable algorithms for securing splitting keys may be used to secure them among the

shares of data. For example, the Shamir algorithm may be used to secure the splitting

keys whereby information that may be used to reconstruct a splitting key is generated

and appended to the shares of data. Any other such suitable algorithm may be used in

accordance with the present invention.

[0444] Similarly, any suitable encryption keys may be secured within one or more

shares of data according to any suitable algorithm such as the Shamir algorithm. For

example, encryption keys used to encrypt a data set prior to parsing and splitting,

encryption keys used to encrypt a data portions after parsing and splitting, or both may

be secured using, for example, the Shamir algorithm or any other suitable algorithm.

WO 2011/068738 PCT/US2010/058087

- 121 -

[0445] According to one embodiment of the present invention, an All or Nothing

Transform (AoNT), such as a Full Package Transform, may be used to further secure

data by transforming splitting keys, encryption keys, any other suitable data elements,

or any combination thereof. For example, an encryption key used to encrypt a data set

prior to parsing and splitting in accordance with the present invention may be

transformed by an AoNT algorithm. The transformed encryption key may then be

distributed among the data shares according to, for example, the Shamir algorithm or

any other suitable algorithm. In order to reconstruct the encryption key, the encrypted

data set must be restored (e.g., not necessarily using all the data shares if redundancy

was used in accordance with the present invention) in order to access the necessary

information regarding the transformation in accordance with AoNTs as is well known

by one skilled in the art. When the original encryption key is retrieved, it may be used

to decrypt the enciypted data set to retrieve the original data set. It will be understood

that the fault tolerance features of the present invention may be used in conjunction

with the AoNT feature. Namely, redundancy data may be included in the data

portions such that fewer than all data portions are necessary to restore the encrypted

data set.

[0446] It will be understood that the AoNT may be applied to encryption keys used

to encrypt the data portions following parsing and splitting either in place of or in

addition to the encryption and AoNT of the respective encryption key corresponding

to the data set prior to parsing and splitting. Fikewise, AoNT may be applied to

splitting keys.

[0447] In one embodiment of the present invention, encryption keys, splitting keys,

or both as used in accordance with the present invention may be further encrypted

using, for example, a workgroup key in order to provide an extra level of security to a

secured data set.

[0448] In one embodiment of the present invention, an audit module may be

provided that tracks whenever the secure data parser is invoked to split data.

[0449] FIGURE 36 illustrates possible options 3600 for using the components of the

secure data parser in accordance with the invention. Each combination of options is

WO 2011/068738 PCT/US2010/058087

- 122 -

outlined below and labeled with the appropriate step numbers front FIGURE 36. The

secure data parser may be modular in nature, allowing for any known algorithm to be

used within each of the function blocks shown in FIGURE 36. For example, other key

splitting (e.g., secret sharing) algorithms such as Blakely may be used in place of

Shamir, or the AES encryption could be replaced by other known encryption

algorithms such as Triple DES. The labels shown in the example of FIGURE 36

merely depict one possible combination of algorithms for use in one embodiment of

the invention. It should be understood that any suitable algorithm or combination of

algorithms may be used in place of the labeled algorithms.

[0450] 1)3610,3612,3614,3615,3616,3617,3618,3619

[0451] Using previously encrypted data at step 3610, the data may be eventually

split into a predefined number of shares. If the split algorithm requires a key, a split

encryption key may be generated at step 3612 using a cryptographically secure

pseudo-random number generator. The split encryption key may optionally be

transformed using an All or Nothing Transform (AoNT) into a transform split key at

step 3614 before being key split to the predefined number of shares with fault

tolerance at step 3615. The data may then be split into the predefined number of

shares at step 3616. A fault tolerant scheme may be used at step 3617 to allow for

regeneration of the data from less than the total number of shares. Once the shares are

created, authentication/integrity information may be embedded into the shares at step

3618. Each share may be optionally post-encrypted at step 3619.

[0452] 2)3111,3612,3614,3615,3616,3617,3618, 3619

[0453] In some embodiments, the input data may be encrypted using an encryption

key provided by a user or an external system. The external key is provided at step

3611. For example, the key may be provided from an external key store. If the split

algorithm requires a key, the split encryption key may be generated using a

cryptographically secure pseudo-random number generator at step 3612. The split key

may optionally be transformed using an All or Nothing Transform (AoNT) into a

transform split encryption key at step 3614 before being key split to the predefined

number of shares with fault tolerance at step 3615. The data is then split to a

WO 2011/068738 PCT/US2010/058087

- 123 -

predefined number of shares at step 3616. A fault tolerant scheme may be used at step

3617 to allow for regeneration of the data from less than the total number of shares.

Once the shares are created, authentication/integrity information may be embedded

into the shares at step 3618. Each share may be optionally post-encrypted at step

3619.

[0454] 3) 3612,3613,3614,3615,3612,3614,3615,3616,3617,3618,3619

[0455] In some embodiments, an encryption key may be generated using a

cryptographically secure pseudo-random number generator at step 3612 to transform

the data. Encryption of the data using the generated encryption key may occur at step

3613. The encryption key may optionally be transformed using an All or Nothing

Transform (AoNT) into a transform encryption key at step 3614. The transform

encryption key and/or generated encryption key may then be split into the predefined

number of shares with fault tolerance at step 3615. If the split algorithm requires a

key, generation of the split encryption key using a cryptographically secure pseudo­

random number generator may occur at step 3612. The split key may optionally be

transformed using an All or Nothing Transform (AoNT) into a transform split

encryption key at step 3614 before being key split to the predefined number of shares

with fault tolerance at step 3615. The data may then be split into a predefined number

of shares at step 3616. A fault tolerant scheme may be used at step 3617 to allow for

regeneration of the data from less than the total number of shares. Once the shares are

created, authentication/integrity information will be embedded into the shares at step

3618. Each share may then be optionally post-encrypted at step 3619.

[0456] 4)3612,3614,3615,3616,3617,3618,3619

[0457] In some embodiments, the data may be split into a predefined number of

shares. If the split algorithm requires a key, generation of the split encryption key

using a cryptographically secure pseudo-random number generator may occur at step

3612. The split key may optionally be transformed using an All or Nothing Transform

(AoNT) into a transformed split key at step 3614 before being key split into the

predefined number of shares with fault tolerance at step 3615. The data may then be

split at step 3616. A fault tolerant scheme may be used at step 3617 to allow for

WO 2011/068738 PCT/US2010/058087

- 124-

regeneration of the data from less than the total number of shares. Once the shares are

created, authentication/integrity information may be embedded into the shares at step

3618. Each share may be optionally post-encrypted at step 3619.

[0458] Although the above four combinations of options are preferably used in some

embodiments of the invention, any other suitable combinations of features, steps, or

options may be used with the secure data parser in other embodiments.

[0459] The secure data parser may offer flexible data protection by facilitating

physical separation. Data may be first encrypted, then split into shares with "m of n"

fault tolerance. This allows for regeneration of the original information when less

than the total number of shares is available. For example, some shares may be lost or

corrupted in transmission. The lost or corrupted shares may be recreated from fault

tolerance or integrity information appended to the shares, as discussed in more detail

below.

[0460] In order to create the shares, a number of keys are optionally utilized by the

secure data parser. These keys may include one or more of the following:

[0461] Pre-encryption key: When pre-enciyption of the shares is selected, an external

key may be passed to the secure data parser. This key may be generated and stored

externally in a key store (or other location) and may be used to optionally encrypt data

prior to data splitting.

[0462] Split encryption key: This key may be generated internally and used by the

secure data parser to encrypt the data prior to splitting. This key may then be stored

securely within the shares using a key split algorithm.

[0463] Split session key: This key is not used with an encryption algorithm; rather, it

may be used to key the data partitioning algorithms when random splitting is selected.

When a random split is used, a split session key may be generated internally and used

by the secure data parser to partition the data into shares. This key may be stored

securely within the shares using a key splitting algorithm.

[0464] Post encryption key: When post encryption of the shares is selected, an

external key may be passed to the secure data parser and used to post encrypt the

individual shares. This key may be generated and stored externally in a key store or

WO 2011/068738 PCT/US2010/058087

- 125 -

other suitable location.

[0465] In some embodiments, when data is secured using the secure data parser in

this way, the information may only be reassembled provided that all of the required

shares and external encryption keys are present.

[0466] FIGURE 37 shows illustrative overview process 3700 for using the secure

data parser of the present invention in some embodiments. As described above, two

well-suited functions for secure data parser 3706 may include encryption 3702 and

backup 3704. As such, secure data parser 3706 may be integrated with a RAID or

backup system or a hardware or software encryption engine in some embodiments.

[0467] The primary key processes associated with secure data parser 3706 may

include one or more of pre-encryption process 3708, encrypt/transform process 3710,

key secure process 3712, parse/distribute process 3714, fault tolerance process 3716,

share authentication process 3716, and post-encryption process 3720. These processes

may be executed in several suitable orders or combinations, as detailed in FIGURE 36.

The combination and order of processes used may depend on the particular application

or use, the level of security desired, whether optional pre-encryption, post-enciyption,

or both, are desired, the redundancy desired, the capabilities or performance of an

underlying or integrated system, or any other suitable factor or combination of factors.

[0468] The output of illustrative process 3700 may be two or more shares 3722. As

described above, data may be distributed to each of these shares randomly (or pseudo­

randomly) in some embodiments. In other embodiments, a deterministic algorithm (or

some suitable combination of random, pseudo-random, and deterministic algorithms)

may be used.

[0469] In addition to the individual protection of information assets, there is

sometimes a requirement to share information among different groups of users or

communities of interest. It may then be necessary to either control access to the

individual shares within that group of users or to share credentials among those users

that would only allow members of the group to reassemble the shares. To this end, a

workgroup key may be deployed to group members in some embodiments of the

invention. The workgroup key should be protected and kept confidential, as

WO 2011/068738 PCT/US2010/058087

- 126 -

compromise of the workgroup key may potentially allow those outside the group to

access information. Some systems and methods for workgroup key deployment and

protection are discussed below.

[0470] The workgroup key concept allows for enhanced protection of information

assets by encrypting key information stored within the shares. Once this operation is

performed, even if all required shares and external keys are discovered, an attacker has

no hope of recreating the information without access to the workgroup key.

[0471] FIGURE 38 shows illustrative block diagram 3800 for storing key and

data components within the shares. In the example of diagram 3800, the optional pre­

encrypt and post-encrypt steps are omitted, although these steps may be included in

other embodiments.

[0472] The simplified process to split the data includes encrypting the data using

encryption key 3804 at encryption stage 3802. Portions of encryption key 3804 may

then be split and stored within shares 3810 in accordance with the present invention.

Portions of split encryption key 3806 may also be stored within shares 3810. Using

the split encryption key, data 3808 is then split and stored in shares 3810.

[0473] In order to restore the data, split encryption key 3806 may be retrieved and

restored in accordance with the present invention. The split operation may then be

reversed to restore the ciphertext. Encryption key 3804 may also be retrieved and

restored, and the ciphertext may then be decrypted using the encryption key.

[0474] When a workgroup key is utilized, the above process may be changed

slightly to protect the encryption key with the workgroup key. The encryption key

may then be encrypted with the workgroup key prior to being stored within the shares.

The modified steps are shown in illustrative block diagram 3900 of FIGURE 39.

[0475] The simplified process to split the data using a workgroup key includes first

encrypting the data using the encryption key at stage 3902. The encryption key may

then be encrypted with the workgroup key at stage 3904. The encryption key

encrypted with the workgroup key may then be split into portions and stored with

shares 3912. Split key 3908 may also be split and stored in shares 3912. Finally,

portions of data 3910 are split and stored in shares 3912 using split key 3908.

WO 2011/068738 PCT/US2010/058087

- 127 -

[0476] In order to restore the data, the split key may be retrieved and restored in

accordance with the present invention. The split operation may then be reversed to

restore the ciphertext in accordance with the present invention. The encryption key

(which was encrypted with the workgroup key) may be retrieved and restored. The

encryption key may then be decrypted using the workgroup key. Finally, the

ciphertext may be decrypted using the encryption key.

[0477] There are several secure methods for deploying and protecting workgroup

keys. The selection of which method to use for a particular application depends on a

number of factors. These factors may include security level required, cost,

convenience, and the number of users in the workgroup. Some commonly used

techniques used in some embodiments are provided below:

[0478] Hardware-based Key Storage

Hardware-based solutions generally provide the strongest guarantees for the security

of encryption/decryption keys in an encryption system. Examples of hardware-based

storage solutions include tamper-resistant key token devices which store keys in a

portable device (e.g., smartcard/dongle), or non-portable key storage peripherals.

These devices are designed to prevent easy duplication of key material by

unauthorized parties. Keys may be generated by a trusted authority and distributed to

users, or generated within the hardware. Additionally, many key storage systems

provide for multi-factor authentication, where use of the keys requires access both a

physical object (token) and a passphrase or biometric.

[0479] Software-based Key Storage

While dedicated hardware-based storage may be desirable for high-security

deployments or applications, other deployments may elect to store keys directly on

local hardware (e.g., disks, RAM or non-volatile RAM stores such as USB drives).

This provides a lower level of protection against insider attacks, or in instances where

an attacker is able to directly access the encryption machine.

[0480] To secure keys on disk, software-based key management often protects keys

by storing them in encrypted form under a key derived from a combination of other

authentication metrics, including: passwords and passphrases, presence of other keys

WO 2011/068738 PCT/US2010/058087

- 128 -

(e.g., from a hardware-based solution), biometrics, or any suitable combination of the

foregoing. The level of security provided by such techniques may range from the

relatively weak key protection mechanisms provided by some operating systems (e.g.,

MS Windows and Linux), to more robust solutions implemented using multi-factor

authentication.

10481] The secure data parser of the present invention may be advantageously used

in a number of applications and technologies. For example, email system, RAID

systems, video broadcasting systems, database systems, tape backup systems, or any

other suitable system may have the secure data parser integrated at any suitable level.

As previously discussed, it will be understand that the secure data parser may also be

integrated for protection and fault tolerance of any type of data in motion through any

transport medium, including, for example, wired, wireless, or physical transport

mediums. As one example, voice over Internet protocol (VoIP) applications may

make use of the secure data parser of the present invention to solve problems relating

to echoes and delays that are commonly found in VoIP. The need for network retry on

dropped packets may be eliminated by using fault tolerance, which guarantees packet

delivery even with the loss of a predetermined number of shares. Packets of data (e.g.,

network packets) may also be efficiently split and restored "on-the-fly” with minimal

delay and buffering, resulting in a comprehensive solution for various types of data in

motion. The secure data parser may act on network data packets, network voice

packets, file system data blocks, or any other suitable unit of information. In addition

to being integrated with a VoIP application, the secure data parser may be integrated

with a file-sharing application (e.g., a peer-to-peer file-sharing application), a video

broadcasting application, an electronic voting or polling application (which may

implement an electronic voting protocol and blind signatures, such as the Sensus

protocol), an email application, or any other network application that may require or

desire secure communication.

[0482] In some embodiments, support for network data in motion may be provided

by the secure data parser of the present invention in two distinct phases — a header

generation phase and a data partitioning phase. Simplified header generation process

WO 2011/068738 PCT/US2010/058087

- 129 -

4000 and simplified data partitioning process 4010 are shown in FIGURES 40A and

40B, respectively. One or both of these processes may be performed on network

packets, fde system blocks, or any other suitable information.

[0483] In some embodiments, header generation process 4000 may be performed

one time at the initiation of a network packet stream. At step 4002, a random (or

pseudo-random) split encryption key, K, may be generated. The split encryption key,

K, may then be optionally encrypted (e.g., using the workgroup key described above)

at AES key wrap step 4004. Although an AES key wrap may be used in some

embodiments, any suitable key encryption or key wrap algorithm may be used in other

embodiments. AES key wrap step 4004 may operate on the entire split encryption

key, K, or the split encryption key may be parsed into several blocks (e.g., 64-bit

blocks). AES key wrap step 4004 may then operate on blocks of the split encryption

key, if desired.

[0484] At step 4006, a secret sharing algorithm (e.g., Shamir) may be used to split

the split encryption key, K, into key shares. Each key share may then be embedded

into one of the output shares (e.g., in the share headers). Finally, a share integrity

block and (optionally) a post-authentication tag (e.g., MAC) may be appended to the

header block of each share. Each header block may be designed to fit within a single

data packet.

[0485] After header generation is complete (e.g., using simplified header generation

process 4000), the secure data parser may enter the data partitioning phase using

simplified data splitting process 4010. Each incoming data packet or data block in the

stream is encrypted using the split encryption key, K, at step 4012. At step 4014,

share integrity information (e.g., a hash H) may be computed on the resulting

ciphertext from step 4012. For example, a SHA-256 hash may be computed. At step

4106, the data packet or data block may then be partitioned into two or more data

shares using one of the data splitting algorithms described above in accordance with

the present invention. In some embodiments, the data packet or data block may be

split so that each data share contains a substantially random distribution of the

encrypted data packet or data block. The integrity information (e.g., hash H) may then

WO 2011/068738 PCT/US2010/058087

- 130-

be appended to each data share. An optional post-authentication tag (e.g., MAC) may

also be computed and appended to each data share in some embodiments.

[0486] Each data share may include metadata, which may be necessary to permit

correct reconstruction of the data blocks or data packets. This information may be

included in the share header. The metadata may include such information as

cryptographic key shares, key identities, share nonces, signatures/MAC values, and

integrity blocks. In order to maximize bandwidth efficiency, the metadata may be

stored in a compact binary format.

[0487] For example, in some embodiments, the share header includes a cleartext

header chunk, which is not encrypted and may include such elements as the Shamir

key share, per-session nonce, per-share nonce, key identifiers (e.g., a workgroup key

identifier and a post-authentication key identifier). The share header may also include

an encrypted header chunk, which is encrypted with the split encryption key. An

integrity header chunk, which may include integrity checks for any number of the

previous blocks (e.g., the previous two blocks) may also be included in the header.

Any other suitable values or information may also be included in the share header.

[0488] As shown in illustrative share format 4100 of FIGURE 41, header block 4102

may be associated with two or more output blocks 4104. Each header block, such as

header block 4102, may be designed to fit within a single network data packet. In

some embodiments, after header block 4102 is transmitted from a first location to a

second location, the output blocks may then be transmitted. Alternatively, header

block 4102 and output blocks 4104 may be transmitted at the same time in parallel.

The transmission may occur over one or more similar or dissimilar communications

paths.

[0489] Each output block may include data portion 4106 and integrity/authenticity

portion 4108. As described above, each data share may be secured using a share

integrity portion including share integrity information (e.g., a SHA-256 hash) of the

encrypted, pre-partitioned data. To verify the integrity of the outputs blocks at

recovery time, the secure data parser may compare the share integrity blocks of each

WO 2011/068738 PCT/US2010/058087

- 131 -

share and then invert the split algorithm. The hash of the recovered data may then be

verified against the share hash.

[0490] As previously mentioned, in some embodiments of the present invention, the

secure date parser may be used in conjunction with a tape backup system. For

example, an individual tape may be used as a node (i.e., portion/share) in accordance

with the present invention. Any other suitable arrangement may be used. For

example, a tape library or subsystem, which is made up of two or more tapes, may be

treated as a single node.

[0491] Redundancy may also be used with the tapes in accordance with the present

invention. For example, if a data set is apportioned among four tapes (i.e.,

portions/shares), then two of the four tapes may be necessary in order to restore the

original data. It will be understood that any suitable number of nodes (i.e., less than

the total number of nodes) may be required to restore the original data in accordance

with the redundancy features of the present invention. This substantially increases the

probability for restoration when one or more tapes expire.

[0492] Each tape may also be digitally protected with a SHA-256, HMAC hash

value, any other suitable value, or any combination thereof to insure against

tampering. Should any data on the tape or the hash value change, that tape would not

be a candidate for restoration and any minimum required number of tapes of the

remaining tapes would be used to restore the data.

[0493] In conventional tape backup systems, when a user calls for data to be written

to or read from a tape, the tape management system (TMS) presents a number that

corresponds to a physical tape mount. This tape mount points to a physical drive

where the data will be mounted. The tape is loaded either by a human tape operator or

by a tape robot in a tape silo.

[0494] Under the present invention, the physical tape mount may be considered a

logical mount point that points to a number of physical tapes. This not only increases

the data capacity but also improves the performance because of the parallelism.

WO 2011/068738 PCT/US2010/058087

- 132 -

[0495] For increased performance the tape nodes may be or may include a RAID

array of disks used for storing tape images. This allows for high-speed restoration

because the data may always be available in the protected RAID.

[0496] In any of the foregoing embodiments, the data to be secured may be

distributed into a plurality of shares using deterministic, probabilistic, or both

deterministic and probabilistic data distribution techniques. In order to prevent an

attacker from beginning a crypto attack on any cipher block, the bits from cipher

blocks may be deterministically distributed to the shares. For example, the

distribution may be performed using the BitSegment routine, or the BlockSegment

routine may be modified to allow for distribution of portions of blocks to multiple

shares. This strategy may defend against an attacker who has accumulated less than

"M" shares.

[0497] In some embodiments, a keyed secret sharing routine may be employed using

keyed information dispersal (e.g., through the use of a keyed information dispersal

algorithm or “IDA”). The key for the keyed IDA may also be protected by one or

more external workgroup keys, one or more shared keys, or any combination of

workgroup keys and shared keys. In this way, a multi-factor secret sharing scheme

may be employed. To reconstruct the data, at least "M" shares plus the workgroup

key(s) (and/or shared key(s)) may be required in some embodiments. The IDA (or the

key for the IDA) may also be driven into the encryption process. For example, the

transform may be driven into the clear text (e.g., during the pre-processing layer

before encrypting) and may further protect the clear text before it is encrypted.

[0498] For example, in some embodiments, keyed information dispersal is used to

distribute unique portions of data from a data set into two or more shares. The keyed

information dispersal may use a session key to first encrypt the data set, to distribute

unique portions of encrypted data from the data set into two or more encrypted data set

shares, or both enciypt the data set and distribute unique portions of encrypted data

from the data set into the two or more encrypted data set shares. For example, to

distribute unique portions of the data set or encrypted data set, secret sharing (or the

methods described above, such as BitSegment or BlockSegment) may be used. The

WO 2011/068738 PCT/US2010/058087

- 133 -

session key may then optionally be transformed (for example, using a full package

transform or AoNT) and shared using, for example, secret sharing (or the keyed

information dispersal and session key).

[0499] In some embodiments, the session key may be encrypted using a shared key

(e.g., a workgroup key) before unique portions of the key are distributed or shared into

two or more session key shares. Two or more user shares may then be formed by

combining at least one encrypted data set share and at least one session key share. In

forming a user share, in some embodiments, the at least one session key share may be

interleaved into an encrypted data set share. In other embodiments, the at least one

session key share may be inserted into an encrypted data set share at a location based

at least in part on the shared workgroup key. For example, keyed information

dispersal may be used to distribute each session key share into a unique encrypted data

set share to form a user share. Interleaving or inserting a session key share into an

encrypted data set share at a location based at least in part on the shared workgroup

may provide increased security in the face of cryptographic attacks. In other

embodiments, one or more session key shares may be appended to the beginning or

end of an encrypted data set share to form a user share. The collection of user shares

may then be stored separately on at least one data depository. The data depository or

depositories may be located in the same physical location (for example, on the same

magnetic or tape storage device) or geographically separated (for example, on

physically separated servers in different geographic locations). To reconstruct the

original data set, an authorized set of user shares and the shared workgroup key may

be required.

[0500] Keyed information dispersal may be secure even in the face of key-retrieval

oracles. For example, take a blockcipher E and a key-retrieval oracle for E that takes a

list (X\, Ti), ... , (Ac, Tc) of input/output pairs to the blockcipher, and returns a key K

that is consistent with the input/output examples (e.g., Yi = EK(Xi) for all /). The oracle

may return the distinguished value ± if there is no consistent key. This oracle may

model a cryptanalytic attack that may recover a key from a list of input/output

examples.

WO 2011/068738 PCT/US2010/058087

- 134-

[0501] Standard blockcipher-based schemes may fail in the presence of a key-

retrieval oracle. For example, CBC encryption or the CBC MAC may become

completely insecure in the presence of a key-retrieval oracle.

[0502] If Π//Λ 4 is an IDA scheme and TlEnc is an encryption scheme given by a mode of

operation of some blockcipher E, then (ΠΙΰΑ, IT'') provides security in the face of a

key-retrieval attack if the two schemes, when combined with an arbitrary perfect

secret-sharing scheme (PSS) as per HK1 or HK2, achieve the robust computational

secret sharing (RCSS) goal, but in the model in which the adversary has a key-

retrieval oracle.

[0503] If there exists an IDA scheme Π!ΰΑ and an encryption scheme (lEnc such that

the pair of schemes provides security in the face of key-retrieval attacks, then one way

to achieve this pair may be to have a “clever” IDA and a “dumb” encryption scheme.

Another way to achieve this pair of schemes may be to have a “dumb” IDA and a

“clever” encryption scheme.

[0504] To illustrate the use of a clever IDA and a dumb encryption scheme, in some

embodiments, the encryption scheme may be CBC and the IDA may have a “weak

privacy” property. The weak privacy property means, for example, that if the input to

the IDA is a random sequence of blocks M = Mi ... Mi and the adversary obtains

shares from a non-authorized collection, then there is some block index i such that it is

infeasible for the adversary to compute Mi. Such a weakly-private IDA may be built

by first applying to Man information-theoretic AoNT, such as Stinson’s AoNT, and

then applying a simple IDA such as BlockSegment, or a bit-efficient IDA like Rabin’s

scheme (e.g., Reed-Solomon encoding).

[0505] To illustrate the use of a dumb IDA and a clever encryption scheme, in some

embodiments, one may use a CBC mode with double encryption instead of single

encryption. Now any IDA may be used, even replication. Having the key-retrieval

oracle for the blockcipher would be useless to an adversary, as the adversary will be

denied any singly-enciphered input/output example.

[0506] While a clever IDA has value, it may also be inessential in some contexts, in

the sense that the “smarts” needed to provide security in the face of a key-retrieval

WO 2011/068738 PCT/US2010/058087

- 135 -

attack could have been “pushed” elsewhere. For example, in some embodiments, no

matter how smart the IDA, and for whatever goal is trying to be achieved with the

IDA in the context of HK1/HK2, the smarts may be pushed out of the IDA and into

the encryption scheme, being left with a fixed and dumb IDA.

[0507] Based on the above, in some embodiments, a “universally sound” clever IDA

Ti1DA may be used. For example, an IDA is provided such that, for all encryption

schemes TlEnc, the pair (Π//λ Ι, Π®"6) universally provides security in the face of key-

retrieval attacks.

[0508] In some embodiments, an encryption scheme is provided that is RCSS secure

in the face of a key-retrieval oracle. The scheme may be integrated with HK1/HK2,

with any IDA, to achieve security in the face of key-retrieval. Using the new scheme

may be particularly useful, for example, for making symmetric encryption schemes

more secure against key-retrieval attacks.

[0509] As mentioned above, classical secret-sharing notions are typically unkeyed.

Thus, a secret is broken into shares, or reconstructed from them, in a way that requires

neither the dealer nor the party reconstructing the secret to hold any kind of symmetric

or asymmetric key. The secure data parser described herein, however, is optionally

keyed. The dealer may provide a symmetric key that, if used for data sharing, may be

required for data recovery. The secure data parser may use the symmetric key to

disperse or distribute unique portions of the message to be secured into two or more

shares.

[0510] The shared key may enable multi-factor or two-factor secret-sharing (2FSS).

The adversary may then be required to navigate through two fundamentally different

types of security in order to break the security mechanism. For example, to violate the

secret-sharing goals, the adversary (1) may need to obtain the shares of an authorized

set of players, and (2) may need to obtain a secret key that it should not be able to

obtain (or break the cryptographic mechanism that is keyed by that key).

[0511] In some embodiments, a new set of additional requirements is added to the

RCSS goal. The additional requirements may include the “second factor”—key

possession. These additional requirements may be added without diminishing the

WO 2011/068738 PCT/US2010/058087

- 136-

original set of requirements. One set of requirements may relate to the adversaiy’s

inability to break the scheme if it knows the secret key but does not obtain enough

shares (e.g., the classical or first-factor requirements) while the other set of

requirements may relate to the adversary’s inability to break the scheme if it does have

the secret key but manages to get hold of all of the shares (e.g., the new or second-

factor requirements).

[0512] In some embodiments, there may be two second-factor requirements: a

privacy requirement and an authenticity requirement. In the privacy requirement, a

game may be involved where a secret key K and a bit b are selected by the

environment. The adversary now supplies a pair of equal-length messages in the

domain of the secret-sharing scheme, M\ and M\. The environment computes the

shares of M\ to get a vector of shares, S) = (Si [1],... , 5) [«]), and it gives the shares

5i (all of them) to the adversary. The adversary may now choose another pair of

messages (Mi, Mi) and everything proceeds as before, using the same key K and

hidden bit b. The adversary’s job is to output the bit b' that it believes to be b. The

adversary privacy advantage is one less than twice the probability that b = b'. This

games captures the notion that, even learning all the shares, the adversary still cannot

learn anything about the shared secret if it lacks the secret key.

[0513] In the authenticity requirement, a game may be involved where the

environment chooses a secret key K and uses this in the subsequent calls to Share and

Recover. Share and Recover may have their syntax modified, in some embodiments,

to reflect the presence of this key. Then the adversary makes Share requests for

whatever messages Mi, ... , M? it chooses in the domain of the secret-sharing scheme.

In response to each Share request it gets the corresponding «-vector of shares, SR... ,

iSq. The adversary’s aim is to forge a new plaintext; it wins if it outputs a vector of

shares S' such that, when fed to the Recover algorithm, results in something not in

{M\,..., . This is an “integrity of plaintext” notion.

[0514] There are two approaches to achieve multi-factor secret-sharing. The first is

a generic approach - generic in the sense of using an underlying (R)CSS scheme in a

black-box way. An authenticated-encryption scheme is used to encrypt the message

WO 2011/068738 PCT/US2010/058087

- 137-

that is to be CSS-shared, and then the resulting ciphertext may be shared out, for

example, using a secret sharing algorithm, such as Blakely or Shamir.

[0515] A potentially more efficient approach is to allow the shared key to be the

workgroup key. Namely, (1) the randomly generated session key of the (R)CSS

scheme may be encrypted using the shared key, and (2) the encryption scheme applied

to the message (e.g., the file) may be replaced by an authenticated-encryption scheme.

This approach may entail only a minimal degradation in performance.

[0516] Although some applications of the secure data parser are described above, it

should be clearly understood that the present invention may be integrated with any

network application in order to increase security, fault-tolerance, anonymity, or any

suitable combination of the foregoing.

[0517] In some embodiments of the present invention, the secure data parser may be

implemented in a secure proxy service to secure data in motion. As described above,

the secure data parser is a cryptographic library that provides traditional

encryption/authentication services for applications, as well as an additional security

property achieved by separating protected data (either physically, temporally, or by

some other form of trust). The secure data parser is designed for applications where

the threat of an adversary compromising the system is real, either by obtaining

cryptographic keys, physical access to a transmission medium, or obtaining any

knowledge that would ordinarily defeat the security. The secure proxy service

provides an additional layer of security to protect from these same threats, and is

preferably flexible such that it can be implemented on a wide range of systems - (e.g.,

enterprise servers, personal computers, any other suitable system, or any combination

thereof) The secure proxy service is described with respect to FIGURES 42-50 below.

[0518] The secure proxy service is used to secure data in motion between two

devices. In particular, the secure proxy service runs on a first device and provides

secure data parser-enabled communications for applications over a network. These

devices may be any suitable pair of devices included in cryptographic system 100

(FIGURE 1). For example the secure proxy service may be established between user

system 105 and vendor system 120, such as a personal computer and a web server. In

WO 2011/068738 PCT/US2010/058087

- 138 -

another example, the secure proxy service may be established between separate user

systems 105, such as a personal computer and a NAS, a personal computer and a home

router, a NAS and a home router, or any suitable combination of user systems 105.

The communication between devices using the secure proxy service resembles that of

a client connecting to a web or e-mail server.

[0519] In some embodiments, a client, such user system 105, and a server, such as

vendor system 120, may establish secure communications using the secure proxy

service. In establishing the secure proxy service, the user system 105 and the vendor

system 120 may be retrofit to a suitable configuration for the secure proxy service. In

such embodiments, when the client connects to the server, the connection is

established between the two secure proxy services. On the server, the secure proxy

service is configured to forward data it receives to a server application. The server

application may then handle the request and respond through the locally implemented

secure proxy service.

[0520] In some embodiments, the secure proxy service protects the confidentiality,

integrity, and authenticity of the data transmitted over a network based on distributed

trust among any number of certificate authorities, such as certificate authorities 115

(FIGURE 1). In such embodiments, the confidentiality, integrity, and authenticity of

the data may be protected so long as a quorum of certificate authorities is trusted. If

the trust of the certificate authority is compromised, mutual authentication cannot be

assured, and the confidentiality, integrity, and authenticity of exchanged messages

breaks down. The secure proxy service is a secure data parser enabled solution that

allows the trust placed in a single certificate authority to be distributed over any

number of certificate authorities (e.g., two, three, five, ten, twenty, fifty, one hundred,

or more than one hundred certificate authorities). This distributed trust allows the

exchange of messages over the secure proxy service to remain secure if there is a

single point of failure among the set of certificate authorities.

[0521] In some embodiments, the secure proxy service is implemented using an

adaptation of SSL and/or full TLS protocols. These protocols may be suitable for

adaptation as part of the secure proxy service because they rely at least in part on the

WO 2011/068738 PCT/US2010/058087

- 139-

trust of a certificate authority for mutually authenticating both parties in a

communication.

[0522] An overview of the use of certificate authorities in full TLS is now described.

For a full TLS-enabled connection to be established between two devices, the two

devices agree on the cryptographic suite of algorithms to use, and exchange and

mutually authenticate one another’s public keys. The public keys of each device are

authenticated through validation of a certificate authority’s signature of the public key.

Trust that the two devices are genuinely communicating with one another is

established by the fact that both of them trust the certificate authority, whose signature

of the devices’ certificates could not be forged without the compromise of that

authority.

[0523] The certificate authority creates for itself a public and private key pair,

(PubcA, PricA). In addition, the certificate authority creates a self signed certificate for

the public key:

CertcA = PubcA, SigPri-cA(PubCA) (1)

Both devices receive the certificate authority’s certificate CertcA according to equation

(1), a private key (PriDevi, PriDev2), and a certificate signed by the certificate authority:

Certoevl = Puboevl, Sigpri-CA(PubDevl) (2)

CertDev2 = Puboev2, Sigpri-CA(PubDev2) (3)

[0524] When a communication begins, the devices exchange their respective

certificates in equations (2) and (3), and verify the authenticity of these certificates

using the public key of the certificate authority. For example, the first device may

perform the verification by running a verification function Verify(CertDev2, PubcA),

and the second device may perform the verification by running a verification function

Verify(CertDev], Pubc A). If both devices are satisfied with the certificate authority's

signature of the exchanged public keys, the first device sends the second device

symmetric encryption key material using the second device's public key. The first

device proves knowledge of the private key corresponding to their certificate by

performing a digital signature challenge. Once the first device proves knowledge of

WO 2011/068738 PCT/US2010/058087

- 140-

the private key corresponding to their certificate, the first device and the second device

may exchange messages securely.

[0525] If either the first device or the second device has been compromised, their

respective private keys may be compromised as well and from then on the

compromised device could be impersonated. If the certificate authority is

compromised, valid certificates may be generated for which the certificate authority

knows the corresponding private key, and either of the devices could be impersonated.

However, absent compromise of the devices or the certificate authority, the devices

can be mutually assured that they are talking to the correct entity.

[0526] In some embodiments, not all trust is delegated to a single certificate

authority. It may be impractical to constantly create, distribute, and validate

certificates by a single certificate authority. Instead, a chain of trust may be

established in the form of a certificate authority hierarchy 4200, as illustrated by

FIGURE 42. Certificate authority hierarchy 4200 may establish a chain of trust in the

form of a tree. At the top of the tree is root certificate authority 4210 who delegates

authority to all descendants (e.g., children and grandchildren) of the root certificates

4210. The trust at each level of certificate authority hierarchy 4200 is assured by the

trust of the root certificate authority 4210.

[0527] In certificate authority hierarchy 4200, root certificate authority 4210 may

sign certificates for children certificate authorities 4220. Although only one root

certificate authority CA-0 is shown in FIGURE 42, it may be understood that in

certain embodiments the certificate authority hierarchy may include any number of

root certificate authorities. Children certificate authorities 4220 may sign certificates

for grandchildren certificate authorities 4230. For example, as illustrated in FIGURE

42, root certificate authority CA-0 signs certificates for its children CA-1 and CA-2,

who in turn sign certificates for their children CA-1.1, CA-1.2, CA-2.1, and CA-2.2.

Although only three levels of certificate authorities are illustrated in FIGURE 42, it

will be understood that in certain embodiments there may be greater or fewer levels of

certificate authorities. To ensure nonrepudiation of signatures, all entities may

generate their own certificates.

WO 2011/068738 PCT/US2010/058087

- 141 -

[0528] In a cryptographic system, a first device may have received its certificate

from one of the children certificate authorities 4220, and a second devic e in

communication with the first device may receive its certificate from one of the

grandchildren certificate authorities 4230. Validation of the certificates for each

device may be performed by obtaining the certificate of the issuing certificate

authority (e.g., CA-1 or CA-2 for a first device, and CA-1.1, CA-1.2, CA-2.1, or CA-

2.2 for a second device) and verifying the signature of the first device or second

device's certificate (e.g., verifying the certificates shown in equations (2) or (3)). If

the trust of the issuing certificate authority cannot be established, the device

performing verification can obtain the certificate of the parent of the issuing certificate

authority in question and perform a similar verification to ensure that the certificate

authority is valid. This process may continue by both devices until reaching root

certificate authority 4210, which is trusted by both devices. In some embodiments,

each device that is in communication may be associated with more than one root

certificate authorities 4210. In such embodiments, it is possible for devices with valid

certificates from any of these certificate authorities to communicate.

[0529] From the above description of the use of certificate authorities with TLS, it is

understood that security ultimately lays in the trust of a single root certificate

authority, or to a lesser extent, one of the descendant certificate authorities within the

hierarchy of certificate authorities that the devices in communication are comfortable

trusting. In some embodiments, if any certificate authority in the hierarchy is

compromised, all descendants of the compromised certificate authority are also

compromised. If this compromised node is the root, then each of the certificate

authorities in the hierarchy may be compromised.

[0530] In some embodiments, the secure proxy service may use the secure data

parser with TLS to distribute the trust placed in a single certificate authority with the

trust of a quorum of certificate authorities. This quorum may be a quorum of root

certificate authorities 4210, or a quorum of minor certificate authorities within the tree

of a single root certificate authority. For example, this quorum may be two out of the

WO 2011/068738 PCT/US2010/058087

- 142 -

three certificate authorities in the set consisting of CA-1, CA-1.1 and CA-1.2, which

are minor certificate authorities within the tree of root certificate authority CA-0.

[0531] In some embodiments, certificate authority hierarchy 4200 may be traversed

by any suitable graph algorithm. This traversal may be performed in order to obtain a

list of certificate authorities or a list of certificates associated with certificate

authorities that unique, or have different public and private key pairs. In some

embodiments, the traversal of certificate authority hierarchy 4200 may result in

certificate authorities or certificates of certificate authorities that are root certificate

authorities. In some embodiments, the traversal of certificate authority hierarchy 4200

may result in certificate authorities or certificates of certificate authorities that are

minor certificate authorities within the tree of one or more root certificate authorities.

[0532] FIGURES 44 through 50 detail two approaches to implementing the secure

proxy service. Both approaches are equally secure. In some embodiments, the secure

data parser may be integrated with full TLS. In addition, in each approach trust is

distributed among a set of certificate authorities (e.g., the quorum of certificate

authorities discussed with respect to certificate authority hierarchy 4200 in FIGURE

42). In some embodiments, the secure proxy service may be implemented by

integrating the secure data parser with SSL, with SSL and TLS, or implementing the

secure data parser without the use of SSL and/or TLS. In some embodiments, the

secure proxy service may be implemented in conjunction with any one or more types

of encryption 3018 that may provide secure encryption of data at the secure data

parser layer 3026 of FIGURE 30. In addition, in some embodiments the secure proxy

sendee may be implemented in conjunction with any suitable protocol that makes use

of certificate authorities to ensure the confidentiality, integrity, and authenticity of

exchanged messages.

[0533] In the embodiments described with respect to FIGURES 44 through 46, the

secure data parser may be used to distribute trust in any number of certificate

authorities during initial negotiation (e.g., the key establishment phase) of a

connection between devices. This offers the assurance that if some (but fewer than a

quorum) of the certificate authorities have been compromised, the connection may still

WO 2011/068738 PCT/US2010/058087

- 143 -

be established, and messages may be exchanged without disrupting the confidentiality,

integrity, and authenticity of the communication. In the embodiments described with

respect to FIGURES 47 through 50, the data is pre-processed using the secure data

parser and then dispersed into shares. A set of secure communication tunnels may be

established within a communication channel using certificates issued by unique

certificate authorities, these certificate authorities may be used to encrypt data for each

of the tunnels, and the individual shares of data may be transmitted on each of the

tunnels. Thus, in the second approach trust may be distributed among a set of

certificate authorities in the structure of the communication channel itself.

[0534] In order to illustrate how the secure data parser is integrated with TLS in

some embodiments of the secure proxy service, an overview of the key establishment

phase of full TLS is described with respect to FIGURE 43. FIGURE 43 shows a

simplified and illustrative process flow 4300 for the key establishment phase of TLS

for communication between two devices: first device 4310 and second device 4320.

First device 4310 and second device 4320 may be any combination of user system 105

and/or vendor system 120 communicating over a communication link, for example,

communication link 125 as shown in FIGURE 1. This key establishment phase may

include a handshake and mutual authentication. At step 4312, first device 4310

generates a random number RDevi and sends the random number along with its

certificate CertDevi (as calculated, for example, in equation (2)) to second device 4320.

[0535] At step 4322, second device 4320 generates its own random number RDev2,

and sends the random number along with its certificate Certoev2 (as calculated in

equation (3)). At step 4314, the client generates secret information Soevi, encrypts it

under the second device's public key using any suitable type of encryption, and sends

it to the second device. At step 4324, second device 4320 decrypts the secret

information Snevi and computes a shared encryption key K based on a pseudo random

function G and the random and secret values that have been exchanged (i.e., Roevi,

RDev2, and Soevi)· Similarly, at step 4316 second device 4310 computes a shared

encryption key K based on a pseudo random function G and the random and secret

values that have been exchanged (i.e., RdcvI, Rdct2, and Soevi)· At step 4330, first

WO 2011/068738 PCT/US2010/058087

- 144-

device 4310 and second device 4320 exchange messages encrypted with their

independently calculated shared encryption keys. If the computed shared encryption

keys match, first device 4310 and second device 4320 may exchange messages that

are ensured to be confidential and authentic. As will be discussed with respect to

FIGURES 44 through 46, in some embodiments, the secure data parser service may

modify and/or add to the steps of process flow 4300 in order to integrate the secure

data parser with TFS.

[0536] FIGURE 44 shows a simplified and illustrative process flow 4400 for a

secure proxy service, that may be used in any suitable combination, with any suitable

additions, deletions, or modifications in accordance with one embodiment of the

present invention. In process flow 4400, trust is distributed in a set of certificate

authorities during initial negotiation of a connection between devices. In some

embodiments, process flow 4400 may be executed as part of the key establishment

phase of a secure exchange of information between two devices. This key

establishment phase may be part of one or more of the processes associated with

secure data parser 3706 as illustrated in FIGURE 37, or may be a standalone process.

For example, steps 4410, 4420, 4430, 4440, 4450, and 4460 may be part of one or

more of pre-encryption process 3708, encrypt/transform process 3710, key secure

process 3712, or parse/distribute process 3714 associated with secure data parser 3706

as illustrated in FIGURE 37, or may be a standalone process.

[0537] Process flow 4400 begins at step 4410. At step 4410, a first device that

would like to securely exchange information with device second device may generate

secret information. This secret information may be any amount of suitable random

numbers (e.g., one, two, five, twenty, one-hundred, or more than one-hundred random

numbers) generated by a random number generator. For example, the secret

information may be a random number generated by the random number generator

3012 of secure data parser 3026 as shown in FIGURE 30. Process flow 4400 proceeds

to step 4420.

[0538] At step 4420, the first device may disperse the secret information generated

at step 4410 into shares. In some embodiments, the secret information may be

WO 2011/068738 PCT/US2010/058087

- 145 -

dispersed into shares using a cryptosplitting process, such as an “M of N cryptosplit”.

This “M of N cryptosplit” may be achieved using the secure data parser of the present

invention. For example, the cryptosplit may be achieved using any of the data

splitting techniques discussed with respect to FIGURE 21 through FIGURE 24. In

such embodiments, the dispersed shares may be restorable from at least a subset of the

shares by recombining at least a quorum of the shares. In addition, in some

embodiments, the split of secret information may occur substantially through any

number of uses of the secure data parser outlined with respect to FIGURE 33,

FIGURE 35, and FIGURE 36. For example, the secure data parser may receive

unencrypted secret information at step 3610. If the secret information is going to be

split with an algorithm that requires a key, a split encryption key is generated at step

3612. The secret information may be split into shares at step 3616 (e.g., according to

any of the techniques described with respect to FIGURE 33, FIGURE 35, and

FIGURE 36). A fault tolerant scheme may be used at step 3617 to encrypt the split

encryptions key and allow for regeneration of the secret information from less than the

total number of shares. In addition, at step 3617 information may be added to the

shares of secret information that is used to reconstruct the shares. In some

embodiments, this information may be embedded into share headers. Further, once

the shares are created, authentication/'integrity information may be embedded into the

headers of the shares of secret information at step 3618. Each share may be post-

encrypted using public keys of different certificate authorities as will be described

with respect to step 4430.

[0539] In addition, in some embodiments, the dispersing of the secret information

into shares may occur , for example, according to the simplified header generation

process 4000 as shown in FIGURE 40A. For example, at step 4002, the secret

information may be generated. The secret information may then be optionally

encrypted (e.g., using the workgroup key described with respect to FIGURE 39) at

step 4004. At step 4006, a “M of N cryptosplit” may be used to split the secret

information into shares of secret information. Information associated with the split of

secret information may then be embedded into a share header. Finally, a share

WO 2011/068738 PCT/US2010/058087

- 146 -

integrity block and a post-authentication tag (e.g., MAC) may be appended to the

header block of each share. Each header block may be designed to fit within a single

data packet.

[0540] In some embodiments, the shares of secret information generated at step

4420 may be generated using a multi-factor secret sharing scheme. This multi-factor

secret sharing scheme may be, for example, the keyed Information Dispersal

Algorithm discussed after FIGURE 41. For example, the shares of secret information

may be distributed with the data to be secured into a plurality of shares using

deterministic, probabilistic, or both deterministic and probabilistic data distribution

techniques. Once the secret information has been dispersed into shares, process flow

4400 may proceed to step 4430

[0541] At step 4430, the shares resulting from the split of secret information

computed in step 4420 are encrypted by the first device based on public keys of

unique certificate authorities. For example, if there were three shares of secret

information, the first share may be encrypted under the public key of a first certificate

authority, the second share may be encrypted under the public key of a second

certificate authority, and the third share may be encrypted under the public key of a

third certificate authority. Each certificate authority may be unique in that the

certificates issued by each have different public and private key pairs. In some

embodiments, the unique certificate authorities may be root certificate authorities. In

other embodiments, the unique certificate authorities may be minor certificate

authorities within the tree of a single root certificate authority, as discussed with

respect to certificate authority hierarchy 4200 in FIGURE 42.

[0542] As discussed above with respect to step 4420, in some embodiments

information related to the dispersal of secret information may be embedded into share

headers. For example, if the secret information is split at step 4420 into four shares,

four headers may be generated that each includes information associated with the

dispersed shares of secret information.

[0543] In some embodiments, the shares may be protected by one or more external

workgroup keys, one or more shared keys, or any combination of workgroup keys and

WO 2011/068738 PCT/US2010/058087

- 147 -

shared keys. Once the shares of secret information are encrypted, the first device may

send the encrypted shares to the second device. Process flow 4400 then proceeds to

step 4440.

[0544] At step 4440, the second device may attempt to recover the encrypted secret

information. This recovery process may be dependent on how the shares of secret

information were dispersed at step 4420 and encrypted at step 4430. For example, the

secret information may have been dispersed into shares using an “M of N cryptosplit”

and encrypted using a workgroup key at step 4420, and then those shares may be

encrypted based on public keys of different certificate authorities at step 4430. The

recoveiy process may decrypt the shares first using the public keys of the different

certificate authorities, then decrypt the shares based on the workgroup key, and then

use a restore function of the secure data parser to reconstruct the dispersed shares of

secret information into the original secret information based on the ”M of N

cryptosplit”.

[0545] If the recovery process is successful, the computed secret information may

match the original secret information. This match may be mutually confirmed

between the devices by each device independently computing a shared enciyption key.

For example, a first device may compute a shared encryption key based on the original

secret information, while the second device computes a shared encryption key based

on the recovered or restored secret information. In some embodiments, if the second

device recovers the original secret information and subsequently computes a valid

shared encryption key, process flow 4400 proceeds to step 4450, and messages are

exchanged. In some embodiments, these messages may be securely exchanged based

on the shared encryption keys computed by the first device and the second device. In

some embodiments, if the second device does not recover the original secret

information, process flow 4400 proceeds to step 4460, and messages are not

exchanged. For example, messages may not be able to be exchanged because the

shared encryption key of the first device does not match that of the second device.

[0546] FIGURE 45 shows a simplified and illustrative process flow 4500 for

establishing a secure proxy service between two devices, that may be used in any

WO 2011/068738 PCT/US2010/058087

- 148 -

suitable combination, with any suitable additions, deletions, or modifications in

accordance with one embodiment of the present invention. In process flow 4500, trust

is distributed in a set of certificate authorities during initial negotiation of a connection

between devices. In some embodiments, process flow 4500 may be executed as part

of the key establishment phase of a secure exchange of information between two

devices. This key establishment phase, including each of the steps in process flow

4500, may be part of one or more of the processes associated with the secure data

parser, for example, similar to howthe steps of process flow 4400 are associated with

the secure data parser.

[0547] Process flow 4500 begins at step 4510. At step 4510, the devices exchange

random numbers and certificates associated with public keys, each public key issued

by a unique security authority. In some embodiments, these devices may be, for

example, first device 4310 and second device 4320 as described with respect to

process flow 4300 in FIGURE 43. The exchanged random numbers may be generated

by each device using the random number generator 3012 of secure data parser 3026 as

shown in FIGURE 30. The exchanged certificates may be generated from the

traversal of certificate authority hierarchy 4200 as shown in FIGURE 42. For

example, any suitable graph algorithm may traverse the certificate hierarchy 4200 to

compute a list of the certificates of the root certificate authorities, or a list of the

certificates of the minor certificate authorities within the tree of a single root

certificate authority within certificate hierarchy 4200. In some embodiments, the

exchanged certificates may be determined based on encryption parameters agreed

upon by the first and second device. These parameters may be associated with the

implementation of dispersal of the shares of secret information agreed upon by the

first and second device. For example, if the dispersal techniques used at step 4520

disperses secret information into five shares, the exchanged certificates may include

five certificates of unique certificate authorities from the first device, and five

certificates of unique certificate authorities from the second device.

[0548] In some embodiments, a unique public key may be obtained for each unique

certificate of the first device or the second device. In some embodiments, the

WO 2011/068738 PCT/US2010/058087

- 149 -

encryption parameters may be set by the user of the secure proxy service, such as the

user of a personal computer who wants to connect with the server of a financial

institution using the secure proxy service. In some embodiments, the encryption

parameters may be set by an administrator of the secure proxy service, such the

administrator of the servers of a financial instutition who want to offer secure proxy

sendee enabled connections to their customers. In addition, in some embodiments, the

exchanged lists of certificates may be based on an enrollment process 900 conducted

with the user of one of the devices as described with respect to FIGURE 9. Process

flow 4500 then proceeds to step 4515.

[0549] At step 4515, the first device generates secret information. This secret

information may be generated, for example, according to step 4410 described with

respect to process flow 4400 of FIGURE 44. Process flow 4500 then proceeds to step

4520. At step 4520, the first device disperses the secret information generated at step

4515 into shares using any suitable dispersal techniques. For example, the first device

may perform an “M of N cryptosplit” of the secret information using the secure data

parser of the present invention according to, for example, step 4420 described with

respect to process flow 4400 of FIGURE 44. In some embodiments, the shares of

secret information resulting from the dispersal techniques may be restorable from at

least a subset of the shares by recombining at least a quorum of the shares. In

addition, in some embodiments, a keyed secret sharing routine may be applied to the

shares of secret information using a keyed IDA. The key for the keyed IDA may be

protected by one or more external workgroup keys, one or more shared keys, or any

combination of shared and workgroup keys. Process flow 4500 then proceeds to step

4525

[0550] At step 4525, the first device encrypts each share of secret information based

on a public key issued by a different certificate authority. The public keys may be

public keys obtained from the certificates sent to the second device from the first

device at step 4510. In some embodiments, step 4525 may be included as part of step

4520. For example, the keyed secret sharing routine described with respect to step

4520 may be applied to the shares of secret information, where the keys for the keyed

WO 2011/068738 PCT/US2010/058087

- 150 -

IDA are the public keys associated with the list of certificates sent to the second

device from the first device. In another example, the public keys associated with the

list of certificates may be used as split keys to encrypt the shares of secret information

as described with respect to options 3600 of FIGURE 36. Process 4500 then proceeds

to step 4530, or may optionally proceed to step 4527.

[0551] At optional step 4527, the first device may perform a keywrap on the keys

applied to the shares of secret information at step 4525. In some embodiments, the

key wrap may be any suitable key encryption or key wrap algorithm. The key wrap

may operate on the entire shares of dispersed secret information produced at step

4520. Alternatively, the dispersed shares may be additionally dispersed into several

blocks, and the key wrap may operate on these blocks. Process flow 4500 then

proceeds to step 4530.

[0552] At step 4530, the first device transmits the encrypted shares of secret

information to the second device. This transmission may occur over any suitable

communication channel, such as that described with respect to communication link

105 in FIGURE 1. The first device in process flow 4500 then proceeds to step 4545,

while the second device proceeds to step 4535.

[0553] At step 4535, the second device may attempt to decrypt the encrypted shares

received from the first device. This decryption process may be based on how the

shares of secret information were encrypted at step 4520 and step 4525. For example,

at step 4520, shares of secret information may have been produced from dispersal

techniques that produce shares of secret information that may be restorable from at

least a subset of the shares by recombining at least a quorum of the shares. At step

4525, each dispersed share may have been encrypted using the public keys obtained

by different certificate authorities corresponding to the second device’s certificates.

At step 4527, the shares may have been additionally encrypted using a keywrap based

on a workgroup key. Based on this encryption, at step 4535 the second device may

first decrypt the encrypted shares of secret information based on the public keys issued

by unique certificate authorities, then decrypt the shares of secret information based on

the workgroup key of the keywrap applied at step 4527. It will be understood that

WO 2011/068738 PCT/US2010/058087

- 151 -

beyond this particular example, any suitable number and type of decryption steps may

be performed at step 4535. Process flow 4500 then proceeds to step 4540.

[0554] At step 4540, the second device may attempt to restore the original secret

information based on the decrypted shares computed at step 4535. This restore

process may be based on how the secret information generated at step 4515 was

dispersed at step 4520. For example, at step 4520, shares of secret information may

have been produced using dispersing functions of the secure data parser according to

any of the techniques described with respect to FIGURE 33, FIGURE 35, and

FIGURE 36. Based on this dispersing, at step 4540 the second device may restore the

original secret information from the split using restore functions of the secure data

parser according to any of the techniques described with respect to FIGURE 34.

Process flow 4500 then proceeds to step 4545.

[0555] At step 4545, the first and second devices may independently compute a

shared encryption key based on the exchanged random numbers, and computed or

original secret information. For example, the first device may perform several digital

signatures, one for each of its certificates in its list of certificates, using its own

random number, the second device’s random number, and the secret information

generated at step 4515. These digital signatures may then be used as input to a key

generation function that computes the shared encryption key for the first device. The

second device may perform similar digital signatures to compute its own shared

encryption key, but use the decrypted secret information instead of the original secret

information. Process 4500 then proceeds to step 4550.

[0556] In some embodiments, at step 4550, the first device and second device

determine whether they agree on the shared encryption keys independently computed

at step 4545. In some embodiments, this agreement may be determined by the first

and second device exchanging messages encoded with the shared encryption key. For

example, the first device may send the second device a message encrypted with the

shared encryption key. If the second device is able to decrypt the encrypted message

and respond, for example, with an appropriate acknowledgment, the first device may

determine that it may securely exchange messages with the second device. Otherwise,

WO 2011/068738 PCT/US2010/058087

- 152 -

the first device may determine that it may not securely exchange messages with the

second device, and no further messages are exchanged. It will be understood that a

similar determination may occur at the second device. In some embodiments, the first

and second devices may determine that their independently computed shared

encryption keys match by exchanging the encryption keys without any message. If the

first and second devices do not agree on the shared encryption key, process 4500

proceeds to step 4555. If the first and second devices agree on the shared encryption

key, process 4500 proceeds to step 4560. At step 4555, the first and second devices do

not exchange messages. At step 4560, the first and second devices exchange

messages. After each of steps 4555 and 4560, process flow 4500 may end.

[0557] FIGURE 46 shows a simplified and illustrative process flow 4600 for

establishing a secure proxy service between client 4610 and server 4620, that may be

used in any suitable combination, with any suitable additions, deletions, or

modifications in accordance with one embodiment of the present invention. In process

flow 4600, trust is distributed in a set of certificate authorities during initial

negotiation of a connection between client 4610 and server 4620. In some

embodiments, process flow 4600 may be executed as part of the key establishment

phase of a secure exchange between client 4610 and server 4620. This key

establishment phase, including any of the steps in process flow 4600, may be part of

one or more of the processes associated with the secure data parser according to, for

example, how the steps of process flow 4400 are associated with the secure data

parser. In addition, process flow 4600 may be an example of process flow 4500 as

discussed with respect to FIGURE 45.

[0558] Process flow 4600 begins at step 4612. At step 4612, client 4610 sends

server 4620 a generated random number Rc and a list of its certificates Cert-CAlc,

Cert-CA2c, and Cert-CA3c. Cleint 4610 and server 4620 may be any suitable client

and server devices as described with respect to user system 105 and vendor system

120 of FIGURE 1, respectively. Rc may be generated by client 4610, according to, for

example, how the random number generated by the first device at step 4510 of process

flow 4500 in FIGURE 45. Each of these certificates may be associated with a public

WO 2011/068738 PCT/US2010/058087

- 153 -

key issued by a different security authority, similar to the lists of certificates discussed

with respect to step 4510 of process flow 4500 in FIGURE 45. Process flow 4600

then proceeds to step 4622.

[0559] At step 4622, server 4620 sends client 4610 its own generated random

number Rs and a list of its certificates Cert-CAls, Cert-CA2s, and Cert-CA3s. Rs may

be generated by server 4620 according the random number generated by the second

device at step 4510 of process flow 4500 in FIGURE 45. Each of these certificates

may be associated with a public key issued by a unique security authority, similar to

the public keys of the unique certificate authorities discussed with respect to step 4510

of process flow 4500 in FIGURE 45. Process flow 4600 then proceeds to step 4614.

[0560] At step 4614, client 4610 generates secret information. This secret

information may be generated according to, for example, step 4515 of process flow

4500 in FIGURE 45. Also at step 4614, client 4610 disperses the secret information

Sc into shares Sic, S2c, and S3c. This dispersing may be performed according to, for

example, the dispersing of secret information discussed with respect to step 4520 of

process flow 4500 in FIGURE 45. Also at step 4614, client 4610 encrypts the shares

of secret information using a different one of server’s public keys. For example, if

“Enc” represents the encryption function executed by the secure data parser, and

Pubis, Pub2s, and Pub3s represent the public keys corresponding to the server’s

certificates Cert-CAls, Cert-CA2s, and Cert-CA3s, respectively, the client may

encode Sic using Pubis by executing Enc(Publs, Sic), may encode S2C using Pub2s

by executing Enc(Pub2s, S2c), and may encode S3c using Pub3s by executing

Enc(Pub3s, S3c). The encryption function may be chosen out of any combination of

the methods of encryption described with respect to steps 4525 and 4527 of process

flow 4500 in FIGURE 45. Once the secret information is generated, dispersed, and

encrypted, the encrypted shares are transmitted to server 4620. Process flow 4600

then proceeds to steps 4616 and 4624.

[0561] At step 4624, the shares of secret information Sic, S2c, and S3c may be

decrypted and restored into the original secret information by server 4620 using any

suitable decryption and restoring techniques described with respect to steps 4525 and

WO 2011/068738 PCT/US2010/058087

- 154 -

4540 of process flow 4500 in FIGURE 45. Server 4620 may then use the restored

secret information to generate a shared encryption key K using a key generation

function G. Key generation function G may take random numbers Rc and Rs as input

along with the restored secret information. At step 4616, client 4610 may similarly

generate its own shared encryption key K using a key generation function G.

However, the key generation function executed by client 4610 may use the original

secret information generated by client 4610 rather than the restored secret information

generated by server 4620. Process 4600 then proceeds to step 4630.

[0562] At step 4630, messages are exchanged between client 4610 and server 4620

using their respective shared encryption keys K. In some embodiments, client 4610

and server 4620 may determine whether their shared encryption keys match similar to

the process described with respect to step 4550 of process flow 4500 in FIGURE 45.

If it is determined that the respective shared encryption keys of client 4610 and server

4620 do not match, messages may not be exchanged or may cease to be exchanged

between client 4610 and server 4620. Otherwise, the exchange of messages may

continue similar to normal TLS or SSL communication after the key establishment

phase.

[0563] In some embodiments, a secure proxy service may be resident on a client

application running on client 4610. The client application may maintain a list of

secure proxy server enabled servers, such as server 4620, based on the IP address or

URL and port number of the servers. In some embodiments, the client application

may be associated with an address that is addressable by the servers. When a

connection is requested by the client for a secure proxy service enabled server, the

client application may establish a connection with the specified server proxy service,

utilizing the approaches described in process flows 4400, 4500, and 4600. In addition,

a secure proxy service may be resident on a server application running on service

4620. The server application may accept connections from the client application, and

forwards the data it receives to the proper secure proxy configured port based on port

forwarding rules. These port forwarding rules may be predetermined or mutually

agreed upon by the client application and the server application.

WO 2011/068738 PCT/US2010/058087

- 155 -

[0564] The key establishment phase described by process flows 4400, 4500, and

4600 offer the assurance that if some, but less than a quorum, of the certificate

authorities have been compromised, the connection can still be securely established

between two devices. That is, even if compromised certificate authorities have access

to the information exchanged between the devices they would not have enough

information to disrupt the confidentiality or integrity of the communication. For

example, if there were three shares of secret information each encrypted with a public

key of a different certificate authority as shown in process flow 4600, one of the

certificate authorities could be compromised and the connection could be securely

established between two devices. This security is ensured because even if the

compromised certificate authority had access to the messages being passed between

two devices, the attacker associated with the compromised certificate authority would

not have knowledge of the public and private key pair of the other two certificate

authorities, and thus would at most be able to recover one of the shares of secret

information. Further, because the shares of secret information were dispersed such

that they could be restored with at least a subset of the shares by recombining at least a

quorum of the shares, the attacker behind the compromised certificate authority would

not be able to construct the original secret information using just one recovered share.

Accordingly, the attacker behind the compromised certificate authority would not be

able to recover the secret information, and would not be able to compute the shared

encryption key used to encrypt messages between the first device and the second

device.

[0565] Process flows 4400, 4500, and 4600 are described in various embodiments as

occurring between two devices that wish to establish a secure means of

communication between them. However, in some embodiments process flow 4400

may occur between more than two devices. For example, process flow 4400 may be

used to establish a secure means of communication between a personal computer, and

a set of web servers. Each web server in the set may use a different set of unique

certificate authorities in the key establishment phase of communication with the first

device.

WO 2011/068738 PCT/US2010/058087

- 156 -

[0566] FIGURE 47 and FIGURES 48A and 48B show simplified and illustrative

process flows 4700, 4800, and 4850 for establishing a secure proxy service between

devices, that may be used in any suitable combination, with any suitable additions,

deletions, or modifications in accordance with one embodiment of the present

invention. In process flows 4700, 4800, and 4850, trust is distributed among a set of

certificate authorities in the structure of the communication channel used to exchange

messages between the devices. In some embodiments, process flow 4700 may be

executed after the key establishment phase of a secure exchange of information

between devices, but before the devices exchange messages. Process flows 4700,

4800, and 4850 may be part of one or more of the processes associated with secure

data parser 3706 as illustrated in FIGURE 37, or may be a standalone process. For

example, steps 4710, 4720, 4730, 4740, 4750, and 4760 may be part of the post­

encryption process 3720 associated with secure data parser 3706 as illustrated in

FIGURE 37, or may be a standalone process.

[0567] Process flow 4700 begins at step 4710. At step 4710, a communication

channel is established between devices. This communications channel may be

established using any suitable trust engine 110 described with respect to FIGURE 1

through FIGURE 14. In some embodiments, this communication channel may be

secured using any suitable encryption technology to secure data in motion in any

suitable communications. For example, the communication channel may be

established using conventional SSL, A SSL, FULL SLL, TLS, Full TLS, RSI, OTP,

RC4™, Triple DES, AES, IPSec, public key encryption, symmetric key encryption,

split key encryption, mutli-factor encryption, or any suitable combination of

encryption technologies. In some embodiments, this communication channel may not

be secure. For example, the established communication channel may carry data

through clear text. In some embodiments, these encryption technologies may use keys

issued from a certificate authority. This certificate authority may be referred to as an

“outer level certificate authority” because it may secure the first communication

channel independently of any certificate authorities used to secure the secure

communication tunnels described with respect to step 4730 below.

WO 2011/068738 PCT/US2010/058087

- 157 -

[0568] ΐη addition, the communication channel may carry data associated with

email, streaming data broadcasts, and WiFi communications. In some embodiments,

the established communication channel may utilize any number of server or client-side

technologies, such as CGI scripts, ASPs, or any suitable web server technologies. In

some embodiments, the communication channel may be established across several

physical transport mediums or physical paths. For example, the communication

channel may be established over one or more of the Internet, an intranet, a FAN, WiFi,

Bluetooth, WiMax, or any suitable hard-wired or wireless communication means, or

any combination thereof. Each physical transport medium may have a different

network topology between the devices that exchange messages on the particular

physical medium. Process 4700 then proceeds to step 4720.

[0569] At step 4720, any number of secure communication tunnels are established

within the first communication channel based on distributed trust among a set of

certificate authorities. These certificate authorities may be referred to as “inner level

certificate authorities” because they may protect the communications within the secure

communication tunnels independently of any outer level certificate authority. In some

embodiments, these communication tunnels may be established using any suitable key

establishment phase of any of the encryption technologies described with respect to

step 4710. In some embodiments, the secure communication tunnels are established

using an encryption technology that is different from that utilized by the first

communication channel. For example, the communication channel may be established

using AES, while the secure communication tunnels are established using full TLS. In

this example, each of the secure communication tunnels may be established using a

key establishment process similar to that described with respect to process flow 4300

of FIGURE 43. In some embodiments, the secure communication tunnels are

established using the same encryption technology as the first communication channel.

For example, the communication channel and each of the secure communication

tunnels may be established using full TFS.

[0570] In some embodiments, the secure communications tunnels may be

established using the same encryption technology, for example, each communication

WO 2011/068738 PCT/US2010/058087

- 158 -

channel may be established using full TLS. In other embodiments, the secure

communication tunnels may be established using different encryption technologies,

for example some of the encryption tunnels may be established using full TLS, while

other tunnels are established using AES. In some embodiments, the secure

communication tunnels may be established across several physical media or physical

paths. For example, the secure communication tunnels may be established over one or

more of the Internet, an intranet, a LAN, WiFi, Bluetooth, WiMax, or any suitable

hard-wired or wireless communication means, or any combination thereof. Each

physical transport medium may have a different network topology between the devices

that exchange messages on the particular physical medium.

[0571] Regardless of which encryption technologies are used to establish the secure

communication tunnels, the tunnels are established at step 4720 based on distributed

trust among certificate authorities. In some embodiments, this distributed trust may be

achieved by establishing each secure communication tunnel based on a unique

certificate authority. In some embodiments, each secure communication tunnel may

be established using a certificate issued one of the unique certificate authorities. In

such embodiments, symmetric encryption key material may be communicated during

the establishment of each channel using the certificate issued by the unique certificate

authority associated with that channel. In such embodiments, the symmetric key

encryption material may be, for example, the symmetric encryption key material

discussed with respect to the use of certificate authorities in full TLS above. Each

certificate authority may be unique in that the certificates issued by each have different

public and private key pairs. In some embodiments, the unique certificate authorities

may be root certificate authorities. In other embodiments, the unique certificate

authorities may be minor certificate authorities within the tree of a single root

certificate authority, as discussed with respect to certificate authority hierarchy 4200

in FIGURE 42. The unique public and private key pairs of the different certificate

authorities may be used during key establishment of each secure communication

tunnel. For example, if the secure communication tunnels are based on TLS, each of

the tunnels may be established as described with respect to process flow 4300 of

WO 2011/068738 PCT/US2010/058087

- 159 -

FIGURE 43 using the certificate of one of the unique certificate authorities. Process

4700 then proceeds to step 4730.

[0572] At step 4730, data packets are prepared for transmission over the secure

communication tunnels based on the set of certificate authorities and multi-factored

secret sharing. In some embodiments, this preparation may include encrypting the

data packets using a key developed during the establishment of a different one of the

communication tunnels. In some embodiments, this key may be a symmetric key

generated using symmetric encryption key material that was communicated during the

establishment of each channel using a certificate of a unique certificate authority

associated with that channel. In addition, this preparation may include dispersing each

data packet into shares based on multi-factored secret sharing, and then encrypting the

resulting shares using the certificates of the unique certificate authorities used to

establish the secure communication tunnels at step 4720. This dispersing process may

be achieved using any suitable data splitting or cryptosplit as discussed with respect to

data splitting module 520 or 610 of FIGURE 5 and FIGURE 6, and elaborated with

respect to FIGURE 8 and FIGURES 20 through 24.

[0573] In addition, in some embodiments, the data packets may be dispersed into

shares substantially through any number of uses of the secure data parser outlined with

respect to FIGURE 33, FIGURE 35, and FIGURE 36. For example, the secure data

parser may receive unencrypted data packets. If the data packets are going to be split

with an algorithm that requires a key, a split enciyption key is generated. In some

embodiments, the data packets may be split into shares at step according to any of the

techniques described with respect to FIGURE 33, FIGURE 35, and FIGURE 36. In

some embodiments, a fault tolerant scheme may be used to encrypt the split

encryptions key and allow for regeneration of the data packets from less than the total

number of shares. For example, the data packets may be dispersed into shares using

any suitable data dispersion techniques such that the shares are restorable from at least

a subset of the shares by recombining at least a quorum of the shares. In addition,

information may be added to the shares of data packets that are used to reconstruct the

data packets. Further, once the shares are created, authentication/integrity information

WO 2011/068738 PCT/US2010/058087

- 160 -

may be embedded into the shares of data packets. Each share may be post-encrypted

using public keys of unique certificate authorities used to establish the secure

communication tunnels at step 4720.

[0574] In addition, in some embodiments, the dispersing of the data packets may

occur in two phases - a header generation phase and a data partitioning phase. The

phases may be, for example, the simplified header generation process 4000 as shown

in FIGURE 40A and simplified data partitioning process 4010 as shown in FIGURE

40B. One or both of these processes may be performed on the data packets. In some

embodiments, the data packets may be pre-encrypted based on the encryption

technology used to establish the first communication channel. The pre-encrypted data

packets may then be ran through processes 4000 and/or 4010 as described below.

[0575] As shown at step 4002 of FIGURE 40A, split keys may be generated. The

unencrypted or pre-encrypted data packets may then be optionally encrypted (e.g.,

using the workgroup key described with respect to FIGURE 39) at step 4004. At step

4006, a “M of N cryptosplit” may be used to split the data packets into shares of secret

information using the split key. Each share of the data packet may then be embedded

into a share header. Finally, a share integrity block and a post-authentication tag (e.g.,

MAC) may be appended to the header block of each share. Each header block may be

designed to fit within a single encrypted data packet. Each header block may be post-

encrypted using a key developed during the establishment of a different one of the

communication tunnels at step 4720.

[0576] In some embodiments, after the headers including the shares of secret

information are generated, the secure data parser may enter a data partitioning phase.

This data partitioning phase may be, for example, the simplified data splitting process

4010 as shown in FIGURE 40B. For example, each incoming unencrypted or

pre-encrypted data packet may be encrypted using one or more keys, such as a shared

key or a workgroup key, at step 4012. In some embodiments, the data that is

encrypted may include the headers that contain the shares of data packets computed

during simplified header generation process 4000. At step 4014, share integrity

information (e.g., a hash H) may be computed on the resulting ciphertext from step

WO 2011/068738 PCT/US2010/058087

- 161 -

4012. For example, a SHA-256 hash may be computed on the data that is encrypted

with one or more keys at step 4012. At step 4106, the data packet may then be

partitioned into two or more data shares using one of the data splitting algorithms

described above in accordance with the present invention. In some embodiments, the

data packet or data block may be split so that each data share contains a substantially

random distribution of the encrypted data packet or data block. The integrity

information (e.g., hash H) may then be appended to each data share. An optional post­

authentication tag (e.g., MAC) may also be computed and appended to each data share

in some embodiments. In addition, each data share may include metadata as described

with respect to FIGURE 40B. The metadata may include information regarding the

data packets and workgroup keys used to generate the shares of data packets. Each

data packet share may be post-enciypted using public keys of unique certificate

authorities used to establish the secure communication tunnels at step 4720.

[0577] In some embodiments, the shares of data packets may be associated with

shares of an encryption key or data split key similar to how key and data components

are stored within shares as shown in illustrative block diagrams 3800 and 3900 in

FIGURES 38 and 39. For example, shares of the data packets may be stored similarly

to how portions of encryption key 3804 are split and stored within shares 3810. When

a workgroup key is utilized, the shares of data may be encrypted with the workgroup

key prior to be stored within the shares as shown in illustrative block diagram 3900.

[0578] Regardless of how the data packets are dispersed into shares, each share may

be post-encrypted using a key developed during the establishment of a different one of

the communication tunnels at step 4720. For example, in some embodiments there

may be three secure communication tunnels established at step 4720, each with a

unique certificate authority. Each share produced at step 4730 may then be encrypted

using the key developed during the establishment of a different one of the

communication tunnels. In some embodiments, these keys may be the symmetric keys

generated using symmetric encryption key material that was communicated during the

establishment of each channel using the three unique certificate authorities. Process

4700 then proceeds to step 4740.

WO 2011/068738 PCT/US2010/058087

- 162 -

[0579] At step 4740, the prepared data packets are transmitted to their destination.

This transmission may occur over any suitable communication channel, such as that

described with respect to communication link 105 in FIGURE 1. In some

embodiments, the destination for the packets may be one or more of secure data proxy

enabled servers. A client application running on a client device may maintain a list of

secure proxy server enabled servers based on the IP address or URL and port number

of the servers. In some embodiments, the client application may be associated with an

address that is addressable by the servers. When a connection is requested by the

client for a secure proxy service enabled server, the client application establishes a

connection with the specified server proxy service, utilizing the approaches described

in steps 4710 and 4720. Once the prepared data is transmitted to its destination,

process 4700 then proceeds to step 4750.

[0580] At step 4750, the transmitted data packets are received. In some

embodiments, the transmitted data packets may be received by a secure proxy service

that is resident on a server application running on a secure data proxy enabled server.

The server application may accept connections from the client application, and

forwards the data it receives to the proper secure proxy configured port based on port

forwarding rules. These port forwarding rules may be predetermined or mutually

agreed upon by the client application and the server application. Process 4700 then

proceeds to step 4760.

[0581] At step 4760, the data packets are restored based on the set of certificate

authorities and the multi-factored secret sharing. In some embodiments, this

restoration may be a mirrored process of the preparation process used to parse and

encrypt the data packets at step 4730. For example, at step 4730, the data packets may

have been encrypted using keys associated with the establishment of the secure

communication tunnels at step 4720. In addition, shares of unencrypted or

pre-enciypted data packets may have been produced using dispersing techniques of the

secure data parser according to any of the techniques described with respect to

FIGURE 33, FIGURE 35, and FIGURE 36. In some embodiments, the shares of data

WO 2011/068738 PCT/US2010/058087

- 163 -

packets may be encrypted based on the encryption technology used to establish the

first communication channel.

[0582] Accordingly, the shares of data packets may first be decrypted based on the

keys associated with the establishment of the secure communication tunnels at step

4720. The decrypted shares may then be restored using restore functions of the secure

data parser according to any of the techniques described with respect to FIGURE 34.

In some embodiments, the restored shares may be decrypted based on the encryption

technology used to establish the first communication channel. In some embodiments,

the decrypted shares of data may be embedded in share headers. In such

embodiments, the shares of data may be extracted from the decrypted share headers,

and restored using the restore functions of the secure data parser. Process flow 4700

then ends. In some embodiments, steps 4730, 4740, 4750, and 4760 may be repeated

as necessary for the transmission of data over the secure communication tunnels.

[0583] Describing embodiments of the secure proxy service with respect to FIGURE

48A, process flow 4800 may be executed on a first device, such as on a client-side

application running on a personal computer that requests to communicate using the

secure proxy service with a second device, such as a web server. Process flow 4800 in

begins at step 4810. At step 4810, a first secure communication channel may be

established. This secure communication channel may be established using a key

establishment process with the keys of any suitable encryption technologies as

described with respect to step 4710 in process flow 4700 of FIGURE 47. Tn some

embodiments, these keys may be issued from a certificate authority referred to as an

“outer level certificate authority”, in addition, the communication channel may carry

data associated with any suitable applications as discussed with respect to step 4710 in

process flow 4700 of FIGURE 47. Also, the communication channel may be

established across several physical transport mediums as described with respect to step

4710 of process flow 4700 of FIGURE 47. Process 4800 then proceeds to step 4815.

[0584] At step 4815, any number of secure communication tunnels are established

within the first communication channel (e.g., one, two, three, five, ten, fifty, one

hundred, or more than one hundred secure communication tunnels). Each secure

WO 2011/068738 PCT/US2010/058087

- 164 -

communication channel may be established using a certificate obtained from a unique

certificate authority and each tunnel may be associated with the respective unique

certificate authority. In some embodiments, symmetric encryption key material may

be communicated during the establishment of each channel using the certificate issued

by the unique certificate authority associated with that channel. In such embodiments,

the symmetric key encryption material may be, for example, the symmetric encryption

key material discussed with respect to the use of certificate authorities in full TLS

above. Similar to process flow 4700 of FIGURE 47, the unique certificate authorities

used to establish the secure communication tunnels may be referred to as “inner level

certificate authorities”. Each of the secure communication tunnels may be established

using a key establishment process with any suitable encryption technologies over one

or more physical transport media as described with respect to step 4720 of process

flow 4700 of FIGURE 47. Also similar to step 4720 of process flow 4700 of FIGURE

47, each certificate authority may be unique in that the certificates issued by each have

different public and private key pairs. In some embodiments, each secure

communication tunnel may be associated with a respective unique certificate authority

in that all data sent over that tunnel is encrypted based on keys developed during the

establishment of the communication tunnels . In some embodiments, this association

may be tracked in any suitable data structure by the secure data parser at a client

application, a server application, or both. Process 4800 then proceeds to step 4820.

[0585] At step 4820, incoming data packets may be cryptographically split into any

number of shares using multi-factored secret sharing. In some embodiments, the

incoming data packets may be split into the same number of shares as the number of

secure communication tunnels established at step 4815. The cryptographic split of the

incoming data packets may be achieved according to, for example, any suitable

dispersing techniques discussed with respect to step 4730 of process flow 4700 of

FIG. 47. Process 4800 then proceeds to step 4825.

[0586] At step 4825, each of the shares is encrypted using a key developed during

the establishment of a different one of the secure communication tunnels. In some

embodiments, the key may be a symmetric encryption key generated using symmetric

WO 2011/068738 PCT/US2010/058087

- 165 -

encryption key material that was communicated during the establishment of each

channel using a certificate of a unique certificate authority associated with that

channel. In some embodiments, this symmetric encryption key material may be, for

example, the symmetric encryption key material discussed with respect to the use of

certificate authorities in full TLS above. It may be understood, however, that the keys

developed during the establishment of the secure communication tunnels may be any

suitable encryption key, secret information, or any other information other than

symmetric encryption keys. For example, the keys developed during the

establishment of the secure communication tunnels may be asymmetric encryption

keys. In some embodiments, each of the shares that are produced at step 4820 is

preprocessed and tagged with one or more bits that identify which of the keys

associated with the establishment of the communication tunnels should be used to

encrypt each of the shares. Process 4800 then proceeds to step 4830.

[0587] At step 4830, each of the encrypted shares is transmitted on the tunnel

associated with the unique certificate authority under which that tunnel was

established. For example, if there were three secure communication tunnels

established each based on a different one of three unique certificate authorities, each

incoming unencrypted or pre-encrypted data packet would be cryptographically split

into three shares using multi-factored secret sharing and encrypted using a different

one of three keys developed during the establishment of the three secure

communication tunnels using a different one of three unique certificate authorities.

Accordingly, each one of the three encrypted shares would be transmitted on the

tunnel associated with the unique certificate authority under which that tunnel was

established, tn some embodiments, this transmission may be based on the data

structure that maintains the associations between the certificate authorities and the

tunnels.

[0588] In some embodiments, the association between a certificate authority and the

secure communication tunnels may remain constant throughout the duration of a data

transmission. In other embodiments, the associations between the certificate

authorities and the secure communication tunnels may be dynamic. In such

WO 2011/068738 PCT/US2010/058087

- 166 -

embodiments, the associations may be shuffled at any suitable point in time, such as

after the transmission of an entire data packet. For example, a first data packet may be

processed by process flow 4800 wherein the data packet is cryptosplit into three shares

at step 4820. The first share of the first data packet may encrypted using a first key

developed during the establishment of a first secure communication tunnel using a

first certificate authority and transmitted over the first communication tunnel. The

second share of the first data packet may be encrypted using a second key developed

during the establishment of a second secure communication tunnel using a second

certificate authority and transmitted over the second communication tunnel. Finally,

the third share of the first data packet may be encrypted using a third key developed

during the establishment of a third secure communication tunnel using a third

certificate authority and transmitted over the third communication tunnel.

[0589] In some embodiments, after the three shares of the first data packet are

transferred, the associations between the certificate authorities and the communication

channels may be shuffled such that the first share may be encrypted using the third key

and transmitted over the third tunnel, the second share may be encrypted using the first

key and transmitted over the first tunnel, and the third certificate authority may be

encrypted using the second key and transmitted over the second tunnel. In such

embodiments, these associations may be stored at any suitable depository that is

accessible to the devices in communication, such as depository 210 of FIGURE 2.

[0590] Describing embodiments of the secure proxy service with respect to FIGURE

48B, process flow 4850 may be executed on a client-side secure proxy server

application running on a second device, such as a web server, that is exchanging

information with a first device, such as a personal computer running a client-side

secure proxy service application. Process flow 4850 in begins at step 4835. At step

4835, encrypted shares of data are each received on a respective communication

tunnel. The server application may accept connections from the client application, and

forward the data it receives to the proper secure proxy configured port based on port

forwarding rules. These shares of data may be the same shares that were

cryptographically split, encrypted, and transmitted at steps 4820, 4825, and 4830, of

WO 2011/068738 PCT/US2010/058087

- 167 -

process flow 4800 of FIGURE 48 A, respectively. Process flow 4850 then proceeds to

step 4840.

[0591] At step 4840, each of the shares are decrypted based on the key associated

with the establishment of the respective secure communication tunnel that the share

was received on. In some embodiments, this process may be mirrored of that

described with respect to step 4825 of process flow 4800 of FIGURE 48. Process

flow 4850 then proceeds to step 4845.

[0592] At step 4845, the decrypted data packet shares are restored into the original

data packets. In some embodiments, this restoration may be a mirrored process of the

dispersing techniques used at step 4820 of process flow 4800 in FIGURE 48. In some

embodiments, the restored shares may be decrypted based on the data dispersion

and/or encryption technologies used to establish the first communication channel.

Process flow 4800 then ends. In some embodiments, the steps of process flows 4800

and 4850 may be repeated as necessary for the transmission of data over the secure

communication tunnels.

[0593] The communication protocols described with respect to process flows 4700,

4800, and 4850 offer the assurance that if certain outer or inner level certificate

authorities have been compromised, data will be securely exchanged between devices.

That is, even if compromised certificate authorities have access to the information

exchanged based on the keys associated with that certificate authority, the attacker

associated with the compromised certificate authority would not have enough

information to disrupt the confidentiality or integrity of the communication. For

example, if the outer level certificate authority was compromised but the inner level

certificate authorities retained their integrity, the attacker would be able to observe the

streams of data within each of the secure communication tunnels. However, the

attacker would have no knowledge of the encryption used within each of the secure

communication tunnels, including knowledge of the certificate of each of the unique

certificate authorities used to secure data over each secure communication tunnel.

[0594] In another example, if one or more of the inner level certificate authorities

was compromised but the outer level certificate authority remained intact, the attacker

WO 2011/068738 PCT/US2010/058087

- 168 -

may be able to recover cryptographically split portions of the data packets, but may

not be able to decrypt the cryptographically split portions because it would have no

knowledge of the encryption used by the outer level certificate authority. Further, if

the data packets sent through the secure communication tunnels are cryptographically

split such that they are restorable from at least a subset of the shares by recombining at

least a quorum of the shares, the user of the secure data parser may have the additional

protection that if some, but less than a quorum, of the certificates associated with the

secure communication tunnels have been compromised, the attacker would not be able

to restore the cryptosplit data packets.

[0595] FIGURE 48C is a simplified block diagram of a secure proxy service 4870

that distributes trust among a set of certificate authorities in the structure of

communication channels, that may be used in any suitable combination, with any

suitable additions, deletions, or modifications in accordance with one embodiment of

the present invention. Secure proxy service 4870 may reside on any suitable trust

engine 110 or module within trust engine 110 as described with respect to FIGURES

1-8. Secure proxy service is illustrated as including a first communication channel

4880 and sub-channels (i.e., secure communication tunnels) 4872, 4874, and 4876 that

are established using full TLS. However, it will be understood that these

communication channels may be established and used with any suitable encryption

technologies, or without encryption, as discussed with respect to steps 4710 and 4720

of process flow 4700 in FIGURE 47, or as discussed with respect to steps 4810 and

4815 of process flow 4800 of FIGURE 48 A. In addition, although secure proxy

sendee 4870 is illustrated as using three sub-channels, any suitable number of sub­

channels may be used to securely transfer information over the secure proxy service

4870.

[0596] Secure proxy service 4870 may include received data packets 4877. In some

embodiments, data packets 4877 may be unenciypted packets of data to be processed

by secure proxy service 4870. Data packets 4877 may be received from any suitable

source, such as depository 210 described with respect to trust engine 210 of FIGURE

2. In other embodiments, data packets 4877 may be pre-encrypted according to the

WO 2011/068738 PCT/US2010/058087

- 169 -

encryption technology used to establish communication channel 4880. For example,

as shown in secure proxy sendee 4870, communication channel 4880 is established

using full TLS. This full TLS communication channel may be established according

to process flow 4300 of FIGURE 43.

[0597] Secure proxy sendee 4870 may also include cryptographic packet split

module 4878. In some embodiments, cryptographic packet split module 4878 may

include any circuitry and/or instructions for executing and/or computing any of the

encryption and data dispersing techniques discussed with respect to step 4730 of

process flow 4700 of FIGURE 47, or discussed with respect to step 4820 and 4825 of

process flow 4800 of FIGURE 48 A. In some embodiments, cryptographic packet split

module 4878 may reside on a client device or a client-side application that requests to

communicate with a server. In other embodiments, ciypto graphic packet split module

4878 may reside or run on any device that is suitable to run secure data parser 3706 of

illustrative overview process 3700 of FIGURE 37.

[0598] Secure proxy service 4870 may also include communication channel 4880.

Communication channel 4880 may be established over one or more physical mediums

using any suitable enciyption technologies, or no enciyption, as described with respect

to the first communication channel at step 4710 of process flow 4700 of FIGURE 47,

or as described with respect to first secure communications channel at step 4810 of

process flow 4800 of FIGURE 48A. Sub-channels 4872, 4874, and 4876 may be

established based on communication channel 4880. These sub-channels may be

established over one or more physical mediums based on a certificate of a unique

certificate authority according to, for example, the secure communication tunnels are

described with respect to step 4720 of process flow 4700 of FIGURE 47, or are

described with respect to step 4815 of process flow 4800 of FIGURE 48A. In this

manner, each sub-channel may be associated with a unique certificate authority.

[0599] For example, as shown in secure proxy service 4870, TLS sub-channel 4872

is associated with certificate authority CA1, TLS sub-channel 4874 is associated with

certificate authority CA2, and TLS sub-channel 4876 is associated with certificate

authority CA3. In some embodiments, the associations between sub-channels and

WO 2011/068738 PCT/US2010/058087

- 170 -

their respective certificate authorities may remain constant. In other embodiments, the

associations between sub-channels and their respective certificate authorities may

change as described with respect to step 4830 of process flow 4800 of FIGURE 48A.

Communication channel 4880 and sub-channels 4872, 4873, and 4876 may be

established on any suitable communication link, such as communication link 125

described with respect to cryptographic system 100 of FIGURE 1.

[0600] In some embodiments, cryptographic packet split module 4878 may transmit

dispersed shares of data packets 4877 over sub-channels 4872, 4874, and 4876. This

transmission may occur according to, for example, step 4740 of process flow 4700 of

FIGURE 47, or according to, for example, step 4830 of process flow 4800 of FIGURE

48A. In some embodiments, cryptographic packet split module 4878 may transmit

one of the split shares over each of the sub-channels 4872, 4874, and 4876. In other

embodiments, cryptographic packet split module 4878 may transmit more than one

split share over one or more of the sub-channels 4872, 4874, and 4876. Such

embodiments may be useful when one of the sub-channels 4872, 4874, and 4876 is

unusable due to a failure in the physical medium supporting one of the sub-channels.

[0601] In some embodiments, sub-channels 4872, 4874, and 4876 may include data

encryption modules 4871, 4873, and 4875, respectively. Data encryption modules

4871,4873, and 4875 may each be associated with a unique certificate authority

associated with one of the sub-channels. In some embodiments, data encryption

modules will apply data encryption to each share of a data packet that passes over the

sub-channel. For example, as shown with respect to proxy service 4870, encryption

module 4871 is associated with certificate authority CA1 that is associated with TFS

sub-channel 4872, and encrypts each share of a data packet that passes over sub­

channel 4872 using full TFS based on a key developed during establishment of

channel 4872. The establishment of channel 4872 may have used a certificate

obtained from certificate authority CA1. Encryption module 4873 is associated with

certificate authority CA2 that is associated with TFS sub-channel 4874, and encrypts

each share of a data packet that passes over sub-channel 4874 using full TFS based on

a key developed during establishment of channel 4874. This establishment of channel

WO 2011/068738 PCT/US2010/058087

- 171 -

4874 may have used a certificate obtained from certificate authority CA2. Finally,

encryption module 4875 is associated with certificate authority CA3 that is associated

with TLS sub-channel 4876, and enciypts each share of a data packet that passes over

sub-channel 4876 using full TLS based on a key developed during establishment of

channel 4876. This establishment of channel 4876 may have used a certificate

obtained from certificate authority CA3. In some embodiments, encryption modules

4872 may reside or run on any device that is suitable to run secure data parser 3706 of

illustrative process 3700 of FIGURE 37.

[0602] Secure proxy service 4870 may also include packet restore module 4879.

Packet restore module may receive shares of data packets from sub-channels 4872,

4874, and 4876 as described with respect to step 4750 of process flow 4700 of

FIGURE 47, or as described with respect to step 4835 of process flow 4850 of

FIGURE 48B. In some embodiments, packet restore module 4879 may include any

circuitry and/or instructions for executing and/or computing any of the deciyption

techniques or packet restoration techniques to produce restored data packets 4882 as

described with respect to step 4760 of process flow 4700 of FIGURE 47 or steps 4840

and 4845 as described with respect to process flow 4850 of FIGURE 48B. In some

embodiments, restore packet module 4879 may reside on a server device or a service-

side application that receives requests from a client device or client-side application.

In other embodiments, packet restore module 4879 may reside or run on any device

that is suitable to run secure data parser 3700 of illustrative overview process 3700 of

FIGURE 37.

[0603] FIGURE 49 is a process flow diagrams of illustrated steps and features for a

secure proxy service 4900 between client 4910 and server 4920 that distributes trust

among a set of certificate authorities in the structure of communication channels, that

may be used in any suitable combination, with any suitable additions, deletions, or

modifications in accordance with one embodiment of the present invention. For

example, trust may be distributed in first certificate authority CA1, second certificate

authority CA2, and third certificate authority CA3 as part of key establishment phase

4570, as will be described below. In some embodiments, secure proxy service 4900

WO 2011/068738 PCT/US2010/058087

- 172 -

may be executed during and after the key establishment phase of a secure exchange of

information between client 4910 and server 4920, but before the client 4910 and

server 4920 exchange messages. Secure proxy service 4900 may be part of one or

more of the processes associated with the secure data parser similar to how the steps of

process flows 4700, 4800, and 4850 are associated with the secure data parser. In

addition, secure proxy service 4900 may be an example of process flows 4700, 4800,

and 4850 of FIGURES 47, 48A, and 48B, or may be an example of the operation of

secure proxy service 4870.

[0604] Secure proxy service 4900 begins at step 4930. At step 4930, client 4910

establishes a first communication channel (not shown) and secure communication

tunnels as described with respect to first communication channel and secure

communication tunnels at steps 4710 and 4720 of process flow 4700 of FIGURE 47,

and first secure communication channel and secure communication tunnels at steps

4810 and 4820 of process flow 4800 of FIGURE 48A. Secure proxy service 4900

then proceeds to step 4912.

[0605] At step 4912, client 4910 may generate secure data parser headers Hi, H2,

and H3, and transmit them to server 4920. Headers Hi, H2. and H3 may contain

information related to the data dispersion techniques agreed upon by client 4910 and

server 4920. For example, in some embodiments, client 4910 and server 4920 may

agree upon the use of an “M of N cryptosplit” of each exchanged message. Headers

Hi, H2, and H3 may be encrypted based on keys associated with the establishment of

the secure communication tunnels at step 4930. In some embodiments, this encryption

and header generation may be included as part of any of the encryption and data

dispersing techniques discussed with respect to step 4730 of process flow 4700 of

FIGURE 47, or discussed with respect to step 4820 and 4825 of process flow 4800 of

FIGURE 48A. In addition, in some embodiments, this header generation process may

be executed by cryptographic packet split module 4878 as described with respect to

secure proxy service 4870 of FIGURE 48C. Client 4910 may then transmit Headers

Hi, H2, and H3 to server 4920. This transmission may occur according to, for

example, step 4740 of process flow 4700 of FIGURE 47, or according to, for example,

WO 2011/068738 PCT/US2010/058087

- 173 -

step 4830 of process flow 4800 of FIGURE 48A. In addition, a cryptographic packet

split module 4878 may transmit Headers Hi, H2, and H3 of data packets 4877 over

sub-channels 4872, 4874, and 4876 as described with respect to secure proxy service

4870 in FIGURE 48C. Secure proxy service 4900 then proceeds to step 4922.

[0606] At step 4922, server 4920 may receive Headers Hi, H2, and H3 as described

with respect to step 4750 of process flow 4700 of FIGURE 47, or as described with

respect to step 4835 of process flow 4850 of FIGURE 48B. Client 4910 may then

disperse data D into shares Di, D2, and D3. Shares Di, D2, and D3 may be encrypted

based on keys associated with the establishment of the secure communication tunnels

at step 4930. In some embodiments, this dispersing process may be included as part of

any of the encryption and data dispersing techniques discussed with respect to step

4730 of process flow 4700 of FIGURE 47, or discussed with respect to step 4820 and

4825 of process flow 4800 of FIGURE 48A. Secure proxy service 4900 transmits the

shares of encrypted and parsed data to client 4910. This transmission may occur

according to, for example, step 4740 of process flow 4700 of FIGURE 47, or

according to, for example, step 4830 of process flow 4800 of FIGURE 48 A. Secure

proxy service 4900 may proceed to step 4914.

[0607] At step 4914, client 4910 may receive shares Di, D2, and D3 as described

with respect to step 4750 of process flow 4700 of FIGURE 47, or as described with

respect to step 4835 of process flow 4850 of FIGURE 48B. In some embodiments, a

packet restore module may receive shares of data packets from sub-channels as

described with respect to packet restore module 4879 of secure proxy service 4870 in

FIGURE 48C. Client 4910 may then decrypt and restore shares Di, D2, and D3.

Shares may be decrypted and restored according to any suitable decrypt and restore

techniques as described with respect to step 4760 of process flow 4700 of FIGURE 47

or steps 4840 and 4845 as described with respect to process flow 4850 of FIGURE

48B. In some embodiments, shares Di, D2, and D3 may be decrypted and restored by

a packet restore module such as packet restore module 4879 of secure proxy service

4870 in FIGURE 48C. Client 4910 may repeat any of steps 4912 and 4914, and serv er

WO 2011/068738 PCT/US2010/058087

- 174 -

4920 may repeat step 4922, as many times as necessary to transmit data between client

4910 and server 4920. Secure proxy service 4900 then ends.

[0608] FIG. 50 is a simplified block diagram of a secure proxy service 5000 between

client 5010 and server 5020 that distributes trust among a set of certificate authorities

in the structure of communication channels, that may be used in any suitable

combination, with any suitable additions, deletions, or modifications in accordance

with one embodiment of the present invention. Secure proxy service 5000 may be, for

example, the secure proxy services discussed with respect to process flow 4700, 4800,

or 4850, as well as secure proxy sendee 4870 or 4900 as described with respect to

FIGURES 47-49. Secure proxy sendee 5000 may be implemented such that each one

of the secure communication tunnels 5030, 5040, and 5050 is associated with an outer

level certificate authority (not shown in FIGURE 50) as described with respect to step

4710 of process flow 4700 of FIGURE 47 and step 4810 of process flow 4800 of

FIGURE 48A. In addition, secure proxy service 5000 may be implemented such that

each one of secure communication tunnels 5030, 5040, and 5050 is associated with a

different one of an inner level certificate authority such as first certificate authority

CA1, second certificate authority CA2, and third certificate authority CA3, and each

one of the secure communication tunnels 5030, 5040, and 5050 are established over

different physical transport mediums. These different physical media may be any

suitable physical transport medium as described with respect to step 4710 of process

flow 4700 of FIGURE 4700 or with respect to step 4810 of process flow 4800 of

FIGURE 48A. For example, as illustrated in FIGURE 50, secure communication

tunnels 5030, 5040, and 5050 may be established over WiFi, Ethernet, and cellular

communication channels, respectively.

[0609] During normal operation of secure proxy service 5000, client 5010 may send

first data share 5012 over first secure communication tunnel 5030, second data share

5014 over second secure communication tunnel 5040, and third data share 5016 over

third secure communication tunnel 5050. Data shares 5012, 5014, and 5016 may be

data shares computed by client 5010 using any suitable data dispersing and encryption

techniques discussed with respect to step 4730 of process flow 4700 of FIGURE 47, or

WO 2011/068738 PCT/US2010/058087

- 175 -

discussed with respect to step 4820 and 4825 of process flow 4800 of FIGURE 48 A.

Although secure proxy service 5000 is illustrated as splitting data into 3 data shares, it

may be understood that secure proxy service 5000 may disperse data into any suitable

number of shares and transmit them each over any suitable number of secure

communication tunnels.

[0610] In some embodiments, one of the physical media may experience a network

failure. This network failure may be due to a structural malfunction of the physical

media. For example, as illustrated in secure proxy service 5000, the cellular

communication channel used to establish third secure communication tunnel 5050

may experience a network failure due to damage to a cellular tower.

[0611] In some embodiments, secure proxy service 5000 may not change the

transmission of its data packets over secure communication tunnels 5030, 5040, and

5050 in response to the network failure (not illustrated in FIGURE 50). In other

words, client 5010 may continue to send first data share 5012 over first secure

communication tunnel 5030, and second data share 5014 over second secure

communication tunnel 5040. In some embodiments of secure proxy service 5000, the

data packets that include first data share 5012 and second data share 5014 may

continue to be exchanged without a loss of data integrity. For example, if the data

packets processed by secure proxy service 5000 are split using a secret sharing

algorithm (e.g., the Shamir secret sharing algorithm) such that only a quorum of data

shares 5012, 5014, and 5016 are needed to recover each transmitted data packet, then

there may be no loss of data integrity between the packets exchanged between client

5010 and server 5020.

[0612] In some embodiments, secure proxy service 5000 may change the

transmission of its data packets over secure communication tunnels. For example,

first data share 5012 may continue to be transmitted over the wifi-based secure

communication tunnel 5030, while second data share 5014 and third data share 5014

may be transmitted over the Ethernet-based secure communication tunnel 5040. In

such embodiments, one or more of the secure communication tunnels may need to be

split into one or more secure communication tunnels using additional key

WO 2011/068738 PCT/US2010/058087

- 176 -

establishment processes. This split may be accomplished according to, for example,

any of the key establishment phases described with respect to step 4720 of process

flow 4700 of FIGURE 47 or step 4820 of process flow 4800 of FIGURE 48. After

these additional key establishment phases, the data shares of the data packets may

resume according to the new configuration of the secure proxy service 5000.

[0613] In some embodiments, this new configuration of secure proxy service 5000

may change how the split shares of data are encrypted based on keys associated with

the establishment of the secure communication tunnels or split portions of the secure

communication tunnels. For example first data share 5012 may be encrypted based on

a key associated with the establishment of wifi-based first secure communication

tunnel 5030, and then transmitted over that tunnel. Second data share 5014 may be

encrypted based on a key associated with the establishment of a first split portion 5042

of Ethernet-based second secure communication tunnel 5040 and transmitted over first

split portion 5042, and third data share 5016 may be encrypted based on a key

associated with the establishment of a second split portion 5044 of Ethernet-based

secure communication tunnel 5040 and transmitted over second split portion 5044. In

some embodiments, first secure communication tunnel 5030 may be established using

the certificate obtained from certificate authority CA1, first split portion 5042 of

Ethernet-based second secure communication tunnel 5040 may be established using

the certificate obtained from certificate authority CA2, and second split portion 5044

of Ethernet-based secure communication tunnel 5040 may be established using the

certificate obtained from certificate authority CA3. In some embodiments, secure

proxy service 5000 may execute these additional key establishment processes

adaptively as the communication channels that the secure communication tunnels are

established on fail or are restored. In embodiments of secure proxy service 5000 as

illustrated in FIGURE 50, secure proxy service 5000 may be referred to as

“communication-medium redundant”.

[0614] In embodiments of secure proxy service 5000 as illustrated in FIGURE 50,

data may be exchanged between client 5010 and server 5020 without a loss of data

confidentiality, integrity, and authenticity. That is, even if compromised certificate

177
20

10
32

62
48

17

 M
ay

 2
01

3 authorities have access to the information exchanged based on that certificate authority,

the attacker associated with that certificate authority may not have enough information

to disrupt the confidentiality or integrity of the communication. For example, if the

outer level certificate authority of secure proxy service 5000 was compromised but the

integrity of the inner-level certificate authorities were preserved, the attacker may be

able to observe the streams of data over the WiFi-based communication channel and

both portions of the Ethernet-based communication channel, but may have no

knowledge of the encryption used to secure data over each secure communication

tunnel.

[0615] In another example, if one or more of the inner level certificate authorities was

compromised but the outer level certificate authority remained intact, the attacker may

be able to recover some of the cryptographically split portions of the data packets, but

may not be able to decrypt the data packets themselves because it may have no

knowledge of the encryption used by the outer level certificate authority. Further, if the

data packets sent through the secure communication tunnels are cryptographically split

such that they are restorable from at least a subset of the shares by recombining at least

a quorum of the shares, the user of the secure data parser may have the additional

protection that if some, but less than a quorum, of the certificates associated with the

secure communication tunnels have been compromised, the attacker may not be able to

restore the cryptosplit data packets.

[0616] Additionally, other combinations, additions, substitutions and modifications

will be apparent to the skilled artisan in view of the disclosure herein.

|0617] The term “comprise” and variants of that term such as “comprises” or

“comprising” are used herein to denote the inclusion of a stated integer or integers but

not to exclude any other integer or any other integers, unless in the context or usage an

exclusive interpretation of the term is required.

[0618] Reference to prior art disclosures in this specification is not an admission that

the disclosures constitute common general knowledge in Australia.

178
20

10
32

62
48

20

 Ju
l2

01
5

CLAIMS

1. A method for securing data in motion comprising original data packets,

the method comprising:

establishing a secure communication channel;

establishing a plurality of secure communication tunnels within the

secure communication channel, wherein the plurality of secure communication tunnels

are established using certificates issued by a plurality of unique certificate authorities;

dispersing each one of the original data packets into a plurality of shares

based on multi-factored secret sharing;

encrypting each of the plurality of shares using a key associated with the

establishment of a different one of the secure communication tunnels; and

transmitting the plurality of encrypted shares over one or more of the

plurality of secure communication tunnels.

2. A system for securing data in motion comprising original data packets,

the system comprising a first device comprising a computer processor configured for:

establishing a secure communication channel;

establishing a plurality of secure communication tunnels within the

secure communication channel, wherein the plurality of secure communication tunnels

are established using certificates issued by a plurality of unique certificate authorities;

dispersing each one of the original data packets into a plurality of shares

based on multi-factored secret sharing;

encrypting each of the plurality of shares using a key associated with the

establishment of a different one of the secure communication tunnels; and

transmitting the plurality of encrypted shares over one or more of the

plurality of secure communication tunnels.

3. The method of claim 1 or the system of claim 2, wherein transmitting

each of the plurality of encrypted shares further comprises transmitting each of the

plurality of encrypted shares on the one of the plurality of secure communication

tunnels associated with the certificate issued by the one of the plurality of unique

certificate authorities under which the one of the plurality of secure communication

tunnels was established.

179
20

10
32

62
48

20

 Ju
l 2

01
5

4. The method of claim 1 further comprising the steps of, or the system of

claim 2 including a second device comprising processing circuitry configured for:

receiving the plurality of encrypted shares, each on a respective one of

the plurality of secure communication tunnels;

decrypting each of the plurality of encrypted shares based on the key

associated with the establishment of the respective one of the plurality of secure

communication tunnels; and

restoring the set of original data packets based on the multi-factored

secret sharing.

5. The method of claim 1 further comprising the step of, or the system of

claim 2 including processing circuitry further configured for, generating a certificate

authority hierarchy, wherein the certificate authority hierarchy comprises a set of root

certificate authorities, and wherein the plurality of unique certificate authorities

comprises the set of root certificate authorities.

6. The method of claim 1 further comprising the step of, or the system of

claim 2 including processing circuitry further configured for, generating a certificate

authority hierarchy, wherein the certificate authority hierarchy comprises a set of minor

certificate authorities, and wherein the plurality of unique certificate authorities

comprises the set of minor certificate authorities.

7. The method of claim 1, wherein each of the plurality of secure

communication tunnels is established over a different physical transport medium.

8. The method of claim 7, wherein at least one of the physical transport

mediums experiences a network failure, the method further comprising restoring the

original data packets without a loss of data integrity.

9. The method of claim 8, wherein at least one of the physical transport

mediums experiences a network failure, wherein a portion of the plurality of shares is

designated for transmission over the failed physical transport medium, and wherein at

least one of the physical transport mediums is operational, the method further

comprising:

180
20

10
32

62
48

20

 Ju
l2

01
5

establishing additional secure communication tunnels within the at least

one operational physical transport medium; and

transmitting the portion of the plurality of shares designated for

transmission over the at least one of the set of failed physical transport mediums over

the additional secure communication tunnels.

10. The system of claim 2, wherein each of the plurality of secure

communication tunnels is established over a different physical transport medium.

11. The system of claim 10, wherein at least one of the physical transport

mediums experiences a network failure, the system including processing circuitry

further configured for restoring the original data packets without a loss of data integrity.

12. The system of claim 11, wherein at least one of the physical transport

mediums experiences a network failure, wherein a portion of the plurality of shares is

designated for transmission over the failed physical transport medium, and wherein at

least one of the physical transport mediums is operational, the system including

processing circuitry further configured for:

establishing additional secure communication tunnels within the at least

one operational physical transport medium; and

transmitting the portion of the plurality of shares designated for

transmission over the at least one of the set of failed physical transport mediums over

the additional secure communication tunnels.

13. The method of claim 1 or the system of claim 2, wherein the associations

between the tunnels and the unique certificate authorities are dynamic.

14. The method claim 1, wherein dispersing each one of the original data

packets into a plurality of shares further comprises splitting each one of the original data

packets into a plurality of shares based on an M of N cryptosplit.

15. The method of claim 14, wherein the plurality of shares are restorable

from at least a subset of the shares by recombining at least a quorum of the shares.

181
20

10
32

62
48

20

 Ju
l2

01
5

16. The system of claim 2, wherein dispersing each one of the original data

packets into a plurality of shares further comprises splitting each one of the original data

packets into a plurality of shares based on an M of N cryptosplit.

17. The system of claim 16, wherein the plurality of shares are restorable

from at least a subset of the shares by recombining at least a quorum of the shares.

18. The method of claim 1 or the system of claim 2, wherein the plurality of

secure communication tunnels are established based on the Transport Layer Security

protocol.

WO 2011/068738 PCT/US2010/058087
1/53

10
0

FI
G

. 1

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
2/53

20
0

_l
ω
w

FI
G

. 2

I— □"
E-
E
o

Ψ
c
o'43
re

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
3/53

o
CN

φ
c
ra
c

III
3o
'3υ
re
V)
s
reL.
H

zs.
Φ
c

c ra
□ 3
3 111
o c

'■3 .2
re '-3
Q £ reyΈ o
3
ε «

'3
3
Φo

Q. f
o Φ 3
O Q <
o O O
1- 1- h-

Φ
3
ra
3

υ ΦΞ ra
Q. re
re u
ι- 0
Ο)
o «

+->
a W

W
re

o 2
0 0
1- 1-

C

FI
G

. 3

co
re
o
c
3
ε
ε
ο

ε
οU.

LL

Φ Φ
3 3
ra ra
3 c

UJ UJ
c
o

O
Ξ

re
o

cΦ
SZ
3
<

εo
LL

ra
o-w
Q.

O

εo

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
4/53

Φ
Ο)
COk.
ο
ω
Ui
Ui
ro

ο

FI
G

. 4

φ
C
σ>
ε

111
Ε
Ο
TO
Ο

ΩΦ
χ:
□
<
εοk.

LL

φ
Ε
’δ)
ε
ω
Εο
«ο
♦5
Εφ
χ:+j
3
<
Ο
Η

Φ Φ
Ω E
O) O)
E E

111 LU
υ E
x: O
Ω.
rau.

υ
ra

cn (Λ
o E

ra
Ω. u
fr
O E

ε 0u.
o LL

LL

Φ
Ε
’δ)
c

111

χ:
Ω.
2
Ο)ο
Ω.
fr
Ο
ο

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
5/53

ωc
mcLUt \
Q.reu oσ>o
Q. o
£ Q.Φo D
o Oh* 1-

Φ(=
'5)

co
υre(Λc
Ι­
Ο

A
ut

he
nt

ic
at

io
n E

ng
in

e

c
c

LJJ
.2

FI
G

. 5

υre
(Ac
2

2?o
«oQ.ΦQ
εo

Eo
LL

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
6/53

C
0
ura
II)
c
2
i- ro
o c
Hiu

A

o
o
Ω.Φ
Q
O

Ι­
Α

C
ry

pt
og

ra
ph

ic
 E

ng
in

e

FI
G

. 6

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
7/53’

70
0

Co
reυ

'■5 φ
c E Φ ~

•XZ CD
ti c
<*

ε
o

-C
CL
reL.
05 φ
o cs-· .=
Q. 05
dc£ω

εο

u. u.

FI
G

. 7

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
8/53

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
9/53

Enrollment Data Flow

Send Receive SSL Action

User Transaction
Engine (TE) 1/2

Transmit Enrollment Authentication
Data (B) and the User ID (UID)
encrypted with the Public Key of
the Authentication Engine (AE) as
(PUB_AE(UID,B))

TE AE Full Forward Transmission
AE Decrypts and Splits Forwarded
Data

AE The Xth
Depository (DX) Full Store Respective Portion of Data

When Digital Certificate Requested

AE Cryptographic
Engine (CE) Full Request Key Generation

CE Generates and Splits Key

CE TE Full Transmit Request for Digital
Certificate

TE Certification
Authority (CA) 1/2 Transmit Request

CA TE 1/2 Transmit Digital Certificate

TE User 1/2 Transmit Digital Certificate

TE MS Full Store Digital Certificate

CE DX Full Store Respective Portion of Key

905

915

920

925

930

935
7

945

950

955

960

965

FIG. 9, Panel A

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
10/53

900

FIG. 9, Panel B

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
11/53

1005

1010

1015

1020

1025
%

1030

1035

1040
%

1045
%

1050
%

1055

1000

Authentication Data Flow

SEND RECEIVE SSL ACTION

User Vendor 1/2 Transaction occurs, such as selecting
purchase

Vendor User 1/2 Transmit transaction ID (TID) and
authentication request (AR)

Authentication data (B’) is gathered
from User

User TE 1/2
Transmit TID and B’ wrapped in the
Public Key of the Authentication
Engine (AE), as (PUB_AE(TID, B’))

TE AE Full Forward transmission

Enrollment authentication data (B) is
requested and gathered

Vendor Transaction Engine
(TE) Full Transmits TID, AR

TE Mass Storage (MS) Full Create Record in database

TE The Xth Depository
(DX) Full UID, TID

DX AE Full
Transmit the TID and the portion of
the authentication data stored at
enrollment (BX) as (PUB AE(TID,
BX))

AE assembles B and compares to B’

AE TE Full TID, the filled in AR

TE Vendor Full TID, Yes/No

TE User 1/2 TID, confirmation message

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
12/53

1100

1103

1105

1110

1115
U

1120
V.

1125
A.

1130
A.

1135
A_

1140

Signing Data Flow
SEND RECEIVE SSL ACTION

User Vendor 1/2 Transaction occurs, such as agreeing on
a deal

Vendor User 1/2
Transmit transaction identification
number (TID), authentication request
(AR), and agreement or message (M)
Current authentication data (B’) and a
hash of the message received by the
User (h(M’)) is is gathered from User

User TE 1/2
Transmit TID, B’, AR, and h(M’) wrapped
in the Public Key of the Authentication
Engine (AE), as (PUB AE(TID, B', h(M’))

TE AE Full Forward transmission
Gather enrollment authentication data

Vendor Transaction Engine
(TE) Full Transmits UID, TID, AR, and a hash of

the message (h(M’)).
TE Mass Storage (MS) Full Create Record in database

TE The Xth Depository
(DX) Full UID, TID

DX AE Full
Transmit the TID and the portion of the
authentication data stored at Enrollment
(BX), as (PUB AE(TID, BX))
The original vendor message is
transmitted to the AE

TE AE Full Transmit h(M)
AE assembles B, compares to B’ and
compares h(M) to h(M’)

AE Cryptographic
Engine (CE) Full

Request for digital signature and a
message to be signed, for example, the
hashed message

AE DX Full TID, signing UID

DX CE Full
Transmit the portion of the Crypto­
graphic Key corresponding to the signing
party
CE assembles key and signs

CE AE Full Transmit the digital signature (S) of
signing party

AE TE Full TID, the filled in AR, h(M), and S

TE Vendor Full

TID, a receipt=(TID, Yes/No, and S), and
the digital signature of the trust engine,
for example, a hash of the receipt
encrypted with the trust engine’s Private
Key (Priv TE(h(receipt)))

TE User 1/2 TID, confirmation message

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
13/53

1200

Encryption/Decryption Data Flow

Send Receive SSL Action

Decryption
Perform Authentication Data Process
1000, include the Session Key (sync) in
the AR, where the sync has been
encrypted with the Public Key of the User
as PUB USER(SYNC)
Authenticate the User

AE CE Full Forward PUBJJSER(SYNC) to CE

AE DX Full UID, TID

DX CE Full
Transmit the TID and the portion of the
Private Key as (PUB AE(TID,
KEY USER))
CE assembles the Cryptographic Key and
decrypts the sync

CE AE Full TID, the filled in AR including decrypted
sync

AE TE Full Forward to TE

TE Requesting
APP/Vendor 1/2 TID, Yes/No, Sync

Encryption
Requesting

APP/
Vendor

TE 1/2 Request for Public Key of User

TE MS Full Request Digital Certificate

MS TE Full Transmit Digital Certificate

TE Requesting
APP/Vendor 1/2 Transmit Digital Certificate

1205

1210

1215

1220

1225

1230

1235

1240

1245
y
1250

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
14/53

FI
G

. 1
3

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
15/53

FI
G

. 1
4

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
16/53

From A1

From A2

From A3

>
>
>

Redundancy
Module

Comparator
To A4

Transaction
Engine

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
17/53

-1045

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
18/53

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
19/53

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
20/53

lo o id o IOV CM CM co CD
03 σ> 03 03 03
y- V“ v V” V"

Us
er

Tr

us
t E

ng
in

e
Ve

nd
or

o
5

o uo o o σ> 03

■o
ε anuO 4-JO sr re

d F itr
a « =

3 re03c
uO

ac
t t

o
t S

ig
n

Si
g ->

o
Φ -► -►

iv
ed

ne
ra ■£S>Λ X.

03 03 Ο ΦoΦ O tjQ£
Q£ en

03

ld o
LD CD
03 03

UOCOCD

1 I

C c
o o
re reo L_ o

0 u.CO C ΦΦ c ω «JZ 03
>

-► ->
3 = ¾
< 4—

0 < °
£· £·
u u03 03
> >

o
cn

LONTσ>

-° ° fc
■σ sz «

0)1 >

φ "qf □)
fc.Ew
*=3
®UJ re
o w c o = o

q/HU

o O "S έ

l5^> « ° re o 5
J=. >*l±
re ο. o > ± «-io_ * ·*-» Cue
σ>φ o

OT »j O

or-O)

FI
G

. 1
9

int'-cn
o
LD
σ>

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
21/53

FIG. 20

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
22/53

Session
key to be
secured

Encrypt

Data to be
parsed

Generate
session

master key

RC4
Encryption

with session
Master key

Split data
according to
session key

/ Access
7 Parser

C S Master
// keV

Access
session
master

key

Split Session
key according

to Parser
Master key

Generate
share 1 key

Generate
share 2 key

Encrypt
Pieces

▼
Encrypt share

1 data with
share
1 key

Encrypt share
2 data with

share
2 key

Generate
share 3 key

3l
ύ

r
Encrypt share

3 data with
share
3 key

V

Generate
share n key Lϊ

1

(/

r

/

Encrypt share
n data with

share
n key

Encrypted / Key n /
share 1 (data / / /
session key) /

Encrypted
share 3 (data /
session key)

Key 2

Obfuscate Encrypted
share 2 (data /
session key) 7

Key 1 Encrypted share /
n (data / session/

key) /

FIG. 21

T
Key 3

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
23/53

FIG. 22

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
24/53

FIG. 23

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
25/53

FIG. 24

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
26/53

FI
G

. 2
5

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
27/53

2500

FIG. 26

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
28/53

2600

FIG. 27

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
29/53

2708

2702uParser

2704
JMessage

Sender

2700

FIG. 28

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
30/53

2806

2810

FIG. 29

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
31/53

A
pp

lic
at

io
n

La
ye

r

oco

FI
G

. 3
0

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
32/53

W
ri

te
 /

In
se

rt
 /

Tr
an

sm
it

FI
G

. 3
1

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
33/53

Φ
TO

V
TO

Co*3
TOU
Q.Q.
<

Re
ad

 /
Se

le
ct

 /
Re

ce
iv

e

Φ
CLQ.
TO

CL
< ■rt"

CM
O
CQ

(Λ
= £
O TO

Φ
|§

«TOis Φ £

or
m

i
tio

n Ε o
2 cc ·-

c o ile ED

o LL

A

Φ
2
TO

CL
TO —7
TO
o
£
3
OΦ
w

<D
CM
O
CQ

TO
υ

TOCi_
ω*■>x
ω

r \
*-·

C—. c
Ο φ Φ

E
5? φ

gx Λ σ>
X CU

2 c cC (0 111 CU
S

\Z \Z V V V

o
υ
s_
Φ
S2
TO
0.
TO+■>TO
Q
ω

o
φ

(/>

o J
cU
o
CQ

CN
CO

0
LL

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
34/53

CD
O

CO
co

o
LL

Pl
ai

n
Te

xt

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
35/53

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
36/53

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
37/53

(in
pu

t D
at

a
An

y
Ty

pe
)

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
38/53

37
00

FI
G

. 3
7

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
39/53

FI
G

. 3
8

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
40/53

Ο

Ο)co

39
00

coοσ>co

FI
G

. 3
9

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
41/53

40
02

1

λ-40
12

FI
G

. 4
0A

FI

G
. 4

0B

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
42/53

FI
G

. 4
1

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
43/53

Ο
CO
CN

FI
G

. 4
2

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
44/53

De
vi

ce
l

De
vi

ce
2

En
c(

K,
 M

es
sa

ge
s)

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
45/53

FIG. 44

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
46/53

4500
BeginJ

4510^
Devices Exchange Random Numbers and

Certificates Associated with Public Keys, Each
Public Key Issued by a Unique Certificate Authority

4515^

First Device Generates Secret information

4520j
First Device Disperses Secret Information into

Shares

4525γ 4527->
First Device Encrypts Each Share Based on One of the
Public Keys Issued by a Different Certificate Authority

First Device Performs
Keywrap

4530-y 4535
First Device Transmits Encrypted Shares to Second

Device
—►

Second Device Attempts to
Decrypt Encrypted Shares

4545~> 4540i
Devices Independently Compute Shared Encryption
Key Based on Exchanged Random Numbers, and

Computed or Original Secret Information
4---

Second Device Attempts to
Restore Secret Information

Based on Decrypted Shares

4555γ
Devices Exchange

Messages
Devices Do Not

Exchange Messages

FIG. 45

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
47/53

Cl
ie

nt

Se
rv

er

En
c(

K,
 M

es
sa

ge
s)

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
48/53

FIG. 47

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
49/53

4800—

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
50/53

4850

FIG. 48B

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
51/53

FI
G

. 4
8C

48
70

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
52/53

o
CM
CD
m·

CMCM
CD
M-

r
oo

Cl
ie

nt

Se
rv

er

i k i l i k i k 1 k A

CM CO
< < <
o O o

JC JC x:
CD CD CD
c c 'τ— CM co
2 o oL_ I X X

x: JC
I— 1— 1-
ω ω ω
_j _j

H 1-
co

T

CM
1 1 * I

ω
co

Q

CD CM

CO
CD T-
XQ

CD X
oQ
w of
CD (/)
* CO
O_CL

COq.
ω

Q
CM

Q
co

Q

CD
M"

SP
 R

es
to

re
(D

1, D
2,

 D
3)

: D

σ>
xf

0
LL

SUBSTITUTE SHEET (RULE 26)

WO 2011/068738 PCT/US2010/058087
53/53

LO

φ
£
φ

CZ)

ο
co

CM
O
LO

CDCZ
CZ
rox:
O

ω c c o
cd ro

jz o

E
E
o
O C

om
ra

dn
ic

at
io

n C
ha

nn
el

50
00

SUBSTITUTE SHEET (RULE 26)

