
US 2002O170047A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2002/0170047 A1

Swetland (43) Pub. Date: Nov. 14, 2002

(54) SYSTEM AND METHOD FOR (22) Filed: Feb. 23, 2001
TRANSFORMING OBJECT CODE

Publication Classification
(76) Inventor: Brian Swetland, Mountain View, CA

(US) (51) Int. Cl." ... G06F 9/45
(52) U.S. Cl. .. 717/162

Correspondence Address:
Edwin H. Taylor (57) ABSTRACT
BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
LLP A unified programming object is described comprising: a
Seventh Floor shared constant pool comprising global constant pool entries
12400 Wilshire Boulevard mapped from local constant pool entries of two or more class
Los Angeles, CA 90025-1026 (US) files, and a plurality of object code copied from the two or

more class files to the unified programming object and
(21) Appl. No.: 09/792,551 identified by the global constant pool entries.

START 800

Search for plug-in
85

Plug-in installed?
820

Transmit
825

Search for portal device
830

Implement standard
login procedure and/or
register user on portal

840

Device attached?
835

Automatically log in
user to portal

845

Upload/Download to
client &/or portal device

850

END 860

US 2002/0170047 A1 Patent Application Publication Nov. 14, 2002 Sheet 1 of 14

US 2002/0170047 A1

- a .

Nov. 14, 2002. Sheet 2 of 14 Patent Application Publication

US 2002/0170047 A1 Patent Application Publication Nov. 14, 2002. Sheet 3 of 14

018 J?AJÐS

US 2002/0170047 A1

08 #7

Patent Application Publication Nov. 14, 2002. Sheet 4 of 14

US 2002/0170047 A1

029019

Patent Application Publication Nov. 14, 2002. Sheet 5 of 14

Patent Application Publication Nov. 14, 2002. Sheet 6 of 14 US 2002/0170047 A1

L
Q Q
S

?S
f CI) g

C
a RS

t s
5S 58 S. R
> 2
s

US 2002/0170047 A1 Patent Application Publication Nov. 14, 2002 Sheet 7 of 14

9/.../

Patent Application Publication Nov. 14, 2002 Sheet 8 of 14 US 2002/0170047 A1

START 800

Search for plug-in
815

Plug-in installed?
82O

Transmit
825

Search for portal device
830

Implement standard
login procedure and/or
register user on portal

840

Device attached?
835

Automatically log in
user to portal

845

Upload/Download to
client &/or portal device

850

END 860 FIG. 8

US 2002/0170047 A1

Y

| , ||, | oc=|GELEGÐ | <= 1)=>

Patent Application Publication Nov. 14, 2002 Sheet 9 of 14

US 2002/0170047 A1 Patent Application Publication Nov. 14, 2002. Sheet 10 of 14

Nov. 14, 2002. Sheet 11 of 14 US 2002/0170047 A1 Patent Application Publication

-?ueMpueH

6u?ddeIN ?Ipung

US 2002/0170047 A1

| |

OOZ || 0|pung

Patent Application Publication Nov. 14, 2002 Sheet 12 of 14

Patent Application Publication Nov. 14, 2002. Sheet 13 of 14 US 2002/0170047 A1

Bundle 1200

Header 120.1

v in one

Pointer to Offset
CP entry 6 Class Info 1205 X

Class info 1206 Offset
Y Class Info 1207

Class Info 1208

Method info 1209

Method info 1210

Method info (Foo) 1236
-

f

Field 1211 f
Field info (Bar) 1238

Class Info

;
Pointer to

1208

FIG.13

Patent Application Publication Nov. 14, 2002. Sheet 14 of 14 US 2002/0170047 A1

Load and Validate
Class File
1400

Create Classinfo Object
representing the class

1405
FIG. 14

Map references to that class file's constant
pool ("local entries") to the bundle's

constant pool ("global entries")
1410

Create global entry
1420

Existing global entry?
1415

Create Method info objects for
each method in class file

1425

Load bytecode into in
memory form

435

Non-native method?
1430

Convert numeric references to local
entries to pointers to global entries

1440

Rewrite certain bytecodes
into more convenient forms

1445

Create Field Info
object for each field

in class file
1455

Convert exception table to references to
jop objects instead of numeric references

to addresses of bytecodes
1450

Next
Class File

46O

US 2002/0170047 A1

SYSTEMAND METHOD FORTRANSFORMING
OBJECT CODE

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention relates generally to the field of
computer programming. More particularly, the invention
relates to a System and method for transforming object
oriented program code.
0003 2. Description of the Related Art
0004 Java is an object-oriented programming language
which is used to design computer programs which are
platform-independent. That is, the same Java object code
may be used on numerous different operating Systems
including, for example, Windows 95, Unix, Solaris, and the
Macintosh OS. This interoperability makes Java an ideal
choice for programming Internet applications.
0005. Once a program is written in Java source code, the
Java compiler generates a compact, architecture-neutral
object code (commonly referred to as known as Java byte
code) which may be executed by a runtime interpreter
residing on the client computer. This runtime interpreter is
commonly referred to as a Java “virtual machine.” The Java
Virtual machine interprets the object code So that the instruc
tions may be executed by the client's native microprocessor.
Virtual machines are included in commonly available Inter
net browser applications such as Netscape NavigatorTM or
Microsoft Internet Explorer.
0006 Java was derived from the popular C++ program
ming language and retained many significant features of that
language. For example, Java, like C++, is object-oriented.
Accordingly, Java programs are developed around “classes'
and “objects.” These two terms are not interchangeable but
they are directly related to one another. A class can be
thought of as a template or blueprint from which an object
is made. When an object is created from a class, new object
is called a new “instance” of that class. The object will
initially have all of the same characteristics of the class from
which it was derived. These characteristics are defined by
the data defined within the object and the functions and
procedures—i.e., the methods-associated with the object.
0007 Programmers typically combine groups of ready
made class files, referred to as “class libraries,” for writing
programs. For example, a class library is typically available
for providing graphical user interface (“GUI”) functions
Such as windowing routines, buttons, Scroll bars and other
graphical features.
0008. As illustrated in FIG. 1, an exemplary class file
100 is comprised of a header101, a plurality of constant pool
entries 102, and one or more methods 103-105 and/or fields
106, 107. The header 101 contains data for identifying the
class file (e.g., the class file's name and revision informa
tion). The constant pool entries 102 are each comprised of a
header portion 111, 121, 131, 141, a length portion 112, 122,
132,142, and a data portion 113,123,133,143, respectively.
The header portion 111, 121, 131, 141 indicates the type of
constant pool entry. Well known entry types include UTF-8,
String, Int, Float, Long, Double, Class, Method Ref, and
FieldRef, to name a few. The length portion 112, 122, 132,
142 indicates the size of the entry (constant pool entries are

Nov. 14, 2002

variable-length) and the data portion 113, 123, 133, 143
contains the actual constant pool information associated
with the entry. For example, the data portion 113, 123, 133,
143 may include pointers to methods 103-105, fields 106,
107, or other constant pool entries 102 within the class file
100, or within other class files.
0009 For example, as illustrated in FIG. 2, class files
200, 210 and 220 each contain constant pool entries which
refer to methods and fields provided by class file 230. More
specifically, class files 200, 210 and 220 include “Metho
dRef Foo' entries 203, 213 and 223, respectively, in their
constant pools 202, 212, and 222 which refer to the method
Foo 236 of class 230. In addition, class file 230 itself
includes a “Method Ref Foo' entry in its constant pool 232
which refers to method Foo 236. Similarly, the constant
pools of class files 200, 220 and 230 each include a
“FieldRef Bar” entry which refer to field Bar 238 in class file
230.

0010. Accordingly, when each of the foregoing class files
are used in a program (e.g., a Java applet), three redundant
constant pool entries referring to field Bar 238 are loaded
into memory (i.e., Field Ref entries 240, 241, and 242) and
four redundant constant pool entries referring to method Foo
236 are loaded into memory (i.e., MethodRef entries 203,
213, 223, 233). Considering the fact that a program may
utilize Scores of class files and that each class file may
contain hundreds, or even thousands, of constant pool
entries, a significant amount of memory may be consumed
by redundant information.
0011. Accordingly, what is needed is a system and
method for reducing the memory requirements for object
oriented programs.

SUMMARY

0012. A unified programming object is described com
prising: a shared constant pool comprising global constant
pool entries mapped from local constant pool entries of two
or more class files, and a plurality of object code copied
from the two or more class files to the unified programming
object and identified by the global constant pool entries.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 Abetter understanding of the present invention can
be obtained from the following detailed description in
conjunction with the following drawings, in which:
0014 FIG. 1 illustrates constant pool entries and other
elements within a class file.

0.015 FIG. 2 illustrates MethodRef and Field Ref con
Stant pool entries referring to methods and fields within a
class file.

0016 FIG. 3 illustrates an exemplary network architec
ture used to implement elements of the present invention.
0017 FIG. 4 illustrates another exemplary network
architecture used to implement elements of the present
invention.

0018 FIG. 5 illustrates a radio signal including its sub
carrier in the frequency domain.
0019 FIG. 6 illustrates an external view of a portal
device according to one embodiment of the invention.

US 2002/0170047 A1

0020 FIG. 7 illustrates an internal view of a portal
device according to one embodiment of the invention.
0021 FIG. 8 illustrates a process according to one
embodiment of the invention wherein a user is logged in to
a portal Server.
0022 FIG. 9 illustrates a visual programming interface
according to one embodiment of the invention.
0023 FIG. 10 illustrates portal device communication
according to one embodiment of the invention.
0024 FIG. 11 illustrates one embodiment of a portal
device communicating with a portal Server.
0.025 FIG. 12 illustrates a class file bundle according to
one embodiment of the invention.

0026
0.027 FIG. 14 illustrates a process for generating a
bundle according to one embodiment of the invention.

FIG. 13 illustrates pointer/offsets within a bundle.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0028. In the following description, for the purposes of
explanation, numerous specific details are Set forth in order
to provide a thorough understanding of the present inven
tion. It will be apparent, however, to one skilled in the art
that the present invention may be practiced without Some of
these Specific details. In other instances, well-known Struc
tures and devices are shown in block diagram form to avoid
obscuring the underlying principles of the present invention.

An Exemplary Network Architecture
0029 Elements of the present invention may be included
within a client-server based architecture 100 Such as that
illustrated in FIG.1. According to the embodiment depicted
in FIG. 1, a portal server 110 communicates with clients 140
and other network servers 130 over a network 120 (e.g., the
Internet). The network 120 over which the clients 140 and
servers 110, 130 transmit and receive data may be comprised
of any combination of private (e.g., leased) and/or public
communication channels. These may include, for example,
Digital Signal (“DS”) channels (e.g., DS-3/T-3, DS-1/T1),
Synchronous Optical Network ("SONET") channels (e.g.,
OC-3/STS-3), Integrated Services Digital Network
(“ISDN”) channels, Digital Subscriber Line (“DSL) chan
nels, cable modem channels and a variety of wireleSS
communication channels including Satellite broadcast and
cellular channels.

0.030. In addition, various networking protocols may be
used to Support communication acroSS the network 120
including, for example, the ASynchronous Transfer Mode
("ATM"), Ethernet, and Token Ring (at the datalink level);
as well as Transmission Control Protocol/Internet Protocol
(“TCP/IP”), Internetwork Packet Exchange (“IPX'), Apple
Talk and DECnet (at the network/transport level). It should
be noted, however, that the principles of the invention are
not limited to any particular communication channel or
protocol.

0031. The portal server 110 in one embodiment includes
a user database for Storing various types of user configura
tion and account data. Users may register and login to the
portal server 110 from a client 140 by specifying a user ID

Nov. 14, 2002

and/or password. According to one embodiment, a user
connects to the servers 110, 130 via a browser application
such as Netscape NavigatorTM or Microsoft Internet Explor
ers which communicates via the Hypertext Transfer Protocol
(hereinafter “HTTP").
0032. In one embodiment, users may configure the portal
Server 110 to retrieve and manage specific types of infor
mation. For example, a user may configure the portal Server
110 to retrieve up-to-date Stock quotes for a Specified Set of
Stocks (e.g., reflecting the user's portfolio), to collect the
weather forecast for the user's hometown, and/or to retrieve
recent articles relating to a particular Sports franchise. The
portal server will then retrieve the specified information
from other servers (e.g., server 130) on behalf of the user.
0033. In addition to information retrieval and manage
ment, in one embodiment the portal server 110 also provides
application Services Such as email, online Scheduling (e.g.,
appointments, to-do lists, etc), instant messaging, contact
management, word processing and a variety of other online
Services. Users may access these Services by logging in to
the portal server 110 with a valid user ID and password. In
one embodiment, the portal Server 110 generates a unique,
personalized Web page for each user containing links to all,
or a Subset of, the information and/or Services Subscribed to
by the user.

Embodiments of the Invention

0034. In one embodiment, a portal device 150 stores and
processes user-specified information and/or programs as
well as non-user-specified information/programs (e.g., tar
geted advertisements based on the user's profile). The infor
mation/programs may be transmitted to the portal device
150 through the client 140, and/or directly via wireless
broadcast (as illustrated in FIG. 2 and described in detail
below). Thus, the portal device 150 in this embodiment is a
removable extension of the portal server 110, storing a
Subset of the information and Services maintained by the
portal server 110 on behalf of the user. For example, a user
may configure the portal server 110 to periodically down
load the user's to-do list (or other Scheduling data) to the
portal device (e.g., every morning, every two hours, every
time the user connects the portal device to the client 140,
etc). When the user leaves the office, he/she can simply take
the portal device with him/her and view his/her schedule
throughout the day.
0035. The timing of the information/program download
may depend on the particular embodiment of the portal
device 150. For example, if a wireless embodiment is used
(described below) downloads may occur at any time when
the portal device 150 is within wireless transmission range,
whereas if a non-wireleSS embodiment is used, downloads
may be limited to periods of time when the portal device 150
is connected to the portal server 110.
0036). In one embodiment, the user may customize the
portal device 150 preferences and content which will be
downloaded to the portal device 150 from the portal server
110. This may be accomplished, for example, by Selecting
certain preferences/content from a portal server 110 Web
page (e.g., by using an online programming interface as
described below). For example, the user may choose to have
each day's to-do list downloaded to his portal device 150
and may also program the device 150 (e.g., via the portal

US 2002/0170047 A1

server 110) to continually display the next scheduled event
for the day. Various other user interface and content-based
data may be transmitted to the portal device 150 from the
portal server 110 while still complying with the underlying
principles of the invention.

Client Link

0037. As illustrated in FIG. 1, one embodiment of the
portal device 150 communicates to the portal server 110 via
a communication link 160 with the client 140. The commu
nication link may be established via a physical I/O connec
tion with the client 140 such as a Universal Serial Bus
(“USB”) interface or a communication (“serial”) interface.
Alternatively, the communication link 160 may be a wireless
link Such as an Infrared I/O channel or a radio frequency
(“RF") I/O channel.
0.038. In one particular embodiment, the client link 160 is
formed using a capacitively-coupled communication chan
nel. AS is known in the art, a capacitor is any dielectric
Sandwiched between two conductive elements. In this
embodiment, one of the two conductive elements is located
within the portal device 150 and the second of the two
conductive elements is located external to the portal device
150 and is communicatively coupled to an I/O port of the
client 140. For example, in one embodiment, the second
conductive element may be disposed within user's mouse
pad. According to this embodiment, the user may simply
place the portal device on the mouse pad to Set up the
capacitive communication link 160 with the client 140. It
should be noted, however, that various other client links 160
may be employed while Still complying with the underlying
principles of the invention.

Direct Radio Broadcast

0039. In one embodiment, illustrated in FIG. 2, data
and/or programs are transmitted to the portal device 150
from the portal server 110 over an RF link 220. In this
embodiment, the organization maintaining the portal Server
110 and/or implementing other features of the system and
method described herein (hereinafter the "portal organiza
tion” or “PO'), may lease a portion of the RF transmission
bandwidth from one or more radio stations 210. It should be
noted, however, that various RF transmission techniques
may be used without departing from the underlying prin
ciples of the invention.
0040. Referring to FIG. 3, in one particular embodiment,
the PO will use the radio station's sub-carrier frequency
band 320 to transmit data and/or programs to the portal
device 150. As it is known in the art, radio stations are
licensed a sub-carrier frequency block 320 along with the
audio carrier frequency block 310. Although some radio
Stations use the Sub-carrier frequency block 320 (e.g., for
foreign-language broadcast), most do not. AS Such, the
present embodiment provides a mechanism for transmitting
data over an infrequently-used wireleSS transmission chan
nel.

0041) To further conserve bandwidth within the Sub
carrier frequency block 320, in one embodiment, the data
transmitted over the RF link 220 is not addressed to any one
Specific portal device. Rather, in this embodiment, the data
is simply transmitted (e.g., with a tag that identifies the data)
and is sensed by any portal device(s) 150 listening within the

Nov. 14, 2002

sub-carrier block 320. This type of addressing will be
referred to herein as “data addressable” addressing (in
contrast to “device addressable addressing in which a device
address is associated with the transmitted data). The indi
vidual portal devices 150 that sense the various data trans
missions may ignore them or may take Some other Specified
action (e.g., Store and display the transmitted data), depend
ing on how the devices 150 are configured. For example, a
portal device 150 may be configured by a user to track stock
quotes for Stocks within his/her portfolio and to ignore all
other Stock quotes. Similarly, the user may configure the
portal device 150 to listen for local weather reports, local
news headlines, and/or any other information which may be
accessed by the user directly at the portal server 110.
0042. In one embodiment, the data broadcast in a par
ticular geographical region will be Selected based on the
number of users in that region who have registered on the
portal server 110 and/or the types of data requested by users
in the region. For example, if no users in the region have
configured the portal Server 110 to gather a particular Stock
quote, then the portal server 110 will not transmit that stock
quote over the RF link 220 in that region. Similarly, the
portal server 110 may be configured to only transmit local
data Such as weather and local news in the local broadcast
region to which the weather and news pertains (i.e., where
it will most likely be requested). Broadcasting data selec
tively in this manner will further improve bandwidth over
the RF link 220 (i.e., by reducing unnecessary data trans
missions).
0043. In one embodiment, portal devices 150 may be
addressed directly (e.g., by including the device's serial
number or other ID code in an address field of the data
transmission). This embodiment may be provided by the PO
to users as a “premium’ Service, under which the user payS
an additional fee to receive personally-addressed informa
tion over the Sub-carrier 360 (e.g., email messages, daily
Schedules, etc), as well as the more general information
described above. Users of this embodiment may be charged
on a Subscription basis and/or on a per-use basis, depending
on the embodiment. Of course, other pricing models may be
employed while Still complying with the underlying con
cept. The PO may also employ this embodiment under
certain emergency situations (e.g., where it is crucial that a
particular user receive a data transmission immediately).

Embodiments of the Portal Device

0044 FIG. 4 illustrates an external view of one embodi
ment of a portal device 420 which may be used as a key
chain. AS shown, this embodiment includes a key chain ring
410 for securing a set of keys (or other personal effects) to
the device 420. Also illustrated is a display 430 for display
ing various types of portal data. In one embodiment the
display is a Liquid Crystal Display (“LCD”). Of course,
other display technologies may be implemented while Still
complying with the underlying principles of the invention
(e.g., Light Emitting Diode (“LED") displays). Also
included is a set of control buttons 440 and 441 for selecting
menu items and/or jumping back and forth between Stored
portal data and a control knob 450 for scrolling between
menu items and/or data. In one embodiment, the control
knob 450 rotates on an axis which is substantially perpen
dicular to the plane of the display 430.
0045. Additional attachable embodiments of the portal
device 150 include a necklace configuration, a pocket watch

US 2002/0170047 A1

configuration, and a sports configuration (e.g., wherein the
portal device is strapped firmly around a users arm). In the
latter configuration, the shell of the portal device may be
comprised of a waterproof material to avoid water damage
to the internal components of the device.

0046) As illustrated in FIG. 5, one embodiment of the
portal device 150 is comprised generally of a microcontrol
ler 505, an external memory 550, a display controller 575,
and a battery 560. The external memory 550 may be used to
store programs and/or portal data 565 transmitted to the
portal device 150 from the portal server 110 (e.g., via client
140 and/or radio station 210). In one embodiment, the
external memory 550 is non-volatile memory (e.g., an
electrically erasable programmable read only memory
(“EEPROM’); a programmable read only memory
(“PROM), etc). Alternatively, the memory 550 may be a
volatile memory (e.g., random access memory or "RAM”)
but the data Stored therein may be continually maintained
via the battery 560. The battery 560 in one embodiment is a
coin cell battery (e.g., of the same type used in portable
electronic devices Such as calculators and watches). In one
embodiment, when the battery power decreases below a
threshold level, the portal device 150 will notify the user
and/or the portal server 110. The portal server 110 in one
embodiment will then automatically Send the user a new
battery.

0047. The microcontroller 505 of one embodiment is
comprised of a central processing unit (“CPU”) 510, a read
only memory (“ROM") 570, and a scratchpad RAM 540.
The ROM 570 is further comprised of an interpreter module
520 and a toolbox module 530.

0048. The toolbox module 530 of the ROM 570 contains
a set of toolbox routines for processing data, text and
graphics on the portal device 150. These routines include
drawing text and graphics on the portal device's display 430,
decompressing data transmitted from the portal Server 110,
reproducing audio on the portal device 150, and performing
various input/output and communication functions (e.g.,
transmitting/receiving data over the client link 160 and/or
the RF link 220). A variety of additional portal device
functions may be included within the toolbox 530 while still
complying with the underlying principles of the invention.

0049. In one embodiment, microprograms and portal data
560 are transmitted from the portal server 110 to the external
memory 550 of the portal device via a communication
interface 570 under control of the CPU 510. Various com
munication interfaces 570 may be employed without depart
ing from the underlying principles of the invention includ
ing, for example, a Universal Serial Bus (“USB”) interface
or a serial communication (“serial”) interface. The micro
programs in one embodiment are comprised of compact,
interpreted instructions known as “bytecodes,” which are
converted into native code by the interpreter module 520
before being executed by the CPU 510. One of the benefits
of this configuration is that when the microcontroller/CPU
portion of the portal device 150 is upgraded (e.g., to a faster
and/or less expensive model), only the interpreter module
520 and toolbox 530 of the ROM needs to be rewritten to
interpret the currently existing bytecodes for the new micro
controller/CPU. In addition, this configuration allows portal
devices 150 with different CPUs to coexist and execute the
Same microprograms. Moreover, programming frequently

Nov. 14, 2002

used routines in the ROM toolbox module 530 reduces the
size of microprograms stored in the external memory 550,
thereby conserving memory and bandwidth over the client
link 160 and/or the RF link 220. In one embodiment, new
interpreter modules 520 and/or toolbox routines 530 may be
developed to execute the same microprograms on cellular
phones, personal information managers (“PIMs), or any
other device with a CPU and memory.
0050. One embodiment of the ROM 570 may be com
prised of interpreted code as well as native code written
specifically for the microcontroller CPU 505. More particu
larly, Some toolbox routines may be written as interpreted
code (as indicated by the arrow between the toolbox 530 and
the interpreter module 520) to conserve memory and band
width for the same reasons described above with respect to
microprograms. Moreover, in one embodiment, data and
microprograms stored in external memory 550 may be
configured to override older versions of data/microprograms
stored in the ROM 570 (e.g., in the ROM toolbox 530).

Data Compression
0051 AS described above, microprograms and portal data
may be transmitted to the portal device 150 in a compressed
format. AS Such, in one embodiment, decompression logic is
programmed into the microcontroller ROM 570 (e.g., within
the toolbox 530) and is used to interpret and/or decompress
the microprograms/data as they are received.
0052. In one embodiment, a plurality of uncompressed
data is stored in the ROM 570, and codes identifying the
uncompressed data are transmitted across the RF link 220
and/or client link 160. For example, instead of transmitting
the entire market code for a particular Stock, Such as
“MSFT for Microsoft, a compressed code, e.g., “M,” may
be transmitted to the portal device 150 instead. The ROM
570 in this embodiment may include a lookup table (or
Similar decode logic) for retrieving the real market code
“MSFT,” using the compressed code, “M.” Once the real
code is retrieved from the ROM 570, it may be displayed on
the portal device 150 as illustrated in FIG. 4. It should be
noted, however, that the underlying principles of the inven
tion may be practiced using a variety of coding Schemes
and/or digital compression techniques.
0053 User Registration and Authentication
0054) One embodiment of the invention will now be
described with reference to the flowchart of FIG. 6. Accord
ing to this embodiment, when a user initially connects to the
portal server 110 (e.g., from client 140), the portal server 110
will determine whether a portal device plug-in is installed on
the user's Web browser (at 615). As is known in the art,
plug-ins are auxiliary programs added to Web browsers to
provide them with new levels of functionality. One embodi
ment of the present invention uses a plug-in to coordinate
communication between the portal server 110, the client
140, and the portal device 150. In addition, the plug-in may
convert and/or compress “standard” portal programs/data
(e.g., programs/data meant to be executed on the client 140)
into microprograms/data that the portal device can properly
interpret, as described herein. If the plug-in is not installed,
the portal server 110 may automatically transmit and install
it on the client 140 (at 625).
0055 At 630, the portal server 110 (e.g., via the plug-in)
determines whether the portal device is currently attached to

US 2002/0170047 A1

the client 140. If the device 150 is attached then, in one
embodiment, the portal server 110 will automatically log the
user in.

0056. The portal server 110 may automatically authenti
cate the portal device 150 via a serial number and/or a user
authentication key embedded/stored in the device 150. Once
the user is logged in to the portal Server, he/she can then
transmit data to and from the portal device 150 as described
herein.

0057) If the device 150 is not attached, however, then the
portal Server 110 may implement a Standard user name/
password login procedure and/or may register the user (at
640). During the registration process the user may be asked
to respond to a Series of questions relating to his/her back
ground (e.g., hobbies, education, career, etc). The portal
server 110 may use this information to personalize the
content collected and provided to the user and/or to target
ads to the user based on the user's preferences. In addition,
at this point the user may be provided with an opportunity
to configure the portal Server 110 to gather and manage
Specific information on behalf of the user (e.g., particular
Stocks, sports Scores, news, etc) and/or to provide the user
with access to certain online applications (e.g., email, elec
tronic Scheduling, etc) as described herein.

Online Programming Interface
0.058. In one embodiment, registered users are provided
with an online visual programming interface Such as that
illustrated in FIG. 7. Under this is embodiment users may
construct their own microprograms to be executed on the
portal device 150 and/or the client 140. For example, a user
may define a programming block as a hyperlink which
points to a particular piece of data or Series of data (e.g., a
current stock quote for AT&T, the San Francisco weather
forecast, etc) and may also indicate how frequently the data
associated with the hyperlink is to be updated. Multiple such
blockS may be chained together to create a continual
Sequence of information to be displayed on the portal device
150 or the client 140. The particular programs generated by
users may depend on whether a wireless portal device 150
is being used. For example, a microprogram designed to
download up-to-date Stock quotes may require a wireleSS
connection to the portal server 110 to be effective.
0059. As illustrated in FIG. 7, users may also program
animation and/or sound into the portal device 150. For
example, block 710 points to a particular image file (e.g., a
bitmap file) and block 715 points to a particular music file
(e.g., a Musical Instrument Digital Interface or “MIDI" file).
The user may cause the image to move across the display
430 of the portal device 150 in a specified direction by
programming block 720 (e.g., using X and Y coordinate
data). Concurrently, the user may program block 725 to play
the music track identified in block 715. Temporal link 722
indicates that the movement of the image and the playback
of the music track are to take place Simultaneously. Pro
gramming block 720 indicates that the music and image will
both fade out to end the program.
0060. In one embodiment, standard image and/or music
files stored on the client 140 are converted to a format which
the portal device can interpret (e.g., using a conversion
module which may included in the client plug-in). For
example, the melody line may be extracted from a MIDI file

Nov. 14, 2002

and transmitted to the portal device as a Series of notes.
Similarly, bitmap or JPEG images may be converted so that
they are properly displayed on the portal device display 430,
which in one embodiment is a black & white LCD display.

Portal Key Operations

0061. In one embodiment, each portal device 150
includes a portal key which uniquely identifies the device,
the user and/or particular data on the portal Server. The key
may either be permanently embedded in the device (e.g., the
key may be the serial number) or, alternatively, may be
Selected manually by the user (e.g., the user's ID on the
portal server 110) or may be assigned to the device by the
portal server 110.
0062) Regardless of how the portal key is generated, as
illustrated in FIG. 8, in one embodiment users may
eXchange keys between portal devices. Specifically, portal
device 810 is shown receiving a portal key (key no.
5331998TW) from portal device 820. In one embodiment,
when the user of portal device 810 connects to the portal
server 110 after receiving the portal key, he/she will be
provided with access to information and/or Services associ
ated with the portal key. For example, the user of portal key
820 may store personal and/or business-related information
on the portal server 110 which he/she wants to share with the
user of portal device 810.
0063. Several portal key applications may be imple
mented using this type of portal key exchange. These
include, for example, Social invitations, “business card”
exchanges (i.e., where the user of portal device 820 stores an
online business card on portal server 110); personal photo
eXchanges, and/or exchanges of any other information
adapted to be Stored on a computer network. It should be
noted, however, that the underlying principles of the inven
tion are not limited to any particular type of informational
eXchange.
0064. Exchanging portal keys in the foregoing manner
provides an efficient mechanism for exchanging information
using a limited amount of portal device memory because the
underlying information is stored on the portal server 110,
rather than the portal device 150 itself. In addition, when a
user eXchanges a key, the user is then free to continually
update the information/services on the portal server 110 to
which the key provides acceSS. For example, a user may
eXchange a key with a prospective employer, and Subse
quently update his/her resume on the portal server 110.
Similarly, if the user is involved in research, he/she may
eXchange his/her key with colleagues and continually update
the research data on the portal server 110.
0065. In one embodiment, a user may set up a number of
different keys on the portal Server, each pointing to a
different type of information and/or Service. The user can
then select a particular key to transmit to a second user (e.g.,
using the portal device controls 440, 441, 450) depending on
the information and/or Service to be provided to the Second
user. For example, a user may establish a busineSS key which
points to business-oriented information/services (e.g., a firm
brochure) and a personal key which points to personal
information/services (e.g., personal photos). In one embodi
ment, the portal device 150 will include one standard key for
generally identifying the portal device 150 to the portal
server 110 and other users, and any number of user-defined

US 2002/0170047 A1

“Sub-keys' which can be used to exchanged more specific
user data (e.g., Such as the business data and personal data
described above).
0.066 Various advertising and promotional services may
be implemented in accordance with the underlying prin
ciples of the invention. In one embodiment, portal devices
may be set up to broadcast keys to users at a place of
busineSS Such as a Supermarket or a car dealership. A user
may choose to receive the key on his/her portal device and
thereby acquire additional information about the product/
Service associated with the key when he/she logs in to the
portal server 110. Businesses may offer various types of
Internet promotions/discounts to users in this manner. Con
versely, a user may choose to transmit his/her key to a portal
device located at a business to request that the busineSS
automatically contact the user with additional product/ser
Vice information (e.g., via email, a telephone call, etc).
0067. In one embodiment, advertisements and/or cou
pons may be transmitted to the user's portal device 150. This
may be accomplished over the client link 160 and/or the RF
link 220. If transmitted over the client link 160, the ad/cou
pon may be programmed to trigger at a Statistically effective
time (one embodiment of the portal device 150 includes a
digital clock). For example, a Starbucks(R Coffee ad may be
downloaded to the portal device 150 at a random time and
may be programmed to trigger in the morning, before the
user heads in to work. Personal information known about the
user (e.g., the user's preferences, the user's daily Schedule,
etc) may be factored in to the timing decision and/or the
decision as to which ads to transmit to the user. The
ad/coupon may also be triggered automatically at any time/
date via the RF link 220.

0068 If a coupon is transmitted, the user may redeem the
coupon in a number of ways. In one embodiment, the user
may simply show the coupon code to an employee working
at the business for which the coupon is valid. Alternatively,
a portal device may be configured directly at the business to
automatically redeem coupons (e.g., via a coupon exchange
feature Similar to the key exchange feature described above).
The business portal device may communicate with the
portal Server 110 to continually transmit and receive coupon
data. In one embodiment, the user's portal device is config
ured to display a bar code identifying the received coupon/
service which may be interpreted by a bar code device at the
business to redeem the coupon/Service. The underlying
principles of the invention may be implemented using
various additional advertisement and/or coupon redemption
mechanisms.

0069. In one embodiment, a coupon or advertisement
may be transmitted to the user's portal device 150 from a
portal device located at a business (in contrast to the
embodiment above, where the coupon/advertisement is
transmitted by the portal server 110). In this embodiment,
the user's portal device 150 may automatically trigger the
advertisement/coupon when it is brought within range of the
business portal device. In one embodiment, the business
portal device transmits a key to the user's portal device 150,
which the user may Subsequently use to obtain additional
information from the portal server 110 (e.g., relating to a
particular product or Service). In this embodiment, the
business portal device may or may not communicate
directly with the portal server 110.

Nov. 14, 2002

0070. It should be noted that the foregoing description of
portal devices and associated methods includes various
busineSS methods. In addition, according to one particular
busineSS method, once a user registers on the portal Server
110, the PO will assign a portal device 150 to the user free
of charge (or for Some nominal fee). Upon receipt of the
portal device 150 (e.g., in the mail), the user will attach the
portal device (e.g., via the client link 160), and register the
portal device 150 with the portal server 110. The user may
then configure the manner in which he/she will use the portal
device 150 (e.g., by Selecting the types of portal data/
microprograms to be processed and stored in the device). In
one embodiment, users will be given the option to upgrade
to a more advanced portal device 150 for a specified fee. In
one embodiment, however, the fee will be no more than the
cost of manufacturing and Shipping the device to the user.
0071. In one embodiment, the portal device 150 is
Shipped to the user with pre-configured data and/or adver
tisements already stored within the device 150. This may
include, for example, the user's name and address, Sched
uling data for the user for the day/week on which the user
will receive the device; and/or any other data stored by the
user on the portal server 110.
0072. In one particular embodiment, the portal device
150 is configured to display shipping information (e.g., the
Shipping bar code and/or destination address) on its display
430. This shipping information may be used by the shipping
company to transport the portal device 150 to the user. This
embodiment may be shipped to the user using transparent
packaging So that the Shipping data may be easily read/
Scanned.

0073. As mentioned above, the portal device 150 may
communicate with the portal server 110 using various RF
communication techniques. For example, in one particular
embodiment, the portal device 150 transmits and receives
data to/from a cellular network via the cellular digital packet
data (“CDPD") standard. As it is known in the art, the CDPD
Standard is a digital wireleSS Standard that is deployed as an
enhancement to the existing analog cellular network. It
provides a packet overlay onto the AMPS network and
moves data at 19.2 Kbps over continuously-changing
unused intervals in Standard Voice channels. Accordingly,
this embodiment of the portal device is capable of exploiting
normally unused bandwidth on a nation-wide, analog cel
lular network. Embodiments of the portal device may also be
configured to transmit/receive data using a variety of other
communication Standards including 2-way paging Standards
and third generation ("3G") wireless standards (e.g., UTMS,
CDMA 2000, NTT DoCoMo, ... etc).
0074 As described above, because certain embodiments
of the portal device 150 are configured to process hardware
independent interpreted code (e.g., via an interpreter module
520 Such as a Java Virtual machine), applications may be
ported to new hardware platforms without significant
changes. In addition, as illustrated in FIG. 9, in one embodi
ment, communications functionality is provided via a modu
lar networking interface 916, which may be easily modified/
replaced without altering existing portal device applications
910 or significant portions of the bytecode interpreter 912.
For example, when changing from a CDPD network to a 3G
network, only the network interface component 916 of the
VM interpreter 912 will need to be updated (along with any
required 3G hardware 914) to support the new 3G protocol.

US 2002/0170047 A1

0075). As described above (and as indicated in FIG.9), in
one embodiment, the interpreter module 912 on the portal
device 150 is a Java virtual machine. AS Such, this embodi
ment of the portal device 150 is capable of executing a vast
library of existing hardware-independent Java applications
(e.g., applets/bytecodes) 910. Moreover, as indicated in
FIG. 9, one embodiment of the portal device employs a
32-bit RISC-based microprocessor Such as an ARM proces
Sor. AS is known in the art, ARM processors are widely used
in PDAs, cellphones and a variety of other wireless devices.
It should be noted, however, that various other hardware and
Software (and/or firmware) architectures may be used for the
portal device 150 while still complying with the underlying
principles of the invention.

0.076 AS described above, one embodiment of the portal
Server 110 converts Standard applications and data into a
format which the portal device 150 can properly interpret.
Accordingly, as illustrated in FIG. 9, this embodiment of the
portal Server 110 may include a content conversion module
920 for processing portal device 150 requests for Internet
content 940. More particularly, in one embodiment, the
portal server 110 acts as a proxy for the portal device 150,
forwarding Internet requests 940, 941 to the appropriate
Internet site 130 on behalf of the portal device 150, receiving
responses from the Internet site 130 in a standard Internet
format (e.g., Web pages with embedded audio/video and
graphical content), and converting the Standard Internet
responses 924 into a format which the portal device 150 can
process (e.g., bytecodes).

0077. For example, the conversion module 920 may
include a hypertext markup language (“HTML) rendering
module (not shown) for interpreting HTML code and down
loading any embedded content in the HTML code (e.g.,
graphics, video, Sound, etc) to the portal server 110. The
conversion module 920 may then combine the HTML code
and embedded content and generate a set of bytecodes for
accurately reproducing the requested content on the portal
device 150. As described above, in one embodiment, the
bytecodes may be Java bytecodes/applets. However, various
other types of interpreted and/or non-interpreted code may
be generated, depending on the particular type of portal
device 150 being used (e.g., one with an interpreter module
or one without).
0078 Because the portal server 110 has an intimate
knowledge of the capabilities/configuration of each portal
device 150 (e.g., Screen size, graphics/audio capabilities,
available memory, processing power, user preferences, . . .
etc) it can reconstruct the requested Internet content accu
rately, while at the same time minimizing the bandwidth
required to transmit the content to the device 150. For
example, the conversion module 920 may perform pre
Scaling and color depth adjustments to the requested content
so that it will be rendered properly within the portal device
150 display. In making these calculations, the conversion
may factor in the memory and processing power available
on the portal device 150. In addition, the conversion module
920 may compress the requested content using a variety of
compression techniques (and thereby preserve network
bandwidth).
0079. In one embodiment, the conversion module 920
will simply discard Internet content which either cannot be
reproduced on the portal device 150, or which the user has

Nov. 14, 2002

indicated that he/she does not want to be reproduced on the
portal device. For example, a user may indicate that he/she
does not want Sounds to be generated on the portal device
150 or that he/she does not want advertisements transmitted
to the portal device 150. The conversion module 920 will
then remove any Sounds or advertisements embedded in the
requested Web page (or other requested Internet content).
Because HTML rendering and other advanced processing of
Internet content/data is offloaded to the portal server 110 as
described above, the portal device 150 can be manufactured
using a low power microprocessor or microcontroller,
thereby lowering the cost of manufacture and/or the energy
consumed by the device 150.
0080. In one embodiment, when a particular Web page or
other Internet object has been converted into a format
suitable for execution on the portal device 150 (e.g., Java
bytecodes and data) the formatted page/object may be stored
locally on a cache 925 at the portal server 110 (or other
server maintained by the PO). Thus, the next time the
content is requested, the conversion module 920 may simply
read the previously-generated code from the local cache 925
(i.e., it will no longer need to retrieve the content from
remote locations to reconstruct the code).
0081 Various caching techniques and algorithms may be
implemented to ensure that the cache 925 is storing Internet
data efficiently (i.e., resulting in an acceptable percentage of
cache hits) and that the data is current. For example, the
portal Server 110 may cache the most frequently-requested
Internet data (e.g., the Yahoo' home page), and may
remove content from the cache based on a least-recently
used caching policy. In addition, to ensure that data Stored in
the cache is current, the portal Server 110 may compare the
version of the data stored in the cache 925 with the version
of data stored at the remote Internet site 130 when the data
is requested. Similarly, the portal server 110 may store data
in the cache 925 for some predetermined period of time
before checking the remote server 130 for a new version.
Various other Internet caching techniques may be employed
while Still complying with the underlying principles of the
invention (e.g., those defined in the Internet Caching Pro
tocol (“ICP”) and/or the Cache Array Routing Protocol
(“CARP)).

Class File Processing

0082 In one embodiment of the invention, class files (or
other types of program code) are compressed before being
transferred to the portal device 100 (or other data processing
device). The compression may be performed manually (e.g.,
by portal organization staff) or automatically, using a com
puter-implemented compression/conversion algorithm.
Various class file compression/conversion techniques will
now be described with respect to FIGS. 12-14.

0083. As illustrated in FIG. 12, in one embodiment, each
of the class files used in a particular application program (or
applet) are combined to form a unified programming object
referred to herein as a “bundle'1200. For the purpose of
illustration, the particular bundle 1200 shown in FIG. 12 is
constructed from the class files 200, 210, 220 and 230 of
FIG. 2. More specifically, the redundant Method Ref Foo
entries 203,213,223 and 233 are combined into a single,
“global MethodRef Foo entry 1203 in a shared constant
pool 1202 within the bundle 1200. Similarly, the redundant

US 2002/0170047 A1

FieldRef Bar entries 240-242 are combined into a single,
global Field Ref Bar 1204 entry within the shared constant
pool, thereby further reducing the memory requirements of
the application.

0084. The methods and fields from the original class files
200, 210, 220, 230 are copied to the bundle as well along
with various other class file objects (not shown). Thus,
Method Foo 236 is copied to the bundle as Method Info
entry 1236 and Field Bar 238 is copied to the bundle as Field
Info entry 1238. In addition, header data 201, 211, 221, and
231 for each of the class files are copied to the bundle as
Class Info objects 1205-1208, respectively.

0085. In one embodiment, unlike the constant pool
entries in Standard class files, the shared constant pool
entries 1202 of the bundle are fixed-length entries (e.g., 32
bits in length). Accordingly, constant pool entries and other
data/code within the bundle reference one another based on
an offset value from the top of the constant pool (i.e., rather
than based on an address in memory). The offsets are
generated during the bundle link process (described in
greater detail below). For example, referring to FIG. 13, the
FieldRef Bar entry within the shared constant pool is
assigned a slot number based on its offset from the top of the
constant pool-slot # 5 in the example. The constant pool
entry itself includes an offset value identifying where the
code referenced by the entry resides within the bundle. Thus,
the transformed Method Info entry 1236 (i.e., containing
Method Foo code) may be located by referencing constant
pool slot # 5 and reading the offset provided by the entry
(identified as “Offset X” in the example). The same lookup
technique may be used to locate other code/data within the
bundle. For example, Field Info entry 1238 may be located
based on the offset (identified as “Offset Y”) provided by the
FieldRef Bar constant pool entry in slot # 7.
0.086 Conversely, a Class Info entry, Method Info entry,
Field Info entry, or any other type of entry within the bundle
1200 may include a pointer/offset used to identify a particu
lar constant pool entry. For example, a bytecode included in
the Method Info entry 1236 may cause the creation of a new
class of a type defined by a particular constant pool entry.
Thus, as indicated in FIG. 13, the Method Info entry 1236
may contain a pointer to its Class Info object 1208 which
includes a pointer to the identified constant pool entry (i.e.,
entry no. 6). Thus, because all of these elements are Self
referential, a method can find a class that owns it and the
class can identify the bundle to which it is attached. More
over, because all elements are located relative to one another
within the bundle, complex addressing techniques are not
required to identify the bundle elements in memory (i.e., the
bundle may be loaded at random to any memory area).
0087. During the bundle generation/link process, certain
types of data may be copied directly from the class file to
which it belongs whereas other types of class file data/code
must be modified and/or created. For example, during the
generation of Class Info objects, the following data may be
copied in Substantially unmodified (or slightly modified)
form to the bundle: the class reference to itself and the
Superclass via the constant pool; the count of fields and
methods; and access/attribute flags (e.g., public, private,
protected, static, abstract, ... etc). A relative pointer back to
the containing bundle is created during the bundle genera
tion process So that the class can identify the bundle to which

Nov. 14, 2002

it belongs (e.g., So it can reference constant pool entries
within the bundle). Similarly, a reference to classobject is
generated during the generation process.

0088 For Method Info objects, data which may be copied
directly includes a reference to the method name Via con
Stant pool; a reference to type Signature via constant pool;
any acceSS/attribute flags, max StackS data, max locals data;
the argument count, and the return count, to name a few. A
relative pointer back to the Class Info object that the method
belongs to may also be generated (i.e., so that the Method
Info object can identify the Class Info object within the
bundle). Method bytecodes, exception tables, and/or vitable
Slot numbers associated with the method may also be
modified during the bundle generation process to account for
the new locations of data within the shared constant pool.
For native methods, function pointers may also be filled in
during the bundle load.
0089 For Field Info generation, a relative pointer is
generated identifying the class to which it belongs (i.e., the
Class Info object) and an offset of the field into the object
instance. Data which may be copied directly to the bundle
includes a reference to the field name via constant pool; a
reference to the field type Signature via constant pool; and
any access/attribute flags.
0090. One specific embodiment of a bundle generation/
linking process for class files will now be described with
respect to the flowchart in FIG. 14. It should be noted,
however, that various steps set forth in FIG. 14 are for the
purpose of are not necessary for complying with the under
lying principles of the invention.

0091 At 1400, a class file to be incorporated into a
bundle is loaded into memory and validated. For example, if
the class file is a Java class file, the file is validated per the
Java Virtual machine Specification. For Standard Java class
file operation, validation typically occurs at runtime.
Because this embodiment of the invention validates each of
the class files before incorporating them in the bundle,
however, runtime validation of the class file/bundle is not
required, thereby further reducing the processing require
ments of the device on which the bundle is executed (e.g.,
the portal device).
0092. At 1405, a Class Info object is created for the class
file using data extracted from the class file's header includ
ing, for example, the name of the class file and other class
file identification data and associated parameters. At 1410,
any references to the class file's constant pool (i.e., "local”
constant pool entries) are mapped to corresponding “global
entries in the bundle's shared constant pool. If an global
entry already exists, determined at 1415 (e.g., because
another class file contained the entry), then Method Info
objects are generated for each method in the class file at
1425. If the global entry does not exist, then a new global
entry is created in the shared constant pool at 1420 before
the Method Info objects are generated.

0093 All non-native methods (e.g., those methods con
taining references to other class files), identified at 1430, are
modified in the following manner. Bytecodes within the
method are loaded into an in-memory form at 1435 (e.g., a
linked list of jop objects, one per java opcode in the
bytecode). At 1440, numeric references identifying local
entries are converted into pointers to global entries Such as

US 2002/0170047 A1

the shared constant pool entries described above. At 1445,
certain bytecodes are converted/rewritten into more conve
nient forms. Finally, at 1450, the methods exception table
is converted to references to jop objects instead of numeric
references to addresses of bytecodes. When method pro
cessing is complete, at 1455, Field Info objects are created
for each field in the class file and incorporated into the
bundle. At 1460, processing for the class file is complete and
the next class file to be processed is identified.
0094. Embodiments of the invention may include various
steps as set forth above. The steps may be embodied in
machine-executable instructions. The instructions can be
used to cause a general-purpose or Special-purpose proces
Sor to perform certain Steps. Alternatively, these Steps may
be performed by Specific hardware components that contain
hardwired logic for performing the Steps, or by any combi
nation of programmed computer components and custom
hardware components.
0.095 Elements of the present invention may also be
provided as a machine-readable medium for Storing the
machine-executable instructions. The machine-readable
medium may include, but is not limited to, floppy diskettes,
optical disks, CD-ROMs, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical
cards, propagation media or other type of media/machine
readable medium Suitable for Storing electronic instructions.
For example, the present invention may be downloaded as a
computer program which may be transferred from a remote
computer (e.g., a Server) to a requesting computer (e.g., a
client) by way of data signals embodied in a carrier wave or
other propagation medium via a communication link (e.g., a
modem or network connection).
0.096 Throughout the foregoing description, for the pur
poses of explanation, numerous Specific details were Set
forth in order to provide a thorough understanding of the
invention. It will be apparent, however, to one skilled in the
art that the invention may be practiced without Some of these
Specific details. For example, while the System described
above focuses on a Java class file implementation, the
underlying principles of the invention may be performed on
various other types of object code (e.g., C++). Accordingly,
the Scope and Spirit of the invention should be judged in
terms of the claims which follow.

What is claimed is:
1. A method comprising:
mapping elements from two or more class files to form a

unified programming object,

Said elements including a plurality of constant pool entries
and one or more methods and/or fields.

2. The method as in claim 1 wherein mapping further
comprises:

combining redundant constant pool entries from Said class
files to form a global constant pool entry in a shared
constant pool within Said unified programming object.

3. The method as in claim 2 wherein combining further
comprises:

rewriting Said global constant pool entries to point to
elements contained within Said unified programming
object,

Nov. 14, 2002

Said elements corresponding to elements contained in Said
one or more class files and previously identified by Said
one or more redundant constant pool entries.

4. The method as in claim 3 wherein one of said global
constant pool entries is a methodref entry and Said element
identified by constant pool entry is a method copied to Said
unified programming object from Said one or more class
files.

5. The method as in claim 4 further comprising:
converting numeric references to local entries within a

bytecode in Said method to pointers to global constant
pool entries.

6. The method as in claim 5 further comprising:
converting an exception table associated with Said method

to references to jop objects instead of numeric refer
ences to addresses of bytecodes.

7. The method as in claim 3 wherein one of said global
constant pool entries is a fieldref entry and Said element
identified by constant pool entry is a field copied to Said
unified programming object from Said one or more class
files.

8. The method as in claim 1 further comprising:
validating Said two or more class files before mapping

Said elements to form Said unified programming object.
9. A unified programming object comprising:

a shared constant pool comprising global constant pool
entries mapped from local constant pool entries of two
or more class files; and

a plurality of object code copied from Said two or more
class files to Said unified programming object and
identified by Said global constant pool entries.

10. The unified programming object as in claim 9 wherein
one of Said global constant pool entries is a methodref entry
and a portion of Said object code is a method identified by
said methodref entry.

11. The unified programming object as in claim 9 wherein
one of Said global constant pool entries is a fieldref entry and
a portion of Said object code is a field identified by Said
fieldref entry.

12. The unified programming object as in claim 10
wherein Said method is comprised of one or more bytecodes
including pointers to Said global constant pool entries, Said
pointers being converted from numeric references to global
entries when said method was part of one of Said class files.

13. The unified programming object as in claim 9 wherein
Said global constant pool entries are single-length entries.

14. The unified programming object as in claim 13
wherein Said object code is identified by an offset contained
in one of Said global constant pool entries.

15. The unified programming object as in claim 9 wherein
a portion of Said object code is a Class Info object corre
sponding a headers of one of Said class files.

16. An article of manufacture containing a Sequence of
code which, when executed by a machine, cause Said
machine to perform the operations of:

mapping elements from two or more class files to form a
unified programming object,

Said elements including a plurality of constant pool entries
and one or more methods and/or fields.

US 2002/0170047 A1

17. The article of manufacture as in claim 16 wherein
mapping further comprises:

combining redundant constant pool entries from Said class
files to form a global constant pool entry in a shared
constant pool within Said unified programming object.

18. The article of manufacture as in claim 17 wherein
combining further comprises:

rewriting Said global constant pool entries to point to
elements contained within Said unified programming
object,

Said elements corresponding to elements contained in Said
one or more class files and previously identified by Said
one or more redundant constant pool entries.

19. The article of manufacture as in claim 18 wherein one
of Said global constant pool entries is a methodref entry and
Said element identified by constant pool entry is a method
copied to Said unified programming object from Said one or
more class files.

20. The article of manufacture as in claim 19 comprising
additional code to cause Said machine to perform the opera
tion of:

Nov. 14, 2002

converting numeric references to local entries within a
bytecode in Said method to pointers to global constant
pool entries.

21. The article of manufacture as in claim 20 comprising
additional code to cause Said machine to perform the opera
tion of:

converting an exception table associated with Said method
to references to jop objects instead of numeric refer
ences to addresses of bytecodes.

22. The article of manufacture as in claim 18 wherein one
of Said global constant pool entries is a fieldref entry and
Said element identified by constant pool entry is a field
copied to Said unified programming object from Said one or
more class files.

23. The article of manufacture as in claim 16 comprising
additional code to cause Said machine to perform the opera
tion of:

validating Said two or more class files before mapping
Said elements to form Said unified programming object.

